1SWS CR 512 Loan c.2 ILLINCIS STATE WATER SURVEY LIBRARY COPY

DE 06'02

REDUCTION IN PEAK FLOWS AND IMPROVEMENT IN WATER QUALITY IN THE ILLINOIS WATERWAY DOWNSTREAM OF LOCKPORT DUE TO IMPLEMENTATION OF PHASES I AND II OF TARP

Volume 1: Hydraulics and Hydrology

by Ali **Durgunoğlu,** Professional Scientist Krishan P. Singh, Principal Scientist

Prepared for the Metropolitan Water Reclamation District of Greater Chicago

> Illinois State Water Survey 2204 Griffith Drive Champaign, Illinois 61820-7495

> > July 1991

12:51. 10:11.2

CONTENTS

Page

Introduction	1
TARP Phase I	
TARP Phase II	
Outline	
Acknowledgments	6
Analysis and Adjustment of Lockport Flows	
Regression Equations	7
Adjustment of Historical Lockport Flows	9
Illinois River Flow Model	
Flow Imbalances in the Illinois River Basin	
Estimation of Flows from Ungaged Areas	
and Flow Correction Coefficients	
Structure and Development of the Illinois River Flow Model	15
Model Parameters and Simulation Results	
Effect of TARP on Lockport Flows	22
Effect of TARP on Flows Downstream of Lockport	42
Analysis of Flow Durations	
Analysis of Peak Flows	45
Analysis of Maximum Annual and Partial-Duration Series	50
Summary	
References	61

REDUCTION IN PEAK FLOWS AND IMPROVEMENTS IN WATER QUALITY IN THE ILLINOIS WATERWAY DOWNSTREAM OF LOCKPORT DUE TO THE IMPLEMENTATION OF PHASES I AND II OF TARP Volume 1: Hydraulics and Hydrology

by Ali **Durgunoğlu** and Krishan P. Singh

INTRODUCTION

The city of Chicago began building its first sewers in 1850, mainly to drain stormwater away from the dirt roads common in those days. After the Chicago Fire of 1871, new brick sewers were constructed to replace the old wooden conduits. By the late 19th century the stormwater sewers had been turned into combined sewers, carrying both storm runoff and sanitary sewage directly into the rivers and into Lake Michigan. In the early 1900s, the construction of sewage treatment plants (STPs) began. By 1930, Chicago and its suburbs were almost completely developed, covering an area of 375 square miles. New intercepting sewers were constructed to capture the combined sewage during dry weather, but the interceptors and the plant capacities were exceeded during high runoff periods. Although separate sewer systems have been constructed since 1930 for storm runoff and sanitary sewage, the combined sewers built before 1930 still remain. Because of these combined sewers and the increasing concentration of people and industries within the 375-squaremile metropolitan area, about 100 spills of raw sewage and stormwater enter the Chicagoland waterways every year, causing major pollution problems (Robison, 1986). The more intense storms cause residential and business flooding, and may even cause backflows into Lake Michigan.

The Chicago Tunnel and Reservoir Plan (TARP) was conceived by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC), formerly the Metropolitan Sanitary District of Greater Chicago (MSDGC), primarily to eliminate the pollution and flooding caused by the combined sewer overflows (CSOs) to the Chicagoland waterways. To reduce CSOs into the waterways, runoff from rainfall will be stored in tunnels (ranging in size from 9 to 33 feet in diameter) and reservoirs, and then gradually passed through existing water reclamation plants (WRPs) before being discharged to the waterways. The benefits of TARP have been considered for the 375-square-mile project area, but the propagation of these benefits to the Illinois Waterway downstream of Lockport to its confluence with the Mississippi River has not yet been investigated.

This study was performed to investigate the reduction in peak flow and improvement in water quality with TARP Phases I and II, and to investigate the propagation of these effects downstream of Lockport to Meredosia. The reduced peak flows and stages will provide some relief from severe flooding, thus reducing flood damage and posing less danger to the levees along the river. The runoff from the urbanized Chicago area will be treated at the water reclamation plants before its release to the waterways. This study also investigated the potential improvement in water quality of the Illinois River as a result of treatment of practically all CSOs as envisioned with TARP. TARP will also significantly reduce the sedimentation in the waterways.

TARP is one of the largest public works projects ever undertaken at a cost of about \$3.67 billion (in 1991 dollars). TARP has the following goals: 1) protect water quality in Lake Michigan, 2) improve water quality in the Chicago and Illinois Waterways, and 3) reduce urban flooding to a greater extent. Because of the immensity of the overall project, TARP was designed in two phases (figure 1). Phase I, at a cost of \$2.51 billion, will primarily control pollution using tunnels, shafts, and pumps; and Phase II, at a cost of \$1.16 billion, will provide for flood control by using additional tunnels and storage reservoirs. Within the service area,

Figure 1. Components of Phases I and II of TARP (Courtesy of MWRDGC)

TARP was subdivided into four separate subsystems: Mainstream, Des Plaines, Calumet, and O'Hare (or Upper Des Plaines). The general location of TARP service area and the Illinois Waterway are shown in figure 2.

TARP Phase I

TARP Phase I will capture CSOs from the 375-square-mile service area, containing about 13,500 miles of sewers (U.S. Army Corps of Engineers (COE), 1986; MWRDGC personal communication, 1989). The components of Phase I consist of collecting structures, drop shafts, tunnels, and pumping stations. The drop shafts range in diameter from 4 to 17 feet, depending on the required inflow capacity. The tunnels range in diameter from 9 to 33 feet and are bored 150 to 350 feet below ground. Of Phase I's 109 miles of completed and proposed tunnels, the largest is the Mainstream Tunnel, which conveys the combined sewer flows to the Mainstream pumping station located at the end of the tunnel in Hodgkins, Illinois. The pumping station operates at a dewatering rate that allows a full tunnel to be emptied within two to three days (COE, 1986). The Mainstream System has 40.3 miles of tunnels, of which 31.2 miles have been completed (MWRDGC, 1990). The Des Plaines System has 25.8 miles of tunnels, of which 3.5 miles have been completed and 13.4 miles are under construction (Ibid.). The Des Plaines System is also dewatered by the Mainstream pumping station. The Calumet System has 36.3 miles of tunnels, of which 9.2 miles have been completed (Ibid.). The Calumet pumping station, located at the Calumet Water Reclamation Plant in Chicago, was designed to handle all Phase I Calumet System discharges. When its six pumps are operational, the Calumet pumping station will have a capacity of 535 cubic feet per second (cfs), which can dewater the Calumet System in two days (COE, 1986). Phase I of the O'Hare System has been completed and consists of 6.6 miles of tunnels.

To summarize, TARP Phase I consists of 109 miles of tunnels, of which 75.4 miles have been completed or under construction, and 33.6 miles remain to be constructed. Upon completion, TARP Phase I will have 6,815 acre-feet of tunnel storage capacity (MWRDGC, 1987): Mainstream System = 3,697 acre-feet, Des Plaines System = 1,267 acre-feet, Calumet System = 1,638 acre-feet, and O'Hare System = 213 acre-feet. According to the latest project status there are minor updates in those tunnel capacities (MWRDGC personal communication, 1991): Mainstream System = 3,170 acre-ft, Des Plaines System = 1,206 acre-ft, and

Figure 2. The general location of TARP service area and the Illinois Waterway

Calumet System = 1,667 acre-ft. Previous capacity values were used in the simulations because the updated information was not yet available.

TARP Phase II

TARP Phase II was initially planned to consist of additional conveyance tunnels (Mainstream and Calumet Systems), an on-line reservoir, and three terminal reservoirs located at the downstream ends of the Mainstream/Des Plaines, Calumet, and O'Hare tunnel systems. The terminal reservoirs will capture more CSO volume for flood control. The Mainstream/Des Plaines and Calumet reservoirs will be located in the McCook and Thornton quarries, respectively. Both quarries are still being mined by their owners, but MWRDGC has begun acquiring land. The storage capacities proposed by the District for the McCook, Thornton, and O'Hare reservoirs are 83,190, 40,840, and 1,600 acre-feet, respectively. However, a COE study (Chicago Underflow Plan (CUP)) has recommended significantly reduced storage capacities for TARP Phase II reservoirs (COE, 1986).

The CUP recommendation for the McCook reservoir involves constructing a 32,100-acre-foot reservoir that will provide 30,100 and 2,000 acre-feet of flood storage for the Mainstream and the Des Plaines Systems, respectively. The CUP recommendation for the Thornton reservoir and the O'Hare System are 14,600 and 1,1050 acre-feet of reservoir storage, respectively. Therefore, the total reservoir capacity proposed by MWRDGC (125,630 acre-feet) is reduced to 47,750 acre-feet. In addition to the reservoir storage, there will be 2,342 acre-feet of storage due to 21.5 miles of Phase II tunnels. The Mainstream and Calumet Systems will have 17.3 miles (1,984 acre-feet) and 4.2 miles (358 acre-feet) of Phase II tunnels, respectively.

Outline

The main emphasis of this study was to investigate the propagation and attenuation of the benefits of TARP for the Illinois Waterway downstream of Lockport. This area is significant since the basin of this waterway covers almost half of Illinois and affects about 9 million people.

The next section explains the compilation and adjustment of Lockport flows, which were collected from different sources. Successive sections then explain the model development and parameter estimation procedures for the Illinois River Flow Model. This model was used to analyze the hydrologic impacts of TARP downstream of Lockport by simulating and comparing the flows in the Illinois Waterway with and without TARP operation. The waterway was divided into three reaches with control stations at Lockport, Marseilles, Kingston Mines, and Meredosia. The flows at Lockport and other major tributaries were input into the model.

The effects of different TARP operations on the flows at Lockport, (the most upstream input to the Illinois River Flow Model) were simulated by using a storage routing algorithm. These effects are explained in detail following the section on the Illinois River Flow Model. A separate section presents the statistics of these effects on the flows and their variability at Lockport and downstream of Lockport.

Acknowledgments

This study was jointly supported by the Metropolitan Water Reclamation District of Greater Chicago and the Illinois State Water Survey. John Variakojis of the Water Reclamation District served in a liaison capacity during this study. This report was prepared under the general direction of Richard G. Semonin (Chief) and John M. Shafer (Head of Hydrology Division), Illinois State Water Survey. More than 30 years of Lockport flow data, obtained from the U.S. Army Corps of Engineers, were entered into computer files by Olga Fishman and Irina Kosinovsky. Roman Waupotitsch prepared the computer programs for the Illinois River Flow* Model, and assisted in the generation of most of the tables and graphics. Eva Kingston edited the report, and David Cox helped with the graphics.

ANALYSIS AND ADJUSTMENT OF LOCKPORT FLOWS

The daily flows at Lockport are one of the main inputs into the Des Plaines River, which is included in the Illinois Waterway. The flows at Lockport were reported by MWRDGC until 1984. Since then the flows at Lockport have been recorded at Romeoville (5.2 miles upstream of Lockport) by an acoustic velocity meter (AVM). The flows at Lockport are significant for the State of Illinois because this station provides the flow data essential to manage the allowed diversion of Lake Michigan water (3,200 cfs) for water supply, navigation, and effluent dilution purposes.

To eliminate the bias that might stem from using flow data from different sources, adjustments were made in the historical Lockport flows (prior to AVM installation in June 1984, at Romeoville) to bring them in line with the AVM measurements since then. Although future reported flows at Lockport will correspond to AVM flows, it will also be possible to use the adjusted historical flows with the Illinois River Flow Model.

Regression Equations

Lockport flow adjustments were made by using regression equations that correlate historical MWRDGC reported flows to the AVM flows. The development of these flow regression equations was based on the studies conducted by COE (1989), Harza Engineering Co. (1986), and U.S. Geological Survey. COE first used these regression equations to estimate the missing AVM values due to equipment malfunctions from the flow values reported by MWRDGC at Lockport.

The COE study suggests that the regression equations require the implementation of three different components of flow recorded at Lockport: 1) flow through the powerhouse turbines (including leakage and lockage losses), 2) flow through the powerhouse sluice gates, and 3) flow through the control works sluice gates. Previous studies had used flow threshold levels for different regression equations. The values of the flow components were obtained from COE's Chicago District office as hard copy, dating back to 1955.

The basis for the regression equations developed by COE was that the change in flow patterns at Lockport was highly correlated to the flow components mentioned above. Therefore, COE developed three regression equations to estimate the missing AVM values from the reported Lockport flow components. Equation (1) would be used if the flows at Lockport were from turbine flows including leakage and lockage losses. Equation (2) would be used with turbine and powerhouse sluice gate flows. Equation (3) would be used if all three flow components existed.

$Q_{AVM} = 1.084 Q_{TLL} + 88.130$	Turbine flow only	(1)
$Q_{AVM} = 1.140 Q_{TLL} + 0.796 Q_{PH} + 31.143$	Turbine and powerhouse sluice gate flows	(2)
$Q_{AVM} = 0.963 Q_{TLL} + 0.659 Q_{PH} + 1418.79$	Turbine, powerhouse sluice gate, and control works sluice gate flows	(3)

where QAVM = AVM flows, QTLL = combined turbine flows (including leakage and lockage losses), and QPH = powerhouse sluice gate flows. If these equations had

proved satisfactory, they could have been applied to the historical Lockport flows to bring them in line with the new AVM records. However, COE equations for Romeoville AVM flows did not appear to be satisfactory when flows passed through the control works.

COE (1989) developed the equations by integrating the three components of the reported Lockport flows mentioned above with the measured AVM flows at Romeoville for the June 1984 - March 1988 period . In our analysis, we found that while equations (1) and (2) yielded satisfactory results, equation (3) showed significant variation (when flow passed through the control works). Therefore, a new form of the control works equation had to be developed.

It should be noted that although equation (3) was used when flow passes through the control works, QPH is the independent variable because it showed a higher correlation with QAVM. According to COE (1989), QPH and control works sluice gate flows (Qcw) were highly correlated, therefore, both variables could not be used in the same regression equation. However, when Qcw values were plotted against QPH values (figure 3), Qcw values ranging to 1,250 cfs had no significant functional relationship to QPH. Therefore, equations (2) and (3) were modified by using a threshold value (Qcw = 1,250 cfs). Parameters for equation (3) were reestimated by using the independent variable QPH that corresponds to Qcw values greater than 1,250 cfs. Equation (2) was also modified to include Qcw values less than 1,250 cfs, using an independent variable (QPH + Qcw). The final form of the

Figure 3. Powerhouse sluice gate flows at Lockport versus flows through control works

regression equations used in this study was:

 Turbine Only
 Q_{AVM} = 1.08387×Q_{TLL} + 88.12987
 (4)

 Turbine, Powerhouse, and/or Control Works
 $Q_{AVM} = 1.12833 \times Q_{TLL} + 0.76528 (Q_{PH} + Q_{CW}) + 109.73206 (if Q_{CW} \le 1,250 cfs)$ (5)

 Q_{AVM} = 0.14728×Q_{TLL} + 0.42562×Q_{PH} + 7068.01331
 (if Q_{CW} > 1,250 cfs) (6)

Since the flows passed through the control works on only 21 days during the AVM monitoring period (June 1984 - March 1988), all data were used for parameter estimation. The new equations could not be verified.

Adjustment of Historical Lockport Flows

Historical Lockport flows were defined as flows that began in 1955. By using the modified regression equations, these flows were adjusted to correspond to the AVM flows. These adjustments were necessary because future flows at Lockport will be measured by AVM and because the Illinois River Flow Model will be applicable to both historical and future flows. Flow statistics at Lockport also had to be revised based on the AVM data, so that flow measurements would be comparable.

Due to the nature of the regression equations, adjustment of the historical flows required use of the three flow components reported at Lockport prior to 1984. Data available from the U.S. Geological Survey's WATSTOR database did not distinguish between these components and therefore could not be used. "Provisional" Lockport flow data obtained from COE's Chicago District Office were entered into computer files for future analysis. The regression equations were developed by using "preliminary" data reported by MWRDGC since June 1985. Analysis of an overlapping two-year period for which both preliminary and provisional data were available indicated only slight differences between them. This period was also used to develop relationships necessary to convert provisional flows to preliminary flow components (turbine, powerhouse, and control work sluice gate flows). If a preliminary flow component could not be obtained, the provisional values were used. The adjusted flows were used to generate the pertinent flow statistics at Lockport and also as the base conditions for analyzing the impacts of TARP operation downstream of Lockport.

ILLINOIS RIVER FLOW MODEL

Flow Imbalances in the Illinois River Basin

Estimation of parameters of the Illinois River Flow Model was complicated by unexpected problems regarding the imbalances of the flows in the Illinois Waterway and its sub-basin gaging stations. Attempts to identify and remedy these flow imbalances in cooperation with the U.S. Geological Survey were not successful; the imbalances could not be explained without conducting a long-term investigation. Examples of these imbalances for all three reaches in the study are shown in tables 1-3, for the period 1985 - 1988. Preliminary analyses also revealed that these imbalances varied over time. Therefore, use of these flows in the model would have violated two basic assumptions of the model: continuity of flow within a reach (mass balance) and stationarity of the flow time series. Since the cause of the problem could not be determined and the needed flow adjustment could not be made, the model was modified to accommodate these unexplained imbalances.

One of the solutions was to divide the flow series into several shorter time periods, thus alleviating the impact of nonstationarity. This obviously also increased the number of simulations needed for parameter estimation (four time periods for the most upstream reach which showed the highest nonstationarity, and three time periods for the two downstream reaches). The flow imbalances were then handled by using flow correction coefficients, based on the magnitude of the imbalances in the reach, and proportioning of the gaged and ungaged drainage areas. The accounting of the flows from the ungaged areas was also incorporated into the same correction coefficients. Ideally, the bottom line in tables 1-3 should be zero. A negative flow indicates that the sum of the inflows exceeds the sum of the outflows for that year within that reach. The procedure for estimating the flow correction coefficients will be explained in the next section.

Estimation of Flows from Ungaged Areas and Flow Correction Coefficients

In all three reaches, a significant part of the drainage area remains ungaged. For example, the ratios of the total ungaged area to the total drainage area for each reach were 10.3, 35.8, and 21.4 percent, respectively. Consequently, the totals of all tributary inflows in a reach should be smaller than the outflows from that reach. However, for periods of imbalances the total of all tributary inflows in a reach were greater than the outflows. Therefore, an accounting and correction procedure was

Streamgage	Area	Mean annual flows in water ye (cfs)				
	(sq mi)	1985	1986	1987	1988	
Illinois River at Marseilles (05543500)	8,259	10,273	11,160	9,355	8,211	
Gages upstream of Marseilles						
CS&SC at Romeoville (05536995)	740	3,789	3,823	3,900	3,392	
Des Plaines River at Riverside (05532500)	630	658	867	856	648	
Hickory Creek at Joliet (05539000)	107	82	69	67	66	
Du Page River at Shorewood (05540500)	324	311	303	364	323	
Kankakee River near Wilmington (05527500)	5,150	5,737	6,095	4,751	3,801	
Mazon River near Coal City (05542000)	455	341	475	263	193	
Sum of gaged area and flows (upstream of Marseilles)	7,406	10,918	11,632	10,201	8,423	
(Flow at Marseilles) - (Sum of gaged flows)		-645	-472	-846	-212	
†Estimated flow from ungaged area	853	783	964	872	692	
(Flow at Marseilles) - (Sum of gaged flows) - (Estimated flow from ungaged area)		-1,428	-1,436	-1,718	-904	

Table 1. Mean Annual Flows (cfs) at the Illinois River at Marseilles and the Gages Upstream, and Their Annual Water Budgets

[†] The flow from the ungaged area was estimated based on the sum of average annual discharges from Mazon River, Du Page River, Hickory Creek, and Des Plaines River, divided by their area (1,516 sq mi), and multiplied by 853 sq mi.

Streamgage	Area	Mean annual flows in water year (cfs)				
	(sq mi)	1985	1986	1987	1988	
Illinois River at Kingston Mines (05568500)	15,818	16,698	19,107	15,701	13,616	
Gages upstream of Kingston Mines						
Fox River at Dayton (05552500)	2,642	2,108	2,692	2,418	2,056	
Vermilion River near Leonore (05555300)	1,251	714	1,209	807	512	
Big Bureau Creek at Princeton (05556500)	196	152	178	126	149	
Mackinaw River below Congerville (05567500)	767	575	675	553	169	
Illinois River at Marseilles (05543500)	8,259	10,273	11,160	9,355	8,211	
Sum of gaged area and flows (upstream of Kingston Mines)	13,115	13,822	15,914	13,259	11,097	
(Flow at Kingston Mines) - (Sum of gaged flows)		2,876	3,193	2,442	2,519	
†Estimated flow from ungaged area	2,703	1,975	2,646	2,173	1,606	
(Flow at Kingston Mines) - (Sum of gaged flows) - (Estimated flow from ungaged area)		901	547	269	912	

Table 2. Mean Annual Flows (cfs) and the Water Budget for the Illinois Riverbetween Stations at Marseilles and Kingston Mines

[†] The flow from the ungaged area was estimated based on the sum of average annual discharges from Fox River, Vermilion River, Big Bureau Creek, and Mackinaw River divided by their area (4,856 sq mi), and multiplied by 2,703 sq mi.

Streamgage	Area	Area Mean annual flows in water (cfs)				
	(sq mi)	1985	1986	1987	1988	
Illinois River at Meredosia (05585500)	26,028	25,156	26,145	21,165	15,842	
Gages upstream of Meredosia						
Illinois River at Kingston Mines (05568500)	15,818	16,698	19,107	15,701	13,616	
Spoon River at Seville (05570000)	1,636	1,361	1,319	1,112	636	
Sangamon River near Oakford (05583000)	5,093	3,391	4,328	2,777	2,132	
La Moine River at Ripley (05585000)	1,293	1,260	1,385	948	191	
Sum of gaged area and flows (upstream of Meredosia)	23,840	22,710	26,139	20,538	16,575	
(Flow at Meredosia) - (Sum of gaged flows)		2,436	6	627	-733	
[†] Estimated flow from ungaged area	2,188	1,640	1,918	1,319	807	
(Flow at Meredosia) - (Sum of gaged flows) - (Estimated flow from ungaged area)		796	-1,912	-692	-1,540	

Table 3. Mean Annual Flows (cfs) and the Water Budget for the Illinois River between Stations at Kingston Mines and Meredosia

[†] The flow from the ungaged area was estimated based on the sum of average annual discharges from Spoon River, Sangamon River, and La Moine River, divided by their area (8,022 sq mi), and multiplied by 2,188 sq mi.

developed. This procedure was based on the difference between the reach drainage area and the gaged tributary area, and the difference between the historic average outflow and the sum of the historic average gaged tributary flows. A typical reach is shown in figure 4, where G_1 and G_2 are two gaging stations with drainage areas A_1 and A_2 and long-term average flows Q_1 and Q_2 , respectively. Similarly, A_{down} and A_{up} , and Q_{down} and Q_{up} , are the drainage areas and the average flows at the downstream and upstream points of the reach, respectively. The overall ratio of the unaccounted flow to unaccounted area () is

$$\lambda = \frac{Q_{\text{down}} - (Q_{\text{up}} + Q_1 + Q_2)}{A_{\text{down}} - (A_{\text{up}} + A_1 + A_2)}$$
(7)

The flow to area ratio for each tributary gaging station $\begin{pmatrix} 1 & and \\ 2 \end{pmatrix}$ can also be given as

$$\lambda_1 = \frac{\mathbf{Q}_1}{\mathbf{A}_1} ; \qquad \lambda_2 = \frac{\mathbf{Q}_2}{\mathbf{A}_2} \tag{8}$$

If A_1 and A_2 are the ungaged areas that can be accounted by gages G_1 and G_2 , respectively, then the flow correction coefficients $\begin{pmatrix} 1 & and \\ 2 \end{pmatrix}$ for each tributary gaging station can be written as

$$\Psi_1 = \frac{\lambda}{\lambda_1} \times \frac{\Delta A_1}{A_1} + 1 \tag{9}$$

and

$$\Psi_2 = \frac{\lambda}{\lambda_2} \times \frac{\Delta A_2}{A_2} + 1 \tag{10}$$

Figure 4. Illustration of a typical reach with gaged and ungaged areas

It must be noted that $_{up}$ is unity ($A_{up} = 0$) because the mainstream flow hydrology is much different than the tributary flow hydrology. It was assumed that the flow from the ungaged areas will follow the distribution of the flows at the nearby gages. Therefore, if the parameters of the model are estimated by using the tributary gage flows, the parameters of each tributary need to be multiplied by that gage's flow correction coefficient. For each tributary gage, table 4 shows the drainage area (A), the ungaged drainage area contributing to that tributary (A), and the flow correction coefficient (), for the different periods used in the model.

Structure and Development of the Illinois River Flow Model

The Illinois River Flow Model was used for flow routing in the Illinois Waterway between Lockport and Meredosia. The software for the model has already been developed and tested during the early stages of the study. The model is based on the concept of discrete, multi-input, linear drainage systems, which enables the use of all available flow data to construct a correlative, linear black-box model. In this type of model a long river system is usually divided into shorter segments, or reaches, at intermediate gaging stations. The upstream and downstream endpoints of each segment are marked by gaging stations. Figure 5 shows a black-box diagram of a simple reach with two tributaries and one outflow.

A simple mathematical representation of this system can be made as follows:

$$\hat{Q}_{t} = \sum_{i=1}^{p} a_{i} I_{t-i} + \sum_{j=1}^{q} b_{j} T_{t-j}$$
(11)

where $\hat{\mathbf{Q}}_t$ is the estimate of the system output at time t, I and T are the tributary inflows to the system, a_i and b_j are the model parameters, and p and q are the time lags for each tributary inflow. When p = 3 and q = 2, we find that

Figure 5. A simple reach and its black-box representation

Streemagage	А	ΔΑ	Flow correction coefficients, (Ψ)			
Streamgage	(mi^2)	(mi^2)	1955 - 1965	1966 - 1974	1975 - 1983	1984 - 1988
Lockport	740	0.0	1.0000	1.0000	1.0000	1.0000
Des Plaines	630	75.0	1.0907	1.0949	1.0614	0.9434
Hickory	107	115.9	1.7488	1.9293	1.5496	0.1419
Du Page	324	66.4	1.1342	1.1626	1.0981	0.8854
Kankakee	5150	254.7	1.0308	1.0384	1.0243	0.9725
Mazon	455	341.0	1.6422	1.6580	1.4045	0.4410

Table 4. Flow Correction Coefficients of the Streamflow Gages

Stroomgaga	Α	ΔΑ	Flow correction coefficients, (Ψ)			
Streamgage	(mi^2)	(mi ²)	1955 - 1966	1967 - 1977	1978 - 1988	
Marseilles	8259	0	1.0000	1.0000	1.0000	
Fox	2642	155	1.0497	1.0658	1.0687	
Vermilion	1251	449	1.3716	1.4330	1.4462	
Big Bureau	196	1213	6.4053	8.4387	8.7183	
Mackinaw	767	887	2.2567	2.4213	2.5435	

Straamgaga	А	ΔΑ	Flow correction coefficients, (Ψ)			
Streamgage	(mi^2)	(mi^2)	1955 - 1966	1967 - 1977	1978 - 1988	
Kingston Mines	15819	0	1.0000	1.0000	1.0000	
Spoon	1636	844	1.6212	1.4924	1.3874	
Sangamon	5093	835	1.2058	1.1457	1.1249	
La Moine	1293	508	1.4696	1.4124	1.2905	

$\hat{\mathbf{Q}}_{t} = (\mathbf{a}_1 \mathbf{I}_{t-1} + \mathbf{a}_2 \mathbf{I}_{t-2} + \mathbf{a}_3 \mathbf{I}_{t-3}) + (\mathbf{b}_1 \mathbf{T}_{t-1} + \mathbf{b}_2 \mathbf{T}_{t-2})$ (12)

If N is the number of observations, the model parameters a_i and b_j can be estimated by minimizing the sum of squares (S) of the model residuals ($e_t = Q_t - \hat{Q}_t$) between the observed and the estimated flows as:

Minimize
$$S = \sum_{t=1}^{N} (e_t)^2$$
 (13)

This simple model suffers from frequent estimation of negative flows and lack of long-term water balance in the reach. Moreover, the solution matrix is frequently ill-conditioned, resulting in unstable solutions (Abadie, 1970).

Several researchers have developed improved versions of this model. Natale and Todini (1974) have shown that good estimations of parameters a and b can be obtained by introducing some constraints on the solution of this linear system, which provides nonnegativity, mass balance, and parameter stability. Yazicigil et al. (1980) used these constrained models on large river basins and observed high serial correlations in the model residuals, which indicates unexplained variance in the model. Nakashima and Singh (1983) tried to use an additional autoregressive term in the model to explain the serial residual correlation without using constraints due to the increased complexity of parameter estimation. Durgunoglu and Rao (1985) used a quadratic programming technique to estimate the parameters of the constrained system with autoregressive terms. The present model is an improved version of the Nakashima-Singh and Durgunoglu-Rao models.

A computer program was written to integrate the hydrological data into the quadratic programming algorithm. The user may choose either a model with or without an autoregressive parameter. The model is also capable of integrating data on uniformly distributed precipitation over the reach, if precipitation data are available. If the precipitation option is selected, an infiltration loss coefficient is computed in the program, based on the long-term total precipitation and runoff in the reach. The loss coefficient is then incorporated into the model constraints to maintain the water balance. The program also checks the difference between the total inputs and output of the system, and, if necessary, adjusts the model parameters to compensate for the difference. This difference usually occurs either due to systematic measurement biases or due to unmeasured inflows from ungaged areas within the reach.

For this study, the Illinois Waterway between Lockport and Meredosia was divided into three reaches (figure 6). The mathematical representation of each reach can be shown as

Reach 1

$$(\hat{Q}_{MAR})_{t} = \beta 1 (Q_{MAR})_{t-1} + \sum_{i=0}^{p_{1}-1} a \mathbf{1}_{i} (Q_{MAZ})_{t-i} + \sum_{j=0}^{q_{1}-1} b \mathbf{1}_{j} (Q_{KAN})_{t-j} + \sum_{k=0}^{r_{1}-1} c \mathbf{1}_{k} (Q_{DUP})_{t-k}$$
(14)
+
$$\sum_{i=0}^{s_{1}-1} d \mathbf{1}_{i} (Q_{HIC})_{t-i} + \sum_{m=0}^{v_{1}-1} f \mathbf{1}_{m} (Q_{DES})_{t-m} + \sum_{n=0}^{z_{1}-1} g \mathbf{1}_{n} (Q_{LOC})_{t-n}$$

Reach 2

$$(\hat{Q}_{KM})_{t} = \beta 2 (Q_{KM})_{t-1} + \sum_{i=0}^{p_{T}-1} a 2_{i} (Q_{MAC})_{t-i} + \sum_{j=0}^{q_{T}-1} b 2_{j} (Q_{BB})_{t-j} + \sum_{k=0}^{r_{T}-1} c 2_{k} (Q_{VER})_{t-k}$$
(15)
+
$$\sum_{i=0}^{s_{T}-1} d 1_{1} (Q_{FOX})_{t-1} + \sum_{m=0}^{v_{T}-1} f 1_{m} (Q_{MAR})_{t-m}$$

Reach 3

$$(\hat{Q}_{MER})_{t} = \beta 3 (Q_{MER})_{t-1} + \sum_{i=0}^{p_{3}-1} a 3_{i} (Q_{LAM})_{t-i} + \sum_{j=0}^{q_{3}-1} b 3_{j} (Q_{SAN})_{t-j}$$

$$+ \sum_{k=0}^{r_{3}-1} c 3_{k} (Q_{SPN})_{t-k} + \sum_{l=0}^{s_{3}-1} d 3_{l} (Q_{KM})_{t-l}$$
(16)

where

$$Q_{LOC} =$$
 Flow at Lockport $O_{VER} =$ Flow from Vermilion River $O_{DES} =$ Flow from Des Plaines River $Q_{BB} =$ Flow from Big Bureau Creek $Q_{HIC} =$ Flow from Hickory Creek $Q_{MAC} =$ Flow from Mackinaw River $Q_{DUP} =$ Flow from Du Page River $Q_{KAN} =$ Flow from Kankakee River $Q_{MAZ} =$ Flow from Mazon River $Q_{SPN} =$ Flow from Spoon River $Q_{MAZ} =$ Flow at Marseilles $Q_{LAM} =$ Flow from La Moine River $Q_{FOX} =$ Flow from Fox River $Q_{MER} =$ Flow at Meredosia

Figure 6. A schematic diagram of three reaches of the Illinois River between Lockport and Meredosia

Flow subscript t indicates the discrete time interval (usually days for large rivers); p, q, r, s, and v indicate the number of lags used in the model for each tributary flow; and β is the autoregressive parameter. The numbers following these parameters indicate the reach (e.g., β 1 is the autoregressive parameter for Reach 1). It must be noted that in this model the outflow at time t is correlated to tributary inflows at time t. This configuration is useful for simulation purposes. A slightly different version, which is also built into the program, can correlate outflows at time t to inflows at time t-1 for forecasting purposes. The parameters a, b, c, d, f, g, and β should satisfy the following constraints for each reach:

$$\sum a = (1-\beta) \quad \text{for all } a, b, c, d, f, \text{ and } g \tag{17}$$

and

$1 \ge \beta \ge 0$

(18)

These parameters basically guarantee that the long-term mass balance is preserved (equation (17)) and the estimated flows are stationary and nonnegative (equation (18)).

Model Parameters and Simulation Results

The parameters of the three reaches were estimated by using the quadratic programming procedure and the improved model structure. The objective function of the quadratic program, given by equation (13), was minimized under the constraint of equations (17) and (18). The error term in the objective function (e_t) was obtained for each reach by equations (14), (15), or (16). Tables 5-7 give the model's estimated parameters. Because it was necessary to use three or four time periods, the estimation procedure took a long time. The optimum set of model parameters for each reach was selected by using a subjective criterion because there was no objective method available. The criterion used here was based on the parsimony and the expected lag of flows between the gaging stations and the tributaries. To better understand the analytical form of the model, the analytical model equation of Reach 3, based on the model parameters given in table 7, is given below for the period from 1978 - 1988.

	Years 1955 - 1965									
LAG	Lockport	Des Plaines	Hickory	Du Page	Kankakee	Mazon	Marseilles			
0	0.57550	0.74740	-1.86741	1.72848	0.78057	1.07459	0.00000			
1	0.10970		3.00164	-0.95127	-0.07425	0.05067	0.31481			
2			0.06407							
	Years 1966 - 1974									
0	0.51552	1.72752	-0.00381	1.22747	0.85380	0.23986	0.00000			
1	-0.03211	-2.32017	2.55347	-0.13210	-0.53996	0.78372	0.69782			
2	-0.03986	0.92378	-1.95694	-0.74291		-0.42843				
3	-0.02770					-0.08351				
4	-0.05552					-0.01214				
5	-0.05816									
			Years	s 1975 - 1983						
0	0.56500	0.28267	-1.20681	3.09214	0.75952	0.58151	0.00000			
1	-0.02562		1.61109	-2.80041	-0.48553	0.86119	0.73197			
2	-0.27135					-1.07793				
	Years 1984 - 1988									
0	0.55013	0.34723	-5.09811	4.13209	0.83107	0.23484	0.00000			
1	-0.18210		5.15035	-3.80623	-0.47315	-0.07252	0.63197			

Table 5. Model Parameters for Reach 1

 $(\hat{Q}_{MER})_t = 0.89215 (Q_{MER})_{t-1} + 0.13918 (Q_{LAM})_t + 0.15231 (Q_{SAN})_t$

(19)

$-\ 0.31424 \, (Q_{SAN})_{t-1} + 0.28326 \, (Q_{SAN})_{t-2} + 0.14963 \, (Q_{SPN})_t$

$+ 0.4892(Q_{KIN})_t - 0.38125(Q_{KM})_{t-1}$

The analytical model equations for other time periods and reaches can be written similarly. Table 8 gives the values of the observed and the simulated flows at certain flow durations for three stations. All the results indicate a very good match.

It must be noted that the simulated flow duration values (table 8) were estimated during the parameter estimation process of the model. These flows will yield the minimum achievable errors (for observed and simulated flows) defined by the objective function (equation (13)). This mode of simulation, the "forecasting mode," is possible only if the flow for the previous day (Q_{t-1}) is available to estimate today's flo(\hat{Q}_t) and is useful for analyzing the accuracy of the parameter estimation. However, since the flows downstream of Lockport are not known under TARP

	Years 1955 - 1966								
LAG	Marseilles	Fax	Vermilion	Big Bureau	Mackinaw	Kingston Mines			
0	0.12965	0.35936	0.04323	-0.09946	0.25827	0.00000			
1	-0.04617	-0.30027	-0.02590	0.68145	-0.08486	0.89076			
2	0.07735	0.20278	0.16089	-0.07811	-0.00299				
3	-0.02230	-0.14305	-0.04382	0.07262	-0.07387				
4	-0.01426	0.00868	0.01362	0.17157					
5	-0.01504	0.10120		-0.24912					
6		-0.08779		0.16309					
7		0.06246		-0.16380					
8		-0.07303		0.21992					
9		-0.01565							
			Years 1967 -	1977					
0	0.15279	0.14047	0.45417	-0.21663	0.06480	0.00000			
1	-0.06420	-0.09023	-0.71449	0.26516	0.40847	0.91603			
2	0.07891	0.14596	0.38830	0.15569	-0.10969				
3	-0.02194	0.02357	-0.00766	-0.02819	-0.16026				
4	-0.02648	-0.00938		0.07953					
5	-0.00426	-0.04735		-0.22785					
6	-0.01007	-0.06177		0.22200					
7	-0.02077	0.04149		0.23097					
8		-0.02782		0.04799					
9		-0.02545		0.17990					
			Years 1978 -	1988					
0	0.16634	0.20365	0.22740	-0.52035	-0.03700	0.00000			
1	-0.09755	-0.07785	-0.10000	0.34534	0.23562	0.91737			
2	0.12178	-0.05613	0.10713	0.75871	0.01157				
3	-0.01099	-0.05936	-0.13948	0.13674					
4	-0.06635	0.15938	0.02446						
5	-0.04828	-0.06012							
6	0.03922	0.14469							
7	0.00195	-0.19101							
8	-0.02441	0.09344							
9	0.00092	-0.06838							

Table 6. Model Parameters for Reach 2

Years 1955 - 1966								
LAG	Kingston Mines	Spoon	Sangamon	LaMoine	Meredosia			
0 1	0.14488	0.31196 -0.07663	0.17199	0.34380 -0.13284	0.00000 0.85512			
Years 1967 - 1977								
0 1	0.13731	0.29351 -0.08858	0.15733	0.39169 -0.19774	0.00000 0.86269			
Years 1978 - 1988								
0 1 2	0.48920 -0.38135	0.14963	0.15231 -0.31424 0.28326	0.13918	0.00000 0.89215			

Table 7. Model Parameters for Reach 3

operation, the model has to be used in a "simulation mode," where $\hat{\mathbf{Q}}_{t}$ values are estimated based on the simulated $\hat{\mathbf{Q}}_{t-1}$ values. This mode can also be called the "no-feedback" or "self-generating" mode. Statistically, the results from this mode cannot be more accurate than the results obtained from the "forecasting" mode.

Figures 7-9 compare observed and estimated flows for Marseilles, Kingston Mines, and Meredosia, respectively. Typical dry, average, and wet years were selected for comparison. It can be seen from these figures that the differences between the observed and estimated daily flows are almost indistinguishable.

The Illinois River Flow Model was used in a "simulation" mode with the adjusted historical Lockport flows (without TARP) to generate the flows at the three downstream stations. These flow series represent the base conditions that would have existed without TARP. All the changes that were simulated under any TARP operation were compared with these base conditions.

EFFECT OF TARP ON LOCKPORT FLOWS

Implementation of Phases I and II of TARP will alter the pattern of flows in the Chicago Sanitary and Ship Canal (CS&SC) and the Calumet-Sag Channel, and consequently the flow patterns at Lockport. The effects of these changes downstream of Lockport were then analyzed by using these modified Lockport flows as inputs to the

Probability	Marseilles		Kingsto	Kingston Mines		Meredosia	
exceedance (%)	Observed	Simulated	Observed	Simulated	Observed	Simulated	
99	3210	3254	3300	2809	4200	4253	
98	3450	3488	3700	3526	4834	4872	
97	3625	3673	4000	4021	5220	5226	
96	3760	3800	4210	4331	5550	5537	
95	3880	3897	4400	4506	5800	5789	
94	3981	4000	4530	4711	5990	5950	
93	4080	4120	4700	4934	6160	6127	
92	4170	4224	4860	5096	6350	6331	
91	4250	4311	5000	5263	6520	6499	
90	4320	4388	5100	5395	6700	6683	
85	4670	4743	5770	6082	7500	7499	
80	4980	5069	6350	6643	8368	8379	
75	5310	5388	6880	7167	9460	9404	
70	5620	5704	7420	7736	10500	10447	
65	5940	6046	8000	8349	11700	11637	
60	6310	6412	8720	9096	13000	12938	
55	6760	6828	9550	9876	14455	14411	
50	7260	7349	10500	11000	16200	16249	
45	7880	7967	12000	12459	18400	18364	
40	8610	8681	13900	14473	21800	21841	
35	9430	9501	16500	17294	24900	24924	
30	10500	10528	19000	19482	27600	27661	
25	11700	11720	21000	21485	30900	31072	
20	13400	13423	23360	23876	34200	34393	
15	15800	15761	26700	27111	38600	38591	
10	19000	18850	31000	31671	46700	46828	
9	19700	19568	32400	33090	48800	48859	
8	20600	20461	33900	34451	51500	51254	
7	21800	21503	35400	35992	54400	54299	
б	23100	22921	37000	37521	58400	58103	
5	24705	24322	38800	39674	62100	61972	
4	27000	26695	41300	42058	65800	65599	
3	30243	29396	44000	45447	71843	71413	
2	34600	33758	48300	50230	79062	77930	
1	41381	40238	57433	58727	90481	89781	
Average flow	10006	9994	15274	15720	22803	22795	

Table 8. Observed and Simulated Flow Duration Values (cfs)

Figure 7. Observed flows (solid line) versus estimated flows (dashed line) for a typical dry, average, and wet year for Marseilles

Figure 8. Observed flows (solid line) versus estimated flows (dashed line) for a typical dry, average, and wet year for Kingston Mines

Figure 9. Observed flows (solid line) versus estimated flows (dashed line) for a typical dry, average, and wet year for Meredosia

Illinois River Flow Model. Modification of the Lockport flows as a result of TARP operation requires obtaining the daily flow values in the CS&SC and Calumet-Sag Channel at or near the WRP locations. The average daily flow series at Lockport were then simulated by routing these CS&SC and Calumet-Sag flows under three operating conditions of TARP: 1) without TARP storage, 2) with TARP Phase I tunnel storage, and 3) with TARP Phase II tunnel and reservoir storage.

Since the measured daily flows at CS&SC and Calumet-Sag channel were not available, it was attempted to correlate these flows to the historical daily flows at Lockport by using the flow data at FULEQ nodes 24 and 45, the most appropriate nodes for this purpose (Figure 9-2, Volume-B, COE, 1986). However, COE could not provide this data. Therefore, a method was developed to extract the daily flows at the canals, based on the average monthly diversions and WRP releases, daily Lockport flows, and the partial drainage areas of the Mainstream and Calumet Systems, in proportion to the total area above Lockport. MWRDGC provided the monthly WRP releases and Lake Michigan diversions for the period from 1971-1985 (table 9). It was assumed that the WRP releases would equal the inflows.

The method used here was based on the assumption that the natural surface runoff can be correlated to the drainage area. Therefore, it was necessary to subtract from the Lockport flows all the flows that did not originate from surface runoff. These include the raw sewage portion of the combined sewer flows (natural surface runoff plus the raw sewage) entering the WRPs, and the Lake Michigan diversions. Thus, the Lockport flows can be expressed as follows:

$Q_{LOCKPORT} = Q_{SR} + \sum Q_{DIVERSION} + \sum Q_{SEWAGE}$

(20)

where

 $Q_{LOCKPORT}$ = daily Lockport flows Q_{SR} = surface runoff contributed from upstream of Lockport (740 sq mi) $Q_{DIVERSION}$ = average monthly diversion flows Q_{SEWAGE} = estimated monthly raw sanitary sewage flows

For Q_{SEWAGE} values, the lowest WRP releases for each month for a 15-year period (1971 - 1985) were used (lower portion of table 9), assuming that the lowest values would include negligible runoff. This allowed the use of a different Q_{SEWAGE} value for each month. Overall average monthly WRP releases could not be used directly because they include combined sewer flows.

Year	WRP & I	DIV	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AVG
	North Side	WRP	424	500	532	454	461	526	518	513	506	440	422	468	480
	Stickney	WRP	1106	1261	1264	1100	1111	1304	1247	1204	1253	1060	1040	1190	1178
	Calumet	WRP	248	288	315	260	270	281	312	274	284	236	228	294	274
'71	Chicago	DIV	56	25	44	126	406	276	894	1484	776	784	616	139	469
	O'Brien	DIV	175	123	34	97	472	511	1127	1895	1027	1038	835	225	630
	Wilmette	DIV	37	26	132	274	213	329	381	460	276	326	158	40	221
	North Side	WRP	453	432	524	578	531	524	531	576	561	516	545	368	611
	Stickney	WRP	1227	1202	1351	1423	1345	1303	1602	1464	1253	1242	1270	1216	1317
170	Calumet	WRP	306	236	310	346	304	282	287	328	308	312	364	338	310
12	Chicago	DIV	29	76	121	275	403	496	816	840	758	211	79	46	346
	O'Brien	DIV	122	141	143	328	455	551	995	1170	1348	324	245	61	490
	Wilmette	DIV	32	56	43	67	206	357	233	271	235	41	44	40	135
	North Side	WRP	538	506	582	588	536	538	546	622	503	507	477	539	532
	Stickney	WRP	1219	1213	1368	1419	1295	1326	1375	1400	1280	1238	1133	1238	1292
'73	Calumet	WRP	345	310	368	390	356	345	310	300	272	292	266	337	324
15	Chicago	DIV	45	31	551	469	477	621	436	266	134	115	57	41	270
	O'Brien	DIV	81	55	663	489	581	768	535	218	145	116	71	51	314
	Wilmette	DIV	40	44	125	63	39	40	46	45	43	42	41	38	51
	North Side	WRP	523	536	556	553	556	519	519	497	437	425	445	482	504
	Stickney	WRP	1272	1267	1267	1287	1355	1317	1348	1306	1150	1106	1103	1136	1243
'74	Calumet	WRP	343	334	367	380	396	389	341	198	264	254	294	322	323
	Chicago	DIV	39	34	35	85	111	137	167	154	111	96	107	408	124
	O'Brien	DIV	49	54	59	95	141	164	207	200	135	116	154	553	161
	Wilmette	DIV	3/	39	41	42	41	45	40	45	45	42	81	339	/0
	North Side	WRP	514	511	541	573	544	536	506	512	459	428	465	531	510
	Stickney	WRP	118/	202	218	1354	1312	1454	1382	1403	200	1207	1239	1352	1289
'75	Carumet	WKP	222	302	518	433	417	300	525	520	309	280	280	340	340
	Chicago O'Brian		231	33 67	84	554 607	150	148	158	143	104	122	48	40	149
	Wilmette		146	38	46	37	213	184	201	171	141	125	00 40	35	180
	Winnette	WDD	421	500	550	514	516	49.6	460	461	420	417	201	205	471
	Stickney	WRP	451	382 1309	1479	1238	1255	1235	1239	1247	430	417	1040	961	4/1
	Calumet	WRP	2.90	352	398	344	374	383	316	299	2.82	268	263	249	318
'76	Chiango	DIV	407	781	83	130	170	251	185	101	111	-00	200		200
	O'Brien	DIV	689	909	132	145	91	151	212	187	134	129	375	823	331
	Wilmette	DIV	37	55	35	46	47	128	67	46	43	40	162	108	68
	North Side	WRP	395	444	502	478	459	493	481	477	484	406	390	457	455
	Stickney	WRP	984	1117	1323	1215	1177	1313	1349	1335	1422	1191	1143	1190	1230
	Calumet	WRP	258	275	314	318	293	316	335	328	351	317	309	340	313
'77	Chicago	DIV	1112	1411	113	104	102	121	204	123	110	88	94	58	303
	O'Brien	DIV	1152	994	155	170	186	273	381	232	127	125	37	61	324
	Wilmette	DIV	165	84	31	95	172	167	162	148	137	30	19	2	101
	North Side	WRP	389	369	516	548	480	493	502	438	473	389	411	445	454
	Stickney	WRP	1021	1020	1380	1546	1331	1397	1485	1328	1380	1064	1086	1162	1267
	Calumet	WRP	368	319	381	378	361	331	337	348	337	303	313	356	344
78	Chicago	DIV	48	151	186	81	86	472	727	705	710	405	48	35	305
	O'Brien	DIV	44	157	228	112	91	495	689	500	693	316	54	37	285
	Wilmette	DIV	3	3	2	2	4	103	82	121	108	27	3	3	38
L	l		1												1

Table 9. Average Monthly Water Reclamation Plant (WRP) Releasesand Lake Michigan Diversions (DIV), in cfs

Table 9. Concluded

Year	WRP & I	DIV	JAN	FEB	MAS	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AVG
	North Side	WRP	407	441	583	552	478	485	477	544	429	386	403	435	468
	Stickney	WRP	1106	1318	1796	1533	1331	1334	1283	1656	1233	1218	1224	1170	1350
'79	Calumet	WRP	342	328	362	374	364	343	330	382	328	306	323	350	344
17	Chicago	DIV	33	59	60	89	99	454	622	560	593	305	59	39	248
	O'Brien	DIV	47	74	132	103	133	531	787	749	882	656	147	49	358
	Wilmette	DIV	2	3	2	3	4	50	105	72	186	64	4	3	42
	North Side	WRP	423	411	483	565	433	456	449	482	458	381	351	410	442
	Stickney	WRP	1142	1165	1304	1372	1184	1382	1309	1473	1362	1156	1032	1198	1256
'80	Calumet	WRP	333	317	398	415	353	381	348	393	404	342	317	354	363
00	Chicago	DIV	39	34	39	79	234	431	741	574	721	345	59	49	279
	O'Brien	DIV	61	45	74	168	219	365	763	647	1045	348	99	87	327
	Wilmette	DIV	3	3	3	3	4	132	172	79	155	68	3	3	52
	North Side	WRP	340	424	372	463	522	515	469	491	451	385	404	411	437
	Stickney	WRP	1009	1179	1092	1351	1389	1413	1419	1419	1208	1187	1185	1136	1249
'81	Calumet	WRP	299	345	328	384	387	368	354	339	306	269	282	279	328
	Chicago	DIV	106	52	51	114	118	515	626	675	952	187	76	43	293
	O'Brien		119	78	84	190	186	492	697	596	966	186	61	51	309
	wiimette		3	2	3	2	0	32	80	132	207	44	3	3	48
	North Side	WRP	420	429	532	520	432	420	496	445	388	357	458	498	450
	Stickney	WRP	261	1238	200	14/6	1263	1253	1456	220	200	268	1329	1524	220
'82		DIV	201	291	112	599	241	340	100	224	200	200	551	339	330
	Chicago O'Brian		30 41	25	112	60 58	241	441	499	834	703	311	68 86	111	286
	Wilmette		2	20	0	20	223	408 52	58	114	117	59	2	90 2	238
	North Sido	WPD	200	120	472	544	511	111	162	421	117	40.4	462	169	155
	Stickney	WRP	1135	428	4/5	1574	1467	1281	1372	1247	440 1187	1103	402	408	433
	Calumet	WRP	313	303	318	348	412	365	403	350	361	335	350	382	353
'83	Chicago	DIV	39	37	49	74	135	511	678	562	498	343	110	38	256
	O'Brien	DIV	55	52	69	101	171	312	590	652	524	342	140	75	257
	Wilmette	DIV	3	3	3	2	3	100	188	263	122	70	3	2	64
	North Side	WRP	365	453	475	521	497	443	420	415	400	398	399	426	434
	Stickney	WRP	982	1198	1198	1270	1229	1162	1128	1157	1105	1170	1040	1126	1147
10.4	Calumet	WRP	336	376	392	409	394	378	365	353	326	325	310	325	357
'84	Chicago	DIV	35	46	46	94	199	522	794	662	440	485	78	56	288
	O'Brien	DIV	100	63	70	117	213	487	685	608	485	477	66	76	287
	Wilmette	DIV	3	2	3	3	8	61	130	119	51	53	3	3	37
	North Side	WRP	402	441	518	473	414	408	409	424	388	406	549	419	437
	Stickney	WRP	1065	1158	1349	1162	1116	1102	1209	1160	1069	1157	1606	1125	1190
'85	Calumet	WRP	344	354	370	371	354	333	356	354	341	382	397	400	363
	Chicago	DIV	48	72	65	150	300	526	788	726	815	447	171	64	348
	O'Brien	DIV	79	99	74	123	177	355	577	696	745	421	135	95	298
	Wilmette	DIV	3	3	3	4	4	36	53	65	82	38	4	4	25
				Mini	mum	WRP a	and Av	verage	DIV	Values					
	WRP&D	IV	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	North Side	WRP	340	411	372	454	414	408	409	415	388	357	351	368	
Min.	Stickney	WRP	982	1020	1092	1100	1111	1102	1128	1157	1105	1060	1032	961	
	Calumet	WRP	248	275	310	260	270	281	287	198	264	236	228	249	
	Chicago	DIV	159	191	109	166	216	395	356	567	502	288	125	129	
Av.	O'Brien	DIV	208	195	134	194	237	403	603	613	596	336	173	160	
	Wilmette	DIV	34	24	31	43	53	112	123	135	127	66	38	42	

Total surface runoff (Q_{SR}) was further divided into two components, contributed from the TARP combined sewer area (Q_{S1}) and from the rest of the downstream non-TARP area (Q_{S2}) as

$\mathbf{Q}_{\mathbf{SR}} = \mathbf{Q}_{\mathbf{S1}} + \mathbf{Q}_{\mathbf{S2}}$

This division was necessary because the land-use and surface runoff characteristics of these two regions are quite different. Considering equal distribution of precipitation over the drainage areas, it is possible to write the following relations

(21)

$$Q_{S1} \propto A_1 C_1 \tag{22}$$

and

$$\mathbf{Q}_{\mathrm{S2}} \propto \mathbf{A}_2 \mathbf{C}_2 \tag{23}$$

where

 $\begin{array}{l} A_1 = \text{total combined sewage area of TARP} \\ A_2 = \text{remaining area upstream of Lockport (740 sq mi - A_1)} \\ C_1 \text{ and } C_2 = \text{runoff coefficients for areas } A_1 \text{ and } A_2 \\ & \quad (\text{not the same areas shown in figure 4}) \end{array}$

From equations (21), (22), and (23) Q_{S1} and Q_{S1} can be obtained as

$$Q_{S1} = \frac{Q_{SR}A_1C_1}{A_1C_1 + A_2C_2}$$
 and $Q_{S2} = Q_{SR} - Q_{S1}$ (24)

If Q_{S1} was negative, which can happen due to the use of average flows, a Q_{S1} value of zero was used.

The TARP area can be further divided into Mainstream and Calumet areas, with contributing areas of A_M and A_C , respectively (see figure 10), and with different runoff coefficients (C_M and C_C). This condition should be satisfied by the following constraints:

$$A_1 = A_M + A_C \tag{25}$$

and

$$A_1 C_1 = A_M C_M + A_C C_C \tag{26}$$

The total surface runoff from TARP area (Q_{S1}) should then be

$$\mathbf{Q}_{\mathrm{S1}} = \mathbf{Q}_{\mathrm{S1M}} + \mathbf{Q}_{\mathrm{S1C}} \tag{27}$$

where Q_{S1M} and Q_{S1C} are the portions of the surface runoff contributed from the Mainstream and Calumet combined sewer areas, respectively. Therefore, by

proportioning,

$$Q_{S1M} = Q_{S1} \frac{A_M C_M}{A_M C_M + A_C C_C} = Q_{S1} \frac{A_M C_M}{A_1 C_1}$$
(28)

and

$$Q_{S1C} = Q_{S1} \frac{A_C C_C}{A_M C_M + A_C C_C} = Q_{S1} \frac{A_C C_C}{A_1 C_1}$$
(29)

where

 $A_1 = 342$ sq mi $A_2 = 398$ sq mi (740 sq mi above Lockport - 342 sq mi of TARP area) $A_M = 252$ sq mi (North Side + Stickney WRPs including Des Plaines) $A_C = 90$ sq mi (Calumet WRP service area)

Since Q_{S1} is also a function of daily Q_{SR} values (which is effectively a function of the Lockport flows), the daily runoff values at the Mainstream and Calumet Systems can be estimated directly from the daily Lockport flows.

 C_1 , C_2 , CM, and C_C values were estimated from the limited information on mean annual storm runoffs developed by the Northeastern Illinois Planning Commission (NIPC). This study (NIPC Memorandum, 1987) estimated the mean annual runoff yields from a region covering about 678 square miles (MWRDGC combined sewer area, Plum Creek, almost all of the Calumet area, and North Branch) for the period 1949 - 1979. Yields from three different land covers (forest, grass, and impervious areas) were considered. Using the land-use percentages in this study, and analyzing the most recent topography maps, approximate land usages for the areas of interest in the study were developed (table 10).

Land cover (as a ratio of the area) Area Region (sq mi) Forest Grass Impervious Calumet 90 0.000 0.850 0.150 Mainstream 252 0.000 0.510 0.490 Total 342 0.000 0.597 0.403 TARP area Downstream 398 0.065 0.870 0.065 of TARP Total study 740 0.037 0.745 0.218 area

Table 10. Land-Use Ratios for Areas Upstream of Lockport

The ratios for "Total TARP area" were obtained by the area-weighted summation of the Calumet and Mainstream ratios. Similarly, the area-weighted summations of the "Total TARP area" and "Downstream of TARP" ratios gave the ratios for the "Total study area." These ratios were then multiplied by the annual runoff yields of forest, grass, and impervious areas to obtain the average annual yield for a particular year. The annual runoff coefficients were then calculated by dividing the average annual yield by the annual precipitation. The overall mean of these runoff coefficients gave C values. This process was performed for all areas of interest. All other necessary information used in the estimation of C values is shown in table 11. For example, the runoff yield of the total TARP area for the year 1949 (12.85 inches) was obtained by adding the weighted runoffs from the forest, grass, and impervious areas (0.0 x 2.38; 0.597 x 6.26; and 0.403 x 22.62, respectively). The land-use ratios (0.0, 0.597, and 0.403) were taken from table 10. That runoff yield was then divided by the annual precipitation to obtain the average runoff coefficient (C_1) of "Total TARP area" for the year 1949 ($12.85 \div 29.87 = 0.430$). Figure 10 shows these runoff coefficients and the drainage areas to which they apply.

After all these parameters were estimated, the modified daily flow values at Lockport could be reconstructed by using the new releases from the WRPs:

$Q_{\text{LOCKPORT}} = \sum \text{ of releases Mainstream and Calumet WRPs}$ (30) + $\sum Q_{\text{DIVERSION}} + Q_{\text{S2}} + \text{overflows}$

For the $Q_{DIVERSION}$ values prior to 1971, the mean monthly diversion values were used, as given at the bottom of table 9.

Figure 10. Runoff coefficients used in the Lockport Flow Simulation Model and their applicable areas

Vear	Precin	R	unoff yie om land c	elds over	Calu Sys	imet tem	Mains Sys	tream tem	To TARF	tal Parea	Downs of T	stream ARP	To study	tal area
1 Cul	riceip.	Forest	Grass	Imperv.	Yield	C _C	Yield	См	Yield	C,	Yield	C ₂	Yield	CT
1949	29.87	2.38	6.26	22.62	8.72	0.292	14.28	0.478	1235	0.430	7.07	0.237	9.69	0.324
1950	44.28	6.88	13.77	37.60	17.34	0.392	25.45	0.576	23.37	0.528	1437	0336	18.71	0.423
1951	39.54	8.36	12.15	32.85	15.26	0.386	22.29	0.564	20.49	0.518	13.25	0335	16.52	0.418
1952	32.41	10.16	12.03	25.17	14.00	0.432	18.47	0.570	1733	0.535	12.76	0.394	1433	0.457
1953	29.15	1.19	4.71	21.13	7.18	0.246	12.76	0.438	1133	0.389	5.55	0.190	8.16	0.280
1954	36.39	1.88	6.24	27.56	9.44	0.259	16.69	0.459	1433	0.408	734	0.202	10.73	0.295
1955	39.26	4.70	10.32	30.94	13.42	0.342	20.43	0.520	18.63	0.475	1130	0.288	14.61	0.372
1956	26.71	0.83	4.09	18.01	6.18	0.231	10.91	0.408	9.70	0.363	4.78	0.179	7.00	0.262
1957	39.34	3.61	8.99	31.11	12.31	0.313	19.83	0.504	1731	0.455	10.08	0.256	13.61	0.346
1958	29.90	2.17	4.97	19.81	7.20	0.241	12.24	0.409	10.95	0366	5.75	0.192	8.10	0.271
1959	35.08	2.64	7.44	27.71	10.48	0.299	17.37	0.495	15.61	0.445	8.45	0241	11.68	0.333
1960	31.65	3.55	8.50	26.31	11.17	0.353	17.23	0.544	15.68	0.495	933	0395	1220	0.385
1960	39.92	1.47	6.84	30.07	10.32	0.259	18.22	0.456	16.20	0.406	8.00	0200	11.71	0.293
1961	26.49	5.63	8.60	20.81	10.43	0.394	14.58	0.550	13.52	0310	9.20	0347	11.15	0.421
1962	28.20	0.11	1.58	18.51	4.12	0.146	9.87	0.350	8.40	0.298	2.58	0.092	521	0.185
1963	26.21	0.23	1.96	17.95	4.35	0.166	9.79	0.374	8.40	0321	238	0.110	5.38	0.205
1964	38.80	2.43	8.06	30.70	11.46	0.295	19.16	0.494	17.19	0.443	9.17	0236	12.79	0.330
1965	33.47	5.78	11.09	25.60	13.26	0.396	18.20	0.544	16.94	0.506	11.69	0.349	14.06	0.420
1966	40.38	5.47	11.89	33.99	15.20	0.376	22.72	0.563	20.79	0.515	12.91	0.320	16.47	0.408
1967	31.35	2.28	6.55	21.73	8.83	0.282	13.99	0.446	12.67	0.404	7.26	0232	9.70	0.309
1968	38.47	3.50	9.55	28.47	12.39	0.322	18.82	0.489	17.17	0.446	1038	0270	13.45	0.350
1970	43.15	4.57	9.97	34.62	13.66	0.317	22.05	0.511	1930	0.461	11.22	0.260	15.14	0.351
1970	32.06	5.04	9.42	2323,	11.49	0.358	16.18	0.505	1438	0.467	10.03	0313	1227	0.383
1972	37.39	1.82	6.86	27.36	9.94	0.266	16.90	0.452	15.12	0.404	737	0210	11.14	0.298
1973	40.30	11.23	17.16	31.70	19.34	0.480	24.28	0.603	23.02	0.571	17.72	0.440	20.11	0.499
1974	40.38	9.48	15.64	31.91	18.08	0.448	23.61	0.585	22.19	0.550	16.29	0.404	18.96	0.469
1975	40.70	8.05	13.35	32.46	16.22	0.398	22.72	0.558	21.05	0.517	14.25	0.350	17.32	0.426
1976	37.98	4.27	9.12	29.17	12.12	0.319	18.94	0.499	17.20	0.453	10.10	0266	13.31	0350
1977	38.59	1.05	5.87	28.91	9.33	0.242	17.16	0.445	15.16	0.393	7.06	0.183	10.72	0.278
1978	32.55	7.77	11.19	26.66	13.51	0.415	18.77	0.577	17.42	0.535	11.97	0368	14.43	0.443
1979	38.36	8.51	15.09	34.52	18.00	0.469	24.61	0.642	22.92	0397	15.92	0.415	19.08	0.497
			I	Average:		0.327		0.503		0.458		0274		0.357

Table 11. Runoff Yields and Runoff Coefficients for the Areas Upstream of Lockport

Notes: Precipitation and all yields are in inches.

 C_C , C_M , C_1 , C_2 , and C_T are the runoff coefficients for the Calumet System, Mainstream System, total TARP area, downstream of TARP, and total study area, respectively.

Storage capacities for TARP Phases I and II will determine the new releases from the WRPs and the CSOs. The storage capacities of the Mainstream and Calumet systems are handled separately. Under condition 1 (without TARP), there was no storage capacity; therefore, whenever the flows entering the WRPs exceeded the assumed WRP capacity, the excess flow is spilled untreated. Under condition 2 (with TARP Phase I), 4,964 and 1,638 acre-feet of TARP Phase I tunnel storage were used for the Mainstream and Calumet Systems, respectively. Tunnel storage from the Des Plaines System was included in the Mainstream tunnel storage. Under condition 3 (with TARP Phase II), a total storage capacity of 39,048 acre-feet for the Mainstream System (32,100 and 6,948 acre-feet for McCook Reservoir and tunnel storage, respectively), and 16,596 acre-feet for the Calumet System (14,600 and 1,996 acre-feet for Thornton Reservoir and tunnel storage, respectively) were used. These values were obtained through personal communication with John Variakojis, and from the Facilities Planning Study (Appendix E, revised March 1989, MWRDGC, 1987).

Under condition 1, the Lockport flows do not change, but it is possible to determine how much water would have spilled if the current treatment plant capacities also existed in the past. The daily simulations for 31 years (1958 - 1988) for conditions 2 and 3 were performed to obtain the daily reservoir volumes, WRP releases, and spills for the Mainstream and Calumet Systems. These releases and spills were then summed with the average sanitary sewage and diversion flows, and the natural flow contributed from 398 square miles of drainage area between TARP service area and Lockport, to obtain the modified Lockport flows. These modified Lockport flows were then used with the Illinois River Flow Model to simulate the effects of TARP storage on flows at Marseilles, Kingston Mines, and Meredosia, and then compared with the base condition. The flow model was executed in a cascade mode: the output from one reach is input to the downstream reach.

For the storage routing and dewatering algorithm, it was assumed that each WRP could operate at its maximum design capacity. For example, if on any day Q_{S1C} plus the raw sanitary effluents at Calumet (average of that month) exceeded the Calumet WRP maximum capacity (430 million gallons per day (mgd)), then the excess flow was routed into the Thornton Reservoir, provided that there was enough storage to accommodate this overflow. Otherwise, the excess untreated flow would overflow into the canal. As the flow peak receded, the WRP would still operate at its maximum capacity until all the reservoir storage was treated and released into the

canal. The same procedure would apply to the Mainstream System as well. However, for the Mainstream System, both the North Side and the Stickney plants were assumed to function as a single unit, because they are both connected to McCook Reservoir. The maximum design capacities of the WRPs used in the simulation were: Mainstream System (Stickney and North Side WRPs) = 1,890 mgd and Calumet System = 430 mgd.

Figures 11-16 show the impacts of the TARP operation on the number of days with spills and the volume of these spills within the TARP area. These results were obtained by assuming that the WRPs can operate at maximum design capacities for a sustained period (about 60-90 days). The results are presented in bar charts for the total number of days with spills at the Calumet System, the Mainstream System, and the total service area (figures 11 - 13). Similarly, figures 14 - 16 show the total yearly spill volumes. The number of days with spills used in these figures indicate the total number of days where the inflow to the WRPs exceeded plant capacity.

As can be seen from the bar charts, if the CUP storage was used, the only spills expected to occur would be in the Mainstream System. The simulations also show that increasing the McCook reservoir storage capacity from 32,100 acre-feet (CUP capacity) to 70,400 acre-feet would eliminate all spills if the historical conditions were routed through TARP Phase II storage (assuming maximum design capacity for the WRPs). Obviously, by further assuming that the WRPs could not operate at their full maximum design capacities for sustained periods, the required reservoir capacity would be increased. Reservoir storage capacities necessary to eliminate all spills were also simulated for other WRP treatment capacities.

By assuming that the WRPs can operate only up to 90 percent of their maximum design capacities for a sustained period, the following additional storage capacities would be needed to avoid any spills: 72,100 and 3,400 acre-feet for the McCook and Thornton Reservoirs, respectively. This means that the McCook and Thornton Reservoirs would have 104,200 and 18,000 acre-feet of storage capacity to avoid any spills, respectively. By further assuming that the WRPs can operate only at their normal design capacities, then to avoid any spills the McCook and Thornton Reservoirs would have about 139,000 and 23,300 acre-feet, respectively. Table 12 shows the summary of the results for three different WRP operations. If the WRPs could operate at their maximum design capacities under CUP storages (condition 1), the Mainstream would have 52,526 acre-feet of spills. On the other extreme, if the WRPs could operate only at their average design capacities for sustained periods

Figure 11. Number of days with spills at Calumet System

Figure 12. Number of days with spills at Mainstream System

Figure 13. Number of days with spills in the total service area

Volume of Spills at Calumet without TARP

with TARP II

Figure 15. Volume of spills at Mainstream System

Figure 16. Volume of spills in the total service area

(condition 4), the total reservoir storage capacity necessary to avoid any spills would be 162,300 acre-feet (139,000 and 23,300 acre-feet for McCook and Thornton Reservoirs, respectively).

Condition	WRP	Reserv	oir storage c (acre-feet)	apacity	1958-1988 total volume of spills		
Condition	capacity	McCook	Thornton	Total	(acre-feet))	
		WICCOOK	Thornton	Total	Mainstream	Calumet	
1	Max. Design	32,100	14,600	46,700	52,526	0	
2	Max. Design	70,400	14,600	85,000	0	0	
3	90 % Max. Design	104,200	18,000	122,200	0	0	
4	Average Design	139,000	23,300	162,300	0	0	

 Table 12. Reservoir Storage Capacities Necessary to Avoid any Spills with

 Different WRP Treatment Capacities

The following sections summarize and discuss the statistics of TARP's effects on the Lockport flows and the downstream stations on the Illinois River.

EFFECT OF TARP ON FLOWS DOWNSTREAM OF LOCKPORT

The effects of Phases I and II of TARP on flows downstream of Lockport at Marseilles, Kingston Mines, and Meredosia were simulated by using the Illinois River Flow Model with the modified Lockport flows and then compared with the flows representing the conditions without TARP operation. Also included is the summary of TARP's effect on the Lockport flows, the main input to the model. The results of the flow simulations are presented in several formats: flow duration, peak flow, and maximum annual and partial-duration series analyses.

Analysis of Flow Durations

Table 13 shows the changes in the flow durations of the average daily flows due to TARP Phases I and II at Lockport, Marseilles, Kingston Mines, and Meredosia. In general, TARP Phase I operation had an insignificant effect on the flows at any duration. However, the results indicate that TARP Phase II operation had significant effects in lowering the high flows at Lockport, Marseilles, and Kingston Mines, as well as some effect on Meredosia. For example, at Lockport, high flows corresponding to 7 percent and less duration were reduced significantly while the

Probability		Lockport			Marseilles	
of						
exceedance	Without	With	With	Without	With	With
(%)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
99	1841	1842	1842	3373	3373	3373
98	1938	1942	1943	3603	3603	3603
97	2012	2014	2015	3725	3725	3725
96	2079	2082	2085	3846	3844	3844
95	2134	2137	2139	3977	3977	3977
94	2181	2185	2187	4082	4082	4082
93	2221	2228	2230	4205	4205	4205
92	2263	2268	2271	4297	4299	4299
91	2305	2307	2310	4374	4375	4375
90	2339	2340	2344	4443	4445	4448
85	2508	2515	2521	4818	4822	4824
80	2674	2682	2700	5153	5162	5164
75	2821	2834	2860	5506	5513	5523
70	2961	2979	3028	5838	5844	5859
65	3112	3140	3183	6195	6206	6223
60	3249	3275	3318	6566	6582	6593
55	3362	3398	3447	6984	6993	7010
50	3479	3530	3624	7485	7497	7507
45	3657	3727	3789	8126	8135	8137
40	3800	3863	3917	8805	8804	8818
35	3927	3989	4044	9609	9575	9602
30	4051	4149	4200	10587	10583	10599
25	4220	4339	4388	11804	11796	11828
20	4440	4585	4618	13356	13317	13437
15	4764	4900	4929	15671	15612	15750
10	5231	5322	5350	18494	18550	18612
9	5394	5432	5450	19198	19234	19313
8	5549	5560	5553	19971	19949	20016
7	5776	5684	5666	21097	21121	21121
б	6044	5858	5817	22185	22223	22228
5	6543	6086	5998	23783	23861	23853
4	7288	6336	6221	25629	25637	25572
3	7709	6814	6553	28182	28131	27857
2	8468	7436	6939	32316	32027	31553
1	9766	9447	7820	39696	39503	38403

Table 13. Comparison of Flow Duration Values (cfs) at Lockport, Marseilles, Kingston Mines, and Meredosia, Due to TARP Phases I and II

Probability		Lockport			Marseilles	
of						
exceedance	Without	With	With	Without	With	With
(왕)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
99	4104	4104	4104	4681	4681	4681
98	4401	4401	4401	4963	4963	4963
97	4655	4655	4655	5238	5235	5235
96	4813	4813	4813	5510	5509	5509
95	4956	4955	4955	5732	5729	5729
94	5100	5099	5099	5915	5913	5913
93	5262	5262	5263	6180	6180	6180
92	5420	5420	5420	6398	6398	6396
91	5549	5549	5551	6526	6524	6522
90	5667	5666	5665	6658	6661	6659
85	6203	6205	6206	7516	7518	7514
80	6683	6684	6682	8341	8336	8336
75	7345	7344	7347	9487	9479	9475
70	8064	8060	8067	10952	10948	10951
65	8860	8865	8872	12301	12303	12329
60	9809	9808	9815	13868	13861	13879
55	10824	10831	10837	15419	15419	15420
50	11988	11986	11995	17066	17074	17089
45	13192	13191	13230	19094	19083	19112
40	14739	14740	14748	21463	21472	21471
35	16523	16492	16499	24037	24046	24051
30	18251	18262	18254	26695	26686	26688
25	20312	20279	20290	30163	30162	30178
20	23227	23249	23260	33896	33890	33905
15	26530	26541	26563	38493	38494	38514
10	31239	31239	31318	46705	46704	46742
9	32311	32296	32293	48873	48869	48951
8	33647	33674	33700	51538	51476	51461
7	35143	35143	35174	54174	54171	54202
6	37007	37021	37068	57020	57024	57033
5	39179	39220	39247	60047	59981	60007
4	41584	41586	41670	63690	63716	63692
3	45201	45262	45149	69029	69070	68988
2	49651	49709	49570	76270	76330	76297
1	58258	58317	57553	86676	86714	86604

medium flows (between 10 and 80 percent duration) increased. Similarly, at Marseilles, flows corresponding to 4 percent or less duration were reduced, and the flows between 5 and 85 percent duration increased slightly. These effects were attenuated further downstream to Kingston Mines and Meredosia.

Analysis of Peak Flows

The impact of TARP operation on reducing the extreme flows was also investigated. For this purpose, the highest 75 daily flows that had occurred during the period of analysis (1958 - 1988) were identified and sorted in descending order for Lockport, Marseilles, Kingston Mines, and Meredosia stations. The year and the day of these flows were also identified. A procedure was developed to filter out the secondary (or pseudo) peaks that may occur within the hydrograph by finding the maximum flow inside a time window with a variable width (say, seven days), and checking if this maximum flow is actually a peak having a rise and a fall. If the requirements are satisfied, the maximum flow is accepted as a peak; otherwise it is rejected, and the time window is shifted one day forward to search for another peak. By changing the window size and the minimum duration of the rise and fall period of the hydrograph, the variability in the peak data can be modified. Tables 14-17 show the reduction of the peak flow values for the highest 75 peak values for Lockport, Marseilles, Kingston Mines, and Meredosia, with TARP Phases I and II.

Analysis of the peaks indicates that TARP Phase II effectively reduces the flood peaks by up to 40 percent (more than 6,000 cfs) at Lockport. At Marseilles, TARP Phase II reduces the peaks by more than 4,000 cfs. Over 20 percent of the peaks at Marseilles were reduced by more than 6 percent. These reductions are attenuated as we move further downstream to Kingston Mines and Meredosia. It is common to find a reduction in peak flows greater than 1,000 cfs at Kingston Mines. These reductions were achieved by assuming that all the WRPs can operate at their maximum design capacity during the high flows.

Another remarkable phenomenon is that most of these peak reductions occur during the spring and early summer seasons, when the risk of flooding is high. Because 55 percent of the peaks identified for Lockport have occurred approximately between March and June (Water Year days 151 through 273), it is obvious that the implementation of TARP Phase II will reduce the flood hazards downstream of Lockport. Similarly, more than 70 percent of the peaks identified for Marseilles, Kingston Mines, and Meredosia also fall in that period. The negative values in

Water	Day	Without TARP	W	ith TARP I		W	ith TARP II	
Year	5	Flow	Flow	А	%Δ	Flow	А	%Δ
1986 1975 1976 1977 1975 1976 1977 1975 1976 1975 1966 1983 1975 1987 1983 1975 1987 1983 1975 1983 1975 1983 1976 1976 1976 1977 1972 1979 1978 1983 1983 1983 1977 1970 1986 19671 1979 1975 1965 1966 1979 1975 1965 1966 1970 1975 1966 1970 1975 1966 1970 1975 1966 1970 1975 1966 1970 1975 1966 1970 1975 1966 1983 1974 1982 1974 1982 1964 1983 1975	$\begin{array}{c} 155\\ 334\\ 157\\ 156\\ 331\\ 336\\ 102\\ 229\\ 208\\ 326\\ 322\\ 318\\ 225\\ 275\\ 201\\ 365\\ 210\\ 184\\ 147\\ 294\\ 357\\ 258\\ 219\\ 252\\ 254\\ 165\\ 170\\ 188\\ 168\\ 295\\ 254\\ 165\\ 170\\ 188\\ 168\\ 295\\ 124\\ 86\\ 273\\ 212\\ 85\\ 194\\ 50\\ 183\\ 278\\ 275\\ 178\\ 75\\ 257\\ 19\\ 180\\ 755\\ 344\\ 82\\ 147\\ 86\\ 264\\ 258\\ 300\\ 125\\ 71\\ 315\\ 241\\ 251\\ 354\\ 196\\ 185\\ 312\\ 272\\ 179\\ 295\\ 299\\ 93\\ 321\\ 232\\ \end{array}$	Flow 16300 16124 16023 15394 15200 15084 15021 14701 14504 14218 14100 14100 13927 13692 13513 13300 13415 13393 13300 13264 13045 12743 12466 12462 12441 12155 11971 1694 11592 11509 11504 11432 11381 11323 11307 11299 11504 11432 11381 11323 11307 11299 11200 11130 10961 10880 10878 10823 10600 10506 10506 10500 10441 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10391 10368 10271 10244 10299 10222 10200 10147 10044 9990 9941 9935 9913 9716 9700 9630 9526 9518	Flow 14402 12780 16023 15394 15125 11740 11677 14581 12080 10874 10809 13920 12910 12616 13600 13415 13150 13201 13300 11801 1423 10993 9560 12349 10068 9190 8877 11971 8526 9334 8570 8282 11109 9976 8248 8202 8138 10300 10414 8030 8050 8917 7723 7762 10022 8329 8290 8018 7855 7409 9841 7752 9198 7462 7635 9913 6994 8427 7466 6898 8427 7464 6998	A 1898 3344 0 0 76 3344 3344 120 2464 3344 3292 3291 7 782 897 0 0 243 102 0 1463 1631 2052 3183 117 2394 3251 3278 0 1463 1631 2052 3183 117 2394 3251 3278 0 3168 2258 2980 3227 396 1456 3123 3121 3169 999 786 3100 2914 2044 3157 3168 2052 3183 3121 3169 999 786 3100 2914 2044 3157 3168 2071 2216 2482 2586 2982 527 2569 2567 2956 2477 2892 792 2479 2300 0 2732 254 2732 254 2732 254 2732 254 2732 2554 2732 254 2752 2756 2752 2756 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772 2762 2772	$\begin{array}{c} \%\Delta \\ 11.6 \\ 20.7 \\ 0.0 \\ 0.5 \\ 22.2 \\ 22.3 \\ 0.8 \\ 16.9 \\ 23.5 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.3 \\ 23.4 \\ 12.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 11.0 \\ 12.5 \\ 15.7 \\ 25.0 \\ 0.0 \\ 27.9 \\ 26.1 \\ 27.0 \\ 0.0 \\ 27.9 \\ 26.6 \\ 18.6 \\ 29.0 \\ 28.6 \\ 7.4 \\ 21.1 \\ 23.6 \\ 28.0 \\ 8.8 \\ 7.0 \\ 27.9 \\ 26.6 \\ 18.6 \\ 29.0 \\ 28.6 \\ 7.4 \\ 21.1 \\ 23.6 \\ 28.9 \\ 24.2 \\ 29.7 \\ 27.6 \\ 22.8 \\ 74.9 \\ 23.2 \\ 0.0 \\ 28.6 \\ 13.3 \\ 23.2 \\ 28.4 \\ 21.7 \\ 27.6 \\ 22.8 \\ 74.9 \\ 23.2 \\ 0.0 \\ 28.6 \\ 13.3 \\ 23.2 \\ 28.4 \\ 21.7 \\ 27.4 \\ 19.8 \\ 26.5 \end{array}$	$\begin{array}{r} Flow\\ & 9636\\ 9692\\ 9585\\ 9294\\ 11800\\ 9295\\ 9502\\ 9060\\ 9004\\ 8909\\ 9323\\ 9319\\ 8843\\ 9319\\ 9098\\ 8840\\ 8568\\ 9048\\ 8410\\ 8568\\ 9048\\ 8410\\ 8521\\ 8270\\ 8175\\ 8076\\ 8292\\ 8031\\ 11215\\ 7760\\ 7690\\ 8570\\ 7757\\ 7764\\ 7857\\ 7757\\ 7764\\ 7857\\ 7757\\ 7764\\ 7857\\ 7757\\ 7764\\ 7857\\ 7757\\ 7764\\ 7857\\ 7757\\ 7766\\ 7637\\ 8831\\ 7705\\ 7646\\ 8050\\ 8223\\ 7398\\ 7486\\ 7909\\ 7659\\ 8193\\ 8018\\ 7855\\ 7646\\ 8050\\ 8223\\ 7398\\ 7486\\ 7909\\ 7659\\ 8193\\ 8018\\ 7855\\ 7646\\ 8050\\ 8253\\ 7752\\ 7201\\ 7462\\ 7635\\ 8355\\ 6994\\ 7446\\ 6898\\ 7475\\ 7464\\ 6923\\ 7644\\ 6923\\ 7644\\ 6923\\ 7644\\ 6998\\ \end{array}$	A 66664 6432 6438 6100 3400 5789 5519 5641 5540 5309 4786 4781 5084 4373 4415 4650 4847 4345 4893 4816 4096 4126 4524 4473 4291 4387 4129 2980 3852 3747 3678 3597 3670 2468 3495 3484 2914 2313 2482 2982 3108 2911 2657 2956 2479 2300 1558 2796 2479 2300 1558 2796 2473 2657 2673 2607 26	$\begin{array}{c} \% \Delta \\ \\ 40.9 \\ 39.9 \\ 40.2 \\ 39.6 \\ 22.4 \\ 38.4 \\ 36.7 \\ 38.4 \\ 38.1 \\ 37.3 \\ 33.9 \\ 36.5 \\ 31.9 \\ 32.7 \\ 34.4 \\ 36.1 \\ 32.4 \\ 36.8 \\ 30.9 \\ 31.6 \\ 34.7 \\ 35.1 \\ 34.4 \\ 35.2 \\ 31.8 \\ 32.5 \\ 21.8 \\ 33.5 \\ 32.6 \\ 32.2 \\ 31.0 \\ 31.8 \\ 32.5 \\ 21.8 \\ 32.6 \\ 22.8 \\ 27.9 \\ 24.9 \\ 23.2 \\ 15.7 \\ 28.4 \\ 21.7 \\ 23.2 \\ 28.4 \\ 21.7 \\ 23.2 \\ 28.4 \\ 21.7 \\ 27.4 \\ 19.8 \\ 26.5 \\ \end{array}$
1978 1977	352 312 261	9377 9376 9360	7623 7008 7300	1754 2368 2060	18.7 25.3 22.0	7623 7008 7300	1754 2368 2060	18.7 25.3 22.0

Table 14.Reduction in Peak Daily Flows at Lockport
Due to Phases I and II of TARP

Notes: Days begin on October 1, Δ = Flow without TARP - Flow with TARP, and $\Delta A = (\Delta + Flow without TARP) \times 100$.

Water	Dav	Without TARP	W	ith TARP I		W	ith TARP II	-
Year	5	Flow	Flow	Δ	%Δ	Flow	Δ	%Δ
Year 1983 1970 1979 1974 1985 1986 1976 1979 1973 1985 1981 1982 1979 1968 1973 1981 1982 1979 1968 1973 1981 1982 1975 1967 1959 1967 1959 1967 1959 1967 1959 1967 1959 1967 1975 1966 1975 1978 1975 1976 1979 1978 1977 1978 1977 1978 1977 1978 1977 1978 1978 1978 1978 1978 1978 1977 1978	Day 65 227 159 234 164 148 51 158 171 92 156 257 215 205 228 126 271 257 247 137 185 145 103 185 211 173 120 182 4 361 210 183 87 259 173 288 146 276 197 46 257 173 288 146 257 173 288 146 210 183 877 259 173 288 146 210 183 877 259 173 288 146 210 183 877 259 173 288 146 252 138 145 201 242 164 145 877 332 200 1477 208 123 216 226 267 180 221 209 76 211 190 326	I AKPFlow 98191 78714 70371 64492 63519 61259 60765 59783 59214 58818 58014 57977 57064 56623 55909 54402 54193 52152 50444 48336 47524 47327 45530 45210 4017 43949 43358 43254 42954 42954 42954 42954 42954 42954 42954 42954 42954 42954 42953 45210 40386 40106 39836 39421 39091 38898 38606 38323 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38238 38242 34403 34008 33498 32033 31289		$\begin{array}{c} \Delta \\ \\ \hline \Delta \\ \\ 248 \\ 866 \\ 19 \\ -93 \\ 802 \\ 301 \\ 301 \\ 19 \\ 5 \\ 1266 \\ 218 \\ 1437 \\ 6 \\ 407 \\ 889 \\ 188 \\ 626 \\ 39 \\ 677 \\ 367 \\ -66 \\ -26 \\ 693 \\ 511 \\ 1363 \\ 1298 \\ 666 \\ 834 \\ 31 \\ 174 \\ 16 \\ 62 \\ 382 \\ 1326 \\ 225 \\ 1060 \\ 1246 \\ 834 \\ 315 \\ 2879 \\ 915 \\ 0 \\ 884 \\ 315 \\ 2879 \\ 915 \\ 0 \\ 564 \\ 577 \\ 1318 \\ 1455 \\ 142 \\ 0 \\ 588 \\ -1 \\ 267 \\ 314 \\ 558 \\ -29 \\ 182 \\ 940 \\ -467 \\ 665 \\ 54 \\ 967 \\ -97 \\ 236 \\ 191 \\ 299 \\ 89 \end{array}$	$\begin{array}{c} \%\Delta \\ 0.3 \\ 1.1 \\ 0.0 \\ -0.1 \\ 1.3 \\ 0.5 \\ 0.5 \\ 0.0 \\ 0.2 \\ 0.4 \\ 2.5 \\ 0.0 \\ 0.7 \\ 1.6 \\ 0.3 \\ 1.2 \\ 0.1 \\ 1.3 \\ 0.8 \\ -0.1 \\ -0.1 \\ 1.5 \\ 0.1 \\ 3.0 \\ 2.9 \\ 1.5 \\ 1.3 \\ 0.0 \\ 0.4 \\ 0.0 \\ 0.1 \\ 0.9 \\ 3.2 \\ 0.5 \\ 2.6 \\ 3.0 \\ 0.2 \\ 0.2 \\ 0.8 \\ 0.0 \\ 2.3 \\ 0.0 \\ 1.5 \\ 1.5 \\ 3.5 \\ 3.8 \\ 0.4 \\ 0.0 \\ 0.1 \\ 0.9 \\ 3.5 \\ 3.8 \\ 0.4 \\ 0.0 \\ 0.1 \\ 0.5 \\ 2.8 \\ -1.4 \\ 2.0 \\ 0.2 \\ 3.0 \\ 0.7 \\ 0.6 \\ 1.0 \\ 0.7 \\ 0.6 \\ 0.3 \\ 0.7 \\ 0.6 \\ 0.3 \\ 0.7 \\ 0.6 \\ 0.3 \\ 0.0 \\ 0.3 \\ 0.7 \\ 0.6 \\ 0.3 \\ 0.0 \\ 0.3 \\ 0.0 \\ 0.3 \\ 0.0 \\ 0.$		$\begin{array}{c} \Delta \\ \\ \hline \Delta \\ \\ 4625 \\ 2085 \\ 3492 \\ 2572 \\ 1363 \\ 2475 \\ 1806 \\ 3968 \\ 663 \\ 1324 \\ 3231 \\ 2630 \\ 1435 \\ 1020 \\ 4084 \\ 2166 \\ 1310 \\ 449 \\ 715 \\ 367 \\ -66 \\ 87 \\ 693 \\ 4092 \\ 1363 \\ 4092 \\ 1363 \\ 4092 \\ 1363 \\ 4092 \\ 1363 \\ 4055 \\ 2916 \\ 834 \\ 358 \\ 2955 \\ 1052 \\ 3780 \\ 225 \\ 1793 \\ 1602 \\ 1246 \\ 0 \\ 1571 \\ 3506 \\ 730 \\ 1536 \\ 3619 \\ 0 \\ 592 \\ 577 \\ 2552 \\ 3442 \\ 831 \\ 0 \\ 0 \\ 2268 \\ -1 \\ 1421 \\ 1943 \\ 558 \\ -29 \\ 1226 \\ 2677 \\ 85 \\ 519 \\ 988 \\ 5031 \\ -97 \\ 738 \\ 602 \\ 299 \\ 208 \end{array}$	$\begin{array}{c} \% \Delta \\ 4.7 \\ 2.6 \\ 5.0 \\ 4.0 \\ 2.1 \\ 4.0 \\ 3.0 \\ 6.6 \\ 1.1 \\ 2.3 \\ 5.6 \\ 4.5 \\ 2.5 \\ 1.8 \\ 7.3 \\ 4.0 \\ 2.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.4 \\ 0.9 \\ 1.5 \\ 1.5 \\ 0.0 \\ 3.0 \\ 9.2 \\ 0.5 \\ 4.4 \\ 3.9 \\ 9.2 \\ 0.5 \\ 4.4 \\ 3.9 \\ 9.2 \\ 0.5 \\ 4.4 \\ 3.9 \\ 9.2 \\ 0.0 \\ 1.5 \\ 1.5 \\ 6.7 \\ 9.0 \\ 2.2 \\ 0.0 \\ 6.6 \\ 1.9 \\ 0.0 \\ 3.9 \\ 9.2 \\ 0.0 \\ 1.5 \\ 1.5 \\ 6.7 \\ 9.0 \\ 2.2 \\ 0.0 \\ 6.6 \\ 1.9 \\ 0.0 \\ 3.9 \\ 9.4 \\ 0.0 \\ 3.9 \\ 9.4 \\ 0.0 \\ 1.5 \\ 1.5 \\ 6.7 \\ 9.0 \\ 2.2 \\ 0.0 \\ 6.6 \\ 1.9 \\ 0.0 \\ 3.9 \\ 9.4 \\ 0.0 \\ 1.5 \\ 1.5 \\ 6.7 \\ 9.0 \\ 2.2 \\ 0.0 \\ 6.6 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0.3 \\ 1.5 \\ 1.5 \\ 0.3 \\ 1.5 \\ 1.5 \\ 0.7 \\ 1.5 \\ 0.3 \\ 1.5 \\ 0.3 \\ 1.9 \\ 0.7 \\ 0.3 \\ 1.9 \\ 0.7 \\$
1970 1987 1987 1970 1984	203 232 331 213 180	30928 30293 30262 30229 29680	30202 29673 29942 29027 30346	726 620 320 1202 -666	2.3 2.0 1.1 4.0 -23	30202 28697 27735 27823 30289	726 1596 2527 2406 -609	2.3 5.3 8.4 8.0

Table 15. Reduction in Peak Daily Flows at LockportDue to Phases I and II of TARP

Notes: Days begin on October 1, Δ = Flow without TARP - Flow with TARP, and % Δ = (Δ + Flow without TARP) x 100.

Water	Dav	Without TARP				W	ith TARP II	
Year	2 4	Flow	Flow	Δ	%Δ	Flow	Δ	%Δ
1983 1979 1979 1979 1979 1979 1979 1979 1970 1973 1974 1983 1974 1983 1976 1974 1983 1976 1973 1983 1976 1973 1983 1987 1973 1980 1987 1973 1988 1987 1973 1988 1974 1984 1984 1974 1984 1984 1973 1982 1973 1968 1974 1973 1968 1974 1973 1969 1973 1975 1970 1969 1978 1969 1978 1970 1975 1970 1975 1970 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1978 1976 1975 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1976 1975 1976 1975 1976 1975 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1975 1978 1976 1978 1976 1978 1978 1976 1978	$\begin{array}{c} 68\\ 176\\ 183\\ 172\\ 158\\ 162\\ 197\\ 54\\ 230\\ 207\\ 237\\ 176\\ 198\\ 160\\ 268\\ 217\\ 230\\ 216\\ 96\\ 187\\ 202\\ 250\\ 7\\ 186\\ 89\\ 228\\ 180\\ 63\\ 123\\ 254\\ 261\\ 244\\ 183\\ 129\\ 143\\ 264\\ 149\\ 123\\ 254\\ 261\\ 244\\ 183\\ 129\\ 143\\ 264\\ 149\\ 192\\ 213\\ 216\\ 260\\ 270\\ 249\\ 143\\ 264\\ 149\\ 192\\ 213\\ 216\\ 125\\ 260\\ 270\\ 249\\ 194\\ 191\\ 203\\ 164\\ 206\\ 49\\ 274\\ 149\\ 191\\ 203\\ 164\\ 206\\ 49\\ 274\\ 149\\ 191\\ 203\\ 164\\ 206\\ 49\\ 274\\ 149\\ 191\\ 203\\ 164\\ 229\\ 144\\ 149\\ 192\\ 75\\ 223\\ 228\\ 364\\ 229\\ 140\\ 291\\ 204\\ 214\\ 251\\ 264\\ 322\\ \end{array}$	Flow 94770 83820 78959 77997 74271 73510 73279 70570 70570 70570 68457 67174 64278 63670 61972 59174 57462 56013 54586 54081 53729 53266 52814 52161 51418 51115 50135 50113 49774 49576 49251 48433 48283 47772 47088 47007 46596 46499 46369 46050 44987 44672 44085 43943 43771 43299 43135 41875 41484 40945 40799 40356 40129 39798 39750 39059 38827 38501 37219 36614 36064 36042	Flow 94609 83840 78710 77922 74075 73366 73031 70451 70327 68180 67177 64319 63616 61862 59127 57260 56052 54474 53811 63645 53212 62920 52127 51223 50751 49909 50319 49885 49701 48808 48178 47562 47072 46975 46515 46043 45919 44975 46105 44556 43822 43948 43796 43335 4209 41935 41370 41465 41039 40639 40215 40141 39664 39721 39167 38827 38490 38133 38134 37721 37596 37603 371234 36618 36317 36232 36137	$\begin{array}{c c} \Delta \\ \hline \\ 161 \\ -20 \\ 249 \\ 75 \\ 196 \\ 144 \\ 248 \\ 119 \\ 240 \\ 277 \\ -3 \\ -41 \\ 54 \\ 110 \\ 47 \\ 202 \\ -39 \\ 112 \\ 270 \\ 84 \\ 54 \\ -106 \\ 34 \\ 195 \\ 364 \\ 226 \\ -206 \\ -111 \\ -125 \\ 364 \\ 226 \\ -206 \\ -111 \\ -125 \\ 364 \\ 226 \\ -206 \\ -111 \\ -125 \\ 364 \\ 226 \\ -206 \\ -111 \\ -125 \\ 365 \\ 105 \\ 210 \\ 16 \\ 32 \\ 2 \\ -16 \\ 326 \\ 131 \\ 12 \\ -148 \\ 116 \\ 263 \\ -5 \\ -5 \\ -5 \\ -36 \\ -74 \\ -12 \\ 134 \\ 29 \\ -108 \\ 0 \\ 141 \\ -12 \\ 134 \\ 29 \\ -108 \\ 0 \\ 141 \\ -12 \\ 134 \\ 29 \\ -108 \\ 0 \\ 111 \\ 74 \\ -23 \\ 199 \\ 94 \\ -2 \\ 150 \\ -15 \\ -4 \\ 194 \\ 87 \\ -93 \\ 141 \\ -68 \\ -75 \\ \end{array}$	$\begin{tabular}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$	Flow 92364 83531 78455 76895 72661 71606 72822 69840 69999 67979 65851 64319 62791 60051 59057 56790 55816 54271 53685 53646 52963 52891 50948 51223 50384 49016 50007 50191 49280 48247 47771 47771 47878 47059 46975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 46503 45276 45982 44975 45982 44975 45982 43464 43293 41465 41049 40605 40040 40141 39721 39170 38827 38091 38133 38199 37734 36618 35746 36154 36368 35979 36002 36169	$\begin{array}{c c} \Delta \\ \hline \\ 2406 \\ 289 \\ 504 \\ 1102 \\ 1610 \\ 1904 \\ 457 \\ 730 \\ 568 \\ 478 \\ 1323 \\ -41 \\ 879 \\ 1921 \\ 117 \\ 672 \\ 197 \\ 315 \\ 396 \\ 84 \\ 303 \\ -77 \\ 1213 \\ 195 \\ 731 \\ 119 \\ 106 \\ -417 \\ 296 \\ 1004 \\ 686 \\ 512 \\ -106 \\ 29 \\ 32 \\ -1 \\ 41093 \\ 68 \\ 12 \\ -148 \\ 843 \\ 621 \\ -9 \\ -25 \\ -197 \\ -158 \\ 68 \\ 12 \\ -148 \\ 843 \\ 621 \\ -9 \\ -25 \\ -197 \\ -158 \\ 68 \\ 12 \\ -106 \\ 29 \\ 32 \\ -1 \\ 194 \\ 316 \\ -12 \\ 297 \\ 29 \\ -104 \\ 194 \\ 316 \\ -12 \\ 297 \\ 29 \\ -104 \\ 194 \\ 316 \\ -12 \\ 297 \\ 29 \\ -104 \\ 194 \\ 316 \\ -12 \\ 297 \\ 29 \\ -111 \\ 0 \\ 410 \\ 74 \\ -88 \\ 601 \\ -216 \\ -2 \\ 616 \\ -15 \\ -4 \\ 765 \\ -15 \\ -4 \\ 765 \\ -15 \\ -4 \\ 765 \\ -15 \\ -4 \\ 765 \\ -15 \\ -4 \\ 765 \\ -131 \\ 124 \\ 62 \\ -127 \\ \end{array}$	$\begin{array}{c} \mbox{\%}\Delta\\ 2.5\\ 0.3\\ 0.6\\ 1.4\\ 2.2\\ 2.6\\ 0.6\\ 1.0\\ 0.8\\ 0.7\\ 2.0\\ -0.1\\ 1.4\\ 3.1\\ 0.2\\ 1.2\\ 0.4\\ 0.6\\ 0.7\\ 0.2\\ 0.6\\ -0.1\\ 2.3\\ 0.4\\ 1.4\\ 2.2\\ 0.2\\ 0.6\\ -0.1\\ 2.3\\ 0.4\\ 1.4\\ 2.2\\ 0.2\\ 0.6\\ 0.7\\ 0.2\\ 0.6\\ 0.7\\ 0.2\\ 0.6\\ 0.7\\ 0.1\\ 0.0\\ 2.4\\ 0.1\\ 0.0\\ 0.0\\ 2.4\\ 0.1\\ 0.0\\ 0.0\\ 2.4\\ 0.1\\ 0.0\\ 0.0\\ 2.4\\ 0.1\\ 0.0\\ 0.0\\ 2.4\\ 0.1\\ 0.0\\ 0.0\\ 2.3\\ 0.0\\ 0.5\\ 0.8\\ 0.0\\ 0.7\\ 0.1\\ 0.2\\ -0.2\\ 1.6\\ 0.0\\ 0.0\\ 2.1\\ 0.5\\ -0.4\\ 0.3\\ 0.2\\ -0.4\\ 0.3\\ 0.2\\ -0.4\\ 0.2\\ 0.2\\ -0.4\\ 0.2\\ 0.2\\ -0.4\\ 0.3\\ 0.2\\ -0.4\\ 0.2\\ 0.2\\ -0.4\\ 0.3\\ 0.2\\ -0.4\\ 0.2\\ 0.2\\ -0.4\\ 0.3\\ 0.2\\ -0.4\\ 0.2\\ 0.2\\ -0.4\\ 0.3\\ 0.2\\ -0.4\\ 0.2\\ -0.4\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3$
1981 1959	200	35941 35762	35926 35771	15	0.0	35900 35771	41	$0.1 \\ 0.0$

Table 16.Reduction in Peak Daily Flows at Lockport
Due to Phases I and II of TARP

Notes: Days begin on October 1, Δ = Flow without TARP - Flow with TARP, and % Δ = (Δ + Flow without TARP) x 100.

Water	Day	Without TARP	Wi	th TARP I		Wi	th TARP II	
Year		Flow	Flow	Δ	%Δ	Flow	Δ	%Δ
Water Year 1985 1979 1973 1979 1973 1979 1974 1982 1986 1962 1986 1974 1974 1979 1974 1979 1974 1979 1974 1979 1974 1979 1973 1960 1983 1982 1973 1960 1983 1984 1968 1959 1970 1983 1984 1968 1973 1976 1977 1981 1985 1966 1973 1978 1974 1975 1981 1975 1984 1965 1984 1965	Day	$\begin{array}{r} TARP \\ \hline Flow \\ \hline 112707 \\ 108814 \\ 108751 \\ 108661 \\ 106680 \\ 106685 \\ 104978 \\ 102692 \\ 91046 \\ 90137 \\ 88544 \\ 88088 \\ 86822 \\ 86329 \\ 85793 \\ 85205 \\ 83962 \\ 83066 \\ 81622 \\ 78485 \\ 77932 \\ 76730 \\ 75308 \\ 75222 \\ 74443 \\ 73446 \\ 71050 \\ 70651 \\ 69781 \\ 69781 \\ 69483 \\ 67075 \\ 66460 \\ 66403 \\ 66295 \\ 66131 \\ 63815 \\ 63649 \\ 63501 \\ 62895 \\ 62137$	Wi Flow 112634 108726 108649 108639 106773 106842 104971 102666 91097 90136 88483 87961 86966 86466 85707 85161 83884 82982 81565 78417 77856 76760 75287 75180 74330 73427 71169 70593 69888 69811 67045 66428 66348 66292 66348 66348 66292 66348 66348 66292 66348 66348 66292 66348 66348 66292 66348 66348 66292 66348 66348 66292 66348 66348 66292 66348 66348 66348 66292 66388 66348 66348 66292 66388 66348 66292 66388 66348 66348 66292 66381 67045 56428 66348 66292 66388 57555 57542 57542 57542 57542 57542 57542 57542 57585 54549 54188 53127	th TARP I Δ 73 88 102 222 107 -157 7 26 -51 1 61 127 -84 -137 86 44 78 84 -137 86 44 78 84 -137 86 44 78 84 -137 86 44 78 84 -137 86 44 78 84 -137 86 44 78 84 -137 86 44 78 84 -137 -84 -30 -28 30 32 21 42 113 19 -119 58 -94 -30 -28 30 32 55 3 49 99 -48 0 -39 -50 -6 -36 129 -92 -68 67 -2 -2 -48 -3 -31 -62 -2 -1 102 -41 -25 -66 72	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Wi Flow 111750 108394 107557 108164 106680 100794 105150 102034 90821 90136 87715 87860 87068 86034 85989 84866 83921 82978 81565 78417 77752 75287 74241 74174 73288 70953 69886 69810 69511 6730 66106 66292 660106 66292 660106 62933 62274 61373 60974 58985 58867 58138 57603 57437 57412 57376 54	th TARP II $\begin{tabular}{ c c c c } \hline \Delta & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \%\Delta \\ \\ 0.8 \\ 0.4 \\ 1.1 \\ 0.5 \\ 0.2 \\ -0.1 \\ -0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.3 \\ -0.2 \\ 0.3 \\ -0.2 \\ 0.3 \\ -0.2 \\ 0.3 \\ -0.2 \\ 0.3 \\ -0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 1.1 \\ -0.3 \\ 0.0 \\ 0.$
1965 1972 1974 1961 1968 1975 1961 1975 1967 1969 1964 1973 1966 1958 1976 1969 1958	$210 \\ 212 \\ 198 \\ 363 \\ 88 \\ 214 \\ 227 \\ 220 \\ 189 \\ 206 \\ 212 \\ 253 \\ 216 \\ 295 \\ 212 \\ 284 \\ 312 \\ $	53199 53144 53110 52709 52229 51783 50560 49404 48621 48487 48351 48308 48003 47801 47557 46690 45695	53127 53200 53108 52602 52146 51706 50563 49487 48476 48468 48354 48363 47971 47806 47398 46701 45696	-56 2 107 83 77 -3 -83 145 19 -3 -55 32 -5 159 -11 -1	$\begin{array}{c} 0.1 \\ -0.1 \\ 0.0 \\ 0.2 \\ 0.1 \\ 0.0 \\ -0.2 \\ 0.3 \\ 0.0 \\ 0.0 \\ -0.1 \\ 0.1 \\ 0.0 \\ 0.3 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	53127 53206 53150 52554 52146 51307 50563 49420 48119 48468 48354 48369 47844 47806 46989 46701 45696	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} 0.1 \\ -0.1 \\ -0.1 \\ 0.3 \\ 0.2 \\ 0.9 \\ 0.0 \\ 1.0 \\ 0.0 \\ 0.0 \\ -0.1 \\ 0.3 \\ 0.0 \\ 1.2 \\ 0.0 \\ 0.$

Table 17. Reduction in Peak Daily Flows at LockportDue to Phases I and II of TARP

Notes: Days begin on October 1, Δ = Flow without TARP - Flow with TARP, and $\Delta = (\Delta + \text{Flow without TARP}) \times 100$. tables 14 - 17 indicate that those peaks were preceded by higher peaks and thus the reservoirs were being emptied at large rates at that time.

Analysis of Maximum Annual and Partial-Duration Series

Annual high flow series were developed to investigate the changes in the flood frequency and flood durations at Lockport, Marseilles, Kingston Mines, and Meredosia due to TARP operations. Generally, annual series refer to the maximum daily (or instantaneous) flow in each year. Partial duration series refer to the maximum daily flows averaged over a given duration (e.g., 7 or 15 days) in each year. While the annual series gives an indication of the intensity and probability of a single extreme event, the partial-duration series can give information about the duration of such extreme events. Partial-duration series were developed for 7-, 15-, and 31-day maximum flows (MFs). To simplify the terminology, we will also refer to the annual series as 1-day maximum flows (1-day MFs).

All these series were generated for the period of Water Years 1953 - 1988. After the series were generated, they were sorted in descending order and assigned a probability of exceedance. If there are n years of record, the probability P of the event with order m (m being 1 for the largest and n for the smallest event in n years of record) is given by

$$P = \frac{m}{n+1}$$
(31)

and the expected return period of that event, in years is T = 1/P.

Tables 18 - 21 summarize the results of the maximum flow series analyses. The 1-, 7-, 15-, and 31-day high-flow series have been generated without TARP and with TARP Phases I and II at Lockport, Marseilles, Kingston Mines, and Meredosia. These tables show the high flows for the selected probability values (upper portion of the tables), and for the selected return periods (lower portion of the tables). In these tables the flows corresponding to more than 50 percent exceedance (i.e., high flows that are exceeded 50 percent of the time or more, or 2-yr flow) should not be considered as high flows. It is normal for flows at lower return periods than a 2-yr flow to slightly increase as a result of TARP operation because TARP is expected to reduce the flows with high return period and shift these to flows with lower return periods. Computer integer approximation of the flow values also caused some of the minor increases of these flows in these tables. Figures 17 - 20 show the flows

Table 18. Summary of High Flows at Lockport without TARP and with TARP Phases I and II for Selected Durations and Return Periods

Probability		1-day			7-day	
of						
exceedance	Without	With	With	Without	With	With
(%)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
3	19202	18322	16805	11415	11178	9712
5	17060	16625	13111	11099	10748	8536
10	16074	15260	10710	10796	10393	7852
15	15409	14536	9678	10226	9826	7594
20	15200	13920	9585	9827	9670	7237
30	14018	12146	9232	7500	7344	6554
40	13054	10817	8843	7224	6991	6449
50	11436	9678	7970	6988	6837	6347
60	10964	8570	7705	6718	6444	6191
70	9661	7942	7463	6452	6213	5991
80	9090	7455	6968	6031	5962	5813
90	8194	6913	6904	5371	5255	5249
95	8025	6795	6773	5072	5067	5067
97	7897	6478	6477	4906	4906	4906
35-yr flow	19352	18441	17064	11437	11208	9794
30-yr flow	18845	18039	16190	11362	11106	9516
25-yr flow	18131	17474	14958	11257	10963	9124
10-yr flow	16074	15260	10710	10796	10393	7852
5-yr flow	15200	13920	9585	9827	9670	7237
2-yr flow	11436	9678	7970	6988	6837	6347
· · · · · · · · · · · · · · · · · · ·						
Probability		15-dav			31-day	
Probability		15-day			31-day	
Probability of exceedance	Without	15-day With	With	Without	31-day With	With
Probability of exceedance	Without	15-day With TARPI	With TARPII	Without TARP	31-day With TARPI	With TARPII
Probability of exceedance (%) 3	Without TARP 9676	15-day With TARPI 9669	With TARPII 9602	Without TARP 9598	31-day With TARP I 9593	With TARPII 9524
Probability of exceedance (%) 3 5	Without TARP 9676 9023	15-day With TARPI 9669 8910	With TARPII 9602 7893	Without TARP 9598 8041	31-day With TARP I 9593 7961	With TARPII 9524 7363
Probability of exceedance (%) 3 5 10	Without TARP 9676 9023 8465	15-day With TARPI 9669 8910 8295	With TARPII 9602 7893 7037	Without TARP 9598 8041 6630	31-day With TARP I 9593 7961 6615	With TARPII 9524 7363 6324
Probability of exceedance (%) 3 5 10 15	Without TARP 9676 9023 8465 7771	15-day With TARPI 9669 8910 8295 7570	With TARPII 9602 7893 7037 6560	Without TARP 9598 8041 6630 6432	31-day With TARP I 9593 7961 6615 6365	With TARPII 9524 7363 6324 6051
Probability of exceedance (%) 3 5 10 15 20	Without TARP 9676 9023 8465 7771 7487	15-day With TARPI 9669 8910 8295 7570 7416	With TARPII 9602 7893 7037 6560 6353	Without TARP 9598 8041 6630 6432 6244	31-day With TARPI 9593 7961 6615 6365 6365 6177	With TARPII 9524 7363 6324 6051 5840
Probability of exceedance (%) 3 5 10 15 20 30	Without TARP 9676 9023 8465 7771 7487 6643	15-day With TARPI 9669 8910 8295 7570 7416 6559	With TARPII 9602 7893 7037 6560 6353 6199	Without TARP 9598 8041 6630 6432 6244 5707	31-day With TARPI 9593 7961 6615 6365 6177 5674	With TARPII 9524 7363 6324 6051 5840 5621
Probability of exceedance (%) 3 5 10 15 20 30 40	Without TARP 9676 9023 8465 7771 7487 6643 6221	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138	With TARPII 9602 7893 7037 6560 6353 6199 5894	Without TARP 9598 8041 6630 6432 6244 5707 5535	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457	With TARPII 9524 7363 6324 6051 5840 5621 5444
Probability of exceedance (%) 3 5 10 15 20 30 40 50	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693	31-day With TARP I 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587 4466	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579 4436	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579 4436	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416 4317	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416 4317	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416 4317
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-vr flow	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587 4466 9722	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579 4436 9722	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579 4436 9722	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416 4317 9707	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416 4317 9707	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416 4317 9675
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587 4466 9722 9567	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579 4436 9722 9542	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579 4436 9722 9317	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416 4317 9707 9338	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416 4317 9707 9321	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416 4317 9675 9164
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587 4466 9722 9567 9350	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579 4436 9722 9542 9290	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579 4436 9722 9317 8748	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416 4317 9707 9338 8819	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416 4317 9707 9321 8777	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416 4317 9675 9164 8444
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow 10-yr flow	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587 4466 9722 9567 9350 8465	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579 4436 9722 9542 9290 8295	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579 4436 9722 9317 8748 7037	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416 4317 9707 9338 8819 6630	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416 4317 9707 9321 8777 6615	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416 4317 9675 9164 8444 6324
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow 10-yr flow 5-yr flow	Without TARP 9676 9023 8465 7771 7487 6643 6221 5914 5702 5608 5326 4805 4587 4466 9722 9567 9350 8465 7487	15-day With TARPI 9669 8910 8295 7570 7416 6559 6138 5871 5696 5475 5326 4805 4579 4436 9722 9542 9290 8295 7416	With TARPII 9602 7893 7037 6560 6353 6199 5894 5713 5583 5444 5326 4805 4579 4436 9722 9317 8748 7037 6353	Without TARP 9598 8041 6630 6432 6244 5707 5535 5350 5284 5061 4693 4499 4416 4317 9707 9338 8819 6630 6244	31-day With TARPI 9593 7961 6615 6365 6177 5674 5457 5312 5274 5041 4684 4498 4416 4317 9707 9321 8777 6615 6177	With TARPII 9524 7363 6324 6051 5840 5621 5444 5250 5108 5026 4654 4498 4416 4317 9675 9164 8444 6324 5840

Table 19. Summary of High Flows at Marseilles without TARP and with TARP Phases I and II for Selected Durations and Return Periods

Probability	1-day			7-day		
of						
exceedance	Without	With	With	Without	With	With
(%)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
3	97753	97474	93204	66933	66691	63920
5	91498	90769	88027	64283	64140	61419
10	74542	74100	71892	54334	54029	53245
15	64250	64120	62097	49835	49762	48061
20	61259	60958	58959	47273	47258	46041
30	58398	57046	55581	41416	41210	40861
40	48644	48347	47590	38109	38106	38106
50	45672	44958	43173	35123	34948	34320
60	43254	42524	40805	30570	30212	29313
70	39612	38840	37590	27806	27878	27185
80	34422	34077	34077	24384	24457	24457
90	26626	26619	26620	22171	22227	22221
95	23256	23217	23198	19513	19583	19584
97	17208	17210	17208	14989	15003	15003
35-yrflow	98191	97943	93566	67118	66869	64094
30-yr flow	96711	96356	92341	66491	66266	63503
25-yr flow	94626	94121	90615	65608	65416	62669
10-yr flow	74542	74100	71892	54334	54029	53245
5-yr flow	61259	60958	58959	47273	47258	46041
2-yr flow	45672	44958	43173	35123	34948	34320
Probability		15-day			31-day	
of		-			-	
exceedance	Without	With	With	Without	With	With
(%)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
3	48843	48707	47843	40970	40897	40131
5	48695	48622	47424	38496	38429	37929
10	43379	43358	42230	31292	31289	31015
15	37576	37601	36549	29637	29594	29034
20	34281	34342	34203	27792	27785	27694
30	31520	31532	31531	25056	25083	25024
40	30428	30447	30285	22248	22254	22204
50	26429	26428	26211	01170	21170	21170
60		20120	20314		211/0	2111/0
70	25649	25670	25180	20046	20046	20046
70	25649 22044	25670 22065	25180 21866	20046 18796	20046 18797	20046 18797
70 80	25649 22044 20810	25670 22065 20820	25180 21866 20820	20046 18796 15880	20046 18797 15884	20046 18797 15880
80 90	25649 22044 20810 17820	25670 22065 20820 17820	2514 25180 21866 20820 17821	21170 20046 18796 15880 14492	20046 18797 15884 14492	20046 18797 15880 14492
80 90 95	25649 22044 20810 17820 16369	25670 22065 20820 17820 16382	25314 25180 21866 20820 17821 16382	21170 20046 18796 15880 14492 12837	20046 18797 15884 14492 12837	20046 18797 15880 14492 12837
90 90 95 97	25649 22044 20810 17820 16369 12763	25670 22065 20820 17820 16382 12772	2514 25180 21866 20820 17821 16382 12772	21170 20046 18796 15880 14492 12837 10717	20046 18797 15884 14492 12837 10717	20046 18797 15880 14492 12837 10717
70 80 90 95 97 35-yr flow	25649 22044 20810 17820 16369 12763 48853	25670 22065 20820 17820 16382 12772 48713	20314 25180 21866 20820 17821 16382 12772 47872	21170 20046 18796 15880 14492 12837 10717 41143	21170 20046 18797 15884 14492 12837 10717 41070	20046 18797 15880 14492 12837 10717 40285
70 80 90 95 97 35-yr flow 30-yr flow	25649 22044 20810 17820 16369 12763 48853 48818	25670 22065 20820 17820 16382 12772 48713 48693	20314 25180 21866 20820 17821 16382 12772 47872 47773	21170 20046 18796 15880 14492 12837 10717 41143 40558	20046 18797 15884 14492 12837 10717 41070 40486	20046 18797 15880 14492 12837 10717 40285 39764
70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow	25649 22044 20810 17820 16369 12763 48853 48818 48769	25670 22065 20820 17820 16382 12772 48713 48693 48664	20314 25180 21866 20820 17821 16382 12772 47872 47872 47773 47633	21170 20046 18796 15880 14492 12837 10717 41143 40558 39733	21170 20046 18797 15884 14492 12837 10717 41070 40486 39663	20046 18797 15880 14492 12837 10717 40285 39764 39030
70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow 10-yr flow	25649 22044 20810 17820 16369 12763 48853 48818 48769 43379	25670 22065 20820 17820 16382 12772 48713 48693 48664 43358	20314 25180 21866 20820 17821 16382 12772 47872 47773 47633 42230	21170 20046 18796 15880 14492 12837 10717 41143 40558 39733 31292	21170 20046 18797 15884 14492 12837 10717 41070 40486 39663 31289	20046 18797 15880 14492 12837 10717 40285 39764 39030 31015
70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow 10-yr flow 5-yr flow	25649 22044 20810 17820 16369 12763 48853 48818 48769 43379 34281	25670 22065 20820 17820 16382 12772 48713 48693 48664 43358 34342	20314 25180 21866 20820 17821 16382 12772 47872 47773 47633 47633 42230 34203	21170 20046 18796 15880 14492 12837 10717 41143 40558 39733 31292 27792	20046 18797 15884 14492 12837 10717 41070 40486 39663 31289 27785	20046 18797 15880 14492 12837 10717 40285 39764 39030 31015 27694

Table 20. Summary of High Flows at Kingston Mines without TARP and with TARP Phases I and II for Selected Durations and Return Periods

Probability		1-day			7-day	
of			_			
exceedance	Without	With	With	Without	With	With
(%)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
3	94232	94080	91930	85436	85270	83664
5	86548	86523	85732	82643	82612	81911
10	76134	75998	74778	72787	72724	71746
15	70569	70420	69959	66257	66237	65854
20	68457	68180	67979	64141	64126	63622
30	58992	58957	57934	55126	55191	54457
40	52161	52127	51565	48959	48995	49015
50	48600	48490	48038	45987	45994	45536
60	43943	43948	43829	41562	41532	41535
70	40467	40268	40048	39223	39290	39081
80	37017	36702	36163	34956	34961	33634
90	25789	25742	25748	24805	24799	24805
95	23257	23200	23202	22631	22625	22629
97	20377	20376	20376	19804	19806	19807
35-yr flow	94770	94609	92364	85631	85456	83787
30-yr flow	92951	92820	90897	84970	84827	83372
25-yr flow	90390	90301	88831	84040	83941	82787
10-yr flow	76134	75998	74778	72787	72724	71746
5-yr flow	68457	68180	67979	64141	64126	63622
2-yr flow	48600	48490	48038	45987	45994	45536
Probability		15-day			31-day	
Probability of		15-day			31-day	
Probability of exceedance	Without	15-day With	With	Without	31-day With	With
Probability of exceedance (%)	Without TARP	15-day With TARPI	With TARPII	Without TARP	31-day With TARPI	With TARPII
Probability of exceedance (%) 3	Without TARP 78669	15-day With TARPI 78656	With TARPII 78330	Without TARP 72182	31-day With TARP I 72157	With TARPII 71569
Probability of exceedance (%) 3 5	Without TARP 78669 73365	15-day With TARPI 78656 73362	With TARPII 78330 72636	Without TARP 72182 61596	31-day With TARPI 72157 61586	With TARPII 71569 61254
Probability of exceedance (%) 3 5 10	Without TARP 78669 73365 66684	15-day With TARPI 78656 73362 66661	With TARPII 78330 72636 65915	Without TARP 72182 61596 55504	31-day With TARPI 72157 61586 55514	With TARPII 71569 61254 55236
Probability of exceedance (%) 3 5 10 15	Without TARP 78669 73365 66684 58706	15-day With TARPI 78656 73362 66661 58738	With TARPII 78330 72636 65915 58634	Without TARP 72182 61596 55504 50665	31-day With TARPI 72157 61586 55514 50671	With TARPII 71569 61254 55236 50540
Probability of exceedance (%) 3 5 10 15 20	Without TARP 78669 73365 66684 58706 57526	15-day With TARPI 78656 73362 66661 58738 57572	With TARPII 78330 72636 65915 58634 56629	Without TARP 72182 61596 55504 50665 48996	31-day With TARPI 72157 61586 55514 50671 49031	With TARPII 71569 61254 55236 50540 49017
Probability of exceedance (%) 3 5 10 15 20 30	Without TARP 78669 73365 66684 58706 57526 49025	15-day With TARPI 78656 73362 66661 58738 57572 49029	With TARPII 78330 72636 65915 58634 56629 48601	Without TARP 72182 61596 55504 50665 48996 42561	31-day With TARPI 72157 61586 55514 50671 49031 42555	With TARPII 71569 61254 55236 50540 49017 42391
Probability of exceedance (%) 3 5 10 15 20 30 40	Without TARP 78669 73365 66684 58706 57526 49025 43765	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818	With TARPII 78330 72636 65915 58634 56629 48601 43818	Without TARP 72182 61596 55504 50665 48996 42561 37330	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371	With TARPII 71569 61254 55236 50540 49017 42391 37289
Probability of exceedance (%) 3 5 10 15 20 30 40 50	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812 18654	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791 18655	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791 18655	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911 15705	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906 15706	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905 15705
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812 18654 79040	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791 18655 79026	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791 18655 78728	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911 15705 72922	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906 15706 72897	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905 15705 72291
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812 18654 79040 77785	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791 18655 79026 77774	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791 18655 78728 77381	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911 15705 72922 70418	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906 15706 72897 70395	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905 15705 72291 69850
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812 18654 79040 77785 76017	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791 18655 79026 77774 76009	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791 18655 78728 77381 75483	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911 15705 72922 70418 66889	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906 15706 72897 70395 66872	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905 15705 72291 69850 66412
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow 10-yr flow	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812 18654 79040 77785 76017 66684	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791 18655 79026 77774 76009 66661	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791 18655 78728 77381 75483 65915	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911 15705 72922 70418 66889 55504	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906 15706 72897 70395 66872 55514	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905 15705 72291 69850 66412 55236
Probability of exceedance (%) 3 5 10 15 20 30 40 50 60 70 80 90 95 97 35-yr flow 30-yr flow 25-yr flow 10-yr flow 5-yr flow	Without TARP 78669 73365 66684 58706 57526 49025 43765 40080 38138 36103 30552 22627 20812 18654 79040 77785 76017 66684 57526	15-day With TARPI 78656 73362 66661 58738 57572 49029 43818 40122 38095 36114 30491 22645 20791 18655 79026 77774 76009 66661 57572	With TARPII 78330 72636 65915 58634 56629 48601 43818 39866 37966 36115 29438 22646 20791 18655 78728 77381 75483 65915 56629	Without TARP 72182 61596 55504 50665 48996 42561 37330 34134 32672 30612 24992 19056 16911 15705 72922 70418 66889 55504 48996	31-day With TARPI 72157 61586 55514 50671 49031 42555 37371 34126 32678 30613 24996 19057 16906 15706 72897 70395 66872 55514 49031	With TARPII 71569 61254 55236 50540 49017 42391 37289 34083 32678 30615 24996 19057 16905 15705 72291 69850 66412 55236 49017

Probability	1-day			7-day		
exceedance (%)	Without TARP	With TARP I	With TARPII	Without TARP	With TARPI	With TARPII
3	112516	112442	111585	110121	110071	109260
5	109784	109700	109230	107507	107471	107015
10	107816	107711	107118	104436	104404	103882
15	104409	104397	104374	100610	100618	100645
20	91046	91097	90821	89533	89565	89321
30	76854	76798	76329	75511	75449	74989
40	70651	70593	69986	68562	68669	68716
50	66649	66614	66464	64032	64013	63878
60	61799	61891	61765	59996	60066	59876
70	55959	55984	55914	53893	53918	53861
80	48621	48509	48354	47962	47880	47588
90	38026	38026	38026	36782	36782	36782
95	33111	33116	33116	32563	32568	32568
97	26600	26620	26620	26304	26322	26323
35-yrflow	112707	112634	111750	110303	110253	109417
30-yrflow	112060	111985	111193	109685	109638	108886
25-yrflow	111150	111071	110408	108814	108771	108138
10-yrflow	107816	107711	107118	104436	104404	103882
5-yr flow	91046	91097	90821	89533	89565	89321
2-yr flow	66649	66614	66464	64032	64013	63878
Probability		15-day			31-day	
of		_				
exceedance	Without	With	With	Without	With	With
(%)	TARP	TARPI	TARPII	TARP	TARPI	TARPII
3	106173	106153	105743	101831	101855	101612
5	103781	103785	103200	90594	90600	90292
10	96815	96804	96464	84666	84664	84538
15	92913	92909	92632	83385	83400	83400
20	87234	87274	87181	77524	77549	77526
30	70182	70158	69803	62306	62297	62192
40	65582	65636	65641	56446	56457	56454
50	60559	60573	60419	52631	52631	52635
60	56550	56579	56579	48940	48938	48938
70	50289	50309	50285	45555	45559	45559
80	44550	44554	44554	38226	38228	38228
90	34598	34598	34598	30364	30364	30364
95	30753	30759	30759	24962	24968	24968
97	24818	24837	24838	24073	24091	24092
35-yrflow	106341	106318	105920	102618	102643	102404
30-yr flow	105775	105758	105319	99959	99980	99725
25-yrflow	104977	104969	104471	96213	96228	95952
10-yr flow	96815	96804	96464	84666	84664	84538
5-yr flow	87234	87274	87181	77524	77549	77526
2-yr flow	60559	60573	60419	52631	52631	52635

Table 21. Summary of High Flows at Meredosia without TARP and with TARP Phases I and II for Selected Durations and Return Periods

Figure 17. Reduction in 1-, 7-, 15-, and 31-day high flows for selected return periods at Lockport as a result of TARP

Figure 18. Reduction in 1-, 7-, 15-, and 31-day high flows for selected return periods at Marseilles as a result of TARP

Figure 19. Reduction in 1-, 7-, 15-, and 31-day high flaws for selected return periods at Kingston Mines as a result of TARP

Figure 20. Reduction in 1-, 7-, 15-, and 31-day high flows for selected return periods at Meredosia as a result of TARP

corresponding to selected return periods and durations for the four stations to facilitate the visual comparison.

It can be clearly seen from these results that there is a significant reduction in the maximum flows and their durations (at and downstream of Lockport), as a result of TARP Phase II. These effects were particularly significant down to Kingston Mines (downstream of Peoria Lake). The most pronounced high-flow reductions at Lockport are seen at 1-, 7-, and 15-day flow durations. The impacts of the higher durations (15- and 31-days) become less noticeable downstream — obviously due to increased drainage area.

Results also indicate that TARP Phase II operation will also greatly decrease the frequency of extreme flood events. For example, an overview of table 18 or figure 17 shows that a 1-day, 5-year MF that is expected at Lockport without TARP (15,200 cfs) will have about a 1-day, 25-year value (14,958 cfs). In most other cases, an average of five or more years of increase in the expected return periods can be observed for most durations at Lockport. At Marseilles, for example, the 31-day, 25-year flow without TARP (39,733 cfs) is approximately equal to a 31-day, 30-year flow with TARP Phase II (39,764 cfs). At Kingston Mines, an increase of five or more years in the return periods can be expected for low frequency events for 1-, 7-, and 15-day durations, respectively. Similar but less emphasized results are also observed at Meredosia.

The information about the reduction in the expected flow values at particular return periods can also be obtained from figures 17 - 20 by drawing a vertical line at that return period value and finding the vertical difference between the points where the line intersects the curves. Similarly, the increase in the return periods corresponding to particular flow levels can be obtained by drawing a horizontal line at those flow levels and finding the horizontal difference between the points where the line intersects the curves.

SUMMARY

The flows at Lockport, one of the main inputs to the Illinois River Flow Model, are subject to change as a result of TARP operation. Significant effort has been given to establish a uniformity among the flow records that were obtained from different sources. Several regression equations were developed for the Lockport flows for this purpose and to make all Lockport flows compatible with the new AVM

records. The flows obtained from these regression equations may be lower than the flows reported by MWRDGC, especially if the flows pass through the powerhouse sluice gates and the control works or both. For most other cases, the difference between the reported flows and the flows calculated from the regression equations were either very small, or the reported values were slightly lower.

The Illinois River Flow Model were developed to simulate the flows on the Illinois Waterway between Lockport and Meredosia. The basin was divided into three sub-basins, each marked with upstream and downstream gaging stations. Each sub-basin was handled as a black-box regressive model. The parameters for each sub-basin were estimated separately for different time periods to alleviate the evident nonstationarity of the flow series. The imbalances of the flows within the basins were handled by using flow correction coefficients, which were then multiplied by the flow values (or the model parameters) to provide the water balance. The parameter estimation and calibration results indicate that the Illinois River Flow Model can accurately estimate the daily flows in the Illinois Waterway.

A storage routing model was developed to simulate the effects of TARP operation on the Lockport flows. This required the WRP inflows for the two systems (Mainstream and Calumet) on a daily basis. WRP inflows were then separated into raw sewage and storm runoff components by using the minimum monthly WRP releases and the average monthly diversions. Storm runoff from the TARP service area and non-TARP area were estimated by using regional runoff coefficients and the daily Lockport flows. The estimated WRP inflows were then routed through TARP storage to estimate the daily WRP releases and spills or both. These releases, diversions, and the surface runoff from the non-TARP area were then combined to obtain the modified Lockport flows for a particular TARP operation. The results show that TARP Phase II would have a significant effect on reducing the number of spills in the TARP service area, as well as the total volume of spills. However, to eliminate all spills, based on the historical records, larger reservoir storage capacities than the COE CUP capacities would be needed even if the WRPs were assumed to be operating at their design maximum capacities.

The effects of TARP on flows downstream of Lockport were simulated by using the Illinois River Flow Model and the modified Lockport flows. Analysis of the results indicated that TARP Phase II had a significant potential in lowering the flood peaks and flood durations, and it is expected to increase the return periods of the extreme flood events. These benefits, very significant between Lockport and

60

Kingston Mines, diminish further downstream because of the storage effect of the Peoria Lake and increased drainage area.

In brief, with CUP storage, TARP Phase II operation will not only practically eliminate the combined sewer overflows to the Chicago Waterways, but will also significantly reduce flood peaks in the Illinois River downstream of Lockport. Increasing CUP storage to MWRDGC or bigger storage capacity will further improve the conditions. As a matter of fact, storage capacities larger than CUP are necessary to avoid any spills if the WRPs cannot operate at their design maximum capacities for sustained periods. Because the associated improvements in the Illinois River water quality are significant, they are discussed in a separate report.

REFERENCES

- Abadie, J. 1970. Integer and Nonlinear Programming. North-Holland, Amsterdam, Holland, p. 544.
- **Durgunoğlu,** A., and A.R. Rao. 1985. *Forecasting Daily Runoff by CLS and ARMA Models*. Purdue University Hydraulics and Systems Engineering Report No. CE-HSE-85-13, West Lafayette, Indiana, September, p. 78.
- Harza Engineering Company. 1986. Investigation of the Impact of the Acoustical Velocity Meter on Lake Michigan Diversion Accounting. Chicago.
- Metropolitan Water Reclamation District of Greater Chicago. 1987. Facilities Planning Study, Update Supplement and Summary. Appendix E (revised 1989, not published).
- Metropolitan Water Reclamation District of Greater Chicago. 1990. Tarp Status Report, November 11.
- Nakashima, M., and K.P. Singh. 1983. *Illinois River Flow System Model*. Illinois State Water Survey Contract Report 311, February, p. 44.
- Natale, L., and E. Todini. 1974. A Constrained Parameter Estimation Technique for Linear Models in Hydrology. Publication No. 13, Institute of Hydraulics, University of Pavia, Italy.
- Northeastern Illinois Planning Commission (NIPC). 1987. Memorandum from D. Hey, G. Schaefer, and D. Dreher to D. Injerd, Illinois Department of Water Resources, December 7.
- Robison, R. 1986. The Tunnel that Cleaned Up Chicago. *Civil Engineering*. July, pp. 34-37.
- U.S. Army Corps of Engineers (COE). 1986. *Chicagoland Underflow Plan Final Phase I GDM*, Supplementary Information, Volume B-1, Main Report, Hydrology and Hydraulics. Chicago District.

- U.S. Army Corps of Engineers (COE). 1989. Acoustic Velocity Meter Regression Analysis - Draft Report. Hydrology and Hydraulics Branch, Chicago District.
- Yazicigil, H., G.H. Toebes, and M.H. Houck. 1980. Green River Basin Optimization-Simulation Model. Technical Report 137, Purdue University Water Resources Center, West Lafayette, Indiana, p. 190.