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LAND USE/COVER CLASSIFICATION FOR THE PROPOSED 
SUPERCONDUCTING SUPER COLLIDER STUDY AREA, 

NORTHEASTERN ILLINOIS 
by 

Robin B. King, Ming T. Lee, and Krishan P. Singh 

INTRODUCTION 

On September 2, 1987, in response to a Request for Proposal (RFP) from the U.S. 
Department of Energy, the state of Illinois submitted a proposal for the construction of a 
Superconducting Super Collider (SSC) in northeastern Illinois. The SSC is estimated to cost 
$4.5 billion. It will consist of an elliptical tunnel, 53 miles long and from 10 to 12 feet in 
diameter, located about 400 feet below the ground. It will accelerate two proton beams to the 
speed of light, each with 20 trillion electron volts (20-TeV) of energy. Their collision will 
release 40-TeV of energy. The SSC will ensure the nation's lead in high-energy physics. If 
it were located in Illinois, it would be a natural extension of the present accelerator at Fermi 
National Laboratory in Batavia, which is on the eastern edge of the proposed SSC ring. The 
DOE announced on December 27, 1987 that the Illinois SSC site was on the "best qualified" 
list of seven sites. 

The Illinois Department of Energy and Natural Resources and its divisions conducted a 
program to develop information pertinent to natural and man-made features within the 36-
township region containing the SSC study area (Figure 1). The proposed SSC ring lies 
within 16 townships (T37N to T40N and R6E to R9E). 

This report describes the method used in creating a land use/cover map for the 36-
township area from June 1985 satellite imagery, the hardware and software used for image 
processing, and the results of the land use/cover classification. The land use/cover 
classification and delineation provide basic spatial information on water bodies, vegetation, 
and other environmental factors. 

The objective of spectral image classification is to translate the raw spectral 
characteristics of the observed feature (generally a ground scene) into discrete categories that 
are of interest to the user. Prior to a discussion of image processing strategies, it is necessary 
to define a few key terms (from Jensen, 1986): 

Brightness value: A digital value that represents the amount of reflected or emitted 
energy that exits the earth's surface. The greater the brightness of the scene, the larger the 
digital value. 
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Figure 1. Area of Investigation for Siting the Accelerator Ring 
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Class: A surface characteristic type such as forest or water that is of interest to the 
investigator. 

Classification: The process of assigning individual pixels of a multispectral image 
(see definition below) to discrete categories. 

Clustering: The statistical analysis of a set of pixels to detect their inherent tendency 
to form clusters in a multidimensional data space. 

Geographic Information System (GIS): A computer hardware and software system 
designed to collect, manage, analyze, and display spatially referenced data. 

Pixel: A picture element having both spatial and spectral properties. The spatial 
variable defines the apparent size of the resolution cell, and the spectral variable defines the 
intensity of the spectral response for that cell in a particular band. 

Spatial resolution: The ability of an entire remote sensor system to render a sharply 
defined image. Also, a measure of the smallest angular or linear separation between two 
objects that can be resolved by the sensor. 

Spectral resolution: The dimension and number of specific wave length intervals in 
the electro-magnetic spectrum to which a sensor is sensitive. 

Spectral signature: Term referring to the spectral characteristic of an object in a 
scene. Implies that each object reflects radiation in a unique and identifiable manner. 

Training: The process of informing an image processor which sites to analyze for 
spectral properties as a prerequisite to a supervised classification (see definition in the 
"Background Information" section). 

Training site: Recognizable area on an image with distinct spectral properties useful 
for identifying other similar areas. 

Acknowledgements 
This study was funded by the Illinois Department of Energy and Natural Resources as 

part of an extensive project. Becky Howard typed the camera-ready copy of the report, and 
Gail Taylor edited the report. 
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BACKGROUND INFORMATION 

The staffs of the four Divisions of the Illinois Department of Energy and Natural 
Resources published an environmental screening atlas for siting the SSC in northeastern 
Illinois (Hines, 1986). The atls includes information on: 1) the physical setting of the study 
area, the model ring, topography, soils, distribution and thickness of quaternary deposits, 
sand-and-gravel aquifers, bedrock geology, structural features, seismic risk, and flood hazard 
areas; 2) conservation and preservation of threatened and endangered species, wetlands and 
water bodies, natural areas, known paleontological sites, paleontological site probability, 
known archaeological sites, archaeological site probability, historic site probability, national 
register sites, and Illinois historic landmarks; 3) cultural features, including land use, 
population density, land parcel size, public lands, quarries, electric transmission lines, oil and 
gas pipelines, highways, and railroads; and 4) wells and their depths, borings, samples, and 
cores. 

Environmental evaluations require the preparation of land use information. This study 
focuses on the development of a land use/cover map from recent satellite imagery. Similar 
during-construction and post-construction maps allow monitoring of the changes taking place 
and provide help in decisions regarding whether any remedial measures are needed. To 
detect the areas of rapid cover changes and the level of such changes, the land use/cover map 
and data developed here can be compared with those on existing U.S. Geological Survey 
land use digital analysis (LUDA) maps. 

Landsat Digital Data 
The earliest origins of remote sensing from space can be traced to the latter part of the 

nineteenth century, when German-built rocket-propelled camera systems took photographs of 
the earth's surface. Later, small cameras were mounted aboard captured V-2 rockets and 
fired from the White Sands Proving Ground in New Mexico. Although the early 
photographs were crude and primitive, they demonstrated the potential value of remote 
sensing from space. This value became more apparent during the manned Mercury, Gemini, 
and Apollo space missions of the 1960s. Numerous high-quality color photographs were 
taken during these missions, and the value of remote sensing became well recognized. 

In 1967, the National Aeronautics and Space Administration, with the cooperation of 
the U.S. Department of the Interior, began a feasibility study of a sequence of Earth 
Resources Technology Satellites (ERTS). The study proposed a series of satellite launches 
designated as ERTS-A, -B, -C, -D, -E, and -F. After successful launch and orbital 
positioning, the satellites were to be redesignated as ERTS-1, -2, -3, -4, -5, and -6. ERTS-1 
was successfully launched on July 23, 1972, and operated until January 6, 1978. All the 
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nations of the world were invited to evaluate the ERTS-1 data. The results from the 
scientific community pointed to a number of valuable applications of remote sensing in 
various scientific research missions. On January 22, 1975 (just prior to the launch of ERTS-
B), NASA officially renamed the ERTS program the LANDSAT (Land Satellite) program 
and retroactively changed the name ERTS-1 to LANDSAT-1, or Landsat-1. By 1988, a total 
of five Landsat satellites had been launched, and the program had evolved into an operational 
global resource monitoring program. All the Landsat satellites carry 4-band multispectral 
scanners (MSS) that are sensitive to wavelengths from 0.5 mm to 1.1 mm and have a spatial 
resolution of from 79 to 82 meters (Table 1). Landsat-1, -2, and -3 also carried a three-
channel return beam vidicon (RBV) system that provided an instantaneous camera-like view 
of the ground scene. The resolution and imaging capability of the onboard sensors was 
considerably improved on Landsat-4 and -5. The most significant change was the 
introduction of a 30-meter-resolution Thematic Mapper (TM), which provides relatively 
high-resolution data in seven different spectral bands. 

Table 1. Characteristics of Landsat Multispectral Scanners (MSS) 
and Return Beam Vidicon (RBV) Systems 

Landsat 
Sensor mission Sensitivity (mm) Resolution (m) 

MSS 1-5 0.5 - 0.6 79/82* 
0.6- 0.7 79/82 
0.7 - 0.8 79/82 
0.8- 1.1 79/82 

3 10.4 -12.6** 240 
RBV 1-2 0.475-0.575 80 

0.580 - 0.680 80 
0.690 - 0.830 80 

3 0.505 - 0.750 30 
* 79 m, Landsat-1 to -3; 82 m, Landsat-4 and -5 

** Landsat-3 only, sensor failed shortly after launch 

The Landsat series of satellites are in a circular, sun-synchronous, near-polar orbit at a 
mean altitude of 570 miles (440 miles for Landsat-4 and -5). Each orbit takes 103 minutes 
(99 minutes for Landsat-4 and -5), so that each satellite completes approximately 14.5 orbits 
per day, covering the same spot on the earth every 18 days (16 days for Landsat-4 and -5). 

The MSS on board the Landsat satellite is a line-scanning device that continuously 
scans a 115-mile (185-kilometer) swath along the earth's surface. The image data are 
separated into individual frames, 115 miles square, during processing. Each image consists 

5 



of many individual picture elements (pixels) that are obtained in rapid succession by means 
of an oscillating mirror behind the lens of the MSS. The oscillating mirror scans six scan 
lines along the 115-mile-long swath perpendicular to the spacecraft. The MSS 
simultaneously records (in four spectral bands) the amount of light being reflected from each 
pixel, a 259-foot-square area of the earth's surface. 

The MSS video signal is converted to digital data and telemetered to a ground 
receiving station, either in real time or after being recorded on board the satellite. The final 
data products include computer-compatible tapes (CCTs), black and white photographs of 
individual spectral bands (MSS bands 4-7), and color composites comprising several bands, 
usually MSS bands 4, 5, and 7. 

The Landsat digital data can be spatially located on the ground to within one-half of a 
pixel (Bernstein and Ferneyhough, 1975). One advantage of using the Landsat information 
is that the data are digital and can be directly entered into a geographic data base. One 
Landsat scene comprises an area 115 miles square. Also, because Landsat views the same 
ground point every 16 or 18 days, the accuracy of the land use map can be increased by 
analyzing data obtained at different times of the year. 

Thematic Mapper (TM) Data 
TM is an advanced multispectral scanner. This name relates to the intended 

application of the system's data to spectral pattern recognition techniques that will produce 
classified images (thematic maps). TM is equipped with a seven-channel scanner designed 
to maximize vegetative analysis capabilities for agricultural applications. The TM bands and 
their resolutions are listed in Table 2. 

Table 2. Characteristics of Thematic Mapper 

Band Wavelength (mm) Resolution (m) Image format 

1 0.45-0.52 30 115-mile (185-km) 
2 0.52-0.60 30 strip image framed 
3 0.63-0.69 30 with 5.4% forward 
4 0.76-0.90 30 lap, 7.3% sidelap 
5 1.55-1.75 30 at the equator, 
6 10.40-12.50 120 increasing toward 
7 2.08-2.35 30 poles 

Digital Imagery Used for Study Area 
The study area is defined as the 36 townships in Cook, DuPage, Will, Kendall, Kane, 

and DeKalb Counties as shown in Figure 1. The TM scene of path 23, row 31 on June 3, 
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1985, was purchased from the Earth Observation Satellite Company (EOSAT), a commercial 
company designated by the U.S. government to sell the Landsat data. The image was 
selected because of the low cloud coverage and the stage of vegetative coverage on the 
ground. 

Hardware and Software of Image Analysis System 
The ERDAS (ERDAS, Inc., 1988) Image Processing System on the IBM-AT was used 

in this study. The system hardware consists of: 1) IBM-AT system with Enhanced Graphics 
Adapter and 30 megabyte (MB) fixed disk, 2) Cipher Data Products 9000 series magnetic 
tape drive, 3) 20 Plus 20 MB Bernoulli removable fixed disk, 4) Tektronix 4696 color dot 
matrix printer, and 5) Mitsubishi 512 by 512 high-resolution color display. Figure 2 shows 
the flow diagram of the hardware of this image processing system. 

. The ERDAS software for the image analysis system includes the following modules: 
1) core module, 2) image processing module, 3) geographic information system (GIS) 
module, 4) tapes module, 5) color hardcopy module, 6) topographic module, 7) and toolkit 
module. The software system is driven by the MS-DOS operation system. 

Land Use/Cover Classification; Unsupervised and Supervised Classifications 
In a general sense, the overall objective of image classification is to categorize all the 

individual elements of a digital image into separate groups or classes that are in some way 
unique. This objective can be achieved through various methods, and in fact a whole family 
of image classification strategies exists. Spectrally oriented classification strategies are the 
dominant type in use. Two spectral classification strategies, the supervised analysis and the 
unsupervised analysis, form the backbone of image classification activities (Lillesand and 
Kiefer, 1987). 

An unsupervised classification identifies spectrally similar groups or clusters within 
the multispectral data. Remotely sensed images are usually composed of spectral clusters 
that are reasonably uniform with respect to brightness in several spectral bands. Although 
the existence of the clusters (or classes) may not be intuitively obvious, unsupervised 
classification is defined as the definition, identification, labeling, and mapping of these 
natural or spectral classes. 

A supervised classification entails identifying a training area consisting of sample 
pixels that belong to a known informational class. The spectral characteristics of the training 
area are computed statistically. The classification algorithm is trained to categorize sample 
pixels on the basis of their statistical similarity to the training area characteristics. The pixels 
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Figure 2. ERDAS Image Processing System 
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of the image arc assigned to the informational class that most closely resembles the spectral 
signature of the sample pixels. 

Unsupervised classification has several advantages and disadvantages relative to 
supervised classification. The advantages are: 
a) No extensive a priori or prior knowledge of the ground scene is required. However, 

knowledge of the scene is required to interpret and verify the final results of the 
classification process. 

b) The opportunity for human error is minimized. If inaccurate preconceptions exist 
regarding the ground scene, they have very little influence on the classification. 

c) Identified classes are very uniform with respect to spectral composition. 
d) Unique classes are recognized as distinct units. Unsupervised classification will ensure 

recognition of a class very small in areal extent and will usually prevent it from acci
dental incorporation into another class. 

Unsupervised classification has certain disadvantages and limitations that arise 
primarily from the reliance upon natural clustering. The disadvantages arc: 
a) The procedure identifies spectrally homogeneous classes within the data. These classes 

do not necessarily correspond to the informational categories that are of interest to the 
user. 

b) There is either limited control or no control over the resultant menu of classes and their 
identities. The user has very little control over the natural spectral clustering results. 

c) Spectral properties of informational classes change over time. Thus relationships 
between spectral classes and informational classes are not constant, and relationships 
defined for certain informational classes may not be the same as for other images for the 
same area. 

Conversely, supervised classification holds certain advantages and disadvantages 
relative to unsupervised classification. The advantages are: 
a) The user has complete control over a selected menu of informational classes. These 

classes can be tailored to a specific application and geographic region. 
b) The resultant informational classes are tied to specific areas of known identity. This 

obviates the problem of matching spectral classes in the final map with useful 
informational classes. 

c) Serious classification errors are easily detected if the training data are examined to 
determine if they have been correctly classified. Although this alone will not ensure 
correct classification of the other (non-training) data, it is a reliable assessment of how 
accurate the training site data are. 

9 

SURFACE WATER SECTION 
FILE COPY 



The disadvantages are: 
a) A classification structure is imposed on the data. The user-defined classes may not 

match the natural classes within the data that emerge in multidimensional data space. 
b) Often training data are defined on the basis of a known informational category and only 

secondarily on the spectral uniqueness of that category. Some informational categories 
may share many spectral properties with one another, leading to obvious classification 
errors. 

c) Selecting an acceptable training area can be time-consuming, tedious, and expensive. 
Even if adequate training data are available, the supervised classification may not 
recognize special or unique categories because the classifier may not be able to identify 
them sufficiently. 

Thus the obvious question emerges: What classification strategy should the analyst 
use: supervised or unsupervised? In a general sense, this depends upon the extent of prior 
knowledge of the ground scene, the amount of correlation between natural spectral classes 
and desired informational classes, and the analyst's prior experience. 

Inherent Difficulties and Uncertainties 
Digital image analyses for land use/cover classifications are subject to numerous 

errors. The image processes using the statistical method are based upon distinctions in 
spectral reflectance. The land use/cover classifications are artificial and arbitrary because 
there are no exact signature analogs. For example, forests and parks are considered different 
land uses, but they may be similiar in spectral reflectance in satellite images. Secondly, the 
classifications are less complete than human land use classification, which is based on the 
context, shape, texture, and color of the objects. 

Because the signature overlapping of the training sites is unavoidable in the real-world 
image data, the possibility of misclassification always exists as far as each individual pixel is 
concerned. The regional statistics in terms of total areas of each class will be better than 
those derived from pixel-by-pixel comparison. Therefore the final product is best for use in 
regional analysis rather than in site-specific land use/cover analysis. This study used digital 
image analysis as a time-saving, cost-effective tool to produce a regional land use/cover map 
as a supplement to the existing LUDA data. 
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METHODOLOGY USED 

The study area for the Superconducting Super Collider in northeast Illinois is a region 
of varied land use and land cover. Although the area is dominated by agricultural activity, 
the eastern part of the study area is presently undergoing rapid urbanization as the sprawling 
suburban area of Chicago continually pushes westward. A map of the study area that 
categorizes major land cover features has been produced and is included in this report as 
Figure 4. The map was created at classification level I of the U.S. Geological Survey's land 
use and land cover classification system (Table 3). A supervised classification strategy was 
used. 

There was considerable prior knowledge of land use and land cover patterns in the 
study area. Much of this knowledge is based on relatively old LUDA data created in the 
early to middle 1970s (U.S. Geological Survey, 1973, 1976); nonetheless, the LUDA data 
were quite useful in examining the overall patterns and areal extent of the land use and land 
cover categories. 

Level I land use and land cover consists of nine categories, but information from the 
LUDA maps indicated that only six of these categories (urban, agricultural, forest, water, 
wetland, and barren) occur in the SSC study area. The general procedure used in producing 
the land cover map is listed below, and each step of this procedure is then examined in 
greater detail. 

- Load the relevant multi-channel TM (Thematic Mapper) data into the PC 
and rectify the image with a ground-true map coordinate system. These TM 
data have a resolution of 30 meters. 

- Determine the categories (classes) to be mapped and prepare for a 
supervised analysis by selecting training sites that give unique spectral 
definition to the desired classes. 

- Perform the actual supervised analysis by using a maximum-likelihood 
classification algorithm, and produce a GIS-based land cover map. 

- Assess the accuracy of the map for site-specific locations. 
- Produce a final land cover map in hard copy form. 

Rectification of Image 
A full Landsat TM scene comes as a set of twelve CCTs (computer-compatible tapes). 

The full scene covers a ground area of approximately 115 by 115 miles (185 by 185 
kilometers). Each scene is divided into four quarters, each of which requires three CCTs. 
TM bands 1 and 2 are stored on the first tape, bands 3 and 4 on the second tape, and bands 5 
through 7 on the third tape. 
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Table 3. U.S. Geological Survey Land Use/Land Cover Classification System 
for Use with Remote Sensor Data 

Level I Level II 

1 Urban or built-up land 11 Residential 
12 Commercial and services 
13 Industrial 
14 Transportation, communications, 

and services 
15 Industrial and commercial 

complexes 
16 Mixed urban or built-up land 
17 Other urban or built-up land 

2 Agricultural land 21 Cropland and pasture 
22 Orchards, groves, vineyards, 

nurseries, and ornamental 
horticultural areas 

23 Confined feeding operations 
24 Other agricultural land 

3 Rangeland 31 Herbaceous rangeland 
32 Shrub and brush rangeland 
33 Mixed rangeland 

4 Forest land 41 Deciduous forest land 
42 Evergreen forest land 
43 Mixed forest land 

5 Water 51 Streams and canals 
52 Lakes 
53 Reservoirs 
54 Bays and estuaries 

6 Wetland 61 Forested wetland 
62 Nonforested wetland 

7 Barren land 71 Dry salt flats 
72 Beaches 
73 Sandy areas other than beaches 
74 Bare exposed rocks 
75 Strip mines, quarries, and gravel pits 
76 Transitional areas 
77 Mixed barren land 

8 Tundra 81 Shrub and brush tundra 
82 Herbaceous tundra 
83 Bare ground 
84 Mixed tundra 

9 Perennial snow and ice 91 Perennial snow fields 
92 Glaciers 

Source: Anderson et al. (1976) 
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The repetitive nature of the Landsat orbits and the continuous stream of data from the 
sensors led to the development of an easy-to-use coordinate system, which is referred to as 
the Worldwide Reference System (WRS). The 233 ground tracks of Landsat 4 and 5 define 
the paths in the WRS, and each path contains 248 rows that correspond to latitude lines. The 
nominal center of the scene was determined by using the WRS, and the approximate 
coordinates of the SSC study area were computed by counting pixels (picture element, one 
pixel = 30 x 30 meters) from the scene center until the study area was framed. The TM data 
were loaded into the PC from the CCTs in a Band Sequential (BSQ) format (Band 1, Band 2, 
...., Band 7). The bands were stacked or layered one band at a time, creating an image file in 
Band Interleaved by Line (BIL) format. 

Landsat TM data require considerable computer memory space (one full scene alone 
consumes over 330 megabytes). Because of memory size limitations on the image 
processing system, it was necessary to divide the SSC study area into three subscenes 
(fractions of the whole scene area) and to process each one independently. Subscene sizes 
ranged from 10 to 14 megabytes and were easily managed by the PC. Thus the entire 
classification process (from raw digital data to the finished product) was performed 
separately for each subscene, and the final land cover map is an aggregate of these three 
subscenes. Each subscene contained six bands of TM data. TM band 6 (thermal infrared) 
was omitted from the classification process because it has 120-meter pixel resolution. 

After a subscene was loaded into the PC, the image was geometrically rectified to the 
Lambert coordinate system. Rectification is necessary because satellite image data have a 
certain amount of inherent distortion due to the characteristics of satellite remote sensing. 
Distortion is generally classified as either systematic or nonsystematic and is summarized in 
Table 4 (Bernstein and Ferneyhough, 1975; Bernstein, 1983). TM data acquired from the 
Landsat satellite generally have had the systematic distortion removed at the NASA Goddard 
Space Flight Center (Billingsley, 1983). However, nonsystematic distortion remains in the 
image and must be corrected if the image is to be planimetric with respect to the earth's 
surface. It is almost always desirable to have the final product in a planimetric form because 
it is considerably simpler for the user of such a map to locate and visualize useful 
information. Further, such a map is much more compatible with other maps and data bases. 

To rectify the original digital image, it is necessary to resample the raw data and 
produce a "new" image that is geometrically correct. This is done by selecting evenly 
distributed ground control points (GCPs) throughout the image. A GCP is a feature of 
known location that can be accurately identified on the original image. GCPs used in the 
study area were typically either a road intersection, road-stream intersection, or an edge of a 
water body. The Lambert conformal coordinates corresponding to the GCPs were 
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Table 4. Sources of Image Geometry Errors in Landsat MSS and TM Data 

Systematic distortions 

Scan skew: Caused by the forward motion of the platform during the time required for 
each mirror sweep. The ground swath is not normal to the ground track but is slightly 
skewed, producing cross-scan geometric distortion. 

Mirror scan velocity: The MSS mirror scanning rate is usually not constant across a 
given scan, producing along-scan geometric distortion. 

Panoramic distortion: The ground area imaged is proportional to the tangent of the 
scan angle rather than to the angle itself. Because data are sampled at regular intervals, this 
produces along-scan distortion. 

Platform velocity: If the speed of the platform changes, the ground track covered by 
successive mirror scans changes, producing along-track scale distortion. 

Earth rotation: The earth rotates as the MSS scans the terrain. This results in a shift 
of the ground swath being scanned, causing along-scan distortion. 

Perspective: For some applications it is desirable to have the MSS images represent 
the projection of points on the earth upon a plane tangent to the earth with all projection lines 
normal to the plane. This introduces along-scan distortion. 

Nonsystematic distortions 

Altitude: If the MSS platform departs from its normal altitude, this produces changes 
in scale. 

Attitude: One sensor system axis is usually maintained normal to the earth's surface 
and the other parallel to the spacecraft's direction of travel. If the sensor surface departs 
from this attitude, geometric distortion results. 

Source: Bernstein and Ferneyhough (1975); Bernstein (1983) 
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determined. A transformation matrix is computed by ERDAS that will transform each of the 
pixels in the original scene into a geometrically correct location in an output image. The 
transformation matrix can be expressed in polynomial form as: 

x' = a1 + a2x + a3y 
y' = b1 + b2x + b3y 

where x', y' = original image coordinates 
x, y = map coordinates 
ai, bj (i, j = 1,2,3) = coefficients 

After the above coefficients are determined, the accuracy of the transformation matrix 
is examined by computing the root mean square (RMS) error of the GCPs. Selection of a 
maximum allowable RMS error is somewhat arbitrary in image processing (Bernstein, 1983); 
however, the maximum total RMS error was limited to 0.5 pixel in our transformation 
matrix. 

At this point the image is ready to be resampled into the Lambert conformal coordinate 
system. Resampling was done with a bilinear interpolation technique that takes a distance-
weighted average of the brightness values of the four pixels nearest the output pixel. The 
process is essentially the two-dimensional equivalent of linear interpolation. Because a new 
brightness value is computed on the basis of the weighted distances of the original spectral 
values, bilinear interpolation acts as a spatial moving filter and tends to smooth the extremes 
in brightness values throughout the image. However, this "loss" of spectral data is limited to 
a very small number of pixels and is relatively insignificant for the type of application used 
(Level I land cover mapping), and the benefit obtained is a georeferenced output image 
whose features are in high spatial correlation with ground truth. 

Training Site Selection 
Upon completion of image rectification, the next step was selecting suitable training 

sites and defining acceptable training statistics. Training sites were selected that represented 
each of the map categories desired in the final map. The relevant statistics computed for 
each training site are the mean, minimum, maximum, standard deviation, and covariance of 
the pixel brightness values for each band of imagery. It is extremely important to select 
training site samples that have normally distributed signatures and do not exhibit excessive 
variance. If a training sample is bimodal and/or has a large amount of variance, it becomes 
increasingly difficult for the algorithm to distinguish it from neighboring classes during the 
classification process. After several training sites were selected for each map class, training 
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site statistics were examined for separability. Separability refers to the extent to which the 
signatures (training sites) are unique within their spectral space. Signatures with high 
separability have significant spectral separation. A graphical representation of a training 
signature is referred to as a feature space plot. Figure 3 shows the feature space for a simple 
two-dimensional, two-signature case. The brightness values in one band of a given feature 
are plotted against brightness values of the same feature in a different band. In feature space 
plot a, considerable confusion exists between signature 1 and signature 2. A classification 
algorithm would have a difficult time discriminating between these two signatures. Sample 
pixels that occur in the shaded spectral region could quite easily be erroneously categorized. 
The likely errors would be errors of commission (a pixel assigned to a class to which it does 
not belong) and errors of omission (a pixel not assigned to its appropriate class). On the 
other hand, feature space plot b has excellent signature separation. It is very unlikely that 
either a commission or omission error would result here during the classification process. 

Several training sites for each desired map class were selected and rigorously 
examined for spectral separability. Two-dimensional feature space plots were created for 
each of the possible band combinations from every training area. Training signatures that 
lacked spectral uniqueness in most or all of the band pairs were discarded from the analysis. 
Signatures were further tested by an ERDAS routine that compares the training signature to 
the original training areas. The routine operates by actually classifying individual pixels 
within each training area into their most likely classes. The result is a contingency table that 
shows how closely the individual training site pixels correlate to the overall training 
signature. Ideally this correlation should be 100%, but signatures were rejected only if their 
correlation fell below 98%. 

Supervised Classification 
After an acceptable set of signatures has been assembled, the georectified image is 

ready for classification. ERDAS software provides three supervised classification 
techniques: maximum likelihood, minimum distance, and Mahalanobis distance. The 
minimum distance classification computes the Euclidean (linear) distance from the sample 
pixel to the class mean. The sample pixel will be assigned to the class that has the smallest 
distance to mean. The Mahalanobis classification behaves much like the minimum distance 
classification except tiiat class covariance is considered in the minimum distance 
computation. 

The maximum likelihood classification, the technique used in our methodology, is a 
powerful Bayesian classifier tiiat computes the likelihood of the sample pixel belonging to 
each class on the assumption tiiat the class signatures are normally distributed. The class 
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Figure 3. Signature Overlap and Separation 
(after ERDAS, Inc., 1988) 
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with the maximum likelihood is chosen as the output class. The function that governs the 
technique is given by: 

where X is the sample pixel vector 
Wi is class i (vector) 
Ci is the covariance matrix for class i 
Mi is the mean vector for class i 

N is the number of bands 
p is the conditional probability 

(X-Mi)T is the transpose of (X-Mi) 

As previously mentioned, the prior knowledge of the study area was relatively high. 
Thus the reliability of the maximum likelihood classification was further enhanced by the use 
of a priori probability factors. The a priori probability acts as a weighting factor for each 
class and can increase or decrease the output value of the maximum likelihood function. 
Usually this factor is left at a value of 1, but it can be assigned any value if there is reason to 
believe that one class is more (or less) likely to occur than another class. It was decided to 
assign relative class weights on the basis of the probability of occurrence of each class in the 
original LUDA data set. The breakdown was as follows: 

Percent of LUDA 
Class data set A priori probability 

Urban 11.8 0.118 
Agricultural 82.5 0.825 

Forest 3.2 0.032 
Water 0.4 0.004 

Wetland 0.2 0.002 
Barren 1.9 0.019 

These weights resulted in a classification strategy that, for example, made the 
agricultural class 7 times more likely to occur than the urban class and the forest class 16 
times more likely to occur than the wetlands class. 
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RESULTS 

Several training sites were selected for each informational class. This was necessary 
because often a desired informational class, such as an agricultural field, will have greatly 
differing spectral characteristics at different scene locations. When training sites are selected 
that represent the range of spectral characteristics exhibited by an informational class, the 
opportunity for classification errors to occur is gready diminished if not entirely eliminated. 
The result of the maximum likelihood classifier is then a set of three subscenes, each 
containing informational classes corresponding to the original training sites. The final land 
use and land cover map was created by recoding each informational class into its appropriate 
land use and land cover category. For example, eight agricultural training sites from the 
northern sub-area were selected. The result of the classification process was a classified 
subscene in which eight different sets of pixels represent the agricultural land informational 
class. These eight classes were recoded into a single informational class. This procedure 
was repeated for the entire study area, resulting in three GIS-based classified subscenes, each 
containing a menu of six informational classes. The subscenes were edge-matched according 
to their respective Lambert coordinates and merged together. The land use and land cover 
map categories are summarized in Table 5. The final land use and land cover map is seen in 
Figure 4. 

Table 5. Acreages, Percentages, and Totals of Land Use Categories in the SSC Study Area 

Class Class 
number description Acres Percent 

1 Urban or built-up 112,169 13.95 
2 Agricultural 652,216 81.14 
3 Forest 32,123 3.99 
4 Water (streams and lakes) 4,637 0.58 
5 Wetland 730 0.09 
6 Barren (quarries and pits) 1,985 0.25 

Total 803,860 100.00 

The results of the maximum likelihood method from three sub-areas were verified 
individually. The classification corresponding to each training site was cheeked on the basis 
of LUDA data. The numbers of classes were merged to six USGS Level-I land use classes. 
The numbers of training sites for each sub-area are as follows: 
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Number of 
Sub-area training sites 

North 18 
Middle 70 
South 42 

The purpose of selecting training sites for the sub-areas was to produce less 
overlapping of the histogram of each spectral band among the specified land use classes. In 
each sub-area, for a known land use, the spectral variation was still quite large. To solve this 
problem, multiple training sites were selected. The number of training sites depends upon 
the complexity of the land use pattern in the sub-area. The computation time increases as the 
number of training sites increases; therefore there is a practical limit to the number of 
training sites in each classification. The middle sub-area was analyzed by using the PRIME-
ERDAS system. Because the PRIME-ERDAS system performs computations faster than the 
IBM-AT ERDAS system, it is possible to use more training sites. That is why the middle 
sub-area had the largest number of training sites. 

The output of the maximum likelihood supervised classification process is a GIS-based 
land use and land cover map (Figure 4) that is georeferenced to the Lambert conformal map 
coordinate system. Every individual pixel in the map now represents one of the six possible 
categories of land use and land cover. In classifying original image pixels into informational 
classes, the algorithm considers each pixel to be a discrete element For example, it decides 
that an image pixel is either agricultural land or forest, and will not classify an image pixel as 
part agricultural or part forest If it did, the final map would be of much less utility to the 
ultimate users and consumers of the data. Opportunities for classification errors are usually 
present and in practice almost always exist to some extent. In theory, classification errors 
would be non-existent if the training site signatures of each informational class correlated 
perfectly with the natural spectral properties of every corresponding informational class in 
the ground scene. But since this is rarely the case, the objective of image processing is to 
minimize the classification errors to an acceptable level. Defining and measuring the 
acceptable level of classification error is known as accuracy assessment. 

The overall accuracy level of image classification for earth resources management 
applications should generally be at least 85% and should be approximately equal for each 
informational category (Anderson et al., 1976; Milazzo, 1980). The accuracy of the SSC 
study area land use and land cover maps produced by the supervised classification was 
examined at several specific locations within the scene. Of particular interest were areas 
where several classes occurred in significant sizes and were located relatively near each 
other. For comparison of LUDA data and digital classified maps, the LUDA data must be 
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Figure 4. Final Land Use and Land Coverage Map of the 
Superconducting Super Collider Study Area 
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imported from the ARC/INFO system to the ERDAS system. Because of the limited time 
frame, an alternative approach was developed mat involved manual checking of selected 
areas where there are various combinations of urban land, agricultural land, barren land, 
forest, and water. All these classes occur in a relatively small area. 

A hard-copy print of this area was produced at a scale of 1:200,000 and compared to 
an existing land use and land cover map (ISGS, 1985) derived from LUDA digital data. It 
was found that the ERDAS-produced map and the LUDA-based map tended to be highly 
correlated in terms of classification and geographic representation. Other regions within the 
SSC study area were similarly checked for classification accuracy. The correlation between 
the two data sets again was found to be high, ranging from 90 to 99%. However, LUDA map 
data are generally based on information obtained in the early to middle 1970s. Perhaps for 
many applications the relatively old age of this data would not be significant; but this is not 
the case when analyzing land use and land cover patterns in the SSC study area. Because of 
the growing population (Illinois Bureau of the Budget, 1987) and expanding economy of the 
region, its land use and land cover patterns have been undergoing rapid changes. Preparation 
of new LUDA maps from new aerial photographs and their comparison with the existing 
LUDA maps can provide the change in area under different land use and cover 
classifications. Urban outgrowth patterns resulting from residential and commercial 
construction activities are present at many fringe areas of suburban communities in the maps 
prepared from Landsat images. Many recent small lakes and mining pits emerged on the 
classified image that were not on the old LUDA-based map. Therefore the digital image 
analysis is a promising approach for quick updating of the land cover maps. However, it 
cannot substitute for land use mapping based on aerial photographs. 

Conclusions and Suggestions 
The six-county region of northeast Illinois that encompasses the proposed site of the 

Superconducting Super Collider is undergoing rapid change due to economic growth and a 
growing suburban population. Area land use and land cover data have been catalogued into 
spatial data bases. However, much of the data is 10,15, or even more than 20 years old. The 
completed research created an updated land use data set based on recent satellite imagery. 

The conversion of Illinois farmland and natural areas into urban or barren land is of 
great significance in relation to the maintenance and preservation of the state's finite natural 
resources. Policymakers at all levels of government must have the best information available 
when making decisions that directly affect the conservation and management of these 
resources. At present, much of this information is stored in various GIS data bases, but often 
the GIS data are old. Satellite remote sensing can provide a rapid and efficient method for 
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updating existing databases with recent information. This, in turn, gives public policy 
decision makers the benefit of improved and more reliable data to use as a tool in their 
decision-making process. 

A detailed and complete comparison of LUDA data and satellite remote sensing 
classified maps is necessary to ensure the data quality. The classified maps, though of less 
accuracy than the LUDA maps, are helpful in updating regional land use/cover information 
at a small cost (10% or less of the cost for the LUDA mapping), identifying areas with rapid 
change, and quantifying the changes so that LUDA mapping may be undertaken, if 
necessary, for such areas rather than for the whole region. 
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