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Experiences with GreenGPS – Fuel-Efficient
Navigation using Participatory Sensing
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Abstract —Participatory sensing services based on mobile phones constitute an important growing area of mobile computing. Most
services start small and hence are initially sparsely deployed. Unless a mobile service adds value while sparsely deployed, it may not
survive conditions of sparse deployment. The paper offers a generic solution to this problem and illustrates this solution in the context
of GreenGPS; a navigation service that allows drivers to find the most fuel-efficient routes customized for their vehicles between
arbitrary end-points. Specifically, when the participatory sensing service is sparsely deployed, we demonstrate a general framework for
generalization from sparse collected data to produce models extending beyond the current data coverage. This generalization allows
the mobile service to offer value under broader conditions. GreenGPS uses our developed participatory sensing infrastructure and
generalization algorithms to perform inexpensive data collection, aggregation, and modeling in an end-to-end automated fashion. The
models are subsequently used by our backend engine to predict customized fuel-efficient routes for both members and non-members
of the service. GreenGPS is offered as a mobile phone application and can be easily deployed and used by individuals. A preliminary
study of our green navigation idea was performed in [1], however, the effort was focused on a proof-of-concept implementation that
involved substantial offline and manual processing. In contrast, the results and conclusions in the current paper are based on a more
advanced and accurate model and extensive data from a real-world phone-based implementation and deployment, which enables
reliable and automatic end-to-end data collection and route recommendation. The system further benefits from lower cost and easier
deployment. To evaluate the green navigation service efficiency, we conducted a user subject study consisting of 22 users driving
different vehicles over the course of several months in Urbana-Champaign, IL. The experimental results using the collected data
suggest that fuel savings of 21.5% over the fastest, 11.2% over the shortest, and 8.4% over the Garmin eco routes can be achieved by
following GreenGPS green routes. The study confirms that our navigation service can survive conditions of sparse deployment and at
the same time achieve accurate fuel predictions and lead to significant fuel savings.

Index Terms —Application, Participatory Sensing, Transportation, Energy, Navigation
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1 INTRODUCTION

THE proliferation of smart phones has led to increased
interest in mobile participatory sensing as an impor-

tant branch of mobile computing. Mobile participatory
sensing relies on user devices that are on the move
to obtain sensing coverage of large areas for purposes
of interest to the mobile service [2], [3], [4], [5]. Early
examples include mapping of physical phenomena or
computing community statistics of interest [6], [7], [8],
[9], [10], [11], [12], [13], [14]. An inherent challenge
in such a service is therefore to handle conditions of
sparse deployment, where coverage is small. Clearly, a
mobile participatory sensing service must offer value
to customers even when sparsely deployed. Otherwise,
it may not survive to see a larger deployment. The
fundamental way to improve value under conditions of
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sparse deployment is to develop models for generaliza-
tion from sparse data. This paper describes a general
approach for such generalization and applies it to the
specific context of GreenGPS, a novel navigation service
that finds the most fuel-efficient (hence, green) routes for
drivers as opposed to the traditional shortest or fastest
routes, offered by such services as Google maps [15]
and MapQuest [16]. We show that we are successful at
generalizing from sparse data and are able to offer value
(i.e., fuel savings) in conditions of sparse deployment.
GreenGPS collects the necessary information to com-

pute and answer queries on the most fuel-efficient route.
We show that the most fuel-efficient route between two
points may be different from the shortest and fastest
routes. For example, a fastest route that uses a freeway
may consume more fuel than the most fuel-efficient
route because fuel consumption increases non-linearly
with speed or because it is longer. Similarly, the shortest
route that traverses busy city streets may be suboptimal
because of downtown traffic.
A GreenGPS client is offered as an Android applica-

tion that can be installed on participants’ smart phones.
The application collects data parameters involved in
engine fuel consumption, vehicle speed and location.
Fuel consumption parameters are provided by the On-
Board Diagnostic (OBD-II) interface of the vehicles, stan-
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dardized in all vehicles sold in the United States since
1996. The OBD-II is a diagnostic system that monitors
the health of the automobile using sensors that measure
approximately 100 different engine parameters. Other
examples of monitored measurements include engine
RPM, coolant temperature, vehicle speed, and engine
idle time. A comprehensive list of measured parameters
can be obtained from standard specifications as well as
manufacturers of OBD-II scanners.
There exist several commercial OBD-II scanner

tools [17], [18], [19], [20], that can read and record
the sensor values. Apart from such scanners, remote
diagnostic systems such as GM’s OnStar, BMW’s Con-
nectedDrive, and Lexus Link are capable of monitor-
ing the car’s engine parameters from a remote loca-
tion (e.g. home of driver of the car). With respect to
the increase in the use of bluetooth devices (e.g., cell-
phones), GreenGPS utilizes a typical OBD-II to bluetooth
adaptor in conjunction with its participatory data collec-
tion framework. This enables GreenGPS to be offered
at a very low price. For example, in our deployment
we use ELM327 OBD-II bluetooth wireless transceiver
dongle [21] which is available for less than $10 at the
time of writing. The fuel consumption data, read via
the adaptor, are wirelessly transmitted to the user-side
hub of sensing, the phone application, upon request.
The application combines the OBD-II data with other
sensory data and opportunistically uploads them to an
aggregation and modeling backend upon availability of
WiFi Internet connectivity.
The general challenge in participatory sensing ap-

plications addressed in this paper is the sparsity of
their high dimensional data space. To address the data
sparsity challenge, GreenGPS exploits prediction models
that enable it to extrapolate from fuel-efficiency data of
some vehicles on some streets to the fuel consumption
of arbitrary vehicles on arbitrary streets. The developed
generalization methodology employed by GreenGPS can
be adopted by a variety of other participatory sensing
applications as well, where data follows discoverable
models. The constructed prediction models in GreenGPS
abstract vehicles and routes by a set of parameters such
that fuel efficiency can be computed simply by plugging
in the parameters of the right car and route.
Thanks to its generalization methodology, GreenGPS

offers value even when sparsely deployed. Sparse
deployment, here, refers to the deployment of the
GreenGPS application, not deployment of OBD-II mea-
surement devices (as those are abundant in mod-
ern cars). One specific instance of generalization in
GreenGPS in the sparse deployment scenario is to sup-
port two types of users; members and non-members.
Members are those who contribute their data to the
GreenGPS repository from the OBD-II sensors described
above. They have GreenGPS accounts and benefit from
more accurate estimates of route fuel-efficiency, cus-
tomized to the performance of their individual vehicles.
Non-members can use GreenGPS to query for fuel-

efficient routes as well. Since GreenGPS does not have
measurements from their specific vehicles, it answers
queries based on the average estimated performance for
their vehicle’s attributes such as make, model, year and
class (or some subset thereof, as available). GreenGPS
also allows members to get navigation advice on routes
they had never driven before using models developed
from data collected on other routes.
The motivation for GreenGPS does not need elabora-

tion. GreenGPS users might be driven by benefits such as
savings on fuel or positive impacts on the environment
by reducing motor emissions such as COx and NOx air
poisoning gases. Further, GreenGPS equipment is very
inexpensive and the entire procedure of GreenGPS oper-
ation described is performed in an end-to-end automated
fashion.
A user subject study was conducted over the course

of several months using 22 different cars with different
drivers and a total of over 3200 miles of data was
collected for our experimental study to determine the
accuracy of the prediction models. It is shown that on
average fuel-savings of 21.5% over the fastest route,
11.2% over the shortest route, and 8.4% over the Garmin
eco-route can be achieved by users.

In summary, the contributions of the paper can be
briefly enumerated as follows:

1) Demonstrates how to build an easy-to-deploy
and inexpensive participatory sensing system to
support data collection for building a fuel-saving
navigation system.

2) Demonstrates how to build a general but per-
sonalizable fuel-saving navigation system using the
data collected by the participatory sensing system.

3) Demonstrates how sparse samples of high-
dimensional spaces can be generalized to develop
models of complex nonlinear phenomena, where
one size (i.e., model) does not fit all.

4) Provides an experimental performance evalua-
tion of the developed system from vehicles driven
in the area of Urbana-Champaign.

The rest of the paper is structured as follows. Section 2
presents an overview of our green navigation service.
Section 3 describes the participatory sensing framework
utilized for data collection. Fuel consumption modeling
and model generalization are elaborated in Section 4
and Section 5, respectively. Implementation details are
presented in Section 6. Then Section 7 provides eval-
uation of the service as how accurate the prediction
models are and how much fuel savings can be achieved.
Section 8 discusses our experiences with GreenGPS and
lessons learned. Finally, Section 9 reviews related work
and Section 10 concludes the paper.

2 THE GREENGPS APPROACH

A study of GreenGPS reported, on average, over 16%
fuel savings on selected routes, compared to the fastest
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and shortest alternative routes. To estimate the amount
of savings that can be achieved on a global scale, we
provide approximate calculations based on data from
the Environmental Protection Agency (EPA) [22]. An
estimated 200 million light vehicles (passenger cars and
light trucks) are on the road in the US. Each of them is
driven, on an average, 12000miles in a year. The average
mile-per-gallon (mpg) rating for light vehicles is 20.3
mpg. Even if 10% of these vehicles adopted GreenGPS
and 16% fuel savings were achieved on only 30% of the
routes traveled by each of these vehicles, the amount
of overall fuel savings is over 567 million gallons of
fuel per year ((12000/20.3) ∗ (0.10 ∗ 200M) ∗ 0.16 ∗ 0.30).
This translates into over 1.6 billion dollars in savings at
the pump (based on the current national average pump
prices for a gallon of gasoline [23]). Authors consider the
above prospective savings acceptable.
The service provided by GreenGPS is similar to a

regular map application, such as Google maps [15] or
MapQuest [16]. Google maps and MapQuest provide the
shortest or fastest routes between two points, whereas
GreenGPS computes the most fuel-efficient route. A
snapshot of the Web-based GreenGPS’s user interface is
shown in Figure 1 along with the most fuel efficient route
between two points for a member vehicle.
Individuals who want to compute the most fuel-

efficient route between two points enter the source
and destination address via the interface provided by
GreenGPS. Members of GreenGPS (i.e., those individ-
uals who contributed participatory data) can register
their vehicles that were used for data collection. Hence,
GreenGPS can compute the route specifically for the
registered vehicle. Other users may enter their vehicle’s
make, model, and year of manufacture. Since different
vehicles have different fuel consumption characteristics,
these car details are used to compute the most fuel-

Fig. 1: The user interface of GreenGPS with the most
fuel-efficient route between two points for a member’s
vehicle

efficient route for the given vehicle brand.
It is impractical to assume that GreenGPS members

will measure all city streets and cover all vehicle types.
Instead, measurements of GreenGPS members are used
to calibrate generalized fuel-efficiency prediction models.
These models, discussed in Section 5, show that the
fuel consumption on an arbitrary street can be predicted
accurately from a set of static street parameters (e.g.,
the number of traffic lights, the number of stop signs,
and the slope of the roads) and a set of dynamic street
parameters (such as the average speed on the street or
the average congestion level), plus the route parameters
(such as the number of left turns and right turns),
the vehicle parameters (e.g., weight and frontal area)
and the driving behavior (e.g., making high accelera-
tion or hard breaking). It is the mathematical model
describing the relation between these general parameters
and fuel-efficiency that gets estimated from participant
data. Hence, the larger and more diverse is the set of
participants, the better the generalized model.
For most streets, static street parameters can be ob-

tained from traffic databases. (We show in this paper,
how to estimate static parameters not in databases, such
as locations of traffic lights and stop signs.) Dynamically
changing parameters such as the congestion levels or
average speed are more tricky to obtain. In larger cities,
real-time traffic monitoring services can supply these
parameters [24], [25], [15]. Many GPS device vendors,
such as Garmin and TomTom, also collect and provide
congestion information. In this paper, speed information
is obtained from the collected data using our participa-
tory sensing infrastructure described in the next section.
Finally, note that the increasing availability of vehic-

ular fuel efficiency measurements to drivers in modern
vehicles is not a substitute for green navigation. In order
to exploit fuel efficiency measurements, a driver who
wants to find a most fuel-efficient route to a given
destination would have to drive on all the different
alternative routes to that destination multiple times and
note the average fuel consumption over a statistically
significant number of trips on each route, then decide
(for future reference) which route was better. In contrast,
our service computes the answer automatically from a
model trained using other trips on other routes that
the driver already drove. This highlights the benefits of
our generalization models over present affordances of
modern cars.

3 A PARTICIPATORY SENSING SYSTEM FOR
DATA COLLECTION

In this section, we present the participatory sensing
framework that we utilize for data collection and shar-
ing. We implement a client-side interface for data col-
lection that automatically uploads all data to a central
server called the GreenGPS aggregation server. An indi-
vidual who wishes to share their OBD-II sensor and
location data simply downloads our client-side software,
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publicly available as an Android application on Google
Play Store, and uses it to automatically upload their data
to the aggregation server. The aggregation server uses
the data to calibrate models that relate street and vehicle
parameters to fuel-efficiency and offers the GreenGPS
navigation interface for fuel-efficient routes.
Individuals who wish to contribute OBD-II data to

GreenGPS, install an off-the-shelf and inexpensive OBD-
II to bluetooth adapter in their vehicle (Figure 2a). The
GreenGPS phone application communicates with the
vehicle OBD-II via bluetooth to obtain the engine fuel
consumption data. The data is then timestamped and
stored in a small database on the phone. The parameters
obtained from the car and the GPS sensor on the phone
include instantaneous vehicle speed, mass air flow, com-
mand equivalence ratio, engine rpm, throttle position,
latitude, longitude, altitude, bearing, time and phone
IMEI.

3.1 OBD-II Communication

We sample fuel parameters from the OBD-II unit using
the OBD-II to bluetooth adaptor. The key parameters,
namely mass air flow, speed, command equivalence
ratio, engine rpm, and throttle position are queried
in sequential order. The sequential sampling provides
better overall response rate as we discovered that fre-
quently querying the OBD-II for all the parameters (at
the same time) resulted in response gaps. For example,
for the majority of the vehicles, if we query for all five
parameters at once, the likelihood of receiving all five
responses before reaching our timeout is low. However,
if we query for parameter values one at a time, the
likelihood of all values being present is very high.
The sampling is ordered in the sequence described

above to minimize the timing differences when calculat-
ing fuel rate and fuel economy. Since we only calculate
two fields, we try to group the sampling parameters
together so that the values used for fuel equations are
closer in time.

(a) (b)

Fig. 2: (a) Deployed OBD-II to bluetooth adaptor; (b)
Coverage map for the paths on which data were col-
lected.

(a) Fuel Rate uses 2 queries, mass air flow (MAF) and
command equivalence ratio (EQV), and is calculated
in gallons per second as,

FuelRate =
MAF

(14.7× EQV )× 454.0× 6.17
(1)

wherein MAF is in grams per second, 14.7 is grams
of air to 1 gram of gasoline (ideal air to fuel ratio),
|EQV | ≤ 1, 454.0 is grams per pound, and 6.17 is
pounds per gallon of gasoline.
(b) Fuel Economy needs 3 queries, MAF, EQV, and
vehicle speed (VSS), and is calculated in miles per
gallon as,
FuelEconommy =

(14.7× EQV )× 454.0× 6.17

MAF

×
V SS × 0.621371

3600
(2)

wherein V SS is in kilometers per hour, 0.621371 is
kilometers per hour to miles per hour conversion
ratio, and 3600 is seconds per hour.

The engine rpm and throttle position are collected for
future uses.
We try to generate samples as quickly as possible,

however, the sampling rate is not constant across all
vehicles. More specifically, the sampling rate varies with
the OBD protocol being used, the age of the vehicle
and its OBD-II unit, and the version of the OBD-II to
bluetooth adaptor (newer models support higher data
transfer rates), please see [21] p61 for more details.

3.2 Opportunistic Uploading

One of the design goals of the GreenGPS’s participatory
sensing framework was to eliminate the need for cellular
data connections for data collection. This helps to avoid
imposing communication overhead of data collection on
users, for which they may be reluctant to use their own
data plans (as opposed to the route navigation step that
they experience immediate benefit return and would be
willing to utilize their cellular data connections). The
vehicles in our study at the University campus presented
DTN-like mobility patterns. Because individual devices
had a low probability of coming into contact with the
wireless access points located around campus, we em-
braced the notion of opportunistic uploading. We begin
by storing generated samples in a small database on the
phone. Once our application sends its samples to the
data storage server, it clears out the delivered samples
to free up resources within the database. We reduced the
amount of characters per transfer by replacing parameter
names with numeric constants. Duplicate samples were
filtered out.

3.3 Collected Data

We conducted a study involving 22 users (with different
cars) over the course of several months. A total of over
3200 miles was driven by our users to construct the
initial models. Figure 2b shows a partial map of the
paths on which data was collected. The details of the
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TABLE 1: The average error percentage (magnitude) for the individual car models, the generalized case when all
the data is used to obtain the model, and the cluster-based model constructed based on the optimal generalization
order Car Car Car Car City Hwy Miles Individual General Cluster-based

Make Model Year Class MPG MPG Driven Error % Error % Error %
Toyota Camry 2004 Mid-Size 24 33 80 1.55 8.44 1.72

Chevrolet Impala 2002 Large 21 32 69 3.02 17.16 2.48
Ford Ranger 2008 Van 15 19 29 0.89 25.26 5.26
Toyota Corolla 2000 Compact 31 38 259 6.06 10.68 6.01
Buick LeSabre 2002 Large 20 29 54 3.38 7.46 2.45
Ford E-250 2011 Van 13 17 99 3.59 7.93 3.59
Toyota Corolla 2010 Compact 26 35 53 4.31 18.47 9.32
Toyota Celica 2001 Sub-Compact 28 34 497 4.94 11.69 4.94
Nissan Altima 2006 Compact 24 31 95 3.83 7.04 3.83
Subaru Impreza 2010 Sub-Compact 19 24 26 0.09 3.82 4.74
Toyota Corolla 2004 Compact 32 40 141 3.67 13.59 3.67
Mazda Mazda6 2003 Mid-Size 23 29 62 3.94 18.5 3.94
Audi A4 2005 Compact 22 31 88 6.86 14.58 6.86
Toyota Camry 2012 Mid-Size 25 35 90 4.96 7.59 4.96
Subaru Impreza 2010 Sub-Compact 19 24 69 9.22 15.47 8.23
Hyundai Santa-Fe 2001 Sport-Utility 21 28 87 3.3 17.92 3.3
Ford Taurus 2002 Mid-Size 20 28 65 4.01 5.51 5.06

Mitsubishi Eclipse 2002 Sub-Compact 23 30 184 5.32 15.91 5.32
Nissan Altima 2010 Mid-Size 23 32 103 2.44 9.59 2.44

Mitsubishi Galant 2002 Mid-Size 21 28 112 4.45 12.19 8.11
Toyota Celica 2000 Compact 28 34 882 6.24 8.74 6.06
Toyota Camry 2004 Mid-Size 24 33 57 0.73 13.76 2.21

Average Error Percentage (magnitude): 4.91 11.33 5.07

car make, model, year, class, and the number of miles of
data collected for each car are summarized in Table 1.
The distribution for the trips distance is depicted in
Figure 3a. It can be observed that the majority of the trips
are very short. In particular, about 70% of the trips are
less than 4 miles long and the remaining 30% are from 4
to 10 miles long. The speed distribution for various one-
mile road segments driven is plotted in Figure 3b and
represents a mixture of two normal distributions. The
distribution denotes that most of the road segments are
low speed (less than 45 miles per hour) and that is due
to the type of streets in the town in which exist only
few highways. Figure 3c presents the average number
of stop signs, traffic lights, left turns and right turns per
one-mile road segments with respect to the distance of
the trips. It is denoted that, as path length increases,
the average number of stop signs per segment shows
an overall decreasing trend while the average number
of traffic lights, left turns and right turns do not exhibit
such overall trend change. This is expected considering
that short trips are mostly the ones driven in campus and
in low speed streets that an intersection appears almost
at every block.

4 MODELING

In this section, we derive the fuel consumption model
structure and explain how the impact of dynamic traffic
conditions on fuel consumption is modeled. We then
elaborate how the required information regarding the
location of traffic signs can be derived.

4.1 Derivation of Model Structure

The first part of data generalization is to derive a model
structure.
To motivate the need for modeling, we plot the dis-

tribution of miles per gallon (mpg) for all the data

collected in Figure 3d. We observe from this figure that
the distribution spans a wide range of values between
2 and over 60. The standard deviation of the mpg
distribution is 9.4 miles per gallon, which is pretty high.
Hence, an appropriate model is needed to estimate the
fuel consumption on various segments.

The difference from the models in the literature [26],
[27], [28] lies in that we are interested in developing
a model whose parameters can be easily measured by
our participatory sensing system and later utilized in
the route navigation phase. This imposes restrictions on
what parameters can be used which makes it different
from developing first-principle models whose goal is
simply to understand the physics.

Several factors affect the fuel consumption on streets.
We classify these parameters into five categories, which
are (i) static street parameters, (ii) dynamic street parameters,
(iii) route parameters, (iv) car specific parameters, and (v)
personal parameters. Static street parameters model the
street characteristics and do not change (or change with
a very high time constant) over a period of time. For
example, the speed limits of streets change much less
frequently and the number of traffic lights on the street
(in a given stretch) remain more or less constant. The
dynamic street parameters are characteristics that change
with time, for example, the congestion levels on a street
or the average speed on a street. The static and dynamic
street parameters together determine the fuel efficiency
of a particular street. The fuel usage is also affected
by the number of left turns and right turns through
the route. Hence, route parameters are parameters that
depend on the shape of the overall route (such as turns),
as opposed to the individual street segments. Other
variations in the fuel consumption can occur due to the
type of car being driven and the nature of the person’s
driving. For example, a big SUV may consume more
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Fig. 3: The distribution of trip data collected from all cars: (a) The path distance distribution; (b) The average
speed distribution; (c) The average number of stop signs, traffic lights, left turns and right turns per one-mile road
segments with respect to the distance of the trips; (d) The real mpg distribution.

fuel than a small sedan or a person who is aggressive
(making higher acceleration or hard braking) is likely
to consume more fuel than a sluggish driver. These
parameters account for the variation in fuel consumption
due to the route parameters, the car type and the driver
behavior.
The inputs to our prediction model include street seg-

ment parameters, route parameters, and car parameters.
We do not consider driver factors in the model and will
explore it in our future work. Note that, we are interested
in predicting long-term fuel consumption only. While
actual savings of a user on individual commutes to work
may vary, the user might be more concerned with their
net long-term savings. Hence, it is important to capture
only the statistical averages of fuel consumption. As
long as the errors have near zero mean, the savings
are accurate in the long term. As a given user drives
more segments, a value of interest is the end-to-end
prediction error that results, which improves over time
and represents how far we are off in our estimate of total
fuel consumption.
The free body diagram of a car is given in Figure 4a.

Assuming that the car is on an upslope, the final force
acting on the car is given by the following equation:

Fcar = Feng − Fd − Fr − Fgx (3)

where Feng is the engine force, Fd is the air resistance
force (drag), Fr is the rolling resistance force, and Fgx

is the gravitational force acting on the car. These forces
will be elaborated on in the following.
Assuming that the engine RPM is ω, the torque gen-

erated by the engine is τ(ω), the k-th gear ratio is rgk ,
the differential ratio is rd, the transmission efficiency is
et and the radius of the tire is r, then the engine force
Feng is given by the following equation:

Feng =
τ(ω) · rgk · rd · et

r
(4)

The force due to air resistance, Fd, is given by the
following equation:

Fd =
1

2
· ρ · cd · A · v2 (5)

In the above equation, ρ is the air density, cd is the
drag coefficient, A is the frontal area of the car, and v is
the instantaneous speed of the car. The drag coefficient
quantifies the resistance in a fluid environment (air). For
example, for a streamlined body the coefficient is about

0.05, for a regular sedan is about 0.4-0.5, and for a truck
could be about 1.
The rolling resistance force Fr is characterized by the

instantaneous speed of the car, the normal force, and the
corresponding coefficients as:

Fr = cr1 · v + cr2 · Fn (6)

in which Fn is the normal force given by:

Fn = Fgy − Fl (7)

wherein Fgy is the gravitational force acting on the car
and Fl is the lift force. The Fgy is given as follows:

Fgy = m · g · cos(θ) (8)

where m is the mass of the car, g is the gravitational
acceleration, and θ is the slope of the road. The Fl is
given as follows:

Fl =
1

2
· ρ · cl ·A · v2 (9)

The gravitational force due to the slope, Fgx , is given
by the following equation:

Fgx = m · g · sin(θ) (10)

In order to obtain a relation between the fuel con-
sumed and the above forces, we note that the fuel
consumed is related to the power generated by the
engine at any instance of time t. If fr is the fuel rate
(fuel consumption at a given time instance) and P is the
instantaneous power, then fr ∝ P . Power is related to
the torque function and engine RPM as follows:

P = 2 · π · ω · τ(ω) (11)
Hence, we obtain,

fr = β · ω · τ(ω) (12)

In the above equation, β is a constant. Further, we also
have the following relationship from rotational dynam-
ics:

v = r ·
ω

rgk · rd
(13)

Substituting for ω in Equation 12 from Equation 13
and for τ(ω) in Equation 4 from Equation 12, Feng can
be written as:

Feng =
etfr
βv

(14)

Subsequently, substituting Equation 14 and Equa-
tions 5 to 10 in Equation 3 gives the following:

Fcar = ma

=
etfr
βv

−
1

2
ρcdAv

2 − cr1v − cr2mgcos(θ)

+
1

2
cr2ρclAv

2 −mgsin(θ) (15)
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where a is the instantaneous acceleration of the car.
From the above equation, we obtain the fuel consump-

tion rate as a function of the forces acting on the car
shown below:

fr = k0mav + k1cdAv
3 + k2v

2 + k3mvcos(θ)

+k4Av
3 + k5mvsin(θ) (16)

wherein k0, · · · , k5 are constant coefficients.
In order to further derive a model that can be used

for regression analysis, we will detail the various com-
ponents that are part of the fuel consumption of a car. As
shown in the above equation, a moving car at a constant
speed on a straight road which does not encounter
any stop signs, traffic lights or turns will only need
to overcome the frictional forces caused by the air, the
road, and gravity. These are represented by k1cdAv

3,
k2v

2+k3mvcos(θ)+k4Av
3, and k5mvsin(θ), respectively.

On the other hand, the first component k0mav can be
broken down further into two components, one is the
extra fuel rate due to congestion, and the second one
is the extra fuel rate due to encountering stop signs
(ST ), traffic lights (TL), left turns (LT ) and right turns
(RT ). Hence, the previous equation now becomes the
following:

fr = k1cdAv
3 + k2v

2 + k3mvcos(θ)

+k4Av
3 + k5mvsin(θ) + k00mav

+(k01 + k02mav)(ν′1nST + ν′2nTL + ν′3nLT + ν′4nRT )

(17)

where ν′1, ν
′
2, ν

′
3 and ν′4 are constant coefficients, nST ,

nTL, nLT and nRT are the number of stop signs, traffic
lights, left turns and right turns, respectively. In the
above equation, the last component represents the fuel
rate during the idle time and consequent acceleration
when encountering traffic signals, stops and turns.
Finally, we can obtain the equation for the consumed

fuel, fc, by integrating the rate of the fuel consumption
with respect to time:

fc=

∫ tfin

tini

fr(t) dt (18)

in which tini denotes the time a new trip is initiated, tfin
denotes the time the trip is finished.
If we assume the road gradient θ remains constant,

for each road segment i replace v with v̄i, the segment
average speed, and consider a = dv/dt, we can further
simplify the above integral to the following equation for
the purpose of regression analysis:

fc= k1cdA

n
∑

i=1

v̄i
2∆Li+k2

n
∑

i=1

v̄i∆Li+ k3mLcos(θ)

+k4A
n
∑

i=1

v̄i
2∆Li+k5mLsin(θ)+k6m(v2fin−v2ini)

+k7(ν1nST+ν2nTL+ν3nLT+ν4nRT )

+k8m(ν1

nST
∑

i=1

v̄i
2+ν2

nTL
∑

i=1

v̄i
2+ν3

nLT
∑

i=1

v̄i
2+ν4

nRT
∑

i=1

v̄i
2)

(19)

wherein k1, · · · , k8 are regression coefficients, n is the
total number of road segments along the trip, L is
the trip distance, and ν1, ν2, ν3 and ν4 are constant
coefficients. In the equation, v̄i denotes the speed of
the segment immediately following the traffic signals,
stops or turns which lays on the path. Note that at the
beginning of such street segment viini

= 0 as the vehicle
has come to stop at the intersection.
In section 5.1, we show that the coefficients of our

model, k1, · · · , k8 differ among different vehicles making
it harder to generalize from vehicles we have data for to
those we do not.

4.2 Dynamic Traffic Conditions Modeling

Our experience reveals, not surprisingly, that the degree
of traffic congestion plays the largest role in accounting
for fuel consumption variations among individual trips
of the same vehicle. To model the effect of dynamically
changing traffic, the street segments real-time speed
should be used as the speed rating in the fuel consump-
tion model presented in equation 19. However, it should
be noticed that the current speed at distant locations
would become obsolete when the vehicle arrives there.
Therefore, for distant areas the appropriate future traffic
status should be predicted to be used in the model. Here
we address such spatio-temporal parameters contribut-
ing to the model.
Let the overall speed of a street segment at location x

at time t be denoted by vx,t and defined as:

vx,t = µx,t + γx,t (20)

wherein µx,t represents the speed mean value and γx,t
represents the deviation from the mean. The former, µx,t,
is calculated through a weighted average over the past
speed values taken from traffic history for street segment
located at x. In the calculation higher weights are given
to the more recent speed values. The latter, γx,t, can be
modeled as a stationary process with mean zero modeled
using an autoregressive moving average (ARMA) model,
as follows:

γx,t =

p
∑

l=1

φlγx,t−l + ex,t −

q
∑

l=1

θlex,t−l (21)

where the first p terms correspond to the autoregressive
terms and the last q terms correspond to the moving
average terms. The coefficients φ1, · · · , φp and θ1, · · · , θq
are the model parameters. The subscript l denotes the
time lag and t− l means l time units before the current
time t. The ex,t’s are independent, identically distributed
random variables each with mean zero and variance σ2

e .
However, it is evident that there exists spatial corre-

lation in road traffic, that is, the traffic status at some
street depends on that of the neighboring streets as well.
In order to incorporate the spatial correlation into the
model, let the spatial correlation matrix be denoted as

Π〈τ〉 =
[

π
〈τ〉
x,x′

]

N×N
where x, x′ ∈ {1 · · ·N} and N denotes

the number of street segments. The entry π
〈τ〉
x,x′ ∈ N

specifies the number of time units needed for the traffic
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Fig. 4: (a) The free body diagram of a car; (b) Intersection approach concept and classification features; (c) The path
error percentage distribution for one car; (d) Average error percentage (magnitude) of the models obtained from
various clusters.

at street segment x′ to influence the traffic at x according
to the average historical speed of the area. Note that

π
〈τ〉
x,x′ = 0 implies x = x′. Also that, when there is no

spatial correlation between x and x′ at time interval τ ,

π
〈τ〉
x,x′ = ∞. The superscript τ will be described shortly.
The spatial correlation is then reflected in the model

as follows:

γx,t =

p
∑

l=1

N
∑

x′=1

φl I(π
〈τ〉
x,x′ ≤ p− l + 1) γx′,t−l + ex,t

−

q
∑

l=1

N
∑

x′=1

θl I(π
〈τ〉
x,x′ ≤ q − l + 1) ex′,t−l (22)

Thus, to predict the future street speed, the model
expression includes not only the impact of the traffic
history at the same location x, but also the effect of
the traffic at nearby correlated streets as well. To make
the model expression concise, let Γt = [γ1,t · · · γN,t]

t,

et = [e1,t · · · eN,t]
t, Υp =

[

I(π
〈τ〉
x,x′ ≤ p− l + 1)

]

N×N
and

Υq =
[

I(π
〈τ〉
x,x′ ≤ q − l + 1)

]

N×N
. The model can thus be

rewritten as:

Γt =

p
∑

l=1

φl Υp Γt−l + et −

q
∑

l=1

θl Υq et−l (23)

To compute the most fuel-efficient route the speed
values in equation 19 are computed as follows. The real-
time speed Vt = Mt + Γt, where Vt = [v1,t · · · vN,t]

t

and Mt = [µ1,t · · · µN,t]
t, is used for the speed of

the street segments up to 5 minutes (one time unit)
away from the source address. For streets t + 5n to
t + 5(n + 1) minutes away, where n ∈ {1 · · · 11}, the
predicted speed value Vt+n = Mt + Γt+n is utilized.
To calculate Γt+n, n > 1, first the future speed Γt+1 is
computed through equation 23 and using the real-time
speed Γt and the speed values from history, Γt−l. The
predicted speed Γt+1 is then used in the prediction of the
Γt+2. The computation continues until Γt+n is calculated.
Finally, for streets more than one hour away, the average
historical speed Mt is utilized. Note that utilizing the
predicted speed values the approximate time that the
vehicle reaches each street segment along the path can
be computed.
The computed most fuel-efficient route is updated ev-

ery 5 minutes using the most recent traffic information.
This calls for the speed predictions to be performed

every 5 minutes, however, the spatial correlation matrix
is computed once. To compute Π〈τ〉, we divide the time
horizon based on the time of the day and the day of the
week, and then for each time period, referred to by τ ,
the spatial correlation matrix is computed accordingly.
For example for Friday 3pm to 8pm Π〈Fri 3pm−8pm〉 is
computed once. For holidays a separate time period can
be considered.
It should be mentioned that the results reported in

this paper are based on data collected in the area of
Urbana-Champaign. The county is almost never con-
gested and has very low traffic variability that renders
the extensions mentioned in this section unnecessary.
The approach can be used in larger cities, where savings
will likely be higher than those reported in this paper
due to the the larger variability in traffic conditions that
could be taken advantage of, and because of the larger
connectivity which offers more alternatives in the choice
of route. Currently, Google maps [15], INRIX [29], Nokia
Here [30], Microsoft Bing [31], MapQuest [16], PeMS [25]
and 511NY [32] are traffic data providers that offer real-
time and/or historical traffic information.

4.3 Detection of Traffic Signs Location

A considerable portion of fuel consumption in trans-
portation is contributed by the traffic regulators due to
the implicit non-negligible idling time and acceleration.
To build accurate models leading to navigation of reli-
able most fuel-efficient routes the impact of these players
cannot be ignored. As also invoked by equation 19 we
should be able to locate traffic lights and stop signs
along a route to measure its fuel efficiency. This becomes
an issue as there exist no public database providing
the information on the location of traffic signs. Such
information is either not present at all (for some areas)
or fragmented in the municipalities (mostly in the form
of physical copies). On the other hand, the collection
of such information would be a very time and labor
expensive task. Consequently we aim at establishing
an automated learning-based methodology for this pur-
pose.
To detect the location of traffic signs we train a clas-

sifier utilizing the map information provided by Open-
StreetMap (OSM) [33] and exploit it in modeling and
navigation stages. Our designed approach follows: we
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describe how our required data is obtained, explain our
learning approach, and present its detection accuracy.
We extract our required data from OSM which pro-

vides good coverage across the world. OSM is the
equivalent of Wikipedia for maps, where data are col-
lected from various free sources (such as the US TIGER
database [34], Landsat 7 [35], and user contributed GPS
data) and an editable street map of the given area is
created in an XML format. The OSM map is essentially
a directed graph, which is composed of three basic
object types, nodes, ways, and relations. A node has fixed
coordinates and expresses points of interest (e.g. junction
of roads, Marriott hotel). A way is an ordered list of
nodes with tags to specify the meaning of the way, e.g.
a road, a river, a park. A relation models the relationship
between objects, where each member of the relation has
a specific role. Relations are used in specifying routes
(e.g. bus routes, cycle routes), enforcing traffic (e.g. one
way routes).
The intersections are extracted from the OSM through

finding nodes present in more than one way. Afterwards
some data cleaning is carried out to refine valid street
intersections. The intersections are then decomposed into
multiple approaches corresponding to the joined ways
and directions. For example, a 4-way intersection is
decomposed into four approaches.
The collection of the intersection approaches serves

as input to train our classifier. The approach features
used in the training are Street Length, Street Speed,
Road Type, and Distance to the Nearest Intersection. The
street length denotes the total end-to-end length of the
streets which intersect at the junction. The street speed
is defined as the OSM assigned speed of the intersecting
street segments. The road type denotes the category
and importance of the road within the road network.
The distance to the nearest intersection is equal to the
length of the street segment between the junction and
the nearest intersection on the corresponding approach.
The classification is performed based on Support Vector

Machines (SVM) which utilizing a non-linear mapping
transform the original feature space into a higher di-
mensional space, resulting in better separation of the
training classes with linear boundaries. The SVM is able
to maximize the geometric margin while minimizing the
classification error.
The classifier is provided with a training set, contain-

ing the set of intersection approaches with their features
and labeled with the type of the approach traffic sign.
The label could be either TL, denoting the presence of
a traffic light, ST , denoting the presence of a stop sign,
or None, denoting the absence of any traffic regulator.
To evaluate the performance of the methodology, we

collected data from three different cities: Urbana, Cham-
paign (most of the city covered), and Los Angeles (part
of the city covered). This choice aimed at consider-
ing two extremes: a small campus town (Urbana and
Champaign) and a large city. A total of 3691, 2803,
and 7561 intersection approaches were extracted for the

city of Urbana, Champaign, and LA, respectively, the
ground truth data for which was gathered manually
through GoogleStreetView. We first considered training
and testing a classifier using data from the same city.
Hence, for each city dataset, we divided the data in half,
one part served for training the classifier and the other
part was used as the test set. It turned out that our
methodology achieves 82%, 83%, and 84% accuracy in
predicting whether a given intersection approach faces a
stop sign, a traffic light, or neither in the cities of Urbana,
Champaign, and LA, respectively.
We then evaluated the accuracy of the classifier when

the training and test data are from different cities. Specif-
ically, the dataset gathered from LA was used as training
data. The trained classifier was then utilized to predict
the existence of stop signs, traffic lights, or the absence
thereof in the area of Urbana-Champaign. It resulted in
a classification accuracy of 80%. The result shows that
classifier training and testing does not need to use same
city data. A trained classifier from LA was able to predict
traffic regulators in the small college town of Urbana-
Champaign almost as accurately as a classifier trained
in Urbana-Champaign. This observation eliminates the
need for city-by-city training. Note also that the trained
classifier needs only data from OSM maps to perform
the classification. This is in contrast to crowd-sensing
based methods [36] that require GPS traces. OSM maps
are freely available and have broad coverage worldwide.

5 MODEL GENERALIZATION TO PREDICT
GREEN ROUTES

In this section, we demonstrate the foundations of one
of the key mechanisms in participatory sensing appli-
cations that are tolerant to conditions of sparse deploy-
ment; namely, the generalization from sparse multidi-
mensional data. The generalization mechanism solves a
key problem at a critical phase of most newly deployed
systems, which makes it important. Such generalization
is complicated by the fact that, in high-dimensional
datasets, one size does not fit all. Hence, for example,
developing a single regression model to represent all
data is highly suboptimal. In the case of GreenGPS, the
data contributed by users of our participatory sensing
application will be a sparse sampling of routes and
cars. Hence, we aim to use data collected by a smaller
population to build models capable of predicting the fuel
consumption characteristics of a larger population.

5.1 Model Evaluation: One Size Fits All?

Regression analysis is a standard technique for estimat-
ing coefficients of models with known structure. In this
section, we demonstrate that a single regression model is
a bad fit for our data. Said differently, while a regression
model that accurately predicts fuel consumption can
be found for each car from data of that one car, the
model found from the collective data pool of all cars
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is not a good predictor for single vehicles. Hence, in
a sparse dataset (where data is not available/sufficient
for all cars) it is not trivial to generalize. We illustrate
that challenge by first evaluating the performance of car
models obtained from their own data (which is good),
then comparing it to the trivial generalization approach:
one that finds a single model based on all car data
then uses it to predict fuel consumption of other cars. A
solution to the challenge is presented in the next section.
We evaluate the accuracy of models derived from

vehicle data according to a cross validation approach.
We predict fuel consumption of a randomly chosen trip
using a model trained based on data from other trips.
We distinguish models based on other trips of the same
car from models based on data from other cars as well
in predicting the fuel consumption of the one trip. The
8-th and 9-th columns of Table 1 summarize the result-
ing errors, respectively, for the set of cars used. More
specifically, to compute the error of a particular trip, the
trip is removed and a model is trained based on other
trips of the same car which is then utilized to predict
fuel consumption for the trip. Using the collected actual
fuel consumption of the trip, the relative prediction error
percentage is then computed. This is repeated for all
trips in the dataset. The average error percentage across
all trips of the same car (i.e., the summation of all
trips’ absolute errors divided by the number of trips)
is considered as Individual error percentage. As for the
General error percentage, when training the model, the
trips of other cars are included in the training dataset
as well. The errors reported here are for trips from four
miles up to ten miles; the errors for shorter and longer
trips will be presented later in Figure 6.
We also plot the error distribution for individual trips

(for one car) in Figure 4b. We observe that the distribu-
tion is near normal and the mean is near zero (−0.14%).
We observe a similar distribution for other cars too.
We also observe from Table 1 that the prediction errors

of the single model computed from the data of all cars
are significantly (over several times) worse than those of
the models obtained from each individual car. This sug-
gests the existence of non-trivial bias in the error of the
former model that does not cancel out by aggregation.
In the next section, we propose a way to mitigate this
problem based on grouping cars into clusters, such that
prediction can be done based on other similar cars by
some metric of similarity.

5.2 Model Clustering

The above suggests a need for better generalization over
vehicle data. Different car types behave differently. Even
though the model is parameterized by factors such as car
weight and frontal area, they are not enough to account
for differences among cars. This is a common problem
in high-dimensional datasets collected in participatory
sensing applications. The question becomes, if we cannot
generalize over the whole set, can we generalize over a
subset of dimensions?

A solution is borrowed from the general literature on
data cubes [37]. Data cubes are structures for Online
Analytical Processing (OLAP) that are widely used for
multidimensional data analysis. They group data using
multiple attributes and extract similarities within each
group. For example, previous work showed how to ef-
ficiently construct regression models for various subsets
of data [38]. The data cube framework can thus help
compute the optimal generalization order in that it can
help generalize data based on those dimensions that
result in the minimum modeling error.
We consider four major attributes (data dimensions)

of a given car: make, model, year and class 1. Based on
these four attributes, data can be grouped in 16ways, out
of which 6 are redundant since vehicle model specifies
make and class as well. At one extreme, all cars may
be grouped together, thus producing a single regression
model (which we have shown is not acceptable). At
the other extreme, cars can be partitioned into clusters
based on their four attributes. Intermediate clusters are
constructed based on a subset of these attributes. A
separate model is derived for each cluster. One should
note that in cluster (model, year) for example, a Camry
2004 is modeled differently from a Camry 2012 and a
Civic 2004.
Between the two extremes, to find out which clus-

tering scheme gives the best accuracy, we obtain the
average percentage error for each scheme. The results,
summarized in Figure 4c, show that different general-
izations have different quality. These generalizations are
better than using all cars data lumped together. While
our dataset is small to make general conclusions, as more
data is collected in our deployed participatory sensing
infrastructure (e.g., say deployment reaches 100s of cars),
progressively better generalizations can be attained. In
the figure it can be observed that some of the clusters
present quite similar accuracy. This behavior is induced
due to limited vehicle type overlap in our dataset and
the performance of the intermediate clusters is not well
differentiated thereof. Specifically, these clusters end up
having several single vehicle groups in common. To
draw general conclusions, a further scaled vehicle set
with adequate vehicle overlap with respect to the con-
sidered attributes is required.
To use results of Figure 4c, one would build models for

each cluster shown in the Figure 4c which has sufficient
data for reliable modeling. The reader is encouraged to
refer to [39] on how the reliability of a model can be
inferred. To model a car, an instantiated cluster with
the same attributes as the car is utilized that has the
least error. If a car is encountered for which none of the
clusters match the car, we have no recourse but to use
the model computed from all data. That is, the clusters
in Figure 4c are traversed sequentially, from the most

1. Other vehicle attributes can be employed as well, for example,
city mpg, highway mpg, mpg difference (the difference between highway
mpg and city mpg) and mpg ratio (the ratio of highway mpg to city
mpg).
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accurate to the least accurate, until a cluster containing
sufficient data is reached. We evaluate the performance
of the Cluster-based modeling technique by measuring
how accurately an individual car can be modeled using
the data from cars with similar attributes. Specifically,
we construct the model cluster while removing data of
a certain car trip. We use the model cluster to estimate
the fuel consumption for the given car trip. This is done
for all car trips. The resulting average error percentage
is presented in the 10-th column of Table 1. As it can
be observed from the table, the Cluster-based modeling
technique has led to significant accuracy improvements
compared to the General model. In a few cases, such as
the second vehicle in the table (Chevrolet Impala 2002
Large) the error has reduced even over the Individual
model. This is because the individual vehicles involved
did not collect representative enough data to generate
an accurate model. Hence, improvements are achieved
from grouping of this vehicle and Buick LeSabre 2002
Large into the same cluster (i.e., Year-Class) that results
in reducing the errors even over the Individual model
for both vehicles.

6 IMPLEMENTED GREEN NAVIGATION

The GreenGPS server combines several open source
software services to provide the fuel-efficient route com-
putation service. The various modules that are part of
the GreenGPS implementation are depicted in Figure 5.

6.1 Data Collection
We implement the user-facing participatory sensing
module as an Android application in Java that runs
on users’ smart phones. This application gathers fuel
consumption and speed information data from the car’s
engine, combines that with location data gathered using
phone’s GPS, and opportunistically uploads the data to
the backend aggregation server.
For further details about the implementation refer to

Section 3.

6.2 Modeling and Generalization

The OBD-II data shared by individuals is used to com-
pute regression models that predict the fuel consumption
on specific streets given the car details (e.g. make, model,
age, category). The regression variables are stored in
the Trip Database, whereas the car specific variables
are stored in a similar database. The modeling module
queries this database to compute fuel consumption on a
given way for a given car.
Each trip is organized as a row in a database where

14 of its attributes are the values of the physical model
parameters in Equation 19 and are used for regression.
Four other attributes (Make, Model, Year, Class) are used
for grouping. After computing the regression models for
all clusters , search for a specific 4-tuple of (Make, Model,
Year, Class) is done according to the optimal generaliza-
tion order based on Figure 4c. The first regression model
that matches the query is used for prediction.

Fig. 5: The various modules of GreenGPS

6.3 Detection of Traffic Signs Location

To implement the traffic signs location detection module,
we built our SVM-based classifier using the “kernlab”
package [40] in the statistical tool R. The classifier was
trained using a dataset collected in part of the city of
Los Angeles and used to predict the traffic signs at each
intersection in the area of Urbana-Champaign, needed
for evaluating the performance of the GreenGPS in Sec-
tion 7.1. For details on the foundation and construction
of the classifier please refer to Section 4.3.

6.4 Navigation

GreenGPS maintains the map of a given area as an OSM.
Navigation is achieved in GreenGPS by customizing the
open source routing software, Gosmore [41]. Gosmore
is a C++ based implementation of a generic routing
algorithm that provides shortest and fastest routes be-
tween two arbitrary end-points. Gosmore uses OSM
XML map data for doing routing. Gosmore’s routing
algorithm, A*, by default computes the shortest route.
This routing algorithm works on the OSM map, where
the nodes of the graph are OSM nodes and the edges of
the graph are OSM ways and the weights of the edges
are the lengths (distance) of the ways. The fastest route
is then computed by multiplying the distance by an
inverse speed factor (thus giving lower weights to faster
ways). Our fuel-optimal routing algorithm multiplies the
distance by an inverse mpg metric that results in lower
weights for fuel-optimal ways.

6.5 Graphical User Interface (GUI)

When a query is posed to GreenGPS for the fuel-optimal
route between the source address and destination ad-
dress provided by the user inputs, the addresses are
first translated into latitude/longitude pairs using the
open source geocoding perl module, Geo::Coder::US.
This module is used for geocoding US addresses only.
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Geocoding is the process of finding corresponding lati-
tude/longitude data given a street address, intersection,
or zipcode.
After the source and destination addresses are

geocoded into their corresponding latitude and longi-
tude pairs using the geocoder module, the latitude and
longitude pairs are fed to the navigation module which
computes the fuel-optimal route (along with the shortest
and fastest routes) using the OSM XML database and
the prediction models of fuel consumption on streets
(computed from the OBD-II sensor data contributed by
users). The computed routes are then displayed on the
GUI frontend along with the estimated fuel consumption
for the given routes. The GUI frontend to display the
routes (shown in Figure 1) utilizes Microsoft Bing maps.
Routes are color coded and rendered as polylines on Bing
maps. For example, the fuel-optimal route is a “green”
color polyline.

7 EXPERIMENTAL EVALUATION

The performance of GreenGPS is evaluated in two
stages. First, we evaluate performance of our model
by using it to predict the end-to-end fuel consumption
for long routes. Second, we evaluate the potential fuel
savings of an individual using GreenGPS.

7.1 Part I: Green Navigation Model Accuracy

In this section we evaluate the accuracy of our prediction
model in estimating fuel consumption on long routes.
For that, the attributes contributed to each trip in our col-
lected driving dataset in the Urbana-Champaign, called
for by Equation 19, are extracted and/or computed for
each corresponding path.
In the experimental evaluation, the number and loca-

tion of stop signs and traffic lights along each path is
predicted using our SVM-based classifier. The classifier
is trained using a dataset collected from part of the city
of Los Angeles (and not from Urbana or Champaign). It
was tested in Urbana-Champaign to demonstrate cross-
city generalizability. When testing, street features were
extracted from OSM maps for each intersection then
input to the classifier. Ground truth (for both training
and testing) was collected using GoogleStreetView. As
mentioned earlier in Section 4.3, the LA-based classifier
achieved an accuracy level of 80.2% in predicting the
existence and types of traffic regulators on the streets of
Urbana-Champaign. The next question was: given the
imperfect prediction of traffic regulators, what is the
accuracy in predicting fuel consumption?
The accuracy of our green navigation service is mea-

sured using path-based cross validation in which the
fuel consumption along one path is predicted using
the models trained based on data collected along other
paths. The prediction error for the path is then obtained.
This is repeated for all paths.
The path error distribution corresponding to the above

experiment when prediction for each car is done based

on data of the same car (on other paths) is shown in
Figure 6a as “GreenGPS Individual”. We observe that
the path error distribution is nearly normal and that the
mean of this distribution is near zero (−0.28%).
We conduct a similar experiment to derive the path

error distribution that is achieved by employing Cluster-
based training such that fuel consumption of a car trip
is predicted from the model trained based on trips of
other cars in the nearest cluster as well, as described
in Section 5.2. The prediction error for each path is
computed as before and the distribution is presented in
the figure as “GreenGPS Cluster-based”. Again, a normal
distribution of the path errors is observed with near zero
mean (−0.25%).
In order to compare the accuracy of our technique,

three other fuel prediction approaches are evaluated in
Figure 6a in which mpg values are the basis of the
prediction. In these approaches the fuel consumption
along a path is estimated using:

fmpg
c =

L

MPG
(24)

in which L is the length of the path and MPG is the
mpg of the car. In Mean MPG approach, the MPG is the
average mpg computed from data of the car. In Rated
MPG approach, the MPG is computed as the average of
rated city mpg and rated highway mpg for the car. In the
last approach, City & Hwy MPG, for each individual road
segment along a path, depending on the road segment
type either city mpg or highway mpg is used for fuel
prediction.
In order to compare the approaches more clearly,

the distribution of the corresponding unsigned error is
shown in Figure 6b. As depicted in the figure, GreenGPS
approach outperforms the other prediction methods. It
is observed in the figure that GreenGPS Individual and
Cluster-based training approaches differ only slightly
in accuracy. The reason lies behind the lack of overlap
among car types in our vehicle set. As a result, for
most of the cars the nearest cluster in Cluster-based
training becomes a cluster with one single car–the car for
which prediction accuracy is being calculated. Therefore
it should be emphasized that these two approaches may
significantly differ from each other for a different dataset;
this is explained later in Figure 7a.
It is worth noticing that, as expected, the Mean MPG

approach beats the other mpg-based approaches in Fig-
ure 6b. This is because the Mean MPG approach uses
the collected data to compute cars’ mpgs as opposed to
considering a predetermined fixed constant.
In order to understand how path errors vary with

path lengths, we bin the paths based on their length
and compute the average of the absolute path errors
as a function of path length. We repeat this experiment
for the case where models are derived for each car
individually and the case where models are derived for
clusters and the nearest cluster is used. We plot the mean
of the absolute path errors for varying path lengths in
Figure 6c.
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Fig. 6: Distribution of path error percentage for different prediction models: (a) signed error, (b) unsigned error.
Mean path error percentage for different prediction models when path length is varied: using (c) original data, (d)
synthetic data.

We observe from Figure 6c that the error decreases
with increasing path length for both GreenGPS and mpg-
based approaches, which is what we want. In order to
show the performance of these approaches for longer
routes beyond ten miles, the trips in our original dataset
are concatenated to form longer trips. We concatenate
every up to ten chronologically consecutive trips (times-
tamped based on start and finish time) together and
form longer trips. The features of the new trips (such
as distance and the number of traffic regulators) are
computed based on those of the original constituting
trips. We then added the new longer trips to the original
set of trips. Figure 6d presents the accuracy results on
the new dataset. As expected, the decreasing trend of
the prediction errors continues for trips beyond ten miles
long as well. The average percentage error for the dataset
is 4.74% and for trips longer than four and ten miles is
3.67% and 3.08%, respectively.

We have not explored if the progressively improving
accuracy of the approaches with respect to the trip
distance holds true when the commutes have large dy-
namics in speeds, such as in larger cities. The current
dataset is limited in that it was collected in a fairly quiet
town.

The accuracy of our approach depends on the amount
of training data. Figure 7a presents the impact of the
training dataset size on the performance of fuel pre-
diction approaches. The 100% point denotes using the
whole dataset, 50% denotes using half of the dataset,
and so on. The dataset down-scaling was performed in
an alternate manner on the set of all chronologically or-
dered trips that were grouped based on the contributing
vehicles. For example, for the 50% dataset size, one out
of every two consecutive trips in the list was selected, for
the 33% dataset size, one out of every three consecutive
trips was selected, and so on and so forth.

As depicted in the figure, as the training dataset
becomes quite small, the GreenGPS Individual training
becomes inaccurate. This is while the accuracy of the
Cluster-based approach slightly decreases and it sig-
nificantly outperforms Individual training approach for
small datasets. Hence as the dataset becomes smaller,
the performance gap between the Individual training
and the Cluster-based training increases. At the same
time, the accuracy of the mpg-based approaches remains
nearly constant. This suggests to adopt an mpg-based

approach at the very beginning of the deployment phase
(when there is no or very limited data collected) and then
shift to GreenGPS train-based approach as sufficient data
for constructing reliable models is collected. The figure
also depicts the GreenGPS potential for further increase
in precision (compared to the results presented in this
paper) through collection of more driving data.

From the perspective of building participatory sens-
ing applications, the above suggests the importance
of finding models that do not have biased error. Since
the models often try to predict aggregate or long-term
behavior (such as long term exposure to pollutants,
annual cost of energy consumption, eventual weight-
loss on a given diet, etc.), if the error in day-by-day
predictions is normally distributed with zero mean, the
long-term estimates will remain accurate. Hence, rather
than worrying about exact models, GreenGPS attempts
to find unbiased models, which is easier.

7.2 Part II: Fuel savings in Urbana-Champaign

In this section, we evaluate the fuel savings achieved
when using the GreenGPS system. To evaluate fuel
savings, we chose landmarks in the city of Urbana-
Champaign that are regularly visited in our commutes,
such as library, the university health center, stadium,
frequently visited restaurants and parks, and shopping
complexes. Then the shortest, the fastest, the Garmin eco-
route, and the GreenGPS green routes were looked up
for each pair of landmarks. Each person selected two
pairs of landmarks and for each of which drove twenty
round trips (of approximately 15-35 minutes each): five
on the shortest route, five on the fastest route, five
on the Garmin eco-route, and five on the GreenGPS
green route. The actual fuel consumption for each trip
was recorded. The landmarks together with the shortest,
fastest, Garmin eco, and GreenGPS green routes are
shown in Figure 8. The routes for the trips in the opposite
direction (i.e., driving from point B to point A) are very
similar to the ones presented in the figures for forward
direction and are thus omitted.
We observe from Figure 8 that the fuel-optimal route

for the source-destination pair in the b, c, and e were
similar to the shortest route and in the d it was the fastest
route, whereas, in the a and f the fuel-optimal route was
neither the shortest, nor the fastest. Hence, picking the
shortest or fastest routes consistently is not optimal.
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Fig. 7: (a) Impact of the amount of training data on different prediction models accuracy; (b) Average normalized
fuel consumption for the various trips between different landmarks; (c) Percentage fuel saved by using GreenGPS
green routes, relative to the Fastest, Shortest, and Garmin Eco routes.

The average fuel consumption for the trips in the
experiment are shown in Figure 7b. It can be observed
that the GreenGPS, except for the trip (f) − Forward,
consistently finds the most fuel-efficient route. To con-
firm that the differences in fuel consumption between
the compared routes are not due to measurement noise,
we tested the statistical significance of the difference
in means using the two-way ANOVA. The test yielded
that the differences are statistically significant with a
confidence level of 95%.
The average fuel saving percentage achieved by fol-

lowing the GreenGPS green routes as opposed to the
fastest, the shortest, and the Garmin eco routes is pre-
sented in Figure 7c. The results report that the GreenGPS
routes can lead to fuel savings of on average, 21.5%
over the fastest routes, 11.2% over the shortest routes,
and 8.4% over the Garmin eco routes. Although only a
handful of routes were used in the experiments above,
it nevertheless shows promise as a proof of concept.

8 DISCUSSION

This section presents a brief discussion of lessons learned
and experiences with the GreenGPS service and its com-
ponents, as a participatory sensing application using a
mobile platform.

Data Cleaning: We observed that data cleaning is an
important problem and it is application dependent. We
had several occasions when several fields were missing
from the data (e.g., some OBD parameters were empty
due to timing subtleties). A simple scheme was used
to filter complete datasets from those that were missing
values.

Heterogeneity: An application-specific challenge was
observed due to the variations in the OBD-II standards
among different cars. It was experienced that some car
manufacturers use non-standard OBD-II parameter iden-
tifiers (PIDs). A few such examples we encountered in
our initial deployment include Honda Civic 2004, Honda
Accord 2005 and General Motors Sonoma 2002. As a
result we had to discard data from those vehicles due
to missing fuel parameters. This suggests that partici-
patory sensing applications involve a large number of
heterogeneous components (e.g., different car types in
GreenGPS) that one should take into account and resolve
before scaled deployments.

Slow Start: A major hurdle in getting participatory
sensing systems off the ground is to provide the right
incentives to the individuals (who are part of the sys-
tem) [42]. We believe that the initial deployment, which
tends to be sparse, should be carefully designed in
order to provide incentives for larger adoption. It should
therefore be useful from the very early stages. The very
low price of the GreenGPS was one of our main design
targets in order to incentivize users to adopt the service.
In addition, at the early deploy stage collected data
may not be sufficient for building reliable models for
some cars. Instead, an mpg-based prediction approach
is employed. As further related data is collected and
probabilistic guarantees on constructing reliable models
are provided, the Individual or Cluster-based training
approach is utilized. This ensures one that even at the
very early stages GreenGPS would not lead to lower
savings compared to available baselines employed by
commercial products such as Garmin.

Utility of Generalization: The utility of the general-
ization methodology described in this paper is not com-
promized by the increasing prevalence of fuel-efficiency
measurements in modern cars. This is because modern
cars measure fuel efficiency on routes they traverse.
Cars do not predict fuel efficiency before route traversal.
Hence, the only way drivers can compare gas consump-
tion on different routes at present would be to drive
all of them and compare results. In contrast, GreenGPS
predicts the final answer without the driving. The con-
tribution of this paper is thus complementary to (and not
subsumed by) affordances offered in modern vehicles.

Privacy: In participatory sensing systems, privacy
challenges come to the forefront. A large class of par-
ticipatory sensing systems monitor location information
continuously, which poses significant privacy issues.
Simple anonymization of data will not work in such
situations, as the GPS traces can lead to privacy breaches
(e.g., reveal the home location of the user and thus
uncover their identity). Techniques such as the one pro-
posed in [43] can be used to preserve privacy, while
still allowing accurate modeling. In [43], measurement
samples are first integrated into, so called, segments in
order to remove correlation. The uncorrelated segments
are then converted into some neutral features appropriate
to be used in modeling the phenomena (vehicles fuel
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(a) (b) (c)

(d) (e) (f)

Fig. 8: The landmarks and the corresponding shortest (in red), fastest (in blue), Garmin eco (in purple), and
GreenGPS green (in green) routes: (a,b): Toyota Camry 2004; (c,d): Nissan Altima 2006; (e,f): Toyota Corolla 2000.

consumption) while preserving the users privacy. The
privacy preserving methodology has been applied to
our green navigation service as a case study in the
paper. In our current study, individual users simply
switch off data collection application when they feel the
need for privacy. The latter is simple and fast, however,
the participatory sensing service employing it may be
permitted for gathering data only intermittently. Nev-
ertheless, the former approach and data perturbation-
based approaches such as [44] and [45] enable perpetual
privacy-preserving data collection for a reasonable extra
computation cost.

Long Term Investment: As expected, the main factors
affecting fuel consumption of a vehicle on a path are
the average speed, the speed variability (estimated by
averaging the speed squared), and the engine idle time
(estimated from the number of stop signs, traffic lights
and turns on the path). Rather than exploring the use of
real-time traffic conditions, we opted to use statistical av-
erages of speed, speed variability and idle time. It is easy
to see how such statistical averages can be computed for
different hours of the day and different days of the week
given a sufficient amount of historical data, yielding
expected fuel consumption (in the statistical sense of
expectation). The outcome is that individual trips may

differ significantly from the statistical expectation. How-
ever, by consistently following routes that have a lower
expected fuel consumption, savings will accumulate in
the long term. Drivers may think of GreenGPS as a long-
term investment. Short-term results may vary, but long-
term expectations should tend to come true.

One should add that our evaluation is not intended
to be a definitive study on vehicular fuel consumption.
For example, we evaluate fuel consumption in Urbana-
Champaign only, which is quite flat. Hence, θ = 0 is
a good approximation. Furthermore, the range of cars
used in the study is rather skewed towards sedans,
and hence not representative of the diversity of cars on
the streets. Fortunately, even this rather homogeneous
dataset was sufficient to show that the generalization
challenge is hard.

With the above caveats, we believe that the study
remains of interest in that it explores problems typical to
many participatory sensing applications, such as over-
coming conditions of sparse deployment, adjusting to
heterogeneity, and living with large day-to-day errors to-
wards estimating cumulative properties. The GreenGPS
study could therefore serve as an example of what to
expect in building similar services, as well as a recipe
for some of the solutions.
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9 RELATED WORK

Previous work in participatory sensing and transporta-
tion fuel saving are relevant and reviewed below.

9.1 Participatory Sensing

Our navigation service is an example of participatory
sensing services, that have recently become popular in
networked sensing. The concept of participatory sensing
was introduced in [2]. In participatory sensing, indi-
viduals are tasked with data collection which is then
shared for a common purpose. A broad overview of
such applications is provided in [3], [4], [5]. Several early
applications include CenWits [6], a participatory sensing
network to search and rescue hikers, CarTel [7], a vehic-
ular sensor network for traffic monitoring, CabSense [8],
a cabs sensor network to find best corners to catch taxis
depending on the current location and time, BikeNet [9],
a bikers sensor network for monitoring popular cyclist
routes, and ImageScape [46], a cellphone camera net-
work for sharing diet related images. Some more recent
applications include Micro-Blog [10], a content-sharing
platform, PEIR [11], a report system enabling individuals
to measure and compare their impact on environment
as well as their exposure to environmental emissions,
Escort [12], an electronic escort system that enables
localizing people, MoVi [13], a service for covering social
events, and [14], a service to determine buses arrival
time. Our application, GreenGPS, introduces a novel ex-
ample of this genre that enables individuals to compute
fuel efficient routes customized for their vehicles.

9.2 Fuel Saving in Transportation

There exist a body of work addressing transportation
fuel consumption factors to achieve savings in the field.
A comprehensive study that provides optimal route
choices for lowest fuel consumption is presented in [47].
In the paper, fuel consumption measurements are made
through the extensive deployment of sensing devices
(different from the OBD-II) in experimental cars. In
contrast, our service uses a sparse deployment to build
mathematical models for predicting fuel consumption
for other streets and cars.
UbiGreen [48] is a mobile tool that tracks an indi-

vidual’s personal transportation and provides feedback
regarding their CO2 emissions. [49] proposes to exploit
information on surrounding vehicles and road condi-
tions in designing eco-driving systems to achieve higher
fuel-saving. Social drive [50] is a crowdsourcing service
that provides feedback to drivers regarding their driving
behavior and enables them to share their real-time trip
information through social networks, stimulating users
to reduce their gas consumption. CarMA [51] provides
high-level abstractions for sensing and tuning automo-
bile engine parameters to achieve fuel efficiency. The
tuning can be done at the granularity of individual trips.
SignalGuru [52], a participatory sensing based system,

is a traffic signal schedule advisory application that

assists drivers to adjust speed and avoid coming to a
complete stop. The authors in [53] propose a mechanism
based on communication between traffic light signals
and approaching vehicles in which a fuel-optimal speed
is computed and sent to the vehicles to reduce fuel con-
sumption. [54] proposes to use RFID-based e-stop signs
at unsignalized intersections to alter drivers behavior
properly early and achieve potential emissions reduction
and fuel-economy improvement.
There exist a large category of works, such as

VTrack [55], that collect real-time traffic information and
provide estimations on road travel times in order to
aid users route around traffic congestion, being a major
cause of excess fuel consumption. VTrack utilizes WiFi
and GPS sensors of smart phones to perform local-
ization in an energy-aware fashion. Kyun [56] devel-
ops a networked sensors based real-time traffic queue
monitoring system for developing countries which can
lead to improved automatic traffic signals scheduling
in order to reduce fuel inefficiency. Some other works
like PhonePark [57] approach reduction of vehicles gas
consumption by detection of available on-street parking
spaces which enables users to minimize their travel
distance searching for parking. PhonePark uses the GPS
and accelerometer sensors of travelers mobile phones.
coRide [58], among others, proposes the use of car-

pooling to share rides and reduce gas consumption.
coRide service adopts a fare model that incentivizes
both drivers and passengers to participate. In a sepa-
rate study [59], it was shown that rising obesity has a
significant impact on the total fuel consumption in the
US. Models were developed that studied the impact of
obesity on the amount of fuel consumed in passenger
vehicles.
In contrast, GreenGPS represents a participatory sens-

ing service that aims at improving fuel consumption
through green routing. Using sparse data collected from
volunteer participants, models are built and continu-
ously updated that enable vehicle customized navigation
on the minimum-fuel route for both members and non-
members of the service.

10 CONCLUSIONS

We presented GreenGPS, an end-to-end automated par-
ticipatory sensing navigation service that finds fuel-
efficient routes. GreenGPS is offered as a phone applica-
tion and can be easily deployed and used by individuals.
The required data is collected from the engine OBD-
II of members’ vehicles and processed on the backend
server in an end-to-end automated manner. GreenGPS
enables users including non-members to acquire fuel-
efficient routes customized for their vehicles between
any arbitrary end-points. To survive conditions of sparse
deployment, GreenGPS exploits a sparse data generaliza-
tion technique from data mining literature to construct
reliable fuel prediction models. A moderate-sized user
subject study was conducted in Urbana-Champaign and
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data on users daily commutes was collected and used
to train our fuel consumption models and evaluate
efficiency of our green navigation service. Lessons were
presented that extrapolate from experiences with our
deployed service to broad issues with participatory sens-
ing service design in general. Our experimental results
show that significant fuel savings can be achieved by
using GreenGPS, which not only reduces the cost of
fuel, but also has a positive impact on the environment
by reducing engine emissions of air poisoning gases.
Importantly, the results demonstrate the feasibility of
generalization from sparse deployment data.
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