
Illinois State Water Survey Division 
CLIMATE & METEOROLOGY SECTION 

SWS Contract Report 460 

VALUING CLIMATE FORECASTS 
FOR MIDWESTERN GRAIN PRODUCERS 

by Michael Anthony Mazzocco 

Prepared with the support of 
National Science Foundation Grant ATM 85-19035 

Champaign, Illinois 
May 1989 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158299223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VALUING CLIMATE FORECASTS 
FOR MIDWESTERN GRAIN PRODUCERS 

by 

Michael Anthony Mazzocco 

B.S., University of Illinois, 1976 
M.S., University of Illinois, 1980 

THESIS 
Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Agricultural Economics 
in the Graduate College of the 

University of Illinois at Urbana-Champaign, 1989 

Illinois State Water Survey 
2204 Griffith Drive 

Champaign, Illinois 61820 



VALUING CLIMATE FORECASTS FOR 
MIDWESTERN GRAIN PRODUCERS 

Michael Anthony Mazzocco, Ph.D. 
Department of Agricultural Economics 
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Climate effects on corn and soybean production on two representative 

midwestern grain farms are incorporated into production function estimates 

by using physiologic crop growth simulation models over fourteen years of 

weather data and different combinations of management decisions. Model 

producers are assumed to maximize a net return function. Using dynamic 

programming, the value of the net return functions and the associated 

optimal crop decisions are identified for different prior climate 

expectations and different designs of climate forecasts. 

Climate forecasts are shown to have more value in east central Illinois 

than in central Iowa. Much of this value relates to adjusting the amount 

and timing of nitrogen application for corn production. Climate forecasts 

are shown to have value in crop selection when the price relationship 

between corn and soybeans is in a competitive range. Forecasts with more 

discrete outcome categories have more value than those with fewer 

categories, although slight decreases in the accuracy of the less detailed 

forecasts do not detract from their value. Management decisions included in 

the soybean production functions do not exhibit sufficient flexibility or 

responsiveness to climate for soybean climate forecasts to have value. 

Ambiguity theory is used as an alternative to risk theory to develop 

different assumptions on the decision maker's prior information. The 

different assumptions on prior information are shown to strongly impact the 

value of information. 
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CHAPTER I 

THE SETTING 

Introduction 

U.S. agricultural production has long been characterized by many as 

being inherently risky. Sources of agricultural production risk include 

such things as variability in weather and the possibility of pest 

infestation. Additional risks are prevalent in the overall financial 

performance of the farm firm. These include input and output price 

variability, interest rate variability, the effects of financial leverage on 

earnings, unpredictable machinery breakdowns and hazards of fire, wind and 

theft. 

Numerous authors have addressed various management strategies for 

dealing with business and financial risks. Host of these strategies have 

been developed to minimize the negative impacts of risk on the farm firm, 

rather than to take advantage of upside variation. Most of these authors 

have addressed a subset of decisions faced by a manager. For example, some 

authors have developed models that address the desired machinery capacity of 

a grain farm given field activity constraints and benefits of timely 

operations. Others have addressed such issues as the optimal financial 

leverage position, the optimal hedging position, the optimal amount of 

formal insurance, and the optimal amount of liquidity reserve. 

However, risk can also have positive impacts on the firm. This is 

easily demonstrated by such examples as increased yields due to better-than-

average growing conditions or increased revenues from higher-than-expected 
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output prices. It is an inherent challenge to the firm's managers to take 

advantage of the upside potential in a stochastic world as well as protect 

the firm from impacts of downside outcomes. 

Ansoff describes four management systems appropriate for different 

rates of change in stochastic elements and their predictability. He points 

to "management by flexible/rapid response" as an appropriate management 

system "under conditions in which many significant challenges develop too 

rapidly to permit timely anticipation (p. 15)." 

Many production decisions faced by midwestern grain producers are 

inter-related and have a time element regarding their planned or ultimate 

effect. Many such decisions can either provide or preclude the opportunity 

to re-evaluate decisions at a later time. Flexibility in responding to 

field, crop and climate conditions, though useful, quickly disappears due to 

the passage of time once decisions are made. For example, decisions to 

apply fertilizer early or to plant a particular variety of seed cannot be 

changed after they are implemented. Thus, managers are often presumed to 

practice what Ansoff calls management by anticipation. 

This presumption is deeply embodied in economics and agricultural 

economics research by the use of micro models optimizing expected values of 

objective functions. The source of risk, the perception of its size and its 

acceptability have been examined in these models throughout the past few 

decades. This study focuses on a manager's use of forecast information to 

more accurately "anticipate" states of nature that are relevant to 

production decisions. More specifically, this study explores the potential 

use and value of climate forecasts by midwestern grain producers. 

This chapter develops the motivation behind the study and enumerates 
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its specific objectives. This is followed by a brief preview of the 

structure of this report. Detailed discussion of topics raised in this 

chapter are contained in later chapters. 

Climate Forecasts and the Information Age of Agriculture 

Sonka describes currently innovative agricultural producers as being in 

the "information stage" of U.S. agricultural development (p. 80). 

Agricultural decision makers are using many sources and types of information 

to assist them in performing their managerial function. These range from 

commodity price information to soil micro-nutrient analysis and beyond. 

Climate information is thought to be useful in making crop production 

decisions due to the dependence of plant growth on naturally occurring 

inputs and conditions. In this sense climate is different than weather in 

that "a climate prediction is a statement of the expected general character 

of the weather for a period in the future whose length may be a part of a 

season (one or two months), a season, a year, a decade or even longer" (Lamb 

et al). The desirability of climate information to agricultural producers 

is described by Sonka et al (1986), who describe the format and 

characteristics of useful climate forecasts as not yet fully identified. 

Hilton identifies the flexibility of the structure of the decision set 

as one of the key determinants of information value. That is, for 

information to possess value the decision maker must be presented choices, 

the selection among which is improved by using the information. Given that 

midwestern grain production is dependent upon climate outcomes, at issue is 

which decisions are aided by climate information and in what manner. 

Clearly such decisions must be characterized by flexibility as well as 
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impacted by climate. 

For climatologists developing forecast schemes, an awareness of the 

characteristics of climate forecasts which make them useful in making crop 

production decisions would be quite rewarding. Similarly, knowledge of 

forecast characteristics of little value to crop producers may be useful in 

avoiding the development of more costly forecast schemes. Perhaps more 

useful would be an understanding of the characteristics of the decision 

maker and the decision set which give rise to differential forecast 

valuations. 

Objectives 

The specific major objectives of this study are as follows: 

1. Identify determinants of the value of climate forecasts to a midwestern 

corn-soybean farm with emphasis on the design parameters of the 

forecast and the detail of the setting. 

2. Evaluate differences in the value of climate forecasts for farms in 

different geographic regions. 

3. Determine the amount and sources of valuation differences in 1. and 2. 

above and the sources of valuation differences between this study and 

similar ones of alternate specification. 

As discussed in the next chapter, this is not the first study to 

address the issue of climate forecast valuation in agricultural production. 

Previous studies addressed various specific issues such as 1) particular 

weather events (rainfall), 2) restricted settings (one crop on one acre in 

one location), or one specific decision (irrigation, fertilization or summer 
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fallow). It is a goal of this study to view the farm firm as being 

controlled by one decision maker who may incorporate climate information 

into a variety of decisions. Further, implementation of this goal requires 

detailed, accurate specification of the model farms and the constraints 

within which they are operated. The development of these model firms is 

seen as useful in itself beyond the objectives above. 

Organization 

The remainder of this report is comprised of six chapters. Chapter II 

contains a review of relevant literature in the areas of information theory, 

risk and production economics, modeling farm decisions and prior research in 

valuing weather and climate forecasts. The specific methods to be employed 

in the study are developed in Chapter III. These include some of the 

sources of data for the study, the justification underlying the models used, 

and a brief discussion of optimization techniques in dynamic economic 

analysis. 

The models are fully developed in Chapter IV. Chapter V discusses the 

results of preliminary model runs and addresses the value of climate 

forecasts in different economic settings. Some characteristics of the 

forecasts are altered in Chapter VI, as well as some of the characteristics 

of the decision maker, to determine their impact on climate forecast 

valuations. Chapter VII contains a summary of the results and conclusions 

drawn from the study, together with recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 

There are four broad areas of literature relevant to this study. They 

are 1) risk and stochastic production, 2) information theory, 3) ambiguity 

theory, and 4) research specific to valuing information and climate 

forecasts. Each is treated separately, followed by a discussion of the 

resulting implications to this study. 

Risk and Stochastic Production 

The development of production risk research has followed a relatively 

stable course. As noted by Antle (p.1099): 

"The extension of the static neoclassical production model to 
incorporate price and production uncertainty has led agricultural 
economists to rationalize observed behavior in terms of the Arrow-
Pratt risk aversion concept. This approach has led in turn to 
qualitative comparative static theorems which are appealing to 
theorists but have little relation to the decision problems faced 
by farmers." 

The extension of the neoclassical production model as described by Antle can 

be found in numerous applications. Sandmo developed a model under output 

price uncertainty to evaluate the comparative statics of supply. Batra and 

Ullah developed a similar model to examine the comparative statics of input 

demand. Both investigators assumed a producer who was maximizing the 

utility of profit. They demonstrated that a marginal increase in risk . 

(defined by Rothschild and Stiglitz' mean preserving spread) gave rise to a 

decrease in output and a decrease in inputs respectively. Pope and Kramer 

extended the neoclassical model to incorporate stochastic technology. Their 
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results indicate that risk aversion on the part of a utility maximizing 

producer results in the use of more risk-reducing inputs. 

While each of these works contributes to the general understanding of 

risk and production economics, the assumptions underlying the models are 

strong. First, Sandmo admits the assumption that producers are maximizing a 

von Neumann-Morgenstern utility function is restrictive. In theoretical 

work the functional form need not be specified. However, precise 

specification of the functional form is required to empirically implement 

this assumption. It is often specified as an exponential utility function 

(see, for example, SriRamatatnam et al). 

Secondly, the assumption of risk aversion (and usually the assumption 

of decreasing or non-increasing absolute risk aversion) on the part of the 

producer is very restrictive. SriRamaratnam et al found exponential Arrow-

Pratt risk coefficients ranged between 0.0000021 and 0.000037 for a sample 

of fifteen Texas sorghum producers. In discussing their model results they 

describe the difference between optimal fertilizer rates under profit 

maximization versus utility maximization as very small. They ascribe this 

result to the "low level" of risk aversion estimated for producers in the 

sample. 

Therefore, applications of extensions of the static neoclassical model 

appear to be of little direct usefulness to producers who are unaware of 

their Arrow-Pratt risk aversion coefficients and/or the specification of 

their utility functions. Proper application of economic theory to the 

dynamic setting of crop production decisions under uncertainty appears to 

center around perceived risk and the response to combinations of risk over 

time. As pointed out by Antle (p. 1105), "Incorporating risk in production 
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analysis means incorporating probability distribution parameters in decision 

models." He also indicates dynamic models show production risk generally 

affects resource allocation regardless of risk aversion. The role of 

information in this setting is to alter perceptions of risk so as to more 

precisely identify probability distributions of future outcomes. It is 

within this framework that literature on information theory is next 

reviewed. 

Information Theory 

Information is used to alter expectations. Despite not being 

mathematically identified, decision makers possess some expectation about 

the probability distribution of stochastic events. Byerlee and Anderson 

describe such a setting in which a producer has prior expectations about the 

probability distribution of stochastic production. The following terms 

apply within this and subsequent discussions. A prediction is a piece of 

information or an information set which describes the probability 

distribution of stochastic events. A predictor or information system is a 

system which generates predictions. Thus, not only are the events 

stochastic, but so are the predictions coming from the predictor. That is, 

there exists a probability distribution of information sets coming from the 

information system. 

Following Hilton, a producer receives returns π given by π(x,θ) where x 

is a vector of decision variables, θ is a vector of stochastic variables, 

and the function π(X,θ) embodies input and output price relationships. With 

prior probability distribution on θ given by p(θ), the optimization problem 

for the profit maximizing producer is given by 
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2.1 

where the integration is over the range of possible values of θ and the 

solution to which is denoted x . 

Now suppose a reliable prediction, k, is generated such that the 

probability distribution of 8 is now given by Pk(θ) - p(θ|k). The 

optimization problem given this new information set is 

2.2 

the solution to which is denoted xk. Given that the information set is 

reliable, the decisions x are now suboptimal. Therefore, the value of the 

information set Pk is given by 

2.3. 

This equation says the monetary value of the information set Pk, or the 

prediction k, is the difference between a) returns from optimal decisions 

based on the new information set and b) returns from decisions based on 

prior information evaluated in light of the new information. In other 

words, the value is the amount of increased returns from decision changes 

based on new information. 

Prediction k is but one of many possible predictions that could have 

come from a predictor or information system that generates predictions. The 

value of the information system is given by 

. 2.4 

which says the value of the information system is the difference between a) 

the expected value of returns from the optimal decisions based on the 

expected prediction and b) the returns from optimal decisions based on prior 
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information. 

Byerlee and Anderson employ this valuation model in determining the 

value of a long-range rainfall forecaster to Australian sheep producers 

making decisions to conserve fodder for drought years. They show that such 

a predictor has value to both risk averse and risk prone producers and that 

no general relationship can be determined regarding a producer's Arrow-Pratt 

risk aversion coefficient (parametrically varied) and a producer's 

willingness to pay for forecasts as measured by V in 2.4. This finding is 

supported by Hilton who found no general monotonic relationship between the 

degree of risk aversion and the value of information. 

Chavas and Pope described four different concepts and measures of 

information in their literature survey-type article. Two of these are of 

interest here. The first is entropy, denoted as H, which is the negative of 

the expectation of the logarithm of probabilities: 

2.5 

where pi is the probability of the ith outcome. The more uncertain the 

outcome the larger is H. However, they state that equation 2.5 does not 

readily lend itself to economic research valuing information or information 

systems. 

Chavas and Pope's second concept of information derives from decision 

theory. In this sense information is a "message which alters probability 

perceptions of random events"(p.707). They go on to describe information 

valuation methods similar to that used by Hilton and Byerlee and Anderson. 

However, they describe a time element in decision patterns and information 

gathering. 

Given two time periods (t=1,2), the objective function of a profit 
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maximizing producer can be written as 

2.6 

where Et is the expectation operator based on information available at time 

t, xt is the vector of decision variables at time t, θt is the disturbance 

term at time t with a prior probability distribution. Under this 

specification decisions x1 and X2 are made at t=1 based on the prior 

probability distributions at t=1 for both θ1 and θ2. 

However, if reliable information becomes available at t-2, expectation 

E2 is altered such that the solution for the decision vector x2 is given by 

2.7 

where the expectation E2 is operating over an updated probability 

distribution. It is intuitive that piecing many time periods together 

requires a dynamic programming application as long as time is modeled 

discretely. This is more fully explored in the following chapter. It is 

also intuitive that the earlier the information is known, the better are the 

decisions forthcoming in earlier periods. This is especially true if θt is 

dependent upon xt-1. 

Hilton describes four determinants of information value. These are: 

1) the flexibility of the structure of the decision set, 

2) the technology and environment within which the decision maker 

operates, 

3) the degree of uncertainty in the prior expectations, and 

4) the nature of the information system, specifically timeliness and 

accuracy. 

These characteristics can be detected in equations 2.1 through 2.7. 
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Flexibility can be related to the structure of either the variability of 

decision x (eq. 2.1 through 2.4) or the ability to postpone the x decision 

to await further information. (2.6, 2.7). That the value of information is 

dependent on technology and the decision environment is verified by the 

profit function which is characterized by a production function and a set of 

prices. 

The relationship between the prior and the predictions plays a 

fundamental role in the solutions to 2.3 and 2.4. The extent to which the 

priors and the predictions differ, and the extent to which they generate 

different solutions x* and xk, clearly impacts the value of Pk and V. Last, 

the nature of the information system is relevant in that the accuracy of the 

prediction forthcoming, Pk, determines the economic impact of the resulting 

xk decision. 

Ambiguity 

Bessler notes that agricultural economics research has not sustained a 

focus on the formation of expectations over time. Recent literature in 

decision theory raises interesting questions regarding the foundations of 

risk analysis. Initiated by Ellsberg, the concept of ambiguity covers a 

wide spectrum between the two extremes of uncertainty. These extremes are 

labeled 1) ignorance, in which the decision maker has no knowledge of the 

possible uncertain outcomes nor of the process by which they are generated, 

and 2) risk, in which the decision maker has complete knowledge or firm 

belief in the probability distribution of outcomes (Einhorn and Hogarth, 

1985, 1987; Yates and Zukowski). In ambiguous circumstances, some 

probability distributions may be ruled out, but at least two remain. 
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Theory of Ambiguity 

Following Einhorn and Hogarth (1987)3, the ambiguity model employs an 

"anchoring-and-adjustment strategy in which an initial probability is used 

as the anchor (or starting point) and adjustments are made for ambiguity (p. 

46)." The source of the initial probability may be any information, 

historical or otherwise, available to the decision maker. The subjective 

probability used in decision making, S(p), is given by: 

S(p) = p + k 2.8 

where p is the anchor probability and k is the adjustment. The adjustment 

is made from a mental evaluation of higher and lower values of p. If kg is 

the effect of simulating higher values of p and ks is the effect of 

simulating lower values of p, then 

k = kg + ks 2.9 

kg = θ(l-p)                                                            2.10 

ks = θp                                                                2.11 

where θ is a constant representing the amount of ambiguity present. 

Furthermore, the decision maker may possess different attitudes toward 

higher and lower values of p. Therefore., equation 2.11 is rewritten as: 

ks = θpβ                                                               2.12 

where β represents a relative weighting of higher versus lower 

probabilities. Combining equations 2.8 through 2.12, 

S(p) = (l-θ)p + θ(1-pβ)                                                2.13 

Because S(p) ≤ 0, obvious limitations are placed on k, kg and ks. β is 

restricted to be non-negative by definition. A heavier weighting on 

probabilities lower than the anchor is denoted by 0<β<1, while β>1 indicates 
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heavier weighting on those above the anchor. 

Forecast Valuation Models in Production Economics 

The literature on agricultural production applications of the 

information valuation models is mostly focused on weather information, 

although Perrin studied the value of soil test information in Brazilian corn 

production. As noted earlier, Byerlee and Anderson applied equation 2.4 to 

value a rainfall forecaster. Doll developed a similar model in which the 

choice variables were nitrogen application rates and planting densities. He 

used a Bayesian algorithm to incorporate the probability of incurring one of 

seven possible production functions dependent upon unspecified weather. 

Tversky and Kahneman show that updating priors by Bayes's Theorem will not 

necessarilty generate subjective measures of risk that resemble those of 

real worl decision makers (Bessler, p.52). 

More recently Bosch and Eidman (1985, 1987) have examined the value of 

soil water and weather information to Minnesota farmers irrigating corn and 

soybeans. To value information they used a stochastic dominance approach 

(Meyer) to deduct information value, V, as a cost from π(X,Θ) underneath the 

integral in equation 2.4. In so doing they could compare distributions of 

outcomes for producers whose absolute risk coefficients lie within certain 

bounds to determine the value (cost) of information at which the updated 

probability distribution of returns no longer stochastically dominated the 

returns from the prior distribution. They analyzed optimal irrigation under 

varying levels and combinations of information on soil water, crop 

transpiration, and rainfall for a 640 acre farm irrigating 260 acres of corn 

and soybeans. They incorporated output price risk but did not indicate how 
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this was done. They did show that information had value even though it was 

incomplete. They also demonstrated a decreasing marginal return to 

increasing levels of information. Part of the results showed a tendency for 

optimal irrigation to begin earlier for more risk averse producers. This is 

not surprising in view of Pope and Kramer's results showing generally 

increased use of risk reducing inputs, such as irrigation, as risk aversion 

increases. Bosch and Eidman also point out that the empirically estimated 

value of information may be different when analyzed at the firm level from 

that calculated from the direct effect on the enterprise making information-

based decisions. 

Babcock studied the comparative statics of general equilibrium when 

producers respond to climate forecasts as a sector. He specifically 

examined the price effects within a binomial distribution of weather events. 

His empirical application to cotton production suffers from under-

specification. However, he did show mathematically that if output demand is 

inelastic, average industry profits could decrease as a result of improved 

information accuracy. 

In work somewhat related to Bosch and Eidman, Mjelde applied a dynamic 

programming model to evaluate increased returns from one acre of corn in 

east central Illinois when climate information became available to improve 

various corn production decisions throughout the year. Within this context 

Mjelde sought to identify the determinants of information value with the 

goal of identifying the parameters of climate forecasts which have greatest 

value within the forecast system. 

In developing his approach, Mjelde simulated the growth of one acre of 

corn over fourteen years to generate data on the response to management 
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decisions which interact with climate. The production year was divided into 

eight decision and/or growing periods for which climate forecasts and 

outcomes could be obtained. Using the data generated by the corn simulation 

model, transition equations were estimated for the state variables of 

nitrogen, plant, climate, grain moisture, and October climate. A field 

condition state variable was added to restrict the number of field 

operations performed if the growing season climate was poor to add realism. 

Parameters varied based on decisions of planting date, planting density, 

seed variety by days to maturity, and the amount of nitrogen within the 

decision model. A climate index was developed to unify the various weather 

parameters included in the simulation model, in contrast to Doll's approach 

of developing a different production function for each year studied and to 

Babcock's approach of incorporating only May rainfall. 

Discrete intervals within the probability distributions of climate were 

aggregated to simplify the model. The probabilities of obtaining various 

forecasts and realizations were varied to compare results from alternative 

forecast specifications. The results indicate that perfect forecasts are 

not necessary for the forecast system to have value. In fact, more value is 

attached to forecasts which more accurately predict extreme climate 

conditions than those with better overall accuracy. Also, more value is 

attached to forecasts of production stages having more nitrogen-climate 

interaction. Consistent with intuition, Mjelde also showed that the value 

of such forecasts generally increases with more lead time. 

As Mjelde notes, however, there are certain elements of his problem 

specification which warrant relaxation or expansion to further evaluate the 

determinants of climate forecast values. It is to these issues that 
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attention is now focused. 

Implications for This Study 

The work discussed in the previous section forms a foundation for 

understanding the valuation of climate forecasts and the contribution of 

design parameters within the forecast system. Although the work done by 

Mjelde was specific to this purpose, there exist certain biases (some noted 

by him) in his results due to the specification of the model. 

The value of the forecasts in certain stages was dependent upon the 

growth process of the corn plant. Adding another crop into the decision 

model to more closely parallel the corn-soybean rotation witnessed in much 

of midwestera agriculture should reduce the bias arising from this 

dependency. Analyzing the whole farm, as in Bosch and Eidman, should shed 

light on the value of forecasts to a firm rather than an enterprise. Such 

an analysis can then incorporate more realistic field time constraints. 

Within the whole farm context, varying soil types may play a role in 

valuing information. For example, farms with a larger proportion of well 

drained soils may place a larger value on certain design parameters than 

farms with a preponderance of less well-drained soils. This may enter the 

valuation model in activating field time constraints more quickly for the 

second group resulting in less flexibility. 

In each of the studies discussed earlier there was a dependency on one 

location for each valuation model. This study should compare the forecast 

design valuations across geographic regions within the midwest using the 

same whole farm, multiple soil type setting to identify the source of 
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differences in forecast valuation or design parameter emphasis. Performing 

this comparison using the same modeling technique should reduce any bias in 

the comparison arising from the model itself. 

The value of climate information may be affected by public 

institutions. One such institution currently imposed on midwestern grain 

producers is the U.S: Department of Agriculture's feed grain set aside 

programs. These programs currently restrict corn acreage for program 

participants in return for reduced output price uncertainty and direct 

payments. The effect of these programs on the value of climate forecasts to 

participating versus non-participating farmers in each region should be 

investigated to further identify the determinants of climate forecast value. 

Finally, the equations which value climate information emphasize 

decisions based on prior expectations. Remaining consistent with ambiguity 

theory, the effect of different priors on the value of climate forecasts 

should be investigated. 
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Notes 

1. Batra and Ullah's use of decreasing absolute risk aversion results in 
decreased output. For their two-input model, at least one of the input 
quantities will decrease. The effect on the other depends upon the 
specification of technology. 

2. Non-monetary benefits of information may well exist, especially in the 
case of optimizing an accurately specified utility function. 
Information value derived from non-monetary benefits is not included in 
this study. 

3. This discussion is mostly excerpted from Einhorn and Hogarth (1987). 
It is condensed here for the convenience of the reader. 
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CHAPTER III 

METHODS 

This chapter develops the analytical methods used to address the 

objectives listed in Chapter I. More specifically, the framework of 

analysis is developed in light of the previous chapter. This is followed by 

a discussion of the necessary models and data, including an overview of 

dynamic optimization techniques. 

Analytical Framework 

Within the context of Hilton's determinants of information value, the 

structure of the decision set and the technology, environment and motivation 

characterizing the decision maker are critical elements of analysis. As 

mentioned earlier, similar studies had a narrow analytical scope. It is 

desirous to broaden the decision set as much as practicable to detect as 

many uses for climate information as possible. 

To that extent the decision maker here is said to be the manager of a 

multi-crop midwestern grain farm comprised of more than one field and more 

than one soil type. The decision maker is modeled to be maximizing profit 

from expected climate rather than maximizing the utility of expected profit. 

This assumption avoids the influence of mis-specifying the utility function 

or risk attitude of the decision maker. As noted by Perrin, it also results 

in the numerical evaluation of equations 2.3 and 2.4 being an upper limit on 

information value. 

The value of climate information may well be dependent upon geographic 
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location. Investigation of this issue requires duplicating the analysis for 

more than one location. While not necessarily identical, the locations 

should provide similar decision settings to avoid encountering influences 

other than climate and location in evaluating differences in the value of 

climate forecasts. The selection of two locations for this study is 

discussed in Chapter IV. 

The literature cited earlier as employing similar methods for similar 

purposes does not appear to address the issue of constraints. Although 

Mjelde attempted to add some realism to his model, the others did not 

completely specify the environment surrounding the decision maker. It is 

well known that the number of days available for field work, the amount and 

size of field equipment available for use, the size of the farm and the 

selection of field operations to be performed influence the timeliness of 

farming operations in the spring (Schwart; Siemens and Hamburg). Mjelde 

modeled the operator as performing two operations in the spring, constrained 

by the climate outcome. As such, if spring climate was good for corn growth 

it was assumed to be bad for field work. 

One of the goals of this study is to more fully develop the environment 

and technology upon which the field work constraint is based. That field 

availability is related to climate is well established (ASAE). However, it 

is thought that climate affects growing and field conditions differently. 

For example, rainfall in a two week period may be sufficient to enhance crop 

growth, especially in soils with high water retention capacity. However, 

the number of days available for field work is likely more dependent upon 

whether this rainfall occurs in one, two, three or more separate events 

during the period. The accurate specification of the stochastic constraint 
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not only adds realism but should result in more accurate evaluations of 

constrained optima (White, 1974; Sengupta). 

Models 

The information valuation equations of Chapter II dictate the use of an 

optimization method capable of handling both the structure of the decision 

set and the functional form of the return function. Calculation of the last 

term of the right hand side of equation 2.3 requires the identification of 

returns from decisions made with prior information. Evaluation of this 

equation and 2.4 also requires specification of the profit function, π(x,θ). 

Thus, an econometric model, an optimization model, and a management 

simulation model are necessary elements of this study. 

The general form of the profit function has the technology 

specification or production function embedded within it. Specification and 

estimation of the production function in view of the decisions to be 

evaluated is a critical element of the analysis. In most of the literature 

cited earlier the data used to estimate production functions came from 

county average yields. For example, Michaels used 43 years of yield data 

over the entire Great Plains to fit a production function for winter wheat 

based on rainfall and temperature. However, as noted by Freund (p. 258): 

"The main disadvantage of the use of ... averages is that it 
definitely underestimates the variance since basic data are 
already averages. This is especially serious in the case of 
yields ... ." 

Perrin developed a series of field experiments to capture actual data from 

different decisions and locations in one year. Again, a broad structure is 

desired for the decision set in this study. Accurate estimation of the 

production functions would require data for each year actual climate is 
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evaluated and for each possible combination of management decisions. As 

noted by Mjelde, thousands of simultaneous experiments in multiple locations 

would be required to collect this data. Furthermore, these experiments 

would have to be replicated over a period of years to determine the 

influence of climate within the production functions. 

This study uses crop growth simulation models to avoid the analytical 

constraints imposed by collecting actual production data. In so doing, crop 

response during the growing season and eventual yield can be determined for 

any number of management combinations and for many years of weather data. 

Impacts of unusual events such as hail, windstorm, disease and pest 

infestation are also avoided. 

The use of crop simulation models in economic analysis is not new. 

Mjelde used a corn growth simulation model developed by Reetz for purposes 

similar to this study. Chen and McClendon used a soybean growth simulation 

model to identify the optimal planting date of soybeans in Mississippi. 

Swamy et al also used a soybean growth simulation model to investigate 

irrigation decisions. Bosch and Eidman used growth simulation models of 

both corn and soybeans to estimate response functions. A more complete 

discussion of the growth simulation models used in this study is found in 

Chapter IV. Also in Chapter IV is the development of the production 

function specification and its estimation from the output of the growth 

simulation models. 

As in both Mjelde and Michaels, climate in each period of plant 

development is thought to additively affect the development of the crop. 

Modeling crop production as continuous over time would not accurately 

incorporate the notion of climate as being general conditions over an 
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extended period. Furthermore, the structure of the crop production decision 

set is such that different decisions are available at different time 

intervals. For these reasons, control theory does not accurately address 

the optimization problem faced by the decision maker. 

Multi-period linear programming models are also inadequate for this 

study. Such models would simultaneously find optimal decisions for all 

periods and not allow for updated information as in equations 2.6 and 2.7 

A dynamic programming (DP) algorithm is selected because of its 

flexibility in incorporating both updated information and discrete time 

intervals. DP also facilitates the discres decision set incorporated into 

this study. 

Following Bellman and Kalaba (as well as Bellman and Dreyfus, Larson 

and Casti, and White, 1978), the DP algorithm requires the development of a 

number of components. First, an objective function in the form of equations 

2.1 and 2.2 is necessary. The DP method of discrete approximation also 

requires the identification of state variables to describe the environmental 

conditions affecting decisions. These environmental conditions, or states 

of nature, change through time by means of state variable transitions, which 

are equations describing the changing environment. For example, crop 

production decisions are based on the condition of the crop at a point in 

time coinciding with the decision. The condition of the crop is described 

by state variables. Transition equations for the crop state variables would 

describe the development of the crop through time. Thus, elements of the 

crop production functions are used as state transition equations in the DP 

models. These issues are more fully explored in Chapter IV. 

One of the fundamental drawbacks in the use of DP noted by Burt is 
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Bellman's "curse of dimensionality." The DP algorithm searches over 

possible paths to determine the optimal policy (decision set) at a point in 

time. The full dimension of the algorithm is the number of different paths 

which are evaluated. With discrete approximation each state variable is 

allowed to take on a specified number of values, where each value represents 

an interval on a continuum. Furthermore, each decision variable is allowed 

to take on a specified number of values. The number of different paths 

available is thus determined by the number of state and decision variables, 

the number of different values each is allowed to assume, and the number of 

different time periods (stages) in which the states and decisions are 

evaluated. Combinatorics dictates that the number of different paths to be 

evaluated is a multiplicative function of these modeling selections. 

Dimensionality thus affects the number of state variables, states, 

decision variables and decision alternatives which are computationally 

feasible in the analysis. The effects of dimensionality on the structure of 

the DP models used in this study are described in the following chapter. 

As mentioned earlier, the evaluation of equations 2.3 and 2.4 requires 

the simulation of returns from prior decisions. Management simulation 

models are developed for this purpose. . These models incorporate the prices 

and production functions of the DP models and evaluate net returns with 

alternate decisions and climate. Because these models allow equations 2.3 

and 2.4 to be evaluated in continuous form rather than through discrete 

approximation, the optimal decisions from the solutions to the DP models are 

also input into the management simulation models to more accurately assess 

the value of climate information. 

The following chapter develops the complete specification of the 
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constraints, the decision sets, the growth simulation models and the 

production functions. It also describes the incorporation of these 

components into the DP and management simulation models. 
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CHAPTER IV 

MODEL PARAMETERIZATION 

Introduction 

Data required for the dynamic programming models employed in this study 

arise from the aggregation, blending and integration of numerous components. 

As described in the previous chapter, the principal components of the DP 

models themselves are 1) an objective function and the resulting recursive 

equation, 2) the state variable transition equations, and 3) the choice 

variables or management decisions. Prior to initiating specification of the 

three principal model components, many important factors contributing to 

model development must be addressed to provide a foundation for model 

construction and a framework for its use. These factors include such 

elements as basic assumptions about the decision maker's situation, attitude 

and motivation; the economic conditions affecting the decisions being made; 

and the types and sources of economic and physical data to be used in 

specifying the models. 

Within the first section of this chapter, the assumptions supporting 

the DP models are described and the model farms are specified. This is 

followed by the development of the stages, state variables and management 

decisions framing the DP models. The latter sections of this chapter 

describe the generation of the physical data used to estimate the crop 

production functions, the specification and econometric estimation of the 

crop production functions, and the conversion of the crop production 

functions into transition equations for the DP models. The final section 
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describes the integration of the components into the DP models. 

Specification of Model Farm 

Location and Endowments 

The farm firm used in the model must be representative of modern 

commercial agriculture as practiced by midwestern farmers. That the farm 

described in the following pages is "representative" can be demonstrated in 

some respects. However, as will be noted, certain assumptions must be made 

to avoid conducting extensive surveys of asset holdings and management 

practices. One of the goals in specifying the farm is to simplify its 

incorporation into the DP model to enhance its usefulness. Deviations from 

actual averages or percentages are not of concern if they do hot distort the 

representativeness of the farm. Because this study addresses differences in 

climate forecasts between locations, two farms must be specified, one for 

each location. The two locations selected (Story County, Iowa and Champaign 

County, Illinois) are thought to be similar in agricultural practices and 

structure. Therefore, only soil type and climate will differ between the 

two farm specifications. Input and output prices used in the models are not 

part of the farm specification and are discussed later in this chapter. 

The farm size is set at 640 tillable acres, divided into four 160-acre 

fields or tracts. The subdivision into four fields is to simplify the DP 

model while approximating characteristics of actual farm decisions. The 

size assumption is consistent with commercial farm operations and allows for 

additional land in pasture, set aside programs, service buildings and so 

forth. Each farm has a plantable base corn acreage for current government 

programs of 320 acres, or one-half of the planted acres. This size and corn 
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base allocation compares favorably with the findings of Lattz et al, whose 

results are summarized in Table 4.1. The average ratio of corn acres to 

soybean acres on Illinois cash grain farms was 1.08 and 1.03 for 1985 and 

1986 respectively, exclusive of set aside acres. Similar data are reported 

by the Iowa Department of Agriculture for Story County, where the proportion 

of acres harvested as corn for grain to total acres of crops harvested was 

0.51 in 1986. The ratio of harvested corn acres to harvested soybean acres 

was roughly 1.13 in 1986, again exclusive of set aside acres. 

Table 4.1. Average Corn and Soybean Acres on Illinois Cash Grain Farms. 

1986 1985 

Number of farms 543 512 
Avg. corn acres 285 307 
Avg. soybean acres 278 283 
Avg. corn acres plus 

avg. soybean acres 563 590 
Ratio of avg. corn acres/ 

avg. soybean acres 1.03 1.08 

Source: Lattz et al, p. 8. 

Soil type specification is important insofar as the water retention 

characteristics of the soil are key driving forces in the corn and soybean 

physiological growth simulation models. The farms are each allocated two 

representative, local soil types in proportion to the percentage of cropland 

in each county having water retention characteristics of the respective 

soils. 

For Story County, the Clarion-Webster-Nicollet soil association covers 

62 percent of the county (USDA, 1984). This soil association can generally 
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retain 11.01 inches of water in the top 60 inches of soil. Many other soil 

associations have similar water retention characteristics, but none covers 

as broad an area. Collectively, however, they represent sufficient acreage 

to predominate the county. The Zenor-Storden soil association is 

representative of soils having a water retention capacity in the range 

between 5.5 and 8 inches. It has a specific capacity of 6.89 inches. Soil 

types in this range cover only four to five percent of the county. Soils in 

the Harlan-Spillville association have a water retention capacity of 9.825 

inches and are representative of soils in the water capacity range of eight 

to ten and one-half inches. Soils in this association occur in only three 

to five percent of the county, but are similar to soils comprising a much 

larger proportion of Story County crop land. 

Because the farm is divided into four 160-acre tracts, it is assumed 

that three of the tracts are in the Webster soils and the remaining tract is 

comprised of Spillville soils. This simplifying assumption imposes 25 

percent of the farm be in soil types of the lower water retention capacity. 

The predominant soil association in Champaign County is Drummer-

Flanagan, which covers 36 percent of the county (USDA, 1982) . It is 

representative of a number of soil associations in the county with high to 

very high water retention capacity, having a capacity of 12.08 inches of 

water in the top 60 inches of soil. The lesser soil types are primarily of 

moderate to high water capacity. The Elliot-Ashkum and Varna-Elliot-Ashkum 

associations are representative of and primarily comprise the soils in this 

category. Each of these associations occurs in six percent of the county. 

The former has a water retention capacity of 10.44 inches while that of the 

latter is 10.84 inches. 
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The Champaign County farm is designated as having one-fourth of its 

tillable acres (one field) in Ashkum soils. The remaining three 160-acre 

fields are assigned to be Drummer soils. 

Assigning the higher capacity soil types to entire 160-acre fields is 

not inconsistent with the typical occurrence of these soil types in either 

county as reported by the USDA. The lower capacity soil types generally 

occur in areas smaller than 80 acres but in conjunction with other lower-

capacity soil types. The simplifying assumption of one 160-acre tract being 

comprised of the lower-capacity soil types should not materially distort the 

representativeness of either farm and makes the dynamic programming 

algorithm computationally feasible. 

The allocation of machinery resources to each farm enables more 

accurate specification of field time constraints. The extensive study of 

machinery resources and field times by Krenz included 948 corn belt farms. 

For these farms, the modal tractor horsepower was in the 120-to-139 h.p. 

range, with a mean of 128.73 h.p. for tractors in this range. These farms 

averaged 2.5 tractors per farm. The model farms are each allocated two 120 

h.p. tractors for field work, slightly below Krenz's mean. 

Krenz also found that among the 57 corn belt farms between 600 and 699 

tillable acres, the average planter size was 6.95 rows and the average farm 

had 641 crop acres. Farms in this category had an average combine width of 

16.25 feet (or 6.5 30-inch rows). Because of the necessary matching between 

planter and combine size, it is assumed that both the combine and the 

planter on the model farms have a capacity of six 30-inch rows. This is not 

unreasonable in that a twelve row planter may be used in conjunction with a 

six row combine, making the statistically average planter slightly larger 
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than the corresponding combine as reported. 

In addition, Krenz studied the field time use of each piece of 

equipment. Planters in this category averaged 1.22 acres per hour per row 

of width. Combines averaged 0.961 acres per hour per row of width. These 

field times translate to operating speeds of roughly four miles per hour for 

planting and three miles per hour for combining, which are very reasonable 

after considering field efficiency. 

For the six-row equipment specified in the model farms, these operating 

times indicate planting can occur at 7.32 acres per hour and combining can 

occur at 5.766 acres per hour. This converts to roughly twenty-two hours of 

field operating time to plant an 160-acre field and twenty-eight hours of 

field operating time to combine the same field. Field time constraints, 

however, must be developed based on additional factors including field time 

available per day and field time necessary for seed bed preparation and 

treatment. These and other aspects of the constraints are developed in the 

following and later sections. 

Constraints Emanating From Endowments 

Machinery constraints are a function of climate and operations, given 

an endowment of machinery and a tillage practice. Incorporating various 

tillage practices as additional management alternatives based on climate is 

not computationally feasible. The decision maker is assumed to use a disk-

harrow and a field cultivator in the spring prior to planting. Each of 

these tillage tools is assumed to be 19 feet wide based on the tractor size 

(120 h.p.). Siemens and Hamburg suggest the productivity of these tools are 

9.21 and 10.13 acres per hour, repectively. Therefore, these operations 
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consume 2.76 twelve-hour days or 3.0 eleven-hour days. Added together with 

the 2 days for planting, each field of corn or soybeans requires 5.0 days to 

prepare and plant, excluding nitrogen application. 

To mathematically specify the constraint for spring field work, climate 

probabilities and their effect on field work must be identified. For 

example, the ASAE Standards (1987, p. 94) indicates the probability of a 

working day in central Illinois on prairie soils during the period April 12 

through April 25 is 0.47 at the 50 percent confidence level and 0.19 at the 

90 percent confidence level. This is interpreted as follows: during this 

fourteen day period, 0.47 x 14 - 6.58 working days will occur on average. 

Also, at least 2.66 working days will occur in 90 percent of the years. 

The Illinois and Iowa Agricultural Statistics Services collect data on 

the number of field work days available in a given time period. From this 

data the discretized probability distribution of the number of work days 

available in a given period can be produced. A general summary of the 

constraints is listed in Table 4.2. Further discussion of the field time 

constraint specification must await a description of the DP models to 

prevent confusion. 

Stages. Management Decisions and State Variables 

The decision maker at each location is assumed to be maximizing the 

expected value of net returns over variable costs for one crop year. The 

crop year is divided into thirteen stages which are listed in Table 4.3. 

These stages are defined time intervals which are relevant to various growth 

stages of corn and soybeans as identified in Table 4.3. Within each of 

these growth stages there is a set of decision variables relevant to the 
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Table 4.2. Summary of DP Model Constraints.  

Corn acres 320 

Soybean acres 320 

Number of work days for preparation and 

planting of each field - 5 days per field 

Number of work days for spring 

nitrogen application - 2 days per field 

corn and soybean production process. It is this set of decision variables 

from which the decision maker selects management choices to fulfill the 

objective criterion. The choices available at each stage vary as shown in 

Table 4.4. 

The factors influencing the choice among decision alternatives are 

state variables, which must completely describe the relevant "state" of the 

corn and soybean growth process at any given stage, and constraints on the 

decision set. The values which a state variable may take in stage t may be 

influenced by its value in stage t-1, the decisions made in t-1, and the 

outcome of climate in t-1. The functions relating the values of state 

variables in one stage to their values in the next stage are transition 

equations. Transitions are said to be Markovian if the value of the state 

variable in period t+1 is dependent upon the value of that state variable in 

prior period t and not on "the history of the system before its arrival in" 

period t (Howard, p.4).2 State transitions are said to be stochastic if the 

value of the state variable in period t+1 is a function of a random error. 

Stochastic transitions may or may not follow a Markov process. Table 4.5 

identifies each of the state variables and the number of different values 
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Table 4.3. DP Model and Relevant Growth Stages of Cora and Soybeans.  

Dates 

Stage Begin End Days Corn Soybeans  

1 10/23 3/31 160 N/A N/A 
2 4/ 1 4/20 20 Germination & Emergencea Germination & Emergence 
3 4/21 5/5 15 
4 5/6 5/15 10     

Early vegetative Early vegetative 

growth growth 

5 5/16 5/25 10 
6 5/26 6/10 16     
7 6/11 6/30 20 Rapid vegetative growth Vegetative growth 
8 7/1 7/15 15 Flowering 
9 7/16 7/31 16 Flowering Flowering & early 

grain fill 
10 8/ 1 8/31 31 Grain fill Grain fill & 

maturation 
11 9/ 1 9/15 15 Grain fill & Senescence 

Maturation 
12 9/16 9/30 15 Drydown Senescence 
13 10/ 1 10/22 22 Drydown N/A 

a Planting in later stages will delay germination, emergence and 
vegetative growth. Planting is available in stages 2 through 6. 
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Table 4.4. Management Decisions at each Staee of DP Model.  
Starting 
& Ending 

Stage Date Corn Soybeans  
10/23 Nitrogen Applicationa N/A 
3/31 

Amount of N to apply 
0, 50, 150, 200, 250 
1bs. N per acre 

Acres on which to apply N 
160, 320 

Soil type 
Apply N to lesser 
quality soil 

2 4/ 1 Nitrogen Application 
4/20 and 

Plantb Plantb 

Acres to plant Acres to plant 
160, 320 160, 320 

Hybrid selection Hybrid selection 
Champaign Story 

Full season Group III Group II 
Medium season Group IV Group III 

Plant density Plant density 
24,000 plants/acre 100,000 plants/acre 
32,000 plants/acre 150,000 plants/acre 

Soil type Soil type 
plant corn on lesser plant soybeans on lesser 
quality soil quality soil 

3 4/21 Same as Stage 2 Same as Stage 2 
5/ 5 

4 5/6 Same as Stage 2 Same as Stage 2 
5/15 

a Amount of nitrogen to apply, number of acres to cover, and on which soil 
types to apply the nitrogen are all components of the Nitrogen Application 
decision. 

b Acres to plant, hybrid selection, plant density, and soil type are 
components of the Plant decision. 

36 



Table 4.4. Management Decisions at each Stage of DP Model (continued).  

Starting 
& Ending 

Stage Date Corn Soybeans  

5 5/16 Same as Stage 2 Same as Stage 2 
5/25 

6 5/26 Same as Stage 2 Same as Stage 2 
6/10 

7 6/11 Nitrogen Application Do Nothing 
6/30 

8 7/ 1 Do Nothing Do Nothing 
7/15 

9 7/16 Do Nothing Do Nothing 
7/31 

10 8/ 1 Do Nothing Do Nothing 
8/31 

11 9/ 1 Do Nothing Harvest 
9/15 

12 9/16 Harvest Harvest 
9/30 

13 10/ 1 Harvest Do Nothing 
10/22 
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Table 4.5. DP Model State Variables.  

State variable name Symbol Number of Different Values at each stage. 

1 2 3-6 7-8 9-13 
corn plant, 

field 1 CP1 1 1 5 10 10 
field 2 CP2 1 1 7 10 10 

soybean plant, 
field 1 SP1 1 1 5 10 10 
field 2 SP2 1 1 5 10 10 

nitrogen, field 1 N1 17 7 7 1 
field 2 N2 17 7 7 1 

each may take at each period. The stages from which the transitions are 

Markovian and/or stochastic are identified later in this chapter. Each of 

Tables 4.2 through 4.5 are discussed in the following sections. 

Recursive Equation 

The general problem, in a deterministic setting, is to maximize returns 

over variable costs: 

4.1 

where πt is net returns over variable costs in period t, 

Xt is the set of decision variables in period t, 

St is the set of state variables in period t, 

Bt is a discount factor in period t which effectively charges 

interest on accumulated costs and earns interest on accumulated 

net returns above zero, and 

t is a subscript denoting the stage, tЄ{l,...,13}. 
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Following Bellman and Kalaba, the solution to equation 4.1 is an 

optimal sequence of decisions in periods 1 through 13 which may be found by 

solving a recursive equation for each period. The general form of the 

recursive equation for the deterministic model is: 

4.2 

where πt, Xt, St and Bt are as before and Vt is the future value of net 

returns over variable costs for all decisions from period t through T (the 

current period through the ending period). That Vt embodies all future 

decisions and returns is evident in the term Vt+1. 

Due to the stochastic nature of some transitions, equation 4.2 does not 

encompass the production risk which is of interest here. To do so, 4.2 is 

rewritten as: 

4.3 

where E is the expectation operator. To make equation 4.3 operational, a 

method of taking expectations must be used. Due to the cumulative nature of 

crop growth throughout the production cycle, it is easy to see that the 

expected value of future returns is dependent upon both the current value of 

state variables (i) and current decisions (k). Effects of future decisions 

are included in the Vt+1 term. Thus, equation 4.3 is rewritten as: 

4.4 

where Vt, πt, Xt, St and Bt are as before and 

iЄ{l,..,I), 

jЄ{l,..,J}, 

kЄ{l,..,K), 
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The term is the probability of going from the ith state in period t to 

the jth state in period t+1 given the decision k in period t (Howard). 

Because one of the states jЄ{l,..,J} will occur in period t+1, the sum of 

probabilities over resulting states (j) for each decision (k) and each 

beginning state (i) is equal to one. Equation 4.4 thus becomes the general 

form of the recursive equation. Remaining to be specified are the state 

transition equations (St-St(Xt-1,St-1)), the transition probabilities 

the single period net return function (πt(Xt,St)) , and the constraints to be 

added to equation 4.4. 

Net Return Function 

The net return function for the entire year is specified as π - π(X,S). 

Because π represents returns over variable cost in the crop production 

process, this can be generalized as 

π = py - rx 4.5 

where p is output price, y is output conditioned on inputs, x is a vector of 

inputs, and r is a vector of input prices. In order to consider climate and 

its impact on production as the only source of risk in net returns, output 

and input prices are assumed to be known with certainty at the beginning of 

the production year. 

The consideration of two crops (corn and soybeans) in the model 

dictates the following dimensions to the problem specified in equation 4.5: 

p is a 1x2 vector of corn and soybean output prices, 
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y is a 2x1 vector of corn and soybean output quantities, 

r is a 1x6 vector of input prices corresponding to inputs, and 

x is a 6x1 vector of inputs (nitrogen, corn seed, soybean seed, bushels 

dried, other corn inputs, other soybean inputs). 

In developing the net return function, production functions for corn 

and soybeans must be specified. The sequential decisions and climate 

outcomes to be modeled require developing production functions that are 

separable in the time dimension. Following Burt and Stauber, as well as 

Mjelde, a general class of such functions is given as: 

4.6 

where Xt and St are as before, h and Øt are arbitrary functions, Y is crop 

yield, and is a monotonic transformation on yield. To avoid counting 

revenue from crop growth during periods prior to harvest, a crop condition 

state variable accumulates the right hand side terms for periods prior to 

harvest. Because there are two crops, each having its own production 

process, equation 4.6 is more accurately specified as: 

4.7 

which indicates separate production functions for corn (subscript c) and 

soybeans (subscript s) in response to inputs and conditions. 
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Synthetic Data Generation 

As discussed in Chapter III, the specification of the transition equations 

for the DP models requires estimating the parameters of production 

functions. The data for the production function estimates are generated 

from physiologic plant growth simulation models using actual climate data 

from each location and all combinations of the management options listed in 

Table 4.4. Development of the corn data is separate from that of soybeans 

in the following discussion. 

Corn Growth Simulation Model 

The corn growth simulation model selected for use in this study is that 

developed by Reetz. It was modified by Hollinger and used by Mjelde. The 

climate data requirements of the model include daily observations on the 

following: 1) maximum, minimum and mean temperature, 2) precipitation, 3) 

evaporation, and 4) solar radiation. These data were obtained from the 

Illinois State Water Survey, with cooperation from the National Weather 

Service in obtaining data for Ames. 

The corn growth model grows a square meter of corn on a daily basis, 

deriving daily cumulative plant conditions from physiologic equations 

describing the status of the crop and the changes it is undergoing as the 

growing season proceeds. The model output is grams of plant dry matter per 

square meter accumulated during the growing season. The dry matter is 

compartmentalized into roots, stalk, leaves, ear and grain. The model also 

outputs the growing degree days necessary for plant maturity, where growing 

degree days accumulate daily at the rate of the number of degrees Fahrenheit 

that the mean daily temperature exceeds 50°F. The corn grain yield of the 
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model is derived from converting grain dry matter at maturity in grams per 

square meter to 56 lb. bushels per acre at 84.5 percent dry matter. As 

discussed later, data on the cumulative plant dry matter of the square meter 

is also saved at each stage during the growing season listed in Table 4.3. 

The corn growth model allows for the input of different management 

decisions. As listed in Table 4.4, the management options selected for 

study are planting date, seed variety by maturity, planting density and soil 

type. The corn growth model assumes the nitrogen fertilizer is available at 

the rate of 150 pounds per acre. Therefore, nitrogen application decisions 

adjust the model's simulated yields, as discussed below. Management 

decisions may be exercised at the end of a stage. The five corn planting 

dates are identical to those used by Mjelde. April 20 is the first planting 

date available. Alternate planting dates are May 5, May 15, May 25 and June 

10. The model was run with both full and medium season corn hybrids and 

with plant populations of 32,000 (high density) and 24,000 (medium density) 

plants per acre. The corn growth model was not run with low densities or 

short season varieties because these options never entered the optimal 

solution in Mjelde's DP analysis. 

To generate the yield data set, the model was run at all combinations 

of management decisions over both soil types using actual weather data for 

1971 through 1985. With the number of model runs being the product of the 

five planting dates, two hybrids, two soil types, and fifteen years, there 

are 600 observations generated for each location at one nitrogen level. 

Nitrogen - Climate Interaction 

The corn simulation model predicts yield based on an assumed nitrogen 
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fertilization rate of 150 pounds per acre. To adjust the yield output of 

the simulation model for alternative nitrogen fertilization rates, the model 

developed by Hollinger and Hoeft (1986) and updated by Hollinger (1988) is 

employed. This adjustment calculates the fraction of maximum yield 

attainable at different nitrogen levels. This fraction, EN, is given by the 

following equation: 

EN = α[(N+l)β]                                                         4.8 

where a = 1.98 - 5.2666(P/E) + 4.231(P/E)2, 

β = -0.422 + 1.987(P/E) - 1.621(P/E)2, and 

P/E is the ratio of total precipitation to total pan evaporation during the 

period June 11 through July 15, and the subscript N refers to the level of 

nitrogen fertilizer in the soil. The effect of the interaction between 

climate and nitrogen thus includes the nitrogen level available in the soil 

and the amount of precipitation and evaporation during the vegetative growth 

and silking phases of plant development. Thus, 

YN = YMax•a(N+1)β  4.9 

where YN is the yield associated with the nitrogen fertilization rate being 

simulated and YMax is the maximum yield given the climate conditions that 

exist for the simulation. However, YMax is unknown from the corn simulation 
Max 

model. Therefore, it must be calculated from Y150, which is the output of 

the simulation model. To do so, equation 4.9 is inverted and YN is replaced 

with Y150 as follows: 
YMax = Y150/[α(151)β]                                       4.10. 

Substituting 4.10 into 4.9 and canceling α's gives: 

YN = Y 1 5 0 • [(N+1)/151]β                                            4.11. 
One final adjustment must be made to equation 4.11 before it is operational. 
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The simulation model uses the units of pounds of nitrogen per acre in 

assessing the fertilization rate. The coefficients for a and β in equation 

4.8 were derived using kilograms per hectare. Thus the denominator within 

the brackets in equation 4.11 must be converted from 150 pounds of nitrogen 

per acre (plus one) to kilograms of N per hectare. This is accomplished 

using conversion factors of 2.205 lbs./Kg. and 2.471 acres/h. The 

operational form of equation 4.11 becomes: 

YN = Y 1 5 0 • [(N+1)/169.095]β                                                       4.12. 

Equation 4.12 is used to adjust the yields produced by the corn simulation 

model for each of 40 management combinations based on the precipitation and 

evaporation in each year and six different levels of nitrogen fertilization. 

Nitrogen levels used in the expanded data set are 0, 50, 150, 200, 225, and 

267 pounds per acre. Table 4.6 contains the rainfall and evaporation data 

used in the adjustment. 

Table 4.6 Precipitation and Evaporation Data (mm). June 11 to July 15.  

Champaign County Story County  

Year Precip. Evap. Precip. Evap. 

1971 244 346 151 269 
1972 105 284 111 231 
1973 150 294 82 279 
1974 137 312 92 306 
1975 188 314 175 232 
1976 163 316 146 327 
1977 112 282 57 376 
1978 153 308 222 244 
1979 75 317 153 228 
1980 57 290 91 284 
1981 174 273 120 301 
1982 171 279 157 217 
1983 199 320 281 247 
1984 87 273 187 249 
1985 197 233 75 301 
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Soybean Growth Simulation Model 

The soybean growth simulation model selected for use in this study is 

SOYGRO, version 5.41 (Wilkerson et al). It was selected over SOYMOD (Meyer 

et al) due to its relative ease of use and adaptability to different soils 

and plant varieties (Hollinger, 1988). The output of the soybean growth 

model is very similar to that of the corn model. The soybean plant dry 

matter accumulation on one square meter of soil is compartmentalized into 

roots, stems, leaves, pods and seeds. The model seed weight at maturity in 

grams per square meter is converted to 60 lb. bushels per acre using the 

same conversion factors as for the corn model. 

The soybean growth simulation model also incorporates various 

management alternatives selected by the user. The management decisions run 

on this model were planting date, planting density and variety selection. 

To view the whole farm as under one set of management alternatives, the 

soybean planting dates are identical to those for corn. Thus, the planting 

stages for the two models exactly match, as indicated in Table 4.4. 

Although April 20 may be too early to plant soybeans in either Champaign or 

Story County, the remaining four planting dates are reasonable. The choice 

between 100,000 and 150,000 plants per acre reflects a choice between medium 

and high planting densities. The choice between Group III and Group IV 

varieties in Champaign County, and between Group II and Group III varieties 

in Story County indicates a choice between a variety well suited for average 

climate in each area and a variety that is slightly longer to maturity 

(Scott and Aldrich). There is also a choice of soil type on which to plant 

the soybeans. Thus, there are 40 combinations of management alternatives to 

be simulated over 15 years at each location. 
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Production Function Specification and Estimation 

General Form 

The form of the production functions to be used in this study was 

partially addressed in equation 4.7. However, a more precise specification 

must be developed, recalling that each equation must be separable with 

respect to time. The functional form chosen is a logarithmic 

transformation, such that: 

4.13 

where 1n represents the natural logarithm, 

Y, t, Xt and St are as before, and 

βt and 7t are parameters to be estimated. 

Management decisions may affect yield in either of two ways. First, a 

decision may affect only yield potential, with other factors determining the 

yield outcome. This would be represented graphically as an intercept shift 

in the production function. With binary choices between soils, varieties 

and densities, this type of yield potential change is entered into the 

econometric specification of the production function as a dummy variable. 

Secondly, there may be interaction between the management decision and 

another production factor. This would result in a slope shift in the 

production function, specified econometrically as the product of the 

decision variable and the other factor. Identifying which management 

variables interact with climate in later periods will aid in the DP model 

specification by minimizing the number of state variables that must be 

carried along through the growing season. 
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Climate Indices 

The inclusion of the appropriate climate data as production function 

inputs is of central importance in specifying the econometric and DP models. 

The use of proxies for weather or climate inputs in crop production 

functions is not new (see, for example, Doll). As described in Chapter II, 

the climate index of Mjelde and Hollinger is employed to give a general 

indication of climate in a growing stage without requiring the 

identification of the particular weather phenomena (e.g. rainfall, 

evaporation, temperature) that may be causing favorable or unfavorable 

growing conditions. 

The data for the climate index in stages three through ten (see Table 

4.3) are generated by arithmetically averaging the percent change in crop 

dry matter during each stage in each year over all management combination 

runs of the growth simulation model. The climate index for stage t in year 

y is given by: 

4.14 

where MC is the number of management combinations and DMi,t,y is the total 

dry matter weight of the crop accumulated by the growth simulation model at 

the end of stage t under management combination i in year y. Specific data 

for the climate indices in each stage and year, for both corn and soybeans 

in Champaign and Story Counties, are listed in Tables 4.7 through 4.10. 

These tables include the mean, standard deviation (S.D.) and coefficient of 

variation (C.V.) for the climate index in each period. It is noteworthy 
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Table 4.7 Climate Index of Champaign County Corn Bv Year  

Period  

year 3 4 5 6 7 8 9 10 

1971 0.45945 0.58668 0.93761 1.62476 1.70433 0.56851 0.18153 0.36477 
1972 0.41966 0.6114 1.27453 1.67099 1.47366 0.74647 0.37407 0.33454 
1973 0.67089 0.52541 0.85719 1.59503 1.66397 0.71923 0.26083 0.35057 
1974 0.61483 0.32836 0.95272 1.47839 1.57783 1.00912 0.40818 0.31577 
1975 0.69909 0.79497 1.33428 1.52917 1.52392 0.55171 0.31113 0.36686 
1976 0.6362 0.6067 0.77971 1.56805 1.70452 0.74687 0.2852 0.37467 
1977 0.88478 0.87796 1.45252 1.61119 1.39313 0.63237 0.28654 0.26738 
1978 0.25041 0.29475 0.84677 1.74804 1.68446 0.56002 0.27303 0.35472 
1979 0.45018 0.85148 0.8925 1.66785 1.65941 0.69313 0.267 0.29054 
1980 0.80246 0.76215 0.82828 1.69687 1.55439 0.75864 0.30034 0.34327 
1981 0.67756 0.24127 0.79788 1.70041 1.662 0.70021 0.26283 0.33214 
1982 0.71927 1.20962 1.14854 1.51095 1.45998 0.79368 0.37294 0.33181 
1983 0.51411 0.64313 0.58565 1.27702 1.80086 0.74881 0.32035 0.3375 
1984 0.51553 0.47498 0.9436 1.51277 1.76131 0.66243 0.26605 0.33919 
1985 1.23437 1.11916 0.95034 1.63427 1.42483 0.77094 0.35525 0.24803 
mean 0.63658 0.66186 0.97214 1.58838 1.6032 0.71080 0.30168 0.33011 
S.D. 0.22397 0.27173 0.22510 0.11302 0.12220 0.11047 0.05560 0.03496 
C.V. 0.35184 0.41056 0.23155 0.07115 0.07622 0.15541 0.18431 0.10592 

Table 4.8 Climate Index of Champaign County Soybeans Bv Year  

Period  

year 4 5 6 7 8 9 10 

1971 0.78971 0.88104 1.60639 1.58692 0.92073 0.4667 0.58041 
1972 0.80492 1.51298 1.52856 1.41184 0.92523 0.52173 0.58861 
1973 0.38579 1.37929 1.52533 1.54244 0.8034 0.45412 0.62335 
1974 0 1.60508 1.48101 1.59317 1.04718 0.61964 0.71599 
1975 0.84803 1.51498 1.44159 1.507 0.89291 0.51047 0.58753 
1976 0.82832 0.84497 1.59723 1.5514 0.89328 0.52624 0.65308 
1977 1.32685 1.45928 1.37139 1.34952 0.76622 0.47718 0.53829 
1978 0.69832 1.39431 1.64796 1.50618 0.7187 0.47519 0.68952 
1979 0.84864 0.89312 1.59967 1.5518 0.76507 0.53546 0.62119 
1980 1.04745 1.22669 1.50037 1.45757 0.81767 0.48594 0.62015 
1981 0.75994 0.79024 1.69125 1.55853 0.85109 0.4512 0.66198 
1982 1.70422 1.23899 1.36972 1.43753 0.87093 0.56116 0.60379 
1983 0.8085 0.85294 1.5096 1.6457 0.87939 0.53889 0.63881 
1984 0.79502 1.34562 1.48287 1.6174 0.81028 0.48095 0.65079 
1985 1.26703 0.61897 1.54661 1.42806 0.87168 0.57921 0.59013 
mean 0.860849 1.170566 1.526636 1.516337 0.855584 0.512272 0.624241 
S.D. 0.378436 0.311633 0.089380 0.081313 0.077815 0.047188 0.044262 
C.V. 0.439607 0.266224 0.058547 0.053624 0.090949 0.092116 0.070905 

49 



Table 4.9 Storv County Corn Climate Index Bv Year.  

Period  

Year 4 5 6 7 8 9 10 

1971 0.60606 0.83410 1.57065 1.78392 0.69510 0.23886 0.31983 
1972 0.34286 1.23720 1.69792 1.61120 0.85381 0.37810 0.31291 
1973 0.63636 1.01383 1.56058 1.71746 0.78508 .0.28154 0.36757 
1974 0.29167 0.77777 1.50843 1.70106 0.97348 0.37977 0.33408 
1975 0.78462 1.34531 1.43751 1.66504 0.77100 0.34910 0.32929 
1976 0.76190 0.73441 1.62520 1.71184 0.89372 0.38204 0.39846 
1977 1.08084 1.38463 1.65654 1.41682 0.60365 0.21705 0.22751 
1978 0.58333 0.95937 1.68969 1.73926 0.73272 0.30489 0.31808 
1979 0.90000 0.91940 1.61853 1.71676 0.83655 0.35873 0.32726 
1980 0.74591 0.81482 1.67784 1.57802 0.76867 0.33188 0.36175 
1981 0.40724 0.86440 1.69518 1.67653 0.79036 0.28546 0.28446 
1982 0.84034 0.88839 1.26386 1.69522 1.08606 0.54970 0.31122 
1983 0.66667 0.53613 1.42183 1.81142 0.92570 0.35826 0.35328 
1984 0.39286 1.11233 1.47367 1.77616 0.78182 0.30770 0.38760 
1985 1.04520 1.03412 1.58476 1.53465 0.93169 0.33564 0.27360 
Mean 0.67239 0.96375 1.56548 1.67569 0.82863 0.33725 0.32713 
S.D. 0.23487 0.22414 0.12033 0.10025 0.11614 0.07462 0.04283 
C.V. 0.34931 0.23258 0.07686 0.05983 0.14016 0.22127 0.13093 

Table 4.10 Storv County Soybean Climate Index By Year.  

Period  

Year 4 5 6 7 8 9 10 

1971 0.75994 0.76645 1.56552 1.64342 0.87596 0.54364 0.10014 
1972 0.00000 1.65157 1.53645 1.47597 0.86217 0.56769 0.48660 
1973 0.79030 0.87990 1.53349 1.60272 0.90683 0.48779 0.45783 
1974 0.21171 0.77429 1.54855 1.56946 0.96694 0.61998 0.47362 
1975 0.81484 1.51026 1.31633 1.50198 0.93492 0.58982 0.44282 
1976 0.72348 0.74188 1.60034 1.60493 0.93882 0.56742 0.39757 
1977 0.50063 1.53701 1.34245 0.99739 0.42138 0.14808 0.57662 
1978 0.00000 1.11616 1.66240 1.57149 0.88272 0.52311 0.44311 
1979 0.76908 0.84899 1.55247 1.57554 0.90171 0.59246 0.44711 
1980 0.37799 0.81617 1.64100 1.49756 0.89329 0.54057 0.40812 
1981 0.23829 0.74870 1.62475 1.54500 0.93539 0.38816 0.49424 
1982 0.81620 0.83564 1.44591 1.52104 1.01089 0.69464 0.50008 
1983 0.76304 0.72650 1.49005 1.64187 1.03416 0.57638 0.45245 
1984 0.69832 1.35039 1.39352 1.62563 0.91880 0.56435 0.42787 
1985 1.17777 0.63986 1.51735 1.38249 0.84230 0.46339 0.25964 
Mean 0.57611 0.99625 1.51804 1.51710 0.88842 0.52450 0.42452 
S.D. 0.32871 0.33138 0.10069 0.15466 0.13464 0.12136 0.10846 
C.V. 0.57058 0.33262 0.06633 0.10194 0.15155 0.23138 0.25550 
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that the coefficient of variation of the climate index for stage 7 is low in 

both the Champaign and Story County corn data, while the coefficient of 

variation for period 8 is roughly twice that of period 7. Periods 7 and 8 

together comprise the time period for which the nitrogen/rainfall/ 

evaporation interaction was employed to adjust the yields of the corn 

simulation model for various nitrogen levels. Mjelde's corn DP model did 

not divide this period into separate stages. It is divided into separate 

stages in this study due to the onset of flowering in soybeans in the midst 

of the period (see Table 4.3). Also of note in Tables 4.7 through 4.10 is 

the manner in which the mean climate indices for all crops tend to rise and 

fall together throughout the growing season. In Tables 4.8 and 4.10 it is 

evident that soybeans planted in periods 2 and 3 did not progress in period 

4 in some years. In fact, the growth simulation model terminated within a 

few days after the period 2 planting in Champaign (i.e. the plants died) in 

1974. Recall that planting occurs at the end of a period. 

With the required data at hand, attention is now focused on the 

estimation of production function parameters. 

Production Function Specification 

There are four production functions to estimate, both corn and soybeans 

in each of two locations. Each corn production function has five classes of 

independent variables. These are non-nitrogen management inputs, climate 

inputs, nitrogen inputs (quantity; not timing), nitrogen-climate 

interactions and management-climate interactions. The soybean production 

functions have three classes of independent variables, as nitrogen inputs 

and nitrogen-climate interactions are not included. 
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With these groups of variables, together with equation 4.13 and the 

management decisions available from Table 4.4, the corn production function 

can be generally specified as: 

4.15 

where Yc is the yield of corn in bushels per acre, 

Di (i-1,4) are the dummy variables representing the choices between 

planting dates, soil types, densities and seed varieties, 

N is the amount of applied nitrogen in pounds per acre, 

CIt is the climate index in stages three through ten, and 

αi, βt, γ1, γ2, Øi,t, δt, ζt are parameters to be estimated. 

The structure of the soybean production function is identical to that for 

corn (4.15) with parameters involving nitrogen (γ,δ and ζ) set at zero. 

As discussed in Chapters II and III, for the climate information to 

have value there must be a decision change based on the information. 

Therefore, parameters Øt, δt, and ζt are of particular interest. Mjelde 

found that both δt and ζt were important elements of the corn production 

function and DP decision rule. This is not surprising given that the corn 

data were generated using nitrogen-climate interactions from Hollinger and 

Hoeft (1986), as is done in this study. 

Parameter Estimation 

The four production functions were estimated using ordinary least 

squares in SAS. Because of the power functions involved in the nitrogen 

52 



adjustment of the corn data, infeasible observations were generated at the 

extremes of the nitrogen input range (0 and 267), such as growing 400 

bushels of corn per acre with no nitrogen input. Therefore, any data in 

which either a) yield exceeded 220 bushels per acre, or b) yield exceeded 

140 bushels per acre and nitrogen input was zero were excluded from the corn 

regression models. Parameter estimates of the selected regression models 

are in Table 4.11. The symbols used in the regression models are as 

follows: 

Density = a dummy variable equal to zero at the higher planting density and 

equal to one at the lower planting density as listed in Table 4.4; 

Soil = a dummy variable set equal to zero for fields with the higher 

water retention capacity and equal to one for the field with the 

soil of lower water retention capacity; 

Variety = a dummy variable equal to zero for the longer season corn hybrid 

and for the more well-suited soybean variety (Group II in Story 

County; Group III in Champaign County); equal to one otherwise; 

Pdate = a dummy variable equal to zero if the crop is planted in stages 

2,3 or 4, and equal to one if planted in stages 5 or 6; 

CIi = the natural logarithm of the climate indices in stages three 

i-{3,10} through ten, respectively, for each year, crop and location as in 

Tables 4.7 through 4.10; 

PCIi = the product of a dummy variable and the log of the climate index, 

i={3,6} wherein the dummy variable is equal to one if the crop was planted 

prior to stage i; zero otherwise. Thus the crop can only be 

affected by additive climate effects if it is already planted; 
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Table 4.11. Parameter Estimates of Crop Production Functions.  

Champaign County Story County 
Variable Corn Soybeans Corn Soybeans 

Intercept 4.55916 1.10240 4.79646 3.16164 
(65.096)a (4.247) (24.455) (14.275) 

Density -0.00512 -0.00643 -0.01740 -0.00762 
(-0.805) (-1.244) (-1.474) (-0.432) 

Soil -0.01697 -0.03015 0.06596 
(-2.667) (-5.834) (3.743) 

Variety -0.08490 -0.12762 0.05506 0.16877 
(-13.340) (-18.018) (4.632) (9.578) 

PDate -0.05969 -0.07380 -0.04194 
(-6.753) (-4.558) (-2.332) 

PCI3 0.04393 
(3.028) 

PCI4 0.08714 0.01486 
(7.944) (0.805) 

PCI5 0.14020 0.03675 0.20572 
(5.691) (2.472) (4.435) 

PCI6 0.33891 0.04570 0.47002 
(16.431) (2.225) (12.850) 

CI7 -0.67528 10.2964 -0.62917 5.69650 
(-5.407) (8.357) (-1.650) (7.631) 

CI8 0.00830 2.58827 0.40858 -0.44333 
(0.532) (8.164) (2.784) (-1.693) 

CI9 -0.38744 -1.35969 -0.19011 0.27059 
(-17.019) (-1.826) (-4.545) (3.262) 

CI10 0.46352 -2.26520 0.59437 0.71265 
(18.921) (-1.929) (8.677) (27.723) 

CI72 -13.0226 -6.19653 
(-8.854) (-7.404) 

a Numbers in parentheses are t statistics for the hypothesis that the 
parameter is equal to zero. 
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Table 4.11. Parameter Estimates of Crop Production Functions (cont.).  

Champaign County Story County 
Variable Corn Soybeans Corn Soybeans 

CI82 2.80376 -0.10267 
(4.347)a (-1.80,0) 

CI92 -1.32863 
(-2.319) 

CI102 -2.33424 
(-1.909) 

N 0.22683 0.14204 
(5.694) (3.814) 

N2 -0.01141 -0.01489 
(-2.976) (-4.842) 

NCI7 -0.05929 0.15871 
(-0.711) (2.265) 

NCI8 -0.06319 
(-2.312) 

NCI7sq 0.00499 
(0.313) 

MSE 0.03693 0.00370 0.04533 0.04658 
Adj. R2 0.7048 0.5667 0.6109 0.7787 

a Numbers in parentheses are t statistics for the hypothesis that the 
parameter is equal to zero. 
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CIi2 = the square of Che log of the climate index in stage i; 

i={7,10} 

N, N2 = the log of applied nitrogen in pounds per acre and its square; and 

NCIi(sq)= the product of the log of applied nitrogen and the log of the 

i = 7,8 climate index in periods 7 and 8, and the square of this product 

in period 7. 

Numerous models were tested for combinations of variables. A 

discussion of the results of these alternative model runs is incorporated 

below. Rather than employ strictly quantitative regression model selection 

techniques (e.g. Akike, R2),the models reported in Table 4.11 were selected 

based on adjusted R2, mean squared error, and reasonableness of parameter 

estimates. 

Examining Table 4.11, it is interesting that the signs of the dummy 

variable parameters are mostly as expected and the magnitude of their 

effects is small relative to the intercepts. A set of four dummy variables 

to describe five planting dates was also run, but found to be insignificant 

and less descriptive than the Pdate dummy variable and additive PCIi (i=3,6) 

effects.4,5 Of particular note are the few dummy variable effects which are 

not as expected. First is the absence of the Pdate dummy variable in the 

Champaign soybean function. The addition of this variable into the equation 

reduced the adjusted R2 and was insignificant. Next is the absence of the 

soil dummy variable in the Story corn function. This variable was also 

insignificant and, as discussed in Chapter 5, was later dropped as a 

decision alternative. 

The density dummy variable in all equations remains in the estimated 

functions despite its insignificance for two reasons. First, the parameter 
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estimates are very small, describing the density decision effect as minor in 

both corn and soybeans. The expected density effect in soybeans is rather 

small but extant (111. CES.p.10), while the expected density effect in corn 

is slightly larger (Ibid, p.4). This relationship is borne out in the 

parameter estimates for Story County, although a larger t statistic is 

expected for the Story corn density parameter. The density effect in the 

Champaign corn function is smaller than expected. Both corn density 

estimates may suffer from a deficiency in the corn growth simulation model 

to accurately describe density effects. 

Variety effects are as expected for both Champaign County crop 

functions. The shorter season corn hybrid provides a small but 

statistically significant yield increase in the Story corn function. In 

contrast, the Group III soybean variety has a larger yield potential than 

Group II soybeans in the Story County soybean function. This is 

contradictory to conventional wisdom in soybean variety selection, although 

"there are no clearly cut areas where a variety is or is not adapted." 

(Scott and Aldrich, p. 13) The sign of the soil effect in the Story County 

soybean function is opposite to that expected. The extremely close water 

retention capacity between the two Story County soils included in the 

simulation model should result in a smaller difference between the soils 

(parameter estimate) as well. Examining the combination of dummy variable 

parameter estimates as a group leads to confidence in all but the Story 

County soybean function. 

Focusing on other parameters, combinations of climate indices, their 

squares and interactions with nitrogen were examined. Because all climate 

indices are less than 2.0 and many are less than 1.0, their logs are always 
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less than 1.0 and often negative, leaving parameter interpretation a 

confusing chore. Within each stage of each model, the climate index and its 

square (if applicable) were tested for the proper slope, loosely defined as 

a larger climate index yielding a higher product of parameter estimate(s) 

and climate data than a smaller climate index. Although this product is 

sometimes negative, the models are accepted because of the proper relative 

climate effect. A negative adjustment in a period may be interpreted as 

failure to experience good climate detracting more from previously developed 

yield potential. Finally, the parameters on applied nitrogen and its square 

are as expected, depicting a decreasing marginal yield with respect to 

nitrogen. 

Models were run attempting to discover significant management-climate 

interactions but none were found. Initially disturbing was the lack of soil 

type-climate interaction. However, the two locations selected for this 

study have within them soil types very similar in water retention capacity. 

As such, only a very small yield potential (intercept) shift was not 

rejected. Secondly, density-climate interactions were rejected, perhaps 

again due to the unknown ability of the growth simulation models to 

completely account for such things as canopy cover-evaporation interactions 

or root zone competition for soil moisture between neighboring plants. 

Variety-climate interactions were also rejected. 

The resulting adjusted R2 of each model (Table 4.11) are lower than 

those reported by Mjelde (0.84) but higher than that reported by Babcαck 

(0.37). Mjelde's corn production function had more inherent variability for 

the model to explain due to its three densities and three hybrids. 

Babcock's production function suffers from under-specification, having only 
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nitrogen, May rainfall, their squares and interaction completely describe 

variation in cotton yields. The models in Table 4.11 have adjusted R2,s 

ranging between 0.56 and 0.78, which are not unreasonable with respect to 

cross-sectional data parameter estimates. It is interesting that the 

addition or deletion of other variables in the model did not often 

materially change the adjusted R2 measure. However, such adjustments often 

affected the reasonableness of other parameter estimates. 

The selected models still have some collinearity between exogenous 

variables, particularly between climate indices and their squares in the 

soybean functions and between N, N , and nitrogen-climate interactions in 

the corn functions. However, due to the economic principle of diminishing 

marginal productivity and the generation of the data via Hollinger and 

Hoeft's nitrogen-climate interaction scheme, it was subjectively determined 

that any remaining collinearity should be retained. 

Transition Equation Specification 

The purpose of estimating time-separable production functions is to 

incorporate their temporal increments into the transition equations of the 

respective dynamic programming models. However, there are additional 

transition equations which must also be specified. Focus is now turned to 

the development of all of the transition equations. Recall from Chapter III 

that only state variables require transition equations and that 

dimensionality problems in obtaining DP solutions emanate from the number of 

state variables and the number of different values each state variable is 

allowed to take. Therefore, this section also incorporates a description of 

state variable reduction through combinations and assumptions. 
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Nitrogen Transitions 

From Tables 4.4 and 4.11, there are nitrogen decisions that affect the 

corn crop which can be characterized in terms of both amount and timing. 

The production function parameters in Table 4.11 incorporate the effect of 

nitrogen available during the growing season, particularly in stages 7 and 

8. However, Hollinger and Hoeft (1985) and others have shown that the 

amount of applied nitrogen may be different than the amount of effective 

nitrogen available to the corn plant. For purposes of this model, these 

nitrogen differences are only attributable to the timing of application. 

Hollinger and Hoeft's (1985) nitrogen leaching model describes the effect of 

winter precipitation on the amount of fall-applied nitrogen which carries 

over to spring as effective nitrogen. This transition is given by: 

SN2 = N1 - 0.891*[NK1 + 1 - (NK1 +1)β]                               4.16 

β = 1.013 - 0.00253*(CI1 - 380)*D 4.17 

where, 

SN2 is the amount of effective nitrogen available at the beginning of 

stage 2, 

N1 is the amount of fall-applied nitrogen in pounds per acre, 

NK1 is the amount of fall applied nitrogen in kilograms per hectare, 

CI1 is the precipitation during stage 1 in millimeters, and 

D is a dummy variable equal to one if CI1 is greater than 380, zero 

otherwise. 

Data for winter (stage 1) precipitation in both Champaign and Story Counties 

is contained in Table 4.12. In Champaign County, winter precipitation was 

below 380 mm for five of the fifteen years, while in Story County winter 
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Table 4.12 Winter Precipitation. Champaign and Story Counties By Year (mm). 

Champaign Story Champaign Story 
Year County County Year County County 

1971 284 300 1979 426 227 
1972 344 248 1980 318 205 
1973 497 405 1981 224 82 
1974 520 261 1982 424 279 
1975 450 285 1983 436 406 
1976 417 279 1984 477 374 
1977 311 130 1985 522 276 
1978 409 209 
mean 403.9 264.4 
S.D. 86.42 90.12 
C.V. 0.214 0.341 

Table 4.13 Effect of Winter Precipitation on Fall Nitrogen Carry Over. 

Winter Fall Effective Winter Fall Effective 
Precip. Nitrogen Nitrogen Precip. Nitrogen Nitrogen 

254.0 50 53 415.1 50 37 
100 106 100 70 
150 160 150 101 
200 215 200 132 
250 269 250 163 

284.3 50 53 487.0 50 17 
100 106 100 29 
150 160 150 40 
200 215 200 49 
250 269 250 58 

precipitation was below 380 mm during thirteen of the fifteen years. 

Examples of effective nitrogen available in stage 2 at different fall 

nitrogen application rates and different winter precipitation levels are 

contained in Table 4.13. The example precipitation levels used in this 

table are derived in the following chapter and very useful in the DP model. 

It is easily seen from Table 4.13 that transition equations 4.16 and 4.17 
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are deterministic and Markovian. That is, some winter precipitation level 

will occur (CI1) and the resulting available nitrogen is also a function of 

beginning nitrogen (zero) and the fall fertilizer decision, to the exclusion 

of an error term. 

After stage 2, nitrogen transitions are simply additive, in that 

SNt+1 = SNt + Nt 4.18 

where SNt is the value of the nitrogen state variable at the beginning of 

stage t and Nt is the amount of nitrogen applied at stage t. 

Corn Plant Transition Equations 

The corn plant transition equations serve to determine net revenue over 

variable cost associated with a set of management decisions and climate 

outcomes. Although climate is instrumental in determining corn yield (Table 

4.11), it is not necessary to carry the cumulative climate effects forward 

in the DP model as a state in and of itself. 

The same is true of the non-nitrogen management decisions affecting the 

corn crop. Planting date, density, soil type and hybrid selection are 

modeled to impact corn yield and, therefore, net returns. But after 

decisions are made and implemented it is only the state of the corn plant 

that is of interest, not how it got there. The growth path of the corn 

plant after planting is independent of the decisions that placed it in a 

given state according to the parameter estimates in Table 4.11. This would 

not be the case had management-climate interactions been detected, whereby 

more than one state variable would be required to accommodate the divergence 

in growth paths occurring in the stage(s) containing the interaction. 

This not being the case, it is the exponent of the corn production 
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function that is the corn plant state variable (CP): 

Y = exp{CP} 4.19 

Note that a nitrogen state variable is also carried along until stage 8, 

when the last nitrogen-climate interaction occurs. After stage 8 the 

nitrogen state variable is combined into the corn plant state variable to 

reduce the dimensionality of the DP algorithm. It is only in the final 

stage that equation 4.19 is calculated to determine yield and the resulting 

net returns. 

The management combinations available in Table 4.4 provide the decision 

maker a selection of the corn production function intercept in Table 4.11 

due to the binary choice of dummy variables representing non-nitrogen 

management decisions. This may be interpreted as selecting yield potential. 

Referring to the variable symbols in Table 4.11, the sequential order of 

transition equations is given below. Note that the variable symbol 

represents the product of the exogenous variable and its parameter. The 

stage listed is the stage to which the state variable is transitioning. Not 

indicated below is the existence of separate state variables and transition 

equations for each of the two corn fields in one location. 

Stage 2 

CP2 = 0 4.20 

SN2 = (as in equations 4.16 and 4.17) 

Stage 7 

CP7 = intercept + density + soil + variety + Pdate 

+ PCI3 + PCI4 + PCI5 + PCI6  4.21 

SN7 = SN2 + N2 + N3 + N 4 + N5 + N6 4.22 

(Note: only one of N2 through N6 can be non-zero) 
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Stage 8 

4.23 

SN8 = SN7 + N7 4.24 

Stage 9 

4.25 

Stage 10 

CP10 = CP9 + CI9 4.26 

Stage 12 

CP12 = CP10 + CI10                                                                                    4.27 

Yc = exp{CP12}                                                  4.28 

A few explanatory remarks are in order. First, note that transitions from 

stages 2 to 3, 3 to 4, 4 to 5, 5 to 6, and 6 to 7 have been combined into 

one transition system, stages 2 to 7. This is supported by the variables in 

the production function and the structure of the decision set. That is, a 

decision is made in period 2 whether or not to plant, and if so with what 

combination of density, variety and soil options. If the decision is to 

plant in stage 2, the transition to stage 7 is from a corn plant state of 

zero at the beginning of stage 2, with additive intercept and non-nitrogen 

management effects, and with additive climate effects occurring in stages 3 

through 6 (PCI3 through PCI6). If, on the other hand, a decision is to 

delay planting in period 2, the decision must be re-addressed in period 3. 

If planting occurs in stage 3, the value of the crop state variable in stage 

7 will be less than that from stage 2 planting by the amount PCI3 in 

equation 4.21. However, if planting is postponed until stage 5, CP7 will be 

further reduced by both PCI4 and PCI5 being zero, as well as the parameter 
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estimate for the dummy variable Pdate. 

Secondly, equation 4.22 allows for nitrogen application in only one of 

the planting stages. As discussed later, this is a pre-plant anhydrous 

ammonia application, the date of which application affects the amount of 

interest accrual charged to operating expenditures in the net return 

function. 

Equations 4.23 and 4.25 include variable combinations whose parameter 

symbols are below them in parentheses. These variable combinations are used 

here to more precisely indicate the structure of the transitions and the 

timing of the decision effects. For example, in 4.23 the amount of nitrogen 

which affects the corn plant in period 7 is the amount that will also affect 

it in period 8. Thus, SN8 is used to represent N from Table 4.11, where SN8 
is the sum of winter carryover of fall-applied nitrogen, spring pre-plant 

nitrogen and summer sidedress nitrogen (N7). 

Lacking from the system of transition equations is any mention of 

transition probabilities as in equation 4.4. Although climate is 

stochastic, it is modeled here in such a manner as to be deterministic in 

the transition equations. As will be evident in Chapter V, the expectation 

on climate, with or without information, is a single valued number. 

Although there is a probability distribution on climate outcomes, the model 

is run over actual climate sequences in which the climate outcome, and 

therefore the transition, happen with certainty. 

Finally, stages 11 and 13 are not included in the transition system. 

Stage 11, early September, is irrelevant to corn yield in the production 

function. Therefore, whatever value of CP11 occurs, CP12 will be equal to 

it. The yield obtained from solving 4.28 in stage 12 is assumed to be the 
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yield available for harvest in stage 13 as well. Although it is well known 

that fall climate and corn maturity date impact yield with regard to field 

losses and harvest dates, as noted by Mjelde, the literature surrounding 

these issues is unclear as to the parameterization of the impacts. Mjelde 

also found the value of fall climate information with respect to planting 

and harvesting decisions to be very small. The harvest decision was 

affected by whether or not the corn would dry to storable moisture levels in 

the field and, if so, what the value of the additional field losses would be 

relative to the cost of artificial drying. He commented skeptically on the 

reliability of the equations used from the agronomy literature (pp. 92, 

123). Becuase of the relative lack of usefulness of incorporating these 

weakly defined relationships, the corn DP model in this study is silent as 

to these issues. 

Soybean Transition Equations 

The soybean transition equations are much the same as the corn 

transition equations with the exception of the nitrogen state variable. 

Again, there are separate state variables and transition equations for each 

of the two soybean fields. 

Stage 7 

SP7 = intercept + density + soil + variety + Pdate + PCI5 + PCI6 4.29 

Stage 8 

SP8 = SP7 + CI7 + CI7
2 4.30 

Stage 9 

SP9 = SP8 + CI8 + CI8
2  4.31 
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Stage 10 

SP10 = SP9 + CI9 + CI9
2 4.32 

Stage 11 

SP11 = SP10 + CI10 + CI 1 0
2 4.33 

Ys = exp(SP11)   4.34 

The same rationale is used to combine state variables to get the exponent of 

the production function as was applied in the corn transitions. Note again 

that the symbols above are the product of the data and the parameters listed 

for the respective soybean models in Table 4.11. The yield is calculated at 

stage 11 (early September) to identify the returns. Fall climate, harvest 

losses and yields are ignored in the soybean DP model as in the corn model. 

Information on climate/dry down/shatter loss interactions was insufficient 

to rely on any mathematical relationship. Perhaps the predicament faced by 

agricultural engineers in describing this relationship is best explained by 

Lamp et al, who stated that soybean moisture levels may vary by as much as 

20 percentage points between pods on the same stalk. There is no prediction 

for which if any seed pods will dry more quickly and which may be shatter 

prone. Thus, the soybeans are assumed to be harvested when they are ready, 

with no maturity date estimate or plant state being a decision tool in the 

model. 

Each DP model thus far consists of an objective function, a decision 

set, and state transition equations. A set of prices over which to operate 

the models and the development of the field time constraint to be imposed 

remain to be addressed. 

67 



Prices 

The relationship between input and output prices is instrumental in 

determining the profit-maximizing level of input use. Accurate 

spectfication of this relationship is of concern in order to not impose 

temporary economic phenomena on the model results. Therefore, an average of 

recent input and output prices is used rather than the latest year's data. 

Whenever possible this is a three year average. Exceptions are noted in the 

discussion which follows. 

A major input in the production functions specified in this chapter is 

climate which is a free good and thus has a "price" of zero. Land rental 

and farm operating overhead items are excluded from the net return function 

(eq. 4.5) as these expenditures are independent of variable input use. 

However, field operations are charged a per-acre custom rate which covers 

the cost of equipment, fuel and labor required to perform each operation 

(Hinton). Also, potassium and phosphate fertilizers are added at fixed 

rates per acre of each crop according to base levels recommemded by the 

University of Illinois Coperative Extension Service. 

Table 4.14 lists the prices used in the DP models. Part A includes 

items whose amounts and, therefore, the total expenditure on which may vary 

in the DP models. Corn seed price is an average of two years' data due to a 

change in USDA's reporting methods after 1984. Nitrogen prices are averaged 

for six years as reported by USDA because annual data are not reported for 

the seasonal prices desired in the models. Nitrogen application costs and 

grain drying and hauling costs are priced as custom operations described 

above. Story and Champaign counties are both in the same USDA price 

reporting region. Therefore, no locational input price differences are 

68 



Table 4.14. Prices Used in DP Model.  
A. Items Affected by Decisions Price Unit Source 

Corn Seed $ 66.45 80,000 seeds USDA, 2 yr avg. 
Soybean seed 12.03 bushel USDA, 3 yr avg. 
Fall Nitrogen (80% N) 170.00 ton USDA, '81-'86 
Spring Nitrogen (80% N) 224.00 ton avg., N. Cent. 
Sidedress Nitrogen (32% N) 146.00 ton Fert. Dist. 
Apply Fall or Spring Nitrogen 5.00 acre Hinton 
Apply Sidedress Nitrogen 3.25 acre Hinton 

Haul Grain (corn or soybeans) 0.09 bu. Hinton 
Dry Corn 0.0225 bu. point Hinton 

Interest Rate on Operating Loan 12.90 % Melichar, 3 yr 
avg. 

Corn Price (Champaign) 2.06 bu. USDA, '84-'86 
Soybean Price " 5.43 bu. Illinois avg. 

Corn Price (Story) 1.96 bu. USDA, '84-'86 
Soybean Price " 5.06 bu. Iowa avg. 

B. Other Inputs ($/acre) Corn Soybeans Source 

P2O5 $ 6.98 $ 3.91 USDA.CES 

K2O 6.32 -0- USDA.CES 

Field Cultivate 5.25 5.25 Hinton 

Disk Harrow 7.50 7.50 Hinton 

Apply Mixed Fertilizer 2.00 2.00 Hinton 

Plant and Apply Chemicals 10.50 10.50 Hinton 

Herbicides and Pesticides 19.00 18.50 Lattz, 2 yr avg. 

Row Cultivate 6.25 6.25 Hinton 

Combine 29.00 24.00 Hinton 
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contained in the DP models. Output prices are reported by state. Price 

differences due to relative transportation costs and regional use patterns 

are expected and detected in the USDA data. 

The inputs in Part B of Table 4.14 are charged on a per acre basis to 

all acres of the respective crop. These costs are dependent upon the 

assumptions of seedbed preparation practices described at the beginning of 

this chapter. Although these assumptions influence the value of the net 

return function, there are no management decisions in the DP model 

associated with their implementation. Therefore, relative values of the net 

return function arising from different management decisions or climate 

outcomes are not affected by these seedbed preparation assumptions. 

Field Time Constraint 

One of the questions to be addressed by this study is the impact of a 

more highly specified field time constraint on the value of climate 

forecasts. Such constraints may prevent certain combinations of management 

decisions from being implemented, particularly with respect to planting 

date. The assumptions on seedbed preparation practices and equipment 

endowments described earlier play a critical role in developing the field 

time contraints. 

The constraint consists of two parts: the amount of field time required 

to perform spring operations and the amount of time available. Each of 

these is addressed seperately below. Within the DP models the constraint is 

made operational by comparing these two parts. If the amount of time 

required exceeds the amount of time available, then that set of management 

decisions is infeasible and dropped from further evaluation. Time 
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comparisons are made on a cummulative basis as described below. 

Required Field Time 

The calculation of required field time for spring operations is based 

on the equipment endowments and tillage assumptions decribed earlier as well 

as the simplifying assumption of having two 160-acre fields of each crop. 

Required field time is calculated on a per field basis. The same operations 

are performed on corn and soybean fields with the exception of nitrogen 

application. Each field requires field cultivation, disking, fertilizer and 

chemical application and planting in the spring. Row cultivation and 

harvesting are assumed to be completed on a timely basis. It was determined 

in the beginning of this chapter that 5.0 days are required for seedbed 

preparation and planting. Dry fertilizer application is assumed to be hired 

through the local fertilizer retailer at the rate of $2.00 per acre (Table 

4.14), and is thus not material to the constraint. Chemical application is 

assumed to be incorporated into seedbed preparation and planting activities, 

requiring no additional field time. Pre-plant spring anhydrous ammonia 

application is assumed to be performed by the operator. Siemens and Hamburg 

use a productivity rate of 7.40 acres per hour for a nine-knife applicator 

with a 120 h.p. tractor. Therefore, an additional 2.0 days (rounded for 

simplicity) is required for spring nitrogen application if this management 

option is exercised. 

Available Field Time 

As discussed earlier, different sources report the probability of a day 

being available for field operations based on weather and soil conditions. 
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The ASAE Standards cite no specific reference other than observations for 

their tables on the probability of a working day. Schwart cites unpublished 

data from the Illinois Cooperative Crop Reporting Service. Although the 

probability of a working day for any planting stage in the DP models is 

interesting, it is insufficient to run the DP models because the actual 

climate is used for each year in the study. Therefore, to coordinate the 

constraint emanating from the actual climate in each year, the actual field 

days available in each planting stage (stages 2 through 6) in each year are 

required for each location. 

These data are published for regions within Illinois in a weekly 

release of the Illinois Agricultural Statistics Service. The Iowa 

Agricultural Statistics Service also compiles such data which was not 

available in published form, but was acquired through personal communication 

(Block). Table 4.15 lists the number of field days available by planting 

stage in each year and for each location. Note that in each period the mean 

number of field days available in Champaign County is less than that for 

Story County while the coefficient of variation is always higher. The 

operator is assumed to take advantage of an available field day to perform 

some operation on some field. In this manner, the cummulative days 

available by stage becomes the operational constraint. That is, planting 

the last field cannot occur until the twentieth field day is available; 

planting is not restricted to having five field days available in the same 

stage. In addition, the DP model offers a one-half day grace period before 

identifying a binding constraint. This provides slack for the model 

operator to work a bit longer on one or two days, or to not stop immediately 

at the onset of adverse weather, so as to complete an operation. 
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Table 4.15 Days Available For Field Work  

Period 
2 3 4 5 6 

Year Champ. Ames Champ. Ames Champ. Ames Champ. Ames Champ. Ames 

1971 15.75 12.6 12.25 8.3 5.25 9.0 7.50 5.8 9.00 10.6 
1972 0.00 10.5 4.00 8.1 6.25 5.2 9.25 8.0 10.00 8.0 
1973 1.50 0.9 3.50 6.9 6.75 4.0 7.50 9.2 4.50 6.9 
1974 6.75 11.9 7.50 10.2 3.50 3.0 1.75 2.3 4.25 6.7 
1975 9.00 0.7 4.75 6.0 8.25 7.5 8.25 8.4 4.50 7.5 
1976 16.25 14.0 9.25 6.6 7.50 7.4 7.25 6.1 8.00 10.1 
1977 13.25 12.2 9.00 11.9 5.75 9.1 9.25 8.4 11.75 11.9 
1978 0.75 6.6 6.75 8.9 1.75 6.0 3.50 8.1 11.25 11.3 
1979 1.50 2.4 2.25 4.3 6.75 8.1 9.25 8.6 11.75 12.0 
1980 2.75 10.2 11.25 15.0 7.50 9.5 4.25 7.3 4.50 6.7 
1981 8.25 12.3 3.50 12.2 1.75 8.9 3.25 8.7 8.75 11.6 
1982 1.75 2.9 11.00 10.4 9.50 3.9 5.50 0.4 3.50 5.2 
1983 0.75 1.2 5.25 8.7 5.00 4.7 3.50 4.4 7.75 9.3 
1984 1.00 4.1 4.75 4.3 8.25 7.1 3.50 6.4 7.00 7.4 
1985 5.75 12.7 12.00 11.6 . 7.25 6.9 8.25 8.4 10.75 12.5 
Mean 5.67 7.69 7.13 8.89 6.07 6.69 6.17 6.71 7.82 9.19 
S.D. 5.68 4.92 3.43 2.94 2.29 2.04 2.61 2.48 2.97 2.32 
C.V. 1.00 0.64 0.48 0.33 0.38 0.31 0.42 0.37 0.38 0.25 

Summary 

This chapter developed the components of the DP models and identifies 

their parameters. Assumptions underlying the farms and their operators are 

specified. The production functions for corn and soybeans are identified 

and estimated. The form of the recursive equation and the state variable 

transitions are developed as well as the structure of the decision set faced 

by the manager. The economic scenario is established in the form of input 

and output prices and the field time constraint is developed. 

In the following chapters these components are brought together to run 

the DP models over actual climate and with various forecasts to address the 
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information value of the forecasts. Some of the economic relationships and 

assumptions on prior information are also altered to discover any changes in 

information value derived therefrom. 
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Notes 

1. Womack and Traub report the percentage of cropland idled in set aside 
programs in 1986 was 0.7 percent in Illinois and 1.5 percent in Iowa. 
These amounts are not sufficient to alter the assumed corn base of one-
half of tillable acres. 

2. During the development of dynamic programming methods it became popular 
to number stages backward to accent the backward chaining solution 
technique and the remaining number of stages over which the current 
period's recursive equation is optimized. That tradition is not used 
he re in the interest of clarity. 

3. Champaign County solar radiation data for years prior to 1982 were 
derived from an adjustment to data obtained from West Lafayette, 
Indiana, according to the method described in Hollinger (1989). This 
data was not collected in Champaign County prior to 1982. 

4. All tests for significance are at the ten percent probability level 
unless otherwise noted. 

5. The separation of the planting dates into two distinct groups 
approximates the aggregation of five to two planting dates imposed by 
Mjelde. That aggregation is not imposed here, although the Pdate dummy 
variable supports Mjelde's simplification. 
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CHAPTER V 

RESULTS AND VALIDATION 

Introduction 

The forecast valuation methods described in earlier chapters are ready 

to be employed. Through the development of the dynamic programming 

optimization models in Chapter IV, optimal decision sets can be discerned 

for any expected climate sequence. 

Within this chapter, the prior (base) climate expectations are 

developed together with a redefinition of actual climate in each year of the 

study. The DP models are run for each year for both the prior climate 

expectations and forecasted climate, again for both crops and both 

locations. The management simulation models described in Chapter III are 

then run with actual climate to compare the net returns for each pair of 

runs, one with the base decision set and the other with the optimal decision 

set. 

The effects of specific model components, such as the field time 

constraint, multiple fields, multiple crops and multiple soil types, are 

then examined. This is followed by a brief look at the effects of price 

relationships on the value of perfect forecasts. 

Fifteen Year Historical Prior 

Recalling equation 2.3, the information valuation equation, the 

development of prior (without information) climate expectations is required 

to derive the net returns from following the base decision set. The base 

decision set optimizes net returns over prior expectations. The setting of 
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the prior climate expectations requires "some assumptions before they may be 

established. First, the climate occurring during the fifteen years included 

in this study is assumed to accurately reflect the range and distribution of 

possible outcomes. Although this assumption may seem bold, it is required 

to establish the probability distribution on climate. Second, the decision 

maker is assumed to be fully aware of this distribution and operate on its 

expected value. This assumption provides the decision maker with a large 

amount of knowledge and will be relaxed somewhat in the following chapter. 

Actual climate outcomes reported in Tables 4.6 through 4.10 and Table 

4.15 provide the distributions on which the decision maker may operate. 

However, the continuous nature of these distributions is not conducive to 

either forecasting or dynamic programming. Therefore, the climate outcome 

possibilities are grouped into discrete intervals. The mean of each 

interval is the value of the climate index, winter precipitation or 

available field days, as appropriate, which is then used in the analysis. 

The National Oceanic and Atmospheric Administration (NOAA) currently 

uses three categories in its weather forecasts: above normal, normal and 

below normal (Brown et al). Normal weather is defined as that which occurs 

forty percent of the time. Above normal and below normal weather each occur 

with a discrete probability of thirty percent. This probability 

distribution on three intervals (30-40-30) aggregates much information in 

the tails of the distribution. Further distinction of climate information 

in the extreme categories is thought to have value in midwestern crop 

production. Therefore, a five-interval distribution is employed in which 

the middle category is defined as the climate with a 40 percent probability 

of occurring and the four intervals on either side each have a probability 
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of fifteen percent. This five-category (15-15-40-15-15) discrete 

distribution is used to capture more information about events occurring in 

each tail. For discussion purposes the intervals are denoted as excellent, 

good, average, fair and poor. 

The actual climate for a stage within a year is then determined by 

first ranking all fifteen climate outcomes for a given period and assigning 

them to one of the five categories based on rank, with actual frequencies of 

2, 2, 7, 2, and 2 in the respective intervals. Then the climate which 

occurs in, for example, the two years represented by excellent climate is 

assigned the value of the average of the two observations which fall into 

the excellent category. This procedure is followed for climate indices in 

all relevant stages, winter precipitation and available field days. 

The results of this data transformation are contained in Tables 5.1 

through 5.12. The categorical values of winter precipitation and each 

period's climate index are contained in Tables 5.1 through 5.4. Tables 5.5 

through 5.8 identify which category is assigned to each period in each of 

the fifteen years. Tables 5.9 through 5.12 duplicate this effort for 

available field days. These tables describe the actual climate used in the 

DP and management simulation models. To illustrate the use of these tables, 

within Table 5.5 the climate index for period 3 in Champaign County in 1971 

is category 4 (fair). Referring to Table 5.1, the value of the period 3 

climate index used for the fair category is 0.4548. This value is used in 

the management simulation model to incorporate actual climate. It is also 

used in the Champaign County corn DP model if the forecast is perfect. The 

expected values at the bottom of Tables 5.1 through 5.4, 5.9 and 5.10 are 

the weighted averages of the five categories using the probabilities as 
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Table 5.1 Categorical Values of Climate Index. Champaign County Corn  

Period 
Climate 3 4 5 6 7 8 9 10 

Excellent 1.0596 1.1644 1.3934 1.7242 1.7811 0.9014 0.3911 0.3708 

Good 0.7609 0.8647 1.2115 1.6839 1.7044 0.7648. 0.3641 0.3097 

Average 0.6183 0.6472 0.9115 1.6043 1.6180 0.7167 0.2919 0.3384 

Fair 0.4548 0.4017 0.8131 1.5119 1.4668 0.6004 0.2644 0.3032 

Poor 0.3350 0.2680 0.6827 1.3777 1.4090 0.5559 0.2212 0.2577 

Expected 0.6389 0.6637 0.9797 1.5864 1.6014 0.7107 0.3029 0.3291 

Table 5.2 Categorical Values of Winter Precipitation and Climate Index, 
Champaign County Soybeans  

Period 
Climate Winter 5 6 7 8 9 10 

Excellent 254.0 1.5600 1.6696 1.6316 0.9862 0.5994 0.7028 

Good 314.5 1.4861 1.6030 1.5900 0.9070 0.5500 0.6575 

Average 415.1 1.1942 1.5272 1.5250 0.8563 0.5054 0.6212 

Fair 487.0 0.8490 1.4613 1.4328 0.7848 0.4709 0.5881 

Poor 521.0 0.7046 1.3706 1.3807 0.7419 0.4527 0.5594 

Expected 402.5 1.1669 1.5266 1.5153 0.8555 0.5123 0.6246 

79 



Table 5.3 Categorical Values of Climate Index. Story County Corn  

Period 

Climate 4 5 6 7 8 9 10 

Excellent 1.06302 1.36497 1.69655 1.79767 1.02977 0.46587 0.39303 

Good 0.87017 1.17477 1.68377 1.75771 0.92870 0.37894 0.36466 

Average 0.68355 0.93052 1.58924 1.69770 0.81605 0.33517 0.32782 

Fair 0.40005 0.79630 1.45559 1.59461 0.75070 0.28350 0.29784 

Poor 0.31727 0.63527 1.34285 1.47574 0.64938 0.22796 0.25056 

Expected 0.67100 0.96790 1.56251 1.67294 0.83020 0.33751 0.32704 

Table 5.4 Categorical Values of Winter Precipitation and Climate Index, 
Story County Soybeans  

Period 
Climate Winter 5 6 7 8 9 10 

Excellent 106.0 1.59429 1.65170 1.64265 1.02253 0.65731 0.53835 

Good 207.0 1.43033 1.61255 1.61528 0.95288 0.59114 0.49042 

Average 265.0 0.86251 1.53484 1.55532 0.91052 0.55474 0.44926 

Fair 337.0 0.74529 1.41972 1.48677 0.86907 0.47559 0.40285 

Poor 405.5 0.68318 1.32939 1.18994 0.63184 0.26812 0.17989 

Expected 264.3 1.01297 1.51594 1.51232 0.88566 0.52072 0.42143 
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Table 5.5 Actual Climate Index Categories. Champaign County Corn  
Period 

Year 3 4 5 6 7 8 9 10 
1971 4 a 3 3 3 2 4 5 2 
1972 5 3 2 2 4 3 1 3 
1973 3 3 3 3 3 3 5 3 
1974 3 4 3 5 3 1 1 4 
1975 3 3 1 3 3 5 3 1 
1976 3 3 5 3 2 3 3 1 
1977 1 2 1 3 5 4 3 5 
1978 5 5 3 1 3 5 3 2 
1979 4 2 3 3 3 3 3 4 
1980 2 3 4 2 3 2 3 3 
1981 3 5 4 1 3 1 4 3 
1982 2 1 2 4 4 3 2 3 
1983 3 3 5 5 1 3 3 3 
1984 3 4 3 4 1 3 4 3 
1985 1 1 3 3 5 2 2 5 

Table 5.6 Actual Climate Index and Winter Precipitation Categories, 
Champaign County Soybeans  

Period 
Year Winter 5 6 7 8 9 10 
1971 1 3 2 2 2 4 5 
1972 3 3 3 5 1 3 4 
1973 4 2 3 3 4 5 3 
1974 5 1 4 2 1 1 1 
1975 3 1 4 3 3 3 4 
1976 3 4 3 3 2 3 2 
1977 2 3 5 5 4 3 5 
1978 3 2 1 3 5 4 1 
1979 3 3 2 3 5 3 3 
1980 2 3 3 3 3 3 3 
1981 1 5 1 3 3 5 2 
1982 3 3 5 4 3 2 3 
1983 3 4 3 1 3 2 3 
1984 4 3 3 1 3 3 3 
1985 5 5 3 4 3 1 3 

a 1 = Excellent, 2 = Good, 3 = Average, 4 = Fair, 5 = Poor. 

81 



Table 5.7 Actual Climate Index Categories. Story County Corn  
Period 

Year 4 5 6 7 8 9 10 
1971 3a 3 3 1 5 5 3 
1972 5 2 1 4 3 2 3 
1973 3 3 3 3 3 4 2 
1974 5 4 3 3 1 2 3 
1975 3 1 4 3 3 3 3 
1976 3 5 3 3 3 1 1 
1977 1  1  3 5 5 5 5 
1978 3 3 2 2 4 3 3 
1979 2 3 3 3 3 3 3 
1980 3 4 2 4 4 3 2 
1981 4 3 1 3 3 4 4 
1982 2 3 5 3 1 1 4 
1983 3 5 5 1 2 3 3 
1984 4 2 4 2 3 3 1 
1985 1 3 3 5 2 3 5 
Table 5.8 Actual Climate Index and Winter Precipitation Categories, 

Story County Soybeans  
Period 

Year Winter 5 6 7 8 9 10 
1971 4 3 3 1 4 3 5 
1972 3 1 3 4 4 3 2 
1973 5 3 3 3 3 4 3 
1974 3 3 3 3 2 1 3 
1975 3 2 5 3 3 2 3 
1976 3 4 2 2 2 3 4 
1977 1 1 5 5 5 5 1 
1978 2 3 1 3 3 3 3 
1979 3 3 3 3 3 2 3 
1980 2 3 1 4 3 3 4 
1981 1 5 2 3 3 5 2 
1982 3 3 4 3 1 1 1 
1983 5 5 3 1 1 3 3 
1984 4 2 4 2 3 3 3 
1985 3 5 3 5 5 4 5 

a 1 = Excellent, 2 = Good, 3 = Average, 4 = Fair, 5 = Poor. 
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Table 5.9 Categorical Values of Available Field Days. Champaign County 

Period 
Climate 2 3 4 5 6 

Excellent 16.00 12.13 8.88 9.25 11.75 

Good 11.13 11.13 7.88 8.75 11.00 

Average 4.04 6.75 6.50 6.25 7.86 

Fair 0.88 3.75 4.25 3.50 4.50 

Poor 0.38 2.88 1.75 2.50 3.88 

Expected 5.87 7.18 6.01 6.10 7.81 

Table 5.10 Categorical Values of Available Field Days. Story County  

Period 

Climate 2 3 4 5 6 

Excellent 13.4 13.6 9.3 9.0 12.3 

Good 12.4 11.7 8.9 8.5 11.8 

Average 8.4 8.8 6.9 7.5 9.2 

Fair 1.8 6.3 4.4 5.1 6.8 

Poor 0.8 4.3 3.5 1.4 5.9 

Expected 7.6 8.9 6.7 6.6 9.2 
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Table 5.11 Champaign County Actual Available Field Days Categories  
Period 

Year 2 3 4 5 6 
1971 la 1 3 3 3 
1972 5 3 3 1 3 
1973 3 5 3 3 4 
1974 3 3 4 5 5 
1975 2 4 1 2 4 
1976 1 3 2 3 3 
1977 2 3 3 1 1 
1978 5 3 5 4 2 
1979 3 5 3 1 1 
1980 3 2 2 3 4 
1981 3 5 5 5 3 
1982 3 2 1 3 5 
1983 5 3 4 4 3 
1984 4 3 1 4 3 
1985 3 1 3 2 2 

Table 5.12 Story County Actual Available Field Days Categories  
Period 

Year 2 3 4 5 6 
1971 2 3 2 4 3 
1972 3 3 3 3 3 
1973 5 3 4 1 4 
1974 3 3 5 5 5 
1975 5 4 3 2 3 
1976 1 4 3 3 3 
1977 3 2 1 3 2 
1978 3 3 3 3 3 
1979 4 5 3 2 1 
1980 3 1 1  3 4 
1981 2 1 2 1 2 
1982 3 3 5 5 5 
1983 4 3 4 4 3 
1984 3 5 3 3 3 
1985 1 2 3 3 1 

a 1 = Excellent, 2 = Good, 3 = Average, 4 = Fair, 5 = Poor. 
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the weights (15-15-40-15-15). These expected values form the fifteen year 

historical priors used in equation 2.3 and in the DP models. 

The base decisions are derived through the optimization of the DP 

models given the fifteen year historical priors on climate. Tables 5.13 

through 5.16 contain the simulated returns for the base management decisions 

for each climate sequence in the study (1971 through 1985). The net returns 

are the returns over variable costs from two 160-acre fields of corn as 

described previously. 

Note in Table 5.13 that the base management decision for Champaign 

County corn is to plant both fields in stage 4, using a full season hybrid 

and a medium planting density, and to apply 150 pounds of nitrogen per acre 

in the spring. Seed cost of the medium planting density is $19.94 per acre 

compared to $26.58 per acre for the higher planting density. The 

combination of this cost difference and the low yield penalty for the medium 

versus high density corn planting described by the parameter estimates in 

Table 4.11 causes the medium density to be optimal. The preferred base 

planting date of stage 4 is derived from both the parameter estimates and 

the fact that interest on planting costs is charged from the date of 

planting in the DP models. Thus, the marginal revenue gained from planting 

in stages 2 or 3 is insufficient to overcome the additional marginal cost of 

early planting given the expected climate of the fifteen year prior. This 

result, although not necessarily its cause, compares directly with Mjelde's 

optimal planting in early spring. A field time constraint is encountered in 

four of the years such that the second field is not planted until stage 5. 

The fifteen year prior also contains an expectation that winter 
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Table 5.13 Champaign County Corn. Decisions and Returns. 15 yr. Prior  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 

1971 0 0 5/15 2a 150 5/15 2 150 0 0 65,673 
1972 0 0 5/15 2 150 5/15 2 150 0 0 58,955 
1973c 0 0 5/15 2 150 5/25 4 150 0 0 64,223 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 150 5/15 2 150 0 0 52,004 
1977 0 0 5/15 2 150 5/15 2 150 0 0 61,390 
1978c 0 0 5/15 2 150 5/25 4 150 0 0 58,053 
1979 0 0 5/15 2 150 5/15 2 150 0 0 51,151 
1980 0 0 5/15 2 150 5/15 2 150 0 0 56,341 
1981c 0 0 5/15 2 150 5/25 4 150 0 0 58,677 
1982 0 0 5/15 2 150 5/15 2 150 0 0 58,032 
1983c 0 0 5/15 2 150 5/25 4 150 0 0 38,577 
1984 0 0 5/15 2 150 5/15 2 150 0 0 49,967 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 
a In Champaign County, Decision 2 is a full season hybrid planted at medium 

density; decision 4 is the same but planted in stages 5 or 6. 
c Field time constraint prevents earlier planting in these years. 

Table 5.14 Story County Corn. Decisions and Returns. 15 Yr. Prior  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 

1971 150 150 5/15 2a 0 5/15 2 0 0 0 46,893 
1972 150 150 5/15 2 0 5/15 2 0 0 0 45,163 
1973 150 150 5/15 2 0 5/15 2 0 0 0 46,994 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 150 150 5/15 2 0 5/15 2 0 0 0 36,858 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 150 150 5/15 2 0 5/15 2 0 0 0 41,733 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 150 150 5/15 2 0 5/15 2 0 0 0 27,969 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 150 150 5/15 2 0 5/15 2 0 0 0 27,553 
a In Story County, Decision 2 is a medium season hybrid planted at medium 
density; decision 4 is the same but planted in stages 5 or 6. 
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Table 5.15 Champaign County Soybeans. Decisions and Returns. 15 vr. prior 

Field 1 Field 2 
Plant Plant 

Year Date Density Variety Date Density Variety Returns 
1971 5/15 med III 5/15 med III 38,660 
1972c 5/25 med III 5/25 med III 52,727 
1973c 6/07 med III 6/07 med III 38,408 
1974c 5/25 med III 6/07 med III 52,826 
1975 5/15 med III 5/15 med III 39,028 
1976 5/15 med III 5/15 med III 42,211 
1977 5/15 med III 5/15 med III 37,543 
1978c 6/07 med III 6/07 med III 35,703 
1979c 5/25 med III 5/25 med III 38,281 
1980 5/15 med III 5/15 med III 39,095 
1981c 6/07 med III 6/07 med III 37,831 
1982 5/15 med III 5/15 med III 39,329 
1983c 6/07 med III 6/07 med III 38,466 
1984c 5/25 med III 6/07 med III 38,344 
1985 5/15 med III 5/15 med III 39,325 
c Field time constraint prevents earlier planting in these years. 

Table 5.16 Story County Soybeans. Decisions and Returns. 15 yr. prior  

Field 1 Field 2 
Plant Plant 

Year Date Density Variety Date Density Variety Returns 
1971 5/15 med III 5/15 med III 51,851 
1972 5/15 med III 5/15 med III 51,779 
1973c 5/25 med III 5/25 med III 48,390 
1974c 5/05 med III 5/25 med III 53,990 
1975c 5/25 med III 5/25 med III 52,357 
1976 5/15 med III 5/15 med III 51,291 
1977 5/15 med III 5/15 med III 24,505 
1978 5/15 med III 5/15 med III 51,583 
1979c 6/07 med III 5/25 med III 52,420 
1980 5/15 med III 5/15 med III 51,345 
1981 5/15 med III 5/15 med III 39,104 
1982 5/05 med III 5/15 med III 53,894 
1983c 5/25 med III 6/07 med III 49,574 
1984c 6/07 med III 5/15 med III 51,461 
1985 5/15 med III 5/15 med III 24,377 
c Field time constraint prevents earlier planting in these years. 
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precipitation is such that leaching of fall-applied nitrogen is too great 

for this practice to be cost effective. The field time constraint is not 

expected to be encountered given the data in Table 5.9 and the requirement 

of fourteen field days for planting and spring nitrogen application. 

In Table 5.14, the base decision for Story County corn is to apply 150 

pounds of nitrogen per acre in the fall and to plant a medium season variety 

at medium density in stage 4. Again, the interest cost is thought to drive 

the optimal planting date given the fifteen-year prior climate and field 

days expectations. The expected winter precipitation of 264.4 mm allows 

beneficial fall nitrogen application despite the extra six months of 

interest being charged by the DP model. Note that the field time constraint 

is never encountered during the years 1971 through 1985. Not only is the 

expectation on Story County available field days higher than that for 

Champaign County, the application of nitrogen in the fall results in four 

fewer days being required for spring operations. 

As briefly mentioned in Chapter IV, parameter estimates for soil in the 

production functions were very low (Table 4.11). Moreover, the choice 

between soils has no direct cost differential associated with it as do the 

choices between planting densities and dates. The corn and soybean DP 

models are run independently after which they are brought together from the 

whole farm perspective through the field time constraint. In Champaign 

County, both corn and soybean production function parameters on the Ashkum 

(lower water retention capacity) soil are small and negative. Thus, both 

crop DP models would choose two of the Drummer fields. Without soil-

climate interactions being detected, the choice of soils as affected by 

climate forecasts becomes moot. As the sole difference between the two 
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soils in the growth simulation models is water retention capacity, one would 

expect availability of the Drummer fields for spring operations to be 

earlier than for the Ashkum field. As it is customary to begin field 

operations for corn prior to those for soybeans, it is assumed in the 

Champaign County DP models that corn is planted on two fields of Drummer 

soil and soybeans are planted on one field of Drummer soil and one of 

Ashkum. 

In the Story County crop production functions, the choice of soils for 

corn is insignificant and eliminated. The soil parameter estimate in the 

soybean model is positive, indicating a slight yield boost from the 

Spillville soil over the Webster soil. These two soils are very similar in 

water retention capacity. As in Champaign County, the soil type decision is 

removed from consideration in the Story County DP models. The Story County 

corn crop is assumed to be grown on Webster fields and the soybean crop is 

grown on one field each of Webster and Spillville soils. Furthermore, the 

issue of soil type is henceforth ignored. 

The management simulation results of base management decisions for 

Champaign and Story County soybeans are contained in Tables 5.15 and 5.16, 

respectively. The base decision in both counties is to plant type III seed 

at a medium density as early as possible. The field time constraint is 

noticeably binding in many years, as indicated in the tables. The choice of 

medium density planting reflects the reduced seed costs of 100,000 versus 

150,000 plants per acre. The conversion of the base planting date decision 

from stage 4 to as early as possible was generated through the assumption 

that midwestern grain producers would not delay soybean planting if field 

days were available. This is a reasonable assumption because the soybean 
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reproductive process is initiated by changes in day length, not physiologic 

maturation as in corn (Scott and Aldrich). If the field time constraint is 

binding in stage 4 and planting is delayed until stage 5, any economic 

benefit from further delaying planting until stage 6 is only explicable as a 

reduction of interest expense on planting costs. This supplementary 

hypothesis is further examined in the following section. 

The net returns in Tables 5.13 and 5.15 may be added together to give 

net returns for the whole farm from basing optimal decisions on the fifteen 

year prior. The same is true for the returns in Tables 5.14 and 5.16. With 

the establishment of net returns from prior information, attention may be 

directed toward the first term in the right hand side of equation 2.4, the 

returns from incorporating the predictions from a perfect forecast scheme. 

Perfect Forecast - Five Climate Categories 

Design 

In this chapter, the climate forecasting mechanism is assumed to be 

capable of predicting which of the five climate categories will occur in 

each period with perfect accuracy. This scheme is referred to herein as the 

perfect-5 forecast. Alternate forecast schemes are studied in Chapter VI. 

Other assumptions underlying the forecasting mechanism and its use 

include the following: 

1. Perfect forecasts for all periods are available at the beginning of 

stage 1. 

2. The forecast identifies which of five possible outcomes will occur for 

winter precipitation, available field days in stages 2 through 6, and 

both corn and soybean climate indices in stages 3 through 10. 

90 



3. The decision maker will respond to changes in climate expectations 

consistent with the models. 

Furthermore, as described earlier, the decision maker operates within the 

structure of the decision set, using full knowledge of the production 

functions. 

The numeric values of the forecasted variables are those contained in 

Tables 5.1 through 5.4, 5.9 and 5.10. Because the forecasts are perfect 

predictions of the five climate categories, the forecasts for each year 

simulated are contained in Tables 5.5 through 5.8, 5.11 and 5.12. Each DP 

model is run for each year with the perfect predictions to obtain the 

optimal decision set (optimal policy). The optimal decision set is then 

input into the management simulation model to calculate net returns from 

following the optimal policy. As discussed in Chapter III, this two-step 

approach allows the optimal policy to be determined with the DP method of 

discrete approximation, yet the net returns are calculated from continuous 

functions. 

Optimal Policies 

The optimal policies for each crop, in each location and for each year 

are listed in Tables 5.17 through 5.20, together with the net returns from 

the management simulation models. Numbers representing decision sets in the 

corn tables are the same as those in Tables 5.13 and 5.14. Each of these is 

discussed seperately. 

Champaign County Corn 

The optimal decision set and net returns from the management simulation 
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run in each year for Champaign County corn are listed in Table 5.17. In 

comparison with the fifteen year prior decision set of Table 5.12, three 

differences are distinct and noteworthy.1 First, the optimal amount of 

applied nitrogen increases to 200 pounds per acre for both fields in six 

years and for one field in two years. Most of these years are associated 

with good or excellent climate in stages 7 or 8. Planting of one field is 

delayed until stage 5 in 1978 and 1983, the years in which only one field 

receives 200 pounds of nitrogen. 

Secondly, fall nitrogen application comes into the optimal solution in 

five of the years. Four of these years (all but 1972) are associated with 

either excellent or good winter precipitation, the values for both of which 

are less than 380 mm (Table 5.2) indicating beneficial nitrogen carryover 

(see Table 4.13). The reason for fall application of nitrogen in 1972 is 

unclear. It is likely a combination of the lower price of fall fertilizer 

relative to spring, the desire for approximately 150 pounds of nitrogen per 

acre, and the relatively low leaching rate of nitrogen with 415.1 mm of 

precipitation. The only year when both fields have 200 pounds of nitrogen 

applied in the spring is 1984, a year in which winter precipitation is fair 

(487 mm). 

The third difference between Tables 5.12 and 5.17 is the timing of 

nitrogen application in 1973. Winter precipitation in 1973 is fair and the 

spring field time constraint prevents planting and applying nitrogen to both 

fields by the end of stage 4. In other constrained years fertilizer is 

applied in the spring and planting is delayed. However, in 1973 the climate 

sequence is such that planting is preferred to fertilizer application, which 

is delayed until side dressing is performed despite the increased price. 
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Note from Table 5.5 that 1973 climate is average almost throughout the 

growing season. The option of delaying nitrogen application until after 

planting to circumvent the field time constraint is also available in 1978 

and 1983. Both of these years have periods in which climate is excellent or 

poor, indicating periods of accelerated or lagging growth rates. That 

nitrogen application in these years is not delayed in favor of planting is 

interpreted as the marginal revenue from earlier planting in these years, in 

which the comparative growth rate of the corn crop fluctuates, being lower 

than the marginal cost of a higher price for side dressed nitrogen and 

additional interest expense from planting earlier. 

It is interesting that in five of the fifteen years the perfect 

forecast of actual climate does not alter the optimal management decisions 

for Champaign County corn. Referring to Table 5.5, it is noteworthy that 

these years (1974, 1975, 1979, 1982 and 1985) represent no special climate 

sequence other than 1979 in which climate after period 4 is always average. 

Climate in the remaining four years fluctuates between excellent and fair or 

poor. There exists no climate information in these years which would drive 

a change in the amount or timing of nitrogen application, which are the only 

decision changes deing driven by climate forecasts in Table 5.17. 

Story County Corn 

The optimal decision sets and management simulation results for Story 

County corn are in Table 5.18. Note that the field time constraint is never 

encountered and the choice of a medium season hybrid planted at medium 

density is never altered. Furthermore, the optimal nitrogen application 

rate of 150 pounds per acre only changes in 1985, a year in which stage 7 
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Table 5.17 Champaign County Corn Decision - Perfect 5 Forecast.  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 200 200 5/15 2 0 5/15 2 0 0 0 69,472 
1972 200 200 5/15 2 0 5/15 2 0 0 0 62,542 
1973b 0 0 5/15 2 0 5/15 2 150 150 0 66,553 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 200 5/15 2 200 0 0 52,652 
1977 150 150 5/15 2 0 5/15 2 0 0 0 63,582 
1978c 0 0 5/25 4 200 5/15 2 150 0 0 58,459 
1979 0 0 5/15 2 150 5/15 2 150 0 0 51,151 
1980 200 200 5/15 2 0 5/15 2 0 0 0 59,800 
1981c 200 200 5/25 4 0 5/15 2 0 0 0 62,250 
1982 0 0 5/15 2 150 5/15 2 150 0 0 58,032 
1983c 0 0 5/25 4 150 5/15 2 200 0 0 38,711 
1984 0 0 5/15 2 200 5/15 2 200 0 0 50,543 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 

b Field time constraint not active but active in base policy in these years, 
c Field time constraint prevents earlier planting in these years. 

Table 5.18 Story County Corn. Decisions and Returns - Perfect-5 Forecast 

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 150 150 5/15 2 0 5/15 2 0 0 0 46,893 
1972 150 150 5/15 2 0 5/15 2 0 0 0 45,163 
1973 0 0 5/15 2 150 5/15 2 150 0 0 47,905 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 150 150 5/15 2 0 5/15 2 0 0 0 36,858 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 150 150 5/15 2 0 5/15 2 0 0 0 41,733 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 0 0 5/15 2 150 5/15 2 150 0 0 28,419 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 100 100 5/15 2 0 5/15 2 0 0 0 27,563 
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climate, the period of nitrogen-climate interaction in the production 

function, is poor while climate in other periods is average to good (Table 

5.7). The only other period in which stage 7 climate is poor is 1977. In 

that year climate is also poor in periods 8,9 and 10. The production 

function specification in Chapter IV allows some of the climate deficiency 

to be offset by the additive effects of the N and N2 terms, which likely 

keeps the optimal nitrogen level at 150 pounds in 1977. 

Also of interest in Table 5.18 is the timing of nitrogen application in 

1973 and 1983. These are the two years in which winter precipitation is 

above 380 mm (Tables 5.4 and 5.8), causing optimal nitrogen application to 

be in the spring rather than the fall. 

Referring back to Tables 4.7 and 4.9, the climate index data from the 

corn growth simulation models, and the discussion of their summary 

statistics in Chapter IV, recall that the coefficient of variation in the 

climate index is markedly lower in Story County than in Champaign County for 

every period except stage 9. Also, the mean climate index is higher in 

Story County in periods 6 through 9. Thus the Story County forecast is 

predicting generally more favorable climate with less variablility than the 

Champaign County forecast. As such, it is to be expected that fewer corn 

crop decision changes are driven by climate information in Story County than 

in Champaign County. 

Champaign and Story County Soybeans 

The optimal decisions and management simulation results from using the 

perfect-5 forecasts for Champaign and Story County soybeans are in Tables 

5.19 and 5.20, respectively. These decisions and their results may be 
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compared to those of the fifteen year priors in Tables 5.15 and 5.16. Note 

again that the optimal planting density and variety decisions do not change 

throughout the simulation years. The remaining decisions relate to the 

planting date and field time constraint. 

First, in Champaign County the field time constraint is binding in six 

of the fifteen years. In another four of the years the perfect-5 optimal 

decisions are the same as those of the fifteen year prior. In the remaining 

five years (1976, 1977, 1979, 1984 and 1985) the optimal planting date is 

delayed one or more stages. In 1976 and 1985 optimal planting is delayed
from stage 4 to stage 5, indicating that in these years the value of 

additive yield foregone, as determined by the production function parameter 

on climate in period 5, is less than the amount of interest on planting 

costs for ten days. Referring to Table 4.11, the production function 

parameter estimates, it is immediately apparent that the parameter estimate 

on PCI5 in the Champaign soybean function is quite low (0.03675). Also, 

Table 5.6 reveals that period 5 climate was fair and poor in 1976 and 1985, 

respectively. The combination of interest accrual, the unfavorable climate 

and low marginal response to climate in period 5 results in delayed planting 

being optimal in these two years. In 1977 planting is delayed from stage 4 

to stage 6, while in 1979 and 1984 planting is delayed from stage 5 to stage 

6 (only for one field in 1984). This further delay to period 6 is also 

likely to be driven by the interest expense on planting costs for an 

additional period. 

The optimal soybean decisions from the perfect-5 forecast in Story 

County are unchanged from the base decisions in eight of the years 

simulated. Planting of both fields is delayed from period 4 to period 6 in 
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Table 5.19 Champ. Ctv. Soybeans. Decisions and Returns - Perfect-5 Forecast 

Field 1 Field 2 
Plant Plant 

Year Date Density Variety Date Density Variety Returns 
1971 5/15 med III 5/15 med III 38,660 
1972c 5/25 med III 5/25 med III 52,727 
1973c 6/07 med III 6/07 med III 38,408 
1974c 5/25 med III 6/07 med III 52,826 
1975 5/15 med III 5/15 med III 39,028 
1976 5/25 med III 5/25 med III 42,676 
1977 6/07 med III 6/07 med III 37,749 
1978c 6/07 med III 6/07 med III 35,703 
1979b 6/07 med III 6/07 med III 38,408 
1980 5/15 med III 5/15 med III 39,095 
1981c 6/07 med III 6/07 med III 37,831 
1982 5/15 med III 5/15 med III 39,329 
1983c 6/07 med III 6/07 med III 38,466 
1984b 6/07 med III 6/07 med III 38,408 
1985 5/25 med III 5/25 med III 39,832 
b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 

Table 5.20 Storv County Soybeans. Decisions and Returns - Perfect-5 Forecast 

Field 1 Field 2 
Plant Plant 

Year Date Density Variety Date Density Variety Returns 
1971 6/07 med III 6/07 med III 51,869 
1972 6/07 med III 6/07 med III 51,796 
1973b 6/07 med III 6/07 med III 48,517 
1974b 6/07 med III 5/15 med III 54,140 
1975b 6/07 med III 6/07 med III 52,484 
1976 5/15 med III 5/15 med III 51,291 
1977 5/15 med III 5/15 med III 24,505 
1978 5/15 med III 5/15 med III 51,583 
1979b 6/07 med III 6/07 med III 52,484 
1980 5/15 med III 5/15 med III 51,345 
1981 5/15 med III 5/15 med III 39,104 
1982 5/05 med III 5/15 med III 53,894 
1983b 6/07 med III 6/07 med III 49,637 
1984c 6/07 med III 5/15 med III 51,461 
1985 5/15 med III 5/15 med III 24,377 
b Field time constraint not active but active in base policy in these years, 
c Field time constraint prevents earlier planting in these years. 
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1971 and 1972, while in 1973 and 1975 planting of both fields is delayed 

from period 5 to period 6. Due to the field time constraint, planting of 

only one field is delayed in 1974, 1979 and 1983. Referring again to Table 

4.11, the Story County soybean production function does not include 

parameters on the climate indices during planting stages. Rather, the yield 

potential is adjusted by the parameter of the Pdate dummy variable if 

planting occurs in stage 5 or 6. Thus, planting delays from stage 5 to 

stage 6 are driven solely by decreased interest expense without further 

yield reduction in the model. In comparison, cost reductions from delaying 

planting from period 4 to period 6 are offset by decreased marginal 

revenues, but insufficiently so in 1971 and 1972. 

Comparing Tables 5.19 and 5.20, the optimal returns from using the 

perfect-5 soybean predictor in each county, it is clear that Story County 

soybean returns may often be over estimated by as much as 20 to 25 percent 

compared to Champaign County, despite similar costs and a lower soybean 

price in Iowa. Considering the concerns expressed in the previous chapter 

regarding the Story County soybean production function, together with these 

inexplicable results, it is concluded that further inferences drawn from the 

Story County soybean DP and management simulation models are not well 

founded. 

In both locations the optimal soybean decisions are rarely affected by 

climate. In fact, differences between the net revenues from the perfect-5 

decisions and those of the fifteen year prior are largely attributable to 

the DP model assumption that interest accrues on planting expenses from the 

date of planting. This assertion is further examined in the following 

section. 
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Valuation of the Perfect-5 Forecasts 

With the data available in Tables 5.13 through 5.20, valuation of the 

perfect-5 predictions and predictors according to equations 2.3 and 2.4 is 

easily accomplished. To value the prediction, the net returns from applying 

the decision based on the fifteen year prior is subtracted from the net 

returns from the optimal decision based on the perfect-5 prediction for each 

year. To value the predictor, the mechanism that gives rise to the 

predictions, the expected value (mean) of the predictions is calculated. 

The results of these calculations are displayed in Table 5.21. 

First, it is apparent that the perfect-5 predictor has relatively 

little value compared to the fifteen year historical prior in all cases 

Table 5.21 Value of Perfect-5 Predictions and Predictors.  

Champaign County Story County 
Year Corn Soybeans Corn Soybeans 

1971 3,799 0 0 18 
1972 3,587 0 0 17 
1973 2,330 0 911 127 
1974 0 0 0 150 
1975 0 0 0 127 
1976 640 465 0 0 
1977 2,192 206 0 0 
1978 405 0 0 0 
1979 0 127 0 64 
1980 3,459 0 0 0 
1981 3,574 0 0 0 
1982 0 0 0 0 
1983 134 0 450 63 
1984 576 64 0 0 
1985 0 507 10 0 
Mean 1,380 91 91 38 
Mean/acre 4.31 0.29 0.29 0.12 
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except Champaign County corn. Earlier discussion centered around the 

interest expense on soybean planting costs. From Table 4.14, soybean 

planting costs at medium density seeding are $70.01 per acre. When the 

optimal decision is to delay planting from period 5 to period 6, 16 days of 

interest on costs of planting 320 acres of soybeans is saved, which totals 

$126.69, rounded to $127. When only one field is delayed, half that amount 

($63.34) is saved. When planting is delayed from stage 4 to stage 6, the 

amount of interest saved is $205.87. Note in Table 5.21 that these amounts 

are often reflected in the value of soybean climate predictions. Other 

amounts reflect the effects of changes in revenue associated with the change 

in planting date. 

In Story County corn, there is benefit in knowing that nitrogen 

leaching will occur in 1973 and 1983. Knowing that period 7 climate will be 

poor in 1985 and adjusting the nitrogen application rate to 100 pounds per 

acre from 150 pounds saves $10 for the whole farm decision maker with 

fifteen year historical prior information. 

The Champaign County corn climate predictor has the most value. Note 

that in 1971, 1972, 1980 and 1981 there is roughly $3,500 to be gained from 

applying 200 pounds of nitrogen per acre in the fall rather than 150 pounds 

of nitrogen per acre in the spring. Fall nitrogen application saves $2,192 

in 1977 without a change in the application rate. In 1976 and 1984 there is 

approximately $600 to be gained from knowing that period 7 climate will be 

good or excellent. Of particular interest is the $2,330 to be saved in 1973 

strictly from knowing in advance that the field time constraint will be 

encountered if spring nitrogen is applied before planting. Other than this 

last issue, there is a tendency for managerial response to favorable 
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predictions, such as fall precipitation and early summer climate. This 

result compares positively with Mjelde's. 

Effect of More Specific Model on Value of Perfect-5 Predictor 

The more highly specified nature of the models developed for this study 

when compared to others such as those of Mjelde and Babcock has been alluded 

to earlier. The complexities that must be placed in the models may or may 

not effect the value of climate information described above. The areas of 

specificity that are of interest include the field time constraints, the 

multiple fields and multiple soil types of the model farms, the addition of 

multiple crops (the choice between which is restricted by assumption), and 

the resulting subdivision of the growing season into more periods, each of 

shorter duration. These issues are not independent and must be examined 

together. 

The model farms contain two soil types, the difference between which is 

not substantial enough to influence the growth simulation models. These 

soil types and their proportions fairly represent the actual soil types in 

the locations studied. That the choice between soil types is ignored may 

accurately reflect decision patterns on farms comprised of relatively 

similar soils. This may not be the case if other locations are included in 

which soil types differ more markedly and soil-climate interactions can be 

detected in the growth simulation models. 

The combination of the field time constraint, multiple fields and-

multiple crops impacts the value of climate information for corn in 

Champaign County. First, the value of climate information to the farm 

decision maker determined in the previous section is reduced by the 
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restriction of soybeans being planted to one-half of the fields. This is 

because climate information was found to be of little value in making 

soybean decisions and a forecast of very favorable corn climate cannot 

trigger a shift from soybeans to corn or vice versa. 

Secondly, the field time constraint more accurately depicts the field 

work patterns of mid-size midwestern grain farms. The two week field work 

intervals in this model portray the constraint and resulting delays as 

arising from field conditions rather than growing conditions. The design of 

the constraint severely limits the choices of planting dates available in 

some years. In contrast, planting in late spring rarely entered the optimal 

policy in Mjelde's model. His simplification from aggregating five planting 

dates to two is not contradicted by the models developed in this study. 

Therefore, it is not critical that the constraint takes away from a larger 

set of alternatives. 

The operations being performed on two fields of each crop, each with 

its own decision set, also adds realism to the DP models. The results show 

that in some years there is added value to the Champaign County corn climate 

forecasts because of the opportunity to separate decisions by fields, 

especially when the constraint causes a delay in the planting of only one 

field. Such adjustments come into the optimal policy in 1973, 1978 and 

1983. If both fields were required to have the same optimal decision set 

and the constraint could not differentiate between the fields, the value of 

the predictor would fall from $1,380 to $1,188. 

Another area of different model specification appears to be the method 

of charging for field operations. In comparing the optimal corn policies 

with Mjelde's results, it is apparent that he found a number of years in 
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which nitrogen is optimally applied two times during the year even though 

perfect forecasts are received in advance (pp. 166, 173). Mjelde's nitrogen 

application cost is less than half the amount used here. 

Also, the net returns per acre of corn from perfect forecasts in 

Mjelde's results average approximately $267, which he properly validates. 

From Table 5.17, average returns per acre of corn over the fifteen years in 

this study are $175.89. Input and output price assumptions account for much 

of this difference. But a large portion is represented by the full cost 

charge for field operations in this study (Table 4.14) versus Mjelde's 

charge for fuel. For example, there is a difference of nearly $20 per acre 

in the cost of combining corn. A total of $34.62 per acre in higher field 

operations charges is designed into the corn DP model in this study. 

The more complex models also encounter Bellman's curse of 

dimensionality more quickly. Because all state variables must be carried 

for each field and all decision alternatives for each field are searched in 

the DP program, the number of iterations required to find the optimal policy 

is squared by adding a field. To operationalize the DP model there must be 

a trade off between the number of state and decision variables and the 

number of discrete values each is allowed to take. Therefore, the 

complexity of the model restricts the size of both the choice and outcome 

sets, especially in the corn models. Incrementing the nitrogen choice 

amount by 25 pounds instead of 50 pounds has an unidentified impact on the 

value of the climate information. That farmers actually make nitrogen 

decisions in 25 pound or 50 pound increments is unclear. However, there are 

likely to be instances where the optimal policy would be to adjust the base 

amount of nitrogen from 150 pounds per acre, but not up to 200 pounds per 
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acre. The benefit of climate information in such instances is not captured 

by the complex models. This trade off in dimensionality is a direct result 

of the number of fields and the number of planting stages. 

Influence of Prices on Value of Perfect-5 Predictor 

The value of information depends upon differences in returns between 

decisions based on the forecast and decisions based on prior information. 

The net return function (eq. 4.5) is a function of both input and output 

prices. It is well established in micro economic theory that optimal input 

use is a function of input and output prices (Silberberg, Varian). It is 

equally well established that the choice of output mix in a multi-product 

firm is a function of input prices, output prices and the transformation or 

production function (ibid). 

So one would expect that the level of input use or the choice of crops 

would vary as price relationships change. At issue, however, is whether or 

not these management decisions change differently at different price 

relationships depending upon the climate information used by the decision 

maker. The specific questions addressed in this section are 1) how the 

value of the perfect-5 corn predictor changes with varying corn/nitrogen 

price relationships, 2) whether or not there is value in climate forecasts 

being used to choose between crops, and 3) whether or not soybean climate 

information becomes of value at different soybean prices. Each of these is 

addressed separately below. 

Corn/Nitrogen Price Ratio 

The base prices used in the Champaign County corn DP and management 
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simulation models (Table 4.14) have a base corn/nitrogen price ratio of 14.7 

($2.06/$0.14). Six alternate corn/nitrogen price ratios were developed by 

fluctuating the price of corn and holding the nitrogen price constant. 

These ratios (10, 12, 14, 16, 18 and 20) were then used in the corn DP and 

management simulation models to determine the difference in net returns from 

the optimal decision based on the fifteen year prior climate expectations 

and those based on the perfect-5 prediction, for each year and each price 

ratio. The results of these runs are presented in Tables 5.22 and 5.23 for 

Champaign County and Story County respectively. 

In Champaign County (Table 5.22) it is evident that the value of the 

predictor (mean difference) increases as the price of corn increases 

relative to the price of nitrogen. This is expected from earlier results 

which showed the climate forecasts had value when the decision maker became 

aware that it was beneficial to use more nitrogen than the base amount, 

thereby increasing yields. Of course, the value of the marginal yield from 

the additional nitrogen increases as the corn price is higher. 

It is interesting that the Champaign County perfect-5 corn predictor 

has a value of $1,380 at a corn/nitrogen price ratio of 14.7, yet the values 

at price ratios of 14 and 16 are well below that amount. It is conjectured 

that the value of the predictor rises with the corn/nitrogen price ratio 

until the price ratio itself triggers an incremental increase in base 

nitrogen application rates. This hypothesis is developed from the base 

nitrogen application of 200 pounds per acre at price ratios of 16 and above. 

To further investigate this relationship the models were run at price 

ratios of 14.5 and 15.0. The base nitrogen application rate is 150 pounds 

at the 14.5 price ratio. The value of the perfect-5 predictor is $1,307 
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which is between the values calculated at price ratios of 14 and 14.7. At a 

price ratio of 15 the base nitrogen application rate rises to 200 pounds and 

the value of the predictor drops to $845. The base decision is changed by 

climate forecasts less frequently and for smaller payoffs at a price ratio 

of 15 than at 14.7. The information value again rises at price ratios above 

15, indicating that the marginal value product of the extra effective 

nitrogen from fall application increases without additional cost as corn 

price increases. 

The decrease in predictor value at a price ratio of 15 is likely a 

result of the discrete intervals of the model's nitrogen decision set. Had 

nitrogen decisions been modeled continuously it is likely that the base 

nitrogen level would increase with the corn/nitrogen price ratio, resulting 

in smaller increases in predictor value as the price ratio increases. 

While the absolute value of the prediction increases with the corn/ 

nitrogen price ratio, its value as a percentage of expected net returns from 

the prior (base) decisions falls. Recall that these returns are net returns 

over variable costs, which excludes land rent, interest on non-operating 

capital, taxes and general overhead among other costs. 

In Table 5.23 the value of the predictor remains low in Story County at 

all six corn/nitrogen price ratios tested. The value increases markedly 

from a price ratio of 10 to 12 and then falls at a price ratio of 14. This 

is because the optimal amount of nitrogen with prior information increases 

from 100 to 150 pounds per acre between price ratios of 12 and 14. At a 

price ratio of 12 there are a number of years in which the optimal nitrogen 

application with the climate prediction is higher than that for the prior. 

Again, the value of the climate predictor is small compared to expected base 
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Table 5.22 Perfect Predictor Value at Various Corn/Nitrogen Price Ratios, 
Champaign County.  

Corn/Nitrogen Price Ratio 
10 12 14 

Optim. Base Optim. Optim. Base Optim. Optim. Base Optim. 
Year Ret. Ret. - Base Ret. Ret. -Base Ret. Ret. - Base 
1971 29,188 27,254 1,934 46,510 43,553 2,957 63,429 59,852 3,577 
1972 24,748 22,839 1,909 40,181 38,161 2,020 55,614 53,488 2,126 
1973 25,939 25,939 0 42,181 42,181 0 58,423 58,423 0 
1974 8,068 8,068 0 20,120 20,120 0 32,173 32,173 0 
1975 28,134 28,134 0 44,628 44,628 0 61,122 61,122 0 
1976 18,271 18,271 0 32,582 32,582 0 46,892 46,892 0 
1977 25,031 24,439 592 42,152 40,115 2,037 57,942 55,971 1,971 
1978 21,884 21,884 0 37,229 37,229 0 52,573 52,573 0 
1979 17,711 17,711 0 31,898 31,898 0 46,084 46,084 0 
1980 23,014 21,122 1,892 38,063 36,063 2,000 54,260 51,005 3,255 
1981 24,188 22,294 1,894 39,734 37,729 2,005 56,527 53,164 3,363 
1982 22,233 22,233 0 37,420 37,420 0 52,608 52,608 0 
1983 9,086 9,086 0 21,597 21,597 0 34,109 34,109 0 
1984 16,933 16,933 0 30,948 30,948 0 45,385 44,962 423 
1985 14,995 14,995 0 28,581 28,581 0 42,166 42,166 0 
mean: 20,628 20,080 548 35,588 34,854 735 50,620 49,639 981 
Value as a 
Percent of Base 2.73% 2.11% 1.98% 

Corn/Nitrogen Price Ratio 
16 18 20 

Optim. Base Optim. Optim. Base Optim. Optim. Base Optim. 
Year Ret. Ret. - Base Ret. Ret. -Base Ret. Ret. - Base 

1971 81,359 77,539 3,820 98,662 94,337 4,325 115,965 111,136 4,829 
1972 72,771 70,008 2,763 88,683 85,805 2,878 106,178 101,601 4,577 
1973 76,058 76,058 0 94,309 92,800 1,509 111,186 109,541 1,645 
1974 44,646 44,646 0 57,069 57,069 0 69,492 69,492 0 
1975 79,064 79,064 0 96,066 96,066 0 113,067 113,067 0 
1976 62,133 62,133 0 76,883 76,883 0 92,447 91,632 815 
1977 73,732 72,764 968 91,831 88,92.8 2,903 108,112 105,091 3,021 
1978 69,103 69,103 0 84,920 84,920 0 100,736 100,736 0 
1979 61,186 61,186 0 75,809 75,809 0 90,432 90,432 0 
1980 69,772 67,036 2,736 85,285 82,437 2,848 102,280 97,838 4,442 
1981 72,552 69,806 2,746 88,577 85,716 2,861 104,602 101,626 2,976 
1982 68,967 68,967 0 84,626 84,626 0 100,284 100,284 0 
1983 47,130 47,130 0 60,024 60,024 0 72,917 72,917 0 
1984 59,827 59,827 0 74,270 74,270 0 89,455 88,713 742 
1985 56,560 56,560 0 70,568 70,568 0 84,576 84,576 0 
mean: 66,324 65,455 869 81,839 80,684 1,155 97,449 95,912 1,536 
Value as a 
Percent of Base 1.33% 1.43% 1.60% 
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Table 5.23 Perfect Predictor Value at Various Corn/Nitrogen Price Ratios, 
Story County. _ 

Corn/Nitrogen Price Ratio 
10 12 14 

Optim. Base Optim. Optim. Base Optim. Optim. Base Optim. 
Year Ret. Ret. - Base Ret. Ret. -Base Ret. Ret. - Base 

1971 17,581 17,581 0 31,014 31,014 0 46,893 46,893 0 
1972 17,262 17,262 0 30,624 30,624 0 45,163 45,163 0 
1973 18,852 18,157 695 32,768 31,717 1,051 47,905 46,994 911 
1974 12,771 12,771 0 25,139 25,139 0 38,294 38,294 0 
1975 16,611 16,611 0 29,828 29,828 0 44,555 44,555 0 
1976 12,527 12,527 0 25,635 24,841 794 38,432 38,432 0 
1977 11,652 11,652 0 23,773 23,773 0 36,858 36,858 0 
1978 15,663 15,663 0 29,946 28,670 1,276 43,525 43,525 0 
1979 14,410 14,410 0 28,024 27,140 884 41,255 41,255 0 
1980 16,880 16,880 0 31,014 30,157 857 44,786 44,786 0 
1981 14,728 14,728 0 27,530 27,530 0 41,733 41,733 0 
1982 5,304 5,304 0 16,019 16,019 0 27,166 27,166 0 
1983 5,841 5,467 374 16,876 16,218 658 28,419 27,969 450 
1984 21,638 21,638 0 37,385 35,968 1,417 52,312 52,312 0 
1985 5,879 5,879 0 16,721 16,721 0 27,563 27,553 10 
mean 13,840 13,769 71 26,820 26,357 462 40,324 40,233 91 
Value as a 
Percent of Base 0.5% 1.7% .2% 

Corn/Nitrogen Price Ratio 
16 18 20 

Optim. Base Optim. Optim. Base Optim. Optim. Base Optim. 
Year Ret. Ret. - Base Ret. Ret. -Base Ret. Ret. - Base 

1971 60,988 60,988 0 75,083 75,083 0 89,178 89,178 0 
1972 58,993 58,993 0 72,823 72,823 0 86,653 86,653 0 
1973 62,371 61,105 1,266 76,837 75,216 1,621 91,303 89,327 1,976 
1974 51,070 51,070 0 63,746 63,746 0 77,205 76,622 583 
1975 58,291 58,291 0 72,028 72,028 0 85,764 85,764 0 
1976 51,271 51,229 42 64,832 64,026 806 77,944 76,823 1,121 
1977 49,414 49,414 0 61,969 61,969 0 74,525 74,525 0 
1978 57,103 57,103 0 70,682 70,682 0 84,260 84,260 0 
1979 54,485 54,485 0 67,715 67,715 0 80,945 80,945 0 
1980 58,558 58,558 0 72,330 72,330 0 87,268 86,102 1,166 
1981 55,037 55,037 0 68,340 68,340 0 81,644 81,644 0 
1982 38,234 38,234 0 49,303 49,303 0 60,626 60,371 255 
1983 39,895 39,160 735 51,371 50,352 1,019 63,227 61,544 1,683 
1984 67,238 67,238 0 82,165 82,165 0 97,091 97,091 0 
1985 38,681 38,681 0 49,808 49,808 0 60,936 60,936 0 
mean 53,442 53,306 136 66,602 66,372 230 79,905 79,452 452 
Value as a 
Percent of Base 0.2% 0.3% 0.5% 
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(prior) returns. 

To further examine the impact of the climate -prediction on whole farm 

returns, charges are developed for the costs not included in the DP models. 

These charges do not vary with management decisions or climate outcomes 

contained in the models. Therefore, they are developed on a per acre basis 

and charged to the enterprise. The USDA (1987) reports that average per 

acre corn production costs in the Lake States and Corn Belt regions from 

1984 to 1986 included $57.52 for net land rent, $18.85 for taxes and 

insurance and $14.29 for general overhead, for a total of $90.66 per. acre or 

$29,011 for two fields of corn on the model farms. These costs do not 

include unpaid labor, depreciation or interest on non-operating capital, 

although depreciation and interest on machinery and a labor charge are 

included in costs of field operations. Similar costs for soybean production 

are $60.26 for net rent, $15.71 for taxes and insurance and $12.60 for 

general overhead, for a total of $88.57 per acre or $28,342 for two fields 

of soybeans on the model farms. Table 5.24 shows the result of subtracting 

these charges ("partial fixed costs") for corn from the mean base returns 

and comparing the value of the predictor to a closer approximation of net 

income from the corn enterprise, exclusive of government program payments. 

Table 5.24 Relative Value of Perfect-5 Predictor at Various Corn/Nitrogen 
Price Ratios.  

Champaign County Storv County  
Price Mean Base Ret. Value of Mean Base Ret. Value of 
Ratio Net of Par. FC Predictor % Net of Par. FC Predictor %_ 
10 -8,931 548 (6.14) -15,242 71 (0.47) 
12 5,843 735 12.58 - 2,654 462 (17.41) 
14 20,628 981 4.76 11,222 91 0.81 
16 36,444 869 2.38 24,295 136 0.56 
18 51,673 1,155 2.24 37,361 230 0.62 
20 66,901 1,536 2.30 50,441 452 0.90 
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In Champaign County the relative value of the perfect-5 predictor is higher 

at lower corn/nitrogen price ratios. At a price ratio of 12, for example, 

the use of the climate forecasts is expected to increase corn net income by 

12.58 percent. In contrast, when base net income is expected to be higher, 

as when the price ratio is above 15, the predictor is expected to increase 

income by less than 2.5 percent. 

The same relationship between price ratios and relative value of the 

predictor does not hold true for Story County. However, the highest value 

of the predictor is in offsetting 17.41 percent of an expected $2,654 loss 

when the corn/nitrogen price ratio is 12. This price ratio is also that 

which the predictor generated the most events of the optimal nitrogen level 

being higher than that of the prior (Table 5.23). Otherwise, the value of 

the corn perfect-5 predictor remains low when compared to the fifteen year 

historical prior in Story County. 

Corn/Soybean Price Ratio and the Choice of Crop 

The assumptions underlying the DP models fix the corn/soybean price 

ratio and restrict the decision maker from choosing a product mix. The crop 

choice restriction is currently imposed upon participants in federal farm 

income support programs. At issue is whether there is additional value in 

climate forecasts to decision makers if this restriction were not imposed. 

The climate information would have additional value only if it resulted in a 

decision to switch from one crop to another. The amount of the additional 

value is the difference between the optimal returns with forecasts from the 

original base crop and the optimal returns with information from the new 

crop of choice. That is, the additional value is only the incremental 
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increase from switching crops; not the difference between the whole farm 

returns with and without climate information. 

Table 5.25 shows the difference between net returns from corn and 

soybeans for both counties when the perfect-5 predictors are used for both 

crops. These amounts are calculated using the base prices in Table 4.14. 

In Champaign County corn is preferred to soybeans in all but one year at the 

base prices. However, contrary to expectations, soybeans are preferred to 

corn an all but four years in Story County. Not only is the sign opposite 

to that expected, the magnitude of the difference often favors soybeans by 

$35 or more per acre. Concern was expressed earlier regarding the potential 

of the soybean model to be over estimating returns compared to Champaign 

County and expectations. Those results plus the findings in Table 5.25 

preclude reliable further analysis on the choice of crop in Story County. 

The choice of crop is, however, still a viable issue for the Champaign 

County models to address. 

Table 5.25 Corn Net Returns Less Soybean Net Returns from Optimal Strategy 

Year Champaign Story 

1971 27,013 -4,958 
1972 6,228 -6,616 
1973 25,815 -1,396 
1974 -16,349 -15,696 
1975 27,985 -7,802 
1976 9,793 -12,859 
1977 23,847 12,353 
1978 22,350 -8,058 
1979 12,870 -11,165 
1980 17,246 -6,559 
1981 20,846 2,629 
1982 18,703 -26,728 
1983 111 -21,605 
1984 11,623 851 
1985 7,693 3,176 
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Given earlier assertions that optimal output mix is a function of 

output prices, the optimal returns and choice of crop are compared for a 

number of corn/soybean price ratios.3 These ratios are created by 

maintaining the base corn price of $2.06 and fluctuating the soybean price 

between $5.00 and $9.00 in 50 cent increments. Table 5.26a presents the 

optimal net returns for each crop at the stated price ratio, given a 

perfect-5 climate prediction. The expected base is the mean of net returns 

at that price using the fifteen year historical prior. If the expected base 

for corn is greater than that for soybeans, the base choice is to plant all 

four fields to corn and vice versa. The optimal choice is determined in 

each year by comparing optimal net returns for corn and soybeans. It is 

only when the optimal choice is opposite the base choice that the climate 

information has additional value. Table 5.26b depicts those years in which 

the optimal choice is different from the base choice and the additional 

returns resulting from switching crops. The additional value of the 

predictor is given by the mean of returns from switching crops over the 

fifteen years. 

Progressing through Table 5.26a, it is apparent that corn is the base 

crop of choice given the fifteen year prior until soybean prices are at 

above $7.00, or a soybean/corn price ratio of 3.4. In Table 5.26b, the 

number of times the climate forecasts cause a change in crop selection also 

increases steadily through a soybean price of $7.00, after which, at higher 

soybean prices, the choice of crop is altered fewer times. The additional 

value of the perfect-5 predictor from driving this change in crop selection 

increases from $639 at a soybean price of $5.00 to $4,592 at a soybean price 

of $6.50. The additional value falls to zero at soybean prices above $8.00, 
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Table 5.26a Returns from Corn vs. Soybeans with Perfect-5 Predictors at 
Various Soybean/Corn Price Ratios. Champaign County  

Soybean Price 
Year Corn $5.00 $5.50 $6.00 $6.50 $7.00 $7.50 

1971 69,472 33,017 39,578 46,139 52,700 59,261 65,821 
1972 62,542 45,958 53,829 61,699 69,570 77,440 85,311 
1973 66,553 32,802 39,320 45,838 52,356 58,874 65,392 
1974 36,477 46,055 53,928 61,802 69,676 77,550 85,424 
1975 67,013 33,356 39,951 46,546 53,142 59,737 66,332 
1976 52,652 36,716 43,646 50,575 57,505 64,434 71,363 
1977 63,582 32,196 38,652 45,109 51,565 58,021 64,477 
1978 58,459 30,315 36,580 42,845 49,109 55,374 61,639 
1979 51,151 32,802 39,320 45,838 52,356 58,874 65,392 
1980 59,800 33,418 40,019 46,621 53,223 59,824 66,426 
1981 62,250 32,272 38,736 45,200 51,663 58,127 64,591 
1982 58,032 33,652 40,267 46,881 53,504 60,127 66,751 
1983 38,711 32,856 39,380 45,903 52,427 58,950 65,474 
1984 50,543 32,802 39,320 45,838 52,356 58,874 65,392 
1985 47,018 34,102 40,765 47,428 54,091 60,754 67,418 
Mean: 56,284 34,821 41,553 48,284 55,016 61,748 68,480 
Expected 
base: 56,770 33,475 40,079 46,682 53,286 59,889 66,493 
Base Choice: Corn Corn Corn Corn Soybeans Soybeans 

Soybean Price 
Year $8.00 $8.50 $9.00 

1971 39,578 46,139 52,700 
1971 77,382 78,943 85,504 
1972 93,181 101,052 108,922 
1973 71,910 78,428 84,946 
1974 93,298 101,172 109,045 
1975 72,928 79,523 86,118 
1976 78,293 85,222 92,151 
1977 70,934 77,390 83,846 
1978 67,903 74,168 80,433 
1979 71,910 78,428 84,946 
1980 73,027 79,629 86,231 
1981 71,055 77,519 83,983 
1982 73,374 79,998 86,621 
1983 71,997 78,520 85,044 
1984 71,910 78,428 84,946 
1985 74,081 80,744 87,407 
  
Mean: 75,546 81,944 88,676 
Expected 
base: 73,096 79,699 86,303 
Base Choice: Soybeans Soybeans Soybeans 
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Table 5.26b Additional Returns from Switching Crop at Various Soybean/Corn 
Price Ratios. Champaign County Perfect-5 Predictors  

Soybean Price 
Year $5.00 S5.50 $6.00 $6.50 $7.00 $7.50 $8.00 $8.50 $9.00 

1971 10,221 3,651 
1972 7,028 
1973 7,679 1,161 
1974 9,578 17,451 25,325 33,199 
1975 7,276 681 
1976 4,853 
1977 5,561 
1978 3,085 
1979 1,205 
1980 
1981 4,123 
1982 
1983 669 7,192 13,716 
1984 1,813 
1985 410 7,073 
Mean: 639 1,208 2,168 4,592 2,529 366 0 0 0 

indicating corn is not competitive with soybeans at this price ratio 

regardless of the climate. 

Thus it seems that at soybean/corn price ratios of roughly 2.9 to 3.4 

the Champaign County DP models represent corn and soybeans as competitive 

crops, the decision between which can be assisted by corn and soybean 

climate forecasts. However, a closer look at Table 5.26a reveals that 

within each price column the decision to switch from corn to soybeans is 

optimal when corn returns are relatively low; not when soybean returns are 

relatively high. Moreover, at higher soybean prices the decision to switch 

from soybeans to corn is motivated by higher corn returns, not lower soybean 

returns. These two observations allow additional value of the perfect-5 

predictors from the choice of crop to be attributed to the corn predictor 

and not the soybean predictor. Although decision makers may not place all 

cropland in production of the same crop, the potential value of the corn 
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climate predictions for selecting a crop is as great or greater than its 

value in determining optimal timing and amounts of nitrogen fertilizer 

application. One caveat should be added: the above analysis is performed in 

the absence of the effect of the field time constraint on planting dates. 

Although the model farms are endowed with enough equipment to perform the 

additional field operations without changing the impact of the constraint, 

they are not endowed with sufficient labor. To the extent labor can be 

duplicated, the charge for which is already embedded in the cost of field 

operations, the effect of the field time constraint remains unchanged. 

Influence of Soybean Price on the Value of Perfect-5 Soybean Predictor 

Soybean forecasts were previously found to be of little value. To 

investigate the sensitivity of this result to price assumptions, the 

Champaign County soybean model was run at the same nine soybean prices as in 

the previous section to determine whether any management decision changes 

are prompted by climate forecasts. The results of these runs are presented 

in Table 5.27. The influence of avoiding one (or two) period's interest 

expense on planting costs is still detected in the forecast values of 63, 

64, 126, 127, 205 and 206. Even with these amounts included, the value of 

the soybean perfect-5 climate predictor is comparatively negligible. 

Summary 

The five category perfect climate forecasts were developed to determine 

their value to Champaign County and Story County corn and soybean producers. 

The fifteen-year prior expectations on climate were used for this purpose. 

The optimal policies for soybeans are not affected by the perfect-5 
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Table 5.27 Comparison of Optimal Returns vs. Base Returns for Various 
Soybean Prices. Champaign County. __ 

Price: $5.00 $5.50 $6.00  
Optimal Base Value Optimal Base Value Optimal Base Value 

Year 
1971 33,017 33,017 0 39,578 39,578 0 46,139 46,139 0 
1972 45,958 45,958 C 53,829 53,829 0 61,699 61,699 0 
1973 32,802 32,739 63 39,320 39,257 63 45,838 45,775 63 
1974 46,055 46,055 0 53,928 53,928 0 61,802 61,802 0 
1975 33,356 33,356 0 39,951 39,951 0 46,546 46,546 0 
1976 36,716 36,253 433 43,646 43,176 470 50,575 50,070 505 
1977 32,196 31,990 206 38,652 38,447 205 45,109 44,903 206 
1978 30,315 30,315 0 36,580 36,580 0 42,845 42,845 0 
1979 32,802 32,676 126 39,320 39,194 126 45,838 45,712 126 
1980 33,418 33,418 0 40,019 40,019 0 46,621 46,621 0 
1981 32,272 32,272 0 38,736 38,736 0 45,200 45,200 0 
1982 33,652 33,633 19 40,267 40,257 10 46,881 46,880 1 
1983 32,856 32,856 0 39,380 39,380 0 45,903 45,903 0 
1984 32,802 32,739 63 39,320 39,257 63 45,838 45,775 63 
1985 34,102 33,629 473 40,765 40,252 513 47,428 46,875 553 
Mean 34,821 34,729 92 41,553 41,456 97 48,284 48,183 101 

Price: $6.50 S7.00 $7.50  
Optimal Base Value Optimal Base Value Optimal Base Value 

Year 
1971 52,700 52,700 0 59,261 59,261 0 65,821 65,821 0 
1972 69,570 69,570 0 77,440 77,440 0 85,311 85,311 0 
1973 52,356 52,293 63 58,874 58,811 63 65,392 65,329 63 
1974 69,676 69,676 0 77,550 77,550 0 85,424 85,424 0 
1975 53,142 53,142 0 59,737 59,737 0 66,332 66,332 0 
1976 57,505 56,963 542 64,434 63,856 578 71,363 70,750 613 
1977 51,565 51,359 206 58,021 57,815 206 64,477 64,271 206 
1978 49,109 49,109 0 55,374 55,374 0 61,639 61,639 0 
1979 52,356 52,230 126 58,874 58,747 127 65,392 65,265 127 
1980 53,223 53,223 0 59,824 59,824 0 66,426 66,426 0 
1981 51,663 51,663 0 58,127 58,127 0 64,591 64,591 0 
1982 53,504 53,504 0 60,127 60,127 0 66,751 66,751 0 
1983 52,427 52,427 0 58,950 58,950 0 65,474 65,474 0 
1984 52,356 52,293 63 58,874 58,811 63 65,392 65,329 63 
1985 54,091 53,498 593 60,754 60,121 633 67,418 66,744 674 
Mean 55,016 54,910 106 61,748 61,637 111 68,480 68,364 116 
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Table 5.27 (cont.) Comparison of Optimal Returns vs. Base Returns for 
Various Soybean Prices. Champaign County.  

Price: $8.00 $8.50 $9.00  
Optimal Base Value Optimal Base Value Optimal Base Value 

Year 
1971 77,382 77,382 0 78,943 78,943 0 85,504 85,504 0 
1972 93,181 93,181 0 101,052 101,052 0 108,922 108,922 0 
1973 71,910 71,847 63 78,428 78,365 63 84,946 84,883 63 
1974 93,298 93,298 0 101,172 101,172 0 109,045 109,045 0 
1975 72,928 72,928 0 79,523 79,523 0 86,118 86,118 0 
1976 78,293 77,643 650 85,222 84,536 686 92,151 91,430 721 
1977 70,934 70,728 206 77,390 77,184 206 83,846 83,640 206 
1978 67,903 67,903 0 74,168 74,168 0 80,433 80,433 0 
1979 71,910 71,783 127 78,428 78,301 127 84,946 84,819 127 
1980 73,027 73,027 0 79,629 79,629 0 86,231 86,231 0 
1981 71,055 71,055 0 77,519 77,519 0 83,983 83,983 0 
1982 73,374 73,374 0 79,998 79,998 0 86,621 86,621 0 
1983 71,997 71,997 0 78,520 78,520 0 85,044 85,044 0 
1984 71,910 71,847 63 78,428 78,365 63 84,946 84,883 63 
1985 74,081 73,367 714 80,744 79,990 754 87,407 86,613 794 
Mean 75,546 75,424 122 81,944 81,818 127 88,676 88,545 132 

forecasts. Rather, they are controlled by seed costs and the constraint on 

available field time. The value of corn climate predictions is very low in 

Story County, where winter precipitation is sufficiently low in 85 percent 

of the years studied to allow fall nitrogen application without costly 

leaching. Moreover, the higher expected climate index and its lower 

variability during critical periods of nitrogen-climate interaction in Story 

County provide less incentive to adjust nitrogen levels from optimal 

application rates of the fifteen year prior. 

In Champaign County, however, the amount and timing of optimal nitrogen 

application is aided by the perfect-5 predictor. The value of the 

predictions increases with the corn/nitrogen price ratio until the base 

nitrogen decision increases, after which it falls due to the large intervals 

in the discrete nitrogen decision set. Additional value for the corn 
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climate forecasts is found if the choice between planting corn and soybeans 

becomes a management alternative, which is currently constrained by the 

terms imposed on government program participants. 

Some of the assumptions imposed on the analysis conducted in this 

chapter are quite strong. Three of these are of particular interest. 

Bestowing the fifteen year prior on the decision maker grants a large amount 

of prior information not known to be used in such decisions. Secondly, 

converting what is now a three category forecast into a five category 

forecast may provide the decision maker with information which is not 

deliverable by current climate forecasting techniques. The assumption that 

the forecasts are perfect may also be beyond current capabilities. Each of 

these assumptions is relaxed somewhat in the following chapter to determine 

the value of climate forecasts with a different set of assumptions. 
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Notes 

1. Differences in field number are inconsequential since both fields are 
the same soil type. Planting field 1 in stage 4 and field 2 in stage 5 
is equivalent to planting field 2 in stage 4 and field 1 in stage 5. 

2. Net land rent is the weighted average return to land owners from both 
cash and crop share rent. 

3. The preference for one crop over another may be influenced by multi-
year phenomena such as pest and disease infestation and control, 
chemical carryover, and so forth. These issues are ignored here in the 
interest of preserving the one-year, multi-period DP models. 
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CHAPTER VI 

APPLICATION OF MODEL TO VARIOUS CLIMATE FORECAST SCHEMES 

AND ALTERNATE PRIORS 

Introduction 

The models developed in Chapter IV were employed in Chapter V to value 

climate forecasts under the assumptions that the decision maker has prior 

knowledge of the fifteen year historical climate probability and that the 

climate forecast mechanism is capable of producing perfectly accurate 

climate forecasts for each stage at the beginning of the production year. 

Moreover, the climate forecast mechanism was assumed to be able to 

distinguish among any of five possible climate outcomes. These assumptions 

were previously noted as possibly being restrictive. This chapter addresses 

the value of climate forecasts when these assumptions are relaxed. The 

specificity and accuracy of the forecasts are altered first. This is 

followed by a changes in the assumption of the decision maker's prior 

information. These analyses are preceded by a discussion of the parameters 

of a climate forecast, of which specificity and accuracy are only two. 

Parameters of a Climate Forecast 

Other than winter precipitation, the climate forecast used in these 

analyses is a prediction of general field or growing conditions occurring 

during a particular period. The question of which weather phenomena 

(rainfall, evaporation, temperature, solar radiation, wind velocity, etc.) 

are causing the conditions to occur is left to climatologists to address. 
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There are other characteristics of a climate forecast which may impact its 

value. These include specificity, accuracy, lead time, spatial resolution 

and duration of a forecast period (Mjelde). 

To value the differences in duration of a forecast period requires 

allowing the length of stages in the dynamic programming models to vary. 

Valuing spatial resolution in the current context means allowing climate 

forecasts and outcomes to vary over the 640 acres of the model farm. 

Although measurement of certain weather phenomena, especially rainfall, may 

vary over an area of this size during an event, modeling different climate 

over this relatively small geographic region for a minimum period of two 

weeks is not seen as a productive exercise. Therefore, duration and spatial 

resolution are not addressed in this study. Lead time, accuracy and 

specificity are discussed separately below. 

Lead Time 

The concept of forecast lead time refers to how long in advance of a 

period the forecast for that period is received. In the analyses of Chapter 

V lead time was indirectly specified by assuming the forecast for all 

periods were received at the beginning of stage 1. A closer evaluation of 

lead time is warranted only in the Champaign County corn model because of 

the very few decision changes after stage 1 in the other models resulting 

from climate information. 

The dynamic programming method facilitates the evaluation of the 

optimal policy at any stage given the value of the state variables. Recall 

from the state transition equations (4.16, 4.20 - 4.27) that the corn DP 

state variables at any stage are a function of prior decisions as well as 
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climate outcomes. Without sufficient lead time the decision maker is 

assumed to base a decision on prior information. For example, without 

information available at stage 1 about period 7 climate, a period of 

nitrogen-climate interaction, a decision may be implemented to apply 150 

pounds of nitrogen in the fall although the optimal amount would be 200 

pounds. If the period 7 climate information is forthcoming in periods 2 

through 6, will the decision maker apply another 50 pounds of nitrogen? If 

so, the difference in net returns between applying the 200 pounds in one 

fall application versus applying it in two applications of 150 pounds in the 

fall and 50 pounds in the spring or summer is the value of the lead time 

component of the forecast for period 7. 

In the Champaign County corn optimal policies of Chapter V only the 

amount and timing of nitrogen application changed from the base policy. 

These decisions were based mainly on forecasts of winter precipitation 

(stage 1 climate) and climate in stages 7 through 10, particularly stages 7 

and 8. Clearly there can be no lead time adjustments made to stage 1 

forecasts; either a forecast is received in the fall or it is of no value in 

determining whether or not to apply fall nitrogen. The lead time of 

forecasts for periods 7 through 10 was examined as they relate to the amount 

and timing of optimal nitrogen application. 

The analysis specifically addressed whether or not it is optimal to 

perform a second application of nitrogen when climate forecasts for later 

periods are not received until after the first nitrogen application is 

performed based on the fifteen year prior. In all model runs, including 

those discussed later in this chapter, it is never advantageous to apply 

additional nitrogen in periods after planting if the forecasts are received 
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after planting. In addition, if it is optimal to apply fall nitrogen but 

forecasts for periods 7 through 10 have not been received, then the amount 

applied is the amount based on the prior (150 pounds). Again, no 

supplementary nitrogen application occurs, at planting or sidedressed, in 

any model runs when summer forecasts are received after stage 1. 

An analysis of Table 5.17 indicates there are four years in which the 

perfect-5 forecast elicits fall fertilization at 200 pounds per acre. 

Management simulation runs for these years with 150 pounds of fall-applied 

nitrogen indicate an average increase in net returns of $1,434 for these 

four years, or an expected value of $382 over the fifteen year period. In 

addition, only four instances of spring fertilization above 150 pounds per 

acre are found in Table 5.17. The average value of the predictors for these 

years is $438, or $117 over the fifteen year period. Further subtracting 

the $2,330 gain from delaying nitrogen application in 1973, or $155 per 

year, leaves $726 of the $1,380 value attributable to the winter 

precipitation forecast. 

Mjelde often found multiple applications of nitrogen in the optimal 

policy. Differences in cost of nitrogen application between his model and 

the current one may be the cause of this disagreement. The cost of 50 

pounds of nitrogen per acre at $.14 per pound is $7.00 per acre. However, 

if another application charge is assessed at $5.00 per acre, the effective 

cost of the additional fertilizer rises to $.24 per pound. The DP model 

determines that the discrete additional return per acre from this 

incremental 50 pounds is less than its $12.00 cost. It is not clear what 

level of nitrogen Mjelde used as a prior nor whether an additional 

application charge was assessed (pp. 163, 164, 166). It is evident however, 
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that the initial application charge is $2.19 per acre and the spring 

nitrogen price is $.153 per pound. In addition, the allowable discrete 

values for the nitrogen state variable provide for an additional 50 pounds 

to be counted as 83 pounds (p. 173). Therefore, the effective cost of 

nitrogen in Mjelde's model is $.092 per pound without an application charge 

and $.119 per pound with an application charge. 

In summary, this analysis shows that lead time is crucial to climate 

information value in corn production because of the irreversibility of prior 

actions and the relatively large incremental cost of repeating operations. 

Further, perfect-5 forecasts of growing season climate received in the 

spring have an expected value of $117. Receiving these forecasts in the 

fall adds another $382 to the expected value of perfect-5 predictions of 

growing season climate. 

Accuracy 

In the context of this study accuracy refers to the correctness of the 

forecast in identifying which climate outcome will occur. This is most 

easily described by Table 6.1, parts a - c. Table 6.1a describes a 3-

category forecast that is perfectly accurate. Whichever category is 

predicted actually occurs with 1.0 probability. This is the accuracy of the 

forecast evaluated in the previous chapter. Part b. describes a forecast 

which is not perfectly accurate, but has a relatively narrow dispersion. If 

an outcome of average is predicted, there is a fifteen percent chance of 

actually obtaining an outcome of good, a fifteen percent chance of poor, and 

a 70 percent chance of obtaining the predicted outcome of average. Note in 

this 3-category example that if extremes of good or poor are predicted there 
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is a zero probability of obtaining the opposite extreme. In contrast, the 

wider dispersion of outcomes in part c. describes a lower accuracy in both 

the lower probability of obtaining the category predicted and the non-zero 

(.25) probability of obtaining an extreme outcome opposite to that 

predicted. 

Each row in Table 6.1a-c must sum to 1.0 as some outcome will occur 

regardless of the prediction. The probability of getting a prediction of a 

certain category depends upon the processes generating the forecasts and 

Table 6.1 Forecast Accuracies: Probability of Outcome Given Prediction 

a. Perfect Accuracy 

Outcome  
Prediction Good Average Poor 

Good 1.00 .00 .00 
Average .00 1.00 .00 

Poor .00 .00 1.00 

b. Narrow Dispersion 

Outcome  
Prediction Good Average Poor 

Good .70 .30 .00 
Average .15 .70 .15 

Poor .00 .30 .70 

c. Wide Dispersion 

Outcome  
Prediction Good Average Poor 

Good .50 .25 .25 
Average .25 .50 .25 

Poor .25 .25 .50 
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outcomes. For climate forecasts, the probability of getting a particular 

forecast is probably best measured by the historical probability of that 

outcome. The accuracy of forecasts is of interest in this study to 

determine the effect of different accuracies on forecast values. 

Specificity 

Specificity is related to accuracy. In a continuous distribution, the 

above examples could describe accuracy in terms of the moments of a 

probability distribution function. The probability distributions on climate 

used in this study are highly discrete, with five categories used in the 

analyses of Chapter V and three categories of predictions and outcomes used 

later in this chapter. The concept of specificity in the context of this 

study relates to both the number of categories or discrete intervals into 

which the climate distribution is divided and the cumulative probability 

contained in each interval. Questions of interest pertain to forecast 

valuation differences arising from changing the number of categories and 

from changing the cumulative probability in each interval. The former 

investigates the effect of less specific forecasts while the latter 

addresses the issue of less specificity being compensated by more specific 

extremes. This is discussed in more detail later in the following sections. 

Perfect Forecast - Three Climate Categories 

Earlier discussion described the conformation of current NOAA forecasts 

as being divided into three categories. In this forecast design the normal 

category contains the central forty percent of historical cumulative 

probability and each of the two extreme categories contain thirty percent. 
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In this section the value of this forecast scheme to the model farm decision 

maker is determined and compared to the five category scheme of Chapter V. 

To do so, the winter precipitation, climate index and available field days 

data of Tables 4.7 through 4.10, 4.12 and 4.15 are grouped by NOAA 

categories. That is, the highest 30 percent, the middle 40 percent and the 

lowest 30 percent of the outcomes in each period are grouped together. For 

discussion purposes these intervals are referred to as good, average and 

poor, respectively. 

The numerical data for the good climate category predicted by the 

forecast is the mean of the 30 percent of outcomes which fall into that 

category. The mean of the middle 40 percent of outcomes is used as the 

forecast data for the average category, and so forth for the poor category. 

These numerical forecast data are contained in Tables 6.2 through 6.7. The 

categories predicted in each year for each crop and location are presented 

in Tables 6.8 through 6.13. This construct of the forecast allows for less 

specificity, but perfect accuracy is still assumed. That is, there are 

fewer categories being predicted than in Chapter V analyses, causing the 

numerical climate variables being predicted to be slightly different. 

However, whatever category of climate is predicted occurs with a probability 

of 1.0. Hence, this forecast scheme is referred to as the perfect-3 

predictor. 

To value the perfect-3 predictor the DP models are run, with variable 

values obtained from Tables 6.2 through 6.7, to identify optimal policies 

with the perfect-3 climate forecasts received at the beginning of stage 1. 

The assumption of the fifteen year prior is maintained. The base policies 

and net returns of Tables 5.13 through 5.16 remain the same. Then the 
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Table 6.2 Categorical Values of Perfect-3 Cliamte Index. Champ. Co. Corn 

Period 
Climate 3 4 5 6 7 8 9 10 

Good 0.9102 1.0146 1.3025 1.7041 1.7428 0.8331 0.3776 0.3653 

Average 0.6183 0.6472 0.9115 1.6043 1.6180 0.7167 0.2919 0.3384 

Poor 0.3949 0.3348 0.7479 1.4448 1.4379 0.5782 0.2428 0.2804 

Table 6.3 Categorical Values of Perfect-3 Winter Precipitation and Climate 
Index. Champaign County Soybeans  

Period 
Winter 

Climate Precip. 5 6 7 8 9 10 

Good 284.3 1.5231 1.6363 1.6108 0.9466 0.5747 0.6801 

Average 415.1 1.1942 1.5272 1.5250 0.8563 0.5054 0.6212 

Poor 504.0 0.7768 1.4159 1.4067 0.7633 0.4618 0.5737 

Table 6.4 Categorical Values of Perfect-3 Climate Index. Story County Corn 

Period 

Climate 4 5 6 7 8 9 10 

Good 0.96660 1.26987 1.69016 1.77769 0.97923 0.42240 0.37885 

Average 0.68355 0.93052 1.58924 1.69770 0.81605 0.33517 0.32782 

Poor 0.35866 0.71578 1.39922 1.53517 0.70004 0.25573 0.27420 
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Table 6.5 Categorical Values of Perfect-3 Winter Precipitation and Climate 
Index. Story County Soybeans  

Period 
Winter 

Climate Precip. 5 6 7 8 9 10 

Good 156.5 1.51231 1.63212 1.62896 0.98770 0.62423 0.51439 

Average 265.0 0.86251 1.53484 1.55532 0.91052 0.55474 0.44926 

Poor 371.3 0.71424 1.37455 1.33835 0.75045 0.37186 0.29137 

Table 6.6 Categorical Values of Perfect-3 Available Field Days. Champ. Co. 

Period 
Climate 2 3 4 5 6 

Good 13.56 11.63 8.38 9.00 11.38 

Average 4.04 6.75 6.50 6.25 7.86 

Poor 0.63 3.31 3.00 3.00 4.19 

Table 6.7 Categorical Values, of Perfect-3 Available Field Davs. Story Co. 

Period 
Climate 2 3 4 5 6 

Good 12.89 12.68 9.13 8.75 12.02 

Average 8.36 8.78 6.88 7.53 9.19 

Poor 1.32 5.29 3.91 3.23 6.38 
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Table 6.8 Perfect-3 Climate Index Categories. Champaign County Corn  
Period 

Year 3 4 5 6 7 8 9 10 
1971   3a 2 2  2  1 3 3  1 
1972 3 2 1 1 3 2 1 2 
1973 2 2 2 2 2 2 3 2 
1974 2 3 2 3 2 1 1 3 
1975 2 2 1 2 2 3 2 1 
1976 2 2 3 2 1 2 2 1 
1977 1 1 1 2 3 3 2 3 
1978 3 3 2 1 2 3 2 1 
1979 3 1 2 2 2 2 2 3 
1980 1 2 3 1 2 1 2 2 
1981 2 3 3 1 2 1 3 2 
1982 1 1 1 3 3 2 1 2 
1983 2 2 3 3 1 2 2 2 
1984 2 3 2 3 1 2 3 2 
1985 1 1 2 2 3 1 1 3 

Table 6.9 Perfect-3 Winter Precipitation and Climate Index Categoreies, 
Champaign County Soybeans  

Period  
Winter 

Year Precip. 5 6 7 8 9 10 

a 1 = Good, 2 = Average, 3 = Poor. 
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1971 1 2 1  1  1  3 3 
1972 2 2 2 3 1 2 3 
1973 3 1 2 2 3 3 2 
1974 3 1 3 1 1 1 1 1975 2 1 3 2 2 2 3 
1976 2 3 2 2 1 2 1 
1977 1 2 3 3 3 2 3 
1978 2 1 1 2 3 3 1 
1979 2 2 1 2 3 2 2 
1980 1 2 2 2 2 2 2 
1981 1 3 1 2 2 3 1 
1982 2 2 3 3 2 1 2 
1983 2 3 2 1 2 1 2 
1984 3 2 2 1 2 2 2 
1985 3 3 2 3 2 1 2 



Table 6.10 Perfect-3 Climate Index Categories. Story County Corn  
Period 

Year 4 5 6 7 8 9 10 

Table 6.11 Perfect-3 Winter Precipitation and Climate Index Categoreies, 
Story County Soybeans  

Period 
Winter 

Year Precip. 5 6 7 8 9 10 

a 1 = Good, 2 = Average, 3 = Poor. 
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1971 2a 2 2 1 3 3 2 
1972 3 1 1 3 2 1 2 
1973 2 2 2 2 2 3 1 
1974 3 3 2 2 1 1 2 
1975 2 1 3 2 2 2 2 
1976 2 3 2 2 2 1 1 
1977 1 1 2 3 3 3 3 
1978 2 2 1 1 3 2 2 
1979 1 2 2 2 2 2 2 
1980 2 3 1 3 3 2 1 
1981 3 2 1 2 2 3 3 
1982 1 2 3 2 1 1 3 
1983 2 3 3 1 1 2 2 
1984 3 1 3 1 2 2 1 
1985 1 2 2 3 1 2 3 

1971 3 2 2 1 3 2 
1972 2 1 2 3 3 2 
1973 3 2 2 2 2 3 
1974 2 2 2 2 1 1 
1975 2 1 3 2 2 1 
1976 2 3 1 1 1 2 
1977 1 1 3 3 3 3 
1978 1 2 1 2 2 2 
1979 2 2 2 2 2 1 
1980 1 2 1 3 2 2 
1981 1 3 1 2 2 3 
1982 2 2 3 2 1 1 
1983 3 3 2 1 1 2 
1984 3 1 3 1 2 2 
1985 2 3 2 3 3 3 

3 
1 
2 
2 
2 
3 
1 
2 
2 
3 

 

1 
2 
2 
3 

1 



Table 6.12 P e r f e c t - 3 A v a i l a b l e F i e l d Days. Champaign County  

Per iod 

Year 2 3 4 5 6 

Table 6.13 P e r f e c t - 3 A v a i l a b l e F i e l d Days. S to ry County  

Pe r iod 

a 1 = Good, 2 = Average, 3 = Poor. 
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1971 1 2 1 3 2 
1972 2 2 2 2 2 
1973 3 2 3 1 3 
1974 2 2 3 3 3 
1975 3 3 2 1 2 
1976 1 3 2 2 2 
1977 2 1 1 2 1 
1978 2 2 2 2 2 
1979 3 3 2 1 1 
1980 2 1 1 2 3 
1981 1 1 1 1 1 
1982 2 2 3 3 3 
1983 3 2 3 3 2 
1984 2 3 2 2 2 
1985 1 1 2 2 1 

1971 1a 1 2 2 2 
1972 3 2 2 1 2 
1973 2 3 2 2 3 
1974 2 2 3 3 3 
1975 1 3 1 1 3 
1976 1 2 1 2 2 
1977 1 2 2 1 1 
1978 3 2 3 3 1 
1979 2 3 2 1 1 
1980 2 1 1 2 3 
1981 2 3 3 3 2 
1982 2 1 1 2 3 
1983 3 2 3 3 2 
1984 3 2 1 3 2 
1985 2 1 2 1 1 

Year 2 3 4 5 6 



optimal policies resulting from the DP model runs are input into the 

management simulation models using the actual five-category climate of 

Tables 5.1 through 5.12. Net returns from using the fifteen year prior are 

subtracted from those of the perfect-3 forecasts to value the predictions 

and predictors. The optimal policies and returns from these model runs for 

both Champaign and Story counties and for both corn and soybeans are 

presented in Tables 6.14 through 6.17.1 

Beginning with Champaign County corn (Table 6.14), the perfect-3 

predictor induces minor changes in the optimal policies from those of the 

perfect-5 predictor (Table 5.17). The base policy of planting a medium 

density, full season hybrid (decisions 2 and 4) does not change. However, 

the amount and timing of nitrogen application does change in a few 

instances. Notably, the perfect-3 prediction of available field days in 

1973 does not induce nitrogen sidedressing, resulting in an encounter with 

the field time constraint. Secondly, in 1978 fall fertilizer application is 

induced at the level of 250 pounds per acre. This may result from a higher 

numerical climate index prediction for period 8. 

Story County corn decisions (Table 6.15) are altered very little from the 

perfect-5 optimal policies (Table 5.18). Most noticeable is the failure of 

the perfect-3 predictor to warn of nitrogen leaching in 1973 and 1983. In a 

few other years the amount of applied nitrogen is changed from 150 pounds to 

100 pounds per acre (1972, 1977, and 1981). Changes in the numerical 

climate index being predicted resulting from the aggregation of climate 

outcome intervals are thought to drive these results. 

Regarding soybeans, the optimal policies for Champaign County (Table 

6.16) are identical to those of the perfect-5 predictor (Table 5.19). In 
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Table 6.14 Champaign County Corn Decision and Returns - Perfect 3 Forecast 
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 200 200 5/15 2 0 5/15 2 0 0 0 69,472 
1972 150 150 5/15 2 0 5/15 2 0 0 0 61,126 
1973c 0 0 5/15 2 150 5/25 4 150 0 0 64,223 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 200 5/15 2 200 0 0 52,652 
1977 150 150 5/15 2 0 5/15 2 0 0 0 63,582 
1978c 250 250 5/15 2 0 5/25 4 0 0 0 56,632 
1979 0 0 5/15 2 150 5/15 2 150 0 0 51,151 
1980 200 200 5/15 2 0 5/15 2 0 0 0 59,800 
1981c 200 200 5/15 2 0 5/25 4 0 0 0 62,250 
1982 0 0 5/15 2 150 5/15 2 150 0 0 58,032 
1983c 0 0 5/25 4 150 5/15 2 150 0 0 38,577 
1984 0 0 5/15 2 200 5/15 2 200 0 0 50,543 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 
c Field time constraint prevents earlier planting in these years. 

Table 6.15 Storv County Corn Decision and Returns - Perfect 3 Forecast 
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 150 150 5/15 2 0 5/15 2 0 0 0 46,893 
1972 100 100 5/15 2 0 5/15 2 0 0 0 43,986 
1973 100 100 5/15 2 0 5/15 2 0 0 0 45,277 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 100 100 5/15 2 0 5/15 2 0 0 0 35,893 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 100 100 5/15 2 0 5/15 2 0 0 0 40,331 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 150 150 5/15 2 0 5/15 2 0 0 0 27,969 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 100 100 5/15 2 0 5/15 2 0 0 0 27,563 
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Story County the perfect-3 predictor induces earlier planting in a few 

years. Otherwise, the base decisions of a medium density planting of group 

III seed are left intact. 

The values of the perfect-3 predictions and predictors are presented in 

Table 6.18. The value of the Champaign County corn prediction in 1978 is 

negative because the returns from following the optimal perfect-3 policy of 

Table 6.14 are less than the returns from following the fifteen year prior 

policy of applying 150 pounds of nitrogen in the spring. A greater number 

of predictions have a negative value in the Story County corn results. 

Again, this is due to lower returns from following the perfect-3 optimal 

policies than from following the fifteen year prior policy of applying 150 

pounds of nitrogen in the fall. The values of the soybean predictions and 

predictors remain low, with most of the value attributable to interest 

accrual as before. 

Thus, the reduced specificity of the perfect-3 predictor causes the 

expected value of the Champaign County corn forecasts to drop by $380, or 

27.5 percent. In addition, reduced specificity in the Story County perfect-

3 corn predictor causes the expected value of the prediction to fall from 

$91 to -$350. 

Earlier discussion of the theory of information value discussed the 

possibility of negative information values. The conventional wisdom is that 

if the decision maker knew that the use of the information would cause lower 

returns, then it would not be incorporated into the decision making process 

and thus would have no value. Therefore, information value cannot be 

negative. This may be true in the Story County perfect-3 corn climate 

predictor. However, in Champaign County the decision maker does not know 
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Table 6.16 Champaign Soybean Decision and Returns - Perfect-3 Forecast 

Field 1 Field 2 
Plant Plant 

Year Date Density Hybrid Date Density Hybrid Returns 
1971 5/15 low III 5/15 low III 38,660 
1972c 5/25 low III 5/25 low III 52,727 
1973c 6/07 low III 6/07 low III 38,408 
1974c 5/25 low III 6/07 low III 52,826 
1975 5/15 low III 5/15 low III 39,028 
1976 5/25 low III 5/25 low III 42,676 
1977 6/07 low III 6/07 low III 37,749 
1978c 6/07 low III 6/07 low III 35,703 
1979b 6/07 low III 6/07 low III 38,408 
1980 5/15 low III 5/15 low III 39,095 
1981c 6/07 low III 6/07 low III 37,831 
1982 5/15 low III 5/15 low III 39,329 
1983c 6/07 low III 6/07 low III 38,466 
1984b 6/07 low III 6/07 low III 38,408 
1985 5/25 low III 5/25 low III 39,832 
b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 

Table 6.17 Story County Soybean Decision and Returns - Perfect-3 Forecast 

Field 1 Field 2  
Plant Plant 

Year Date Density Hybrid Date Density Hybrid Returns 
1971 6/07 low III 6/07 low III 51,869 
1972 5/15 low III 5/15 low III 51,779 
1973b 6/07 low III 6/07 low III 48,517 
1974c 5/05 low III 5/25 low III 53,991 
1975b 6/07 low III 6/07 low III 52,484 
1976 5/15 low III 5/15 low III 51,291 
1977 5/15 low III 5/15 low III 24,505 
1978 5/15 low III 5/15 low III 51,583 
1979b 6/07 low III 6/07 low III 52,484 
1980 5/15 low III 5/15 low III 51,345 
1981 5/15 low III 5/15 low III 39,104 
1982 5/05 low III 5/15 low III 53,894 
1983b 6/07 low III 6/07 low III 49,637 
1984c 6/07 low III 5/15 low III 51,461 
1985 5/15 low III 5/15 low III 24,377 
b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 
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Table 6.18 Value of Perfect-3 Predictions and Predictors  

Champaign County Story County 

Year Corn Soybeans Corn Soybeans 

1971 3,799 0 0 18 
1972 2,127 0 -1,177 0 
1973 0 0 -1,718 127 
1974 0 0 0 1 
1975 0 0 0 127 
1976 648 465 0 0 
1977 2,192 206 - 965 0 
1978 -1,421 0 0 0 
1979 0 127 0 64 
1980 3,459 0 0 0 
1981 3,574 0 -1,402 0 
1982 0 0 0  0 
1983 0 0 0 63 
1984 576 64 0 0 
1985 0 507 10 0 
Mean 1,000 91 - 350 27 
Mean/acre 3.12 0.29 -1.09 0.08 

the use of climate information might cause lower returns than the prior. It 

is assumed that the perfect forecast is better information than the prior 

and, is, therefore, incorporated into the decisions. On average, the use of 

the information is expected to be beneficial. It is the coarseness of the 

perfect-3 forecasts' detail which lower their value compared to the perfect-

5 predictor. The lack of detail may generate responses which cause lower 

returns than those of the fifteen year prior. The decision maker is unaware 

when these instances might arise. Thus, the economic value of a prediction 

for any one year is allowed to be less than zero in this study. The 

mathematical value of a predictor, the expected value of the predictions, 

may be negative, but its economic value cannot be less than zero. 
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Perfect Forecast - Three Climate Categories. Low Extreme Probability 

The reduced specificity of the perfect-3 predictor adversely impacts 

the value of the corn climate forecasts as shown above. The source of this 

reduced value is thought to be the reduced specificity in forecasts of 

extreme climate conditions. To examine this issue, the distribution of the 

perfect-3 (or NOAA) categories is rearranged such that 15 percent of the 

cumulative probability lies in each of the extreme categories of good and 

poor while 70 percent is encompassed in the average category. This forecast 

scheme is referred to as the perfect-3L predictor, The "L" representing low 

probability in the extreme categories. 

Tables 6.19 through 6.24 contain the numerical climate indices, winter 

precipitation and available field days calculated for each perfect-3L 

forecast category. These data are calculated in the same manner as before, 

using the mean of the raw data which fall into each probability interval. 

Tables 6.25 through 6.30 display the perfect-3L climate category occurring 

in each year for each crop and each location. Again, the perfect-3L 

predictor forecasts a category with 100 percent accuracy. However, the 

numerical climate index used in optimization is slightly different than that 

used for the perfect-5 or perfect-3 predictors. The perfect-5 extreme 

categories of excellent and poor are the same as the perfect-3L extreme 

categories of good and poor. The difference arises in the perfect-3L 

average category encompassing the perfect-5 categories of good, average and 

fair, the central 70 percent of the cumulative probability. 

Tables 6.31 through 6.34 present the perfect-3L optimal policies. The 

Champaign County corn predictor fails to forecast favorable winter 

precipitation in two years. It also does not induce sidedressing of 
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nitrogen in 1973 to avoid the field time constraint. A few other slight 

changes from the perfect-5 optimal nitrogen application rates are 

detectable. 

The Story County corn predictor correctly forecasts the unfavorable 

winter precipitation in 1973 and 1983. However, it induces lower nitrogen 

application rates in 1971 through 1975, 1977 and 1981. These years contain 

many episodes of average and poor climate in stages 7 through 10 (Table 

6.27). Comparing numerical climate indices used in the perfect-3 and 

perfect-3L forecasts (Tables 6.4 and 6.21), in each of these stages the 

numerical climate indices for perfect-3L forecasts of average are less than 

those of the perfect-3 forecasts. Thus, the benefit of more specific 

forecasts of extreme climate is partially offset by the aggregation of 

intervals in the center of the distribution. 

Optimal soybean policies are relatively unchanged in both locations 

(Tables 6.33 and 6.34). There are fewer instances of early planting being 

induced relative to the perfect-3 predictor. There are also fewer occasions 

when planting is delayed to save interest accrual. 

The value of the perfect-3L predictions and predictors is displayed in 

Table 6.35. Clearly the penalties associated with aggregating the central 

70 percent of the distribution outweigh the benefit of more specificity in 

the extreme categories. Over the fifteen years in this study there are 

adjustments in nitrogen application rates based on differences in climate 

between average and nearby categories of good and fair in the perfect-5 

scheme. These differences are not as well identified in the perfect-3 

predictor and non-existent in the perfect-3L predictor. Tables 5.5 through 

5.8 indicate that few years encompass many periods of extreme actual 
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Table 6.19 Categorical Values of Perfect-3L Climate Index. Champ. Co. Corn 

Period 

Climate 3 4 5 6 7 8 9 10 

Good 1.0596 1.1644 1.3934 1.7242 1.7811 0.9014 0.3911 0.3708 

Average 0.6145 0.6421 0.9482 1.6020 1.6062 0.7043 0.3001 0.3359 

Poor 0.3350 0.2680 0.6827 1.3777 1.4090 0.5559 0.2212 0.2577 

Table 6.20 Categorical Values of Perfect-3L Winter Precipitation and 
Climate Index. Champaign County Soybeans  

Period 
Winter 

Climate Precip. 5 6 7 8 9 10 

Good 254.0 1.5600 1.6696 1.6316 0.9862 0.5994 0.7028 

Average 409.9 1.1845 1.5290 1.5201 0.8525 0.5073 0.6218 

Poor 521.0 0.7046 1.3706 1.3807 0.7419 0.4527 0.5594 

Table 6.21 Categorical Values of Perfect-3L Climate Index. Storv Co. Corn 

Period 

Climate 4 5 6 7 8 9 10 

Good 1.06302 1.36497 1.69655 1.79767 1.02977 0.46587 0.39303 

Average 0.66594 0.95052 1.58213 1.68987 0.82465 0.33373 0.32907 

Poor 0.31727 0.63527 1.34285 1.47574 0.64938 0.22796 0.25056 
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Table 6.22 Categorical Values of Perfect-3L Winter Precipitation and 
Climate Index. Storv County Soybeans  

Period 
Winter 

Climate Precip. 5 6 7 8 9 10 

Good 106.0 1.59429 1.65170 1.64265 1.02253 0.65731 0.53835 

Average 267.5 0.94444 1.52804 1.55376 0.91069 0.54697 0.44830 

Poor 405.5 0.68318 1.32939 1.18994 0.63184 0.26812 0.17989 

Table 6.23 Categorical Values of Perfect-3L Available Field Days. Champ. Co. 

Period 
Climate 2 3 4 5 6 
Good 16.00 12.13 8.88 9.25 11.75 

Average 4.75 7.00 6.34 6.20 7.82 

Poor 0.38 2.88 1.75 2.50 3.88 

Table 6.24 Categorical Values, of Perfect-3L Available Field Davs. Storv Co. 

Period 
Climate 2 3 4 5 6 

Good 13.35 13.61 9.31 8.96 12.29 

Average 7.91 8.87 6.80 7.27 9.22 

Poor 0.84 4.27 3.46 1.39 5.94 
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Table 6.25 Perfect-3L Climate Index Categories. Champaign County Corn  

Period 

Year 3 4 5 6 7 8 9 10 

Table 6.26 P e r f e c t - 3 L Winter P r e c i p i t a t i o n and Cl imate Index C a t e g o r e i e s , 
Champaign County Soybeans  

Period 
Winter 

Year Precip. 5 6 7 8 9 10 

a 1 = Good, 2 = Average, 3 = Poor . 
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1971 2a 2 2 2 2 2 3 2 
1972 3 2 2 2 2 2 1 2 
1973 2 2 2 2 2 2 3 2 
1974 2 2 2 3 2 1 1 2 
1975 2 2 1 2 2 3 2 1 
1976 2 2 3 2 2 2 2 1 
1977 1 2 1 2 3 2 2 3 
1978 3 3 2 1 2 3 2 2 
1979 2 2 2 2 2 2 2 2 
1980 2 2 2 2 2 2 2 2 
1981 2 3 2 1 2 1 2 2 
1982 2 1 2 2 2 2 2 2 
1983 2 2 3 3 1 2 2 2 
1984 2 2 2 2 1 2 2 2 
1985 1 1 2 2 3 2 2 3 

1971 1 2 2 2 2 2 3 
1972 2 2 2 3 1 2 2 
1973 2 2 2 2 2 3 2 
1974 3 1 2 2 1 1 1 
1975 2 1 2 2 2 2 2 
1976 2 2 2 2 2 2 2 
1977 2 2 3 3 2 2 3 
1978 2 2 1 2 3 2 1 
1979 2 2 2 2 3 2 2 
1980 2 2 2 2 2 2 2 
1981 1 3 1 2 2 3 2 
1982 2 2 3 2 2 2 2 
1983 2 2 2 1 2 2 2 
1984 2 2 2 1 2 2 2 
1985 3 3 2 2 2 1 2 



Table 6.27 Pe r f ec t -3L Climate Index C a t e g o r i e s . S tory County Corn  

Per iod 

Year 4 5 6 7 8 9 10 

Table 6.28 P e r f e c t - 3 L Winter P r e c i p i t a t i o n and Climate Index C a t e g o r e i e s , 
S to ry County Soybeans  

Period 
Winter 

Year Precip. 5 6 7 8 9 10 

a 1 = Good, 2 = Average, 3 = Poor . 
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1971 2a 2 2 1 3 3 2 
1972 3 2 1 2 2 2 2 
1973 2 2 2 2 2 2 2 
1974 3 2 2 2 1 2 2 
1975 2 1 2 2 2 2 2 
1976 2 3 2 2 2 1 1 
1977 1 1 2 3 3 3 3 
1978 2 2 2 2 2 2 2 
1979 2 2 2 2 2 2 2 
1980 2 2 2 2 2 2 2 
1981 2 2 1 2 2 2 2 
1982 2 2 3 2 1 1 2 
1983 2 3 3 1 2 2 2 
1984 2 2 2 2 2 2 1 
1985 1 2 2 3 2 2 3 

1971 2 2 2 1 2 2 3 
1972 2 1 2 2 2 2 2 
1973 3 2 2 2 2 2 2 
1974 2 2 2 2 2 1 2 
1975 2 2 3 2 2 2 2 
1976 2 2 2 2 2 2 2 
1977 1 1 3 3 3 3 1 
1978 2 2 1 2 2 2 2 
1979 2 2 2 2 2 2 2 
1980 2 2 1 2 2 2 2 
1981 1 3 2 2 2 3 2 
1982 2 2 2 2 1 1 1 
1983 3 3 2 1 1 2 2 
1984 2 2 2 2 2 2 2 
1985 2 3 2 3 3 2 3 



Table 6.29 P e r f e c t - 3 L A v a i l a b l e F i e l d Davs C a t e g o r i e s . Champaign County 

Pe r iod 

Year 2 3 4 5 6 

Table 6.30 P e r f e c t - 3 L A v a i l a b l e F i e l d Davs C a t e g o r e i e s . S tory County  

Pe r iod 

Year 2 3 4 5 6 

a 1 = Good, 2 = Average, 3 = Poor . 
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1971 la 1 2 2 2 
1972 3 2 2 1 2 
1973 2 3 2 2 2 
1974 2 2 2 3 3 
1975 2 2 1 2 2 
1976 1 2 2 2 2 
1977 2 2 2 1 1 
1978 3 2 3 2 2 
1979 2 3 2 1 1 
1980 2 2 2 2 2 
1981 2 3 3 3 2 
1982 2 2 1 2 3 
1983 3 2 2 2 2 
1984 2 2 1 2 2 
1985 2 1 2 2 2 

1971 2 2 2 2 2 
1972 2 2 2 2 2 
1973 3 2 2 1 2 
1974 2 2 3 3 3 
1975 3 2 2 2 2 
1976 1 2 2 2 2 
1977 2 2 1 2 2 
1978 2 2 2 2 2 
1979 2 3 2 2 1 
1980 2 1 1 2 2 
1981 2 1 2 1 2 
1982 2 2 3 3 3 
1983 2 2 2 2 2 
1984 2 3 2 2 2 
1985 1 2 2 2 1 



Table 6.31 Champaign County Corn Decision and Returns - Perfect 3L-Forecast 
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 150 150 5/15 2 0 5/15 2 0 0 0 67,883 
1972 0 0 5/15 2 200 5/15 2 200 0 0 59,853 
1973c 0 0 5/15 2 150 5/25 4 150 0 0 64,223 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 200 5/15 2 200 0 0 52,652 
1977 0 0 5/15 2 100 5/15 2 100 0 0 58,924 
1978c 0 0 5/25 4 150 5/15 2 150 0 0 58,053 
1979 0 0 5/15 2 150 5/15 2 150 0 0 51,151 
1980 0 0 5/15 2 150 5/15 2 150 0 0 56,341 
1981c 200 200 5/25 4 0 5/15 2 0 0 0 62,250 
1982 0 0 5/15 2 150 5/15 2 150 0 0 58,032 
1983c 0 0 5/15 2 150 5/25 4 150 0 0 38,577 
1984 0 0 5/15 2 200 5/15 2 200 0 0 50,543 
1985 0 0 5/15 2 100 5/15 2 100 0 0 45,197 

Table 6.32 Storv County Corn Decision and Returns - Perfect 3L Forecast 
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 100 100 5/15 2 0 5/15 2 0 0 0 44,446 
1972 100 100 5/15 2 0 5/15 2 0 0 0 43,986 
1973 0 0 5/15 2 100 5/15 2 100 0 0 46,683 
1974 100 100 5/15 2 0 5/15 2 0 0 0 37,507 
1975 100 100 5/15 2 0 5/15 2 0 0 0 43,046 
1976 150 150 5/25 6 0 5/25 6 0 0 0 37,934 
1977 100 100 5/15 2 0 5/05 2 0 0 0 34,755 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 100 100 5/15 2 0 5/15 2 0 0 0 40,331 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 0 0 5/25 6 150 5/25 6 150 0 0 27,780 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 100 100 5/15 2 0 5/05 2 0 0 0 26,421 
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Table 6.33 Champaign Soybean Decision and Returns- Perfect-3L Forecast 

Field 1 Field 2  
Plant Plant 

Year Date Density Hybrid Date Density Hybrid Returns 
1971 5/15 low III 5/15 low III 38,660 
1972c 5/25 low III 5/25 low III 52,727 
1973c 6/07 low III 6/07 low III 38,408 
1974c 5/25 low III 6/07 low III 52,826 
1975 5/15 low III 5/15 low III 39,028 
1976 5/15 low III 5/15 low III 42,211 
1977 6/07 low III 6/07 low III 37,749 
1978c 6/07 low III 6/07 low III 35,703 
1979b 6/07 low III 6/07 low III 38,408 
1980 5/15 low III 5/15 low III 39,095 
1981c 6/07 low III 6/07 low III 37,831 
1982 5/15 low III 5/15 low III 39,329 
1983c 6/07 low III 6/07 low III 38,466 
1984b 6/07 low III 6/07 low III 38,408 
1985 5/25 low III 5/25 low III 39,832 
b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 

Table 6.34 Story County Soybean Decision and Returns - Perfect-3L Forecast 

Field 1 Field 2  
Plant Plant 

Year Date Density Hybrid Date Density Hybrid Returns 
1971 6/07 low III 6/07 low III 51,869 
1971 5/15 low III 5/15 low III 51,851 
1972 5/15 low III 5/15 low III 51,779 
1973b 6/07 low III 6/07 low III 48,517 
1974c 5/05 low III 5/25 low III 53,991 
1975b 6/07 low III 6/07 low III 52,484 
1976 5/15 low III 5/15 low III 51,291 
1977 5/15 low III 5/15 low III 24,505 
1978 5/15 low III 5/15 low III 51,583 
1979c 6/07 low III 5/25 low III 52,420 
1980 5/15 low III 5/15 low III 51,345 
1981 5/15 low III 5/15 low III 39,104 
1982 5/05 low III 5/15 low III 53,894 
1983c 5/25 low III 6/07 low III 49,573 
1984c 6/07 low III 5/15 low III 51,461 
1985 5/15 low III 5/15 low III 24,377 
b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 
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Table 6.35 Value of Perfect-3L Predictions and Predictors 

Champaign County Story County 
Year Corn Soybeans Corn Soybeans 

1971 2,210 0 -2,447 0 
1972 898 0 -1,199 0 
1973 0 0 - 311 127 
1974 0 0 - 787 1 
1975 0 0 -1,509 127 
1976 648 0 - 498 0 
1977 -2,466 206 -2,103 0 
1978 0 0 0 0 
1979 0 127 0 0 
1980 0 0 0 0 
1981 3,574 0 -1,402 0 
1982 0 0 0 0 
1983 0 0 - 188 -1 
1984 576 64 0 0 
1985 -1,821 507 -1,131 0 
Mean 241 60 - 770 17 
Mean/acre 0.75 0.19 - 2.41 0.05 

climate. Thus the perfect-3L predictor adds very little useful knowledge to 

the fifteen year prior. 

Accuracy 

As discussed earlier in this chapter, the accuracy of forecasts is of 

interest to identify changes in forecast values as accuracy varies. As with 

specificity, there are an infinite number of accuracies that could be 

tested. Four are selected for this study. Each of these uses the 

specificity of the NOAA or perfect-3 predictor. This specificity is 

selected because of its current application as noted earlier. 

Table 6.36 describes the forecast accuracies. It lists the probability 

of each outcome given a forecast for a category. Forecast A represents a 
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Table 6.36 Distributional Assumptions of Selected Forecast Accuracies. 

Forecast A. 
Outcome 

Forecast Good Fair Poor 

Good .40 .30 .30 

Fair .30 .40 .30 

Poor .30 .30  .40 

Forecast B. 
Outcome 

Forecast Good Fair Poor 

Good .70 .15 .15 

Fair .15 .70 .15 

Poor .15 .15 .70 

Forecast C. 
Outcome 

Forecast Good Fair Poor 

Good .67 .33 .00 

Fair .00  .67 .33 

Poor .00 .00 1.0 

Forecast D. 
Outcome 

Forecast Good Fair Poor 

Good 1.0 .00 .00 

Fair .33 .67 .00 

Poor .00 .33 .67 
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scheme in which the correct outcome is predicted 40 percent of the time 

while each of the other two outcomes has a 30 percent probability. Forecast 

B is designed to be more accurate than forecast A. It has a .70 probability 

of cor-.ectly predicting the outcome while the other two categories each has 

a 15 percent chance of occurring. 

Forecasts C and D are designed differently. In forecast C the outcome 

is never better than the forecast. The correct outcome is predicted with 

.67 probability. The other one-third probability is to obtain the next 

lower category. The exception, of course, is a forecast for poor climate 

which is the lowest category and is correctly predicted with 100 percent 

accuracy. Forecast D has the opposite design in that the outcome is never 

worse than the prediction and there is a one-third chance of obtaining the 

next higher category. Again the exception is a forecast of good climate 

which has no higher category. 

Tables 6.37 through 6.40 contain the optimal decisions and returns from 

forecasts A through D, respectively, for the Champaign County corn model. 

In forecast A, it is interesting that in 1973 the field constraint is 

avoided with fall fertilization, likely due to the 30 percent chance for 

favorable winter precipitation. In a few other instances fertilization 

rates are less than for the perfect-3 predictor (Table 6.14). The higher 

accuracy of forecast B (Table 6.38) leads to decisions more consistent with 

the perfect-5 predictor. 

In Table 6.39 the probability of lower climate outcomes from forecast C 

reduces fertilization levels in a number of instances. In contrast, the 

upside potential of forecast D induces quite a few higher fertilization 

rates. It also causes fall nitrogen application in all years when at least 
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Table 6.37 Champaign County Corn Decisions and Returns - Forecast A.  
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 200 200 5/15 2 0 5/15 2 0 0 0 69,472 
1972 0 0 5/15 2 150 5/15 2 150 0 0 58,955 
1973b 200 0 5/15 2 0 5/15 2 150 0 0 60,597 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 150 5/15 2 150 0 0 52,004 
1977 150 150 5/15 2 0 5/15 2 0 0 0 63,582 
1978c 0 0 5/25 4 150 5/05 2 150 0 0 51,013 
1979 200 0 5/15 2 0 5/15 2 150 0 0 50,260 
1980 200 200 5/15 2  0 5/15 2 0 0 0 59,800 
1981c 200 200 5/15 2 0 5/25 4 0 0 0 62,250 
1982 0 0 5/15 2 150 5/15 2 150 0 0 58,032 
1983c 0 0 5/25 4 150 5/15 2 200 0 0 38,711 
1984 0 0 5/15 2 150 5/15 2 150 0 0 49,967 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 
b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 

Table 6.38 Champaign County Corn Decisions and Returns - Forecast B.  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 200 200 5/15 2 0 5/15 2 0 0 0 69,472 
1972 0 0 5/15 2 150 5/15 2 150 0 0 58,955 
1973b 0 0 5/15 2 0 5/15 2 150 150 0 66,553 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 200 5/15 2 200 0 0 52,652 
1977 150 150 5/15 2 0 5/15 2 0 0 0 63,582 
1978c 0 0 5/25 4 200 5/15 2 150 0 0 58,459 
1979 200 0 5/15 2 0 5/15 2 150 0 0 50,260 
1980 200 200 5/15 2 0 5/15 2 0 0 0 59,800 
1981c 200 200 5/25 4 0 5/15 2 0 0 0 62,250 
1982 0 0 5/15 2 150 5/15 2 150 0 0 58,032 
1983c 0 0 5/25 4 150 5/15 2 200 0 0 38,711 
1984 0 0 5/15 2 200 5/15 2 200 0 0 50,543 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 

b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 
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Table 6.39 Champaign County Corn Decisions and Returns - Forecast C.  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 

1971 200 200 5/15 2 0 5/15 2 0 0 0 69,472 
1972 0 0 5/15 2 100 5/15 2 100 0 0 56,617 
1973b 0 0 5/15 2 0 5/15 2 150 100 0 65,936 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 200 5/15 2 200 0 0 52,652 
1977 100 100 5/15 2 0 5/15 2 0 0 0 60,581 
1978c 0 0 5/25 4 150 5/15 2 150 0 0 58,053 
1979 0 0 5/15 2 150 5/05 2 150 0 0 49,349 
1980 150 150 5/15 2 0 5/15 2 0 0 0 58,487 
1981c 150 150 5/25 4 0 5/15 2 0 0 0 60,833 
1982 0 0 5/15 2 150 5/15 2 150 0' 0 58,032 
1983c 0 0 5/25 4 150 5/15 2 150 0 0 38,577 
1984 0 0 5/15 2 200 5/15 2 200 0 0 50,543 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 
b Field time constraint not active but active in base policy in these years, 
c Field time constraint prevents earlier planting in these years. 

Table 6.40 Champaign County Corn Decisions and Returns - Forecast D.  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 

1971 200 200 5/15 2 0 5/15 2 0 0 0 69,472 
1972 150 150 5/15 2 0 5/15 2 0 0 0 61,126 
1973c 0 0 5/15 2 150 5/25 4 200 0 0 65,078 
1974 0 0 5/15 2 150 5/15 2 150 0 0 36,477 
1975 250 250 5/15 2 0 5/15 2 0 0 0 65,677 
1976 200 200 5/15 2 0 5/15 2 0 0 0 50,217 
1977 150 150 5/05 2 0 5/05 2 0 0 0 59,868 
1978c 200 250 5/25 4 0 5/15 2 0 0 0 56,418 
1979 200 200 5/15 2 0 5/05 2 0 0 0 47,590 
1980 200 200 5/15 2 0 5/15 2 0 0 0 59,800 
1981c 200 200 5/25 4 0 5/15 2 0 0 0 62,250 
1982 200 200 5/05 2 0 5/05 2 0 0 0 55,173 
1983b 200 200 5/15 2 0 5/15 2 0 0 0 38,280 
1984 0 0 5/15 2 200 5/15 2 200 0 0 50,543 
1985 0 0 5/15 2 150 5/05 2 150 0 0 46,453 

b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 
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average winter precipitation is forecast, with at least a one-third chance 

of better nitrogen carryover. 

The affect of these accuracies on Story County corn decisions and 

returns is detailed in Tables 6.41 through 6.44. Note that forecast A does 

not change any decisions from those of the fifteen year prior. Decisions 

based on the 70 percent accuracy of forecast B are nearly identical to those 

of the perfect-3 predictor (Table 6.15) with the exception of the nitrogen 

application rate in 1973. Forecasts C and D are also little changed from 

the perfect-3 predictor, with the exception of nitrogen application being 

postponed until spring for a few years under forecast C. 

Table 6.45 shows the value of each forecast accuracy for each location. 

It is interesting that forecast B for Champaign County is valued at roughly 

$82 more than the perfect-3 predictor when the only difference is a 30 

percent chance of obtaining another outcome, evenly divided. Due to the 

large intervals in the discrete decision set this $82 difference is viewed 

as a result of the modeling process and not a material finding. 

In marked contrast, forecast accuracy A induces some improved decisions 

and some unfortunate decisions compared to those of the fifteen year prior. 

The same is true of forecast accuracy C. On the other hand, forecast D 

entices fall fertilization so often as to be rendered valueless. Thus, the 

70 percent perfect forecasts (B) of Champaign County corn climate has value 

roughly equal to the perfect forecast from which it is derived. The other 

three forecast accuracies cause a greater fluctuation in expected returns. 

In Story County, forecast A has no value as no changes from the fifteen 

year prior are induced. Accuracies B, C and D are each expected to cause 

lower expected returns than the fifteen year prior, mostly due to sub-
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Table 6.41 Story County Corn Decisions and Returns - Forecast A.  
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 150 150 5/15 2 0 5/15 2 0 0 0 46,893 
1972 150 150 5/15 2 0 5/15 2 0 0 0 45,163 
1973 150 150 5/15 2 0 5/15 2 0 0 0 46,994 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 150 150 5/15 2 0 5/15 2 0 0 0 36,858 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 150 150 5/15 2 0 5/15 2 0 0 0 41,733 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 150 150 5/15 2 0 5/15 2 0 0 0 27,969 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 150 150 5/15 2 0 5/15 2 0 0 0 27,553 
Table 6.42 Story County Corn Decisions and Returns - Forecast B.  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 150 150 5/15 2 0 5/15 2 0 0 0 46,893 
1972 100 100 5/15 2 0 5/15 2 0 0 0 43,986 
1973 150 150 5/15 2 0 5/15 2 0 0 0 46,994 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 100 100 5/15 2 0 5/15 2 0 0 0 35,893 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 100 100 5/15 2 0 5/15 2 0 0 0 40,331 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 150 150 5/15 2 0 5/15 2 0 0 0 27,969 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 100 100 5/15 2 0 5/15 2 0 0 0 27,563 
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Table 6.43 Story County Corn Decisions and Returns-- Forecast C.  
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 0 0 5/15 2 150 5/15 2 150 0 0 44,800 
1972 150 150 5/15 2 0 5/15 2 0 0 0 45,163 
1973 0 0 5/15 2 150 5/15 2 150 0 0 47,905 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 100 100 5/15 2 0 5/15 2 0 0 0 35,893 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 100 100 5/15 2 0 5/15 2 0 0 0 40,331 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 0 0 5/15 2 150 5/15 2 150 0 0 28,419 
1984 0 0 5/15 2 150 5/15 2 150 0 0 50,295 
1985 150 150 5/15 2 0 5/15 2 0 0 0 27,553 
Table 6.44 Story County Corn Decisions and Returns - Forecast D.  

Planting 
Fall Nit. Field 1 Field 2 Side. Nit. Net 

Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1971 100 100 5/15 2 0 5/15 2 0 0 0 44,446 
1972 100 100 5/15 2 0 5/15 2 0 0 0 43,986 
1973 100 100 5/15 2 0 5/15 2 0 0 0 45,277 
1974 150 150 5/15 2 0 5/15 2 0 0 0 38,294 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 100 100 5/15 2 0 5/15 2 0 0 0 35,893 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 150 150 5/15 2 0 5/15 2 0 0 0 44,786 
1981 100 100 5/15 2 0 5/15 2 0 0 0 40,331 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 150 150 5/15 2 0 5/15 2 0 0 0 27,969 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 100 100 5/15 2 0 5/15 2 0 0 0 27,563 
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Table 6.45 Value of Imperfect Predictions and Predictors of Corn Climate 

Champaign  
Acc'cy Acc'cy Acc'cy Acc'cy 

Year A B C D 
1971 3,799 3,799 3,799 3,799 
1972 0 0 -2,338 2,171 
1973 -3,626 2,330 1,713 855 
1974 0 0 0 0 
1975 0 0 0 -1,336 
1976 0 648 648 -1,787 
1977 2,192 2,192 - 809 -1,522 
1978 -7,040 405 0 -1,635 
1979 - 891 - 891 -1,802 -3,561 
1980 3,459 3,459 2,146 3,459 
1981 3,574 3,574 2,156 3,574 
1982 0 0 0 -2,859 
1983 134 134 0 - 297 
1984 0 576 576 576 
1985 0 0 0 - 5 6 5 
mean 107 1,081 406 58 
mean/ac. 0.33 3.38 1.27 0.18 

Story  
Acc'cy Acc'cy Acc'cy Acc'cy 

A B C D 
0 0 -2.093 -2,447 
0 -1,177 0 -1,177 
0 0 911 -1,718 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 - 965 - 965 - 965 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 -1,402 -1,402 -1,402 
0 0 0 0 
0 0 450 0 
0 0 -2,017 0 
0 10 0 10 
0 - 235 - 341 - 513 
0 - 0.74 -1.07 -1.60 

optimal fertilization levels in some years. Although not all potential 

forecast accuracies are tested here, it is likely that imperfect corn 

climate forecasts in Story County have little to no value compared to the 

fifteen year prior, especially given the very low value of the perfect-5 

predictor. 

Effect of Different Prior on Climate Information Value 

The preceding investigation of climate forecast values assumed the 

decision maker has perfect knowledge of the actual climate distribution, 

defined as that of the past fifteen years. Studies referenced in Chapter II 

indicate that decision makers may formulate expectations of stochastic 

events based on more recent outcomes, discounting outcomes of the past. 
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Ambiguity theory suggests that decision makers may only rule out certain 

probability distributions rather than selecting one on which to operate. 

This section investigates the value of climate forecasts given different 

priors. 

The analyses thus far have assumed one risk position. With the fifteen 

year prior the decision maker has complete, accurate knowledge of the 

probability distribution of climate outcomes. Recognizing the sizeable 

potential impact of the priors on the value of Champaign County corn climate 

forecasts, this section investigates ambiguity and its effect on priors. 

Furthermore, alternate priors are developed to determine their effect on the 

value of climate forecasts. 

Three Year Historical Prior 

In a simple test to value climate information when prior expectations 

are based only on recent events, a three year historical prior is 

constructed. This prior is the average of the three most recent climate 

events (climate indices, winter precipitation and available field days), 

using the data in Tables 5.1 through 5.12. The optimal decisions and 

returns from the three year prior expectations for Champaign County and 

Story County corn are given in Tables 6.46 and 6.47 respectively. It is 

apparent that the amount and timing of nitrogen application based on this 

prior in Champaign County is quite different from that of either the fifteen 

year prior or any of the perfect predictors. There is, again, little change 

from the fifteen year prior in Story County. 

Tables 6.48 and 6.49 show the value of the various corn climate 

predictors and accuracies studied thus far when compared to the returns from 
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Table 6.46 Champaign County Corn Decisions and Returns - 3 Year Prior. 
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1974 150 150 5/15 2 0 5/15 2 0 0 0 21,427 
1975 0 0 5/15 2 150 5/15 2 150 0 0 67,013 
1976 0 0 5/15 2 200 5/15 2 200 0 0 52,652 
1977 0 0 5/15 2 200 5/15 2 200 0 0 62,374 
1978c 150 150 5/15 2 0 5/25 4 0 0 0 54,945 
1979 150 150 5/15 2 0 5/15 2 0 0 0 48,397 
1980 150 150 5/15 2 0 5/15 2 0 0 0 58,487 
1981c 200 200 5/15 2 0 5/25 4 0 0 0 62,250 
1982 200 200 5/15 2 0 5/15 2 0 0 0 56,145 
1983b 200 200 5/15 2 0 5/15 2 0 0 0 38,280 
1984 200 200 5/15 2 0 5/15 2 0 0 0 37,735 
1985 0 0 5/15 2 150 5/15 2 150 0 0 47,018 

b Field time constraint not active but active in base policy in these years. 
c Field time constraint prevents earlier planting in these years. 

Table 6.47 Story County Corn Decisions and Returns - 3 Year Prior.  
Planting 

Fall Nit. Field 1 Field 2 Side. Nit. Net 
Year Fld 1 Fld 2 Date Dec. Nit. Date Dec. Nit. Fld 1 Fld 2 Returns 
1974 100 100 5/15 2 0 5/15 2 0 0 0 37,507 
1975 150 150 5/15 2 0 5/15 2 0 0 0 44,555 
1976 150 150 5/15 2 0 5/15 2 0 0 0 38,432 
1977 150 150 5/15 2 0 5/15 2 0 0 0 36,858 
1978 150 150 5/15 2 0 5/15 2 0 0 0 43,525 
1979 150 150 5/15 2 0 5/15 2 0 0 0 41,255 
1980 100 100 5/15 2 0 5/15 2 0 0 0 43,434 
1981 150 150 5/15 2 0 5/15 2 0 0 0 41,733 
1982 150 150 5/15 2 0 5/15 2 0 0 0 27,166 
1983 150 150 5/15 2 0 5/15 2 0 0 0 27,969 
1984 150 150 5/15 2 0 5/15 2 0 0 0 52,312 
1985 150 150 5/15 2 0 5/15 2 0 0 0 27,553 
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Table 6.48 Value of Predictions and Predictors vs. 3 Yr. Prior, 
Champaign County Corn  

Perf. Perf. Perf. Acc'cy Acc'cy Acc'cy Acc'cy 
Year 5 3 3L A B C D 

Table 6.49 Value of Predictions and Predictors vs. 3 Yr. Prior, 
Story County Corn  

Perf. Perf. Perf. Acc'cy Acc'cy Acc'cy Acc'cy 
Year 5 3 3L A B C D 
1974 787 787 0 787 787 787 787 
1975 0 0 -1,509 0 0 0 0 
1976 0 0 - 4 9 8 0 0 0 0 
1977 0 - 965 -2,103 0 - 965 - 965 - 965 
1978 0 0 0 0 0 0 0 
1979 0 0 0 0 0 0 0 
1980 1,352 1,352 1,352 1,352 1,352 1,352 1,352 
1981 0 -1,402 -1,402 0 -1,402 -1,402 -1,402 
1982 0 0 0 0 0 0 0 
1983 450 0 - 1 8 8 0 0 450 0 
1984 0 0 0 0 0 -2,017 0 
1985 10 10 -1,131 0 10 0 10 
mean 217 - 18 - 457 178 - 18 - 150 - 18 
mean/ac. 0.68 - 0.06 - 1.43 0.56 -0.06 -0.47 -0.06 
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1974 15,050 15,050 15,050 15,050 15,050 15,050 15,050 
1975 0 0 0 0 0 0 -1,336 
1976 0 0 0 - 648 0 0 -2,435 
1977 1,208 1,208 -3,449 1,208 1,208 -1,793 -2,506 
1978 3,513 1,687 3,108 -3,932 3,513 3,108 1,473 
1979 2,754 2,754 2,754 1,863 1,863 952 - 807 
1980 1,312 1,312 -2,146 1,312 1,312 0 1,312 
1981 0 0 0 0 0 -1,418 0 
1982 1,887 1,887 1,887 1,887 1,887 1,887 - 972 
1983 432 297 297 432 432 297 0 
1984 12,809 12,809 12,809 12,233 12,809 12,809 12,809 
1985 0 0 -1,821 0 0 0 - 565 

mean 3,247 3,084 2,374 1,960 3,173 2,574 1,835 
mean/ac. 10.15 9.64 7.42 6.13 9.92 8.04 5.74 



the three year prior in each county. It is clear that in Champaign County 

(Table 6.48) the values of the predictions over the twelve years increase 

dramatically from the fifteen year prior, especially to contradict 

inaccurate expectations of favorable winter nitrogen carryover. 

Interestingly, even forecast accuracy A shows value compared to the three 

year prior. 

However, in Story County the corn climate predictors still demonstrate 

little value (Table 6.49). The lower variability of the Story County 

climate mentioned earlier causes less radical changes in the three year 

prior decisions than in Champaign County. Again, the predictions whose 

value is consistently positive prevent suboptimal nitrogen application (1974 

and 1980). 

Perceptions That May Cause Traditions 

It is plausible to envision midwestern grain producers who know how 

climate affects corn production but are not completely aware of the 

historical climate probability distribution. Under such circumstances and 

without climate forecasts, these decision makers must still make production 

decisions. Wise and Yotopoulos (and Yotopoulos and Wise) discussed the 

issue of economic rationality versus tradition in making production 

decisions. They addressed whether production input decisions based on 

tradition could be explained by the postulate of profit maximization. At 

issue here is discovering alternate priors on climate distribution which may 

lead to traditional behavior to evaluate the differences in climate forecast 

valuations. 

The fifteen year prior nitrogen application rate in Champaign County is 
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150 pounds per acre. This rate, whether based on the historical climate 

distribution or an ambiguous notion thereof, is supported by the 1976 to 

1985 Illinois average nitrogen application rate of 147 pounds per acre 

(Illinois Agricultural Statistics Service, 1986). However, it is plausible 

to envision corn growers developing prior (or traditional) nitrogen 

application rates of 100 or 200 pounds per acre, the decision alternatives 

neighboring the 150 pound decision in the corn DP model. 

The purpose of the ambiguity model developed in Chapter II is to 

determine whether or not combinations of subjective probabilities, S(p), on 

the five-category climate outcomes might give rise to such base decisions or 

traditions. An infinite number of combinations of probabilities on climate 

index in each period exist. To narrow the scope of the investigation, these 

climate perceptions are divided into three groups. The first changes the 

probabilities on winter precipitation levels. The next changes the climatp 

probabilities in stage 7, the period of nitrogen-climate interaction in the 

Champaign County corn OP model. The third is to change climate 

probabilities in all periods except stage 7, indicating a perception of a 

generally favorable or unfavorable growing season but without the nitrogen-

climate interaction. 

An example of a traditional input decision is fall nitrogen 

application. Recalling equation 4.16, winter nitrogen carryover is expected 

to be favorable if precipitation is less than or equal to 380 mm. Table 

6.50 depicts sample subjective probabilities of each category of stage 1 

climate which could cause the decision maker to operate on expected winter 

precipitation of 380 mm or less without climate forecasts. The sample 

probability perceptions in Table 6.50 indicate that a prior for favorable 
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Table 6.50 Example Winter Precipitation Probability Distributions  

Probability Distributions a-f  
Category Precip. a b c d e f 

Excellent 254.0 0.220 0.000 0.200 0.250 0.200 0.150 
Good 314.5 0.180 0.450 0.300 0.150 0.200 0.275 
Average 415.1 0.350 0.400 0.350 0.400 0.400 0.375 
Fair 487.0 0.250 0.150 0.150 0.125 0.125 0.125 
Poor 521.0 0.000 0.000 0.000 0.075 0.075 0.075 
Expected 

Value: 379.53 380.62 363.49 376.67 379.69 380.20 

winter nitrogen carryover is plausible under ambiguity. 

The expected value of climate in period 7 was varied from extremes of 

poor through excellent, and beyond these limits, holding climate in all 

other periods constant at their expected values. In no instance did the 

preferred base nitrogen level change. 

Next, the climate in periods 5, 6, 8, 9 and 10 were varied. The 

fifteen year expected value of each of these, when inserted into the 

production function of Chapter IV, contributes the amount 0.4532 toward the 

exponent in Y - exp(CP). This same sum calculated at climate index values 

of fair (Table 5.1) is 0.06911. If this sum falls below 0.2939 the base 

nitrogen level becomes 100 pounds per acre. Given the relationship among 

these three sums (0.06911<0.2939<0.4532) it is easy to envision that there 

exist a multitude of θ's and β's which could cause heavier weighting of the 

probabilities for lower than average climate conditions. Specific 

calculations for differential weights in each period were not performed due 

to the extensive joint probabilities. Obtaining a base nitrogen level of 

200 pounds per acre is not plausible under different simulated weights 

across all climate categories. 
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Forecast Valuations Under Traditional Priors 

Earlier in this chapter it was noted that the value of climate 

information depends heavily on the prior. Further evidence of this fact is 

presented in Table 6.51, which contains the value of the perfect-5 and 

perfect-3 Champaign County corn predictions and predictors compared to the 

priors of a) 100 pounds of nitrogen applied in the spring, and b) 150 pounds 

of nitrogen applied in the fall. These analyses are performed at the 

original price relationships. 

The values of the perfect-5 and perfect-3 predictors (mean) under the 

prior of 100 pounds per acre of spring applied nitrogen are quite similar to 

Table 6.51 Value of Perfect-5 Predictions and Predictors vs. Ambiguous 
Priors. Champaign County Corn  

Prior: 100 lbs. Spring Nit. 150 lbs. Fall Nit. 

Net Perf. Perf. Net Perf. Perf. 
Year Returns 5 3 Returns 5 3 

1971 63,109 6,363 6,363 67,883 1,589 1,589 
1972 56,617 5,925 4,509 61,126 1,416 0 
1973 61,647 4,906 2,576 52,390 14,163 11,833 
1974 35,179 1,298 1,298 21,427 15,050 15,050 
1975 64,364 2,649 2,649 63,583 3,430 3,430 
1976 50,040 2,612 2,612 49,235 3,417 3,417 
1977 58,924 4,658 4,658 63,582 0 0 
1978 55,750 2,709 882 54,945 3,514 1,687 
1979 49,204 1,947 1,947 48,397 2,754 2,754 
1980 54,164 5,636 5,636 58,487 1,313 1,313 
1981 56,346 5,904 5,904 60,832 1,418 1,418 
1982 55,735 2,297 2,297 54,942 3,090 3,090 
1983 37,171 1,540 1,406 36,335 2,376 2,242 
1984 48,113 2,430 2,430 37,289 13,254 13,254 
1985 45,197 1,821 1,821 29,539 17,479 17,479 
Mean 3,513 3,133 5,618 5,237 
Mean/ac. 10.98 9.79 17.56 16.37 
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their values under the three year prior (Table 6.48). However, rather than 

compensate for wide swings in the decisions based on the three year prior, 

the value of the predictions is modestly high in each year. This is likely 

due to the climate forecasts generally coaxing a more aggressive 

fertilization rate from the producer. 

Under the prior of fall nitrogen application, the values of the 

predictors are further increased by roughly $2,000. In contrast to the 100 

pound prior, the value of predictions varies widely depending upon the value 

of preventing fall fertilization and the value of increasing the 

fertilization rate above 150 pounds per acre. 

Thus, the value of the Champaign County perfect-5 corn predictions and 

predictors are again shown to vary tremendously based upon the prior, 

ranging from $1,380 against the fifteen year prior to $5,618 against a prior 

for fall nitrogen application of the same fertilization rate. Although 

price relationships, accuracy and specificity may impact the value of 

climate forecasts to midwestern grain producers, clearly the most important 

determinant of information value discussed here is the prior. It is 

important to note that this study does not purport to identify the method by 

which grain producers formulate priors. Clearly this is an area for future 

research. 

Summary 

The specificity and accuracy of the perfect-5 climate forecasts were 

changed to discover their impact on the value of the climate predictions and 

predictors. Soybean climate forecasts continued to be of little value in 
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producer decision making. Less specific or imperfect Story County corn 

climate forecasts induced costly decisions compared to the fifteen year 

prior. 

In the Champaign County corn model, the perfect-3 predictor was found 

to have an expected value of $1,000 compared to $1,380 of the perfect-5 

predictor. Aggregating the central 70 percent of the distribution to be 

more precise in the extreme values by means of the perfect-3L predictor 

caused the expected value of the predictor to drop to $241. An accuracy of 

70 percent on the perfect-3 predictor was found to not impair the value of 

the predictor. However, accuracies less than that or which favor one end of 

the distribution are found to cause severe decreases in the expected value 

of the perfect-3 forecasts. 

The value of the Champaign County corn climate forecasts was found to 

be affected by the assumption of the prior formed by the decision maker. 

Compared to the three year prior, the values of the perfect-5 and perfect-3 

forecasts rose above $3,000, as did the value of the imperfect, three-

category forecast with 70 percent accuracy. The formation of additional 

priors under the theory of ambiguity allowed further insight into the impact 

of the prior on the value of the forecasts. It is concluded that an 

empirical investigation into the formation of priors based on the use of 

climate information by grain producers is necessary to more firmly identify 

the value of climate forecasts. 
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Notes 

1. Despite concerns regarding the validity of the Story County soybean 
model raised in the previous two chapters, analyses of effects from 
changing forecast specificity are included here. Comparisons within 
the Story County soybean model are thought to be less susceptible to 
misspecification than comparisons between it and other models. 
Nonetheless, these results should be interpreted with appropriate caution. 

2. A base nitrogen level of 100 pounds per acre can be obtained when the 
period 7 climate index extends far outside the range of the data. This 
result is viewed as uninteresting due to the curvature imposed on the 
estimation of the production function in Chapter IV. 
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CHAPTER VII 

SUMMARY AND IMPLICATIONS 

Introduction 

The purpose of this study is to further investigate the value of 

climate forecasts for midwestem grain producers. The study focuses on 

developing a realistic model of two corn and soybean growers, one each in 

Illinois and Iowa. The motivation for this work is derived from the 

limitations of other such models in detecting sources of climate forecast 

value other than for a selection of one or two inputs. 

Three topics are discussed in this chapter. These are 1) the 

development of the models and their use, 2) the climate forecast schemes 

addressed in this study and their value to midwestern agriculture, and 3) 

the impact and implications of alternate priors reasonably formed by the 

decision maker using the climate forecasts. 

Modeling Considerations 

As in Mjelde's work, this study employed growth simulation models to 

generate data, econometric models to estimate production functions, dynamic 

programming models to ascertain optimal policies, and management simulation 

models to arrive at comparable net returns. The use of growth simulation 

models in agricultural economics research is likely to increase in the 

future. Their usefulness in generating large "experimental" data sets is 

well documented. As noted earlier, the growth models used in this study may 

have shortcomings which detract from their ability to capture all climate 

effects on crop production. These include the incorporation of only one 
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nitrogen level in the corn growth model and the potential inability of this 

model to accurately describe the effects of competition between neighboring 

plants. If the research use of the corn growth simulation model is to 

increase, it is recommended that these items be addressed in future 

revisions. 

Dynamic programming was used to discover optimal solutions consisting 

of a sequence of decisions through time. This technique proved to be 

valuable despite certain limitations. The fineness of the DP models' state 

and decision variable grids was constrained by the size of the decision set. 

It is believed that further refinements in the results of this study could 

be obtained by eliminating certain management decisions, particularly seed 

variety and plant population. In so doing the dimension of the state 

variables could be increased, resulting in even less of an approximation of 

the value of the recursive equations in the DP search for an optimal policy. 

Although the DP method has its shortcomings, it remains an appropriate 

optimization technique in studies such as this. 

The management simulation models are a simple reconstruction of the DP 

algorithm without an optimization routine. Their use in evaluating 

alternate decision sets along a continuum remains preferred to the use of 

the optimum value of the DP recursive equation, which is a discrete 

approximation. 

The information valuation equations used in this study provide for the 

possibility of a mathematical outcome less than zero. Information had been 

thought to have no value if its use provides returns less than the use of 

the prior. This study allowed the value of a prediction to be less than 

zero because the decision maker using the information source would not know 
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when its use is not optimal. However, it remains intuitive that if the 

decision maker's expected value of using the predictions, that is the value 

of the predictor, is less than zero, then a decision maker would not use the 

information source and its value would be zero. 

The details of the farms modeled in this study provided insight into 

the frequency with which field time constraints may be encountered, 

effectively reducing the size of the decision set. The use of this detail 

in future research is encouraged. The assumptions of multiple fields and 

multiple crops were fruitfully incorporated into the decision set to find 

additional uses of climate information. 

That the inclusion of multiple soil types provided inconsequential 

detail in this study is not an indication that this structure should not be 

continued in future research. Alternate locations, and perhaps growth 

simulation models of other crops, may show larger differences in soil types 

or response to soil types. The inclusion of multiple fields and soil types, 

multiple crops, and a well described constraint may be more efficiently 

modeled over a few acres rather than an entire farm. 

Value of Climate Forecasts 

The value of climate forecasts in making soybean production decisions 

was found to be essentially nil. Although not expected at first, the lack 

of any management-climate interactions detected in the estimates of the 

soybean production functions dictated this result. Incorporating a decision 

alternative on soybean row spacing may have generated different results. 

The Story County corn climate index was found to have lower variability 

than that of Champaign County. Thus, the perfect forecasts, both five- and 
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three-category, caused little change in decisions based on the fifteen year 

historical prior. 

In contrast, the perfect forecasts of Champaign County corn climate 

were shown to have an expected value of $4.31 per acre for the five-category 

forecast and $3.12 per acre for the three-category forecast. This range is 

somewhat consistent with the findings of both Sonka et al and Tice and 

Clouser, considering the different price relationships used in these 

studies. The aggregation of the central 70 percent of cumulative 

probability into one category in the perfect-3L forecasts reduced the 

predictor value to $.75 per acre. 

More than half of the Champaign County corn climate predictor value is 

derived from taking advantage of low winter precipitation for beneficial 

fall fertilization. With increasing public concern about ground water 

quality and contamination from nitrate leaching, there is a possibility that 

this portion of the climate forecast value may disappear due to regulation. 

The value of the perfect-5 forecasts was found to increase as the ratio 

between corn price and nitrogen price increased. The construction of the 

models resulted in an increased base fertilization rate at a price ratio of 

15. This caused a downward shift in the forecast valuation at that price 

ratio, followed by a continued positive relationship between an increasing 

price ratio and increasing predictor value. 

The upper limit of the value of climate forecasts in switching 320 

acres of corn to soybeans and vice versa was examined at various 

soybean/corn price ratios. Within a price ratio range of 2.9 to 3.4, the 

perfect-5 Champaign County corn climate predictor was found to be able to 

increase net revenues between $2,168 and $4,592 by initiating a change in 
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crop. The upper limit of the value of climate information for this purpose 

is nearly $14.35 per acre. However, this valuation does not consider 

general equilibrium effects on output price if many producers respond to 

climate forecasts in this manner. 

Various accuracies associated with the NOAA forecast scheme were 

examined. At 70 percent accuracy the value of the Champaign County corn 

predictor is nearly identical to the value of the perfect-3 predictor. 

Other forecast accuracies sampled were found to have much lower value, if 

any. 

Impact of Alternate Priors 

The assumption that the decision maker formed prior expectations on 

climate from a fifteen year data set was relaxed to investigate the impact 

of alternate priors on climate forecast value. Based on the theory of 

ambiguity a number of different priors were developed and tested. 

The value of the perfect-5, perfect-3 and perfect-3L Champaign County 

corn predictors increased approximately $2,000 each when valued against a 

prior based on the most recent three years of climate outcomes. These 

values of $7.42 to $10.15 per acre are substantially derived from fall 

fertilization decisions. Again, the 70 percent accurate 3-category 

predictor was found to have value similar to its perfect counterpart. 

Two base decision sets derived from a range of other priors were also 

examined. When compared to a lower base fertilization rate, the values of 

the perfect predictors were again roughly $2,000 higher than the values 

derived from the fifteen year historical prior. Furthermore, when compared 

to a base decision of fall nitrogen application, the values of the perfect 
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predictors increased by approximately $4,000, or about $12.50 per acre. 

These increases in the value of the predictors are derived from 

alternate priors that are thought to be quite reasonable. The differences 

are large enough that a more accurate determination of the value of climate 

forecasts in midwestern agriculture requires an investigation into both 

agricultural decision makers' formation of climate expectations and the 

method by which climate information is actually incorporated into decisions. 

Experimental design and choice of human subjects are likely to have 

significant effects on the results of such studies. These studies are seen 

as quite useful and necessary in further investigating climate forecast 

issues in agriculture as well as the general application of ambiguity theory 

as an alternative to risk theory in economics. 

171 



REFERENCES 

American Society of Agricultural Engineers. 1987 Standards. ASAE, St. 
Joseph, MI. 1987. 

Ansoff, H. Igor. Implanting Strategic Management. Prentice-Hall 
International, Inc., Englewood Cliffs, N.J. 1984. 

Antle, John M. "Incorporating Risk in Production Analysis." American 
Journal of Agricultural Economics. 65(1983):1099-1066. 

Babcock, Bruce J. "Weather Information as a Free Public Good: Is More Always 
Better?" Working Paper, Dept. of Econ. and Business, North Carolina 
Sate University, Raliegh, N.C. 1988. 

Batra, R.N. and A. Ullah. "Competitive Firm and Theory of Input Demand Under 
Price Uncertainty." Journal of Political Economy. 82(1974):537 
-548. 

Bellman, Richard E. and Stuart E. Dreyfus. Applied Dynamic Programming. 
Princeton University Press, Princeton, N.J. 1962. 

Bellman, Richard and Robert Kalaba. Dynamic Programming and Modern Control 
Theory. Academic Press, New York. 1965. 

Bessler, David A. "Subjective Probability." In Risk Management in 
Agriculture. Peter J. Barry, ed. Iowa State University Press, Ames, 
IA. 1984. 

Block, Craig. Iowa Agricultural Statistics Service, Des Moines, IA. 
Personal Communication. 1988. 

Bosch, Darrell and Vernon Eidman. "The Value of Soil Water and Weather 
Information in Increasing Irrigation Efficiency." in Risk Analysis for 
Agricultural Firms: Concepts. Information Requirements and Policy 
Issues. Proceedings of Southern Regional Project S-180, Lindon J. 
Robison, ed., Staff Paper 85-85, Department of Agricultural Economics, 
Michigan State University, East Lansing, MI. 1985. 

Bosch, Darrell and Vernon Eidman. "Valuing Information When Risk Preferences 
are Nonneutral: An Application to Irrigation Scheduling." American 
Journal of Agricultural Economics. 69(1987):659-668. 

Brown, B.G., R.W. Katz and A.H. Murphy. "Case Studies of the Economic Value 
of Monthly and Seasonal Climate Forecasts; 1. The Planting/Fallowing 
Problem.: Report No. 1 to the Cliamte Analysis Center, National 
Weather Service, NOAA. 1984. 

Burt, Oscar R. "Dynamic Programming: Has Its Day Arrived?" Western Journal 
of Agricultural Economics. 7(1982):381-93. 

172 



Burt, Oscar R. and M.S. Stauber. "Economic Analysis of Irrigation in a 
Subhumid Climate." American Journal of Agricultural Economics. 
53(1971): 33.-46. 

Byerlee, Derek and Jock R. Anderson. "Risk, Utility and the Value of 
Information." Review of Marketing and Agricultural Economics. 
50(1982):231-246. 

Chavas, Jean-Paul, and Rulon D. Pope. "Information: Its Measurement and 
Valuation." American Journal of Agricultural Economics. 66(1984): 
705-710. 

Chen, L.H. and R.W. McClendon. "Selection of Planting Schedule for Soybeans 
via Simulation." Transaction of the ASAE. 27(1984): 29-32. 

Doll, John P. "Obtaining Preliminary Bayesian Estimates of the Value of a 
Weather Forecast." American Journal of Agricultural Economics. 
53(1971):651-55 

Ellsberg, D. "Risk, Ambiguity and the Savage Axioms." Quarterly Journal of 
Economics, 75(1961):643-699. 

Einhorn, Hillel J. and Robin M. Hogarth. "Ambiguity and Uncertainty in 
Probabilistic Inference." Psychology Review. 92(1985):433-461. 

Einhorn, Hillel J. and Robin M. Hogarth. "Decision Making Under Ambiguity." 
in Rational Choice. Robin M. Hogarth and Melvin W. Reder, eds. 
University of Chicago Press, Chicago, IL. 1987. 

Freund, R.J. "Introduction of Risk into a Programming Model." 
Econometrica. 24(1956):253-263. 

Hilton, R.W. "Determinants of Information Value." Management Science. 
27(1981)57-64. 

Hinton, R.A. "Guide for Adjusting Custom Rates and Machine Rental Rates for 
1986-1987." Farm Economics Facts and Opinions. No. 86-14. Dept. of 
Agricultural Economics, University of Illinois, Urbana, IL. September, 
1986. 

Hollinger, S.E. "Modeling Climate-Management Interactions at the Farm 
Level." Preprint Volume, 17th Conference on Agriculture & Forestry 
Meteorology. American Meteorological Society. May, 1985. 

Hollinger, S.E. Illinois State Water Survey, Champaign, IL. Personal 
communication, 1988. 

Hollinger, S.E. "Modeling the Effects of Weather and Management Practices 
on Maize Yield at the Farm Level." Journal of Agricultural and Forest 
Meteorology. 44(1989). Forthcoming. 

173 



Hollinger, S.E. and R.G. Hoeft. "Influence of Weather on Year to Year Corn 
Yield Response to Ammonia Fertilization." Agronomy Journal. 
78(1986):818-823. 

Hollinger, S.E. and R.G. Hoeft. Untitled Working Paper, University of 
Illinois, Urbana, IL. 1985. 

Howard, Ronald A. Dynamic Programming and Markov Processes. The Technology 
Press of the Massachusetts Institute of Technology, Cambridge, MA and 
John Wiley & Sons, Inc., New York. 1960. 

Illinois Cooperative Extension Service (CES). Illinois Agronomy Handbook. 
1987-1988. Circular 1266, College of Agriculture, University of 
Illinois, Urbana, IL. 1987. 

Illinois Agricultural Statistics Service. Illinois Weather and Crops. 
Springfield, IL. Various Issues. 

Illinois Dept. of Agriculture. Illinois Agricultural Statistics. 
Springfield, IL. Various Issues. 

Iowa Dept. of Agriculture. Iowa Agricultural Statistics. Des Moines, IA. 
Various Issues. 

Krenz, Ronald D. "Machinery Used in Crop Production in the United States." 
AE No. 8532, Agricultural Economics Department, Oklahoma State 
University, Stillwater, OK. February, 1985. 

Lamb, P.J., S.T. Sonka and S.A. Changnon, Jr. The Present and Potential Use 
of Climate Information by the United States Private Agricultural 
Sector. Final Report NSF ATM 81-16615, Champaign, IL. 1984 

Lamp, B.J., W.H. Johnson and K.A. Harkness. "Soybean Harvesting Losses -
Approaches to Reduction." Transactions of the ASAE 4(1961): 203-205, 
207. 

Larson, Robert E. and John L. Casti. Principles of Dynamic Programming. 
Part II: Advanced Theory and Applications. Marcel Dekker, Inc., New 
York. 1982. 

Lattz, D.H. "The Cost of Growing Corn and Soybeans, 1986." Farm Economics 
Facts and Opinions. No. 87-6. Dept. of Agricultural Economics, 
University of Illinois, Urbana, IL. April, 1987. 

Lattz, D.H. "The Cost of Growing Corn and Soybeans, 1987." Farm Economics 
Facts and Opinions. No. 88-7. Dept. of Agricultural Economics, 
University of Illinois, Urbana, IL. May, 1988. 

Lattz, D.H., C.F. Cagley, R.P. Kesler and I. Chow. 62nd Annual Summary of 
Illinois Farm Business Records. Cooperative Extension Circular 1276, 
College of Agriculture, University of Illinois at Urbana-Champaign. 
August, 1987. 

174 



Melichar, Emanuel. "Agricultural Finance Databook." Board of Governors of 
the Federal Reserve System. Washington, D.C. June, 1987. 

Meyer, G.E., R.B. Curry, J.G. Streeter and H.J. Mederski. "SOYMOD/OARDC -
A Dynamic Simulator of Soybean Growth, Development, and Seed Yield." 
Research Bulletin 1113, Ohio Agricultural Research and Development 
Center. Wooster, OH. December, 1979. 

Meyer, Jack. "Choice Among Distributions." Journal of Economic Theory. 
14(1977):326-336. 

Michaels, Patrick J. "A Predictive Model for Winter Wheat Yield in the 
United States Great Plains." IES Report 94, Institute for 
Environmental Studies, University of Wisconsin, Madison, WI. December, 
1977. 

Mjelde, James W. "Dynamic Programming Model of the Corn Production 
Decision Process with Stochastic Climate Forecasts." Unpublished Ph.D. 
Dissertation, University of Illinois at Urbana-Champaign. 1985. 

Mjelde, James W. and Steven E. Holloinger. "Development of Climate Indices 
for Application in Empirical Crop Production Studies." No. SP-11, 
Dept. of Agricultural Economics, Texas A&M University, College Station, 
TX. December, 1987. 

Perrin, Richard K. "The Value of Information and the Value of Theoretical 
Models in Crop Response Research." American Journal of Agricultural 
Economics. 58(1976):54-61. 

Pope, Rulon D. and Randall A. Kramer. "Production Uncertainty and Factor 
Demands for the Competitive Firm." Southern Economic Journal. 
46(1979):489-501. 

Reetz, H.F., Jr. "Corn Crops! A Physiology-Based Simulation of the Corn 
Crop." Unpublished Ph.D. Dissertation, Purdue University, West 
Lafayette, IN. 1976. 

Rothschild, M. and J.E. Stiglitz. "Increasing Risk I: A Definition." 
Journal of Economic Theory. 2(1970):225-243. 

Sandmo, Agnar. "On the Theory of the Competitive Firm Under Price 
Uncertainty." American Economic Review. 61(1971):65-73. 

Schwart, R.B. "Farm Machinery Economic Decisions." Illinois Cooperative 
Extension Service, Urbana, IL. June, 1981. 

Scott, W.O. and S.A. Aldrich. Modern Soybean Production. 2nd Ed.. S&A 
Publications, Champaign, IL. 1983. 

Sengupta, Jati K. Stochastic Programming Methods and Applications. North-
Holland Publishing Company, Amsterdam. 1972. 

175 



Siemens, John C. and Keith Hamburg. "User Guide, Farm Machinery Selection 
Program." Version 1.0. Agricultural Engineering Department, University 
of Illinois, Urbana, IL. 1987. 

Silberberg, Eugene. The Structure of Economics: A Mathematical Analysis. 
McGraw-Hill Book Company, New York. 1978. 

Sonka, S.T. "Information Management in Production." Computers and 
Electronics in Agriculture. 1(1958):75-85. 

Sonka, S.T, J.W. Mjelde, B.L. Dixon and P.J. Lamb. "Information as a Risk 
Management Tool: An Illustration for Climate Forecasts." Proceedings 
of the 1986 Annual Meeting of S-180 Risk Management Research Committee. 
Dept. of Agricultural Economics, University of Washington, Pullman, WA. 

SriRamaratnam, S., David A. Bessler, M. Edward Rister, John E. Matocha and 
James Novak. "Fertilization Under Uncertainty: An Analysis Based on 
Producer Yield Expectations." American Journal of Agricultural 
Economics. 69(1987):349-357. 

Swamy, D.P., J.W. Mishoe, J.W. Jones and W.G. Boggess. "Using Crop Models 
for Management: Impact of Weather Characteristics on Irrigation 
Decisions in Soybeans." Transactions of the ASAE. 26(1983): 1808-14. 

Tice, T.F. and R.L. Clouser. "Determination of the Value of Weather 
Information to Individual Corn Producers." Journal of Applied 
Meteorology. 21(1982):447-452. 

Tversky, A. and D. Kahneman. "Judgement Under Uncertainty: Heuristics and* 
Biases." Science. 185:1124-31. 

USDA. Soil Survey of Champaign County, Illinois. Soil Conservation 
Service, Washington, D.C. March, 1982. 

USDA. Soil Survey of Story County. Iowa. Soil Conservation Service, 
Washington, D.C. May, 1984. 

USDA. Agricultural Prices. 1986 Summary. Agricultural Statistics Board, 
Washington, D.C. June, 1987. 

USDA. Economics Indicators of the Farm Sector: Cost of Production. 1986. 
Economic Research Service, Washington, D.C. November, 1987. 

Varian, Hal R. Microeconmic Analysis. 2nd. Ed.. W.W. Norton & Co., New 
York. 1984. 

White, D.J. "Dynamic Programming and Probabilistic Constraints." 
Operations Research. 22(1974):654-664. 

White, D.J. Finite Dynamic Programming. An Approach to Finite Markov 
Decision Processes. John Wiley & Sons, New York. 1978. 

176 



Wilkerson, G.G., J.W. Jones, K.J. Boote, K.T. Ingram and J.W. Mishoe. 
"Modeling Soybean Growth for Crop Management." Transactions of the 
ASAE. 26(1983):63-73. 

Wise, John and Pan A. Yotopoulos. "A Test of the Hypothesis of Economic 
Rationality in a Less Developed Economy: An Abstract." American 
Journal of Agricultural Economics. 50(1963):395-7. 

Womack, Letricia M. and Larry G. Traub. U.S.-State Agricultural Data. ERS, 
USDA, Washington, D.C. Agricultural Information Bulletin Number 512, 
April, 1987. 

Yates, J. Frank and Lisa G. Zukowski. "Characterization of Ambiguity in 
Decision Making." Behavioral Science. 21(1976):19-25. 

Yotopoulos, Pan A. and John Wise. "On Testing Competing Hypotheses: 
Economic Rationality versus Traditional Behavior." American Journal of 
Agricultural Economics. 51(1969):203-8. 

177 



VITA 

Michael Anthony Mazzocco was born March 18, 1954 in St. Louis, MO. He 

was graduated from New Trier West High School in 1972. He received a B.S. 

degree in Agriculture Science in 1976 and an M.S. in Agricultural Economics 

in 1980, both from the University of Illinois at Urbana-Champaign. He has 

seven years of experience in commercial banking in Illinois and South 

Dakota. He also has five years experience as a teaching and research 

assistant at the University of Illinois, where he was named a University 

Fellow in 1979 and 1987. 

178 


	TABLE OF CONTENTS
	LIST OF TABLES
	Table 4.1. Average Corn and Soybean Acres on Illinois Cash Grain Farms.
	Table 4.2. Summary of DP Model Constraints.
	Table 4.3. DP Model and Relevant Growth Stages of Cora and Soybeans.
	Table 4.4. Management Decisions at each Staee of DP Model.
	Table 4.5. DP Model State Variables.
	Table 4.6 Precipitation and Evaporation Data (mm). June 11 to July 15.
	Table 4.7 Climate Index of Champaign County Corn Bv Year
	Table 4.8 Climate Index of Champaign County Soybeans Bv Year
	Table 4.9 Storv County Corn Climate Index Bv Year.
	Table 4.10 Storv County Soybean Climate Index By Year.
	Table 4.11. Parameter Estimates of Crop Production Functions.
	Table 4.12 Winter Precipitation. Champaign and Story Counties By Year (mm).
	Table 4.13 Effect of Winter Precipitation on Fall Nitrogen Carry Over.
	Table 4.14. Prices Used in DP Model.
	Table 4.15 Days Available For Field Work
	Table 5.1 Categorical Values of Climate Index. Champaign County Corn
	Table 5.2 Categorical Values of Winter Precipitation and Climate Index, Champaign County Soybeans
	Table 5.3 Categorical Values of Climate Index. Story County Corn
	Table 5.4 Categorical Values of Winter Precipitation and Climate Index, Story County Soybeans
	Table 5.5 Actual Climate Index Categories. Champaign County Corn
	Table 5.6 Actual Climate Index and Winter Precipitation Categories, Champaign County Soybeans
	Table 5.7 Actual Climate Index Categories. Story County Corn
	Table 5.8 Actual Climate Index and Winter Precipitation Categories, Story County Soybeans
	Table 5.9 Categorical Values of Available Field Days. Champaign County
	Table 5.10 Categorical Values of Available Field Days. Story County
	Table 5.11 Champaign County Actual Available Field Days Categories
	Table 5.12 Story County Actual Available Field Days Categories
	Table 5.13 Champaign County Corn. Decisions and Returns. 15 yr. Prior
	Table 5.14 Story County Corn. Decisions and Returns. 15 Yr. Prior
	Table 5.15 Champaign County Soybeans. Decisions and Returns. 15 vr. prior
	Table 5.16 Story County Soybeans. Decisions and Returns. 15 yr. prior
	Table 5.17 Champaign County Corn Decision - Perfect 5 Forecast.
	Table 5.18 Story County Corn. Decisions and Returns - Perfect-5 Forecast
	Table 5.19 Champ. Ctv. Soybeans. Decisions and Returns - Perfect-5 Forecast
	Table 5.20 Storv County Soybeans. Decisions and Returns - Perfect-5 Forecast
	Table 5.21 Value of Perfect-5 Predictions and Predictors.
	Table 5.22 Perfect Predictor Value at Various Corn/Nitrogen Price Ratios, Champaign County.
	Table 5.23 Perfect Predictor Value at Various Corn/Nitrogen Price Ratios, Story County.
	Table 5.24 Relative Value of Perfect-5 Predictor at Various Corn/Nitrogen Price Ratios.
	Table 5.25 Corn Net Returns Less Soybean Net Returns from Optimal Strategy
	Table 5.26a Returns from Corn vs. Soybeans with Perfect-5 Predictors at Various Soybean/Corn Price Ratios. Champaign County
	Table 5.26b Additional Returns from Switching Crop at Various Soybean/Corn Price Ratios. Champaign County Perfect-5 Predictors
	Table 5.27 Comparison of Optimal Returns vs. Base Returns for Various Soybean Prices. Champaign County.
	Table 6.1 Forecast Accuracies: Probability of Outcome Given Prediction
	Table 6.2 Categorical Values of Perfect-3 Cliamte Index. Champ. Co. Corn
	Table 6.3 Categorical Values of Perfect-3 Winter Precipitation and Climate Index. Champaign County Soybeans
	Table 6.4 Categorical Values of Perfect-3 Climate Index. Story County Corn
	Table 6.5 Categorical Values of Perfect-3 Winter Precipitation and Climate Index. Story County Soybeans
	Table 6.6 Categorical Values of Perfect-3 Available Field Days. Champ. Co.
	Table 6.7 Categorical Values, of Perfect-3 Available Field Davs. Story Co.
	Table 6.8 Perfect-3 Climate Index Categories. Champaign County Corn
	Table 6.9 Perfect-3 Winter Precipitation and Climate Index Categoreies, Champaign County Soybeans
	Table 6.10 Perfect-3 Climate Index Categories. Story County Corn
	Table 6.11 Perfect-3 Winter Precipitation and Climate Index Categoreies, Story County Soybeans
	Table 6.12 Perfect-3 Available Field Days. Champaign County
	Table 6.13 Perfect-3 Available Field Days. Story County
	Table 6.14 Champaign County Corn Decision and Returns - Perfect 3 Forecast
	Table 6.15 Storv County Corn Decision and Returns - Perfect 3 Forecast
	Table 6.16 Champaign Soybean Decision and Returns - Perfect-3 Forecast
	Table 6.17 Story County Soybean Decision and Returns - Perfect-3 Forecast
	Table 6.18 Value of Perfect-3 Predictions and Predictors
	Table 6.19 Categorical Values of Perfect-3L Climate Index. Champ. Co. Corn
	Table 6.20 Categorical Values of Perfect-3L Winter Precipitation and Climate Index. Champaign County Soybeans
	Table 6.21 Categorical Values of Perfect-3L Climate Index. Storv Co. Corn
	Table 6.22 Categorical Values of Perfect-3L Winter Precipitation and Climate Index. Storv County Soybeans
	Table 6.23 Categorical Values of Perfect-3L Available Field Days. Champ. Co.
	Table 6.24 Categorical Values, of Perfect-3L Available Field Davs. Storv Co.
	Table 6.25 Perfect-3L Climate Index Categories. Champaign County Corn
	Table 6.26 Perfect-3L Winter Precipitation and Climate Index Categoreies, Champaign County Soybeans
	Table 6.27 Perfect-3L Climate Index Categories. Story County Corn
	Table 6.28 Perfect-3L Winter Precipitation and Climate Index Categoreies, Story County Soybeans
	Table 6.29 Perfect-3L Available Field Davs Categories. Champaign County
	Table 6.30 Perfect-3L Available Field Davs Categoreies. Story County
	Table 6.31 Champaign County Corn Decision and Returns - Perfect 3L-Forecast
	Table 6.32 Storv County Corn Decision and Returns - Perfect 3L Forecast
	Table 6.33 Champaign Soybean Decision and Returns- Perfect-3L Forecast
	Table 6.34 Story County Soybean Decision and Returns - Perfect-3L Forecast
	Table 6.35 Value of Perfect-3L Predictions and Predictors
	Table 6.36 Distributional Assumptions of Selected Forecast Accuracies.
	Table 6.37 Champaign County Corn Decisions and Returns - Forecast A.
	Table 6.38 Champaign County Corn Decisions and Returns - Forecast B.
	Table 6.39 Champaign County Corn Decisions and Returns - Forecast C.
	Table 6.40 Champaign County Corn Decisions and Returns - Forecast D.
	Table 6.41 Story County Corn Decisions and Returns - Forecast A.
	Table 6.42 Story County Corn Decisions and Returns - Forecast B.
	Table 6.43 Story County Corn Decisions and Returns-- Forecast C.
	Table 6.44 Story County Corn Decisions and Returns - Forecast D.
	Table 6.45 Value of Imperfect Predictions and Predictors of Corn Climate
	Table 6.46 Champaign County Corn Decisions and Returns - 3 Year Prior.
	Table 6.47 Story County Corn Decisions and Returns - 3 Year Prior.
	Table 6.48 Value of Predictions and Predictors vs. 3 Yr. Prior, Champaign County Corn
	Table 6.49 Value of Predictions and Predictors vs. 3 Yr. Prior, Story County Corn
	Table 6.50 Example Winter Precipitation Probability Distributions
	Table 6.51 Value of Perfect-5 Predictions and Predictors vs. Ambiguous Priors. Champaign County Corn

	CHAPTER I THE SETTING
	Introduction
	Climate Forecasts and the Information Age of Agriculture
	Objectives
	Organization

	CHAPTER II LITERATURE REVIEW
	Risk and Stochastic Production
	Information Theory
	Ambiguity
	Theory of Ambiguity

	Forecast Valuation Models in Production Economics
	Implications for This Study

	CHAPTER III METHODS
	Analytical Framework
	Models

	CHAPTER IV MODEL PARAMETERIZATION
	Introduction
	Specification of Model Farm
	Location and Endowments
	Constraints Emanating From Endowments

	Stages. Management Decisions and State Variables
	Recursive Equation
	Net Return Function

	Synthetic Data Generation
	Corn Growth Simulation Model
	Nitrogen - Climate Interaction

	Soybean Growth Simulation Model

	Production Function Specification and Estimation
	General Form
	Climate Indices
	Production Function Specification
	Parameter Estimation

	Transition Equation Specification
	Nitrogen Transitions
	Corn Plant Transition Equations
	Soybean Transition Equations

	Prices
	Field Time Constraint
	Required Field Time
	Available Field Time

	Summary

	CHAPTER V RESULTS AND VALIDATION
	Introduction
	Fifteen Year Historical Prior
	Perfect Forecast - Five Climate Categories
	Design
	Optimal Policies
	Champaign County Corn
	Story County Corn
	Champaign and Story County Soybeans


	Valuation of the Perfect-5 Forecasts
	Effect of More Specific Model on Value of Perfect-5 Predictor
	Influence of Prices on Value of Perfect-5 Predictor
	Corn/Nitrogen Price Ratio
	Corn/Soybean Price Ratio and the Choice of Crop
	Influence of Soybean Price on the Value of Perfect-5 Soybean Predictor

	Summary

	CHAPTER VI APPLICATION OF MODEL TO VARIOUS CLIMATE FORECAST SCHEMES AND ALTERNATE PRIORS
	Introduction
	Parameters of a Climate Forecast
	Lead Time
	Accuracy
	Specificity

	Perfect Forecast - Three Climate Categories
	Perfect Forecast - Three Climate Categories. Low Extreme Probability
	Accuracy
	Effect of Different Prior on Climate Information Value
	Three Year Historical Prior
	Perceptions That May Cause Traditions
	Forecast Valuations Under Traditional Priors

	Summary

	CHAPTER VII SUMMARY AND IMPLICATIONS
	Introduction
	Modeling Considerations
	Value of Climate Forecasts
	Impact of Alternate Priors

	REFERENCES
	VITA

