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I. INTRODUCTION 

Effective porosity is that portion of the total void space of a porous 

material that is capable of transmitting a fluid. Total porosity is the 

ratio of the total void volume to the total bulk volume. Porosity ratios 

traditionally are multiplied by 100 and expressed as a percent. 

Effective porosity occurs because a fluid in a saturated porous media 

will not flow through all voids, but only through the voids which are inter­

connected. Unconnected pores are often called dead-end pores. Particle 

size, shape, and packing arrangement are among the factors that determine the 

occurance of dead-end pores. In addition, some fluid contained in inter­

connected pores is held in place by molecular and surface-tension forces. 

This "immobile" fluid volume also does not participate in fluid flow. 

Increased attention is being given to the effectiveness of fine grain 

materials as a retardant to flow. The calculation of travel time (t) of con­

taminants through fine grain materials, considering advection only, requires 

knowledge of effective porosity (ne): 

(1) 

where x is the distance travelled, K is the hydraulic conductivity, and I is 

the hydraulic gradient. The lack of a reliable method for determining effec­

tive porosity has necessitated the estimation of this parameter. Currently, 

this is an undesirable but unavoidable practice. 

Effective porosity is an important parameter in calculation of contami­

nant transport. This study documents laboratory technique for measuring 

effective porosity of fine-grained soils. Confusion about the meaning of 

effective porosity and its relation to total porosity also is explained. 
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This project is of benefit to ground-water professionals who are 

involved in prevention and mitigation of contamination. Planners and regu­

lators involved in ground water pollution prevention strategies and regula­

tion also will have more definitive data on which appropriate decisions can 

be made. 

Relationships identified between effective porosity and physical charac­

teristics may permit estimation of the importance and magnitude of effective 

porosity from the total porosity and physical characteristics without its 

direct measurement. The review of work in associated sciences is an impor­

tant starting point for research in fine-grain saturated soils. 

II. OBJECTIVES AND SCOPE 

The objective of this project is to document the value of an effective 

porosity measurement technique of fine-grain soils and to relate effective 

porosity to total porosity and other physical characteristics. The documen­

tation of undisturbed soil sample collection techniques, a comparison of 

field measured and laboratory measured hydraulic conductivities, and documen­

tation of static and dynamic porosity measurements are to be accomplished in 

this project. An extensive literature search of associated sciences also has 

been conducted. 

To simplfy the task of studying effective porosity in geologic mate-

rials, non-lithified sedimentary rocks with no secondary porosity are consid­

ered. Samples to be studied will be glacial till deposits with 10-4 to 10-7 

cm/sec hydraulic conductivity. 

Total porosity can be classified as primary or secondary. Primary 

porosity is the porosity that forms when the sediment is deposited, whereas 

secondary porosity is formed after the sediment was deposited. Secondary 
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porosity includes cavities produced by the solutioning of carbonates and by 

fractures. Secondary porosity is avoided here because analysis methods used 

would be substantially complicated by small scale heterogeneities that are 

typical of the voids caused by solution cavities and fractures. 

Indurated rocks which have been lithified by cement are of interest 

because cementation increases the number of dead-end pores; therefore, a 

significant amount of previous work applies to these materials. Lithified 

rocks are not considered for use as liner materials and are not considered 

here. 

III. PAST ACTIVITIES (LITERATURE REVIEW) 

A literature search of associated sciences was conducted to perform a 

comprehensive examination of pertinent work on the subject. Past activities 

have been divided into five categories to separate work from different disci­

plines. Selected categories are: 

Hydrodynamic and physical properties of soil; 
Flow in saturated porous media; 
Tracer movement in saturated porous media; 
Measurement of effective porosity of saturated porous media; and 
Chemical reactions in porous media. 

One can easily become confused when surveying the use of the term 

"porosity" in the literature. Few authors state whether they are referring 

to the total or effective porosity. More important than this is that many 

authors refer to total porosity in contexts where effective porosity should 

be used, even if they are approximately the same. When volumetric consid­

erations are required, such as aquifer compressibility, total porosity is 

appropriate. However, when flow is considered, such as tracer migration, 

effective porosity is appropriate. 
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There was considerable interest in effective porosity before it became 

of importance to ground-water professionals. Interest in the past has been 

by soil scientists, petroleum engineers and physical chemists. Study in 

these disciplines are pertinent; however, caution is required in a review of 

multi-disciplinary literature in translating the varieties of terminology 

used by authors in various fields. 

As previously indicated, in this study, flow is considered under satu­

rated conditions. This is referred to as single-phase flow, i.e. the flow of 

one fluid, in this case, water. Soil scientists often also considered 

unsaturated conditions. Unsaturated flow is two-phase, air and water. 

Three-phase flow, oil, natural gas, and water, is of interest to petroleum 

engineers and is also important. Persistence of multiphase flow is because 

immiscible fluids create dead-end pores. This is because one fluid may 

prevent flow of another fluid through narrow pathways. 

A. Hydrodynamic and physical properties of soil. 

Introductory texts in sedimentology, petrology and soil science provide 

key information to the physical characteristics of soils. Selley (1976) 

summarized other authors work on the relationships between physical prop­

erties and total porosity. The grain size, sorting, grain shape (spher­

icity), grain roundness (angularity) and packing are the factors that 

determine total porosity when sedimentation occurs. This is primary 

porosity. Table 1 shows the relationship of total porosity to physical char­

acteristics. Total porosity generally increases with decreasing grain size, 

however, this is caused by other properties. Theoretically, for spherical 

grains of uniform size the grain diameter will not effect porosity. Total 

porosity increases with increasing sorting. Total porosity decreases with 

increasing sphericity and roundness. Total porosity decreases with closer 
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packing. Graton and Fraser (1935) determined the total porosity of spherical 

particles of uniform size with different packing arrangements (figure 1). 

Biella et al. (1983) studied percentage of small grain size to total porosity 

and found that as the percentage of small grain size particles decreased, the 

total porosity also decreased to a minimum and then increased. The above 

studies were conducted using silica sand as the material of interest. 

Table 1. The Relationships between Total Porosity 
and Physical Characteristics 

Primary total 
porosity 

Property low high Reason 

Grain size NA NA grain size has no influence on 
porosity 

Sorting poor good small grains fill in voids 
between large grains 

Packing close loose close packing has less voids 
between grains 

Shape spherical oblong spherical grains tend to pack 
more closely 

Roundness rounded angular rounded grains tend to pack more 
closely 

Because the scope of this project is directed toward fine grain mate­

rials, clay minerals are also of interest. Williams et al. (1954) described 

the layer, or sheet, structure which are characteristic of clays. Illite and 

montmorillonite have a very similar structure to mica which have a platy 

habit. Kaolinite does not exhibit this type of structure. Clay minerals 

when settled out of water tend to assume a parallel orientation. This leads 

to a tighter packing and a resulting lower total porosity. 

Techniques used to characterize soils are summarized by Das (1979). 

Optimum moisture content, the moisture content at which the maximum dry unit 

weight is obtained, is determined by the standard Proctor test. The liquid 
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Figure 1. Packing arrangements available for spherical particles of 
uniform size. 
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limit and plastic limit define the moisture contents where the transition 

from semi-solid to plastic and plastic to liquid occur. 

Bear (1979) defined the "interconnected pore space" as the effective 

pore space with respect to the total pore space. He stated, "This happens 

when the porous medium contains dead-end pores, i.e. pores or channels with 

only a narrow single connection to the interconnected pore space, so that 

almost no flow occurs through them." Hantush (1964) included water held in 

place by molecular and surface tension forces in this category. Davis and 

DeWiest (1966) illustrated the relationship of total porosity n, to specific 

yield Sy, and specific retention Sr (figure 2). Bear (1979) stated: 

n = Sy + Sr  (2) 

and that Sy (<n) is sometimes called effective porosity. This is the case in 

Rawls et al. (1983) where the effective porosity was considered as the dif­

ference of the total porosity and the residual soil-water content. The 

residual soil-water content being the specific retention. 

B. Flow in saturated porous media. 

Flow of ground water in saturated porous media has been described by 

Bear (1979). Hydraulic conductivity is the coefficient which relates dis­

charge to head loss. The coefficient was first presented by Darcy in 1856. 

The relationship has been termed Darcy's Law and can be expressed as: 

Q = K I A (3) 

where Q is the discharge (L3/L), K is the hydraulic conductivity (L/T), I is 

the hydraulic gradient (L/L), and A is the cross-sectional area (L2). 

Darcy's law was developed while examining coarse-grain sands. Many studies 

have questioned the validity of Darcy's law for soils containing clays. 

Swartzendruber (1962) gave a conscientious review of work by Darcy and 

others considering the applicability of Darcy's law. In reviewing the work 
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Figure 2. Illustration of the interrelationship between median grain size 
and total porosity, specific yield and specific retention. 
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of Stearns (1927), who addressed grain-size distribution and used some 

samples with clay size particles, he concluded that Darcy's law is not appli-

calbe when clay was present above 5 percent. In a study of saturated 

kaolinite Olsen (1966) stated "... the evidence as a whole suggests that 

Darcy's law is obeyed in many natural sediments, but that exceptions may 

occur in very fine-grained clays, specifically montmorillonite, and also in 

shallow, unconfined clays or in granular soils containing small amounts of 

clay." Von Engelhardt and Tunn (1955) found that there was no linear rela­

tionship between pressure drop and fluid velocity in sandstones with clay 

contents of 1 to 5 percent. 

Hydraulic conductivity of saturated porous media may be determined by 

field methods or by laboratory methods, see Olson and Daniel (1979). Several 

field and laboratory methods are described by Freeze and Cherry (1979). Many 

tests are not viable in the field depending on the soil types and information 

desired. Because of the special requirements of this project a different 

procedure than described will be used. 

Before laboratory methods for determining hydraulic conductivity can be 

summarized, consideration of collection of a representative sample must first 

be addressed. 

The collection of truly undisturbed samples for tests in the laboratory 

is difficult. Elzeftawy and Cartwright (1983), Daniel (1983), and Smetten 

(1984) used "undisturbed cores" in their studies. Problems identified 

include: small sample size, storage, and development of acceptable sample 

interface to a porous plate. In addition to these and other problems, com­

parisons of undisturbed and disturbed (recompacted) samples rarely agree. 
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Laboratory methods include the constant-head and falling-head permea-

meter tests. Daniel et al. (1984) describe two types of permeameters, 

flexible-wall and fixed-wall, and presents their advantages and disadvan­

tages. 

C. Tracer movement in porous media. 

Migration or flow through a porous media can be evaluated by means of 

tracers. For a tracer to be effective it should react similarly to the 

eluant both physically and chemically. Ideally, it should be totally unreac-

tive toward the substance forming the bed of the column. No exchange or 

adsorption reactions should occur and concentrations of a magnitude that 

cause precipitation must be avoided. 

Various tracers have been used in laboratory core column studies. 

Because of interest in the mobility of radionuclides in ground-water flow 

systems, Champ et al. (1982) used a mixture of plutonium isotopes, predomi­

nantly 239Pu (77%), as the tracer. "Undisturbed horizontal cores" were used 

not only to determine the transport of 239Pu but also to identify the 

chemical speciation of 239Pu in the effluent. 

An agronomic approach was used by Elrick, Erh, and Krupp (1966) because 

of an interest in pesticide movement in soils. The herbicide, atrazine, as a 

14C-ring labeled isotope, was used as the tracer. This enabled the use of a 

tracer which was a natural chemical compond used in agriculture and which 

would be affected by a variety of chemical and physical proccesses (i.e. 

adsorption, fixation, precipitation, degradation or decay). Glass beads and 

packed soils, Honeywood silt loam and Guelph loam, were used as the media in 

these miscible displacement studies. 

Nielsen and Biggar (1961, 1963) and Biggar and Nielsen (1962) in a 

series of articles observed miscible displacement of soils under both satu-
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rated and unsaturated conditions. Chloride ion and tritium were used as 

the observed tracers with various soils (Oakley sand, Yolo loam, Columbia 

silt loam, and/or Niken clay loam) and two sizes of glass beads (200 and 

390µ) serving as the porous media. By using tracers of different diffusion 

coefficients, the authors hoped to define the contribution of diffusion to 

the spreading of the breakthrough curves. No separation of tracers could be 

measured at 2.11 cm per hour. However, at low average flow velocity, 

v = 0.20 cm/hr, translation of chloride curve to the left did occur yielding 

separate breakthrough curves both in unsaturated conditions, with Columbia 

silt loam, and in saturated conditions, with Niken clay loam. The authors 

concluded from the data that diffusion had indeed manifested itself. 

Corey and Horton (1968) employed a triply tagged solution of 3H, 2H, and 

and with miscible displacement techniques observed no differences in the 

relative rates of tracer movement in a water-saturated acidic kaolinite soil. 

This finding is not similar to the results of Nielsen and Biggar because the 

flow velocity, 1.22 cm/hr, was still too high to allow observance of the 

molecular diffusion contribution to dispersion. Also the diffusion coeffi­

cients of the water tracer did not vary to the degree seen between chloride 

and tritium. Diffusion coefficients in water for 1H2H160, 1 H 3 H I 6 0 , and 1H2
180 

at 25°C are 2.34 x 10"5, 2.44 x 10"5, and 2.66 x 10-5, respectively. Where­

as, chloride and tritium have diffusion coefficients of 6.21 x 10-5 cm2/sec 

and 5.22 x 10-5 cm2/sec, respectively. 

The exchange of tritiated water, HTO, between the atmosphere and soil 

and crops was investigated by G. A. Garland (1980). These experiments were 

carried out in the field and in a wind tunnel along with other laboratory 

studies. In short exposures it was found that uptake by moist soil was 

controlled by atmospheric mixing with most vapor interaction occurring within 
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two to three days. The tritiated water absorbed during exposure evaporated 

over a period of several weeks. Rain washed activity into the soil and 

impeded evaporation. 

Miscible displacement principles were utilized by Sadler, Taylor, 

Williardson, and Keller in 1965. They flushed salts, Cl-,Na+ and Ca++Mg++, 

from a humic gley, silt loam soil in a soil reclamation project. Experi­

mental field plots were selected with each adjacent to an open drain. Results 

indicated that both hydrodynamic dispersion and ionic diffusion actively 

contribute salt to the effluent. The salt in the soil directly over the line 

of the drain is removed primarily by velocity flow and dispersion. The impor­

tance of diffusion as a removal process seems to increase with increasing 

distance from the drain. 

D. Measurement of effective porosity. 

Field Techniques 

Field techniques to calculate effective porosity have been presented; 

however, their application to this study is limited. Rawls et al. (1983) 

determined the effective porosity of soils using information available in 

soils surveys. As indicated earlier, they consider effective porosity of 

shallow soils (less than five feet deep) as specific yield, Sy, by 

ne = n - 0r  (4) 

where n is the total porosity calculated as the bulk density divided by the 

particle density and 0r is the residual soil water content which is equiva­

lent to the specific retention (Sr). Rawls et al. do not identify the effec­

tive porosity they calculate to be a measure of dead-end pore volumes. 

Therefore, its application here is merely informative. 

Loo (1984) identified three methods for determining effective porosity 

from field tests: a tracer method, Jacob's method, and seismic tomography. 
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A tracer method was presented by Halevy et al. (1962) where tracer was 

injected at a well 250 meters from a pumped well. They assumed a homogeneous 

medium with a negligible natural gradient. Effective porosity was stated as: 

where v is the volume pumped, b is the thickness of the aquifer, and r is the 

distance between wells. Determination of the volume of the tracer pumped was 

most difficult to obtain. They used a functional relationship with break­

through curves. Application of this method to fine grain soils (the field 

test was performed on dolomite) would be nearly impossible because of the 

travel times involved. 

Review of Loo's reference to Jacob's work, Jacob (1940), shows no 

specific reference to effective porosity. Mention of porosity was made in 

the context of determining the total water volume rather than the effective 

water volume. 

Methods used to determine effective porosity by seismology require 

extensive geophysical work in the field as well as core analysis in the 

laboratory. This effort was so substantial and was not within the scope of 

this work so that it was not critically reviewed. 

Measurement of effective porosity has been a laboratory pursuit since 

the early 1950's. A concerted effort to compare methods was made by Dotson 

et al. (1951) using ten selected natural and synthetic samples. All samples 

were indurated. Comparative measurements were made at five different labora­

tories. Methods used were Boyle's Law, water-saturation and organic liquid-

saturation. The average deviation of porosity values (%) from the group mean 

was ±0.5 porosity percent. The authors did not consider reproducibility of 

porosity measurements a problem; however, samples with a high clay content 
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gave highly variable results with the water saturation techniques and this is 

exactly the type of soil under investigation in landfill liners because of 

its low hydraulic conductivity, i.e., less than 1 x 10-7 cm/sec. 

Porosity, by definition, involves the volume of voids present within a 

porous solid matrix. Effective porosity, however, pertains exclusively to 

that portion of the total void volume available for flow. Various nomencla­

ture can be found in the literature which defines that space which is not 

contributing to flow and papers which address this topic are approaching 

effective porosity although from a different viewpoint. 

Nielsen and Biggar (1961) discussed "'holdback' as a relative measure of 

the volume of water not displaced but remaining within the sample." Jackson 

and Klute (1967) employed the term "dead-end pore volume" and used both 

transient- and steady-state diffusion coefficients as a method of achieving 

estimation. 

Relyea (1982) uses a porosity term, e, in the transport equation for a 

one-dimensional porous medium: 

(6) 

where S = radionuclide concentration adsorbed on the solid (µg/g) 

C = radionuclide concentration in solution (µg/cm3) 

D = the dispersion coefficient (cm2/sec) 

x = distance along the flow path (cm) 

Vw = ground water velocity (cm/sec) 

pb = bulk density of the porous medium (g/cm3) 

e = porosity of the medium (cm3/cm3) 

t = time (sec) 

14 



The same term was used in defining the retardation factor, Rf, and the mass 

transport units, n, in a column. Following the author's definition 

of porosity, 

(7) 

it is clear that e is equivalent to total porosity and not effective 

porosity. 

In migration studies of radioactive wastes Carlsen and Batsberg (1982) 

employ column techniques and use a "volume porosity" defined as 

(8) 

where Vo = dead-volume of an unretarded solute (L3) 

A = cross-sectional area of the column (L2) 

L = length of column (L) 

By definition this volume porosity is equivalent to Relyea's porosity; 

however, Carlsen and Batsberg do caution that Vo should be corrected for the 

system's dead volume. 

By 1984 several new methods appeared further defining void volumes of 

columns. Street used fluorescence detectors in determining Vm, the 

void volume of a column experienced by a solute of a given molecular volume. 

A static exclusion method was developed by Wei Cheng to determine 

specific pore volume of porous materials, on the basis of size exclusion of 

some polymer from pore volume in an appropriate solvent. 

Obviously, a variety of terminology abounds in the present literature 

which addresses the topic of "volume available for flow" as related to effec­

tive porosity. Despite the "definition" be it chromatographic, agronomic 

(travel time of nutrients through soil), or environmental (migration of a 
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leachate through an "impervious" soil boundary), the basic question is iden­

tical: What is the transport time for a solute to move through a porous 

media from point A to point B? The thrust of this current study is to better 

understand effective porosity and develop a technique for measuring it. All 

relevant information on "effective porosity" has been incorporatedinto a 

cohesive bibliography. 

E. Chemical reactions in porous media. 

McAuliffe et al. (1947) studied the direct exchange of deuterium oxide 

with the hydroxyl groups of two clay minerals, kaolinite and halloysite. 

They found a rapid H-D exchange with surface OH groups but a slow diffusion 

into the lattice at elevated temperatures (27°C-170°C). 

Five different soil types were chosen by Fancher and Thomas (1954) to 

study exchange between heavy water and clay mineral samples. Kaolinite 

samples had no exchange with D2O within the limits of error of the determina­

tion. The halloysite, attapulgite, chabazite, and montmorillonite samples 

showed large exchanges with D2O indicating the participation of not only 

surface hydroxyls but also intralattice hydroxyls. Determinations were done 

at 200°C for a twenty-four hour period in a Parr bomb. 

By using infrared spectroscopy, Romo (1956) observed the exchange of 

hydroxyl hydrogens with deuterium, D2O. Samples were of kaolinite (<2µ) 

and were treated hydrothermically at 300°C and 10,000 psi. The rate of 

exchange appeared to be a stepwise process in which initially surface 

hydroxyls participated and finally (post 28 hours) intralattice hydroxyls 

exchanged by means of diffusion. 

A. Klinkenberg (1961) employed a mathematical approach to demonstrate 

band broadening tendencies as the roles of chemical exchange between species 

altered. An application of this theory was postulated to be in the area of 
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chromatography of hydrogen and could possibly be used as the technique to 

monitor for hydrogen when included as a tracer. 

Halevy (1964) also investigated the exchangeability of hydroxyl groups 

in kaolinite and, in contradiction to McAuliffe et al (1947), reported that 

exchange never exceeded 1 percent. Halevy also determined the exchanging 

species to be the hydroxyl group as opposed to the hydrogen ion. 

Hashimoto et al. (1964) used a mathematical formulation to interpret em­

pirical descriptions of column behavior, a representation of column perform­

ance in terms of equivalent column volume and an additional parameter, a 

Peclet number. By use of sand and soil columns and evaluation of the hydrau­

lic characteristics of each, the empirical formulation gave excellent agree­

ment for the case of a slow isotopic exchange. 

Over the period of a decade Stewart (1967, 1972) studied the relation­

ship of tritium and deuterium with soils. In 1967 he investigated the frac­

tionation of both isotopes in the soil water of four clay samples. In 

Davidson clay samples the isotope effect, ET for tritium and ED for 

deuterium, ratio was initially one and built to a 3-to-1 ratio for ET/ED 
after 17 months of equilibration. A Georgia kaolinite sample did not exhibit 

the large isotope exchange characteristic of the Davidson clay; this fact is 

believed attributable to a smaller number of exposed surface hydroxyls. Data 

covering a montmorillonite exhibited an initial, rapid isotope exchange and 

that this exchange was equal for tritium and deuterium. Illite results 

suggested an exchange occurred but with no additional exchange between the 1 

1/2 month and 8 month equilibration periods. The illite data seemed to 

support, to some extent, the belief that more net isotope exchange occurred 

with deuterium than with tritium. 
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In 1972 Stewart followed with another study concerning the fractionation 

in which he stated that "the difference in physical state between tenaciously 

adsorbed water and bulk pore water does not appear to be sufficient to result 

in appreciable isotopic fractionation." As such, this factor would not 

contribute appreciably to retardation of tracer flow velocity. These data 

support the feasibility of using isotopes of both hydrogen and oxygen and of 

using isotope effect phenomenon to monitor soil/water interactions. 

IV. CURRENT WORK 

A. Approach to the problem. 

The current study is being approached in two phases, phase one includes 

work conducted at each field site and phase two includes all work conducted 

in the laboratory. The field work consists of collecting undisturbed soil 

samples of sufficient quantity to perform all laboratory tests including 

replicates. In addition, hydraulic conductivity tests are performed in the 

field to determine the in-situ vertical hydraulic conductivity of the zone 

where soil wa3 collected. Laboratory tasks include the determination of 

standard engineering and agricultural soil and soil/solution characteristics, 

hydraulic conductivity, dynamic porosity, and static porosity. 

Collection of the soil sample. 

Illinois State Geological Survey records were examined to select three 

potential sites for sample collection. Site selection criteria included: 

sites where samples could be obtained with less than 50 feet of overlying 

materials to reduce drilling costs, and the soil to be sampled contained no 

weathered or oxidized zones to maximize the stability of chemical species. 

The soil to be sampled should further: contain no gravel-sized grains, a 

small percentage of sand-sized grains (less than 30%), clay minerals limited 
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to primarily illite, and minimal organic carbon. The soils would be col­

lected from below the zone of saturation, and be of sufficient thickness to 

obtain an adequate amount of sample from one borehole. 

Sample collection was accomplished utilizing a specially constructed 

split-spoon sampler. The sampler contains a 24-inch length of polycarbonate 

plastic tubing sized to minimize disturbance to the sample and to be used for 

the column in subsequent laboratory studies. The borehole was drilled with 

3 3/4 inch inside diameter hollow stem auger(s). Samples were collected with 

a standard split spoon sampler until the desired interval was reached. A 

series of samples were then collected in the specially constructed sampler 

fitted with polycarbonate tubing. 

Conducting the field injection test. 

To conduct the field vertical hydraulic conductivity testing, a second 

borehole was constructed to the same level from which soil samples were col­

lected. A standard split spoon sample was taken and the sampler was pushed 

back into the same hole to a depth about 6 inches deeper than that penetrated 

during sample collection. A slug test was then conducted by filling the 

center of the A rods and sampler with water to a measured level. The water 

level was then monitored as it declined over time. The vertical hydraulic 

conductivity was calculated using the analysis method for falling-head 

permeameter tests (Todd, 1959). 

Determining the soil and soil/solution properties. 

To determine the various soil and soil/solution properties, samples were 

preserved in the polycarbonate tubing and transported to the laboratory. The 

ends of the polycarbonate tubing were sealed to prevent the samples from 

drying out. After reaching the laboratory, one length of tubing was used to 

determine liquid limit, plastic limit, optimum moisture content, grain size 
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distribution, clay mineralogy and wilting point. All tests were done follow­

ing ASTM methods. 

Conducting column studies to determine hydraulic conductivities 
and dynamic porosities. 

To determine hydraulic conductivities and dynamic porosities, the poly­

carbonate tubing was cut such that four 7-inch lengths of soil could be 

prepared for the column studies. Soil from the end of each tube was removed 

to a depth of approximately 1 inch, the porous frits and end caps were 

inserted. Each tube was then ready to be attached to the laboratory appa­

ratus. Hydraulic conductivity determinations of fine-grained soils using 

constant head permeameter methods is a time consuming test. Therefore, the 

apparatus allows continual measurement and determination of the hydraulic 

conductivity while additional tracer tests are performed. The dynamic poros­

ity measurements are determined by injecting triated water, a conservative 

tracer, into the soil and then eluting the tracer from the soil. Samples of 

the.outflow from the soil are retreived and breakthrough curves are drawn 

based on the concentration of tritium measured with a scintillation counter. 

The dynamic porosity is calculated as the arrival in the outflow of a speci­

fied percentage of the conservative tracer. 

Determination of static (total) porosity. 

After the dynamic porosity tests are completed the sample is removed 

from the polycarbonate tube, the soil is dried and weighed to calculate the 

total porosity. 

The above tests and procedures will be repeated for soil samples from 

all three sites. 
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As column tests are completed, attempts will be made to determine if any 

statistically significant relationship between effective porosity and other 

soil characteristics can be identified. Any significant relationship 

encountered could' be used for estimating effective porosity from other 

characteristics. If no significant relationship is found, modification of 

experimental procedures will be investigated to recommend standard testing 

methods for effective porosity measurements. 

B. Equipment design. 

The laboratory tests required specially designed equipment to accomodate 

the demands of successful tracer studies (figure 3). Extremely low flow 

rates and the resulting great length of time required to conduct tests under 

normal hydraulic gradients required the use of special apparatus. A com­

puterized flow control and sample collection system was designed and con­

structed. Integral parts of the system include: the fixed head source, the 

flow measurement accumulator, the inlet pressure sensor, the tracer injection 

port, the soil column, the outlet pressure sensor, and the sample collection 

device. 

The fixed pressure source is maintained by a regulated supply of a 

mixture of nitrogen and carbon dioxide. The pressurized gas contacts the 

water in the supply reservoir and in each accumulator. The supply reservoir 

is capable of supplying water to the four accumulators simultaneously. 

The flow measurement accumulator is a device used when very low flow 

rates are encountered (Daniel et al., 1984). The accumulators in this system 

are constructed of 2 ml glass pipets enclosed in a plexiglass cylinder. Flow 

is determined by measuring the time it takes the water/gas interface in the 

accumulator to move from an upper to a lower level sensing device. This is 

accomplished by the triggering of two electric eyes and recording the time 

21 



Figure 3. Diagram of the automated four-column system 
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when the level reaches the upper and lower sensors. Also, the electric eye 

sensors control the actuation of a three-way valve to refill the accumulator. 

The inlet pressure sensor is a strain-gage transducer. The transducer 

is connected to the flow system with appropriate stainless steel fittings 

designed to minimize dead space. 

The tracer injection port allows insertion of small quantities of solute 

into the flow system with minimal disturbance of the system. 

The soil column is constructed of polycarbonate plastic which has an 

inside diameter of 1.25 inches and an outside diameter of 1.50 inches. The 

outside diameter of the tubing is accommodated by the split-spoon sampling 

device which was adapted for the soil sample collection.' The top and bottom 

of each column (end caps) is constructed of Delrin plastic. The end caps are 

milled to accept a stainless steel frit of 5 micrometers pore size and a 

stainless steel fitting to connect to the inflow and outflow tubing. 

The outlet pressure sensor is a strain-gage type transducer similar to 

the inflow sensor, however, it is rated for a lower pressure. The transducer 

is connected to the flow system with a specially constructed stainless steel 

fitting to minimize the internal volume. 

The sample collection device is an ISCO Retriever II fraction collector. 

This device controls the separation of column outflow for analysis. It also 

provides a measure of the column outflow rate. The fraction collector 

signals the computer when sample changes are made. 

V. RESULTS TO DATE 

A. Accuracy and precision of all measurements. 

The accuracy, the closeness to the correct number, and the precision, 

repeatability of successive measurements of that number, are dependent on the 
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experimental procedures and quality assurance of the test. All of the 

experimental procedures follow standard chemical and engineering methods, and 

a quality assurance report was prepared for the project manager; however, 

these are merely prerequisites to explanation of actual performance of equip­

ment and procedures. The accuracy and precision of hydraulic conductivity, 

effective porosity and other soil/solution properties are presented below. 

Hydraulic conductivity. 
Hydraulic conductivity will be determined in the field by a variation of 

the slug test and analyzed by the falling-head permeameter method (Freeze and 

Cherry, 1979). The hydraulic conductivity (K) is calculated as 

(9) 

where a is the cross-sectional area of the drop pipe, L is the length of the 

soil, A is the cross-sectional area of the soil column, t is the time of the 

test, HO is the head at the beginning of the test, and H1 is the head at 

time, t, of the test. 

The accuracy of the test is dependent on: the effectiveness of the seal 

between the split-spoon sampler used as the test orifice and the borehole; 

the measurement of the length of soil in the sampler; and the measurement of 

the reference head at the bottom of the split-spoon sampler from which H0 and 

H1 are measured. 

A poor seal cannot be monitored unless it appears that results are 

unrealistic. Error in measurement of the volume of water injected (the slug) 

and of water levels are known. 

In the laboratory, hydraulic conductivity (K) will be measured by the 

constant-head permeameter method (Freeze and Cherry, 1979) by 

(10) 

24 



where Q is the flow rate into the column (assuming steady-state flow), L is 

the length of the soil, A is the cross-sectional area of the soil, and H is 

head differential across the column (the difference measured from the trans­

ducers minus a premeasured friction loss due to fittings). 

The hydraulic conductivity is determined every five seconds so the size 

of the data set will be large, such that statistically significant informa­

tion of the precision will be obtained. Changes in conductivity over time 

will also be observed. 

To date, measurements of hydraulic conductivity are determined neglect­

ing head loss in the column end fittings. Though this loss should be equiva­

lent throughout all tests, it has not been evaluated. Therefore, the 

calculated hydraulic conductivity is not the actual conductivity of the 

medium itself. 

B. Experimental results. 

Initial experiments were conducted on a temporary apparatus in order to 

study the behavior of various sized particles in a chromatographic situation. 

The apparatus consisted of an Altex pump, Model 110 A, in series with a Data 

Instruments pressure transducer (100 psi), SSI septum injector, column, a 

second pressure transducer (50 psi), and a Gilson Filter Fluorometer, 

Model 121. Both inlet and outlet pressure transducers were monitored on a 

Cole Parmer dual-pen strip chart recorder. Fluorometric data was interpreted 

on a Hewlett-Packard 3390 A Integrator. 

Four ranges of particle sizes were utilized as the column packing in 

these experiments: 
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Particles of this size fall within the constraints, as mentioned by Gray, 

(1968) regarding column diameter versus particle diameter. By maintaining a 

30 or 40 to 1 ratio between the column and particle diameters, local velocity 

effects, such as channeling or radial velocity gradient, can be effectively 

minimized. This system was used as a column for the separation of an organic 

tracer, Rhodamine WT, from the 1X10-3M NaHC03 buffered water. All columns 

were run at a minimum of seven different flow rates in the range of 5 ml/min 

to 0.1 ml/min and all runs were done in duplicate. 

Results to date indicated that columns of this nature can and do perform 

as an effective chromatographic tool. Separation of the Rhodamine WT spike 

was attained with the expected Gaussian curve observed at greater pore water 

velocities. Recovery of the tracer was greater than 85% in all cases. How­

ever, effluent concentration curves broadened more at lower pore water veloc­

ities, i.e. 10-3 cm/sec. This phenomenon was to be expected since diffusive 

transport became more significant at these velocities. Band broadening is a 

real-time measure of diffusion processes under controlled flow conditions. 

Batch sorption tests were conducted on the four column packing materi­

als. Concentrations tested ranged from 0.119 ppm to 119 ppm. The tests were 

conducted for a period of eight days. The only material which showed a 

statistically significant decrease in fluorescence was the glass beads, 10-75 

µm diameter, and this trend was noted only at the end of the eight day test. 
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Table 2. Descr: iption of Column Packing Particles 

Column Parameters 
Particle Particle U.S.G.S. 
Size Composition Size 

# µm Classification 

1 250-500 Ottawa Sand Medium Sand 
2 106-250 Ottawa Sand Fine Sand 
3 10- 75 Glass Beads Silt 
4 5- 20. Glass Beads Silt/Clay 



The decrease in fluorescence was observed at three tracer concentrations, 119 

ppm, 11.9 ppm and 0.119 ppm. The largest sand size particles, 250-500 µm, 

exhibited a 4.73% variance from standards but only at the maximum time expo­

sure. 

Hydraulic conductivities, K, were calculated at every flow for each 

column. With increasing flow (or pressure) K increased linearly to a maximum 

after which it tailed off (see figure 4). This trend would be supportive of 

Relyea's statement that at high velocities effective pore volume of a sample 

can decrease. With the diminished pore volume a rise in pressure is necessi­

tated if velocity is to remain constant. This trend for a non-linear 

increase in pressure gradient at higher flow velocities can be seen in 

figure (5). This trend also served to support the theory of diminished pore 

volumes at higher velocities. 

The total porosity of all columns has been determined statically (refer 

to Table 3) according to the following formulation: 
V
V
 = Vcolumn " - V solid                                                                               (11) 

where: 

Vv = volume of voids 
Vcolumn = total volume of column 
Vsolid = total volume of solids 

[(wt. of solid in column)/(bulk density of solid)] 
and ETOT = (Vv/Vcolumn) x 100 (12) 

where: 
ET0T = total porosity (%) 

By this definition total porosity includes all void space whether intercon­

nected or isolated. This concurs with the use of the term as given by Dotson 

et al. (1951), Coats and Smith (1964), and Corey and Horton (1968). 
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Figure 4. Comparisons of flow rate and hydraulic conductivity. 

28 



Figure 5. Comparisons of flow rate and resultant pressure gradient. 
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Table 3. Static and Dynamic Porosity Measurements 

Vv E T O T 
VDYN* nd 

Column 

Void 
Volume 
(Static) 

ml 
35.6 
43.1 
37.1 
29.1 

Total 
Porosity 

Pore 
Volume 
(Dynamic) 

ml 

38.64±.33 
37.68±.28 
37.64±.30• 
30.49±.34  

Dynamic 
Porosity 

# 

1 
2 
3 
4 

Void 
Volume 
(Static) 

ml 
35.6 
43.1 
37.1 
29.1 

% 

36.5 
45.3 
38.4 
29.1 

Pore 
Volume 
(Dynamic) 

ml 

38.64±.33 
37.68±.28 
37.64±.30• 
30.49±.34  

% 

40.0H.3 
39.5±0.4 
39.2±0.7• 
34.0±0.3  

Average of 16 Runs 
• Average of 10 Runs 
* VDYN is equivalent to V0 (as defined by Horvath and Lin) 

A porosity based upon elution data may be defined as a dynamic porosity. 

This definition is also employed by Carlsen and Batsberg (1982), Dotson 

et al. (1951), Horvath and Lin (1976), Relyea (1982), and Schweich and Sardin 

(1981). The method of calculation is: 

nd = (VDYN/Vcolumn) x 100 (13) 

where nd = dynamic porosity 

V D Y N = volume determined by fluid flow of a tracer 

The values of dynamic porosity are equal to or greater than those calculated 

for total porosity in these four cases. This can not be attributed to reten­

tion due to the results of the adsorption studies. A combination of experi­

mental error, packing, and size distribution are more likely causes. This was 

expected since the materials used for columns 3 and 4 were uniform glass 

spheres and exhibited little variability of size distribution. Consequently, 

these types of packing yield little, if any, detectible dead-end pore space 

(Graton and Fraser, 1935). Columns 1 and 2 were composed of Ottawa sand two 

to five hundred times greater in particle diameter than the glass beads 
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composing columns 3 and 4. This large grain size and the decrease in both 

sphericity and roundness contributed to a porosity which is equal to the 

total porosity within experimental error. 

Horvath and Lin (1976) defined three different hold-up times, te, tm, 

and to, and corresponding hold-up volumes, Ve, Vm, and Vo for a variety of 

solutes in the mobile phase. These factors will be evaluated by varying the 

size of the tracer in a series of experiments and are graphically illustrated 

in figure 7. 

With respect to the preliminary experiments for columns 1 and 2, the 

chromatographic volume equals the volume of voids, Vo = Vv. (Horvath and 

Lin's Vo is equivalent, by definition, to the previous VDYN, a volume deter­

mined by fluid flow of a tracer.) Therefore, all voids within the column 

participate in fluid flow. The large grain size, the narrow grain size 

distribution, and the lack of both sphericity and roundness of particles are 

all factors contributing to the equivalency of dynamic and static void vol­

umes. Thus, the unsorbed solute, Rhodamine WT, explored mainly the intersti­

tial volume, Ve. The intrastitial volume, Vi, was very small. 

Columns 3 and 4 are composed of non-porous glass beads, a column mate­

rial impervious to solute and allowing no intrastitial fluid volume, 

i.e. Vi = 0. The use of Rhodamine WT therefore provides an exact indication 

of interstitial volume, Ve. Again, in these two columns VO is coincidental 

with Ve (i.e. V0 = Ve = Vv) the narrow grain size distribution is probably 

the overriding factor for these close porosity measurements. 

The soils chosen for this project are to be of fine-grained materials 

with a clay component. Expected hydraulic conductivities (1 x 10-7 cm/sec) 

are a hundred-fold lower than those observed with the four columns. Result­

ing porosities, therefore are expected to have considerable intrastitial 

31 



Figure 6. Schematic representation of different mobile phase hold-up 
volumes (and hold-up times) measured with tracers in 
chromatography experiments. 
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volumes. Dead-end pore volume will become a recognizable factor with these 

pore and particle size distributions over a range of flow rates. The chroma­

tographic hold-up volume, Vo, can be measured by use of the conservative 

tracer, HTO. A second tracer of larger molecular dimension, i.e. Rhodamine 

WT or poly (ethylene oxide), can be used to determine the minimum intersti­

tial volume available for flow. This information should lead to a bank of 

porosity values as defined by the molecular dimensions of the two tracer 

molecules. 

VI. FIRST YEAR PROGRESS 

Progress during the first year has been as planned. • The review of 

pertinent literature has been completed and is briefly summarized in this 

report. The agronomic and hydrogeologic literature confirmed the lack of a 

straight-forwarded method for measuring effective porosity. Chemical or 

chromotographic literature supports the application of chromographic tracer 

studies as a means for measuring effective porosity. 

Preliminary development and testing of the soil sampling and laboratory 

testing apparatus has been completed. Soil samples were collected from a 

site where drilling was being conducted for another project. Tracer studies 

and hydraulic conductivity measurements have been completed on glass spheres 

and Ottawa sand. Hydraulic conductivity tests have been conducted on the 

collected soil sample. 

Progress during the first year has been rewarding. The research team 

has confidence in its research plan and is in a position to complete the 

project on time. The results of the completed project should fulfill the 

goals of this project and provide the scientific community with a significant 
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step toward understanding the movement of solutes through fine grained geo­

logic materials. 

VII. SECOND YEAR SCHEDULE 

Samples from one of the three selected sites will be collected within 

the first two months of year two. Simultaneous hydraulic conductivity and 

tracer tests will be conducted on these samples during the winter months. 

Samples from the second site will be collected in February and those from the 

third site will be collected in June 1985. Approximately three months are 

allocated for samples from each site. 

Traditional engineering and agricultural tests will be performed on all 

samples as soon as collected. Regression of test results will be performed 

to search for predictive or suitable estimation procedures. 

In addition to the final project report, papers documenting the effec­

tive porosity measurement technique are planned for two scientific journals. 

A third paper addressing the importance of effective porosity measurements in 

predicting rates of solute migration through geologic materials also is 

planned. 
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