
Preventing Memory Access Pattern Leakage in Searchable Encryption

Shauna Michelle Policicchio, University of Pittsburgh
Attila A. Yavuz, Oregon State University

Abstract
With the recent popularity of outsourcing private data to the cloud, there is an increased interest in
privacy-enhancing technologies. These technologies were developed to maintain the privacy of a user's
identity and have evolved alongside the Internet. The current, most popular solution to maintaining the
privacy of this data is with encryption. Searchable encryption was developed to allow a user to search
an encrypted data repository without decrypting the data first, but it is susceptible to information
leakage through memory access patterns. To address the leakages, oblivious RAM obfuscates the
memory accesses of data, so that access patterns do not leak information about the stored data. This
poster will look at combining oblivious RAM with encrypted search to prevent access pattern leakage
and the associated problems, as well as other proposed solutions.
Keywords: Privacy-enhancing technologies, searchable encryption, oblivious RAM
Citation: Policicchio, S.M., Yavuz, A.A. (2015). Preventing Memory Access Pattern Leakage in Searchable Encryption. In
iConference 2015 Proceedings.
Copyright: Copyright is held by the author(s).
Acknowledgements: Shauna is a NSF CyberCorp SFS student pursuing graduate studies in Information Security at the
University of Pittsburgh and is supported by the NSF-DGE Award #1027167.
Contact: smh137@pitt.edu, attila.yavuz@oregonstate.edu

1. Introduction
Since the late 1990s when the World Wide Web became popular, people have been worried about the
privacy of information they share over the internet, leading to the development of privacy-enhancing
technologies. These technologies were developed to maintain the privacy of a user's identity when
sending email, surfing the web, et cetera, and have evolved along with the Internet. The movement to
outsource data and processing to a cloud provider has increased interest in these technologies. The
current, most popular solution to maintaining the privacy of this data is encryption. Traditional encryption
requires an entire encrypted file to be decrypted to find anything out about the file contents. This is not
always desirable, for example to search for files containing a particular subject all files would have to be
downloaded and decrypted before they could be searched. Searchable encryption was developed to
allow a user to search an encrypted data repository without decrypting the data first, to protect the privacy
of the data. However, searchable encryption is susceptible to information leakage through memory
access patterns. To address the leakages, oblivious RAM obfuscates the memory accesses of data, so
that access patterns do not leak information about the stored data. This poster looks at the problem of
memory access pattern leakage in searchable encryption and discusses oblivious RAM as a possible
solution, but also points out some problems with that solution.

2. Searchable Encryption
When large amounts of encrypted data are stored in a cloud computing environment, it is desirable to use
searchable encryption on the data so that only relevant data needs to be retrieved. Searchable encryption
is achieved by providing a keyword to the server that returns any encrypted files containing that keyword,
without decrypting the data first. Search is implemented in two ways: a sequential scan to find the
keyword in each document or an index search for the keyword to discover documents (Song, Wagner, &
Perrig 2000).
 While searchable encryption maintains the encryption of data for keyword search, it is vulnerable
to memory access pattern leakage, which can allow inferences to be made about data stored in particular
locations. In other words, while the contents of the keyword search queries and files being stored are
protected by encryption, the location of the file that is returned can be leaked to an adversary watching
the server. In this scenario, the threat model is an honest-but-curious server administrator who can watch
accesses being made on the server. Figure 1 depicts this threat model. The client, Bob, sends encrypted
queries q1, q2, q3 to the server where his encrypted data is stored. The honest-but-curious server
administrator, Oscar, can watch Bob's encrypted queries and see which physical memory locations are
accessed to return the results. With repeated queries, Oscar can make assumptions about the data that
is stored. For example, if every time these queries are performed Bob's company performs a stock

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158299079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iConference 2015 Policicchio and Yavuz

2

exchange, Oscar can make assumptions about the contents of data at locations X, Y, Z, and also predict
user actions after the queries are made (Pinkas & Reinman 2010). Oscar can also determine the
importance of data stored at specific locations based on the frequency of access.

Figure 1: Oscar views access pattern leakage from Bob's queries.

3. Oblivious RAM
Oblivious RAM provides a solution to memory access pattern leakage by obfuscating memory accesses
so an adversary cannot distinguish one request from another (Goldreich & Ostrovsky 1996). This is
accomplished by issuing multiple data requests for every one actual request, thus increasing overhead
and security. For a single data request, the server returns several blocks of data for every requested
block of data. These blocks are stored in a cache on the client, then periodically evicted back to a random
location on the server. The addition of dummy blocks, or encrypted blocks of random data, adds to the
obfuscation. By adding oblivious RAM to a searchable encryption scheme, we can increase the privacy of
the data.
 Figure 2 depicts the same access pattern scenario as Figure 1, with the addition of oblivious RAM
to obfuscate access patterns. Oscar can still view Bob's access pattern, but the oblivious RAM obfuscates
the pattern by adding in extra file accesses and returning extra blocks of data along with the requested
blocks. The data blocks are stored in Bob's local cache and eventually rewritten to the server in different
locations. As a result, Oscar can make no inferences based on Bob's access patterns.

Figure 2: Due to the use of oblivious RAM, Oscar can no longer make predictions based on Bob's

physical memory accesses.

4. Research Challenges
The addition of oblivious RAM would prevent memory access pattern leakage in searchable encryption.
However, the high overhead costs associated with privacy-enhancing technologies such as searchable
encryption and oblivious RAM play a key role in their lack of adoption individually. The combined
overhead of both technologies together would be very costly.
 Part of the problem is the block sizes necessary for each technology. Oblivious RAM can achieve
constant client storage requirements and relatively efficient overhead with large block sizes of data, which
is not compatible with small document-key pairs used in searchable encryption schemes. With a smaller
block size, oblivious RAM requires higher client storage or higher bandwidth, since more blocks are used
to store the same amount of data than a scheme using large block sizes. Oblivious RAM can also be
added to a trusted processor (Fletcher, 2013). This increases the overhead of the data processing on the
server, rather than the networking bottleneck that client-server oblivious RAMs run into. However, on top
of costly overhead, cloud customer data may be stored on a server with several other customers' data,
providing many challenges to the installation of a trusted oblivious processor.

iConference 2015 Policicchio and Yavuz

3

5. Other Solutions
More recent solutions to access pattern leakage acknowledge oblivious RAM as a solution but discount it
due to the overhead cost. Instead, these solutions sacrifice some security for the sake of better
performance. Blind Storage hides file data from the server until a file is downloaded with less overhead
than oblivious RAM (Naveed, Prabhakaran, & Gunter 2014). In Blind Storage, the server does not
discover the length of a file, how many files are stored, file name, or contents, but can notice if the same
file is downloaded twice in a row. A searchable encryption scheme is built on top of blind storage,
providing a more secure solution with competitive efficiency. Another solution rebuilds levels of the data
structure that is used on the server on every update, using an oblivious RAM or oblivious sort to shuffle
the data blocks (Stefanov, Papamanthou, & Shi 2013). This solution considers specific leakages to be
acceptable, such as the hashes of the keywords being searched. These solutions do not contain full
protection from leakage, but provide added security at a reasonable cost.

6. Conclusion
The access pattern leakage found in searchable encryption can be solved using oblivious RAM, but
current algorithms and implementations require a costly overhead when combined with searchable
encryption. Current searchable encryption schemes acknowledge access pattern leakage but do not
address it, while others trade off security for practicality.

References
Fletcher, C. (2013). Ascend: An architecture for performing secure computation on encrypted data.
Goldreich, O., & Ostrovsky, R. (1996). Software protection and simulation on oblivious RAMs. Journal of

the ACM, 43(3), 431–473.
Naveed, M., Prabhakaran, M., & Gunter, C. A. (2014). Dynamic Searchable Encryption via Blind Storage.

2014 IEEE Symposium on Security and Privacy, 2014, 639-654.
Pinkas, B., & Reinman, T. (2010). Oblivious RAM Revisited. Advances in Cryptology–CRYPTO 2010,

502–519.
Song, D. X., Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted data.

Proceedings of the 2000 IEEE Symposium onSercurity and Privacy, 44–55.
Stefanov, E., Papamanthou, C., & Shi, E. (2013). Practical Dynamic Searchable Encryption with Small

Leakage. Network and Distributed System Security Symposium (NDSS), 2014.

Table of Figures
Figure 1: Oscar views access pattern leakage from Bob's queries.
Figure 2: Due to the use of oblivious RAM, Oscar can no longer make predictions based on Bob's
physical memory accesses.

