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Abstract 

Science now relies on mid-level infrastructure, including shared instruments, cell lines, supercomputing 
resources, data sets, and software components. These are beyond the facilities and services traditionally 
provided by individual universities; funding agencies such as the NSF often support their initial creation 
but their long-term sustainability is a challenge and commercialization is only rarely an option. A 
promising model, though, is broad-based community support through peer production, often inspired by 
the organization of open source software projects. Such transitions, though, are not automatic or easy, 
just as commercialization is not. In this research I am studying successful and unsuccessful attempts to 
transition, building theory and practical guidance for scientists and funding agencies. In this work-in-
progress paper, I present the motivation and background for the study and provide motivation through 
preliminary description of my first case study. 
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1 Introduction 
How ought we sustain long-term, mid-level, scientific infrastructure, like scientific software, data sets, and 
shared collections of scientific samples and artifacts?  

Given the limits of commercialization for very specialized scientific infrastructures, an increasingly 
common answer in practice is to build broad-based community-support, tapping into institutional funds, 
overhead, and portions of domain grants to sustain infrastructure collectively. While we know that work 
building and sustaining infrastructure is complex and often invisible, including to our systems of academic 
credit (Edwards et al., 2013; Ribes & Finholt, 2007; Star & Ruhleder, 1996), we know very little about the 
work of transitioning initially grant funded projects to long term models of community support. This is in 
marked contrast to the sizable literature on commercialization, usually called “technology transfer.” In this 
project I draw on the literatures of peer production and online communities to investigate the process of 
transitioning from grant funding to open models of technology-enabled collaboration to sustain scientific 
infrastructures, and to advance theory in the organization of science as well as peer production. In this 
research-in-progress paper I lay out the justification for the research, examine relevant literature, and 
describe the research plan, illustrating, where possible, with preliminary description of my first case. 

Just as infrastructure underlies economic development, science too is supported by infrastructures 
(Edwards et al., 2013; NSF, 2012). Infrastructures range from the abstract, such as theories and other 
conceptual schemes and standards, to the social, such as invisible colleges and academic societies, and 
to the organizational, such as offices of sponsored programs as well as, of course, to the solidly material, 
such as desks, chairs and fire extinguishers.  In between lie mixtures of ideas and artifacts, most 
obviously the infrastructure of scholarly communication, publishers, books and digital libraries. In the 
middle too is scientific software, a mixture of the highly conceptual made concrete. Such software 
includes analysis software, simulation software, and middleware that stiches together ideas and data to 
make science possible (Bietz, Baumer, & Lee, 2010; Howison & Herbsleb, 2013; Segal, 2009). 

From where do infrastructures arise and where lies their future? Where and how are these infrastructures 
created and sustained?  The discourse on technology transfer explores one path forward for the results of 
scientific practice (e.g., Bozeman, 2000; Siegel, Waldman, & Link, 2003; Teece, 1986). That path forward 
is a transition from the domain of scientific research to the general economy through commercialization. 
Here the source of long-term sustenance is familiar: a technology, technique, or artifact is sustainable if it 
is able to generate income sufficient to support its ongoing costs. Once a commercial transition is 
successful, the technology continues to be available to support scientific research (as well as far beyond). 
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From the perspective of science, the usefulness of these technologies to the general economy produces 
resources that might be said to cross-subsidize the usefulness of these technologies to science. 

Yet once we limit our gaze to those infrastructures that particularly support science we encounter 
technologies that are quite specific and may well have limited relevance outside science, rendering them 
poor candidates for commercialization and the positive cycle of cross-subsidization. Some are provided 
by institutions of scientific research, especially Universities, supported by their range of resources, from 
endowments, tuition, state government funds and indirect cost recovery on research grants (“overhead”). 
Thus while labs, furniture and building maintenance are scientific infrastructures, they do not “earn their 
keep” through technology transfer but through the overall operations of institutions that house scientific 
research. 

In stark contrast are very large scientific infrastructures that are directly supported by congressional 
appropriations, such as the science elements of space-travel, Antarctic research bases, or mega-projects 
such as supercolliders. Important enough to national priorities (including defense and short-term 
economic development) to command direct appropriations from national governments, these 
infrastructures live or die (sometimes quite suddenly) at the level of national politics. 

Falling in the middle are the technologies that are the focus of this research: technologies that are vital to 
scientific research, yet not large enough for direct appropriations, nor falling into those facilities and 
services usually provided by Universities, nor obviously candidates for technology transfer via 
commercialization. This is not a new category; indeed it includes elements such as shared collections of 
scientific samples and artifacts, shared instruments, and non-profit scientific publishing that have been 
developed and maintained by scientists for hundreds of years. Yet it is a growing category and an 
important one (Atkins, 2003); Scientific software is an excellent example of this middle ground of science 
infrastructure. 

2 A motivating pilot study: Enzo 
In pilot work for this project I have researched the Enzo software project (O’Shea et al., 2004; The Enzo 
Collaboration et al., 2013). Enzo provides simulation facilities for examining star and galaxy formation, 
including the ability to simulate the formation of the very first objects in the universe. This software is 
derived from cutting edge science practice; it is something of a side effect of pursing a mainline scientific 
domain research question. Yet quite the side effect; now having supported science through two decades 
and hundreds of papers by many authors. Such software actualizes the discoveries made with it, 
embodying them, storing them, and making them available for further research in a form different from, 
but just as useful as, knowledge abstractions and equations (Edwards, 2010; Ince, Hatton, & Graham-
Cumming, 2012). In this way, scientific software is similar to other kinds of scientific infrastructure: 
infrastructures make science work better, but they themselves take a great deal of work (Lee, Dourish, & 
Mark, 2006). 

Unlike equations (or at least more obviously than equations), infrastructures require ongoing work to keep 
them scientifically useful. This is particularly true of software where work is needed not only to respond to 
advances in the scientific frontier but to changing underlying technologies and, perhaps least well 
appreciated, changes in the software stack on which it is built. Keeping software scientifically useful 
(avoiding “bit-rot” in software engineering parlance) is hard work (Bietz, Ferro, & Lee, 2012; Howison & 
Herbsleb, 2013; McCullough, McGeary, & Harrison, 2006). How is this work to be resourced for the long-
term benefit of science? 

Enzo is not an obvious candidate for commercialization in the short term because understanding star 
formation is not an economically profitable enterprise, unlike some scientific software that began with 
grants, such as the SAS statistical package, or one likely to see widespread non-scientific use (Dalle & 
Rousseau, 2004). Nor is it a candidate for direct congressional appropriations, being neither large 
enough, nor unique enough, having several competitor projects. Nor is maintenance of Enzo obviously a 
traditional indirect cost of research, being closely tied into the process of scientific work itself and being 
useful across many different institutions. 

My pilot research shows that Enzo was supported for many years as many emergent scientific 
infrastructures are: through the enterprising activities of a lead PI in skillfully using resources from 
institutionally diverse sources, including startup research funds, portions of domain grant funds, 
redirected overhead, and the elastic time-commitment of the lab's scientists and graduate students 
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themselves (the 20 hours mentioned in student stipends being something of a fiction), giving another spin 
to “invisible work”. Finally, the work was also supported by small grants targeted at Enzo itself, written to 
add new cutting edge scientific features. This model of infrastructure support is resilient and pervasive. It 
is also tiring, frustrating and limiting. 

In particular the work that is hard to justify under a model of PI support is also possibly the work that is 
potentially most valuable to science: generalization and coordination. And that is the work needed to 
make, and keep, the software shareable and useful to large numbers of scientists, such as providing 
documentation, considering parameters outside the immediate interest of the sponsoring lab and the 
constant drip of keeping up to date with software dependencies. Such work brings the software from a 
single lab and renders it scientific infrastructure, providing a platform of shared capabilities that not only 
makes the science of a field more efficient, but also more mutually intelligible, driving forward scientific 
discovery. Without this work, software (if it comes to be used outside a specific lab at all) fractures, 
growing further apart, ossifying; losing the opportunity of supporting coherence in a scientific field.   

In the case of Enzo, this generalizing and coordinating work was limited for a long time. In this period the 
software was widely used, but developed further in a fragmented fashion. At the top level there was the 
original distribution and a small number of labs actively developing their own forked versions. But even 
within these labs individuals very had their own personal forks, following their own research questions 
and frontier. Thus much work was done on the code but little was shared; the originating lab made 
releases but did not actively seek external contributions and did not integrate code from the outside. 

This period continued until the watershed of transition to community-support.  The major users, many of 
whom had once been post-docs in the supporting lab, came together in what they referred to as “the 
week of code.”  Here they merged the lines of code that had diverged over time, shaking out their 
practices of collaboration, including technological infrastructure of code sharing and merging, as well as 
collective decision-making, providing the base for a joint community-supported project. The transition to 
community support raised many difficult questions for the participants: Who should fund the generalizing, 
coordination, and stewardship work? What source code technologies would be used? What publication 
should users of the software now cite? Would it be fair to the community if particular participants received 
ongoing grant money, while others did not? What was the ongoing role of the project founder and how 
could he (and the community) manage the surprisingly emotionally taxing process of the PI “letting go” of 
the software, yielding to community input and shared leadership.  

Enzo, then, has undergone the process of interest in this project: Enzo is a shared project that not only 
reduces the time and effort needed to sustain the code, but provides growing coherence to a field of 
research inquiry.  It is an example of the vision of cyberinfrastructure: because software is information it 
has low costs of reproduction and high potential for re-use and recombination meaning that small initial 
funding investments can lead to coalescence into widely used software platforms, resulting in 
widespread, long-lived, impact in the form of better science (Atkins, 2003; NSF, 2012; C. A. Stewart, 
Almes, & Wheeler, 2010). 

3 Literature review 
As scholars we must ask: what body of literature and theory captures the essence of the process that 
Enzo underwent? In particular, to what might we point to explain the success of Enzo in the face of failure 
(or even lack of attempt) in many other emergent infrastructures? As I will explain below, while there are 
excellent foundations for such work, there is not yet a scholarly literature addressing these questions 
directly. 

We know a growing amount about infrastructure (including information infrastructures) (e.g., Star & 
Ruhleder, 1996), we know a good deal about the specifics of the academic environment, including and 
academic career paths (e.g., Owen-Smith & Powell, 2001), and the importance of specific kinds of 
reputation (e.g., Birnholtz, 2008). We know an increasing amount about technology-supported scientific 
collaboration (e.g., Olson, Zimmerman, Bos, & Wulf, 2008), including emerging literature on mass-
collaboration through citizen science (e.g., Wiggins & Crowston, 2011), and the nature of software work in 
science (e.g., Bietz et al., 2010). We also know a good deal about peer production outside science (e.g., 
Benkler, 2002), including the organization of successful open source software projects (e.g., Crowston, 
Wei, Howison, & Wiggins, 2012) and contribution and social capital in online communities (e.g., Ellison, 
Steinfield, & Lampe, 2011; Kraut & Resnick, 2012). From the literature on entrepreneurship and 
technology transfer, we know a good deal about starting ventures (e.g., Bozeman, 2000), and from 
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literature in management we know a good deal about organizational change, including its difficulty (e.g., 
Armenakis & Bedeian, 1999; Feldman, 2000), although surprisingly little is known about change in the 
specific context of science, other than promising, but passing, mentions in ethnographies (e.g., Knorr-
Cetina, 1999). 
 
My project, then, seeks to bring this research together, building cross-disciplinary knowledge relevant to 
practical problems in Science Policy (Jackson, Steinhardt, & Buyuktur, 2013), as well as deepening 
theory in these areas by exploring its usefulness and completeness in a novel area. 
 
Below I present my overall research design.  First, however, I present an extended justification for the 
research by drawing on the bodies of literature above to examining the differences between software 
development occurring in a grant funded environment and that occurring in a peer production 
environment, emphasizing the challenges that a project in transition must overcome. 

3.1 Differences between grant-funding and peer production 
The way in which a project attracts and retains its resources has a strong impact on its overall 
organization, impacting the motivations of participants, project governance, collaboration technologies, 
and contribution processes. 

Grant-funded projects obtain their resources from science funders, government agencies like the NSF or 
non-profit foundations like the Sloan foundation. Grant money is akin to investment capital: it is made 
available with the hope of amplified future returns, but rather than financial profit returns are in more and 
better science. Agencies, guided by peer review, set aside a portion of their funds aimed at supporting 
science in general and invest them in supporting software work relevant to science. Grants are transfers 
of funds to projects that are then converted to software work by providing rewarding opportunities for 
potential participants. This is particularly clear when projects pay staff or students directly for software 
work but of similar importance are opportunities for activities resulting in scientifically valuable reputation, 
such as being among the authors of “software papers” (Bietz et al., 2010; Howison & Herbsleb, 2011). 

Open source peer production attracts resources differently. Despite the common association, peer-
production ought to be distinguished from “open source” per se. Being open source is a characteristic of 
the code, while peer production is a characteristic of how it is produced (Benkler, 2002; von Hippel & von 
Krogh, 2003). It is possible to be open source but not to be produced through peer production, indeed 
many grant-funded and commercial projects are. On the other hand, virtually all peer production is open 
source. Participants in peer production are very rarely paid directly for their software work: they have 
different and diverse motivations. The literature on motivation to participate in open source has identified 
a set of non-monetary motivations, from the use value of the software itself, an opportunity to build 
reputation for career advancement, an opportunity for learning, to a chance to express a communitarian 
ideology and to work in teams (e.g., Crowston et al., 2012; Roberts, Hann, & Slaughter, 2006; K. J. 
Stewart & Gosain, 2006; Wagstrom, Herbsleb, Kraut, & Mockus, 2010). In science, it seems likely that 
use value for conducting science and scientific reputation, as expressed in publications, is a key non-
monetary motivation for software work (Bietz et al., 2012; Howison & Herbsleb, 2011). Either way, 
resources (in the form of direct labor) are attracted to projects that provide circumstances in which 
participant’s motivations can be satisfied (Benkler, 2002; Howison & Crowston, 2014; Ke & Zhang, 2010; 
Michlmayr, 2003).  

3.1.1 Governance 
The source of resources affects the governance of projects, by which I mean how decisions are made, 
such as what features to implement. Grant-funded projects have a formal hierarchical structure, derived 
from the accountability requirements of funding agencies: PIs are ultimately responsible for the project. 
Certainly the traditions of science mean that management is not dictatorial, reflecting traditions of “gentle 
persuasion” in accomplishing joint work (Knorr-Cetina, 1999). On the other hand, relationships within 
labs, between PIs, post-docs and students, can be quite hierarchical, especially in some fields (Stephan, 
2012). While project leaders listen and argument is likely based on intellectual merits, decisions flow from 
the top. 

By contrast, decision-making in peer-production is distributed and shared (Fielding, 1999; Shah, 2006). 
Since participants are not in an employment relationship they decide for themselves what to build and 
how to build it. Even in projects that have a “benevolent dictator,” such as Linux, Perl or Python 
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governance is ultimately shared.  This is because the “dictator” retains only the ability to choose between 
the work that is offered by participants, not to tell participants what to do.  

There are also differences in the relationship to user communities. In a grant-funding situation it is clear 
that users have legitimacy to make requests of the development team, because the grant is predicated on 
the value of assisting users in order to advance science. In true peer-production, however, the legitimacy 
of users is more nuanced, reflecting how user interests intersect with those of the developers and the 
extent to which users are likely to provide additional resources to the project (either as developers or 
supporting other users). To the extent that developers are motivated by use-value and not reputation, 
users who are not contributing resources to the project may have little legitimacy (Terry, Kay, & 
Lafreniere, 2010). 

3.1.2 Collaboration infrastructures  

Grant-funded software projects expect to build and deliver software to their user communities, whereas 
peer production software projects expect to attract those who are going to build the software. This 
underlies the choice of collaboration infrastructure, by which I mean technologies such as source code 
control, mailing lists, forums, issue trackers as well as social features such as whether a team is co-
located or not. There has been more careful study of collaboration infrastructures in peer production 
environments (e.g., Crowston & Howison, 2005; de Souza, Froehlich, & Dourish, 2005; Ducheneaut, 
2005; Robbins, 2002; Shaikh & Cornford, 2003) than of those used in grant-funded cyberinfrastructure 
development projects (as opposed to the domain-science focused “collaboratories” studied by Olson et al. 
(2008). The typical setup of peer production projects is that everything, source code repositories, 
communication venues and issue trackers, is set to open.  Moreover, practices have developed to ensure 
that those around the world have time to weigh-in on discussions, such as waiting 24 hours for a vote to 
complete. 

While future empirical work would be needed to speak with more certainty, in the course of my work on 
software in science, I have examined the websites of many scientific software projects (and interviewed 
their producers). It is almost universal to make the application and source code available, and some 
(though not all) projects have user mailing lists or forums. Very few have publicly accessible developer 
mailing lists or source code repositories. Tracker systems are often framed as “consulting” tickets and 
users cannot see other users’ tickets by default. Finally, when grant-funded developers are usually co-
located, discussion takes place in face-to-face meetings, if they are at distance, teleconferences are 
typical, requiring invitations. 

 The result of these differences is that open source peer production exhibits “actionable transparency” 
(Colfer & Baldwin, 2010), while grant funded projects typically do not. Potential contributors, or users 
seeking customization, can see enough of the project that the user can take action. They can see not only 
the source code, but how the project works, how contributions are expected, discussed and decided 
upon. In this way, potential contributors in peer production are able to judge whether and how to act, 
creating a bias towards self-help and contribution; a quite different situation than in grant-funded projects. 

3.1.3 Contribution processes 

The contribution process—the manner in which work is planned and executed—differs between grant-
funded projects and peer production. Grant-funded projects have relative certainty about the resources 
they will have available going forward because they are able to employ developers on contracts. Certainty 
facilitates using project management techniques to create a task breakdown and roadmap, sequencing 
tasks to achieve goals (shorter or longer sequences depending on how influenced a project is by agile 
software methods). A work breakdown can allow for long-term planned interdependence between 
participants.  

Peer production projects, in contrast, have little certainty about the availability of future resources. While 
projects may create overall roadmaps they are much more tentative. In fact empirical results, both 
participant observation and archival reconstructions of work, from studies of community-based open 
source show that the majority of tasks undertaken are short and rarely have more than one programmer 
involved (Howison & Crowston, 2014). Rather than proceeding through planned interdependence, 
projects are more likely to defer complex tasks that would require risky interdependence. Through a 
process we have characterized as “collaboration through open superposition,” small motivationally 
independent layers build on existing code over time.  Surprisingly, through the modular services these 
layers provide, small, layered, contributions can eventually make previously complex tasks simple enough 
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that they can be accomplished without long-term interdependent planning.  This process is illustrated in 
Figure 2. 

 
Figure 2: Collaboration through Open Superposition  

(source: Howison & Crowston, 2014) 
 

 

3.1.4 Service center vs. Base for community 

In summary, grant-funded projects establish themselves as service centers: they centralize work among 
grant-funded participants and attempt to reduce the amount of work users have to do.  The argument that 
grant-funded projects make for long-term support is that of a public goods provider: projects have to serve 
a community well enough that the community agrees that continuing to fund the project is more 
worthwhile than funding other projects or domain science directly. As long as the grant funds are 
available this can be a sustainable model. Yet for many projects it is impossible to achieve this level of 
importance in the three to five years offered by typical initial grants. 

In contrast, open source peer production implies that the project establishes itself as a base for 
community, creating the circumstances by which users can make contributions. The core members of the 
project act less like employees executing work, and more like stewards encouraging others and building 
community (Davis, Schoorman, & Donaldson, 1997). The actions needed to effect change can be 
counter-intuitive. For example, consider a project receiving a bug report. Assuming that the project has 
sufficient time, a service center would move to resolve the bug themselves, whereas an open community 
steward would work to make it as easy as possible for the user to solve the bug themselves before 
assisting directly. This is what Raymond (1998) meant by leaving “low-hanging fruit,” leaving rough edges 
on a project to encourage outside participation. 

4 Research Design 
My research plan is to undertake in-depth case studies of transition (or attempted transitions) from grant 
funding to peer production, resulting in accessible and systematic narratives and a theoretical framework 
that will highlight key conditions and factors for successful transitions. The overall research question is: 
How did the project build a peer production community and why did it work?  

Answering this involves three specific research questions: 

1. What actions were taken to change the project? 
2. How did routines in the project change as a result? 
3. What conditions are relevant to the success of those actions in causing change? 

I have chosen a qualitative approach and an in-depth multiple case study of a moderate number of cases 
for specific reasons. A qualitative approach is appropriate when the research task is to discover relevant 
factors and contextual conditions, rather than understand their magnitude (Eisenhardt, 1989; Eisenhardt 
& Graebner, 2007; Yin, 1994). A qualitative approach is also appropriate when looking to build theory 
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rather than test it and creates results that are well suited for practitioners to relate to and contextualize 
their own experience (e.g., Greenhalgh, 2007). 

The cases are being selected according to two criteria: theoretical sampling and participant engagement. 
Theoretical sampling ensures variety across a set of conditions anticipated to be relevant (Weick, 2007). 
The goal is not empirical representativeness as in random sampling but representativeness of relevant 
contextual conditions. My definition of sustainability is having sufficient resources available to undertake 
the work that is necessary to maintain scientific usefulness. In Howison and Herbsleb (2014) we outlined 
six different kinds of work: requirements, development, integration, releasing, user support and 
synchronization work (work that matches changes in other components). We argued that different 
ecosystem positions have different requirements for these different kinds of work. The ecosystem position 
of a piece of software has two aspects, the number of users and the diversity of usage contexts, 
especially the diversity of other components that a piece of software is used with. Projects that have more 
users, for example, must undertake more user support work, while projects with more diverse use 
contexts will have to undertake more synchronization work. The dimensions are not entirely independent, 
since very large numbers of users implies greater diversity in use contexts.  

Figure 2 shows user numbers on the vertical and use context diversity on the horizontal and locates the 
projects that I will study initially. Since peer production closely links the motivations of participants and the 
type of work they are willing to do, it is reasonable to expect interesting differences in conditions and key 
factors for transition across these dimensions. Accordingly, I am selecting cases to cover the landscape 
of ecosystem position: number of users (high/low) and diversity of use contexts (high/low). For each 
situation I will study a minimum of two cases, which will help to discipline the analysis through replication 
to be sure that findings are not idiosyncratic to a single project (Eisenhardt, 1991).  

 

 
Figure 2: Dimensions of ecosystem position for 
theoretical sampling. Empty diamonds show future cases, 
to be drawn from NSF SI2 funded projects. 
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A key challenge in studies of this kind is identifying and obtaining access to projects that did not transition 
to community support, despite intending to. These situations can be awkward, since people do not like to 
revisit what didn’t work, especially in contexts that reflect on a person’s profession. Nonetheless, engaged 
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been established. To this end I intend to select a panel of projects from the NSFs SI2 program to 
complement my initial cases and to follow their efforts over time. In this way I will come in contact with 
participants as they contemplate change, allowing me to follow as changes unfold, both successfully and 
unsuccessfully. 

4.1 Data collection approach 
I am collecting data for my case studies through semi-structured interviews, supported by data from 
project archives and analysis of project repositories. While it is impossible to know in advance, each case 
will likely involve 15-25 interviews, across participants, users, and funders. In addition I am drawing on 
publications where appropriate. The overall objective is to put together a narrative that describes a project 
and its routines over time, as it transitions from initial grant funding and introduces peer production. 

Semi-structured interviews are following an interview protocol tailored to the particular interviewee’s 
involvement with a project and based on the organizational features identified in the literature review 
above.  For example, for a project founder, the interview would begin by understanding when, why and 
how the project came into being.  For a user of a project’s software, the interview would seek to 
understand the user’s scientific workflow, how the user came to know of and to use the project’s software.  
In each case I am bolstering the interviewee’s memory by using artifacts from published papers and 
project repositories, such as a CVS checkin or email list thread. These artifacts serve a dual purpose: 
they help to situate the interviewee in the relevant time period and they provide a logical structure for the 
interviewee to explain.  

A project’s repositories provide a second major data source. For example, as has been done in studying 
open source (Howison & Crowston, 2014), it is possible to reconstruct some of the activity in a project by 
pulling together evidence from the source code repository, bug-trackers, release notes and other project 
venues. I can also identify whether participants were grant funded at a particular time and see, for 
example, what type of work was done by “insiders” and what, if any, was done by “outsiders,” producing 
time series that can help to identify important project events (Ducheneaut, 2005). 

4.2 Data analysis 
Analyzing qualitative data requires techniques to discipline the analyst’s imagination and subject 
interpretations to validity checking (Weick, 1989).  First I create memos that describe my interpretations of 
the interviews, focusing particularly on four elements that give structure to my analysis.  The first is the 
analytic framework described above: motivations of participants, project governance, collaboration 
technologies, and contribution processes. The second is narrative cohesion, relying on the necessary 
logic of sequence: that some actions must logically precede others (e.g., writing code must proceed its 
review, or a grant must be awarded before it funds participants) (see Pentland, 1999). As simple as this 
seems, the necessary structure of narrative helps a great deal in disciplining the analysis. Third, a focus 
on changing routines creates a systematic ground for comparison before and after changes (Becker, 
Lazaric, Nelson, & Winter, 2005; Feldman, 2000; Pentland & Feldman, 2005). Further, multiple interviews 
give multiple sides of a story, allowing cohesion checks across interviews and time-stamped repository 
data. 

Second, I will discipline my interpretations by returning to interviewees to engage in what is known as 
“member checking.” This allows interviewees to hear how our interpretative work is unfolding and to 
provide clarifications, feedback, corrections or suggestions on how to gain addition insight into relevant 
issues. The responsibility of interpretation remains with the author, and care will be taken to consider 
issues of confidentiality between interviewees, where it is requested. 

The expected outcomes of my research plan are:  

1. Accessible and systematic case study narratives of transitions, and attempted transitions, to peer 
production.  

2. A theoretical framework that explains when transitions to community support are appropriate (and 
when they are not), together with identifying actions which are effective for transitions between 
initial grant funding and peer production. 

5 Conclusion 
In this work-in-progress paper, I have argued that there is a class of infrastructure relevant to science that 
is important to sustain long-term but falls outside the traditional discourse of discovery through science 
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funding and long-term sustenance through technology transfer to the commercial sector or congressional 
appropriation. These infrastructures, of which scientific software is a key example, are candidates for 
long-term community-support. Community support draws together resources from diverse sources and 
continues a project outside of direct core grant support, in a manner inspired by open source software 
development.  

But, as I hope I have argued successfully, grant funded research and peer production are quite different 
in their organization, requiring intentional organizational change to effect successful transitions. If we can 
further understand this process of change, including when it is and is not appropriate, we can advance 
the science of science policy, the study of the organization of science, provide additional context for 
theories of peer production, and provide actionable insights for cyberinfrastructure projects.  

Information technologies increasingly make new ways of working possible, including significant 
opportunities to draw community energy into great, sustainable, projects. Yet there is no magic in 
releasing something as “open source.” Without a firm understanding of how to manage and effect 
organizational change in science, the opportunities to advance our infrastructures of knowledge will be 
missed. 
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