
Worst-Case Performance of a Mobile Sensor Network

Under Individual Sensor Failure

Hyongju Park and Seth Hutchinson

Abstract— In this paper, we consider the problem of worst-
case performance by a mobile sensor network (MSN) when
some of the nodes in the network fail. We formulate the
problem as a game in which some subset of the nodes act
in an adversarial manner, choosing their motion strategies to
maximally degrade overall performance of the network as a
whole. We restrict our attention in the present paper to a
target detection problem in which the goal is to minimize
the probability of missed detection. We use a partitioned cost
function that is minimized when each sensor executes a motion
strategy given by Lloyd’s algorithm (i.e., each agent moves
toward the centroid of its Voronoi partition at each time
instant), and when the probability of missed detection for each
functioning sensor increases with the distance between sensor
and target for correctly functioning sensors; adversarial nodes
in the network are unable to detect the target, and move to
maximally increase the probability of missed detection by the
properly functioning sensors. We pose the problem as a multi-
stage decision process, and use forward dynamic programming
over a finite horizon to numerically compute optimal strategies
for the adversaries. We compare the resulting strategies to a
greedy algorithm, providing both system trajectories and evo-
lution of the probability of missed detection during execution.

I. INTRODUCTION

Mobile sensor networks (MSNs) have been a popular

research area over the past decade [1], [2], [3], [4], [5], [6],

[7], [8], [9]. For many applications, MSNs require relatively

low power, and have low system and maintenance costs.

MSNs have been used, for instance, for ocean sampling,

odor source detection and localization, and contamination

source detection [2]. However, as with any large, distributed

system, there is a high likelihood that one or more nodes in

the network will fail at some point in time. Failures include

malfunctioning sensors, in which case sensor measurements

will be corrupted, and malfunctioning actuators, in which the

motion of sensor nodes will be suboptimal.

In this paper, we consider the worst-case performance

of an MSN under such failures. Specifically, we consider

the case for which a malfunctioning sensor always gives

an erroneous value of the quantity to be sensed, and a

malfunctioning sensor node moves along the trajectory that

maximally degrades overall detection performance.

Our emphasis on worst-case analysis also applies to situ-

ations in which certain nodes in the network deliberately act

H. Park is in the Department of Mechanical and Science Engineering at
the University of Illinois. park334@illinois.edu

S. Hutchinson is a professor of Electrical and Computer Engineering at
the University of Illinois. seth@illinois.edu

This material is based in part upon work supported by AFOSR (award
AF FA9550-12-1-0193) and the National Science Foundation (award CNS
0931871).

maliciously (e.g., this could occur in military applications if

an enemy were to gain control of a subset of the deployed

sensors). This leads us to formulate the problem as a game

in which a set of adversarial agents act to maximally degrade

the performance of the overall network. Throughout the

paper, we will therefore consider two sets of agents: a set

of cooperative agents, who function properly and perform

under the assumption that all other nodes in the MSN are

functioning properly, and the set of adversarial agents. Note

that we assume throughout this paper that cooperative agents

are not aware of the identities (or existence) of the adversarial

agents. In many situations this is a reasonable assumption,

but relaxing this assumption is still one of our long-term

goals.

To formalize our problem, we consider a specific target

detection problem. An MSN comprising N mobile sensor

nodes has the task of detecting a target whose location is

specified only by a probability distribution φ. We adopt

the model proposed in [6], [9], and assume that a sensor

is able to detect the target only if it is the closest sensor

to the target (this is a so-called partitioned cost model, in

which sensors are able to detect only those targets that lie

within their own Voronoi regions [10]). Furthermore, the

probability that a functioning sensor will detect a target

decreases monotonically with the distance to the target.

It has been shown that the optimal deployment of such

an MSN (i.e., the configuration of sensors that minimizes

the probability of missed detection) is achieved when each

sensor behaves according to the Lloyd’s algorithm [11],

[12], i.e., each sensor moves toward the centroid of its

own Voronoi region at each time step. Therefore, here we

assume that all cooperative agents faithfully execute Lloyd’s

algorithm.

For this problem, we can now precisely state the optimality

criterion for the adversarial agents. Let pi denote the con-

figuration of the ith node in the MSN. For a deployment of

sensors P = {p1, . . . , pN}, let L(P) denote the probability

of missed detection by the network (as will be shown below,

L(P) takes into account the behavior of both cooperative and

adversarial agents). If there are m adversarial agents, whose

configurations are p1, . . . , pm, the optimal configuration of

the adversaries satisfies

{p∗1, . . . , p∗m} = argmax
p1,...,pm

L(P) (1)

under the constraint that pj is located at the centroid of

the Voronoi region for agent j, for m + 1 ≤ j ≤ N .

In other words, the adversaries attempt to maneuver so

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 895

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158300586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Controller A

ua(xa, xc)

System A

xa=fa(xa, ua)

xc

ua

Controller C

uc(xa, xc)

System C

xc=fc(xc, uc)
uc

xa

xa

xa

xc

xc

Fig. 1: Block diagram of our control system.

that the cooperative agents converge to the worst possible

configurations when they execute Lloyd’s algorithm.

The usefulness of the solution to (1) is twofold. First,

it provides an answer to the question How badly can the

detection performance of an MSN be degraded by deploying

adversarial agents? This can be interpreted as a measure

of robustness of MSN to the adversarial agents. Second,

the solution can be used by actual adversaries to maximally

disrupt the performance of an MSN.

This paper is organized as follows. Section II formally

defines our problem. In section III, we define the control

policy for cooperative agents. At this point, we have not yet

derived closed form expressions for the optimal adversary

strategies. Rather, we present numerical results that have

been obtained using finite-horizon dynamic programming.

The approach is described in Section IV, and we demonstrate

the simulation results in Section V. Finally, Section VI

concludes the paper with future works.

II. SYSTEM MODEL

A. Our Network Environment

We consider N mobile sensors with position P =
{p1, . . . , pN} deployed in a bounded, convex workspace Q

in R
2. Suppose that m out of N agents are adversarial agents

denoted with A = {p1, . . . , pm}, while rest of the agents are

cooperative agents denoted with C = {pm+1, . . . , pN}.

B. Two Subsystems

Our system is composed of two subsystems as shown

in Fig. 1. One is System C which is a system for set of

cooperative agents, and the other is System A which is a

system for adversarial agent. First, given the previous states

from both sub-systems, control inputs are generated from

controller A, and C, then applied to System A, and C

respectively. As you can see from Fig. 1, sub-system blocks

are placed in paralleled which implies that System A, and C

evolve in synchronous manner. Control law for system A, and

system C must be different because cooperative agents tries

to minimize the cost function L(P) in (1), while adversarial

agent try to maximize it.

C. State Space, and State Transition

Our system is a tuple (Xc, Xa, Uc, Ua, Xc0, Xa0, fc, fa),
where Xc is the state space for cooperative system, Xa is

the state space for adversarial system, Uc, and Ua are input

spaces for system C, and A respectively, Xc0 ⊂ Xc is the

set of initial state space for cooperative system, Xa0 ⊂ Xa

is the set of initial state space for adversarial system, fc :
Xc × Uc → Xc is the evolution map of System C, and

fa : Xa × Ua → Xa is the evolution map for System A.

Let us denote by xc ∈ Xc, the state of System C − the set

of position of cooperative agents, and xa ∈ Xa, the state of

System A − the set of position of adversarial agents. First

the state for System A is

xk
a = {pk1 , . . . , pkm} (2)

The state transition equation for System A is

xk+1
a = fa(x

k
a, u

k
a) (3)

For simplicity, in our study we use the following equation

which is the discrete version of integrator dynamics.

xk+1
a = xk

a + uk
a, (4)

In similar manner, the state for System C is given by

xk
c = {pkm+1, p

k
m+2, . . . , p

k
N} (5)

The state transition equation for System C is

xk+1
c = fc(x

k
c , u

k
c) (6)

where the superscripts denote the time indices. State of Sys-

tem C evolves with Lloyd’s algorithm which will be reviewed

shortly in the next section. Now using the state transition

equation (4) of System A, let us define the reachable state

space for system A at stage k and denote it as Xk
rss ⊂ Xa

given initial configuration x0
a ∈ Xa. It can be obtained in

recursive way as follows.

X0
rss = {x0

a}
Xk

rss = {xk
a ∈ Xa | xk

a = xk−1
a + uk−1

a }

uk−1
a ∈ Ua, x

k−1
a ∈ Xk−1

rss , k = 1, . . . ,K (7)

The reachable state space was defined to account for the

physical constraint of each adversarial agent − it can only

move to its neighborhood during one stage. It will also be

used to provide condition for the stopping criteria in the later

section.

III. CONTROL POLICY OF COOPERATIVE AGENTS

A. Voronoi Partitions

Given a bounded, convex workspace Q, and configuration

of agents P , the Voronoi partition of ith agent is defined as

follows.

Vi = {w ∈ Q | dist(w, pi) ≤ dist(w, pj), ∀i 6= j}

where i, j ∈ {1, . . . ,K}, and dist(·, ·) is a Euclidean distance

between two points. We denote by CVi
the Centroid of the

Voronoi Partition Vi given Q, and P .

896

B. Discrete Lloyd’s Algorithm

In this paper, we deal with the special case when at stage

k, each cooperative agent moves toward the centroid of its

Voronoi partition while adversarial agents follow their own

policy. Considering these two heterogeneous sub-systems,

a slightly modified version of Lloyd’s algorithm from [6],

[12] is given below. For simplicity, the superscripts k which

denote the number of stage were suppressed at the moment.

0) Initially, for each stage there are N number of agents

with position {p1, . . . , pN} deployed in our workspace

Q. Let us define a new set of variables {p̂1, . . . , p̂N}
which will be used to store the set of desired positions

for cooperative agents.

p̂i ← pi, for i = 1, . . . , N

1) For set of desired positions of agents {p̂1, . . . , p̂N},
construct a set of Voronoi partition {V1, . . . , VN}.

2) For set of desired positions of agents {p̂1, . . . , p̂N},
compute its centroid of its Voronoi partition

{CV1
, . . . , CVN

}.
3) If the following condition is satisfied, terminate the

algorithm.

dist(p̂i, CVi
) < ǫ, i ∈ {m+ 1, . . . , N}

where ǫ is a small positive real number. It is the

maximum allowable error between p̂i and CVi
whose

value depends on your platform. Otherwise update

the set of desired positions of cooperative agents as

follows.

p̂i ← CVi
, i ∈ {m+ 1, . . . , N}

After the update, return to 1).

Note that during the execution of the algorithm, the ad-

versarial agents’ positions were not altered. This makes

sense because adversarial agents do not follow the Lloyd’s

algorithm.

C. Synchronous Control

First assume that all the agents in system C has a same

system clock. In other words, every cooperative agent moves

in synchronous manner. Furthermore, every agent in system

C has identical hardware specifications such that given the

control uc = {vm+1, . . . , vN}, magnitude of every vector in

uc is bounded by some positive real number vmax which

denotes the maximum displacement of a cooperative agent

during a single stage. i.e., ‖vi‖ ≤ vmax for i ∈ {m +
1, . . . , N}. The state transition equation in (6) is simplified

as

xk+1
c = xk

c + uk
c , k ∈ {0, 1, . . . ,K − 1}

where the control uc is a saturation function.

uc =

{

p̂i − pi if dist(p̂i, pi) ≤ vmax

vmax · p̂i−pi

dist(p̂i,pi)
if dist(p̂i, pi) ≥ vmax

(8)

IV. PROBLEM FORMULATION

A. Probability of Missed Detection as Reward

Our reward was measured with the following function

given the configuration of agents P in Q, which you can

also find in [9].

L(P) =
N
∑

j=1

∫

Vj

(

N
∏

i=1

h(‖q − pi‖)
)

φ(q) dq (9)

h(‖w − pk‖) = 1, ∀w ∈ Q, k ∈ {1, . . . ,m} (10)

where, our reward function (9) is a special case of the cost

function define in [9] where the dominance region Wj from

[9] is Voronoi partition Vj for each j = 1, . . . , N . The

function h : R+ → R
+ is defined by h(x) = η x2 where

η is a positive real value which depends on the diameter of

our workspace Q such that, (η diam(Q))
2 ≤ 1. The function

value of h(‖q − pk‖) is the probability of an event that an

agent located at pk fails to detect a target given that the target

is located at q ∈ Q i.e. probability of missed detection. The

equation (10) implies that the adversarial agent always fails

to detect any target in Q. Now let us consider the partitioned

reward − the reward when each cooperative agent can only

detect targets in its Voronoi partition − that is analogous to

partitioned cost in [6], [9]. To obtain the partitioned reward,

the following constraint need to be added in addition to

equation (9-10).

h(‖w − pi‖) =
{

1 w ∈ Q \ Vi

η ‖w − pi‖2 otherwise
,

i ∈ {m+ 1, . . . , N} (11)

The partitioned reward will be used throughout this pa-

per, because the each cooperative agent moves towards the

centroid of its Voronoi partition which is the direction of

gradient assent for partitioned reward. In other words, the

best reward for the adversarial agent would be to maximize

the partitioned reward function which cooperative agents try

to minimize.

Now, it is necessary to define the current reward function

g : Xc × Xa → R
+ for each stage which will be used for

dynamic programming on next section. Using equation (9-

11), the current reward incurred at stage k ∈ {1, . . . ,K−1}
is given as follows,

gk(xk
c , x

k
a) = L(Pk)

subject to,

h(
∥

∥w − pkj
∥

∥) = 1, ∀w ∈ Q, j ∈ {1, . . . ,m}
h(
∥

∥w − pki
∥

∥) = 1, ∀w ∈ Q \ V k
i ,

i ∈ {m+ 1, . . . , N} (12)

where superscript k for each term implies its value at stage.

B. Policy for Adversarial Agents

Let us define a map µ : Xc × Xa → Ua. That is given

xk
c ∈ Xc, xk

a ∈ Xa, we consider a control law for stage k

897

which depends on state from both subsystems.

uk
a = µk(xk

c , x
k
a), k ∈ {0, 1, . . . ,K − 1} (13)

We define a policy π to be the sequence of the above map.

π = {µ0, µ1, . . . , µK−1} (14)

C. Dynamic Programming

The Lloyd’s algorithm is a deterministic algorithm; how-

ever state transition derived from the algorithm cannot be

represented with an analytic function, nor a differentiable

function which make this problem not suited for calculus

of variations approach. Rather this problem can be posed

as a multi-stage decision process as we did in the previous

section, so that it can be solved with dynamic programming

(DP). The indexing rule in our DP formula is consistent with

that you can find in [13]. Since in our problem the final

state is unknown, we cannot apply the backwards dynamic

programming algorithm; however we have a choice to use

forwards DP instead. Before deriving forwards DP, we first

formulate the backwards DP problem.

HK(xK
c , xK

a) = 0, (15)

and

Hk(xk
c , x

k
a) = max

uk
a∈Ua

{

gk(xk
c , x

k
a)

+ Hk+1
(

fc(x
k
c , u

k
c), fa(x

k
a, u

k
a)
)

}

,

k = 0, 1, . . . ,K − 1, (16)

where equation (15) shows that the terminal reward equals

to zero, and equation (16) denotes the optimal reward-to-go

at stage k. The total reward over K stages is

H0(x0
c , x

0
a) = max

u0
a,...,u

K−1

a

K−1
∑

i=0

gk(xk
c , x

k
a) (17)

The optimal policy π∗

d = {µ0∗
d , µ1∗

d , . . . , µK−1∗
d } is the set of

control which solves the RHS of equation (17). The subscript

‘d’ implies that DP algorithm was used to solve the problem.

For use in Forward DP, let us first define the backwards state

transition equation similar to (3), and (6) respectively.

xk−1
a = f̃a(x

k
a, u

k−1
a), k ∈ {1, . . . ,K} (18)

xk−1
c = f̃c(x

k
c , u

k−1
c), k ∈ {1, . . . ,K} (19)

Now we state our forward DP problem which is analogous

to equation (15-16).

H̃K(x1
c , x

1
a) = g0(x0

c , x
0
a), (20)

and

H̃k(xK−k+1
c , xK−k+1

a)

= max
u
K−k
a ∈Ua

{

gK−k(xK−k
c , xK−k

a)

+ H̃k+1
(

f̃c(x
K−k+1
c , uK−k

c), f̃a(x
K−k+1
a , uK−k

a)
)}

,

k = 1, . . . ,K − 1 (21)

where H̃k(xK−k+1
c , xK−k+1

a) is the optimal reward-to-come

to stage K − k+ 1 from initial stage. The total reward over

K stages is

H̃1(xK
c , xK

a) = max
u0
a,...,u

K−1

a

K−1
∑

k=0

gk(xk
c , x

k
a)

k = 0, 1, . . . ,K − 1 (22)

Since RHS of (17), and that of (22) is identical, the optimal

policy π∗

d obtained from backwards DP solves equation (22),

too.

D. Stopping Criteria for our DP

Recall that the final stage K is an unknown, which makes

the forward DP algorithm the only feasible approach. There

needs to be an criterion to terminate the DP algorithm to

prevent it from running forever which is impractical. Our

forward DP algorithm has K number of stages which is

obtained from

K = argmin
k

{

k ∈ N | Xk
rss = Q, uk∗

a = 0, uk
c = 0

}

(23)

Using the equation, it is our interest to find the stage with

minimum index which satisfies two arguments inside the

bracket on the RHS. The intuition for the first argument is

to consider the size of the workspace, and to avoid local

maximums. In other words, we run the forward DP algorithm

until the reachable state space of system A at stage K, XK
rss

includes workspace Q. In addition, we rely on heuristics that

if uK∗

a = 0, then ui∗
a = 0 for all i > K. uk

c = 0 means that

cooperative agents must be placed in their centroid of their

Voronoi partition at stage k.

E. Greedy Method

In greedy method, one is only interested in maximizing

the current reward incurred at each stage. For each stage the

optimal control is obtained from

ui∗
a = xi+1∗

a − xi∗
a , (24)

where

xi∗
a = argmax

i

gi(xi
c, x

i
a), i = 0, 1, . . . ,K − 1 (25)

The set of optimal control constitutes an optimal policy πg =
{µ0∗

g , . . . , µK−1∗
g }, where subscript ‘g’ implies that greedy

method is used to solve the problem. The greedy algorithm

terminates at stage K when uK∗

a = 0, and uK
c = 0 for some

K ∈ N.

V. SIMULATION AND RESULTS

In our simulation, we chose our workspace to be Q =
[0, 1]2. As you can see from Fig. 2, we have 4 cooperative

agents, and 1 adversarial agent initially deployed at centroids

of their Voronoi partitions in the workspace Q such that

pi = CVi
for each i = 1, . . . , 4. In DP algorithm, if the state

space gets too large, the calculation becomes implausible.

For this reason, we discretized the workspace into n×n grid,

and assumed that the adversarial agent can only move along

898

X

Y

0 1

1

Fig. 2: Initial configuration of agents. (•: adversarial agent,

◦: cooperative agents)

the grid. 8-neighbors rule was used, which makes cardinality

of input space to be 8. Also, we imposed a constraint vmax =
grid size×

√
2 − the maximum displacement allowed during

one stage − which applies to all agents in MSN. Fig. 3 shows

the trace of agents during our multi-stage process under

optimal policy obtained from forwards DP algorithm. Fig.

4 shows gk(xk
c , x

k
a) − the current reward incurred at each

stage k from both forwards DP, and greedy method. Fig.

3, and 4 each contains three sub-figures respectively which

are results obtained with different n − the number of grids

per column. As one may expect, as n increases, the motion

of adversarial agents becomes more realistic. Furthermore

If n → ∞, adversarial agents can move over continuous

workspace which is the most realistic approach; however at

the cost of enormous amount of calculation. In Fig. 3, it could

be verified that the case n = 10 is a good approximation of

the case n = 30 in terms of the shape of optimal path for the

adversarial agent. In Fig. 4, you can compare the current cost

values for each stage. If you take a look at the current cost

value for the last stage, given n = 10, 20, 30, the cost value

is 0.716, 0.717, 0.719 respectively. Also, the case n = 10 is

a good approximation in terms of cost incurred at the final

stage − about 99.58% of that of n = 30. As you can see

from Fig. 3-(a), and Fig. 4-(a), the results from forwards DP,

and greedy method yielded a same solution. This is a special

case in which the local optimal policy is the global optimal

policy under 4-stage process. In Fig. 4. (a)-(c), final stages

indices for n = 10, 20, 30 are 4, 9, 12 respectively which

does not agree with the final stage index obtained from (23)

that is 9, 18, 27. This result shows that our heuristic stopping

criteria can be inefficient.

VI. FUTURE WORKS

There are many interesting points to be considered in the

next stage of our research. First, we plan to increase the

number of adversarial agents, or try different adversarial-

to-cooperative agents ratio in MSN. Given a fixed total

number of agents, increase in the number of adversaries

means exponential increase in the size of both state space

Xa, and reachable state space Xrss. In this case, approximate

DP method can be used to find approximate solution with

less computation. Ultimately, we would like to derive closed-

form formulas for the optimal adversarial agents’ strategies.

Under such strategies, if the final stage is K, both ui∗
a , and ui

c

must remain zero for subsequent stages i > K. Furthermore,

we plan to consider different control policy for cooperative

agents e.g., each agent follows the gradient descent flow

minimizing the “total cost” instead of “partitioned cost”

defined in [9].

REFERENCES

[1] A. Howard, M. Mataric, and G. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to
the area coverage problem,” in Proceedings of the 6th International

Symposium on Distributed Autonomous Robotics Systems (DARS02).
Citeseer, 2002, pp. 299–308.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp.
393–422, 2002.

[3] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” Automatic Control,

IEEE Transactions on, vol. 48, no. 6, pp. 988–1001, 2003.
[4] L. Hu and D. Evans, “Localization for mobile sensor networks,” in

Proceedings of the 10th annual international conference on Mobile

computing and networking. ACM, 2004, pp. 45–57.
[5] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile

sensor networks: Adaptive gradient climbing in a distributed environ-
ment,” Automatic Control, IEEE Transactions on, vol. 49, no. 8, pp.
1292–1302, 2004.

[6] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” Robotics and Automation, IEEE Transac-

tions on, vol. 20, no. 2, p. 243255, 2004.
[7] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic

Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009, electronically available at http://coordinationbook.info.

[8] M. Schwager, D. Rus, and J. Slotine, “Unifying geometric, proba-
bilistic, and potential field approaches to multi-robot deployment,”
The International Journal of Robotics Research, vol. 30, no. 3, pp.
371–383, 2011.

[9] S. Hutchinson and T. Bretl, “Robust optimal deployment of mobile
sensor networks,” in Robotics and Automation (ICRA), 2012 IEEE

International Conference on, 2012, p. 671676.
[10] A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial tessellations:

concepts and applications of Voronoi diagrams. Wiley, 2009, vol.
501.

[11] S. Lloyd, “Least squares quantization in pcm,” Information Theory,

IEEE Transactions on, vol. 28, no. 2, pp. 129–137, 1982.
[12] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:

Applications and algorithms,” SIAM review, vol. 41, no. 4, pp. 637–
676, 1999.

[13] D. Bertsekas, “Dynamic programming and optimal control 3rd edition,
volume i,” 2011.

899

X

Y

0 1

1

(a) n = 10

X

Y

0 1

1

(b) n = 20

X

Y

0 1

1

(c) n = 30

Fig. 3: Trace of agents during the multi-stage process under

optimal policy. where Xa was discretized into n× n grid

on Q. (×: initial position of agents, ◦: final position of

agents, dashed line: trace of adversarial agent, solid line:

trace of cooperative agents).

0 1 2 3 4
0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0.73

stage k

c
u
rr

e
n
t
c
o
s
t
in

c
u
rr

e
d
 a

t
s
ta

g
e
 k

 :

g

k
(x

ck
,x

ak
)

Greedy
DP

(a) n = 10

0 1 2 3 4 5 6 7 8 9
0.67

0.68

0.69

0.7

0.71

0.72

0.73

stage k

c
u
rr

e
n
t

c
o
s
t

in
c
u
rr

e
d
 a

t
s
ta

g
e
 k

 :

g
k
(x

ck
,x

ak
)

Greedy
DP

(b) n = 20

0 1 2 3 4 5 6 7 8 9 10 11 12
0.67

0.68

0.69

0.7

0.71

0.72

0.73

stage k

c
u
rr

e
n
t

c
o
s
t

in
c
u
rr

e
d
 a

t
s
ta

g
e
 k

 :

g
k
(x

ck
,x

ak
)

Greedy
DP

(c) n = 30

Fig. 4: Current cost incurred at each stage for n× n grid

on Q.

900

