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INCORPORATION OF DISSOLVED OXYGEN IN AQUATIC HABITAT ASSESSMENT 
FOR THE UPPER SANGAMON RIVER 

Sally McConkey Broeren, Thomas A. Butts, and Krishan P. Singh 

INTRODUCTION 
Dissolved oxygen content in streams and rivers is a leading water quality parameter. The 

viability of the stream aquatic habitat is dependent upon a sufficient supply of oxygen; below critical 
concentration levels, streams may become uninhabitable for various fish species. Also, oxygen 
requirements may vary from species to species. Availability of dissolved oxygen must be considered 
for indigenous species in the evaluation and protection of aquatic habitats in streams and rivers. 

The overall goal of this investigation was to incorporate an assessment of dissolved oxygen 
availability with an evaluation of aquatic habitat suitability of the main Sangamon River up to Lake 
Decatur. Historical water quality data collected at stations in the Ambient Water Quality Monitoring 
Network (AWQMN) in the basin as well as field measurements of water quality parameters were used 
to develop relations to assess the availability of oxygen along the study reach. The dissolved oxygen 
assessment was integrated with a basinwide flow model previously developed for evaluation of aquatic 
habitats, which follows the precepts of the Instream Flow Incremental Methodology (IFIM). The 
availability of suitable aquatic habitat was computed for selected stream segments along the main 
Sangamon for various flow conditions to illustrate the model results. 
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BACKGROUND INFORMATION 
Sangamon Basin 

The Sangamon River Basin is located in central Illinois. At its confluence with the Illinois 
River, me Sangamon River has a drainage area of 5,452 square miles (sq mi). The stream network has 
uiree main branches: the Sangamon (main stem above Riverton, 1,445 sq mi drainage area); the South 
Fork Sangamon (883 sq mi drainage area); and Salt Creek (1,856 sq mi drainage area). Because of 
hydrologic and geomorphologic differences in the watersheds of these uiree streams, the Sangamon 
River Basin may be subdivided into three hydrologically homogeneous sub-basins corresponding to the 
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three main tributaries. The study area of this investigation lies along the main Sangamon River above 
the dam that forms Lake Decatur (925 sq mi drainage area). Information on the geology, hydrology, 
stream slopes, and hydraulic geometry of the network of the three sub-basins is given by Singh et al. 
(1986) and Broeren and Singh (1990). The stream network of the entire basin is shown in Figure 1. 

The Illinois Environmental Protection Agency (IEPA) uses five levels of aquatic life use 
support to classify streams: full support, full support/threatened, partial support/minor impairment, 
partial support/moderate impairment, nonsupport. The IEPA has assessed the aquatic life use support 
of a total of 1009.5 stream miles in the Sangamon River Basin. Of these, 16.8 miles (1.7%) were 
classified nonsupportive of aquatic life; 89.0 miles (8.8%) were classified partial support/moderate 
impairment; 639.1 miles (63.3%) were classified partial support/minor impairment; and 264.6 miles 
(26.2%) were classified fully supportive of aquatic life use (IEPA, 1990). The upper Sangamon 
(above Lake Decatur) has considerable agricultural nonpoint runoff, resulting in elevated levels of 
nutrients and siltation, as well as several small municipal wastewater treatment facilities. The upper 
Sangamon was rated by the IEPA as having partial support/minor use impairment. While major 
tributaries to the upper Sangamon River; Goose Creek, Camp Creek, and Friends Creek; were rated as 
having full aquatic life use support. The reach immediately below Lake Decatur was rated as non-
supportive of aquatic life use. Salt Creek and its tributaries account for approximately two-thirds of 
the stream miles that were rated as having full aquatic life use support. The majority of the South 
Fork Sangamon Basin was rated as having partial support/minor impairment. 

Instream Flow Incremental Methodology 
The Instream Flow Incremental Methodology (IFIM), developed by the Cooperative Instream 

Flow Service Group (IFG) of the U.S. Fish and Wildlife Service, is the state-of-the-art methodology 
for defining the relationship between flow parameters (depth, velocity, and substrate) and usable 
aquatic habitat. These parameters have been identified as the most significant hydrogeologic channel 
characteristics defining the suitability of the aquatic environment for various fish species (Stalnaker, 
1979). Fisheries supported by a given water body are indicative of the overall stream habitat 
conditions as fish are an end product of the aquatic food chain and thus reflect not only satisfactory 
water quality for themselves but also a suitable habitat for food supply, shelter, and breeding sites 
(Hammer and MacKichan, 1981). By providing the link between flow and stream characteristics and 
aquatic habitat suitability, the IFIM can be used to assess if these characteristics are limiting factors to 
fisheries support or may become limiting with flow or channel modification. Similarly the potential of 
a stream to support aquatic life given adequate water quality may be assessed as well as the impact of 
measures to restore the habitat through incorporation of habitat enhancing channel structures or flow 
modification. 
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Figure 1. Sangamon basin map (after Singh et al., 1988) 



The availability of useful habitat in a stream is quantified throughout the calculation of an 
index variable, the weighted usable area (WUA). The WUA of a stream can be computed for various 
fish species at different life stages under various flow conditions. Along a stream reach bed forms, 
such as riffles and pools, create a diversity of habitat conditions characterized by different substrates, 
depths, and velocities. In the IFIM the availability of different types of habitats is determined by 
conceptually segmenting the stream into cells. Each cell represents a different hydraulic environment 
characterized by local values of depth, velocity, and substrate. The utility of the environment in each 
cell is independently evaluated by fish preference indices for each of these three parameters (Bovee and 
Milhous, 1978; Bovee, 1982). The IFG has developed preference data (termed preference curves) for 
more than 500 fish species and is continuing research to improve and expand its database (Milhous et 
al., 1984). Habitat preference curves have been developed for Illinois fishes (Wiley et al., 1987) by 
the Illinois Natural History Survey (INHS). These curves were adopted for use in this study as they 
reflect local conditions. While beyond the scope of mis study, a comparison of the WUA calculated 
using the IFG and the INHS curves could demonstrate the sensitivity of the results for the Sangamon 
Basin. The WUA of a stream reach may be calculated by summing the product of the cell suitability 
index and the lateral flow surface area of the cell (ai). At a selected discharge or flow duration this 
calculation is expressed mathematically as: 

where N is the number of cells; S is the preference index value for depdi (d), velocity (v), or substrate 
(b) of cell i; d and v are functions of the selected discharge or flow duration; and ai is the surface area 
of the cell. Local values of depdi, velocity, and substrate must be known to evaluate the WUA for a 
desired discharge or flow duration. The reach modeling grid must have a scale sufficiently small to 
simulate riffle and pool conditions. 

Cover is another important component of the stream environment. The extent and type of 
existing cover along the stream network is a local condition mat must be determined by inspection. 
Stream projects that include changes in cover would require incorporation of this variable in the 
assessment. 

The calculation of the WUA provides information on the suitability of the microhabitat defined 
by stream channel and hydraulic conditions. Other parameters that influence the habitability of a 
stream such as temperature (T) and dissolved oxygen (DO) are treated as macrohabitat parameters and 
determined for large segments or reaches in the stream network (Bovee, 1982). In the IFIM approach, 
water quality, as indicated by DO concentration, is evaluated first as part of a scoping process to 
identify potentially critical conditions. If the initial evaluation indicates water quality problems, a 
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more intensive investigation is warranted. As part of the scoping process, an estimation of water 
quality may be gleaned from an evaluation of historical water quality data and a simplistic oxygen sag 
analysis or both. After the water quality of a stream segment is determined as suitable or unsuitable, 
the calculated WUA per unit stream length for a given discharge is multiplied by the length of stream 
having suitable water quality to support the specific fish, and thus the total WUA of the stream or 
basin is determined. Using multiple sites to characterize aquatic habitat conditions, the total habitat 
available for a given flow (HA) is calculated as: 

where n is the number of sites used to represent the stream or basin and Li is the length of reach i with 
suitable water quality with weighted usable area, WUA;. 

Basinwide Flow Model 
Flow modeling of local depths and velocities is a critical aspect of the IFIM, because without 

the simulated hydraulic data the WUA could be determined only for field-measured flows. A 
methodology for basinwide flow modeling and habitat assessment using the IFIM has been developed 
and successfully applied to the Sangamon and Vermilion River Basins in Illinois (Singh and Broeren, 
1985; Singh et al., 1986, 1987). The flow model relationships were developed using discharge 
equations defining discharge (Q) as a function of drainage area (DA). These equations are determined 
for each hydrologically homogeneous sub-basin. The relationship between Q and DA varies with flow 
duration. The equations are of the form: 

where f corresponds to the annual flow duration and the coefficients A and B vary with f. The 
coefficients determined for the Sangamon River up to Riverton are given in Table 1. 

Table 1. Regression Coefficients for Discharge 
Sangamon River up to Riverton 

log Qf = Af + Bf(log DA) 

Annual flow duration, f 
90 80 70 60 50 40 30 20 10 

Af -2.8257 -2.2448 -1.7144 -1.1887 -0.7843 -0.5583 -0.3554 -0.0880 0.1903 
Bf 1.3909 1.2864 1.2070 1.1220 1.0640 1.0507 1.0433 1.0222 1.0175 
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Basin hydraulic geometry relations are used to define average width (W), depth (D), and 
velocity (V) for a given flow duration for a stream reach with a specified drainage area. These 
relationships are determined from field measurements of W, D, and V routinely made by the U.S. 
Geological Survey (USGS) for establishing rating curves at gaging stations. These measurements are 
typically taken in relatively shallow areas and the results tend to reflect more riffle-like flow 
conditions. The hydraulic geometry equations derived by Broeren and Singh (1990) for the natural 
sections of the Sangamon River up to Riverton are: 

for low flows, annual flow duration 90 to 60 percent: 
log W = 1.454 - 2.107 x F + (0.352 + 0.356 x F) log DA (4) 
log D = 0.213 - 1.794 x F + (0.232 + 0.200 x F) log DA (5) 
log V = 0.407 - 1.526 x F + (0.009 + 0.323 x F) log DA (6) 

for median to high flows, annual flow duration 50 to 10 percent: 
log W= 0.476- 0.397 x F + (0.584 - 0.060 x F) log DA (7) 
log D = -0.501 - 0.722x F + (0.469 - 0.153 x F) log DA (8) 
log V = 0.417- 1.268 x F - (0.047+ 0.329 x F) log DA (9) 

where F is the decimal annual flow duration, DA is in square miles, and W, D and V are in units of 
feet, feet, and feet per second, respectively. Adjustment factors are applied to the results for better 
approximation of reach average values used in the flow model. 

The range and frequency of local values of depth and velocity are determined from 
probabilistic distributions developed from field data. Data from a field study of substrate sizes and 
distributions along the Sangamon River were used to add substrate variations to the model for WUA 
evaluation (Broeren and Singh, 1990). An in-depth explanation of the flow model relations is provided 
in Singh et al (1987) and Broeren and Singh (1990). The basin flow model supplies needed hydraulic 
data for habitat assessment using the IFG or INHS habitat preference curves. The model adapts the 
IFIM to a basinwide scale without the prohibitive cost of individual site surveys to collect hydraulic 
data for each stream. 

Successive calculations of the WUA for progressive drainage areas may be performed using the 
basinwide flow model. These values, coupled with an evaluation of stream segments having suitable 
water quality, may be integrated using equation 2 for a basinwide calculation of the WUA for various 
flow scenarios. 
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HABITAT RESPONSE CURVES AND WUA CALCULATIONS 
The basinwide flow and aquatic habitat model was used to generate habitat response curves, 

WUA versus Q, for each of four selected fish species: two life stages were considered for illustrating 
the model results, juvenile and adult. The habitat response curves depict the relative availability of 
suitable habitat for various flow conditions at a given drainage area. Three parameters are considered 
in calculating WUA per unit stream length: depth, velocity, and substrate. 

Selection of Target Fish Species for Habitat Assessment 
Four target fish species (bluntnose minnow, channel catfish, longear sunfish, and smallmouth 

bass) were selected for the WUA calculations at various flow levels. These species are identified on 
the basin short list for the Sangamon Basin by Herricks and Himelick (1981). The Herricks and 
Himelick evaluation of indigenous fish species, their relative abundance in the Sangamon Basin, and 
the influence of water quality conditions were prepared for the IEPA as part of the Water Quality 
Management Information System database. Fisheries data from both the Department of Conservation 
and the INHS were used to perform the evaluation together with water quality data from the Ambient 
Water Quality Monitoring Network (AWQMN) maintained as a cooperative effort of the IEPA and the 
USGS. Stream segments are categorized on the basis of drainage area into seven categories defined as 
follows: 

The Sangamon River above Lake Decatur Dam has a drainage area of 925 sq mi. The present 
study area falls within categories 1-5. The three stream drainage areas selected to demonstrate the 
model use are 100, 300, and 600 sq mi and they correspond to categories 3, 4, and 5, respectively. 

The four fish species used to illustrate the model performance were selected on the basis of 
four criteria: 1) preference curves developed by both the INHS and the U.S. Fish and Wildlife IFG 
were available; 2) minimum DO requirements were proposed by the INHS; 3) the species were given 
in the basin short list for the three stream drainage area categories 3, 4, and 5; and 4) the species 
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Category 
1 
2 
3 
4 
5 
6 
7 

Drainage Area 
DA (sq mi) 

0 < DA < 10 
10 < DA < 50 
50 < DA < 200 
200 < DA < 500 
500 < DA < 2,000 

2,000< DA < 5,000 
5,000< DA 

Classification 
Headwater 
Creek 
Small stream 
Large stream 
Small river 
Medium river 
Large river 



represented a variety of fish species in the basin. The four species meeting these criteria were not 
necessarily the most abundant in the basin but have been observed during fish surveys. 

WUA for Selected Fish Species 
Discharges selected for evaluation of the WUA correspond to annual flow durations from 10 to 

90 percent. The habitat response curves for three drainage areas for each species are shown in Figures 
2 and 3, as WUA per 1000 feet of stream length versus annual flow duration (F). The discharges in 
cubic feet per second (cfs) corresponding to each of the nine flow durations are also shown. Thus, the 
WUA for a given F may be compared at points along the network. The curves illustrate the relatively 
greater availability of suitable habitat for both life stages of channel catfish and adult smallmouth bass 
and longear sunfish compared to the juvenile life stage of the smallmouth bass and longear sunfish. 
Relatively less WUA is indicated for both life stages of bluntnose minnow. 

The flow and habitat model may be used to compute the WUA per unit stream length 
corresponding to monthly or seasonal flow durations. This may be accomplished by determining the 
annual flow duration corresponding to the monthly flow of interest using equation 3 and the coefficient 
values in Table 1. The WUA may then be read from graphs such as those in Figures 2 and 3. 
Evaluation of the WUA for flows corresponding to selected monthly flow durations or droughts may 
be readily accomplished for the Sangamon Basin using the microcomputer streamflow assessment 
model for the Sangamon River Basin developed at the ISWS for the Illinois Department of 
Transportation, Division of Water Resources (Knapp et al., 1985). Integration of the streamflow 
assessment model with the basinwide flow and habitat model is illustrated by the following example. 

The streamflow assessment model was used to compute the median discharge for July -
November at three locations along the Sangamon River corresponding to drainage areas of 100, 300, 
and 600 sq mi, respectively. A simple linear interpolation was performed using basin discharge 
equations (Eq. 3) to compute the annual flow duration, F, corresponding to the monthly median 
discharges for July-November for the three drainage areas (Table 2). Inspection of the values in Table 
2 shows that the median flow for July corresponds to about the 50% annual flow duration discharge, 
the median flow for November corresponds to annual flow durations around 68%. The WUA for a 
given fish species may be read from the plots of WUA versus F (Figures 2 and 3) for these flow 
durations, thereby estimating the WUA for the flow corresponding to the monthly median flow. 
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Figure 2 WUA versus F for smallmouth bass and channel catfish 



Figure 3 WUA versus F for longear sunfish and bluntnose minnow 



Table 2. Annual Flow Duration Corresponding to 
Median Monthly Discharge 

Drainage Annual flow duration for median discharge, percent 
area, sq mi Jul Aug Sep Oct Nov 

100 52 73 83 79 67 
300 50 70 78 77 68 
600 48 67 75 75 68 

ASSESSMENT OF DISSOLVED OXYGEN AVAILABILITY 
The availability of DO in flowing water is highly variable and a product of several factors. 

Temporal variations in DO may be observed over the seasons as well as large diurnal fluctuations. 
Seasonal variations in DO are largely attributable to temperature changes affecting the saturation 
concentration. The diurnal variations are primarily induced by photosynthetic activity of algae. The 
ability of a stream to absorb (or reabsorb) oxygen from the atmosphere is affected by the stream flow 
conditions, and typically expressed in terms of the reaeration coefficient. Factors that may represent 
significant sources of oxygen use or depletion include sediment oxygen demand (SOD), biochemical 
oxygen demand (BOD), including carbonaceous BOD (CBOD), and nitrogenous BOD (NBOD). BOD 
may be a product of both naturally occurring oxygen use in the decomposition of organic material, as 
well as oxygen use in the stabilization of effluents discharged from wastewater treatment plants. The 
significance of any of these factors depends on the specific stream conditions. It may be appropriate to 
consider one or all of these factors in an evaluation of the oxygen availability, depending on the 
purpose of the DO assessment and intensity level of the study. 

The intent of this study was to provide an overview of me availability of DO as it relates to the 
minimum concentration level needed to support indigenous fish species. Local conditions immediately 
downstream of effluent outfalls of wastewater treatment plants were not considered specifically. Field 
measurements of various water quality parameters were conducted at three locations along the study 
reach. The field data provided information on the diurnal fluctuations in DO, reaerative capacity at the 
three field sites, and general water quality. The field work was conducted during the late summer and 
fall when DO levels are typically lowest. Historical water quality data available from stations in the 
AWQMN were used to explore seasonal variations in DO, as well as variations in DO with discharge. 

Diurnal Dissolved Oxygen Field Study 
Water quality measurements (with an emphasis on collecting diurnal DO data) were made at 

three locations along the upper Sangamon River. The field data collection and data assimilation were 
performed by the ISWS Office of River Water Quality. The locations of the three field sites are noted 
on the basin map in Figure 1. The sites were selected to represent conditions of various drainage areas 
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along the river, located as far downstream from point-source effluent loadings as possible. The site 
descriptions are: 

Drainage area 
Site General location River mile sq mi 

1 Below Highway 47 bridge below Gibson City 212.1 114.0 
    2 Above rural bridge above Mahomet 193.1 291.5 

3 Above Hog Chute bridge below Allerton Park 154.3 613.0 

The objectives of this part of the habitat availability study were to: 
♦ Determine the diurnal variation in DO and associated water quality parameters such as pH, 

temperature, and algae counts for two different hydraulic and weather conditions at each site. 
♦ Compare variations in water quality conditions between the sites for two different hydraulic and 

weather conditions. 
♦ Determine primary productivity (algal DO production) using light and dark chamber techniques 

during two different hydraulic and weather conditions. 
♦ Estimate the physical reaeration capacity of the river at each site. 

Initially, two 48-hour events were scheduled: one during the week of June 11, 1990 and 
another during the week of August 27, 1990. However, persistent rain and high flows prevented the 
initiation of monitoring and sampling until mid-August so the first event was actually begun on August 
17, 1990 and the second on September 7, 1990. Because these two dates were Fridays, the automatic 
water quality monitors that were used to collect data were set to record over 72-hour weekend periods. 

Field Procedures 
Hydrolab Corporation DataSonde I automatic water quality monitors were used in the field. 

Model 2070-DS units were employed during the first event while model 2030-DS units were employed 
during the second event. Model 2070-DS units measure and record temperature (°C), pH (pH units), 
conductivity (ms per centimeter), DO in milligrams per liter (mg/1), and oxidation/reduction potential 
or ORP (volts). Model 2030-DS does not measure ORP. The recording times can be set at intervals 
as low as 5 minutes. 

Three DataSondes were placed at each site and set to record at hourly intervals over the 72-
hour periods. Data recordings were initiated at 2:00 and 12:00 p.m. on August 17 and September 7, 
respectively. An ambient monitor, a light chamber monitor, and a dark chamber monitor were placed 
in the deepest portion of the river at each site. The dark chamber consists of 40-inch lengths of white 
PVC pipe and the light chambers consist of 35-inch lengths of 6 1/2-inch diameter clear plastic tubing. 
The top and bottom of each light chamber was sealed with clear plexiglass plates bolted to flanges 
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glued to the tubing. A clear plastic gasket was secured between the plate and the flange for sealing 
purposes. The net water volumes of the light and dark chambers with the DataSondes in place were 
13.830 and 12.875 liters, respectively. The ambient monitors were protected by their placement in 36-
inch long, open-ended lengths of 6-inch diameter PVC pipe. 

The light and dark chambers and ambient housing, designed to be suspended in the water, were 
laid flat with the axis of each cylinder in line with the stream flow because of the shallowness of the 
sampling locations. The chambers were filled in a prone position, and care was exercised so as not to 
disturb bottom sediments upstream of the fill openings. The caps and plates were installed in a manner 
so as to minimize air entrapment. The chambers and ambient housing were secured in the stream by a 
cable anchored on both banks. 

Attendant to the installation of the DataSondes, water samples were collected for physical, 
chemical, and biological analyses in the laboratory. Water samples were collected for analyses of 
turbidity, suspended solids, total phosphorous (PO4-P), nitrate (NO3-N), and algae. Flow 
measurements were made by personnel from the Office of Surface Water Resources and Systems 
Analysis when the monitors were installed except during event 2 at site 3. This flow was obtained 
from the USGS Monticello gage records. 

Data Reduction and Analyses 
The DataSonde DO probe is relatively less responsive at low stream velocities. Consequently, 

correction factors (DO flow factors) are applied to meet hydraulic conditions as recommended by the 
manufacturer, the correction factors for high, medium, and low flows were 1.000, 1.042, and 1.087, 
respectively. All the chamber unit DO outputs were analyzed using the low-flow factor of 1.087, 
whereas me ambient unit's DO outputs were analyzed according to the following schedule: 

Flow factor for event 
Site 1 2 
1 1.000 1.042 
2 1.042 1.087 
3 1.042 1.000 

These ambient DO flow factors were selected primarily on the basis of providing the best match of the 
initial ambient DO concentrations with those recorded by the DataSondes in the chambers using the 
low-flow factor of 1.087. 

The raw parametric values are stored in the DataSonde unit and are downloaded in the format 
shown in Table 3. Because of the voluminous amount of data generated and the fragmented nature of 
the printouts produced from the preprogrammed downloading program, the raw data and 
preprogrammed daily statistical summaries are not presented. These data, however, are available on 
floppy disks upon request. 
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Table 3. Example of DataSonde Output 

TIME 
HHMM 

081890 
0000 
0100 
0200 
0300 
0400 
0500 
0600 
0700 
0800 
0900 
1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 

TEMP 
DEG C 

+23.91 
+23.86 
+23.78 
+23.65 
+23.57 
+23.48 
+23.44 
+23.36 
+23.32 
+23.36 
+23.57 
+23.95 
+24.54 
+25.05 
+25.60 
+26.06 
+26.40 
+26.65 
+26.82 
+26.95 
+26.91 
+26.82 
+26.65 
+26.53 

PH 
UNITS 

+08.07 
+08.04 
+08.04 
+08.03 
+08.02 
+08.01 
+08.01 
+07.99 
+07.98 
+07.97 
+07.96 
+07.97 
+07.98 
+07.98 
+07.99 
+08.01 
+08.00 
+08.01 
+08.00 
+08.00 
+08.00 
+08.00 
+08.00 
+08.00 

COND 
MS/CM 

+0.725 
+0.725 
+0.727 
+0.727 
+0.726 
+0.723 
+0.724 
+0.721 
+0.722 
+0.721 
+0.722 
+0.726 
+0.726 
+0.730 
+0.735 
+0.737 
+0.739 
+0.739 
+0.737 
+0.735 
+0.732 
+0.726 
+0.726 
+0.725 

SALIN 
PPT 

+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 
+00.00 

DO 
MG/UPPM) 

+08.48 
+08.33 
+08.19 
+08.09 
+07.95 
+07.84 
+07.69 
+07.62 
+07.55 
+07.54 
+07.57 
+07.69 
+07.88 
+08.00 
+08.18 
+08.30 
+08.45 
+08.46 
+08.42 
+08.28 
+08.06 
+07.86 
+07.78 
+07.66 

ORP 
VOLTS 

+0.194 
+0.199 
+0.199 
+0.203 
+0.204 
+0.206 
+0.210 
+0.212 
+0.216 
+0.223 
+0.223 
+0.223 
+0.225 
+0.228 
+0.231 
+0.232 
+0.234 
+0.237 
+0.239 
+0.242 
+0.243 
+0.243 
+0.244 
+0.248 

BATTERY 
VOLTS 

+05.75 
+05.75 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.74 
+05.75 
+05.74 
+05.74 
+05.74 

MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

PARAMETER 
# OVERRANGE 
# READINGS 
MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

PARAMETER 
# OVERRANGE 
# READINGS 
MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

PARAMETER 
# OVERRANGE 
# READINGS 
MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

: +000.721 
: +000.739 
: +000.006 
: +000.728 
: +000.006 

: SALIN 
: 00000 
: 00024 
: +000.000 
: +000.000 
: +000.000 
: +000.000 
: +000.000 

081890 
081890 
081890 

PPT 

081890 
081890 
081890 

: DO MG/L(PPM) 
: 00000 
: 00024 
: +007.538 
: +008.484 
: +000.216 
: +007.995 
: +000.313 

: ORP 
: 00000 
: 00024 
: +000.194 
: +000.248 
: +000.007 
: +000.223 
: +000.016 

081890 
081890 
081890 

VOLTS 

081890 
081890 
081890 

0700 
1600 
2100 

0000 
0000 
0000 

0900 
0000 
2000 

0000 
2300 
0900 

DAILY STATISTICS HIT RETURN AGAIN TO ABORT STATISTICS 

PARAMETER 
# OVERRANGE 
# READINGS 
MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

PARAMETER 
# OVERRANGE 
# READINGS 
MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

PARAMETER 
# OVERRANGE 
# READINGS 

: TEMP 
: 00000 
: 00024 
: +023.316 
: +026.948 
: +000.591 
: +024.926 
: +001.433 

: PH 
: 00000 
: 00024 
: +007.964 
: +008.066 
: +000.023 
: +008.003 
: +000.025 

: COND 
: 00000 
: 00024 

DEG C 

081890 
081890 
081890 

UNITS 

081890 
081890 
081890 

MS/CM 

0800 
1900 
1200 

1000 
0000 
0100 

PARAMETER 
# OVERRANGE 
# READINGS 
MINIMUM 
MAXIMUM 
MAX CHANGE 
MEAN 
STD DEV 

: BATTERY 
: 00000 
: 00024 
: +005.740 
: +005.746 
: +000.004 
: +005.743 
: +000.003 

VOLTS 

081890 
081890 
081890 

1700 
0000 
1700 
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Estimates of physical reaeration and algal productivity were made using the following two 
schematic formulations: 

physical aeration =ambient - light chamber + SOD (est.) (10a) 
algal productivity = light chamber - dark chamber (10b) 

"DO-used" curves (a form of a mass diagram) were developed for each DataSonde employed in order 
to achieve accurate results using the above formulations. The y-axis of a DO-used curve represents the 
difference between the initial DO and the DO at any other time along the x-axis. The dark-chamber 
DO-used plots represent the only true DO used at any time. The actual DO used within the light 
chamber is indeterminate since the net result at any time is influenced by photosynthetic oxygen 
production. The ambient DO-used values are even less indicative of the true DO usage since they 
include the effects of physical aeration in addition to photosynthetic oxygen production. Physical 
aeration estimates were made for the three SOD rates of 1.0, 2.0, and 3.0 grams per square meter per 

day (g/m2/day). SOD rates ranging from 1.0 to 3.0 g/m2/day indicate moderately clean to moderately 
polluted benthic sediments (Butts and Evans, 1978). 

DO saturation concentration for various water temperatures were computed using the American 
Society of Civil Engineers (1960) DO saturation formula: 

DOsat = 14.652 - 0.41022T + 0.0079910T2 - 0.000077774T3 (11) 
where 

DOsat = DO saturation concentration, mg/1 
T = water temperature, °C 

This formula represents saturation levels for distilled water (β = 1.0) at sea-level pressure. 
Water impurities can increase the saturation level (β > 1.0) or decrease the 
HERE 
saturation level (β < 1.0), depending upon the surfactant characteristics of the contaminant. For this 
study, β was assumed to be unity. The sea-level concentrations produced by the formula must be 
corrected for differences in air pressure caused by air temperature changes and for elevations above sea 
level. The following formula was developed for use during this study: 

where 
/ = above sea-level correction factor 
s = air temperature, °C 
E = elevation of the site, feet above mean sea-level (ft-msl) 

The elevations for the sampling sites were taken from USGS quadrangle maps. The elevations for site 
1, 2, and 3 were 710, 670, and 630 ft-msl, respectively. 
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Natural, physical reaeration of water occurs at a rate proportional to the DO saturation deficit; 
i.e., water nearly devoid of DO will add oxygen at a much faster rate than will water that is nearly 
saturated with DO. Similarly, water containing supersaturated DO concentrations, due to algal 
productivity, will lose DO at a rate proportional to the excess up to 200 percent of saturation. This 
means that water containing 200 percent of saturation will lose DO at the same rate that oxygen is 
gained when the water is totally devoid of DO (0 percent saturation). Butts and Evans (1978a) have 
shown mat any supersaturation above 200 percent is immediately lost upon disturbance. Consequently, 
water saturated at 250 percent will be immediately reduced to 200 percent when any physical 
disturbance is encountered. 

The natural reaeration phenomenon can be expressed mathematically as: 

where 
D = saturation deficit (DOsat - DO), mg/1 
t = time, days 

dt = elapsed time 
dD = net change in saturation deficit for time dt 
K2 = volumetric reaeration coefficient, day-1 

DOsat = DO saturation concentration, mg/1 
DO = initial ambient DO concentration, mg/1 
A relatively large number of empirical and semi-empirical algorithms and equations have been 

developed to estimate the reaeration coefficient (K2). Three that are widely known and have been 
employed in stream work are: 
Langbein and Durum (1967): 

Churchill, Elmore, and Buckingham (1962): 

O'Connor and Dobbins (1958) 
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where 
K2 = reaeration coefficient to the base e, day -1 

V = average velocity, feet per second (fps) 
H = average depth, feet 
Reaeration rates computed using field-measured stream depths and velocities in association 

with equations 14 - 16 may be compared with K2-values directly ascertained from observed DO data as 
applied to equation 13. Since the DataSondes logged data at hourly intervals, the DO changes 
attributable to physical aeration (or deaeration) are available for small time frames, which permits the 
following modification of equation 13 to be used to compute K2 - values. 

where 
ri = an ith DO concentration value from the physical reaeration DO-used "mass diagram" 

curve 
ri+1 = a DO concentration one hour later than ri on the physical reaeration DO-used curve 
Csi = an ith DO saturation concentration 

Csi+1 = a DO saturation concentration one hour later than Csi 

Ci = an ith observed DO concentration 
Ci+1 = an observed DO concentration one hour later than Ci 

Biologic Diversity Index 
A biological diversity index provides a means of evaluating the richness of species within a 

biological community using a mathematical computation. A community consisting solely of one 
species has no diversity or richness and takes on a value of unity. As the number of species increase 
and as long as each species is relatively equal in number, the diversity index increases numerically. A 
diversity index would approach infinity when a large number of individual organisms are present and 
each one of these organisms belongs to a different species. 

The Shannon-Weiner diversity index formula, as given by Smith (1980), was used to evaluate 
algal conditions. The formula is: 

where 
S = the Shannon-Weiner diversity index 
N = the total number of all organisms 
ni = the number of organisms for a given species 
i = 1, 2, . . . k where k is the number of species 
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Results and Discussion 
A summary of all the parameters for which field or laboratory data were collected is presented 

in Table 4. Plots of the DataSonde-generated data are presented in the order of parameters, site, and 
event. Those for DO are given in Figures 4 and 5; for pH in Figures 6 and 7; and for temperature in 
Figures 8 and 9. 

The flow conditions of the river at each sampling site varied considerably from one event to 
the other. The flows during the first event were approximately twice those experienced during the 
second event. High flows preceded the August 17 placement of the monitors, resulting in elevated 
turbidity, suspended solids, phosphorus, and nitrate-N contents compared to those observed during 
event 2. Site 1, event 1 data dramatically reflect the effects of high rates of surface runoff on water 
quality in a headwater region of a stream draining an intensely farmed watershed. The phosphorus 
content at site 1 during August was approximately 3.3 times greater than during September. The 0.70 
mg/1 of total phosphorous at site 1, event 1, exceeded twice the phosphorous level measured in the 
Illinois River at Peoria during this period. Note that the Illinois River is a large, enriched stream, and 
its DO balance is often drastically affected by cyclic photosynthetic oxygen production. 

The results of the samples collected on August 17 and September 7 for algae identification and 
enumeration are presented in Table 5. Somewhat surprisingly, the algae numbers at site 1 were higher 
during August, after the advent of high river flows, than during the period of sustained lower flows 
during September. In any event, no site exhibited prolific planktonic algae growth, although some 
counts did exceed 500 cells per milliliter, which can cause algal production/respiration (P/R) to affect 
the corporeity of the DO resources in a stream. This effect is clearly demonstrated by the cyclical 
nature of the ambient DO curve for site 1 shown in Figure 4, when the algae count was 659 cells per 
milliliter. In stark contrast to this curve is the almost flat ambient DO curve that materialized at site 2 
during event 1 (Figure 4) when the algal count was 246 cells per milliliter. Although the cell count 
was relatively low at site 3 during event 1, the influence of algal P/R on the diurnal DO curve is still 
evident here (Figure 4). 

Algal P/R appeared to influence the DO balance to some degree at all three locations during 
event 2 (Figure 5). Although site 1 had a very low cell count, significant photosynthetic oxygen 
production appeared to occur during the last two days. In fact, this production was sufficient to 
maintain supersaturation levels throughout the final 48 hours. One reason that this location may be 
more sensitive to diurnal DO fluctuations caused by algal activity is that the river channel flows 
through a wide, open pasture while the other two locations are enveloped in dense canopies of 
overhanging trees. 

With the exception of site 2, event 1 (Figure 4), the ambient DOs hover cioseiy around the 
saturation lines. While this bodes well for water quality and the ecological health of the stream, it 
makes performing an accurate assessment of stream physical aeration coefficients difficult. The DO 
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Table 4. Summary of Ambient Water Quality Conditions 

*Flow (cfs) 

*Velocity (fps) 

*Average depth (ft) 

*Maximum depth (ft) 

*Turbidity (NTU) 

*Suspended solids (mg/l) 

*Total P04 - P (mg/l) 

*NO3 - N (mg/l) 

Temperature ( C) 

pH 

Conductivity (ms/cm) 

DO (mg/l) 

DO saturation (mg/l) 

Oxy/Red potential (V) 

72- hr min 
avg 
max 

72- hr min 
avg 
max 

72- hr min 
avg 
max 

72- hr min 
avg 
max 

72- hr min 
avg 
max 

72- hr min 
avg 
max 

18.10 

0.83 

0.87 

1.40 

17 

36 

0.70 

5.81 

22.68 
25.47 
28.17 

7.88 
7.99 
8.08 

0.683 
0.722 
0.739 

6.17 
7.53 
9.01 

7.50 
7.90 
8.33 

0.144 
0.250 
0.310 

9.40 

0.60 

0.75 

1.20 

14 

12 

0.16 

3.33 

21.67 
22.91 
24.54 

7.55 
7.57 
7.62 

0.566 
0.617 
0.639 

7.53 
8.71 
9.67 

8.02 
8.29 
8.50 

-
-
-

46.50 

1.22 

0.76 

1.10 

46 

66 

0.18 

4.85 

22.68 
25.06 
26.86 

7.94 
7.97 
8.00 

0.697 
0.732 
0.716 

6.33 
6.60 
6.91 

7.70 
7.97 
8.34 

0.120 
0.245 
0.316 

22.80 

1.18 

0.44 

0.70 

20 

29 

0.15 

2.13 

22.51 
23.32 
25.64 

7.88 
7.98 
8.19 

0.541 
0.589 
0.621 

7.13 
8.23 
10.04 

7.88 
8.24 
8.37 

-
-
-

104.90 

0.67 

2.23 

3.00 

32 

22 

0.16 

3.68 

22.64 
24.42 
26.36 

7.73 
7.90 
7.79 

0.596 
0.632 
0.659 

7.16 
7.85 
8.51 

7.78 
8.08 
8.36 

0.183 
0.276 
0.322 

55.30 

0.58 

1.29 

2.50 

13 

15 

0.16 

2.68 

22.47 
23.65 
25.43 

8.03 
8.08 
8.18 

0.595 
0.610 
0.620 

7.29 
7.97 
8.96 

7.92 
8.20 
8.39 

-
-
-

*Values for either 8/17/91 or 9/07/91 
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Table 5. Algae Identification and Enumeration 

Blue green 

Green 

Diatom 

Flagellate 

Desmid 

Aphanizomenon flos-aquae 
Oscillatoria sp. 

Chlorosarcina consociata 
Crucigenia rectangularis 
Oocystis borgei 
Pediastrvm duplex 
Scenedesmus dimorphus 

Cyclotella acellata 
Cyclotella atomus 
Cyclotella meneghiniana 
Cymbella affinis 
Gyrosigma kutzingii 
Gyrosigma macrum 
Gyrosigma scalproides 
Hantzschia virgata 
Melosira granulata 
Navicula cryptocephala 
Navicula gastrum 
Stephanodiscus niagarae 
Surirella avata 
Synedra acus 
Synedra ulna 

Euglena gracili 
Phacus pleuronectes 
Trachelomonas crebea 

Cosmarium sp. 

Total 
Total taxa 

Shannon-Weiner Diversity Index 

27 

116 
11 
11 

82 

15 

393 

4 

659 
8 

1.81 

23 
6 

34 

4 

48 

11 

6 

132 
7 

2.33 

21 

78 

19 
4 

8 

13 

88 

15 

246 
8 

2.37 

71 

11 

769 

15 

15 

6 

887 
6 

0.80 

19 

11 

59 

25 

34 
15 

163 
6 

2.36 

2 

15 
4 
2 

15 
48 
237 

23 
2 

17 

498 

23 

886 
12 

1.88 
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Figure 4 Diurnal DO variation for field sites during event 1, 
08/17/90 2:00 PM to 08/20/90 2:00 PM 
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Figure 5 Diurnal DO variation for field sites during event 2, 
09/07/90 12:00 PM to 09/10/90 12:00 PM 
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data in Table 4 show that the differences between the average saturation and ambient DO over the 72-
hour periods are small with the exception of site 2, event 1 when the difference was 1.64 mg/1, 
whereas the average difference for the other five sites and events was only 0.25 mg/1. Note that the 
average DO for site 1, event 2 was 0.42 mg/l above the average saturation value, and the average 
observed and saturation DOs were essentially equal for site 2, event 2. 

The ambient pH values fluctuate within a narrow range of values (Figures 6 and 7). 
Nevertheless, careful comparisons between the respective pH and DO curves show that pH values rise 
and fall somewhat with rises and falls in DO concentrations. Streamwaters reflective of even minimal 
algal activity generally demonstrate this correlation while maintaining pH levels in the high 7 to low 8 
range. 

The temperature plots (Figures 8 and 9) are rather interesting for a number of reasons. First, 
note that the temperature rose steadily over the 72-hour period at all three sites during event 1 (Figure 
8). However, during event 2, temperatures exhibited steady declines over the 72-hour period (Figure 
9). Evidently warm, sunny conditions persisted during event 1, while cloudy conditions must have 
dominated during event 2. This possibility is further exemplified by the high-amplitude, sinusoidal 
temperature curve produced at site 1, event 1 (Figure 8). Site 3, event 1 displays a lesser sinusoidal 
curve, whereas site 2, event 1 displays almost no sinusoidal tendency. Since the river at site 1 is 
smaller and unprotected by a canopy of trees, it is more subject to diurnal fluctuations in temperature. 
Trees shade both sites 2 and 3 but slightly more at site 2. The phenomenon is reflected in both the 
temperature and DO curves for event 1. Even during the "cloudy" event 2, site 1 displayed more 
temperature variability than did the other two locations. 

The DO-used curves generated from the data collected using the ambient and the light and the 
dark chambers are presented in Figures 10 and 11. The values used to produce these curves were used 
to compute reaeration coefficients using equations 10a and 17, and algal productivity using equation 
10b. The results of these analyses are summarized in Tables 6 and 7. Table 6 presents algal 
productivity and physical reaeration in terms of grams of oxygen per square meter per day. Negative 
signs for productivity indicate that more oxygen was used by the algal cells than produced over a 24-
hour period. 

Accurate computation of the "theoretical" K2-values using equation 17 was made difficult 
because the DO deficits were small, which can distort the results considering the limitations and 
accuracies of the measurements. An error of a few tenths in DO at a low DO deficit is very 
significant, whereas the same error in DO at a high deficit means very little relative to the final K2 

analysis. For example, if the factor (ri+1 - ri) in equation 17 equals 0.01, the average saturation value 
equals 8.0 mg/1, and the average observed DO equals 7.90 mg/1, then K2 equals 2.4 day1. However, 
if the observed DO is read as 7.95 instead of 7.90, the resultant computed K2 would be 4.8 day1. On 
the other hand for the saturation value of 8.0 mg/1, if the observed DO equals 4.0 mg/1, then K2 equals 
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Figure 6. Diurnal pH variation for field sites during event 1, 
08/17/90 2:00 PM to 08/20/90 2:00 PM 
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Figure 7. Diurnal pH variation for field sites during event 2, 
09/07/90 12:00 PM to 09/10/90 12:00 PM 
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Figure 8. Diurnal T variation for field sites during event 1, 
08/17/90 2:00 PM to 08/20/90 2:00 PM 
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Figure 9. Diurnal T variation for field sites during event 2, 
09/07/90 12:00 PM to 09/10/90 12:00 PM 
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Figure 10. Diurnal DO-Used variation for field sites during event 1, 
08/17/90 2:00 PM to 08/20/90 2:00 PM 
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Figure 11. Diurnal DO-Used variation for field sites during event 2, 
09/07/90 12:00 PM to 09/10/90 12:00 PM 
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Table 6. Calculated Productivity and Physical Aeration 

2 
Note: g/m /day = grams per square meter per day 

Inclusive 
1990 dates 

8/17-8/18 
8/18-8/19 
8/19-8/20 

9/07-9/08 
9/08-9/09 
9/09-9/10 

Begin 
24 hr 
period 

14:00 
14:00 
14:00 

Average: 

12:00 
12:00 
12:00 

Average: 

Productivity at 

1 

-0.02 
-0.13 
-0.30 

-0.15 

0.40 
0.55 
0.61 

0.52 

site 
2 

-0.04 
-0.03 
-0.14 

-0.07 

0.71 
1.28 
1.16 

1.05 

3 

0.74 
1.65 
1.58 

1.32 

2.08 
1.53 
2.05 

1.89 

1 g/m2/day at site 
1 

0.49 
0.41 
0.19 

0.36 

0.75 
0.60 
0.52 

0.62 

2 

0.36 
0.38 
0.36 

0.37 

0.36 
-0.41 
-0.51 

-0.19 

3 

1.12 
1.25 
1.33 

1.23 

0.26 
0.18 
-0.01 

0.14 

Physical aeration at SOD rates of: 

2 g/m2/day 
1 

0.54 
0.44 
0.24 

0.41 

0.79 
0.64 
0.56 

0.66 

2 

0.40 
0.43 
0.40 

0.41 

0.40 
0.00 
-0.01 

0.13 

at site 
3 

1.16 
1.29 
1.37 

1.27 

0.31 
0.23 
0.03 

0.19 

3 g/m2 /day at 
1 

0.58 
0.47 
0.28 

0.44 

0.83 
0.68 
0.60 

0.70 

2 

0.44 
0.47 
0.44 

0.45 

0.45 
0.04 
0.03 

0.17 

site 
3 

1.20 
1.33 
1.41 

1.31 

0.35 
0.27 
0.07 

0.23 



Table 7. Reaeration Coefficient (K2) Computed to the 
Base e Using Observed Field Data 

31 

Criteria for 
K2 estimation: 
Maximum 
incremental 
K2, 1/day 

1000 

45 

30 

10 

Equation 
Name 

Langbein & Durum 

Churchill et al. 

O'Connor & 
Dobbins 

Site No. 
Date 

Parameter 
No. usable 
K 2 max 

min 
avg 
std 

No. usable 
K 2 max 

min 
avg 
std 

No. usable 
K2 max 

min 
avg 
std 

No. usable 
K 2 max 

min 
avg 
std 

Table 8. 

1 
8/17-8/20 

36 
171.06 

0.14 
18.04 
33.43 

36 
45.00 

0.14 
12.18 
14.69 

36 
30.00 

0.14 
10.50 
11.19 

36 
10.00 
0.14 
5.39 
4.20 

Reaeration 

K2 Values at a Station, 1/day
1 

9/07-9/10 

34 
1000.00 

0.34 
71.97 

216.57 

34 
45.00 

0.34 
15.03 
14.38 

' 34 
30.00 

0.34 
13.07 
10.78 

34 
10.00 
0.34 
6.96 
3.53 

2 
8/17-8/20 

49 
20.31 

0.26 
4.84 
4.71 

49 
20.31 

0.26 
4.84 
4.71 

49 
20.31 

0.26 
4.84 
4.71 

49 
10.00 
0.26 
4.15 
3.08 

2 

 
3 

9/07-9/10 8/17-8/20 

33 
577.45 

0.27 
42.47 

102.08 

33 
45.00 

0.27 
19.92 
16.79 

33 
30.00 

0.27 
16.15 
11.94 

33 
10.00 
0.27 
7.65 
3.62 

Coefficients (K2) Computed 
to the Base e Using Published Formulas 

Site No. 
Date 

No. 

14 

15 

16 

8/17-8/20 

7.62 

12.19 

14.59 

K 2 Values at a Station, 1/day 
1 

9/07-9/10 

6.71 

11.41 

15.50 

2 
8/17-8/20 

13.41 

22.20 

21.67 

2 

35 
1000.00 

0.36 
52.78 

170.41 

35 
45.00 

0.36 
14.65 
16.18 

35 
30.00 

0.36 
11.69 
10.63 

35 
10.00 
0.36 
6.67 
3.69 

9/07-9/10 8/17-8/20 

26.83 

53.64 

48.38 

1.76 

2.05 

3.20 

3 
9/7-9/10 

41 
1000.00 

1.19 
47.37 

159.59 

41 
45.00 

1.19 
14.18 
16.19 

41 
30.00 

1.19 
11.35 
10.92 

41 
10.00 

1.19 
6.33 
3.33 

9/7-9/10 

3.15 

4.46 

6.76 



0.060; if the observed DO were read as to 4.5 mg/l, K2 would equal 0.069 day"1, which represents 
only a 15 percent change compared to the 100 percent change for the low deficit example. 

With the above in mind, K2-values were computed by setting upper acceptable limits to remove 
the undue influence of extreme outliers. The results in Table 7 are predicated on setting upper K2-
values of 1,000 day1, 45 day1, 30 day1, and 10 day1 as noted in the table. If a computed value 
exceeded the stated value, it was assigned mat specific value for determining the statistical summaries. 

Another factor that had to be considered in computing K2 is the anomalies that appear in 
reaeration or deaeration computation when observed DO and saturation levels are nearly equal. 
Negative K2-values will occur when negative deaeration values are matched with positive changes in 
deficit; that is, deaeration appears to occur in conjunction with an observed increase in DO. Negative 
K2-values will also occur when reaeration appears to occur when the observed DO is above saturation. 
The resultant negative value from either case was rejected from the statistical results presented in Table 
7. 

Table 8 lists K2-values computed using equations 14-16 for comparison with the "theoretical" 
values contained in Table 7. Note from Table 7 mat considerable variability occurs between the three 
"textbook" K2-formulas at a given site and between sites. Note also that at upper K2-limits of 45 day-1 

or less, the computed "theoretical" K2-values show little variability between either sites or events. The 
differences are probably statistically insignificant. The Langbein and Durum equation appears to 
closely predict the reaeration coefficient at site 1 when all outliers above 10 are eliminated. When the 
upper limit was set at 45 day , both the Churchill, Elmore, and Buckingham equation and the 
O'Connor and Dobbins equation provided reasonable estimates. The equation-values did not match 
very well with any of the "theoretically" computed values for the other two sites during either event. 
A very general conclusion could be made that the reaeration coefficients appear to be higher at low 
flows at sites 1 and 2, whereas no discernible difference appears to occur between the coefficients for 
each flow at site 3. 

Overall, the general water quality during the 72-hour study period was good. DO 
concentrations were maintained close to saturation levels without the benefit of high algal productivity. 
In fact, algal activity actually imposed a slight drain on the DO resources of the stream at sites 1 and 2 
during event 1 (Table 6). 

Historical Data 
Water quality data collected at 20 stations in the Sangamon River Basin is stored in the 

WATSTORE database maintained by the USGS. The stations, their USGS gage numbers, locations, 
basins, drainage areas, river miles from the mouth, and years of record are presented in Table 9. The 
number of records noted in the table is the number of samples for which Q, T, and DO were available 
and indicates the number of datapoints considered in the analysis. Discharge data is not available for 
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gages 5573504 on the Sangamon River (immediately below Lake Decatur dam) and 5576250 on Sugar 
Creek near Springfield. There are two gages within the project study reach, 5570910 with drainage 
area 240 square miles, and 5572125 with 573 square mile drainage area. There are four other gages 
located on the main Sangamon River. Gage 5573540 is located 1.2 miles downstream of Lake Decatur 
dam and gage 5573650 is 10 miles downstream of Decatur's waste water treatment plant discharge. 
Discharge and dissolved oxygen levels are modified by these facilities. Gage 5576500 is below the 
confluence of the Sangamon and the South Fork Sangamon Rivers. Gage 5583000 is below the 
confluence of the Sangamon River and Salt Creek. Data from all of the stations in the basin were 
reviewed and provided a basis for evaluating trends observed in the data from the two gages in the 
study area. 

The locations of the various AWQMN gages and point discharges of effluents, as well as the 
1984 7-day 10-year low flows of the streams and wastewater treatment plant effluents (Singh, 
Ramamurthy, and Seo, 1988), are shown in Figure 1. The 1984 effluent discharge volumes were 
compared to 1970 effluent discharges reported by Singh and Stall (1973) as well as reported minimum 
average monthly discharges for the treatment plants in 1989 and 1990. These values are presented in 
Table 10. It may be observed from the tabulated values that for the most part there have been no 
significant changes in quantity of effluent discharged by these plants between 1970 and 1990; This 
time period also coincides with the bulk of the AWQMN station water quality data used in the 
analysis. The AWQMN station below the effluent outfalls is also listed in Table 10 following the 
upstream discharge points. 

The emphasis of the analysis was to evaluate seasonal trends in DO and the variation of DO 
with discharge. Q, T, and DO data for all stations in the basin were retrieved from the WATSTORE 
database, along with the year, month, day, and time of the sample collection. The data were screened 
to eliminate multiple measurements during the same day. The saturation concentration of dissolved 
oxygen (DOsat) was computed using equation 11 for the reported water temperature for each recorded 
DO and adjusted for the site elevation using equation 12. The oxygen deficit (D), was calculated as 
the difference between DOsat and DO. Thus, a positive value of D indicates an oxygen concentration 
less than saturation, a negative value indicates supersaturation. 

Monthly Average DO Values, Temperature Dependence, and Data Trends 
For each set of gage data, the monthly average, minimum, maximum, and standard deviation 

of measured Q, T, and DO were determined. Similarly, the average, minimum, and maximum values 
of the calculated D and DOsat values were computed. This information for the eight gages located on 
the main Sangamon River is presented in Tables 11-18. The number of data samples available from 
each site for each month is noted. Due to diurnal fluctuations in DO, the time of sampling will 
influence the DO measured therefore the sampling times of the data from the network were reviewed. 
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Table 9. Basin Drainage Area, River Mile, Years of Record, and 
Number of Records for USGS Gages in the Sangamon River Basin 

Notes: US = Sangamon Basin above Lake Decatur 
LS = Sangamon Basin below Lake Decatur 
SF = South Fork Sangamon Basin 
SC = Salt Creek Basin 
* from the mouth of the river 
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USGS 
gage no. 

5570910 

5572125 

5573504 

5573540 

5573650 

5573800 

5576500 

5578000 

5583000 

5577505 

,5576250 

5574500 

5575500 

5576022 

5579500 

5580000 

5580500 

5581500 

5578500 

5582000 

Stream/ 
gage name 

Sangamon River 
at Fisher 

Sangamon River 
at Allerton Pk 

Sangamon River 
below L Decatur 
Sangamon River 

at IL Hwy 48 
Sangamon River 

near Niantic 
Sangamon River 

at Roby 
Sangamon River 

at Riverton 
Sangamon River 

at Petersburg 
Sangamon River 

near Oakford 
Spring Creek at Burns Lane 

Bridge at Springfield 
Sugar Creek 

near Springfield 
Rat Branch 

near Taylorville 
South Fork Sang. 

at Kincaid 
South Fork Sang. 
below Rochester 

Lake Fork 
near Cornland 

Kickapoo Creek 
at Waynesville 
Kickapoo Creek 

near Lincoln 
Sugar Creek 

near Hartsburg 
Salt Creek 

near Rowell 
Salt Creek 

near Greenview 

Sub-
basin 

us 

us 

LS 

LS 

LS 

LS 

LS 

LS 

LS 

LS 

LS 

SF 

SF 

SF 

SC 

SC 

SC 

SC 

SC 

SC 

Drainage 
area 

(sq mi) 
240 

573 

927 

938 

1054 

1264 

2618 

3063 

5094 

109 

270 

276 

562 

870 

214 

227 

306 

333 

335 

1804 

River 
mile* 
201.1 

158 

130.1 

129 

116.9 

98.5 

83.1 

45.9 

25.7 

8.2 
(approx.) 

7.4 
(approx.) 

1.6 

37.8 

5 

12.9 

25.3 

7.4 

15.4 

65.3 

4.9 

Years of 
record 
1979-89 

1978-89 

1979-89 

1978-89 

1977-89 

1977-89 

1971-89 

1965-89 

1956-89 

1979-89 

1979-89 

1965-89 

1972-89 

1977-89 

1964-89 

1966-89 

1966-89 

1964-89 

1964-89 

1964-89 

Number of 
records 

92 

100 

138 

137 

122 

99 

72 

113 

102 

90 

101 

105 

123 

111 

94 

92 

97 

93 



Table 10. Effluent Discharges in the Upper Sangamon Basin 

Gibson City 
Central Soya Co. 
(DS WQS:05570910) 
Fisher 
Rantoul 
Mahomet 
Monticello 
Viobin Corp. 
(DS WQS: 0552125) 
Cerro Gordo 
(DS WQS: 05573540) 
Decatur 
(DS WQS: 05573650) 
Harristown 
Borden Chemical Co. 
(DS WQS: 05573800) 

0.46 
0.37 

0.18 
0.27 
0.15 
1.1 
ND 

ND 

23.2 

ND 
0.25 

0.35 
0.06 

0.18 
0.32 
0.20 
0.68 
0.9 

0.01 

31.2 

0.05 
0.93 

0.41 
ND 

0.102 
ND 

0.15 
0.68 
ND 

0.044 

21.18 

0.067 
ND 

0.43 
ND 

0.085 
ND 

0.17 
0.62 
ND 

0.05 

20.52 

0.082 
ND 

Notes: 
(1) IEPA municipal NPDES permitted discharges database 
(2) Singh and Stall, 1973 
(3) Singh et al., 1988 
DS WQS = downstream water quality monitoring station 
ND= no data 
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Table 11. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River at Fisher 

USGS Gage 5570910 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

8 

7 

11 

8 

9 

9 

7 

8 

8 

4 

5 

8 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

1.213 
0.000 
4.000 
1.687 
1.300 
0.000 
4.600 
1.611 
5.573 
1.000 
11.000 
3.325 
8.850 
1.500 

15.000 
4.222 
15.600 
11.000 
20.000 
3.323 

21.856 
20.000 
27.000 
2.180 
22.671 
19.000 
26.000 
2.637 

23.050 
18.500 
27.000 
2.922 
18.850 
16.000 
21.000 
1.999 
13.625 
12.000 
15.000 
1.250 
7.320 
4.500 
9.600 
1.920 
3.725 
0.800 
8.000 
2.794 

area 240 sq. 
Q(cfs) 

127.886 
7.200 

400.000 
133.667 
176.050 
8.300 

350.000 
140.529 
295.700 
65.000 

807.000 
276.397 
344.000 
195.000 
696.000 
167.429 
608.375 
76.000 

2120.000 
740.985 
422.556 
11.000 

1910.000 
621.268 
239.500 
10.000 

572.000 
258.652 
44.314 
1.000 

179.000 
64 890 
19.413 
0.000 

114.000 
38.813 
66.800 
1.600 

169.000 
78.597 
9.200 
0.800 
28.000 
12.641 

270.171 
1.200 

934.000 
322.017 

mi. 
DO(mg/l) 

12.625 
8.000 
14.700 
2.080 
11.386 
8.200 
13.700 
1.974 
11.882 
9.900 
13.500 
1.307 
10.713 
8.400 
13.800 
1.715 
8.722 
7.900 
11.200 
1.165 
7.211 
5.700 
7.900 
0.633 
7.229 
6.600 
8.200 
0.544 
6.900 
5.600 
8.600 
1.128 
7.563 
5.600 
9.300 
1.388 
7.800 
6.000 
9.300 
1.374 
7.980 
6.300 
9.800 
1.350 
12.763 
9.800 
17.700 
2.404 

D (mg/l) 

1.193 
-1.105 
5.880 
2.153 
2.397 
0.572 
5.680 
1.974 
0.460 
-1.167 
1.267 
0.818 
0.675 
-0.110 
2.038 
0.750 
0.970 
-0.478 
2.072 
0.797 
1.273 
0.074 
2.749 
0.739 
1.125 
-0.379 
2.019 
0.764 
1.396 
-0.568 
2.706 
1.103 
1.454 
-0.230 
3.019 
1.199 
2.292 
1.172 
4.001 
1.251 
3.776 
1.595 
5.533 
1.627 
0.174 
-3.742 
1.738 
1.767 

DOsaf (mg/l) 

13.818 
12.795 
14.272 
0.624 
13.782 
12.593 
14.272 
0.588 
12.342 
10.722 
13.880 
1.065 
11.388 
9.779 
13.690 
1.222 
9.693 
8.794 
10.722 
0.715 
8.484 
7.674 
8.794 
0.348 
8.354 
7.821 
8.977 
0.430 
8.296 
7.674 
9.070 
0.479 
9.017 
8.619 
9.567 
0.375 
10.092 
9.779 
10.472 
0.289 
11.756 
11.090 
12.627 
0.580 
12.936 
11.538 
13.958 
0.948 

Notes: 
N = number of data points 
Q = discharge, cfs 
DO = dissolved oxygen concentration, mg/l 

DOsat = saturation concentration of dissolved oxygen, mg/l 
D = oxygen deficit, (DOsat-DO), mg/l 
avg = arithmetic average 
std = standard deviation of data 
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Table 12. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River at Allerton Pk. 

USGS Gage 5572125 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

8 

8 

9 

10 

7 

12 

8 

8 

8 

10 

3 

9 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

0.800 
0.000 
3.000 
1.130 
1.513 
0.000 
5.000 
1.769 
5.344 
1.000 
9.000 
2.661 
11.300 
7.000 
15.000 
3.293 
15.229 
12.000 
19.000 
2.791 

21.167 
17:000 
25.000 
2.380 

23.850 
22.000 
26.000 
1.361 

22.613 
19.000 
27.500 
2.627 
20.150 
17.000 
22.000 
1.823 

11.260 
5.000 
16.000 
3.464 
6.333 
4.000 
10.000 
3.215 
2.989 
0.000 
8.000 
2.872 

area 573 sq. 
Q(cfs) 

170.286 
96.000 
270.000 
59.960 

411.000 
21.000 

1350.000 
466.252 
743.375 
85.000 

1660.000 
645.574 
797.900 
90.000 

1550.000 
535.331 
754.667 
155.000 

3010.000 
1116.497 
913.818 
42.000 

5250.000 
1518.317 
1332.557 

3.900 
5750.000 
2066.447 
32.750 
16.000 
61.000 
17.078 
28.363 
0.000 
85.000 
28.954 
109.000 
0.000 

468.000 
165.698 
23.900 
5.700 
41.000 
17.676 

435.625 
14.000 

1450.000 
492.259 

mi. 
DO (mg/l) 

12.663 
10.000 
14.000 
1.300 
12.825 
11.600 
15.400 
1.386 
11.567 
10.500 
13.100 
0.825 
10.200 
8.500 
12.100 
1.123 
8.714 
7.400 
9.600 
0.884 
6.908 
5.200 
8.500 
0.831 
6.275 
3.500 
8.200 
1.352 
6.850 
5.600 
8.300 
0.802 
7.175 
6.100 
8.200 
0.736 
8.090 
5.900 
9.100 
0.980 
7.133 
5.500 
8.900 
1.704 
10.989 
7.900 
12.900 
1.719 

D (mg/l) 

1.334 
0.033 
4.303 
1.446 
0.910 
-1.097 
1.933 
0.985 
0.851 
-0.381 
1.771 
0.638 
0.520 
-0.878 
1.445 
0.791 
1.065 
0.300 
1.602 
0.504 
1.715 
0.685 
3.267 
0.622 
1.895 
-0.057 
4.643 
1.319 
1.531 
-0.682 
2.867 
1.063 
1.621 
0.613 
2.367 
0.696 
2.646 
0.987 
4.353 
1.190 
4.972 
3.588 
7.323 
2.046 
2.237 
0.188 
6.011 
2.027 

DOsat (mg/l) 

13.996 
13.171 
14.303 
0.428 
13.735 
12.488 
14.303 
0.647 
12.418 
11.279 
13.911 
0.869 
10.720 
9.800 
11.859 
0.848 
9.779 
8.996 
10.494 
0.599 
8.624 
7.988 
9.382 
0.413 
8.170 
7.837 
8.467 
0.215 
8.381 
7.618 
8.996 
0.426 
8.796 
8.467 
9.382 
0.333 
10.736 
9.587 
12.488 
0.908 
12.106 
11.006 
12.823 
0.967 
13.226 
11.563 
14.303 
0.996 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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Table 13. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River at IL Hwy 48 

USGS Gage 5573540 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

10 

10 

11 

12 

11 

14 

10 

17 

14 

9 

10 

10 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage area 938 sq. 
Temp (*C) 

1.890 
1.000 
3.500 
1.016 
2.920 
1.000 
6.000 
1.605 
6.655 
0.000 
16.700 
5.099 
11.558 
5.000 
19.000 
4.047 
16.191 
12.000 
21.000 
2.983 

23.614 
21.000 
26.000 
1.716 

25.820 
24.000 
29.000 
1.423 

25.324 
21.000 
29.500 
2.343 
21.171 
16.200 
25.800 
2.831 
15.167 
10.000 
18.500 
2.839 
7.860 
5.000 
14.000 
3.276 
3.610 
0.600 
11.000 
2.834 

Q(cfs) 

147.700 
3.100 

475.000 
179.265 
553.011 
3.100 

2000.000 
702.084 
994.510 
5.100 

3500.000 
1202.889 
1173.600 

4.200 
3400.000 
999.937 
1650.000 
39.000 

4750.000 
1516.283 
641.446 
5.800 

2360.000 
669.513 
466.111 

1.000 
1760.000 
664.975 
825.620 

2.600 
6000.000 
1653.887 
244.217 
0.220 

1220.000 
423.861 

7.486 
3.200 
17.000 
5.575 

216.967 
0.100 

1740.000 
574.516 
827.490 
4.600 

3500.000 
1177.502 

mi. 
DO(mg/l) 

12.140 
3.400 
17.100 
4.464 
12.280 
7.200 
14.600 
2.316 
11.964 
8.600 
14.200 
2.143 
10.750 
7.400 
12.700 
1.494 
9.936 
8.400 
12.000 
0.978 
7.821 
2.200 
9.400 
1.810 
6.250 
1.900 
8.200 
2.335 
5.547 
0.600 
9.900 
3.318 
4.093 
0.100 
9.800 
3.235 
4.011 
0.900 
10.300 
3.091 
4.860 
0.800 
11.800 
4.368 
11.740 
6.400 
14.200 
2.667 

D (mg/l) 

1.463 
-3.167 
70.008 
4.211 
0.957 
-1.045 
6.355 
2.330 
0.164 
-1.056 
2.424 
1.065 
-0.053 
-1.189 
2.638 
0.932 
-0.341 
-1.730 
0.302 
0.597 
0.402 
-0.836 
5.649 
1.666 
1.630 
-0.482 
5.920 
2.430 
2.415 
-2.552 
7.715 
3.324 
4.550 
-0.790 
8.727 
3.433 
5.801 
0.211 
10.124 
3.118 
6.818 
0.011 
11.387 
4.666 
1.286 
-0.956 
6.444 
2.621 

DOsat (mg/l) 

13.603 
13.016 
13.933 
0.375 
13.237 
12.187 
13.933 
0.565 
12.127 
9.458 
14.326 
1.516 
10.697 
9.010 
12.508 
1.015 

. 9.595 
8.650 
10.511 
0.616 
8.223 
7.849 
8.650 
0.273 
7.880 
7.418 
8.155 
0.211 
7.962 
7.348 
8.650 
0.358 
8.643 
7.879 
9.561 
0.495 
9.812 
9.104 
11.024 
0.639 
11.678 
10.038 
12.508 
0.910 
13.026 
10.762 
14.088 
0.896 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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Table 14. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River near Niantic 

USGS Gage 5573650 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

10 

12 

10 

13 

11 

16. 

10 

13 

13 

7 

11 

11 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

3.480 
1.000 
7.000 
2.464 
3.475 
0.000 
7.000 
2.364 
6.940 
1.000 
15.900 
4.502 
11.738 
6.000 
18.000 
3.883 
17.636 
12.800 
24.000 
3.733 
23.319 
21.000 
27.000 
1.527 

26.450 
24.000 
29.000 
1.624 

25.585 
22.000 
30.000 
2.175 

22.546 
17.600 
27.000 
3.079 
15.857 
11.000 
20.500 
3.400 
11.336 
7.000 
18.000 
3.270 
4.409 
0.000 
11.000 
2.905 

area 1054 sq. 
Q(cfs) 

294.500 
29.000 
690.000 
250.425 
450.300 
28.000 

1500.000 
481.891 
1800.750 
131.000 

4890.000 
1825.248 
1473.667 
113.000 

3440.000 
1085.001 
1659.333 
379.000 
3960.000 
1142.042 
822.385 
46.000 

2870.000 
793.881 
485.429 
24.000 

1540.000 
578.474 
832.900 
27.000 

3000.000 
1244.542 
419.800 
27.000 

2510.000 
765.406 
1120.200 
42.000 

4570.000 
1953.706 
716.778 
14.000 

3650.000 
1243.227 
1391.889 
20.000 

5290.000 
2037.278 

mi. 
DO(mg/l) 

10.640 
4.700 
14.000 
3.574 
11.475 
9.300 
13.500 
1.247 
10.770 
7.900 
13.400 
2.054 
9.192 
7.600 
11.400 
1.453 
7.982 
4.800 
10.400 
1.583 
6.019 
2.100 
7.900 
1.538 
5.280 
3.100 
7.400 
1.512 
5.269 
0.400 
7.900 
2.346 
4.500 
0.900 
7.200 
2.244 
7.143 
3.800 
9.900 
2.260 
5.336 
0.800 
9.900 
3.445 
10.655 
4.800 
13.600 
2.771 

D(mp/I) 

2.430 
-0.314 
7.555 
2.991 
1.595 
0.065 
4.836 
1.359 
1.244 
-0.683 
3.639 
1.298 
1.462 
0.589 
2.969 
0.664 
1.341 
-0.685 
3.361 
1.071 
2.256 
0.421 
5.608 
1.374 
2.512 
0.530 
4.464 
1.404 
2.656 
-0.336 
6.884 
2.233 
3.919 
1.121 
8.306 
2.307 
2.538 
0.869 
4.944 
1.556 
5.397 
0.715 
9.805 
3.544 
2.110 
-0.405 
7.717 
2.560 

DOsat (mg/l) 

13.070 
11.886 
T3.943 
0.849 
13.070 
11.886 
14.336 
0.824 
12.014 
9.630 
13.943 
1.312 

10.654 
9.206 
12.195 
0.970 
9.323 
8.161 
10.324 
0.710 
8.275 
7.708 
8.656 
0.242 
7.792 
7.423 
8.161 
0.239 
7.925 
7.284 
8.486 
0.327 
8.419 
7.708 
9.284 
0.515 
9.681 
8.744 
10.769 
0.727 
10.733 
9.206 
11.886 
0.798 
12.765 
10.769 
14.336 
0.952 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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Table 15. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River at Roby 

USGS Gage 5573800 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

10 

11 

10 

15 

12 

13 

5 

13 

11 

4 

10 

8 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

2.040 
0.000 
8.400 
2.602 
1.818 
0.000 
7.000 
2.261 
5.640 
2.000 
10.000 
2.279 
11.507 
7.000 
15.500 
2.852 
17.117 
12.000 
23.000 
3.112 
23.077 
18.000 
25.500 
2.216 
24.400 
23.000 
26.000 
1.140 

25.023 
22.000 
29.000 
1.955 
19.727 
15.700 
26.500 
3.383 
14.875 
12.500 
19.000 
2.955 
9.410 
4.500 
16.000 
3.801 
3.100 
0.300 
6.000 
1.831 

area 1264 sq 
Q(cfs) 

585.111 
36.000 

2610.000 
792.332 
932.400 
35.000 

5070.000 
1520.774 
2584.000 
137.000 

7100.000 
3013.900 
1956.500 
67.000 

5580.000 
1684.171 
1467.400 
242.000 
5250.000 
1659.792 
1161.909 
58.000 

4430.000 
1500.936 
1975.250 
220.000 
5470.000 
2465.324 
211.100 
34.000 

1220.000 
364.692 
128.100 
44.000 
488.000 
134.447 
401.333 
35.000 

1120.000 
622.423 
470.556 
39.000 

2060.000 
705.500 
1926.286 
48.000 

6060.000 
2234.357 

. mi. 
DO(mg/l) 

12.150 
8.500 
14.900 
1.719 
11.645 
9.400 
14.000 
1.458 
11.450 
9.100 
13.300 
1.143 
9.687 
6.700 
11.400 
1.217 
7.600 
5.600 
9.200 
1.130 
6.515 
4.000 
7.900 
1.125 
6.180 
4.900 
7.300 
0.998 
6.838 
5.000 
8.900 
1.276 
6.455 
3.600 
10.300 
2.121 
6.125 
4.900 
8.400 
1.628 
7.660 
3.400 
11.000 
2.832 
12.250 
9.600 
15.700 
2.056 

D(mg/l) 

1.461 
-1.317 
5.855 
2.039 
2.039 
-0.038 
4.183 
1.161 
0.906 
-0.066 
3.111 
0.935 
1.008 
-0.942 
3.027 
0.950 
1.827 
0.176 
3.618 
0.905 
1.816 
0.271 
3.940 
1.029 
1.931 
0.716 
3.431 
1.126 
1.181 
-0.869 
3.078 
1.236 
2.472 
-0.807 
5.618 
2.259 
3.766 
2.010 
4.935 
1.242 
3.619 
0.019 
6.658 
2.444 
0.954 
-1.464 
3.983 
1.691 

DOsat (mg/l) 

13.611 
11.489 
14.355 
0.897 
13.684 
11.902 
14.355 
0.804 
12.356 
11.046 
13.583 
0.722 
10.695 
9.727 
11.902 
0.732 
9.427 
8.331 
10.532 
0.637 
8.331 
7.940 
9.218 
0.374 
8.111 
7.865 
8.331 
0.177 
8.020 
7.432 
8.497 
0.295 
8.926 
7.791 
9.685 
0.596 
9.891 
9.028 
10.410 
0.626 
11.279 
9.621 
12.700 
1.032 
13.204 
12.211 
14.236 
0.648 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit, (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std - standard deviation of data 
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Table 16. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River at Riverton 

USGS Gage 5576500 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

7 

6 

9 

11 

13 

9 

5 

9 

7 

8 

8 

7 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

1.357 
0.000 
3.000 
1.547 
2.167 
0.000 
6.000 
2.639 
5.289 
0.000 
9.100 
2.857 . 
12.091 
8.000 
15.000 
2.625 
18.208 
12.000 
22.000 
2.553 
23.433 
20.000 
25.900 
2.157 
25.500 
23.000 
28.000 
2.179 
26.533 
21.500 
33.000 
3.527 
20.957 
17.000 
24.000 
2.140 
15.563 
11.000 
19.500 
3.385 
8.688 
4.000 
16.000 
3.936 
3.286 
2.000 
5.000 
1.075 

(area 2618 
Q(cfs) 

1313.857 
86.000 

4810.000 
1633.503 
6680.833 
85.000 

14100.000 
6128.266 
2472.111 
306.000 

13000.000 
4021.415 
4317.455 
382.000 

12500.000 
4126.280 
2858.308 
434.000 

10900.000 
3068.601 
1396.556 
84.000 

6550.000 
2017.086 
5310.600 
763.000 

13800.000 
5150.939 
251.667 
38.000 
860.000 
253.875 
1543.143 
50.000 

9320.000 
3436.672 
575.875 
56.000 

1870.000 
623.239 
457.625 
43.000 

1700.000 
621.824 
2397.429 
40.000 

10100.000 
3622.102 

sq. mi. 
DO(mg/l) 

12.086 
8.900 
14.700 
2.038 
12.133 
10.600 
13.800 
1.350 
11.246 
10.400 
12.500 
0.688 
9.582 
7.700 
11.600 
1.177 
7.869 
6.900 
9.500 
0.826 
7.322 
5.700 
11.800 
1.858 
5.720 
5.500 
6.000 
0.228 
8.544 
5.200 
13.800 
3.254 
6.943 
4.700 
10.500 
2.116 
6.863 
5.100 
8.800 
1.514 
8.575 
5.300 
11.600 
2.187 
11.414 
10.300 
12.700 
0.915 

D (mg/l) 

1.766 
-1.470 
5.268 
2.101 
1.441 
0.567 
2.373 
0.665 
1.253 
0.091 
2.480 
0.800 
0.969 
-1.534 
2.366 
1.275 
1.339 
-0.313 
2.135 
0.717 
0.957 
-3.777 
2.400 
2.012 
2.234 
1.879 
2.678 
0.323 
-0.734 
-6.390 
3.138 
3.652 
1.751 
-1.996 
4.152 
2.197 
2.902 
0.235 
5.693 
1.895 
2.919 
-0.545 
5.614 
2.085 
1.722 
0.530 
2.794 
0.842 

DOsat (mg/l) 

13.852 
13.230 
14.367 
0.585 
13.575 
12.222 
14.367 
0.945 
12.499 
11.301 
14.367 
0.966 
10.550 
9.843 
11.614 
0.663 
9.209 
8.504 
10.541 
0.520 
8.279 
7.886 
8.852 
0.353 
7.954 
7.579 
8.338 
0.330 
7.811 
6.892 
8.588 
0.520 
8.694 
8.178 
9.424 
0.383 
9.765 
8.943 
10.793 
0.729 
11.494 
9.629 
12.880 
1.081 
13.136 
12.544 
13.594 
0.378 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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Table 17. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River at Petersburg 

USGS Gage 557800C 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

5 

6 

9 

8 

6 

7 

7 

5 

4 

6 

5 

4 

) 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
mm 
max 
std 
avg 
min 
max 
std 

Drainage area 3063 sq 
Temp (*C) 

1.900 
0.000 
3.500 
1.557 
1.667 
0.000 
5.000 
1.862 
5.389 
1.000 
10.000 
3.462 
10.400 
7.000 
14.500 
2.515 
17.933 . 
15.000 
21.000 
2.304 
24.071 
21.000 
29.400 
2.896 
26.314 
24.500 
28.000 
1.084 

26.020 
22.500 
31.000 
3.497 
21.125 
18.500 
26.000 
3.425 
15.750 
12.500 
19.500 
2.679 
8.900 
5.500 
14.000 
3.380 
4.375 
2.000 
6.000 
1.702 

Q(cfs) 

3836.000 
1140.000 
5710.000 
2331.680 
2068.333 
1300.000 
2770.000 
614.603 
6713.667 
263.000 

16900.000 
6142.907 
5495.000 
1080.000 

12400.000 
4288.426 
2950.333 
432.000 
6240.000 
2551.710 
2863.429 
151.000 

8740.000 
3182.863 
2254.571 
176.000 

6460.000 
2736.219 
1720.000 
168.000 

7110.000 
3023.312 
654.750 
100.000 
1480.000 
631.528 
1349.667 
133.000 

4510.000 
1641.887 
4718.200 
101.000 

22300.000 
9831.820 
2071.250 
121.000 

4770.000 
2121.401 

. mi. 
DO (mg/l) 

13.380 
11.800 
14.800 
1.180 
12.133 
10.800 
13.100 
0.878 
11.978 
10.300 
15.100 
1.401 
9.875 
8.300 
11.200 
0.866 
7.850 
7.400 
8.400 
0.409 
7.186 
5.100 
9.700 
1.381 
6.900 
5.600 
8.400 
0.933 
6.940 
5.200 
9.200 
1.737 
8.050 
6.400 
9.600 
1.308 
7.683 
6.400 
9.300 
1.182 
9.400 
7.600 
11.200 
1.371 
11.950 
11.200 
13.200 
0.900 

D(mg/I) 

0.283 
-0.553 
1.270 
0.784 
1.624 
0.512 
2.886 
0.892 
0.525 
-1.631 
2.391 
1.295 
1.117 
0.079 
3.043 
0.921 
1.416 
0.846 
1.841 
0.332 
1.007 
-2.309 
3.248 
1.728 
0.936 
-0.811 
2.281 
1.017 
0.955 
-0.932 
2.374 
1.467 
0.638 
-0.459 
2.285 
1.258 
2.036 
0.894 
3.066 
0.780 
2.023 
0.727 
2.576 
0.748 
0.834 
0.412 
1.160 
0.335 

DOsat (mg/l) 

13.663 
13.070 
14.386 
0.587 
13.758 
12.560 
14.386 
0.681 
12.503 
11.069 
13.991 
1.131 

10.992 
9.966 
11.927 
0.657 
9.266 
8.685 
9.856 
0.450 
8.192 
7.391 
8.685 
0.449 
7.836 
7.589 
8.110 
0.161 
7.895 
7.171 
8.431 
0.518 
8.688 
7.881 
9.141 
0.573 
9.719 
8.953 
10.431 
0.567 
11.423 
10.079 
12.397 
0.918 
12.784 
12.237 
13.612 
0.588 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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Table 18. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Sangamon River near Oakford 

USGS Gage 5583000 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

10 

8 

6 

13 

9 

8 

15 

9 

4 

13 

13 

5 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg. 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

2.090 
0.100 
5.000 
1.737 
2.963 
0.000 
8.500 
2.990 
6.900 
2.000 
14.000 
4.128 
13.100 
7.500 
18.000 
3.064 
17.600 
13.400 
22.000 
2.698 
21.713 
19.000 
23.000 
1.232 

26.014 
22.500 
28.500 
1.807 

23.389 
19.000 
27.000 
2.987 

21.250 
17.000 
24.000 
2.986 
12.900 
8.000 
18.000 
3.506 
8.100 
4.500 
12.000 
2.682 
2.000 
0.500 
5.000 
1.969 

area 5093 
Q(cfs) 

2282.500 
368.000 
5870.000 
1681.935 
2465.750 
270.000 
8180.000 
2578.130 
9536.667 
2090.000 
19200.000 
7272.190 
10022.310 
2160.000 

45100.000 
11398.830 
6967.778 
1260.000 

21900.000 
6737.249 
3758.750 
1500.000 
9270.000 
2754.448 
2793.867 
290.000 

11400.000 
3115.412 
871.556 
254.000 
2130.000 
651.431 
1749.000 
463.000 
5430.000 
2454.674 
1234.308 
211.000 
9830.000 
2616.826 
1476.385 
294.000 

4410.000 
1445.688 
6448.400 
335.000 

20900.000 
9060.790 

sq. mi. 
DO(mg/l) 

12.060 
9.000 
14.200 
1.512 

12.088 
10.800 
13.600 
0.863 
11.317 
10.000 
13.400 
1.569 
9.531 
7.900 
11.900 
1.261 
8.411 
6.800 
10.400 
1.061 
7.875 
6.300 
9.600 
0.974 
8.813 
6.600 
12.200 
1.657 
9.478 
6.700 
12.900 
2.665 
9.250 
7.100 
10.700 
1.559 
10.200 
7.700 
12.800 
1.428 
11.562 
8.500 
15.300 
1.876 
12.300 
10.700 
14.100 
1.416 

D (mg/l) 

1.551 
0.040 
3.909 
1.326 
1.240 
0.008 
3.519 
1.133 
0.738 
-1.462 
2.772 
1.445 
0.809 
-0.821 
1.788 
0.733 
0.937 
-0.778 
2.162 
0.999 
0.699 
-0.545 
2.393 
0.905 
-0.514 
-3.925 
2.404 
1.643 
-1.165 
-5.086 
1.556 
2.813 
-0.579 
-2.505 
1.422 
1.604 
0.201 
-1.935 
1.840 
1.176 
0.089 
-2.728 
2.214 
1.575 
1.347 
0.100 
2.059 
0.829 

DOsat (mg/l) 

13.611 
12.572 
14.359 
0.636 
13.328 
11.495 
14.399 
1.034 
12.054 
10.088 
13.624 
1.208 
10.339 
9.245 
11.787 
0.735 
9.348 
8.522 
10.227 
0.535 
8.574 
8.356 
9.055 
0.216 
8.299 
7.524 
14.004 
1.600 
8.313 
7.740 
9.055 
0.485 
8.671 
8.195 
9.444 
0.538 
10.401 
9.245 
11.640 
0.850 
11.650 
10.563 
12.738 
0.780 
13.647 
12.572 
14.200 
0.715 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit, (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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Table 19. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Kickapoo Creek at Waynesville 

USGS Gage 5580000 

Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

9 

9 

12 

9 

10 

10 

13 

9 

7 

11 

9 

3 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

■ avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 

Temp (*C) 

0.900 
0.000 
4.000 
1.356 
1.511 
0.000 
4.000 
1.554 
6.483 
2.000 
15.000 
4.641 
10.400 
5.500 
19.100 
4.310 
14.900 
8.500 
20.500 
3.573 

20.800 
17.000 
24.000 
1.927 

23.177 
17.900 
26.000 
2.504 
23.778 
20.000 
29.000 
3.022 
18.786 
14.000 
23.000 
2.856 
11.982 
5.000 
19.000 
5.165 
5.744 
2.000 
14.000 
3.491 
2.667 
0.000 
4.000 
2.309 

area 227 sq. 

Q(cfs) 

83.813 
8.500 

128.000 
44.417 
188.875 
8.000 

679.000 
238.691 
178.727 
54.000 
550.000 
159.993 
439.250 
61.000 
983.000 
319.836 
288.400 
74.000 

1270.000 
363.084 
92.444 
15.000 

221.000 
64.642 
139.500 
2.300 

718.000 
226.428 
21.763 
0.300 
68.000 
23.439 
21.414 
1.900 

102.000 
35.866 
55.990 
1.500 

434.000 
134.194 
640.475 

7.800 
4860.000 
1705.249 
291.333 
29.000 
538.000 
254.861 

mi. 

DO(mg/l) 

12.722 
9.200 
14.800 
2.004 
12.478 
9.300 
14.600 
1.463 
11.875 
9.300 
13.300 
1.432 
10.544 
8.700 
12.000 
0.995 
9.640 
8.400 
11.400 
0.911 
8.010 
7.200 
8.900 
0.509 
7.877 
6.100 
8.800 
0.689 
7.822 
6.600 
9.600 
1.024 
8.071 
6.300 
9.700 
1.195 
8.991 
6.900 
10.900 
1.359 
11.489 
8.000 
13.500 
1.758 
12.000 
10.700 
12.900 
1.153 

D (mg/I) 

1.243 
-0.762 
3.907 
1.810 
1.258 
-0.293 
4.809 
1.500 
0.263 
-0.808 
1.327 
0.661 
0.445 
-0.703 
1.782 
0.770 
0.236 
-0.304 
1.103 
0.496 
0.675 
-0.595 
1.269 
0.519 
0.414 
-0.560 
1.890 
0.642 
0.376 
-2.051 
1.786 
1.282 
0.992 
-0.512 
2.516 
0.943 
1.633 
-0.402 
4.292 
1.689 
0.829 
-0.908 
2.025 
1.109 
1.320 
0.427 
2.127 
0.853 

DOsat (mg/l) 

13.966 
12.827 
14.307 
0.505 
13.736 
12.827 
14.307 
0.580 
12.138 
9.803 
13.538 
1.319 
10.989 
8.980 
12.330 
1.072 
9.876 
8.727 
11.423 
0.804 
8.685 
8.145 
9.385 
0.340 
8.291 
7.840 
9.207 
0.416 
8.198 
7.408 
8.816 
0.469 
9.063 
8.305 
10.025 
0.548 
10.624 
8.998 
12.492 
1.276 

12.318 
10.025 
13.538 
1.009 

13.320 
12.827 
14.307 
0.855 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = Oxygen deficit (DOsat-DO). mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std - standard deviation of data 
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Table 20. Average Monthly Temperature, Discharge, 
and Dissolved Oxygen Data, Kickapoo Creek near Lincoln 

USGS Gage 5580500 
Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

N 

8 

8 

9 

7 

8 

9 

9 

8 

7 

10 

7 

4 

avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 
avg 
min 
max 
std 

Drainage 
Temp (*C) 

0.738 
0.000 
3.000 
1.032 
2.350 
0.000 
4.500 
1.602 
8.500 
3.000 
16.000 
5.477 
14.000 
7.000 
21.000 
5.292 
15.525 
12.200 
20.000 
2.581 
21.956 
18.000 
26.000 
2.182 
24.167 
19.700 
27.000 
2.554 
22.588 
19.000 
25.000 
2.262 
20.357 
17.000 
24.500 
2.749 
14.040 
6.400 
19.500 
4.304 
5.529 
4.000 
8.000 
1.468 
2.875 
1.000 
4.000 
1.315 

area 306 sq. 
Q(cfs) 

122.800 
12.000 

223.000 
89.592 

715.000 
35.000 

3180.000 
1103.626 
219.000 
85.000 
700.000 
204.322 
573.167 
109.000 
1420.000 
519.522 
183.714 
101.000 
303.000 
60.596 
137.429 
22.000 
300.000 
94.021 
274.600 
10.000 

1220.000 
528.766 
42.286 
12.000 
120.000 
36.436 
81.086 
7.600 

306.000 
104.014 
88.378 
4.000 

586.000 
188.112 
66.833 
29.000 
164.000 
49.069 
270.750 
11.000 

606.000 
284.760 

mi. 
DO(mqA) 

14.013 
10.000 
16.200 
1.894 
12.575 
11.800 
13.600 
0.690 
11.600 
9.300 
13.300 
1.697 
10.000 
8.700 
11.800 
0.978 
8.900 
7.900 
10.000 
0.762 
7.767 
7.200 
8.300 
0.339 
7.178 
4.800 
8.200 
1.049 
6.800 
5.000 
8.800 
1.160 
8.043 
6.200 
10.000 
1.325 
8.850 
6.700 
11.900 
1.487 
11.771 
10.300 
12.600 
0.894 
12.200 
10.300 
13.900 
1.494 

D (mg/l) 

0.046 
-2.250 
4.343 
2.103 
0.884 
0.302 
1.408 
0.391 
0.003 
-1.208 
0.959 
0.789 
0.164 
-1.140 
1.292 
0.750 
0.838 
-0.187 
1.650 
0.548 
0.742 
-0.042 
1.174 
0.372 
0.975 
-0.389 
3.209 
1.026 
1.604 
-0.791 
3.087 
1.204 
0.751 
-0.592 
1.887 
1.000 
1.269 
0.176 
2.504 
0.937 
0.592 
-0.077 
1.295 
0.479 
1.062 
-0.868 
2.559 
1.523 

DOsat (mg/l) 

14.058 
13.208 
14.343 
0.392 
13.459 
12.689 
14.343 
0.596 
11.603 
9.613 
13.208 
1.498 

10.164 
8.660 
11.892 
1.263 
9.738 
8.837 
10.474 
0.543 
8.509 
7.858 
9.210 
0.370 
8.153 
7.711 
8.891 
0.413 
8.404 
8.009 
9.020 
0.378 
8.794 
8.087 
9.408 
0.488 
10.119 
8.928 
12.076 
1.006 
12.363 
11.595 
12.859 
0.466 
13.262 
12.859 
13.950 
0.480 

Notes: 
N = number of data points DOsat = saturation concentration of dissolved oxygen, mg/l 
Q = discharge, cfs D = oxygen deficit, (DOsat-DO), mg/l 
DO = dissolved oxygen concentration, mg/l avg = arithmetic average 

std = standard deviation of data 
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With the exception of a few special studies when multiple samples were taken over a one- or two-day 
period, the recorded sampling times ranged from 8:00 a.m. to 4:00 p.m. The vast majority of samples 
were taken between 10:00 a.m. and 2:00 p.m. when DO levels are typically rising due to algal 
photosynthetic activity. The diurnal variation is illustrated in the plots of DO versus time (Figures 4 
and 5), developed from the field data. The recorded DO at the three field sites shows a daytime 
increase between 1 and 2 rag/I during the events monitored. Differences between the minimum and 
maximum over the 72-hour period range from 2.91 to 1.35 mg/1, the difference between minimum and 
average values ranges from 1.36 to 0.68 mg/l. The WATSTORE data included information from a 
1982 study in which DO was monitored during two 2-day periods (8/17-8/18 and 9/14-9/15) at four 
sites below Lake Decatur Dam (gages 5573540, 5573650, 5573800, and 5576500). Diurnal variations 
in DO observed at these stations ranged from 2 to 9 mg/1. Because the historical data was not 
collected at the same time of day, a degree of variability is inherent in the data set. 

The influence of temperature on DO is evident in seasonal variations in temperature, DO and 
calculated DOsat. The average daily water temperature was computed using the available temperature 
data from the 18 sites throughout the basin. This information is presented in Figure 12, with the 
computed average daily temperature plotted versus the day of the year. The solid line plotted in the 
figure represents a best-fit polynomial approximation of the data. A sixth-order polynomial of T as a 
function of the day of the year (N), was used to construct the curve shown. A lower order polynomial 
provides a good correlation but had a rather poor fit at the extremes (days 1-10 and 355-365). The 
sixth-order polynomial, given below (Equation 19), has a standard error of 1.66 and a correlation 
coefficient of 98 percent. 

T= 1.482681 + 2.93176X10-2 x N - 1.74772X10-3 x N2 + 4.44898X10-5 x N3 

- 2.77068X10-7 x N4 + 6.55373X10-10 x N5 - 5.36613X10-13 x N6 (19) 

Using T from the above expression and equation 11, DOsat (at mean sea-level elevation) was computed 
for each day (Figure 12). Because saturation concentrations are inversely proportional to temperature, 
they are lowest during the summer months when temperature is highest. The saturation concentration 
increases with decreasing temperature and measured DO likewise is highest during the coldest mondis. 
It can be seen from Figure 12 mat in the Sangamon Basin, on the average, the highest T and lowest 
DOsat occur in mid-July. The minimum DOsat plotted is 7.5 mg/1. Adjustments for elevation using 
equation 12 reduce the computed values of DOsat. The multiplier at T=20°C ranges from 0.975 at the 
highest elevation gage at Fisher to 0.983 at the lowest elevation gage near Oakford. The temperatures 
and thus DOsat values represent data taken during the day when temperatures would tend to be higher 
and DOsat lower than nighttime values. Diurnal temperature fluctuations recorded during the field 
study are typically about 2°C, (Figures 8 and 9). Over the 72-hour period, the largest difference 
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Figure 12. Average daily water temperature and corresponding DOsat 



between recorded temperatures at a site was 5.49°C, corresponding to a difference in DO sat of about 
0.8 mg/1 in this temperature range. 

Monthly average DO, DOsat, and D are plotted versus the month of the year for each of the 
eight gages in Figures 13-15. It may be observed from both the tabulated values and the graphs that 
upstream of Lake Decatur (gages 5570910 and 5572125), the trend in DO values closely follows the 
saturation concentration. This trend also occurs at the three largest drainage area gages (5573540, 
5573650, and 5573800). A greater departure from the saturation concentration may be observed in the 
data collected at the first three stations (gages 5573540, 5573650, and 5573800) located downstream of 
Lake Decatur Dam. At the gages upstream of Lake Decatur, the lowest monthly average DO (6.90 
mg/1) occurs in August at gage 5570910 (240 sq mi) and at gage 5572125 (573 sq mi) the lowest 
monthly DO (6.28 mg/l) occurs in July. The next three gages downstream of Lake Decatur (5573540, 
5573650, and 5573800) show the lowest average monthly DO values in September and October. The 
trend in monthly average DO values at the three gages with drainage areas in excess of 2,000 sq mi, 
more closely resembles the first two upstream gages, with lowest average DO occurring in June and 
July. Streamflow and water quality are modified by Lake Decatur. An investigation DO availability 
along the Sangamon from Lake Decatur to Petersburg is planned for a future study. 

Monthly statistics for the two gages within the study reach are quite similar. The largest 
standard deviation of DO data occurs in December at each gage: 2.4 and 1.7 mg/1 for 05570910 and 
5572125, respectively; and the smallest standard deviation occurs in July and August at these gages: 
0.54 and 0.80 mg/1 for 5570910 and 5572125, respectively. The largest variability in measured DO 
during any month (as measured by the standard deviation) occurs at the first three stations below Lake 
Decatur Dam. Considering all eight gages the standard deviation in DO values during any given 
month ranges from the lowest value of 0.54 mg/1 (Gage 5570910 in July) to 4.464 mg/1 (gage 5573540 
in January). The degree of influence of the time-of-sampling on the data variability was not explored; 
however, it is recommended for future research. 

The DO deficit, D, difference between saturation concentration (DOsat), and measured 
concentration (DO), is indicative of oxygen use and the ability of the stream to re-absorb oxygen. As 
noted earlier, actual DO values tend to follow the temperature-dependent trends of DOsat. 
Examination of trends in D gives some insight as to months in which there is greater imbalance 
between oxygen use and make-up. The largest monthly average D occurs in November or October for 
seven of the eight gages along the Sangamon, the one exception being gage 5573000 near Oakford 
(5094 sq mi) where the largest average D occurs in January. 

Similar statistics were developed from the data collected at the gages in the South Fork 
Sangamon and Salt Creek Basins. There are three gages in the South Fork Sangamon Basin where 
water quality data is collected, listed in Table 9. The lowest monthly average DO values are somewhat 
less than observed at the Sangamon River gages, with values in August ranging from 3.74 mg/1 at gage 
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Figure 13. Yearly variation of DO parameters 
for USGS AWQMN gages 5570910 and 5572125 
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Figure 14. Yearly variation of DO parameters for 
USGS AWQMN gages 5573540, 5573650, and 5573800 
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Figure 15. Yearly variation of DO parameters for 
USGS AWQMN gages 5576500, 5578000, and 5583000 
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55774500 to 5.67 mg/1 at gage 5576022. The highest monthly average D values are comparable to the 
Sangamon gages, occurring in October and November and ranging from 3.36 to 4.60 mg/1. Water 
quality data is collected at six gages in the Salt Creek Basin (Table 9). Two AWQMN stations are 
located on Kickapoo Creek in the Salt Creek Basin. Monthly statistics are provided for these stations 
in Tables 19 and 20 for comparison to the Sangamon River stations. Kickapoo Creek is rated by the 
IEPA (1990) as having full aquatic life use support, their highest rating. The drainage areas of the two 
Kickapoo Creek stations 5580000 and 5580500 are 227 and 306 sq mi which is within the range of 
drainage areas considered in the upper Sangamon Basin. Similar to the Sangamon River stations, the 
lowest average monthly DO occurs in August at both stations, 7.8 mg/1 at station 5580000 and 6.8 
mg/1 at station 5580500. The lowest, average-monthly DO values are in general slightly higher than 
those from gages along the Sangamon River. The range of lowest monthly average values is narrower 
for the Salt Creek Basin gages (6.8 to 7.99 mg/1) man along the Sangamon. From Figure 1 it may be 
observed mat mere are several wastewater treatment plant outfalls upstream of the gages in the South 
Fork Sangamon Basin whereas, with the exception of the Bloomington Waste Treatment Plant 
discharge, the effluent discharges in the Salt Creek Basin are comparatively small. The Salt Creek 
Basin gages are also located relatively further downstream of any effluent discharges man those in the 
Sangamon and South Fork Sangamon Basins. Overall, the average mondily DO values tabulated for 
the Sangamon River gages (Tables 11-18) lie between those computed for gages in the other sub-
basins. 

Summarizing, along the main Sangamon, the lowest average available DO tends to occur in the 
late summer, July-August, while the largest deficit (D) lags somewhat, occurring in the fall, October-
November. Thus on the basis of the average mondily, daytime DO, the most stressful or critical 
months for aquatic life are during the late summer. In general, the measured values of DO tend to 
exhibit the same trends as the DOsat computed from the measured water temperature. Seasonal 
variability in DO is considerably greater mat variations in DO in any given month for the eight gages. 
At the two gages in the study reach, upstream of Lake Decatur, temperature-dependent seasonal 
variability in DO is considerably greater man the measured diurnal fluctuations. Lowest DO and 
greatest D are observed at the first two gages downstream of Lake Decatur Dam. At some of me 
larger drainage area gages, average monthly DO greater than DOsat (negative average D) is found in 
April and May at gage 5573540 just below Lake Decatur Dam, in August at gage 5576500 below the 
confluence of the Sangamon and South Fork Sangamon Rivers, and from July-September at gage 
5573000 below the confluence of the Sangamon River and Salt Creek. 

Variation of Oxygen Deficit with Discharge 
The availability of DO may be affected by the discharge in several ways. For example, at 

higher discharges more water is available to dilute agents mat create an oxygen demand; also the 
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reaerative capacity of a stream is a function of flow velocity and depth, which vary with discharge. 
The variation of DO with discharge was investigated in terms of the oxygen deficit. The oxygen 
deficit parameter was used to filter out some of the temperature dependence of oxygen concentrations 
imposed by the saturation concentration limit. Inspection of Tables 11-18 shows that the number of 
datapoints available for any given month at the eight stations ranges from 3 to 17, with most months 
having less man 10 datapoints. To conduct a meaningful statistical analysis of the relationship between 
oxygen deficit (D) and discharge (Q), the data was grouped into four seasons. Each season comprises 
three inclusive months of data that were grouped on the basis of similarity in T, Q, and DO: season 1 
(December-February), season 2 (March-May), season 3 (June-August), and season 4 (September-
November). 

Plots of D versus the logarithm of Q were developed for each season at each gage. The 
logarithm of Q was used because Q values tend to be two to three orders of magnitude larger than D 
values. Datapoints plotted outside of the general pattern of data were dropped. While there was 
considerable scatter in the data, in part a product of the time-of-sampling, trends were observed. A 
linear regression analysis was performed for the seasonally grouped data at each gage. The linear 
regression coefficients were determined using the least-squares criteria. The computed coefficients, the 
simple regression coefficient, and the standard error of the estimate are presented for the eight gages in 
Tables 21 and 22, as well as the average and standard deviations of the data set used. In Table 21, the 
regression statistics are listed by gage for seasons 1-4 so that the degree of dependence of D on Q from 
season to season at a particular gage may be readily observed. Table 22 presents the same information 
in a different order: the information is grouped by season and the statistics for each gage are presented 
in order of increasing drainage areas, thus, providing a streamwise perspective of the seasonal average 
values of D and the relationship between D and Q. 

The values of the simple correlation coefficients for the regression of D on log Q are for the 
most part not statistically significant, in part attributable to the inherent variability in the data discussed 
above. However, some comparative observations may be made with regard to seasonal trends as well 
as along the river course. The correlation between D and log Q is not consistently positive or negative 
(sign of r in Tables 21 and 22). A negative correlation implies mat as discharge increases the oxygen 
deficit decreases, a positive correlation implies that as discharge increases, the oxygen deficit also 
increases. The two gages below Decatur Dam (5573540 and 5573650) consistently show negative 
correlation of D with Q. This may be related to algal production of DO in the lake, which is carried 
downstream by the spillway discharge. While the two largest drainage area gages, Sangamon River at 
Petersburg and Near Oakford (5578000 and 5583000), consistently show a positive correlation. The 
trend of increasing D with Q at the larger drainage area gages may be due to the cumulative effect of 
oxygen depletion as the various major tributaries merge. Referring to Table 22, several observations 
may be made concerning seasonal patterns along the Sangamon. During the winter, season 1, the 

53 



Table 21 . Main Sangamon River Dissolved Oxygen Deficit 
Regression Coefficents and Descriptive Statistics 

USGS 
gage 

5570910 

5572125 

5573540 

5573650 

5573800 

5576500 

5578000 

5583000 

Drainage 
area 

(sq mi) 
240 

573 

938 

1054 

1264 

2618 

3063 

5094 

Season 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

a 

3.038 
-1.301 
1.372 
2.965 

0.828 
-0.201 
2.446 
3.283 

4.350 
1.544 
6.051 
8.037 

6.962 
5.680 
6.396 
10.487 

4.653 
1.727 
0.427 
8.059 

2.281 
-0.861 
-7.988 
6.389 

-0.595 
-2.447 
-3.629 
0.513 

-0.759 
-3.027 
-9.697 
-3.699 

D = 
b 

-0.820 
0.815 
-0.069 
-6.852 

0.107 
0.341 
-0.343 
-0.585 

-1.711 
-0.603 
-2.132 
-2.616 

-2.022 
-1.400 
-1.531 
-2.975 

-1.131 
-0.157 
0.472 
-2.337 

-0.207 
0.629 
3.012 
-1.453 

0.477 
0.972 
1.534 
0.414 

0.661 
1.020 
2.890 
1.308 

= a + b log Q 
r 

-0.309 
0.397 
-0.064 
-0.409 

0.099 
0.216 
-0.289 
-0.381 

-0.629 
-0.563 
-0.856 
-0.803 

-0.601 
-0.648 
-0.593 
-0.830 

-0.486 
-0.062 
0.198 
-0.571 

-0.120 
0.310 
0.528 
-0.443 

0.225 
0.467 
0.700 
0.261 

0.276 
0.397 
0.667 
0.424 

SE 

1.869 
0.768 
0.847 
1.552 

0.858 
0.675 
0.972 
1.525 

2.102 
0.767 
1.419 
2.333 

1.803 
0.761 
1.415 
1.618 

1.402 
1.106 
1.949 
1.901 

1.351 
0.910 
2.417 
1.607 

0.927 
0.927 
0.991 
1.061 

1.110 
0.901 
1.477 
1.280 

N 

20 
26 
21 
16 

19 
24 
26 
20 

28 
32 
37 
26 

27 
29 
30 
24 

26 
34 
27 
22 

20 
33 
23 
20 

15 
23 
19 
15 

23 
28 
31 
30 

D. 
Avg 

1.458 
0.673 
1.251 
2.262 

0.958 
0.720 
1.701 
2.605 

0.982 
-0.076 
1.817 
5.730 

2.125 
1.438 
2.616 
4.059 

1.727 
1.323 
1.149 
3.217 

1.653 
1.192 
0.573 
2.910 

0.966 
0.964 
0.967 
1.659 

1.398 
0.835 
-0.484 
0.048 

mg/l 
Std 

1.913 
0.820 
0.827 
1.643 

0.837 
0.676 
0.995 
1.605 

2.653 
0.913 
2.708 
3.830 

2.211 
0.981 
1.727 
2.837 

1.572 
1.091 
1.950 
2.260 

1.324 
0.942 
2.780 
1.745 

0.917 
1.024 
1.349 
1.059 

1.128 
0.963 
1.948 
1.389 

Notes: 
D= oxygen deficit, (DOsat-DO), mg/l 

Season 1 = Dec, Jan, Feb Q= discharge, cfs 
Season 2 = Mar, Apr, May r= simple correlation coefficient 
Season 3 = Jun, Jul, Aug SE= standard error of estimate 
Season 4 = Sep, Oct, Nov Avg = arithmetic average 

Std= standard deviation of the data 
N= number of data points 
DOsat= saturation concentration of dissolved oxygen, mg/l 
DO= dissolved oxygen concentration, mg/l 
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Table 22. Main Sangamon River Dissolved Oxygen Deficit 
Variation of Regression Coefficients with Drainage Area 

USGS 
gage 

5570910 
5572125 
5573540 
5573650 
5573800 
5576500 
5578000 
5583000 

5570910 
5572125 
5573540 
5573650 
5573800 
5576500 
5578000 
5583000 

5570910 
. 5572125 

5573540 
5573650 
5573800 
5576500 
5578000 
5583000 

5570910 
5572125 
5573540 
5573650 
5573800 
5576500 
5578000 
5583000 

Drainage 
area 

(sq mi) 
240 
573 
938 
1054 
1264 
2618 
3063 
5094 

240 
573 
938 
1054 
1264 
2618 
3063 
5094 

240 
573 
938 
1054 
1264 
2618 
3063 
5094 

240 
573 
938 
1054 
1264 
2618 
3063 
5094 

Season 

2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 
4 
4 
4 

a 

3.038 
0.828 
4.350 
6.962 
4.653 
2.281 
-0.595 
-0.759 

-1.301 
-0.201 
1.544 
5.680 
1.727 
-0.861 
-2.447 
-3.027 

1.372 
2.446 
6.051 
6.396 
0.427 
-7.988 
-3.629 
-9.697 

2.965 
3.283 
8.037 
10.487 
8.059 
6.389 
0.513 
-3.699 

D = 
b 

-0.820 
0.107 
-1.711 
-2.022 
-1.131 
-0.207 
0.477 
0.661 

0.815 
0.341 
-0.603 
-1.400 
-0.157 
0.629 
0.972 
1.020 

-0.069 
-0.343 
-2.132 
-1.531 
0.472 
3.012 
1.534 
2.890 

-0.852 
^0.585 
-2.616 
-2.975 
-2.337 
-1.453 
0.414 
1.308 

a + b log 
r 

-0.309 
0.099 
-0.629 
-0.601 
-0.486 
-0.120 
0.225 
0.276 

0.397 
0.216 
-0.563 
-0.648 
-0.062 
0.310 
0.467 
0.397 

-0.064 
-0.289 
-0.856 
-0.593 
0.198 
0.528 
0.700 
0.667 

-0.409 
-0.381 
-0.803 
-0.830 
-0.571 
-0.443 
0.261 
0.424 

Q 
SE 

1.869 
0.858 
2.102 
1.803 
1.402 
1.351 
0.927 
1.110 

0.768 
0.675 
0.767 
0.761 
1.106 
0.910 
0.927 
0.901 

0.847 
0.972 
1.419 
1.415 
1.949 
2.417 
0.991 
1.477 

1.552 
1.525 
2.333 
1.618 
1.901 
1.607 
1.061 
1.280 

N 

20 
19 
28 
27 
26 
20 
15 
23 

26 
24 
32 
29 
34 
33 
23 
28 

21 
26 
37 
30 
27 
23 
19 
31 

16 
20 
26 
24 
22 
20 
15 
30 

D, 
Avg 

1.458 
0.958 
0.982 
2.125 
1.727 
1.653 
0.966 
1.398 

0.673 
0.720 
-0.076 
1.438 
1.323 
1.192 
0.964 
0.835 

1.251 
1.701 
1.817 
2.616 
1.149 
0.573 
0.967 
-0.484 

2.262 
2.605 
5.730 
4.059 
3.217 
2.910 
1.659 
0.048 

mg/l 
Std 

1.913 
0.837 
2.653 
2.211 
1.572 
1.324 
0.917 
1.128 

0.820 
0.676 
0.913 
0.981 
1.091 
0.942 
1.024 
0.963 • 

0.827 
0.995 
2.708 
1.727 
1.950 
2.780 
1.349 
1.948 

1.643 
1.605 
3.830 
2.837 
2.260 
1.745 
1.059 
1.389 

Notes: 
D= oxygen deficit, (DOsat-DO), mg/l 

Season 1 = Dec, Jan, Feb Q= discharge, cfs 
Season 2 = Mar, Apr, May r= simple correlation coefficient 
Season 3 = Jun, Jul, Aug SE= standard error of estimate 
Season 4 = Sep Oct, Nov Avg = arithmetic average 

Std= standard deviation of the data 
N= number of data points 
DOsat= saturation concentration of dissolved oxygen, mg/l 
DO= dissolved oxygen concentration, mg/l 
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pattern is for D to decrease with increasing Q up to gage 5578000. Rapid DO depleiton occurs in 
stream water under winter ice conditions. Runoff from precipitation events has higher DO, thus DO 
levels rise (and D decreases) with increasing discharge during the winter. During the spring, season 2, 
D increases with Q except for the three gages following the dam and effluent outfall. A relatively high 
negative correlation exists at the first two gages downstream of the dam and the trend reverses at the 
next gage 5573800 where the correlation is negative but very small. Season 3 includes the summer 
months with lowest DOsat, where D decreases with increasing Q for the four smaller drainage area 
gages but increases with Q for the four largest drainage area gages. It may be observed from the 7-day 
10-year low flows shown on the map in Figure 1 that during very low streamflow periods, a significant 
portion of the flow downstream of Decatur's effluent outfall is treated waste water. During the fall, 
season 4, mere is a clear correlation between D and Q: D decreases as Q increases except the two 
gages furthest downstream. 

The strongest correlation between D and log Q are found at gage 5573540, the first gage 
downstream of Lake Decatur Dam, and 5573650, which follows it and is downstream of Decatur's 
water treatment plant outfall. On the average, the two furthest upstream stations (those within the 
study reach) have the smallest simple correlation coefficients, or least correlation between D and log 
Q. For the eight stations, the magnitude of the positive, (DO less than DOsat) mean D values 
computed ranges from 0.048 to 5.730 mg/1, 75 percent are less than 2 mg/1. Of the 25 percent of the 
mean D values over 2 mg/1, half are found at the two gages following the dam and the remainder occur 
in the fall (season 4). Thus with the exception of the reach below the dam and effluent outfall, the 
daytime oxygen levels on the average are less man 2 mg/1 below the saturation concentration. In the 
study area DO tends to be near saturation concentration (DOsat), and there may be little opportunity 
for variations in discharge to produce definable differences in DO (or D). The strongest correlation 
coefficients are found at gage 5573540 (1.2 miles below the dam and approximately 2.5 miles upstream 
of Decatur's effluent outfall) and 5573650 (approximately 9.6 miles downstream of Decatur's effluent 
outfall). The next gage (5773800), about 18 miles further downstream (approximately 27.9 miles 
downstream of the effluent outfall), may be affected by these facilities, particularly during the low-flow 
season. Further downstream Springfield also has a large effluent discharge; however, the nearest 
AWQMN gage (5578000) is more than 28 miles downstream from the outfall and the gage data shows 
no apparent impact on DO levels. Furthermore, the Sangamon has a considerably larger drainage area 
at Springfield than at Decatur. The presence of Lake Decatur has a significant impact on downstream 
water quality. Algal production is enhanced, reaeration is effected by flow over the dam, and seasonal 
patterns in water quality are effected by the fall and spring lake turnover. Furthermore, the relative 
influence of these various components may vary from time to time and little correlation between DO 
(or D) and Q may be discernible. A more in-depth discussion and investigation of the impact of the 
dam and effluent discharges below Lake Decatur Dam are planned for the next phase of this study. In 

56 



general, the largest mean D value at any gage occurs during the fall (season 4). At most gages, the 
strongest correlation between D and Q tends to occur during the summer or fall (seasons 3 and 4, 
respectively), when flows and DOsat are lowest and D is largest. Because there are several factors 
influencing DO along the river, it is not atypical that a strong correlation between DO (or D) and Q 
cannot be observed. 

Dissolved Oxygen Requirements 
A DO level of 5 mg/1 is commonly seen in the literature as a minimum requirement to support 

a diverse fish population. Various fish species have differing DO needs that also vary with life stage. 
Cold-water fish tend to have higher DO requirements (6 to 7mg/l), while warm-water fish are more 
tolerant and tend to survive lower DO levels (4 to 5 mg/1) (Viessman and Hammer, 1985). DO needs 
are also related to temperature. Wiley et al. (1987) proposed temperature-dependent minimum oxygen 
concentrations for the maintence of selected fish species common to Illinois. The temperature-
dependent minimum DO equations were developed by Wiley et al. on the basis of laboratory 
determination of lethal levels of DO. The State of Illinois Water Pollution Control Rules, as amended 
through April 24, 1990, establish General Use Water Quality Standards, Public and Food Processing 
Water Supply Standards, and Secondary Contact and Indigenous Aquatic Life Standards for DO. The 
general use standards, more stringent than the secondary contact standards, are applicable to all 
portions of the Sangamon Basin with the exception of the Sangamon River at Decatur's water supply 
intakes where more stringent public water supply standards apply. 

The minimum DO concentration levels proposed by Wiley et al. (1987) are given in Table 23 
for several fish species indigenous to the Sangamon Basin. These equations indicate lethal levels and 
do not imply long-term maintenance levels. Using the average monthly temperatures determined from 
Equation 19, minimum DO concentrations were computed from the equations in Table 23, and are 
presented in Table 24. The functions and tabulated results show DO requirements increasing with 
increasing temperature, the highest value calculated from the functions being' 4.96 mg/1. These 
equations were developed on the basis of laboratory data and do not represent a recognized standard. 

The standards established by the Illinois Pollution Control Board are somewhat higher man the 
results of the equations. Section 302.206 of the Pollution Control Rules provides that DO shall not.be 
less than 6.0 mg/1 during at least 16 hours of any 24-hour period, nor less man 5.0 mg/1 at any time. 
These regulations address a time-average condition of DO needed to support the aquatic community. 
To evaluate compliance with these rules, the diurnal variation of DO must be considered. 

Discussion of Findings 
The AWQMN water quality data provide a historical perspective of the water quality 

conditions along the stream network. Typical (average) DO concentrations in the basin may be 

5.7 
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Table 23. Minimum Oxygen Concentrations as a Function of Temperature 
(after Wiley et al. ,1987) 

Species 

Smallmouth bass 

Golden redhorse 

Orangethroat darter 

Channel catfish 

Horneyhead chub 

Longear sunfish 

Common carp 

Bluntnose minnow 

Minimum DO, mg/l 

0.73 
0.40T 

0.9 
0.16T 

3.0 
0.4 

1.16T 
0.22 

1.74T 
0.301 

1.88T 

2.0 

2.0 

Note: T= temperature in degrees C 

58 



Table 24. Minimum Oxygen Concentrations for Selected Fish Species 
Calculated from Equations Proposed by Wiley et al., 1987 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Avg. monthly 
temp., C 

1.61 
2.36 
5.37 
10.85 
17.26 
22.59 
25.14 
24.11 
19.83 
13.63 
7.47 
3.17 

Minimum DO. concentration, 
Smallmouth 

bass 

0.57 
0.75' 
1.36 
2.28 
3.20 
3.89 
4.21 
4.08 
3.54 
2.69 
1.74 

. 0.93 

Channel 
catfish 

1.40 
1.64 
2.27 
3.01 
3.62 
4.04 
4.21 
4.14 
3.83 
3.30 
2.59 
1.84 

Longear 
sunfish 

2.17 
2.44 
3.12 
3.85 
4.43 
4.80 
4.96 
4.90 
4.62 
4.13 
3.44 
2.66 

mg/l 

Bluntnose 
minnow 

2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

Note: 
Avg. monthly temperatures calculated from a polynomial fit to average 
daily temperatures recorded at 18 gages in the Sangamon Basin. 
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determined as well as correlation between Q and DO, and the representativeness of the field-measured 
data may be evaluated. The field data provided the critical information defining the diurnal variations 
in DO. 

The field measurements were conducted during August and September when DO and Q tend to 
be lowest. The discharges measured at the three sites during event 1 and event 2 correspond to an 
annual flow durations of 56 and 67 percent, respectively. These flows are less than the long-term 
median flows for these months (see Table 2). During the field measurements, average DO 
concentration ranged between 6.60 and 8.71 mg/1, with a recorded minimum of 6.17 and maximum of 
10.04. Referring to two AWQMN gages in the study reach (Tables 11 and 12), the field values are 
comparable to the long-term average DO but are not as low as recorded minimum DO concentrations. 
From the field data (Figures 4 and 5), it may be surmised that when the DO follows the classic 
sinusoidal pattern, typically the peak DO occurs between 3:00 and 9:00 p.m. as algal activity creates 
supersaturation conditions during the daylight hours; DO concentrations fall below DOsat sometime 
after dark (usually between 5:00 and 11:00 p.m.) and minimum DO most frequently occurs around 
8:00 or 9:00 a.m. On the basis of the field data the difference between the measured peak and 
minimum in any 24-hour period was typically on the order of 1.0 to 1.7 mg/1 during the two events; 
over the entire 72-hour period the maximum difference at any site was 2.91 mg/1. On the basis of 
these observations and the observation that the AWQMN data is most often collected between 10:00 
a.m. and 2:00 p.m., generally the AWQMN data may not include either the peak or the minimum DO. 
During the two events monitored, DO concentrations were above the minimums established by the 
IEPA. 

Examination of the data summarized for AWQMN gages 5570910 and 5572125 (Tables 11 and 
12), with respect to the IEPA standards shows that the DO may fall below the standards set by the 
IEPA. The minimum DO recorded was 5.6 mg/1 in August at 5570910 and 3.5 mg/1 in July at 
5572125. The lowest monthly averages (6.9 and 6.3 mg/1) also occurred in August and July, 
respectively. One standard deviation below the average (from Tables 11 and 12) gives concentration 
levels of 5.8 and 4.9 mg/1. If nighttime minimums fall 1.0 mg/1 or more below diese values, they are 
clearly less man the IEPA standards and could reach lethal levels. For the majority of the time, 
however, DO concentrations were in compliance. 

These DO levels may be compared to the stations on Kickapoo Creek (5580000 and 5580500) 
which has the highest use assessment rating given by the IEPA. At station 5580000 the minimum DO 
of 6.1 mg/1 was recorded in July; at station 5580500 the minimum DO of 4.8 mg/1 was recorded in 
July as well. A DO level of 4.8 mg/1 is already in violation of the IEPA standard and nighttime 
decrease in DO greater than 1.1 at stations 5580000 would indicate violation of the standard at the 
station also. Subtracting the standard deviation from the lowest mondily averages, which occur in 
August at both stations gives DO levels of 6.8 and 5.6 mg/1 at 5580000 and 5580500, respectively. 
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Water quality, as indicated by DO, appears somewhat better along Kickapoo Creek than along the 
upper Sangamon. However, violations of the IEPA standards may still occur. 

Integration of Basinwide Flow Model and DO Information 
Along the study reach, the main Sangamon River up to Lake Decatur, water quality as 

measured by DO levels is fairly good. There is some indication that IEPA standards may occasionally 
be violated, particularly in July and August. During July and August flows are comparable to 
discharges having annual flow durations in the range of 50 to 70 percent. At these flow levels, the 
WUA calculations for juvenile and adult life stages (Figures 2 and 3) of four selected fish species 
(smallmouth bass, channel catfish, longear sunfish, and bluntnose minnow) indicate that hydraulic 
conditions provide relatively little habitat along the study reach except for the adult bass, catfish, and 
sunfish along the larger downstream portion of thereach as illustrated by the habitat response curves 
(WUA vs. F) for the 600 sq mi drainage area (Figures 2 and 3). The availability of habitat for other 
species such as bluegill, which are prominent along thestudy reach, could also be examined. 

The flow and habitat model could be used to generate the WUA corresponding to monthly or 
seasonal flow durations to provide a more detailed evaluation of the stream systems. However, habitat 
response curves plotted as functions of annual flow duration (F), may be readily interpreted for various 
seasonal or monthly discharges of interest as demonstrated in this report. As DO availability varies 
throughout the year, depending on temperature, an evaluation of the WUA for flows typical of a month 
or season will illustrate if a flow, DO conditions in the stream segment, or both are limiting for a 
particular species. The basinwide model simulates the hydraulic data needed to compute the WUA 
using the preference curves developed by biologists and fisheries experts. The resulting WUA curves 
and hydrologic data identifying typical seasonal flows may be used by these experts to identify critical 
time periods in the developmental stages for target fish species in a basin. 

SUMMARY AND CONCLUSIONS 
The integration of water quality data with a basinwide flow and habitat model is demonstrated 

in an evaluation of the habitat potential of the upper Sangamon River. The basinwide flow and habitat 
model used provides information on the suitability of the hydraulic conditions along the stream 
network, over a range of discharge conditions, for habitation by various fish species. Preference 
curves for depth, velocity, and substrate for selected fish species are used in the flow and habitat model 
to assess the quantity of suitable habitat. The habitat assessment portion of the model is based on the 
Instream Flow Incremental Methodology proposed by the Instream Flow Group of the U.S. Fish and 
Wildlife Service. Historical data for DO from water quality monitoring stations were analyzed to 
evaluate the availability of DO along the main Sangamon River. . The focus of the study was the 
Sangamon River up to Lake Decatur. However, data from stations throughout the Sangamon basin 
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were reviewed to provide a basis for judging the representativeness of the stations in the study area. 
Diurnal variations of DO as well as other water quality parameters were measured at three field sites 
located in the upper Sangamon River. Typical DO levels were compared to IEPA standards for 
support of suitable aquatic habitat. The study demonstrates a methodology for evaluating if flow 
and/or water quality conditions may be limiting factors for a stream to support various aquatic life 
forms. 

The results of the study indicate that water quality along the upper Sangamon is generally 
good. The greatest variation in DO over the year is attributable to the temperature influence on DO 
saturation concentration. DO levels along the upper Sangamon are on the average slightly lower than 
found along other streams in the basin mat receive less effluent loading. DO levels in streams mat 
receive relatively small quantities of effluent discharge may still fall below IEPA standards, likely due 
to constituents carried to the streams by agricultural runoff. On the basis of data collected at water 
quality monitoring stations above Lake Decatur Dam, the average monthly DO levels are typically not 
more man 3 mg/1 below saturation concentration and typically above the current IEPA minimum 
standard of 5 mg/1 for DO. However, me lowest (minimum) DO levels measured have in me past 
fallen below me 5 mg/1 standard. The historical water quality data is collected during me day, when 
DO levels are higher due to algal activity. Field data collected over two 72-hour periods at three sites 
indicates mat while diurnal variations are not extreme, during summer mondis when DO is already 
lowest, decreases in DO during the night may cause DO levels to fall below IEPA standards more 
frequently than indicated by the historical data. In addition to the minimum DO standard of 5 mg/1, 
the IEPA standards also include the requirement that DO shall not be less than 6 mg/1 for 16 hours of 
any 24-hour period. At the two water quality monitoring stations above Lake Decatur, the mondily 
average DO computed from the data is very close to 6 mg/1 in July or August. 

Low flows typical of summer conditions do not provide an abundance of suitable habitat for 
the four fish species considered along the upper portion of the river (drainage areas less man about 500 
sq mi). The four fish species considered were bluntnose minnow, channel catfish, longear sunfish, and 
smallmouth bass. Thus in terms of hydraulic conditions (discharge) and water quality (DO levels), me 
availability of suitable habitat is limited during summer mondis (particularly July and August). Other 
indigenous fish species, such as bluegill, could be targeted for consideration as habitat needs vary from 
species to species. Increases in effluent loading or maintenance of lower flows due to diversion could 
extend the period of time mat suitable habitat is limited. 

Review of the water quality station data at locations downstream of Lake Decatur and 
downstream of Decatur's wastewater treatment plant clearly shows mat DO levels are effected by these 
facilities. Investigation of DO and habitat conditions in me Sangamon River between L 
and Petersburg is planned for a future study. 

62 



The basinwide flow and habitat model provides a means to evaluate the habitat potential of any 
stream in the network. The model facilitates the assessment in terms of the basin's hydrologic and 
hydraulic conditions. The present study demonstrates how water quality data defining DO levels may 
be integrated with the habitat model to identify locations where water quality could be the limiting 
condition given the physical and hydrologic constraints of a particular basin. The detailed field data 
collected may be used with a water quality model to evaluate diurnal variations in DO for different 
oxygen demand conditions, possibly arising from changes in effluent loads. 
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