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Abstract. Inductive invariants can be robustly synthesized using a learn-
ing model where the teacher is a program verifier who instructs the learner
through concrete program configurations, classified as positive, negative,
and implications. We propose the first learning algorithms in this model
with implication counter-examples that are based on scalable machine
learning techniques. In particular, we extend decision tree learning al-
gorithms, building new scalable and heuristic ways to construct small
decision trees using statistical measures that account for implication
counterexamples. We implement the learners and an appropriate teacher,
and show that they are scalable, efficient and convergent in synthesizing
adequate inductive invariants in a suite of more than 50 programs.

1 Introduction

Automatically synthesizing invariants, in the form of inductive pre / post con-
ditions and loop invariants, is a challenging problem that lies at the heart of
automated program verification. If an adequate inductive invariant is found or
given by the user, the problem of checking whether the program satisfies the
specification can be reduced to logical validity of verification conditions, which is
increasingly tractable with the advances in automated logic solvers.

In recent years, the black-box
or learning approach to finding in-
variants has gained popularity [45,
46, 44, 22, 23], in contrast to white-
box approaches such as inter-
polants, methods using Farkas’
lemma, IC3, etc. [33, 28, 14, 25, 26,
11]. In this data-driven approach,
we split the synthesizer of invari-
ants into two parts (see figure to the right). One component is a teacher, which
is essentially a program verifier that can verify the program using a conjectured
invariant and generates counter-examples; it may also have other ways of gener-
ating configurations that must or must not be in the invariant (e.g., dynamic
execution engines, bounded model-checking engines, etc.). The other component
is a learner, which learns from counter-examples given by the teacher to synthesize
the invariant. In each round, the learner proposes an invariant hypothesis H, and
the teacher checks if the hypothesis is adequate to verify the program against



the specification; if not, it returns concrete program configurations that are used
in the next round by the learner to refine the conjecture. The most important
feature of this framework is that the learner is completely agnostic of the program
and the specification (and hence the semantics of the programming language,
memory model, etc.). The learner is simply constrained to learn some formula
(or predicate) that satisfies the sample configurations given by the teacher.
ICE Learning Model The simplest way for the teacher to refute an invariant is to
give positive and negative program configurations, S+ and S−, constraining the
learner to find a predicate that includes S+ and excludes S−. However, this is not
always possible. In a recent paper, Garg et al. [23] note that if the learner gives a
hypothesis that covers all states known to be positive by the teacher and excludes
all states known to be negative by the teacher, but yet is not inductive, then
the teacher is stuck and cannot give any positive or negative counter-example to
refute the hypothesis.

Garg et al. [23] define a new learning model, which they call ICE (for
implication counter-examples) that allows the teacher to give counter-examples
of the form (x, y), where both x and y are program configurations, with the
constraint that the learner must propose a predicate such that if it includes
x, then it includes y as well. These implication counter-examples can be used
to refute non-inductive invariants: if H is not inductive, then the teacher can
find a configuration x satisfying H such that x evolves to y in the program
but y is not satisfied by H. This learning model forms a robust paradigm for
learning invariants, including loop invariants, multiple loop invariants, and nested
loop invariants in programs [23]—the teacher can be both honest (never give an
example classification that precludes an invariant) and make progress (always be
able to refute an invariant that is not inductive or adequate). This is in sharp
contrast to learning only from positive and negative examples, where the teacher
is forced to be dishonest (as it does not know an invariant) to make progress.
Machine Learning for Finding Invariants One of the biggest advantages of the
black-box learning paradigm is the possible usage of scalable machine learning
techniques to synthesize invariants. The learner, being completely agnostic to
the program (its programming language, semantics, etc.), can be seen as a
machine learning algorithm that learns a Boolean classifier of configurations.
Machine learning algorithms can be trained to learn functions that belong to
various Boolean functions, such as k-CNF/k-DNF, Linear Threshold Functions,
Decisions Trees, etc., and some algorithms have already been used in invariant
generation [47]. However standard machine learning algorithms for classification
are trained on given sets of positive and negative examples (but do not handle
implications), and hence do not help in building robust learning platforms for
invariant generation.

In this paper, we build the first true machine learning algorithms for robust
invariant generation. We adapt and extend classical scalable machine learning
algorithms for constructing decision trees (which can express any Boolean function)
to scalable ICE learning algorithms. We show that this results in scalable and fast
algorithms for synthesizing invariants.



Decision trees over a set of attributes provide a universal representation of a
Boolean function defined over this set of numerical and categorical attributes.
Internal nodes in decision trees are decision variables that split over a value of a
single attribute, and the leaves are labeled with classification labels (positive or
negative in our setting).

Our starting point is the well-known decision tree learning algorithms of
Quinlan [39, 40, 36] that work by constructing the tree top-down from positive
and negative samples. These are extremely scalable algorithms as they choose
heuristically the best attribute that classifies the sample at each stage of the tree
based on statistical measures, and do not backtrack nor look ahead. One of the
well-known ways to pick these attributes is based on a notion called information
gain, which is in turn based on a statistical measure using Shannon’s entropy
function [43, 40, 36]. The inductive bias in these learning algorithms is roughly
to compute the smallest decision tree that is consistent with the sample— a
bias that again suits our setting well, as we would like to construct the smallest
invariant formula amongst the large number of invariants that may exist. Machine
learning algorithms, including the decision tree learning algorithm, often do not
produce concepts that are fully consistent with the given sample— this is done
on purpose to avoid over-fitting to the training set, under the assumption that,
once learned, the hypothesis will be evaluated on new, previously unseen data.
We remove these aspects from the decision tree algorithm (which includes, for
example, pruning to produce smaller trees at the cost of inconsistency) as we aim
at identifying a hypothesis that is correct rather than one that only approximates
the target hypothesis.

Our first technical contribution is a generic top-down decision tree algorithm
that works on samples with implications. This algorithm constructs a tree top-
down, classifying end-points of implications in a way that reduces the sizes of
trees and manages always to create a tree that is consistent with the sample. Our
second technical contribution is a study of various natural measures for learning
decisions tree in the presence of positive, negative examples, and implications.
We do this by developing several novel “information gain” measures that are
used to determine the best attribute to split on given the current collection of
examples and implications. The first naive metric is to simply ignore implications
when choosing attributes— however, ignoring implications entirely seems to
result in non-robust invariant generation, where even on simple examples the
learning diverges. The second metric that we propose is a natural extension of the
entropy measure to account for implications, where we consider the unclassified
examples as probabilistically classified, under the constraints imposed by the
implications. A third proposal stems from the observation that in most of the
generated invariants, the end-points of implications are mostly classified either
both positively or both negatively. Consequently, the third measure we propose is
one that uses the classical entropy for positive and negative points, but imposes
a weighted penalty based on the number of implications that are cut by the
considered attribute (i.e., where one end-point satisfies the attribute and the
other does not), and which do not connect a predominantly negative set to a



predominantly positive set. We also tried several other intuitive statistical ways
to define heuristic measures to find the best attributes, but the two described
above gave the best results.

We implement our ICE decision tree algorithms (i.e., the generic ICE learning
algorithm with the various statistical measures for choosing attributes) and build
teachers to work with these learners to guide them towards learning invariants.
We perform extensive experiments that show that the decision tree learners
we build are competitive, and superior in performance and convergence to the
constraint-solving based ICE learner presented in [23]. We use our tool to find
invariants in around 50 programs, and the new learning techniques work extremely
well; surprisingly, they converge on all examples. We also perform experiments
that show, in general, how scalable the decision tree learning is in learning from
large sets of points compared with techniques based on constraint solving.

We believe that this work breaks new ground in adapting machine learning
techniques to invariant synthesis, giving the first scalable and robust ICE machine-
learning algorithms for synthesizing invariants.

Related Work Algorithms for invariant synthesis can be broadly categorized as
white-box techniques and black-box techniques. Prominent examples for white-
box techniques include abstract interpretation [16], interpolation [33, 28], and
IC3 [11]. Abstract interpretation is predominately used for synthesizing invariants
over convex domains [35, 17, 6, 27], but there also exist applications to non-convex
domains [19, 42] and even non-lattice domains [21]. Template-based approaches
for synthesizing invariants using constraint solvers have been also explored in
a white-box setting [14, 25, 26]. On the other hand, a prominent early example
of black-box techniques for synthesizing invariants is Daikon [18], which uses
conjunctive Boolean learning to find likely invariants from test runs. Active
learning in the context of verification was introduced by Cobleight et al. [13],
followed by applications of Angluin’s L∗ [4] to verification problems such as finding
rely-guarantee contracts [3] and stateful interface specifications for programs [2],
verifying CTL properties [51], and Regular Model Checking [38]. Houdini [20],
which learns conjunctive Boolean invariants, is another prominent algorithm.
Work on liquid types [30] uses a similar algorithm for inferring refinement types
for program expressions.

Recently, learning has gained renewed interest in the context of program veri-
fication, particularly for synthesizing loop invariants [47, 45, 46, 48, 22]. However,
Garg et al. [23] argue that merely learning from positive and negative examples
for synthesizing invariants is inherently non-robust and introduce ICE-learning,
which extends the classical learning setting with implications. Implication counter-
examples were also identified by Sharma et al [46], but the learners proposed did
not handle them in any way. Examples of algorithms using ICE-learning have
been subsequently proposed for learning invariants over octogonal domains and
universally quantified invariants over linear data structures [22], Regular Model
Checking [37], and a general framework for generating invariants based on ran-
domized search [44]. Some generalizations of Houdini [50, 24] can also be seen as
ICE-learning algorithms. In program or expression synthesis, a popular approach



to synthesis is using counter-example guided inductive synthesis (CEGIS), which
is also a black-box learning paradigm [1, 49] like ICE, and is gaining traction
aided by explicit enumeration, symbolic constraint-solving and stochastic search
algorithms.

Machine learning algorithms (see [36] for an overview) are often used in
practical learning scenarios due to their high scalability. Algorithms for learning
linear classifiers include winnow [31], perceptron [41], and support vector ma-
chines [15]. Since invariants in our current work are arbitrary Boolean functions,
our learner is build on decision tree algorithms such as ID3 [39], C4.5 [40] and
C5.0. Apart from these classification algorithms, algorithms for learning more
complicated structured objects using structured prediction [5] have also become
popular recently.

2 Background: Learning Decision Trees from Positive
and Negative Examples

Our algorithm for learning invariants builds on the classical recursive algorithm
to build decision trees proposed by Quinlan (we refer the interested reader to
standard texts on learning for more information on decision tree learning [36]).
The reader is encouraged to think of decision trees as Boolean combinations of
formulae of the form ai ≤ c, where ai is drawn from a fixed set of numerical
attributes A (which assign a numerical value to each sample) and c is a constant
or of the form bi, where bi is drawn from a fixed set of Boolean attributes (which
assign a truth value to each sample). When performing invariant learning, we
will fix a set of attributes typically as certain arithmetic combinations of integer
variables (for example, octagonal combinations of variables or certain linear
combinations of variables with bounded co-efficients). Boolean attributes are
useful for other non-numerical constraints (are x and y aliased, does x point to
nil, etc.). Consequently, the learner would learn the thresholds (the values for
c in ai ≤ c) and the Boolean combination of the resulting predicates, including
arbitrary conjunctions of disjunctions as a proposal for the invariant.

Quinlan’s algorithm, sketched in pseudo code as Algorithm 1, builds the
tree top-down (without backtracking), choosing the best attribute at each stage
using an information theoretic measure called information gain. It has been
implemented by the ID3, C4.0, and C5.0 algorithms [39, 40, 36].

The crucial aspect of the extremely scalable decision tree learning algorithms
is that they choose the attribute for the current sample in some heuristic manner,
and never back-track (or look forward) to optimize the size of the decision tree.
The prominent technique for choosing attributes is based on a statistical property,
called information gain, to measure how well each attribute classifies the examples
at any stage of the algorithm. This measure is typically defined using a notion
called Shannon entropy [43], which, intuitively, captures the impurity of a sample.
The entropy of a sample S with p positive samples and n negative samples is a
value between 0 and 1, defined to be

Entropy(S) = − p

p + n
log2

p

p + n
− n

p + n
log2

n

p + n
.



input : A sample S = 〈S+, S−〉 and Attributes
1 Return ID3 (〈S+, S−〉, Attributes).

Proc ID3 (Examples = 〈Pos, Neg〉, Attributes)
2 Create a root node of the tree.
3 if all examples are positive or all are negative then
4 Return the single node tree Root with label + or −, respectively.

else
5 Select an attribute a (and a threshold c for a if a is numerical) that

(heuristically) best classifies Examples.
6 Label the root of the tree with this attribute (and threshold).
7 Divide Examples into two sets: Examplesa that satisfy the predicate

defined by attribute (and threshold), and Examples¬a that do not.
8 Return tree with root and left tree ID3 (Examplesa, Attributes) and right

subtree ID3 (Examples¬a, Attributes) ;
end

Algorithm 1: The basic inductive decision tree construction algorithm under-
lying ID3, C4.0, and C5.0

Intuitively, if the sample contains only positive (or only negative) points (i.e., if
p = 0 or n = 0), then its entropy is 0, while if the sample had roughly an equal
number of positive and negative points, then its entropy is close to 1.

When evaluating an attribute a (and threshold) on a sample S, splitting it
into Sa and S¬a (points satisfying the attribute and points that do not), one
computes the information gain of that attribute (w.r.t. the chosen threshold):
the information gain is the difference between the entropy of S and the sum of
the entropies of Sa and S¬a weighted by the number of points in the respective
samples. For numerical attributes, the thresholds also need to be synthesized;
in the case of information gain, however, it turns out that the best thresholds
is always at some value occurring in the points in the sample. The algorithm
chooses the attribute that results in the largest information gain.

The above heuristic for greedily picking the attribute that works best at each
level has been shown to work very well in large and a wide variety of machine
learning applications [40, 36]. When decision tree learning is used in machine
learning contexts, there are other important aspects: (a) the learning is achieved
using a small portion of the available sample, so that the tree learned can be
evaluated for accuracy against the rest of the sample, and (b) there is a pruning
procedure that tries to generalize and reduce the size of the tree so that the tree
does not overfit the sample. When using decision tree learning for synthesizing
invariants, we prefer to use all the samples as we anyway place the passive
learning algorithm in a larger context by building a teacher which is a verification
oracle. Also, we completely avoid the pruning phase since pruning often produces
trees that are (mildly) inconsistent with the sample; since we cannot tolerate any
inconsistent trees, we prefer to avoid this (incorporating pruning in a meaningful
and useful way in our setting is an interesting future direction).

In our setting, we assume that all integer variables mentioned in the program
occur explicitly as numerical attributes; hence, it turns out that any sample
of mixed positive and negative points can be split (potentially using the same



attribute repeatedly with different thresholds) and eventually separated into
purely positive and purely negative points (in the worst case, each point is
separated into its own leaf). Consequently, we are guaranteed to always obtain
some decision tree that is consistent with any input sample.

3 A Generic Decision Tree Learning Algorithm in the
Presence of Implications

In this section, we present the skeleton of our new decision tree learning algorithm
for samples containing implication examples in addition to positive and negative
examples. We present this algorithm at the level of Algorithm 1, excluding the
details of how the best attribute at each stage is chosen. In Section 4, we articulate
several different natural ways of choosing the best attribute, and evaluate them
in experiments.

Our goal in this section is to build a top-down construction of a decision tree
for an ICE sample, such that the tree is guaranteed to be consistent with respect
to the sample; an ICE sample is a tuple S = (S+, S−, S⇒) consisting of a finite
set S+ of positive points, a finite set S− of negative points, and a finite set S⇒ of
pairs of points corresponding to the implications. The algorithm is an extension
of the classical decision tree algorithm presented in Section 2 and, hence, will
automatically be consistent with positive and negative samples. The main hurdle
we need to cross is to construct a tree consistent with the implications. Note that
the pairs of points corresponding to implications do not have a classification, and
it is the learner’s task to come up with a classification in a manner consistent
with the implication constraints. As part of the design, we would like the learner
to not classify the points a priori in any way, but classify these points in a way
that leads to a smaller concept (or tree).

Our algorithm, shown in pseudo code as Algorithm 2, works as follows. First,
given an ICE sample 〈S+, S−, S⇒〉 and a set of attributes, we store S⇒ in a global
variable Impl and create a set Unclass of unclassified points as the end-points of
the implication samples. We also create a global table G that holds the partial
classification of all the unclassified points (initially empty). We then call our
recursive decision tree constructor with the sample 〈S+, S−,Unclass〉.

Receiving a sample 〈Pos,Neg,Unclass〉 of positive, negative, and unclassified
examples, our algorithm chooses the best attribute that divides this sample, say
a, and recurses on the two resulting samples Examplesa and Examples¬a. Unlike
the classical learning algorithm, we do not recurse independently on the two
sets—rather we recurse first on Examplesa, which will, while constructing the left
subtree, make classification decisions on some of the unclassified points, which
in turn will affect the construction of the right subtree for Examples¬a (see the
else clause in Algorithm 2). The new classifications that are decided by the
algorithm are stored and communicated using the global variable G.

Whenever Algorithm 2 reaches a node where the current sample has only
positive points and implication end-points that are either classified positively or
unclassified yet, then the algorithm will, naturally, decide to mark all remaining



input : An ICE sample S = 〈S+, S−, S⇒〉 and Attributes
1 Initialize global Impl to S⇒.
2 Initialize G, a partial valuation of end-points of implications in S⇒, to be empty.
3 Let Unclass be the set of all end-points of implications in S⇒.
4 Take implication closure of G with respect to the positive and negative

classifications in S+ and S−.
5 Return DecTreeICE (〈S+, S−, Unclass〉, Attributes).

Proc DecTreeICE (Examples = 〈Pos, Neg, Unclass〉, Attributes)
6 Move all points from Unclass that are positively, respectively negatively,

classified in G to Pos, respectively Neg.
7 Create a root node of the tree.
8 if Neg = ∅ then
9 Mark all elements in Unclass as positive in G.

10 Take the implication closure of G w.r.t. Impl.
11 Return the single node tree Root, with label +.
12 else if Pos = ∅ then
13 Mark all elements in Unclass as negative in G.
14 Take the implication closure of G wrt Impl.
15 Return the single node tree Root, with label −.
16 else
17 Select an attribute a (and a threshold c for a if a is numerical) that

(heuristically) best classifies Examples and Impl.
18 Label the root of the tree with this attribute a (and threshold c).
19 Divide Examples into two sets: Examplesa that satisfy the predicate

defined by the attribute (and threshold) and Examples¬a that do not.
20 T1 = DecTreeICE(Examplesa, Attributes) (may update G).
21 T2 = DecTreeICE(Examples¬a, Attributes) (may update G).
22 Return tree with root, left tree T1, and right tree T2.

end
Algorithm 2: The basic decision tree construction algorithm for ICE samples

unclassified points positive, and declare the current node to be a leaf of the
tree (see first conditional in the algorithm). Moreover, it marks in G all the
unclassified end-points of implications in Unclass as positive and propagates this
constraint across implications (taking the implication closure of G with respect
to the global set Impl of implications). For instance, if (x, y) is an implication
pair, both x and y are yet unclassified, and the algorithm decides to classify x as
positive, it propagates this constraint by making y also positive in G; similarly,
if the algorithm decided to classify y as negative, then it would mark x also
as negative in G. Deciding to classify x as negative or y as positive places no
restrictions on the other point, of course.

The next theorem states that Algorithm 2 always terminates and constructs a
decision tree that is consistent with the ICE sample. The reason is that classifying
end points of implications in a leaf node as uniformly positive or uniformly
negative and taking the implication closure will never violate an implication
(note that the implication could start from a leaf to a node that is yet to be
explored). A complete proof of the theorem can be found in Appendix B.



Theorem 1. Algorithm 2, independent of how the attributes are chosen to split
a sample, always terminates and produces a decision tree that is consistent with
the input ICE sample.

The running time of Algorithm 2 depends, of course, on the time taken to
choose the best attribute in each recursive call. Apart from this, however, the
algorithm is linear in the size of the sample: in each round, the sample set is
divided into two parts and recursed on, and the total updates to G and the sum
of the implication closures on G can be done in time linear in the number of
implications. We explore several different ways to choose the best attribute at
each stage in the next section, all of which are linear or quadratic on the sample.

4 Choosing Attributes in the Presence of Implications

Algorithm 2 ensures that the resulting decision tree is consistent with the given
sample, irrespective of the exact mechanism used to determine the attributes to
split and their thresholds. As a consequence, the original split heuristic based on
information gain (see Section 2), which is unaware of implications, might simply
be employed. However, since our algorithm propagates the classification of data
points once a leaf node is reached, just ignoring implications can easily lead to
splits that are good at the time of the split but later turn into bad ones since
the classification of points has changed (Appendix A illustrates such a situation).
In fact, our experiments show that a learner which ignores implications when
choosing an attribute often learns larger decision trees or even diverges.

We next propose two methods that take implications into account while
choosing the attribute to split. We observed that these methods yield faster
convergence when used in an invariant synthesis setting.

Computing Information Gain for an ICE Sample: The entropy of a set of
examples is a function of the discrete probability distribution of the classification
of a point drawn randomly from the examples. In a classical sample that only has
points labeled positive or negative, one could count the fraction of positive (or
negative) points in the set to compute these probabilities. However, an estimation
of these probabilities becomes non-trivial in the presence of unclassified points
that can be probabilistically classified as either positive or negative. Moreover,
in an ICE sample, the classification of these points is not independent anymore
as the classification for the points need to satisfy the implication constraints.
Given a set of examples with implications and unclassified points, we will first
estimate the probability distribution of the classification of a random point drawn
from these examples, taking into account the implication constraints, and then
use it for computing the entropy. We will use this new entropy to compute the
information gain while choosing the attribute for the split.

Given S = 〈Pos, Neg, Unclass〉, and a set of implications Impl, let ImplS
be the set of implications projected onto S such that both the antecedent and
consequent points in the implication are unclassified (i.e., ImplS = {(x1, x2) ∈
Impl | x1, x2 ∈ Unclass}). For the purpose of entropy computation, we will



assume that there is no point in the examples that is common to more than
one implication. This is a safe assumption if the space enclosing all the points
is much larger than the number of points. Also, let Unclass’ ⊆ Unclass be the
set of unclassified points in the sample that are not part of any implication in
ImplS (for example x1 where (x1, x2) ∈ Impl and x2 ∈ Pos). Note that points in
Unclass’ can be classified as positive or negative, independent of the classification
of other points.

Let Pr(x = a) be the probability of a point x ∈ S being classified as a where
a is positive (+) or negative (−). Note that Pr(x = +) is one for x ∈ Pos and
zero for x ∈ Neg. Also, let Pr(S, a) be the probability of a point drawn randomly
from S being classified as a. Then,

Pr(S, +) = 1
|S|

∑
x∈S

Pr(x = +) = 1
|S|

( ∑
x∈Pos∪Neg∪Unclass’

Pr(x = +) +

∑
(x1,x2)∈ImplS

Pr(x1 = +) + Pr(x2 = +)
)

(1)

We assume that unclassified points xU ∈ Unclass’ and points x1 ∈ S where
(x1, x2) ∈ ImplS are classified independently and probabilistically in accordance
with the distribution of points in the set S. In other words, we recursively assign
Pr(xU = +) = Pr(x1 = +) = Pr(S, +). However, the classification of x2 depends
on the classification of x1 as the implication constraint between them needs to
be satisfied. Using conditional probabilities we obtain, Pr(x2 = +) = Pr(x2 =
+ | x1 = +) · Pr(x1 = +) + Pr(x2 = + | x1 = −) · Pr(x1 = −). From the
implication constraint between x1 and x2, Pr(x2 = + | x1 = +) = 1. However,
Pr(x2 = + | x1 = −) = Pr(S, +) since x2 can be classified independently when x1
is classified negative. Plugging in these values for probabilities in Equation 1 and
using p = |Pos|, n = |Neg|, i = |Impl|, u′ = |Unclass’| and |S| = p + n + 2i + u′,
Pr(S, +) is the positive solution of the following quadratic equation:

ix2 + (p + n− i)x− p = 0
As a sanity check, note that Pr(S, +) = p

p+n , if there are no implications in
the sample set (i.e., i = 0). Also, Pr(S, +) = 1 if n = 0 and Pr(S, +) = 0 if p = 0
(i.e., when the set S has no negative or positive points). Once we have computed
Pr(S, +), the entropy of S can be computed in the standard way as

Entropy(S) = −Pr(S, +) · log2 Pr(S, +)− Pr(S,−) · log2 Pr(S,−)
where Pr(S,−) =

(
1−Pr(S, +)

)
. Now, we plug this new entropy in the information

gain and obtain a gain measure that explicitly takes implications into account.

Penalizing Cutting Implications In order to better understand how to deal
with implications, we analyzed classifiers learned by other ICE-learning algorithms
for invariant synthesis, such as the randomized search of [44] and the constraint
solver-based ICE learner of [23]. This analysis showed that the classifiers finally
learned (and also those conjectured during the learning) almost always classify
the antecedent and consequents of implications equally (either both positive or
both negative).

The fact that successful ICE learners almost always classify antecedents and
consequents of implications equally suggests that our decision tree learner should



avoid to “cut” implications. Formally, we say that an implication (p, q) ∈ Impl is
cut by the samples Sa and S¬a if p ∈ Sa and q ∈ S¬a, or p ∈ S¬a and q ∈ Sa;1
in this case, we also say that the split of S into Sa and S¬a cuts the implication.

A straightforward approach to discourage cutting implications builds on top
of the original information gain and imposes a penalty for every implication that
is cut. This idea gives rise to the penalized information gain that we define by

Gainpen(S, Sa, S¬a) = Gain(S, Sa, S¬a)− Penalty(Sa, S¬a, Impl)
where Sa, S¬a is the split of the sample S, Gain(S, Sa, S¬a) is the original
information gain based on Shannon’s entropy, and Penalty(Sa, S¬a, Impl) is a
total penalty function that we assume to be monotonically increasing with the
number of implications cut (we make this precise shortly). Note that this new
information gain does not prevent the cutting of implications (if this is necessary)
but favors not to cut them.

However, not every cut implication poses a problem: implications whose
antecedents are classified negatively and whose consequents are classified positively
are safe to cut (as this helps creating more pure samples), and we do not want
to penalize cutting those. Since we do not know the classifications of unclassified
points when choosing an attribute, we penalize an implication depending on how
“likely” it is an implication of this type (i.e., we assign no penalty if the sample
containing the antecedent is predominantly negative and the one containing the
consequent is predominantly positive). More precisely, given the samples Sa and
S¬a, we define the penalty function Penalty(Sa, S¬a, Impl) by( ∑

(x,y)∈Impl
x∈Sa,y∈S¬a

1− f(Sa, S¬a)
)

+
( ∑

(x,y)∈Impl
x∈S¬a,y∈Sa

1− f(S¬a, Sa)
)
,

where for two samples S1 = 〈Pos1, Neg1, Unclass1〉, S2 = 〈Pos2, Neg2, Unclass2〉

f(S1, S2) = |Neg1|
|Pos1|+ |Neg1|

· |Pos2|
|Pos2|+ |Neg2|

is the relative frequency of the negative points in S1 and the positive points in
S2 (which can be interpreted as likelihood of an implication pointing from S1 to
S2 being safe).

5 Experiments and Evaluation
To assess the performance of our decision tree ICE learner, we implemented
a prototype of Algorithm 2 as an invariant synthesis tool in Boogie [7] and
benchmarked it to other verification algorithms. Our experimental setup is as
follows.
Learner: We implemented Algorithm 2 (with the attribute selection methods
described in Section 4) on top of the freely available version of the C5.0 algorithm
(Release 2.10) [40]. Since we rely on learning without classification errors, we
disabled all of C5.0’s optimizations, such as pruning, boosting, etc.
1 Given a sample S = 〈Pos, Neg, Unclass〉, we write x ∈ S as a shorthand notation for

x ∈ Pos ∪Neg ∪Unclass.



Teacher: We implemented a teacher in Boogie, which translates an input program
into verification conditions and prototypes of functions that need to be synthesized.
To learn invariants over octagonal predicates (of the form ±x± y ≤ c), we add
auxiliary attributes of the form ±x± y for all combinations of variables x, y in
the program (note that the learner learns the thresholds c as well as the Boolean
combination of these predicates).

The actual learning starts with an empty ICE sample. Whenever the learner
proposes a conjecture, the teacher checks whether it satisfies the verification
conditions. If this is not the case, she derives a counterexample—either a spurious
pos/neg data point or an implication—and returns it to the learner. The teacher
favors to return pos/neg data points, and returns implications only if no spurious
pos/neg data points can be found (we found that this performed best for our
learners). Since loop invariants usually do not involve large constants, we employed
the following search strategy: when searching for counterexamples, we successively
bound the absolute values of the variables to 2, 5, and 10 and successively proceed
to the next larger bound if no counterexample within the current bound exists;
if no counterexample within any of these bounds exists, we fall back to the most
general case and do not impose any bound.
Experimental Setup: We conducted all experiments on a Core i5 CPU with
6GiB of RAM running Windows 7 using a 60 s timeout limit.

Scalability Benchmark: We begin with a benchmark demonstrating the scal-
ability of the decision tree ICE learner compared to other learning techniques,
namely the constraint solver-based ICE learner of [23] and the learner based on
computational geometry from [46]. This benchmark is mainly intended for readers
interested in machine learning techniques, independent of their application to
invariant synthesis. Our benchmark comprises three sample suits, each consisting
of randomly drawn samples containing between 50 and 50 000 data points each.
The suits are classified by the formulas ϕ1 = x1 ≤ −1∨x2 ≥ 1, ϕ2 = x1−x2 ≥ 2,
and ϕ3 = 0 ≤ x0 ∧ 0 ≤ x1 ∧ 0 ≤ x2 ∧ x3 6= 1 ∧ x4 6= 1 ∧ x5 6= 1, respectively. The
results of this benchmark are shown in Figure 1.

The decision tree-learner is on average one order of magnitude faster than
the other algorithms and can handle samples up to 50 000 data points. Our
benchmarks demonstrate that the decision tree-based ICE learner scales much
better than other learners described in literature, which strongly suggests that
machine-learning based tools may be very effective.
Invariant Generation: We evaluate the two configurations of the decision-tree
based learner discussed in Section 4 in the context of invariant synthesis and
compare them to the interpolation based Impact algorithm [34] implemented in
CPAchecker [9] and the constraint based learning algorithm proposed in [23]. The
experimental results are tabulated in Table 1. The first set of results correspond
to the Impact algorithm [34] (called CPAchecker); next we tabulate results for
the black-box learners including the constraint-solver based learner from [23]
(called ICE-CS), the decision tree learner that computes the information gain
that accounts for implications while deciding on the attribute to split (called
ICE-DT-entropy), and the decision-tree learner that penalizes splits that cut
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Fig. 1. Results of the scalability benchmark
implications (called ICE-DT-penalty). Note that the ICE-CS learner uses a
slightly different teacher which does not bound constants in counter-examples as
the learner in ICE-CS itself searches for invariants with smaller constants [23].
For each of the black-box learner we provide details about the composition of
the final sample, in terms of the number of positive, negative and implication
counter-examples that were required to learn an adequate invariant, the number
of rounds to converge and the final time in seconds that was taken to learn an
adequate invariant.
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Fig. 2. Runtime comparison (in s) of ICE-DT-
penalty and ICE-DT-entropy to ICE-CS. Each point
in the diagrams correspond to a program in Table 1.
Points above the diagonal indicate that ICE-DT-* is
faster than ICE-CS.

We evaluate the invariant
synthesis tools on several pro-
grams taken from previous lit-
erature [23, 26]2. Being white-
box, CPAchecker is not pre-
cise for programs with arrays
and pointers; also for several
programs over numerical vari-
ables that have complex dis-
junctive assertions, it reports
an error even when these pro-
grams are safe (reported as
× in Table 1). Table 1 also
records the time taken by various black-box learners aggregated over programs
on which ICE-CS does not time out. Our decision tree based learners are ∼5x
times faster than the constraint solver based learner ICE-CS on the benchmark
suite. This is impressive given that ICE-CS in itself is quite a fast learner and
has been compared in [23] to various tools including Invgen [26], Houdini [50]
and the Impact algorithm [34] from CPAchecker [9]. From the table, we make
the following key observations:
– The most important observation is that the decision tree learners converge and

successfully find an adequate invariant for all programs. We were surprised at
this convergence; we expected heuristic machine learning to not necessarily
converge; however, the outer ICE learning guidance from the teacher seems
to make these learning algorithms fairly robust.

– The constraint solver-based learner ICE-CS times out on five programs. There
are several programs where ICE-CS converges, but takes much longer than

2 Available at http://web.engr.illinois.edu/~garg11/dtree/benchmarks.zip



Program
White-box Black-box

CPA- ICE-CS ICE-DT-entropy ICE-DT-penalty
checker P,N,I #R T(s) P,N,I #R T(s) P,N,I #R T(s)

afnp Timeout 1,19,15 29 3.6 1,3,10 14 0.7 1,2,8 11 0.5
array × 4,7,11 14 0.5 15,16,67 95 6.3 4,6,16 25 1.4
arrayn × 4,7,5 7 0.3 2,1,2 5 0.2 2,1,2 5 0.2
arrayn.v × 6,8,6 8 0.3 3,3,1 6 0.3 3,3,1 6 0.7
cegar1 0.1 1,1,1 3 0.0 3,1,1 5 0.2 3,1,1 5 0.2
cegar1.v 0.1 1,1,1 3 0.0 7,2,1 9 0.4 7,2,1 9 0.4
cegar2 0.5 4,20,14 28 9.5 5,10,8 23 1.0 5,9,9 22 1.0
cegar2.v 0.6 Timeout 11,50,33 89 5.9 12,36,12 55 2.0
cggmp05 0.4 1,36,50 71 51.1 1,12,55 68 4.6 1,17,50 68 7.2
dec Timeout 1,1,1 3 0.0 1,2,0 3 0.4 1,2,0 3 0.2
decn.v × 2,4,3 7 0.1 5,4,1 9 0.3 5,4,1 9 0.3
ex14 0.2 2,5,1 7 0.0 1,1,0 2 0.1 1,1,0 2 0.1
ex14n 0.1 2,2,1 4 0.0 1,1,0 2 0.0 1,1,0 2 0.1
ex14n.v 0.1 8,8,7 10 0.1 3,4,0 5 0.5 3,4,0 5 0.2
ex23 Timeout 5,32,40 69 17.5 5,21,12 34 2.7 5,8,1 11 0.6
ex23.v Timeout 14,39,53 78 48.7 9,14,4 20 1.0 11,16,49 68 4.1
ex7 0.1 1,2,1 2 0.0 1,1,0 2 0.1 1,1,0 2 0.1
ex7.v 0.2 1,2,1 2 0.0 1,1,0 2 0.1 1,1,0 2 0.1
fig1 4.4 2,5,1 6 0.1 2,4,1 6 0.2 2,4,1 6 0.4
fig1.v 6.4 6,11,5 14 0.5 4,5,1 8 0.4 4,6,1 9 0.3
fig3 0.1 2,4,2 6 0.1 4,5,0 6 0.3 4,5,0 6 0.2
fig3.v 0.2 5,8,5 8 0.2 5,7,0 8 0.4 5,7,0 8 0.4
fig9 0.1 0,2,0 2 0.0 1,1,0 2 0.1 1,1,0 2 0.1
fig9.v 0.1 0,2,0 2 0.0 1,1,0 2 0.0 1,1,0 2 0.1
form22 0.6 1,18,11 22 1.8 1,13,34 48 2.6 1,8,32 41 1.9
form25 0.7 1,46,30 49 14.0 1,71,6 78 3.7 1,62,4 67 3.0
form27 2.0 Timeout 1,142,13 156 9.5 1,104,15 120 5.8
inc Timeout 3,12,101 112 1.7 9,6,104 117 6.5 5,3,100 106 4.9
incn × 3,4,3 8 0.1 3,3,1 7 0.3 4,3,3 10 0.4
incn.v × 9,10,6 11 0.2 4,3,1 7 0.2 5,4,1 8 0.3
matrix1 × 2,9,3 8 0.3 5,5,2 8 0.5 5,5,2 8 0.5
matrix1n × 4,12,4 8 0.9 4,9,2 8 0.5 5,11,2 9 0.7
matrix1n.v × 2,13,4 7 0.9 6,13,1 10 0.7 8,19,2 14 1.0
matrix2 × 8,19,13 27 22.9 9,10,7 24 1.3 9,10,5 22 1.2
matrix2n × Timeout 18,52,38 107 9.8 17,36,16 66 3.5
matrix2n.v × Timeout 32,60,11 101 8.4 17,73,19 101 8.3
nc11 0.8 5,15,7 18 0.7 3,6,5 13 0.6 2,4,4 9 0.4
nc11n × 4,6,3 10 0.4 3,3,3 8 0.4 3,3,3 8 0.3
nc11n.v × 7,11,7 13 0.9 10,13,3 17 0.7 8,9,3 13 0.7
sum1 × 2,15,10 17 2.3 4,17,3 21 3.3 3,13,3 17 1.1
sum1.v × Timeout 5,93,75 169 18.7 6,20,5 26 3.2
sum3 0.0 1,3,1 4 0.1 1,4,1 6 0.3 1,4,1 6 0.3
sum3.v 0.1 5,8,6 8 0.2 5,8,0 9 0.4 5,8,0 9 0.4
sum4 1.6 1,23,31 44 3.5 1,9,44 54 3.1 1,7,38 46 2.5
sum4n × 6,29,21 34 11.6 5,14,5 20 1.1 5,13,3 17 0.9
sum4n.v × 12,33,24 38 31.8 6,27,12 40 2.3 8,40,10 51 2.8
tacas 0.1 7,8,5 14 1.7 10,7,4 19 0.9 10,7,4 20 0.9
tacas.v 0.1 10,11,9 17 2.4 18,14,5 28 1.4 16,16,5 29 3.8
trex01 0.0 2,3,0 3 0.0 2,3,0 5 0.2 2,3,0 5 0.2
trex01.v 0.1 2,3,0 3 0.0 3,3,0 4 0.3 3,3,0 4 0.2
trex3 × 6,19,6 19 2.7 7,12,4 20 1.2 4,8,3 12 0.7
trex3.v × 12,25,12 25 10.8 12,8,2 19 3.5 10,8,2 16 0.9
vsend 0.0 1,1,0 2 0.0 1,1,0 2 0.1 1,1,0 2 0.1
w1 × 1,3,3 5 0.0 2,1,1 4 0.4 2,2,1 5 0.2
w2 × 2,4,1 4 0.0 2,2,1 5 0.3 1,2,1 4 0.2

Aggregate Timeouts = 5 Timeouts = 5 Timeouts = 0 Timeouts = 0
Time = 244s Time = 57s Time = 49s

Table 1. Results comparing different invariant synthesis tools. A × indicates that the
tool incorrectly reported an error (false negative); P, N, I are the number of positive,
negative examples and implications in the final sample of the learners; #R is the number
of rounds and T is the time in seconds (Timeout was 60 s).



the decision-tree learners (e.g., for programs cggmp05, ex23.v, matrix2 ). It is
easy to observe this comparison in Figure 2 where we plot the run time of
the decision tree learners and compare them to the time taken by ICE-CS.
In Table 1 we do not give results for the decision tree learner that completely

ignores implications while choosing the attributes to split the sample. Ignoring
implications is not a good idea and there are simple natural examples where this
learner does not converge. We also observed that this learner led to 20% larger
conjectures (measured as the total number of nodes in the conjectured decision
trees) as compared to the other two decision tree learners, averaged over all
rounds for all programs. To check the robustness of the various black-box learners
with the number of variables in the program, we generated program variations by
adding three extra variables that are havoc-ed inside the loop. These programs
have the suffix “.v”. Our decision tree learners usually perform equally well for
programs with these extra variables whereas ICE-CS times outs on several of
these programs (cegar2, sum1, matrix2n). Adding variables increases the search
space for the black-box learners and our decision tree algorithms turn out to
be better with regards to generalization and sifting and picking the relevant
variables. Finally, note that since our teacher returns implications only if it cannot
find positive/negative examples, many programs, where the final sample includes
implications, needed implications to find the invariant.
Comparison With Randomized Search: Recently, Sharma et. al [44] have built an
ICE learner based on randomized search for synthesizing program invariants. As
the tool is based on random search, the time to learn an invariant using [44] can
span a large range (for e.g., for programs such as cegar2 and fig1, time to learn an
adequate invariant varied from a second to more than ten minutes). Additionally,
the tool searches for numerical invariants that have constant thresholds that
belong to a small bag of values (typically of size three to five) that are mined
from the program code. Our learner in comparison searches a much larger space
since it learns arbitrary thresholds, and finds invariants even when the constants
needed are not present in the program, as in the programs cggmp05 and ex23.

6 Conclusion
We have presented a promising machine learning technique of learning decision
trees from positive, negative, and implication counter-examples that can be
used to efficiently synthesize invariants expressed as Boolean combinations of
predicates over numerical and Boolean attributes. We believe that our work
opens up the gateway for adapting more machine learning algorithms for various
other learning domains for invariant generation, by adapting them to ICE. The
impressive performance of our learner in weeding out the irrelevant attributes and
quickly choosing the ones that matter suggest that machine learning techniques
may even be useful in the simpler Houdini-based invariant synthesis of purely
conjunctive formulae, in applications such as verification of GPU programs [8].
Our decision tree learning also works for arbitrary predicates, and hence we would
like to use them to synthesize other kinds of invariants, such as data-structure
invariants using separation logic.
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A Illustrating Why Good Splits Might Turn Into Bad
Ones if Implications are Ignored

Example 1. Suppose that Algorithm 2 processes the sample shown in Figure 3a,
which also depicts the (only) implication in the global set Impl.

x
0 5

y

+
+

–? ?

(a) Sample before splitting

x
0 5

y

+
+

–+ +

(b) Samples after splitting

Fig. 3. The samples discussed in Example 1.

When using the original split procedure (i.e., using information gain while
ignoring the implication and its corresponding unclassified data points), the
learner splits the sample with respect to attribute x at threshold c = 3 since
this split yields the highest information gain—the information gain is 1 since the
entropy of the resulting two subsamples is 0. Using this split, the learner partitions
the sample into Examplesa and Examples¬a and recurses on Examplesa. Since
Examplesa contains only unclassified and positively classified points, it turns all
unclassified points in this sample positive and propagates this information along
the implication. This results in the situation depicted in Figure 3b. Note that
the learner now needs to split Examples¬a since the unclassified data points in it
are now classified positively.

On the other hand, considering the implication and its corresponding data
points allows splitting the sample such that the antecedent and the consequent
of the implication both belong to either Examplesa or Examples¬a (e.g., with
respect to x and threshold c = 2). Such a split has the advantage that no further
splits are required and, hence, results in a smaller tree.

B Proof of Lemma 1

We now argue why Algorithm 2 always results in a terminating procedure that
constructs a decision tree consistent with the sample. For this we first introduce
a property of the original sample S and the partial valuation for the implication
end-points G, called a valid sample. In the description below, we refer to S ∪G
as the combined valuation defined on the points by S+, S−, and G.

Definition 1 (Valid sample). A sample S is valid if for every implication
(x, y) ∈ S⇒



– it is not the case that x is classified positively and y negatively in S ∪G;
– it is not the case that x is classified positively and y is unclassified in S ∪G;
– it is not the case that y is classified negatively and x is unclassified in S ∪G.

A valid sample has the following interesting property.

Lemma 1. For any valid sample (with partially classified end-points of implica-
tions), extending it by classifying all unclassified points as positive will result in
a consistent classification, and extending it by classifying all unclassified points
as negative will also result in a consistent classification.

Proof. The above lemma is easy to prove: consider the extension of a valid sample
by classifying all unclassified points as positive. Assume, by way of contradiction,
that this valuation inconsistent. Then, there is some implication pair (x, y) such
that x is classified as positive and y is classified as negative. Since such an
implication pair could not have already existed in the valid sample (by definition),
it must have been caused by the extension. Since we introduced only positive
classifications, it must have been that x (and not y) is the only new classification.
Hence the valid sample must have had the implication pair (x, y) with y classified
as negative and x being unclassified, which contradicts the definition of a valid
sample. The proof of the extension using negative classifications can be shown
using a similar argument.

Note that Algorithm 2 always maintains a valid sample. When we have a valid
sample and are at a leaf where the algorithm is working on a subsample that has
only positive points and unclassified points, it would classify all these unclassified
points to be positive. Since the extension only causes positive classifications, the
sample cannot be inconsistent (classifying all points as positive, after all, will
satisfy all implications, by Lemma 1). Moreover, at this point we will take the
implication closure of the new positively classified points and hence maintain a
valid sample. A similar argument holds when the algorithm creates a negative
leaf node.

The above argument shows that our algorithm will never end up with an
inconsistent sample, which prove the correctness of Algorithm 2. Moreover, all
attributes are assumed to be numerical and can always split any set with more
than one element, which proves termination as well.


