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THE PROCEDURES, OBSERVATIONS, AND RESULTS 
OF A MIXING ZONE STUDY FOR COMBINED 
SEWER OVERFLOWS AT PEORIA, ILLINOIS 

by 

Thomas A. Butts, Ralph L. Evans, 
Dana B. Shackleford, and Donald H. Schnepper 

INTRODUCTION 

Almost all major communities located along the Illinois River are 

partially served by combined sewers which overflow directly to the 

waterway during wet weather. These overflows are comprised of surface 

runoff and sewage, which can cause water quality problems in the 

receiving stream. The pollution potential of these discharges had never 

been directly investigated until 1982. During the summer of 1982, at 

the request of the City of Peoria, the State Water Survey (SWS) 

conducted a comprehensive study of the effects of combined sewer 

overflows (CSOs) on the river water quality. The study was partially 

funded by the Illinois Environmental Protection Agency (IEPA) and was 

coordinated by the Greater Peoria Sanitary District. It was designed to 

determine if Peoria CSOs were violating IEPA water quality standards 

under various runoff and river flow conditions. 

The IEPA suggested that the river water quality sampling results 

would be more meaningful if mixing zones in the areas of the outfalls 

could be delineated. This entailed designing and conducting a study 

entirely independent of the water quality sampling phase. The river 

water quality sampling results have been evaluated and reported upon in 

1 



a report by the staff of the State Water Survey's Water Quality Section 

(1983). The results of a study conducted during the summer of 1983 to 

delineate mixing zones are reported here. 

General Information 

Peoria is served by both combined and separate sewers. The combined 

system consists of approximately 123 miles of conduit draining 2950 

acres, including the older areas of the city known as the "east" and 

"west" bluffs and that area lying below the bluffs and bordered by the 

river. During storms, the combined sewers overflow directly into the 

river at 20 locations along approximately four miles of riverfront. The 

amount of overflow is controlled by 23 regulators. Generally, the 

regulators are adjusted to divert flows, in excess of dry weather flow, 

directly into the river. The dry weather discharge is passed into a 

riverfront interceptor for conveyance to the wastewater treatment 

facilities of the Greater Peoria Sanitary District (GPSD). 

The locations of the 20 overflows are shown in figure 1. The 

overflow sites and conduits are vestiges of the old combined sewer 

system which discharged directly into the river before the interceptor 

was built and treatment provided. Most of the outfall conduits are old 

and lack uniformity in design and structural integrity. Some are 

relatively small sewer pipes, while others are so large a person can 

easily walk upright in them. Examination of figure 1 shows that the 

river's configuration varies considerably throughout the outfall area. 

Some of the overflows discharge into a wide, lake-like environment while 
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Figure 1. Peoria CSO locations 



others discharge into a relatively constricted channel; one discharges 

in a protected marina and another into a shallow backwater bay. These 

factors all combine to form a complex and difficult study situation 

relative to generating typical mixing zone information. 

Regulatory Implications 

Until the early 1970s, wet-weather, combined sewage diversion to 

Illinois streams was an acceptable practice. The rationale for this 

acceptance was that, since CSOs occurred during wet weather, stream 

flows were high, thereby providing sufficient dilution to minimize water 

quality degradation. With the passage of the Illinois Environmental 

Protection Act of 1970 and the Federal Water Pollution Control Act of 

1972, the practice became unacceptable. These Acts led to the 

development of stream water quality standards. Implementation of these 

stream standards was largely contingent upon the successful enforcement 

of effluent standards and limitations imposed upon specific discharges 

via a permit issuance program titled the National Pollutant Discharge 

Elimination System (NPDES). Conflict between the two sets of standards 

occurred when a water quality standard was more restrictive than the 

corresponding effluent standard stipulated in the discharger's NPDES 

permit. 

The Illinois Pollution Control Board attempted to reconcile this 

conflict by allowing mixing between the effluent discharge and stream 

flow within a confined area. Specifically, Section 302.102 of the 

Board's Rules and Regulations relative to water pollution outlines the 

requirements for a mixing zone, to wit: 
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a. In the application of this Chapter, whenever a water 
quality standard is more restrictive than its 
corresponding effluent standard then an opportunity shall 
be allowed for the mixture of an effluent with its 
receiving waters. Water quality standards must be met at 
every point outside of the mixing zone. The size of the 
mixing zone cannot be uniformly prescribed. The 
governing principle is that the proportion of any body of 
water or segment thereof within mixing zones must be 
quite small if the water quality standards are to have 
meaning. This principle shall be applied on a 
case-by-case basis to ensure that neither any individual 
source nor the aggregate of sources shall cause excessive 
zones to exceed the standards. The water quality 
standards must be met in the bulk of the body of water, 
and no body of water may be used totally as a mixing zone 
for a single outfall or combination of outfalls. 
Moreover, except as otherwise provided in this Chapter, 
no single mixing zone shall exceed the area of a circle 
with a radius of 183 m (600 feet). Single sources of 
effluents which have more than one outfall shall be 
limited to a total mixing area no larger than that 
allowable if a single outfall were used. 

b. In determining the size of the mixing zone for any 
discharge, the following must be considered: 

1. The character of the body of water, 

2. The present and anticipated future use of the body 
of water, 

3. The present and anticipated future water quality, 

4. The effect of the discharge on the present and 
anticipated future water quality, 

5. The dilution ratio, and 

6. The nature of the contaminant. 

c. In addition to the above the mixing zone shall be so 
designed as to assure a reasonable zone of passage for 
aquatic life in which the water quality standards are 
met. The mixing zone shall not intersect any area of any 
such waters in such a manner that the maintenance of 
aquatic life in the body of water as a whole would be 
adversely affected, nor shall any mixing zone contain 
more than 25 percent of the cross-sectional area or 
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volume of flow of a stream except for those streams where 
the dilution ratio is less than 3:1. 

These mixing zone rules and regulations were somewhat arbitrarily 

devised. They were developed on rational ideas and concepts rather than 

on sound scientific principles and data. During the formative stage of 

the design of the CSO river sampling plan, IEPA officials emphasized the 

importance of sampling within the mixing zone as well as outside it. To 

meet this requirement the Water Survey proposed a single mixing zone 

which would encompass all the outfalls but still meet the criteria 

outlined in paragraphs a, b, and c above. The proposed zone would have 

been about 19,000 feet long and would have extended an average of 60 

feet from shore, basically equalling the area of a circle 600 feet in 

radius. In the narrow river reach subjected to CSOs, the proposed 

mixing zone could have extended at least 100 feet from shore, and it 

would not have contained more than 25 percent of the cross-sectional 

area or flow. 

This proposal was not accepted by IEPA officials; they insisted that 

direct mixing zone determinations be made. After an in-depth 

investigation of possible alternatives was conducted, a method of 

simulating overflows by pumping river water into the overflow pipe and 

injecting this water with flourescent dye was selected. The mixing 

characteristics of the dye-injected discharge would then be traced under 

steady state conditions. 

Ideally, the mixing zone determinations should have been made before 

the wet weather river sampling was started so that correctly positioned 

sampling within the mixing zone could be achieved. Preliminary 
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investigations revealed conclusively that an in situ mixing zone study 

could not be completed prior to the start of the wet weather river 

sampling nor could it be feasibly done concurrently with river sampling. 

An entirely independent study had to be undertaken at a later time. The 

CSO river water quality sampling was completed during the summer of 

1982, whereas the mixing zone study was completed during the summer of 

1983. 

Scope and Purpose of Study 

Initially, a comprehensive study was visualized. It was to be 

designed to provide information that could be extrapolated for use in 

defining mixing zones at CSO locations throughout the length of the 

Illinois River. In the end, however, practical problems, many of which 

were not apparent until field operations got under way, limited the 

scope of the study and the applicability of the data generated. Instead 

of examining at least one generalized sewer outfall type over a wide 

range of sewer and river flow conditions, the final study was limited to 

examining two types of outfalls occurring at. one general site for 

intermediate river flows. Consequently, the original intent and purpose 

had to be modified. In the final analyses, the purposes were reduced 

to: 

1. Producing in situ mixing zone information of sufficient 
scope and magnitude to provide regulatory agencies with 
some idea of factors governing the configuration of a 
mixing zone. 

2. Formulating and developing a methodology by which future 
mixing zone studies could be patterned. 
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3. Generating information which could possibly be used by 
hydraulic engineers to verify hitherto unsubstantiated 
theoretical mixing models. 
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SAMPLING DESIGN AND DATA EVALUATION PROCEDURES 

The study was developed around the concept of directly measuring the 

mixing characteristics of sewer discharges and river water by simulating 

full-scale overflows into the river. The area of influence of the 

overflow in the river was delineated by the flourescent dye tracer 

Rhodamine WT. 

Background Information 

A comprehensive computer search of the literature was made to gather 

background information for developing a study design. Little pertinent 

information was found. Most of the published information was only 

slightly related to the type of study envisioned. Much of it concerned 

theoretical and/or idealized concepts. Probably the most complete 

reference on the subject of stream mixing is the publication by Fischer 

et al. (1979), related to all facets of the subject. Its most relevant 

portion is Chapter 5, "Mixing in Rivers," which makes pointed references 

about the general lack of field data needed to substantiate theoretical 

or laboratory-generated concepts. • As an example, in Section 5.1.2 the 

authors note: 

We know of no experiments on vertical mixing in a 
depth-varying flow, but we see no reason why the customary 
practice should not be adequate. On the other hand, the rate 
of transverse mixing is strongly affected by the channel 
irregularities because they are capable of generating a wide 
variety of transverse motions....However, there have not been 
enough experiments in flumes, let alone in natural channels, 
to define how the mixing coefficients vary with the size of 
the irregularity, the best one can say is that the bigger the 
irregularity, probably the faster the transverse mixing. 

A recent extensive literature review and report on stream mixing by 
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Lin (1983) indicates that little information has been generated in the 

last few years to fill the voids mentioned by Fischer and his 

co-authors. Lin, in his "Project Summary," concluded: 

The capability to analytically solve the mixing phenomenon in 
rivers is very limited, as can be seen from the literature 
being reviewed. The present mathematical model [as developed 
by Lin] which includes velocity variations also has 
limitations such as the restrictions of constant channel width 
and depth. There is, therefore, a need to develop a model 
which takes variations of depth, width, and velocity in a 
river into consideration. 

The only practical in situ study undertaken historically which was 

found to even remotely address objectives similar to those proposed for 

this project was performed by Hetling and O'Connell (1966). Rhodamine 

WT dye was used to characterize the mixing of the Washington, D. C., 

Blue Plains Sewage Treatment Plant effluent in the Potomac River 

estuary. Dye was injected continuously into the outfall sewer for 13 

days, and the extent of its dispersion in the tidal waters was traced 

using a fluorometer dispatched aboard a moving boat. Obvious 

differences exist between this situation and that for periodic sewer 

overflows into a moving stream. It provided only limited information 

and help relative to designing this study. 

Other mixing zone and diffusion studies reviewed in detail were 

those of Schiller and Sayre (1973), Maxwell and Chang (1971), Rutherford 

et al. (1980), Paily (1981), Sanders et al. (1977), and Neely (1982). 

Many additional articles and reports were superficially reviewed but 

will not be commented upon in this section. Some will be briefly cited 

in later sections to present specific information that appeared to be 

relevant to the study design and implementation and to data reduction 
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and analysis. 

Many studies have been conducted to investigate the dispersion of 

cooling water effluents in surface waters ranging from fresh water lakes 

and streams to marine environments. Mixing and dispersion involve 

complex mathematical theories and concepts which have been verified 

almost exclusively using laboratory experiments. Fischer's extensive 

works and publications are generally abstract and theoretical, but with 

the limited in situ data available, he has, at times, attempted to 

"marry" some theoretical concepts and formulas to practical problems and 

solutions. 

Neely (1982) has attempted to apply some of the theoretical 

information to practical mixing problems relevant to both conservative 

and nonconservative chemical and biological pollutants. His approach is 

succinct, relatively simple, and possibly practical. 

Schiller and Sayre (1973) have provided a very comprehensive manual 

concerning buoyant thermal discharge dissipations. Extensive graphs and 

figures are presented which can be used to evaluate mixing zones using 

such known factors as temperature, stream and sewer flows, and outfall 

geometry and submergence. The most useful information extracted from 

this publication was that the outfall configuration and degree of 

submergence significantly influence mixing, at least relative to cooling 

water discharges. Consequently, outfall shapes, sizes, and degrees of 

submergence were given full consideration in the early formulation of 

the study design. 

In reviewing the Maxwell and Chang (1971) publication on diffusion 
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patterns in flow systems, the reader quickly becomes aware of the 

complex analytical and mathematical procedures used to study mixing 

phenomena. Although the authors devise procedures for predicting mixing 

for discharge outlets and for predicting the diffusion of tracers in 

streams, the methods appear to be impractical for ordinary use. 

The work of Rutherford et al. (1980) provided some insight into the 

mixing and dispersion of a dye tracer in a large river. The researchers 

had hoped that the dye dispersion would conform to the Fickian theory of 

longitudinal dispersion; however, it did so only to a limited degree. A 

poor match-up of theoretical prediction to field observations resulted 

because the dye persistently hung up in dead zones along the shoreline. 

Aerial photography was used for estimating lateral dispersion 

coefficients. 

The Paily (1981) article deals principally with the development of a 

comprehensive mathematical model for describing cooling water mixing in 

a river. Of significance, however, is Paily's review of mixing zone 

criteria established by regulatory agencies for the 15 states either 

bordered or bisected by the Mississippi and Missouri Rivers. The 

various state regulatory requirements appear to have been developed with 

four basic concepts in mind: 

1. Stream hydrologic, hydraulic, and physiographic 
characteristics. 

2. Future water use and water quality. 

3. Dilution ratios relative to 7-day, 10-year low flows. 

4. Allowances for permanent zones-of-passage for aquatic 
drift and wildlife. 
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Paily feels that the most important criterion to be used in establishing 

mixing zone boundaries is number 4; i.e., the zone-of-passage concept. 

He also states that mixing zone overlapping should be avoided or 

minimized to prevent adverse synergistic effects. 

Sanders et al. (1977) performed a large-scale mixing study using a 

dye tracer in a small river having a relatively uniform cross section 

over much of its length. A three-dimensional time-varying model was 

used to effectively derive longitudinal, lateral, and vertical turbulent 

diffusion coefficients. A unique dye dispersal sampling system was 

devised to sample dye slugs as they passed two different sections of the 

stream. Slug injection was used in place of steady state, continuous 

injection because of economics and sampling design simplicity. Also, 

the uniform stream geometry made slug injection possible. However, the 

analytical solutions for determining the diffusion coefficients are much 

more involved and complex for slug injections, and precision and 

accuracy are less than for continuous injections. The authors state 

categorically, however, that continuous point source injection is the 

preferred method • principally because once steady-state conditions are 

established, dye concentrations become independent of time, thereby 

permitting continuous and/or multiple sample collecting. This smooths 

sampling error by increasing precision, and it simplifies the analytical 

procedures required for determining diffusion coefficients. These 

observations, together with the fact that the stream geometry in the 

area of the Peoria CSOs is highly irregular, dictated the use of a 

continuous injection design plan for this study. 
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Physical Considerations 

Many physical factors had to be considered in the design and 

implementation of the mixing zone study. The riverfront overflow layout 

and the interrelationships between individual sewers and/or groups of 

sewers influenced the design approach. Figure 1 presents an overall 

plan view of the 20 discharge points, and table 1 gives hydrologic, 

hydraulic, and geometric information relative to each. Appendix A 

includes photographic views of each outfall or, in the case of totally 

submerged discharges, the outfall location. 

Table 1. Sewer Locations and Characteristics 

Corps Peak Flow Rates (cfs)** Discharge Submergence 
Sewer River Sewer for Rains in in/hr of Condition at Flat Pool 
Name Mile Size* 0.37 1.56 Full Partial Free Overbank 

Caroline 163.82 36 5 64 X 
Spring 163.62 60 21 270 X 
Morgan 163.31 48x58 0 36 X 
Green 162.94 30x45 4 48 X 
Hancock 162.90 30 0 2 X 
Eaton 162.72 60 8 .92 X 
Fayette 162.71 42 22 220 X 
Hamilton 162.68 42 0 8 X 
Main 162.61 42 10 88 X 
Fulton 162.50 36 0 4 X 
Liberty 162.43 48 1 8 X 
Harrison 162.37 20 1 6 X 
Franklin 162.28 60 0 3 X 
Walnut 162.21 34x51 6 68 X 
State 162.13 30 0 18 X 
Oak 162.05 48 8 100 X 
Cedar 161.51 72 44 458 X 
South 160.97 (2)48 6 84 X 
Sanger 16.0.55 72 3 28 X 
Darst 160.12 84 36 430 X 

Single and double values represent circular and elliptical sections, 
respectively 
Based on preliminary estimates from Randolph and Assoc. facility 
planning document (1976) 
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A comprehensive, rational study design has to include sever outfall 

types, sewer overflow rates, and river flows and/or stages. Four basic 

outfall conditions exist, as shown in table 1. Ideally one of each 

representative sewer type should be sampled over a wide range of sewer 

discharges and river flows. The most practical and economical approach 

would be to bracket the river flow by sampling during extremes in flow; 

extrapolation techniques could be utilized to approximate mixing zones 

for intermediate situations. During each river condition, sewer 

overflow rates would be simulated. Therefore, an all-encompassing 

sampling program would include a minimum of 16 runs: 4 sewer types, 2 

river flows per sewer type, and 2 overflow simulations per sewer per 

river flow. The practicality of accomplishing such an ambitious 

endeavor was investigated. 

First, consideration was given to developing a means of simulating 

or creating overflows. Several schemes were investigated including: (1) 

plugging and filling a large sewer section (the filling could be 

accomplished by pumping river water, diverting sewage, or using fire 

hydrant water) and then releasing the "plug" flow; (2) creating a 

continuous steady flow by diverting sewage, using fire hydrant water, or 

pumping river water into a manhole in the proximity of the river bank; 

and (3) using natural overflow events. 

After thorough consideration, the concept of plugging the sewer was 

abandoned. Sufficient fire hydrant water was available at most sites, 

but city and fire officials were somewhat unreceptive to using this 

water unless absolutely necessary. For water quality, public health, 

and public relation considerations the idea of diverting sewage was 
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rejected. Filling by pumping would be possible; however, it would be 

expensive when coupled with the cost of purchasing the plugs. Plugs 

designed to seal sewer sections are commercially available, but they are 

expensive and difficult to use, especially under such controlled 

conditions as would be required for this study. Also, the data 

generated by using plug flows are difficult to analyze mathematically. 

Development of dispersion coefficients in conjunction with a predictive 

model is impossible using plug flow data unless idealized conditions 

exist in the receiving stream. 

Using natural overflow events did not appear to be an attractive 

alternative for several reasons, the principal one being the lack of 

finite control. Almost everything would be left to chance. The 

probability of experiencing the desired matching sewer overflows and 

river discharge rates would be remote. The unsteady sewer flows would 

create problems in maintaining a constant dye concentration in the 

discharges, and the attendant wet weather would create difficult and 

unpleasant sampling conditions. Also, data analyses and modeling would 

probably prove to be even more difficult than for a plug flow scheme. 

The only viable alternative appeared to be to pump river water into 

sewers to simulate overflows. However, a number of potential problems 

became apparent during the formulation of procedures to be used in this 

approach. Securing a pump of sufficient capacity to realistically 

simulate overflows proved to be very difficult. Various local, state, 

and federal agencies were contacted as to the availability of 

large-capacity, portable, self-powered pumps on a loan basis. Agencies 
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contacted were the Peoria Fire Department, the Greater Peoria Sanitary 

District, the Peoria Water Company, the Metropolitan Sanitary District 

of Greater Chicago, the Illinois State Emergency Services and Disaster 

Agency, and the U. S. Army Corps of Engineers. Almost all could provide 

pumps, but none were of sufficient capacity. 

The largest available pump was an 8-inch unit having a maximum 

capacity of approximately 2000 gpm (4.5 cfs), a discharge rate well 

below the minimum desirable level needed to reasonably simulate overflow 

rates produced even during small rainfall events (see table 1). An 

exhaustive canvass of heavy equipment rental firms concerning leasing a 

pump also was unproductive; no large portable pumping units were 

available, and rental fees for even small units were prohibitive. New 

pumps of the minimum desired size were not readily available. One 

manufacturer was found that made an acceptable unit, which under low 

suction lifts and small head losses could pump up to 4000 gpm (9 cfs). 

The discharge conduit for the pump had to be carefully selected 

also. It had to be lightweight and smooth, with low head loss 

characteristics, and had to be amendable or adaptable for use with some 

type of temporary, quick coupling device. 

Access to either the river and/or sewer manholes to set up the pump 

and piping would be difficult. A thorough survey was made of all 20 

overflow sites, and only a limited number of these appeared useable. 

Accessing the pump by land, water, or both was considered. A barge 

fleeting service company was contacted relative to water access, but the 

arrangements were found to be potentially cumbersome, time-consuming, 
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and expensive. Daily costs up to $900 could have been incurred, 

including pump loading and unloading fees, flat-barge rental, and towing 

charges. In the end only land access was considered. A brief 

evaluation of each specific outfall site will be presented in the 

following paragraphs. During the discussions, reference should be made 

to the photographs contained in Appendix A. 

Caroline - This outfall is totally submerged under about 3 feet of 

water inside the Detwiler Marina harbor about 25 feet north of the boat 

ramps. This represents an atypical situation which did not warrant 

study. It is, however, the only location at which the pump and piping 

could have been easily placed. 

Spring - This sewer discharges into a deep ditch about 250 feet from 

the river. The pump could be easily moved to the top of the river bank, 

but the suction lift would have been excessive during normal pool stage. 

In addition, a run here would have produced questionable results since 

the creek-like discharge empties into a shallow section of the river 

more lake-like than riverine. Pump placement using water transportation 

would not have been possible here because of the shallow littoral area. 

Morgan - Reference to the appropriate photographs in Appendix A 

clearly reveals the handicaps which would be encountered by locating a 

study site here. Foremost is the fact that the sewer opening has become 

about two-thirds plugged by riprap and debris. In addition, the steep, 

high bank, set back over 50 feet from the river, would preclude pumping 

from land and the shallow shore area would make a water set-up 

difficult. To compound the potential difficulties, the nearest manhole 

is over 400 feet from the river. 
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Green - All the problems inherent at Morgan, plus additional ones, 

exist at this site with the exception that the shore area is deeper and 

more riverine in nature. The outfall is almost totally silted shut, the 

bank is steep and wooded, the nearest manhole is over 400 feet from the 

river, and barge docking facilities exist immediately downstream — an 

intolerable interference. 

Hancock - The outfall is located in the busiest area of a gravel 

unloading dock. The pipe opening is almost constantly blocked during 

unloading operations. The very nature of its location precludes its use 

as a study site. 

Eaton - This outfall is located in a downstream extension of the 

gravel barge unloading facilities. However, unlike Hancock, this area 

is seldom used for docking or unloading; consequently, it held some 

promise as a study site. The pump could be easily placed at the top of 

the sheet metal piling. The suction lift of 18 feet could be managed, 

albeit with some difficulty, by coupling two available 13-foot hose 

lengths. However, a significant obstacle to the utilization of this 

site is the long distance to the nearest manhole and the type of area 

which has to be crossed to reach it. Over 400 feet of pipe would have 

to be laid, with much of it traversing an access road (heavily travelled 

by cement mixer trucks) and a railroad yard. As a consequence, this 

site was considered a last alternative for studying a partially 

submerged outfall discharge. 

Fayette - Two sewers discharge side by side just below the 1-74 

highway bridge. The one nearest the bridge is a combined sewer while 
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the one just downstream and backset somewhat is a storm sewer receiving 

runoff from the 1-74 roadway. A pump could be positioned on the 

headwall with some effort, but overall the site has very limited 

possibilities. The nearest manhole is far removed from the river, 

requiring the crossing of the cement truck access and railroad yard, and 

in addition, the manhole is located in the center of well-traveled Water 

Street. Another drawback is that the sewer overflows into a small bay 

area characterized by eddy currents. 

Hamilton - This outfall is almost 80 percent silted shut. For that 

reason alone it is unsuitable for study. Also, pump access either by 

river or water would be extremely difficult and the nearest manhole is 

over 400 feet from the river at the intersection of Water and Hamilton 

Streets. 

Main - In terms of accessibility and ease of setting up, this is an 

ideal site. The outfall is located at the edge of a parking lot and the 

nearest manhole is fewer than 300 feet from the water edge. However, 

river sampling would be impossible since the retired ferry, the City of 

Baton Rouge, is permanently moored immediately below the outfall for use 

as a dock for the excursion boat, the Julie Belle Swain. 

Fulton - Some question exists about even the existence of this 

outfall; supposedly it is a submerged discharge located about 400 feet 

below the Main Street overflow just above the end of a sheet metal 

piling riverfront retaining wall. The nearest manhole is not definitely 

known. It is suspected of being in a line which angles toward the river 

from the Main Street overflow sewer manhole. Pump and pipe placement 
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would be relatively easy here; however, constant river traffic from the 

Julie Belle Swain and shore side barges could cause serious sampling and 

data interpretation problems. 

Liberty - This sewer is submerged at an unknown location below a 

storm water sewer headwall. The manhole is about 360 feet up Liberty 

Street. Pump and pipe placement would be possible, but the riverside 

situation is similar to that at Fulton; heavy barge traffic passes 

within 20 feet of the shore, and often tows temporarily moor here while 

waiting for clearance to pass under the Franklin Street lift bridge. 

Harrison - Land access to this sewer is blocked by a high chain-link 

fence surrounding private property. Pump and pipe placement is 

essentially impossible by either land or water. The discharge is 

located only a few hundred feet upstream of the Franklin Street bridge, 

and river traffic interference would be considerably worse than at 

Liberty. Structurally this is the smallest overflow pipe in the system. 

Franklin - This overflow is located immediately downstream of the 

Franklin Street bridge, and any data generated by a study here would be 

greatly influenced by barges maneuvering to pass through the lift span 

of the bridge. The barge tows often reverse engines and side shift to 

make the passage, creating waves and churning motions in the water near 

the shore. 

Walnut - Walnut is several hundred feet downstream of the bridge, 

and potential study results would be subjected to the same river traffic 

interferences as described for Franklin. In addition, an old railroad 

bridge pier has been left standing about 50 feet from shore directly in 
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line with the outfall. Even if simulated overflows would have been 

conducted here or at Franklin these sites would have eventually had to 

be abandoned since a demolition crew started dynamiting and destroying 

the old pier early in the summer. 

State - Initially, this site appeared to be ah attractive location 

for several reasons. State Street is paved up to the river, and the 

nearest manhole is only about 350 feet up the street. Also two types of 

sewers could be studied after pump placement, since a storm sewer 

(discharging overbank) and a submerged combined sewer exist side by 

side. Devising a method for placing the pump close to the river to 

effect suction lift appeared feasible. Some ingenuity in doing this, 

however, would have to be exercised because the bank is steep and 

riprapped. Also, a set of railroad tracks presents a slight obstacle to 

pipe placement, and barges at times dip close to shore in preparing for 

the Franklin Street Bridge passage. This latter fact would preclude 

water placement of the pump. 

Oak - The situation at Oak appeared similar to that at nearby State; 

i.e., if a system could be devised to get the pump sufficiently close to 

the river to pull suction, then simulated runs could be made. This 

overflow represents a partially submerged condition. Therefore, coupled 

with the two conditions at State, three of the four sewer outfall types 

could be studied with a minimal movement of materials and equipment. 

The nearest manhole is located about 300 feet from the river in the 

center of the Post Office truck unloading area parking lot. Mail trucks 

would have to be rerouted, causing some inconvenience. Some sampling 
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interference from river traffic could result since the sewer is located 

at the spot where barges initiate maneuvering for passage at the 

Franklin Street Bridge. Both the State and Oak sites have an added 

advantage over all other locations in that the river channel is 

basically natural and straight, and the cross sections are relatively 

uniform for about 3000 feet below the State outfall. No other river 

reaches in the outfall area come close to displaying these desirable 

characteristics. 

Cedar - This sewer offered distinct set-up possibilities. The 

advantages included the availability of two sewer types discharging side 

by side. A 24-inch storm sewer discharges overbank immediately upstream 

of the partially submerged combined sewer. Also, the manholes for both 

are only about 100 feet back from the river. The site is directly 

behind the Water Quality Section office building. A sheet metal piling 

head wall is available for pump placement at the water edge. Some 

disadvantages are: (1) the operation would have to take place on heavily 

guarded private property housing a large distilling and grain shipping 

industry, (2) constant movement of grain hauling trains would present 

hazardous working conditions, (3) the piping would have to be laid under 

a set of railroad tracks, (4) it would not be possible to sample a 

significant portion of the mixing zone because of grain loading at a 

docking area beginning 600 feet below Cedar, and (5) a highly irregular 

shoreline and variable cross sections would make data interpretation 

difficult. 

South - The potential for studying this site is limited. The 
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principal advantage is that the nearest manhole is only about 150 feet 

from the river. However, pump placement by either land or water would 

be extremely difficult. The steeply inclined bank is over 50 feet from 

the water edge, while the water is only about 1 foot deep 100 feet from 

shore. A sandy shoal has developed directly out from the outfall and 

emerges as an exposed sand bar below. During normal pool stage, the 

entire area can be briefly dewatered by drawdown created by some barge 

and tow passings. 

Sanger - This location offers some potential as a study site. Pump 

placement by water would be relatively easy, and placement by land would 

be difficult but possible. The nearest manhole is supposedly located 

300 feet from the river in the middle of the street immediately north of 

the railroad tracks. However, it could not be located; apparently it 

has become buried due to a steady build-up of gravel in the roadway. A 

barge has been permanently grounded 50 feet below the outfall which 

would influence the mixing characteristics. This would produce results 

that probably would not be transferable to similar outfall types. 

Darst - This site offers no potential for study. The sewer empties 

into a large shallow bay area over 700 feet from the river proper. The 

bottom is shallow, but the detention time in the bay is great, and the 

bottom sediments, consisting primarily of sludge, would absorb much of 

the dye before it reached the river. The nearest manhole is only 250 

feet from the sewer headwall. The pump, however, could not be placed 

anywhere in the bay area without causing a recycling of dye-contaminated 

water. 
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The details of the reconnaissance of the combined sewer overflow 

system have been presented here because it serves at least three 

purposes. To begin with, it is the first systematic documentation of 

the condition and location of the conduits at the discharge points. The 

exact locations of a number of overflows were questionable (some still 

are). Authorities considered Main Street a storm sewer discharge, but 

interviews with the owner of the "City of Baton Rouge" and direct 

observations proved it was not. The exact locations of the submerged 

discharges at Caroline and State Streets were determined. A scuba diver 

was used to locate Caroline, and dye injection was used to locate State. 

State was found to be submerged in about four feet of water immediately 

below the State Street storm sewer headwall. It was previously thought 

to discharge somewhat above the headwall. Some question still exists as 

to the exact location of Liberty and as to whether Main has functionally 

replaced Fulton as the receiver for overflows from the Main-Fulton 

portion of the sewer system. Small but persistent dry weather 

discharges were observed at Green, Franklin, and South. Those at 

Franklin and South have been corrected. 

Second, the documentation provides the information necessary for 

developing a study plan and sampling scheme. Third, the information 

clearly shows that, while general classes of sewer discharges exist, 

each outfall is essentially unique, and any mixing zone data developed 

at a given site must be applied with caution to any other location 

either within or outside the Peoria system. 

State Street was selected as the first choice. The second and third 
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most attractive sites were sewers at Oak and Cedar located below the 

State site. One baseline could be established to include all three 

outfalls. A carefully surveyed line was measured beginning with State 

as 0 + 00 and extending 8000 feet to a point just below Sanger. Between 

State and South the baseline was easily established along the railroad 

tracks which parallel the river between these two points. At South the 

river and tracks diverge and the baseline had to be established 

overland. 

Overflow Simulation Equipment 

Pumping river water to a manhole in a sewer conduit to simulate an 

overflow was the method chosen for simulating overflows. Securing 

applicable equipment to accomplish this proved to be difficult, 

time-consuming, and expensive. In some instances, trial and error 

situations developed, resulting in unforeseen errors, delays, and 

expenses. In several instances Peoria Sanitary District, City of 

Peoria, and Peoria Water Company heavy equipment had to be retained to 

aid in the operation. Often questions directed to equipment 

manufacturers and suppliers relative to specific applications of 

materials and products could not be answered. Applications had to be 

made to situations for which some products were not specifically 

designed. 

Pumping Unit 

Acquiring a pump of sufficient size to produce even a reasonable 
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overflow proved to be difficult. Because no lendable or leasable pump 

could be found, one had to be purchased. Through a local vendor, a used 

10-inch Jaeger Sykes pump capable of producing up to 8.25 cfs was 

secured. The cost was $7500, or about a third of the cost of a 

comparable new unit. The pump and prime mover specifications are given 

in Appendix B; the unit, as set up at Cedar, is shown in figures 2 and 

3. 

Two minor modifications were made to the pumping unit before 

delivery—an oil pressure gage and a muffler were installed. The diesel 

engine, even after installation of the muffler, was extremely loud, and 

this necessitated wearing ear protection when in close proximity to the 

running diesel. The pump and engine operated satisfactorily except for 

the occurrence of two minor problems. Once the fuel line became air 

locked and had to be systematically bled; on another occasion, the 

radiator hoses developed intolerable leaks and had to be replaced. 

Piping and Fittings 

The selection of adequate piping proved to be as difficult as 

finding a pump. The conduit had to meet four requirements: (1) it had 

to be lightweight and readily moveable by hand, (2) it had to have a low 

friction factor to minimize head loss, i.e., capacity, (3) it had to be 

capable of being easily and quickly coupled or uncoupled, and (4) it had 

to be affordable. 

Piping made of aluminum, asbestos-cement, and plastic appeared to be 

sufficiently lightweight for use. Aluminum irrigation pipe with 
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Figure 2. Pump installation 
at Cedar Street 

\ 

Figure 3. Pump installation at Cedar Street , 
showing suction line 

28 



standard interlocking couplings was given first consideration. This 

idea was quickly abandoned when this type of pipe was found to be made 

only in sizes up to 8 inches—much too small to meet criterion (2). 

Asbestos-cement pipe was ruled out principally because it has 

unacceptable head loss characteristics; in addition, it would be 

difficult to temporarily couple, is relatively expensive, and is only 

marginally lightweight. A polyethylene plastic conduit was found which 

appeared to meet all four criteria to some degree. NIPACK, a 

polyethylene conduit manufactured by ARCO Durethene Plastic, Inc., was 

relatively inexpensive, lightweight, strong, and very smooth. The plain 

spigot ends, designed for butt fusing, were amendable for use with some 

type of compression or band-seal coupling. Based on these 

considerations, 440 feet of 12-inch conduit was purchased. The 

specifications and some physical properties of the pipe and material are 

presented in Appendix B. 

The pipe comes in 40-foot lengths. To facilitate handling, hauling, 

and storing, these lengths were cut into 20-foot sections using a 

circular saw equipped with a ply-tooth blade. Twenty feet of this pipe 

weighs only 133.2 pounds, a load which can be managed by two people. 

Figures 2, 4, and 5 show the conduit system in place and in operation at 

Cedar. 

The polyethylene pipe, while adequate, proved to be considerably 

less than ideal. Its heat absorbing black color coupled with its high 

thermal expansion coefficient (see Appendix B) caused excessive diurnal 

movement, resulting in nightly joint separations. The pipe would heat 
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Figure 4. Pump and piping setup 

Figure 5. Sewer manhole injection point 
and river outfall 
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to 130 to 140°F during the day when assembled and then cool below 

70°F at night. For 300 feet of pipe this results in over 20 inches of 

contraction. Most of this would occur at two or three joints, causing 

considerable leakage. The problem was partially solved by sandbagging 

critical joints as shown by figures 4, 5, and 6. Also, as will be 

discussed later, a newly developed more structurally rigid coupling came 

on the market after the start-up of the project. Several were purchased 

on a trial basis, and they proved to be capable of holding the joints 

more securely than the compression-friction coupling. The sand bags 

shown in figure 7 at the manhole discharge point were needed for thrust 

blocking. Unfortunately, this prevented much of the expansion and 

contraction from being taken up at the terminal end. Any future 

installation should include design provisions to account for or to 

minimize thermal induced movement. Spherical rubber expansion joints, 

such as Holz Spanflexes, should be incorporated into the line at 

100-feet intervals. 

Another disadvantage of the pipe is that it tended to become 

deformed both longitudinally and transversely. The 20-foot lengths 

became bowed or banana-shaped and some sections became elliptical when 

stacked. This made alignment and coupling difficult and compounded the 

thermal separation problem. 

Even with all the attendant and bothersome installation and 

operational problems associated with polyethylene pipe, its use was 

necessitated because of its relatively low head loss characteristics. 

It has a Hazen and Williams roughness coefficient of 150 versus a 
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Figure 6. In-line flowmeter 

Figure 7. Dye tank and metering pump 

1 
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coefficient of 100 for smooth new steel pipe. Essentially this means 

that the polyethylene pipe capacity is 50 percent greater than that of 

new steel pipe. 

The pipe fittings ordered are listed in Appendix B. Some fittings 

eventually were not used because of defective workmanship or because 

better ideas were developed, negating the need for certain items. To 

achieve maximum pump capacity, head loss had to be kept to a minimum. 

This was done by using 12-inch pipe and was made possible by attaching a 

10 x 12 inch concentric increaser (reducer) to the 10-inch pump outlet. 

A NIPAK polyethylene reducer was purchased at considerable expense, but 

it was found to be unusable because of defective construction. It 

proved to be severely out-of-round and the couplings would not hold; a 

1.375 -inch wall thickness prevented conformity to roundness even when 

the coupling was tightened excessively. A steel increaser had to be 

purchased and adapted to the system, as shown in figure 2. It proved 

satisfactory but added almost 300 pounds to the pump weight, reducing 

the stability of an already unstable unit. Since the steel increaser 

was bolted directly to the pump, a 12-inch flange adapter had to be used 

with the increaser to provide a means of attaching the spigot-end 

plastic pipe. 

Forty-five degree elbows were used at all direction changes. This 

reduced head losses and minimized momentum forces on the fitting (see 

figures 2 and 4). Sand bags were used for thrust blocking at the 

corners. The piping had to be tunneled under the railroad tracks as 

shown in figure 4. The pump vendor recommended running the pump only at 
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full throttle since it was designed to do so and anything less would 

cause excessive wear and overheating of the diesel engine. The plan was 

to install a capped tee in the system and uncap it when reduced flows 

were desired. The need to do this did not materialize. The pumping 

rate could be reduced by throttling down the engine without creating 

mechanical problems — in fact, the engine ran cooler and consumed only 

25 percent as much fuel at a 1600 gpm pumping rate. 

In-Line Appurtenances 

The selection of couplings, a flow metering device, and a suction 

line hook-up were important considerations. A large number of couplings 

were needed. In addition to being applicable they had to be economical, 

easily assembled, and conveniently stored. The specifications for the 

products used are listed in Appendix B. 

Couplings. Morris brand compression couplings were selected for use 

after - a trial pumping demonstration was successfully completed using 

them. The Morris Coupling Company was the only firm which expressed any 

degree of confidence that their product would work when attached to 

smooth plastic pipe. Three other manufacturers were contacted, but they 

were very noncommittal as to whether their couplings would work under 

the envisioned study conditions. 

The standard Morris compression coupling consists of three parts, as 

shown by the photograph in Appendix B. The innermost part is a split 

red rubber gasket fitted with square-tooth grooves; the middle part is a 

heavy-gage, zinc-plated, split steel sleeve fitted with square-grooved 
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interlocking teeth; and the outer shell is a split compression ring, 

flanged and bolted at the split. These basic couplings were used at 

most of the joints. Also, four newly marketed side band couplings were 

used. These couplings include dual locking side bands which vastly 

increase axial force holding power (see photograph in Appendix B). 

These couplings were placed at critical points in the discharge lines 

where stresses and axial momentum forces were the greatest. 

A slight modification had to be made to each coupling before use. 

The square-grooved teeth in the sleeve had to be ground slightly to 

prevent permanent interlocking. The couplings are actually designed to 

remain in place after installation. Once an unmodified coupling was 

completely tightened and the teeth became interlocked, removal without 

damage was impossible. 

Considering the thermal movement of the pipe, the modified standard 

couplings worked satisfactorily. Fewer problems probably would have 

been encountered if side band models had been available for use 

throughout. Sandbagging would certainly have been minimized. However, 

in the immediate area of the pump discharge, even the side band units 

started to separate after the fourth run since the piping in this area 

is not continuously supported and is subjected to maximum kinetic 

forces. Total separation of the joints near the pump was prevented by 

interlocking each coupling via a network of cables and turnbuckles (see 

figure 2). 

Flowmeter. Flow was measured using an AquaMatic Flowcell flowmeter 

as shown in figure 6. This meter operates by measuring the pressure 
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loss across a knife-edged restriction. The meter was custom-made to fit 

the range of flows envisioned for this study. The general 

specifications and the specific rating criteria for this meter are 

presented in Appendix B. This meter worked very well at all times; 

however, it is not ideally suited to this study since it operates on the 

principle of differential pressure. Note from the specifications that 

over 3 psig (7 feet of head) is lost at high flows. The use of a 

flowmeter featuring considerably less head loss, such as one using the 

ultrasonic principle, would probably have been more desirable. The cost 

of an appropriate ultrasonic meter was, however, about three times that 

of the one purchased. 

Suction Lines. Two used 13.5-foot lengths of 10-inch braided rubber 

suction hose were purchased. Purchasing used hose saved money 

initially,- but eventual repair costs reduced this saving considerably. 

The hose developed small air leaks in areas where it had been severely 

crimped, and the flange welds, being corroded, developed stress cracks 

which resulted in leaks. 

A 14-foot section of suction hose weighs over 600 pounds, which 

means attachment to the pump is difficult since the bottom of the intake 

flange is 30 inches above ground level. To facilitate the attachment, 

an A-frame cradle was fabricated of 1/8" x 1-1/2" x 2" angle iron and 

equipped with three 2-ton cable hoist jacks to lift the hose and align 

the flange bolt holes. 

The suction hoses had to be secured to the pump on level ground 

before the pump was maneuvered into its final river bank position. 
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Dye Injection 

Rhodamine WT was the dye tracer used. The dye specifications are 

presented in Appendix B. The manufacturer states that the dye color was 

developed to produce a high tinctorial strength and a low tendency to 

adsorb on silt, dirt, and other suspended matter in shallow and inland 

waters. However, some recent evidence from studies by Bencala et al. 

(1983) indicates that this may not be true. They found that up to 55 

percent loss occurred in shallow mountain streams. Laboratory 

experiments showed that streambed sand and gravel sediments have an 

appreciable capacity for Rhodamine WT sorption. The consequences of 

this relative to this study are probably minimal, though, since water 

depths greater than 10 feet persist in the upper 2000 feet of the study 

area. In the lower 2000 feet, extensive shallows less than 2 feet deep 

exist, and this could affect the result. 

The dye injection system shown in figure 7 consists of a dye storage 

tank, a metering pump, and a storage battery. The dye storage tank is a 

65-gallon plastic cylinder, 24 inches in diameter and 40 inches high, 

specifically designed for mixing and storing corrosive chemicals. A 

spigot on the bottom side wall was fitted with a 1-1/2-inch plastic ball 

valve reduced to accept 3/8-inch plastic tubing. The drum was 

calibrated in 8-liter increments up to 256 liters. 

The dye metering pump is a Fluid Metering, Inc., rotating and 

reciprocating piston pump specifically designed for accurate handling of 

corrosive liquids. The pump piston, cylinder case, and cylinder liner 

materials, respectively, consist of alumina ceramic, 316 stainless 
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steel, and sintered carbon. The discharge was fitted with a micrometer 

flow adjustment kit which allowed precise stroke adjustments of 0.1 

percent. The pump was calibrated over the total range of positive 

suction heads expected to be experienced during a run. The results are 

presented in tabular form in Appendix B. Two things are noteworthy 

relative to calibration results. First, the pumping rates observed over 

the range of positive suction heads were significantly higher than the 

manufacturer's rating. Second, the observed pumping rates for each 

positive suction head were essentially equal up to an approximate 

micrometer setting of 0.6 (450 ml/min manufacturer's rating). Above 

0.6, the rates diverged sharply—the higher the head, the higher the 

discharge rate. To minimize variability in dye injection quantity, the 

pump micrometer was set at 0.2 for all runs and the dye-to-water 

dilution ratio was varied to meet minimum desired river dye 

concentrations. 

A 165 amp RV/marine deep cycle battery was used to power the dye 

injection pump. The pump draws 4 amps per hour; thus the battery can 

sustain 25.6 hours of continuous pump operation without recharge at this 

rate of current usage. 

Sampling Equipment 

The development of a sampling strategy proved to be a challenge. 

The literature contained very little information or advice. However, 

good methodologies were developed and unique equipment was fabricated 

and/or assembled which worked beyond expectations. Details will be 

presented here which may be helpful to other investigators. 
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A sampling scheme had to be developed using equipment that: (1) was 

simple and reliable so as to minimize operational problems; (2) provided 

rapid, repetitive samples—600 sample collections were necessary per 

run; (3) contained mechanisms, parts, and conduits which were immune to 

dye absorption; and (4) was affordable. 

The controlling factor in designing the sampling program was the 

need to collect a large number of samples. Six hundred field sample 

collections per run were deemed the minimum needed. 

This number was developed from many considerations, principally 

those involving the limitations of field and laboratory personnel and 

equipment and the need for an adequate data base. For example, a 

rational assumption was made initially that at least two minutes were 

required to collect one sample. If, say, 1200 samples were to be 

collected, then at least 40 total hours of sampling time would be 

needed. To make this practical at least eight boats and sampling crews 

would be needed. However, only four boats and crews were available. 

Therefore, the goal was set to collect 600 samples. This number also 

fit into the time constraints imposed for analyses in the 

laboratory—all samples were to be analyzed within 24 hours of 

collection. 

After a number of alternatives were considered, a field sampling 

procedure based on pumping was devised. A schematic view of the system 

is presented in figure 8. A sampling hose connected to a pump and 

attached to a fishing downrigger provided a simple, reliable, and rapid 

means of sampling. The downrigger, equipped with a depth counter, 
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Figure 8. Schematic of boat equipped with dye sampling set-up 



provided precise sampling elevations and permitted quick and easy 

adjustments to changing water depths. The pump discharge was equipped 

with a plastic tee with 5/16-inch PVC drawoff tubing with a pinch clamp 

affixed. A 105 amp RV/deep cycle battery was connected to a switch/plug 

box conveniently located for controlling the flow. A waste line from 

the tee was threaded through an eye-bolt on the opposite side of the 

boat so that the discharge would be at the opposite side of the boat or 

at the transom, thereby minimizing disturbances in the sampling area. A 

2 x 8 plank, secured with bolts through the oarlock holes (on three 

boats) or through inside handles (on the fourth), was used to position 

the equipment. Wing nuts secured all items, making it easy to quickly 

remove the board from the boat or any item from the board. 

The downriggers were Big Jon Model D476 right-hand units equipped 

with 200 feet of 150-pound test stainless steel line. The footage 

counter could be read within a half foot. 

The pumps were D.C. powered Model 365 Proven Pony pumps. The 

specifications are listed in Appendix B. The impellers are rubber and 

are extremely susceptible to stoppage by coarse sand and small pebbles. 

To minimize the intake of solid materials, fine mesh screens were 

fabricated and fitted in the bottom end of the suction line. 

The tubing or hose had to be carefully selected. It had to have a 

low dye adsorption affinity, and it had to be smooth to minimize 

sampling time; i.e., the lower the head loss, the quicker the flushing 

rate. Ordinary 3/4-inch rubber or vinyl garden hose will not suffice. 

Both produce excessive head losses and both readily adsorb fluorescent 
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dye. A search was conducted to find a suitable conduit. Eventually 

five different types of tubing were tested to determine the dye 

adsorption characteristics of each. Nalge 3/4-inch 8000 PVC tubing was 

selected for use. A 40-foot length was used for suction and a 10-foot 

length for discharge. Standard 3/4-inch female garden hose connectors 

were used at the pump inlet and outlet. Eight pounds of lead were 

molded into an annular shape and slipped over the end of the suction 

line above the strainer screen for line weight as shown in figure 8. 

To efficiently and effectively conduct the study, sampling time had 

to be kept to a minimum. Time savings of a few seconds per sample 

collection translates into hours of savings overall because of the 

hundreds of collections needed during a complete run. The discharge 

characteristics of the pump, under head losses associated with field 

conditions, greatly influence this time element. Higher discharge rates 

reduce flushing time intervals; therefore, waiting periods between 

sample collections are shortened. The flushing time of the sampling 

system was determined in the laboratory using simulated field 

conditions. The pump inlet was placed about 30 inches above the top of 

a constant head tank, the suction line fitted with a strainer, and the 

discharge measured in a volume displacement tank. The experiment 

indicated that approximately 16.5 seconds would be required for one 

flushing. In the field, a 30-second wait was actually utilized to 

insure a factor of safety. 

Only small boats were considered satisfactory for use in sampling, 

since larger boats powered by large outboards would be hard to manage 
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under the confines of the closely spaced sampling points. More 

important, the rigid constraints designed into the sampling plan 

precluded the use of gasoline-powered outboard motors. Excessive 

turbulence would be generated, and the exhaust emissions might contain 

oil and/or fluorescent compounds which could cause sample contamination. 

Four relatively small boats, powered and controlled by electric trolling 

motors, were used. These consisted of three flat bottom boats 14, 16, 

and 18 feet in length and a 14-foot semi-vee craft. The trolling motors 

were Minn Kota Model 65C's. The motors were carefully selected in a 

compromise between electric power draw requirements and thrust 

production in pounds. The overall specifications are presented in 

Appendix B. The motors were operated using 130 amp RV/marine batteries 

independent of the ones used to power the sampling pumps. Reference to 

the power specifications tabulated for the motors in Appendix B shows 

that full throttle (speed setting 5) operation draws 25 amps and limits 

the battery power to about two hours. Conservative and judicial 

operation was required during the sampling time period. Figure 9 shows 

the fully rigged 18-foot flat bottom boat being maneuvered into sampling 

position using the trolling motor. 

Samples were collected in 20-ml Wheaton 180 glass liquid 

scintillation vials. Twelve 100-lot cases were prepared for field use. 

A typical arrangement is shown in figure 10. 

Laboratory Equipment 

A Turner Model 110 fluorometer equipped with a 546-nanometer primary 
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Figure 9. Sampling boat 4, 
showing stakes in background 

Figure 10. Sampling bottles in carrying case 
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filter and a 590-nanometer narrow bandpass secondary filter was used to 

analyze samples in the laboratory. A YSI Model 46 TUC Tele-Thermometer 

was used to monitor sample temperatures during fluorometric testing. 

The 12-volt RV/marine batteries were recharged by Sears Model 608.718420 

10-amp battery chargers equipped with timers. Battery recharge times 

were determined using a direct-reading, temperature - adjusting 

hydrometer. 

Operating Procedures 

A complete sampling run involved three distinct field operations. 

First, prerun river hydraulic conditions had to be ascertained and 

evaluated. Second, overflow simulations had to be designed or tailored 

to fit river hydraulic conditions. Third, coordinated river sampling 

had to be accomplished. 

Prerun Preparation. Site selection for a given run (as previously 

discussed) was limited to one of three locations: State, Oak, and Cedar. 

State, with its two types of outfalls, was chosen for the initial trial. 

A concerted effort was made to establish overflow simulation here, but 

doing so was eventually found to be impossible. A platform, suspended 

between two trees, was extended toward the river to provide placement of 

the pump within what was thought to be an adequate distance from the 

water edge to effectively provide suction. The vertical lift was only 

14.5 feet at normal pool stage, but the suction line had to be laid on a 

slope for approximately 26 feet. Consequently, the strainer just barely 

reached the water's edge using the two available 13.5-foot suction 
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lines. A third 12-foot cast iron segment was secured and lowered into 

place. Air leaks in the steel flanges and hoses were fixed. These 

improvements allowed the pump to be primed, but the resultant discharge 

was very small. Nothing more could be readily done to increase the 

output. This necessitated moving to another site. The only logical one 

left was the Cedar site since the physical setting at Oak was identical 

to that at State. 

The pump was moved to Cedar. A 30-inch-deep hole was dug and the 

pump lowered into it (see figures 2 and 3) using a 4-ton portable chain 

hoist. Lowering the pump 30 inches allowed the use of only one suction 

hose, thereby making the situation more manageable. Approximately 11.5 

feet of lift was needed for the set-up shown in figure 3. 

On a day preceding a run, the time period required to reach steady 

state conditions for a given sampling reach under specific hydraulic 

conditions was determined. This was done by injecting a slug of dye at 

a point in the river at the sewer outlet and positioning a sampling boat 

at a downstream location. Samples were collected at 15-minute intervals 

at points 25, 50, and 100 feet from shore until the peak dye 

concentration passed. The curves generated at station 61+00 prior to 

the first Cedar Street run are presented in figure 11. Note that the 

time of passage for the peaks at 25 and 50 feet lags behind that for the 

100-foot peaks by at least 1.5 hours. Over 3.25 hours were needed for 

steady state conditions to develop in the shallows approximately 3000 

feet below the Cedar discharge. Extending this to 4000 feet requires a 

total of 4.25 hours. Adding to this a factor of safety of 1 hour and 
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Figure 11. Time versus dye concentration at station 61+00 
with dye injection at Cedar 
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allowing for a 3-hour sampling period, a total dye injection time of 

8.25 hours was required during river flows of approximately 7500 cfs. 

Cobb and Bailey (1965) present a formula for computing the dye 

volume needed during a run for a known injection time: 

Vd = 102,000,000(C2/Cd)Qtt (1) 

where V, = dye volume in milliliters, Cd = dye concentration in 

micrograms per liter, C2 = desired sampling point dye concentration in 

micrograms per liter, Q = stream flow in cfs, and tt = injection time in 

hours. 

The use of equation 1 in this study becomes difficult, however, 

since only that portion of the stream flow which falls within the mixing 

zone plume can be used. The determination of this mixing zone flow 

before the study was started had to be attacked strictly on an a priori 

basis. In view of this, a theoretical formula presented by Hubbard et 

al. (1965) was used Co estimate the average mixing plume width: 

L = (0.2vW2) / [d1.5(gs)0.5] (2) m 
where Lm = length in meters to effect complete mixing for a bank 

discharge, v = average velocity in m/sec, W = channel width in meters, d 

= average depth in meters, g = acceleration due to gravity (9.81 

m/sec/sec), and s = water surface slope. Using this equation somewhat 

out of context and by assuming certain stream conditions, a rough 

approximation of the average plume width can be ascertained. Channel 

cross sections at about 400-foot intervals obtained from the Corps of 

Engineers were used to calculate the average depths and velocities for 

use in equation 2; the equation was then solved for W by setting Lm 
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equal to 4000 feet. The resultant W-value was taken to represent one 

average plume width. It was assumed that at 4000 feet below Cedar the 

dye would be very dilute and fairly evenly dispersed within the plume at 

that point; i.e., complete mixing would occur within the plume, although 

not in the total cross section. 

The resultant W-values for 7500 and 15,000 cfs were 110 feet and 120 

feet, respectively. To these, 50 feet was added as an allowance for 

jettison at the outfall. Consequently, the average outward extension 

from shore would be 160 feet for 7500 cfs conditions. This distance 

represents approximately 12 percent of the average cross-sectional area. 

The average velocity in this area was set at 85 percent of the average 

total cross-sectional value per a USGS recommendation. Flow within the 

mixing area was then calculated using the continuity equation (Q = VA) 

for use in equation 1. 

Solution of equation 1 for 7500 cfs involved the following 

input: C2 = 2.5 micrograms per liter, Cd = 200,000,000 micrograms per 

liter (20 percent solution), Q = 778 cfs, and tt = 8.25 hours. These 

values indicated that about 8 liters of dye would be needed for the 

first run. Since the metering pump test showed that an injection rate 

of 240 ml/min (0.2 micrometer setting) was best, the proper dye-to-water 

dilution had to be determined so that the proper amount of the active 

dye ingredient would be injected. A significant amount of diluted 

solution remained after each run. This was reproportioned for use 

during the next run. 

The dye volume and dilutions were all made up on the day immediately 

49 



preceding a scheduled run. The Kingston Mines gage on the river was 

read and the river flow was used to estimate dye quantities and dilution 

requirements. 

Overflow Simulation. The pump and piping, once installed at Cedar, 

were left in place for the duration of the study. On the day of the 

run, the pump was started up between 6:30 and 7:00 a.m. The engine was 

throttled to achieve the desired flow rate, and checks were made for 

leaks. If some were found, the sand bags were removed from all joints 

and the couplings at the leaking joints were removed. The piping was 

then refitted to close the separations, the couplings replaced, and the 

sand bags reapplied. Minor leaks were tolerated. 

The maximum pumpage that could be achieved at full throttle at 

normal pool elevation was 3400 gpm. However, by throttling the diesel 

back slightly to produce 3200 gpm, a significant reduction in noise was 

achieved and some fuel was saved. 

Once the discharge line appeared to be stable and major leaks were 

stopped, the dye injection pump was started. The dye was trickled 

directly into the overflow simulation discharge stream at the manhole 

(see figure 7). Turbulence within the stream was sufficient to promote 

complete mixing although the manhole was only about 100 feet from the 

river. A person was left on duty for the duration of the run to monitor 

the discharge pump and dye injection system. The system was shut down 

immediately upon completion of the sampling. The pump monitor and one 

of the sampling crews maintained contact throughout a run via two-way 

marine radios. 
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Sampling. Six hundred samples were collected per run. Four boats 

rigged for sampling, as shown in figure 8, were used to accomplish this. 

Each boat was responsible for collecting 150 samples. Sample collection 

locations are shown in figures 12a and 12b. Some minor adjustments were 

made during the course of the study to reach assignment limits, but 

basically, collections were made by boat 1 between stations 29+75 and 

35+00; boat 2 between 36+00 and 46+00; boat 3 between 47+00 and 56+00; 

and boat 4 between 57+00 and 70+00. The collection points at downstream 

locations were spread over wider distances—laterally, longitudinally, 

and vertically—than those at upstream locations. The dots in figures 

12a and 12b represent 25-foot lateral increments. Near the outfall, 

lateral collections were made to 100 feet, while at station 70+00 the 

outer limit was 200 feet. 

Initially all sampling points were marked with floats. Setting them 

involved the use of four boats, and this proved to be a cumbersome, 

time-consuming procedure which facilitated sampling very little. 

Subsequently, a more efficient, more manageable system was devised as 

demonstrated by figure 13. Above station 36+00, gallon bleach bottle 

type jugs, marked with the station numbers, were set at every station 75 

feet from shore; small inflatable quart floats were set 50 feet from 

shore at alternate stations only. Between 35+00 and 57+00, where 

sampling was increased to 125 feet, the gallon floats were set at 100 

feet at each station while the quart floats were set at 50 and 75 feet 

at alternate stations. The boat operator used the available markers to 

line up unmarked positions and to estimate distances. From 57+00 
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Figure 12. Plan view of sampling locations 
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Figure 13. Schematic of sampling marker location set-up 
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through 70+00 all sampling locations were permanently marked by driving 

2" x 2" stakes into the bottom. Figure 9 shows some of these stakes in 

the background. 

The floats were set using a USGS graduated tag line as shown in 

figure 14. All floats were removed at the completion of a sampling run. 

Significant losses were incurred from barge activity and wind action. 

Initially, 16-ounce lead weights were cast and used as anchors. 

However, these proved to be unsatisfactory and were replaced with 1/2" x 

8" x 12" steel plates. Rubber leaders, cut from innertubes, were used 

to minimize line tangling and to circumvent the need for winding for 

storage. 

A few samples were collected on a trial basis using a split image 

range finder for location spotting. This method appears to be an 

attractive alternative to using floats. Certainly the use of range 

Figure 14. Setting markers 
using tag line from shore 
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finders, in conjunction with a limited setting of floats, requires less 

work, is more expedient, and is just as accurate as using floats and eye 

positioning. 

The floats were set shortly after overflow simulation pumping was 

started. This was done early to minimize disturbances within the plume 

by boat movement. 

Sampling usually commenced between 1:00 and 2:00 p.m. A sampling 

crew consisted of a boat operator and a sampler. A definitive 

collection procedure was developed and strictly adhered to for all runs. 

The procedure was designed to minimize the overlapping influences of 

repetitous sampling using the same pumping system and to minimize 

disturbance within the sampling zone. Sampling was initiated at the 

lowest theoretical dye concentration point in each of the four sampling 

areas, i.e., the bottom or lowest elevation, on the farthest vertical 

from shore, on the last station. Thence, sampling was to continue by 

sampling from the bottom to top at all verticals, from the outside 

vertical to the shore side vertical, and from the most downstream 

station to the most upper. Once the shore side vertical was sampled, 

the boat proceeded by moving to the outside vertical on the next 

upstream station. The idea was to progressively sample higher 

concentration areas on the theory that accumulative or progressive 

sample contamination would be minimized because each new sample had a 

higher dye level than the preceding one. 

A surface sample was collected at all verticals, and where the depth 

was 10 feet or greater, samples were generally collected at the surface, 
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3-feet, mid-depth, and bottom levels. When the depth was less than 10 

feet either surface, mid-depth, and bottom collections or just surface 

and bottom collections were made depending upon location. In areas less 

than 3 feet, only a surface collection was made. Near the outfall some 

selected verticals were sampled every 1 to 2 feet. Also, as shown in 

figure 12, transverse stations were established every 50 feet for the 

first 300 feet below the outfall, and 200-foot spacing was used below 

64+00. 

A standard field sheet was designed to minimize note keeping and 

decision making during the actual sampling operation. The form is 

presented as Appendix C and is shown with predesignated sampling 

locations and depths. This example is typical of one of two given to 

each boat crew before each run—in essence, it represents precise and 

orderly sampling instructions. One blank space indicates that a bottom 

sample is to be collected, whereas two blank spaces indicate that a 

mid-depth and a bottom collection are to be made. 

Figure 15 shows all four sampling boats in position; the outfall is 

just out of the picture to the lower right. Over the course of the 

study sampling time was reduced from four hours to less than two as a 

result of improvements in sampling efficiency. 

The sampling program was designed to handle two successive days of 

operation. Therefore, each boat was assigned three cases of sampling 

bottles with each case containing 100 containers as shown in figure 10. 

A staggered numbering system was used for cases 1 and 2 so that the 

first 50 samples from each boat could be returned to the laboratory for 
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Figure 15. Study area, showing boats 
in sampling positions 

early analytical examination without disrupting the sample numbering 

continuity during successive days of sampling. For example, case 1 of 

boat 1 contained 100 bottles numbered 1-50 and 151-200. Case 2 

contained 100 bottles numbered 51-150, and case 3 contained 100 bottles 

numbered 201-300. During the first day bottles 1-50 were filled as well 

as those in case 2. Case 1 was returned to the field so that a second 

day's run could be made using bottles 151-200 in conjunction with those 

numbered 201-300 in case 3. The bottles were stored in the cases with 

the tops down because the caps' design prevented the taping of numbered 

labels in an upright position (see figure 10). 

Upon completion of a run, the sampling lines were attached to an 

outside sillcock at the laboratory and flushed for ten minutes and then 

completely drained. Care was taken to store the conduit without 
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pinching or crimping any portion of it. This procedure was not followed 

during the first two runs—lines were crimped, trapping river water 

contaminated with dye. The clear plastic hose adsorbed the dye, 

producing a pinkish color in the crimped area. Even the lines for boat 

4, operating in an extremely diluted dye area, produced pinkish tinges 

where river water had been trapped. However, tests showed that although 

the plastic hose readily adsorbed the very low dye concentrations from 

trapped water, leaching from the hose to uncontaminated water did not 

occur. 

Laboratory Procedures. River samples were returned to the laboratory 

and left undisturbed for a time to allow all the sample temperatures to 

stabilize at room conditions. During analyses, temperatures were 

continuously monitored and recorded for both the river samples and 

standard dye solutions. 

On the day of a run, a grab sample was collected near the pump 

intake prior to start-up to be used for background fluorescence 

corrections. 

Standard Rhodamine WT dye solutions, ranging from 0.2 to 75.0 

micrograms per liter, were prepared using double deionized water. For 

sample analyses the water background sample and a range of standard 

concentrations were read and recorded for each fluorometer aperture 

change. If an aperture change was not required within an hour, the 

procedure was checked by rerunning the same set of standards. 

Concentration versus fluorometer reading curves were developed for 

each of the 1x, 3x, 10x, and 30x aperture settings using least square 
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linear regression techniques. Temperature corrections were made using 

the correction coefficients presented by Cobb and Bailey (1965). 
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DATA ANALYSIS PROCEDURES 

The sampling program was designed to generate a very large quantity 

of relatively accurate, precise data. The analysis of this data, 

relative to defining a mixing zone, can be approached several ways. 

Mathematical modeling techniques based on theoretical concepts involving 

dispersion coefficients can be used and are, in some ways, the most 

desirable approach. The development of a conceptual model has the 

advantage of flexibility; i.e., once the model has been developed, 

calibrated, and verified, it can be used to predict or define outputs 

for a wide range of conditions. For instance, if dispersion 

coefficients can be calculated using field information gathered under 

specific sewer and river hydraulic conditions, these coefficients can be 

used to evaluate or define the extent of mixing for other hydraulic 

conditions. Unfortunately, no clear-cut methodology or algorithm has 

been developed and published to facilitate such predictions. One of the 

objectives of this study was to generate quality data in quantity for 

use in the future development of a conceptual mixing algorithm. 

The problem of defining or predicting a mixing zone can also be 

approached pragmatically using basic engineering concepts and judgment. 

To fulfill the immediate needs of this study, a rational approach will 

be taken for reducing the data into a form amenable for use in defining 

a mixing zone. 

Conceptual Approach 

Time constraints precluded the development and use of a conceptual 
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model. However, considerable thought was given to the subject and the 

need to formulate a methodology applicable to the study conditions. 

Almost all existing mixing and dispersion models are applicable only to 

streams having uniform channel cross sections and longitudinal profiles. 

Examination of figures 16 and 17 shows that neither are uniform in the 

study area. In effect, this severely reduces the applicability of 

published mixing and dispersion equations to the study situation. 

Because of the extreme physical variability within short reaches of 

the study area, lateral, vertical, and longitudinal mixing rates will 

vary greatly. A systematic conceptual approach has been conceived which 

will provide a basis for future examination of complex mixing phenomena 

such as those encountered during this study. Basically the concept 

involves constructing dye concentration contours at 1-foot depth 

intervals and using these contours to develop lateral concentration 

profiles. The points on these profiles will then be fitted to a 

theoretical Gaussian distribution model proposed by Fischer et al. 

(1979). This model is a modified form of that presented by Neely 

(1982): 

Cxy = [M/(du(12.57Dy x/u)0.5]x expk (3) 

where C = the conservative parameter concentration at a point x, y 

downstream of a bank discharge, M = mass discharged per unit of time, u 

= average velocity, d = average depth, 12.57 = 4 pi, D = lateral 

dispersion coefficient, x = longitudinal distance, y = lateral distance, 

and k = -(y2u)/(4Dyx). 

Theoretical concepts dictate that bank discharge dispersion will 
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Figure 16. Illinois River cross sections below Cedar Street 
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Figure 17. Bottom profiles below Cedar Street 



mathematically describe a half Gaussian curve if the channel section is 

uniform throughout and the flow steady and uniform. Equation 3 

describes a two-dimensional form of this concept; vertical dispersion is 

neglected on the basis that it is insignificant compared to that in the 

lateral and longitudinal directions. By contouring the dye 

concentrations, many data sets can be made available at a given cross 

section for use in equation 3. By developing some iterative computer 

solution to equation 3, hundreds of spontaneous lateral dispersion 

coefficients can be generated for statistical evaluation. It is hoped 

that this will lead to the development of a methodology for predicting 

mixing in a nonuniform channel. 

A limited number of contours of dye concentrations have been plotted 

on a preliminary basis using the University of Illinois computer 

facilities and support devices. The software used was DI-3000, a 

product of Precision Visuals, Inc. (PVI). The PVI Contouring System 

subroutines were used to draw the plots using a ZETA 1453B plotter. The 

raw data input to DI-3000 used algorithms of Akima (197 8) and of Lawson 

(1977). One algorithm divides the x-y plane into triangular cells. The 

other algorithm applies a bivariate fifth-degree polynomial in X and Y 

to generate the array of gridded data required for contouring. 

The PVI program generates contour-line points by linear 

interpolation between adjacent grid values. These raw contour-line 

points go through a splines-under-tension curve-fitting process 

producing smooth contour lines. These contour lines are forced through 

each of the original interpolated points. 
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The user has options available for control of the program. One 

useful option allows the user to contour any part of the data set. 

Another useful option lets the number and values of the contours be 

chosen. 

The contour outputs generated thus far using this program have 

displayed some anomalies which are being eliminated. Modifications to 

the program have had to be made in a progressive manner because the 

software was designed to accept topographic elevations as input, and not 

water quality parametric data. The limited number of contour plots, 

which will be presented later in this report, have been produced 

manually using straight line interpolation and engineering judgment. 

Rational Approach 

At most vertical sampling locations a maximum of four samples were 

collected, except in the immediate area of the outfall where some were 

taken at 1-foot intervals. Straight line extrapolation was used to 

estimate concentrations at 1-foot increments between the measured 

values. This approach for expanding the data base to all water depths 

produced consistently good results, as shown by the data included in 

table 2. The measured values in the table are shown in parentheses; the 

others are extrapolated. 

The surveying base line, the shore line, and all sampling locations 

were plotted with reference to the Illinois State Coordinate System 

(Anderson, 1949). The sampling points were plotted on a 200 feet to 1 

inch scale map and transcribed electronically using a NUMONICS Model 224 
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Table 2. Examples of Typical Vertically-
Extrapolated Dye Concentrations 

Note: Measured values are in parentheses 

graphics calculator (digitizer) for transdeposition to University of 

Illinois computer facilities for conversion to the coordinate system. 

U.S. Army Corps of Engineers cross-sectional depth soundings were 

plotted. Areas were determined using a manual planimeter. 

All of the river dye concentrations (residuals) were expressed as a 

percent of the dye concentration in the simulated overflow discharge. 

The surface percentages for the six runs were plotted for use in 

developing percentage contour maps. The contours were done manually 
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Concentration (µg/l) at 
Depth Given Distance (ft) from Shore 

Date Station (ft) 25 50 75 100 125 
8/03/83 32+75 0 (6.3) (5.5) (4.1) (0) 

1 6.3 5.3 4.3 0 
2 6.4 5.0 4.5 0 
3 6.5 5.1 (4.6) (0) 
4 (6.6) 5.3 3.5 0 
5 6.3 (5.5) 2.3 0 
6 6.0 5.2 (1.2) 0.1 
7 5.6 4.8 1.0 (0.1) 
8 (5.3) 4.5 0.9 0.1 
9 (4.1) 0.7 0.1 

10 0.5 0.1 
11 0.4 0.1 
12 (0.2) 0.1 
13 0.1 
14 (0.1) 

9/13/83 51+00 0 (4.9) (4.0) (3.4) (1.9) (1.1) 
1 4.9 4.1 3.7 2.0 1.1 
2 4.9 4.2 (3.9) (2.2) 1.1 
3 (4.9) 4.3 3.9 2.2 1.2 
4 (4.4) 3.8 2.3 1.2 
5 4.4 (3.8) 2.4 1.3 
6 4.5 3.8 (2.4) 1.3 
7 (4.5) 3.9 2.4 1.4 
8 4.0 2.5 1.5 
9 (4.1) 2.6 1.6 

10 2.7 1.7 
11 (2.7) (1.7) 



using linear extrapolation. Primary weight was placed on proportionment 

in the lateral direction, while longitudinal proportionment was given 

secondary consideration. 
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RESULTS 

Six successful runs were made at Cedar Street. Some conditions 

relative to these events are presented in table 3. Overall, 3600 

samples were collected and analyzed, and the measured results were 

expanded by extrapolation to include over 12,000 data points. 

Unfortunately no extremes in river flows occurred during the field 

study, and the pool stage remained relatively constant throughout. This 

was not entirely desirable, but it did provide an opportunity to make 

comparisons between outfall types and variable sewer flows during 

relatively steady state river conditions. River flows in the range 

presented in table 3 are considered "normal" summer rates at Peoria. 

Typical data sets for the surface and for water depths of 3 and 10 

feet are presented in tables 4, 5, and 6, respectively. Note that the 

number of stations sampled is less with increasing depth. This is 

because the depth decreases downstream, as demonstrated by figure 17. 

The stations where the water depth is less than a sampling depth have 

been omitted in the tables. For example, in table 6 the results are 

given for the 10-foot water depth; therefore stations 46+00, 47+00, 

48+00, 54+00 through 59+00, 62+00, and 68+00 have been omitted because 

Table 3. Dates and Conditions Relative 
to Successful Overflow Simulations 

Sewer Conditions River Conditions 
Date Type Flow (gpm) Dye Conc. (µg/l) Pool Elev. (MSL) Flow(cfs) 
8/03 Combined 3200 220 440.3 7092 
8/09 Combined 1600 549 440.2 7276 
8/16 Storm 1600 549 440.0 6725 
8/23 Storm 3200 284 440.3 8566 
8/31 Storm 2400 369 440.6 8280 
9/13 Combined 2400 378 440.1 7770 
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Table 4. Dye Concentrations (µg/l), 8/Q3/83, 0 ft 
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Distance from Right Bank 
Sta 25 50 75 100 125 150 175 200 
2975 3.7 0.0 
3025 76.9 23.5 .1 0.0 
3075 8.2 5.7 0.0 0.0 
3125 8.9 9.0 0.0 0.0 
3175  7.4 11.6 .6 0.0 
3275 6.3 5.5 4.1 0.0 
3325 6.0 5.6 .1 .1 
3400 5.0 6.0 4.6 .1 
3500 4.5 5.9 5.1 1.3 
3600 4.8 4.6 1.9 0.0 
3700 3.7 1.1 0.0 
3 80 0 2.7 0.0 0.0 
3900 5.4 3.8 .6 
4000 1.6 1.0 1.4 
4100 1.0 1.3 1.4 
4200 .9 1.3 1.5 1.4 
4300 1.4 1.4 1.2 1.6 
4400 .7 .6 .8 1.2 
4500 1.3 1.3 1.5 .2 
4600 1.0 1.3 1.4 1.6 
4700 1.6 1.6 2.1 2.1 
480 0 1.2 2.0 1.6 1.4 
4900 .6 .6 .6 .7 
5000 .8 .8 .9 1.0 
5100 .8 .8 .8 .8 
5200 .7 .7 .6 .7 
5300 .7 .7 .8 .9 
5400 .6 .7 .8 .9 
5500 .6 .8 .9 1.1 
5600 .6 .6 .7 1.5 
5700 .7 .6 .7 .8 
5 800 .6 .8 .7    . 8  1 . 0  
5900 .6 .6 .8 .8 1.0 
6000 .6 .6 .7 1.2 1.0 
6100 .6 .6 .7 .6 .8 
6200 .6 .6 .5 .7 .7 
6300 .5 .6 .6 .5 .6 .5 
6400 .5  .6 .6 .6 .6 .6 
6600 .6 .6 .6 .6 .6 .5 
6 800 .7 .7 .5 .6 .5 .6 
7000 .6 .7 .8 .6 .8 .7 



Table 5. Dye Concent ra t ions µ g / l ) , 8 /03 /83 , 3 f t 

D i s t a n c e f rom R i g h t Bank 
S t a 25 50 75 100 125 150 175 200 

2975 2 . 2 0 . 0 0 . 0 0 . 0 
3025 5 1 . 0 0 . 0 0 . 0 0 . 0 
3075 7 . 9 0 . 0 0 . 0 0 . 0 
3125 8 . 9 6 . 3 6 . 4 0 . 0 
3175 8 .0 9 . 6 . 3 0 . 0 
3 2 7 5 6 . 5 5 . 1 4 . 6 0 . 0 
3325 5 . 9 4 . 9 . 1 . 1 
3400 5 . 3 6 . 1 4 . 0 . 1 
3500 4 . 6 5 . 9 2 . 5 . 1 
3600 4 . 9 4 . 6 2 . 5 . 2 
3700 2 . 8 2 . 1 0 . 0 
3800 . 9 . 1 . 1 
3900 4 . 3 2 . 6 1.6 
4000 1.6 1 .5 1 .5 
4100 1.2 1 .3 1.0 
4200 1.1 1 .3 1 .5 .9 
4300 1 .3 1 .3 1.7 
4400 .3 .3 1 .2 
4500 1.0 1 .3 1.1 .1 
4600 .8 .7 1 .3 1.5 
4700 1 .3 1 .4 1.7 2 . 1 
4 80 0 1 .0 1.2 1 .1 . 9 
4900 . 4 . 5 . 3 . 5 
5000 . 6 . 8 . 8 . 7 
5100 .7 . 9 . 8 . 9 
5200 . 6 . 4 . 5 . 6 
5300 . 6 . 7 . 8 . 6 
5400 . 7 . 8 . 8 . 9 
5500 . 7 . 7 . 8 . 9 
5600 . 7 . 7 . 6 . 8 
5700 . 7 . 8 . 8 
5 800 .7 . 8 . 9 1.0 
5900 . 8 . 9 
6000 .7 .9 .8 
6100 .6 .5 .6 
6200 .6 .6 .6 .7 
6300 .6 .6 .6 .6 .5 
6400 .6 .6 .5 .4 .6 
6600 .5 .6 .6 .5 .6 
6800 .6 .5 .5 .5 .4 
7000 .7 .5 .6 .5 .5 
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Table 6. Dye Concentrations (µg/1), 8/03/83, 10 ft 
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Distance from Right Bank 
Sta 25 50 75 100 125 150 175 200 
2975 0.0 0.0 
3025 16.1 .3 0.0 0.0 
3075 0.0 0.0 
3125 0.0 0.0 
3175 8.6 .4 0.0 
3275 .5 .1 
3325 2.5 .1 .1 
3400 4.7 .9 .1 
3500 .9 0.0 
3600 1.0 0.0 
3700 1.4 1 . 3 . 1 
3800 .1 .1 0.0 
3900 .6 .2 0.0 
4000 .5 .7 
4100 .3 .3 .1 
4200 .1 .1 
4300 .8 .7 
4400 .4 .5 
4500 1.2 .4 .2 
4900 .1 
5000 .6 .6 
5100 .5 .6 
5200 .3 .4 
5300 .2 0.0 
6000 .6 
6100 .3 
6300 .2 
6400 .4 0.0 .6 .4 
6600 .5 .4 
7000 .4 



the water depths at all the sampling verticals at these locations are 

less than 10 feet. The blank spaces between 36+00 and 42+00 appearing 

on all six data sets for the water surface represent an absence of 

samples due to docked barges (see figure 12a). The blank spaces below 

59+00 (see table 4) essentially trace the outer edge of a slightly 

exposed sand bar (see figure 12b). In all, 87 tabular data sets, 

similar to those given in tables 4, 5, and 6 but given in terms of 

percentages, were developed and are presented in Appendix D. 

The percentage data presented in Appendix D were derived by dividing 

the observed river dye concentration by the appropriate sewer dye 

concentrations presented in table 3 and multiplying by 100. This 

allowed relative comparisons to be made between runs. Table 7 presents 

a tabular comparison of percentages of residual dye concentrations at 

the surface and 3-foot depth at 50 feet from shore. 

Some casual observations relative to temporal and spatial 

differences can be ascertained from an examination of the data presented 

in table 7. For the relatively low simulated overflow rates achieved 

during the study, the dye quickly dissipated; dye percentages were less 

than 2 percent about 1000 feet below the outfall. At only 150 feet 

below the outfall, they were less than 5.5 percent. Although dilution 

and dispersion rapidly reduced the downstream concentrations to low 

levels in all cases, distinct differences between some runs are evident. 

Some of these differences can be attributed to the fact that ADM 

withdraws a very large amount of cooling water at station 39+00 and 

returns it to the river at station 41+00. For the first 20 days of 
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Table 7. River Dye Concentrations as a 
Percentage of Sewer Concentrations 50 Feet from Shore 
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25 feet from shore at these stations 
No sample taken 
water depth less than 3 feet 

Shaded columns indicate no ADM cooling water discharge 



August, the average withdrawal rate was 21.7 mgd, and the average spent 

cooling water discharge rate was 29.7 mgd; 8 mgd of the total discharge 

originated from ground water sources. After August 20, ADM ceased grain 

processing operations, and the discharge was reduced to a negligible 

0.07 mgd. 

Note that for the three runs made after August 20 (shaded columns in 

table 7), relative concentrations were generally three to four times 

greater in the lower third of the sampling area. The fact that these 

last three runs were made at the same time as the three highest river 

flows may have contributed to this phenomenon. Some differences do 

appear to occur in the dispersion patterns in the immediate sewer 

discharge area (station 30+25). The highest residual concentration 

occurred for the 3200-gpm partially submerged discharge, while 

conversely the lowest occurred for the 3200-gpm overland discharge. The 

partially submerged discharge tended to produce higher relative 

concentrations 25 feet out with increasing sewer discharge rates. For 

some unknown reason, the 3200-gpm overland flow did not produce surface 

25-foot concentrations in the immediate area of the outfall that were 

nearly as significant as those produced by the other runs. For this run 

the dye tended to submarine somewhat; a relative percentage of 10.6 was 

observed 12 feet deep at 25 feet out, while a 21.2 relative percentage 

was observed 2 feet deep at 50 feet out. Evidently the dye went deep at 

25 feet and started to resurface in an outward direction. 

Table 8 has a format similar to that of table 7. However, it shows 

the lateral distance at a given station at which the maximum dye 
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Table 8. Distance from Shore the Maximum Dye Concentration Was Observed 

Underlined values indicate interlimit distance sampled 
indicates outlimit distance sampled 
indicates no sample taken 

Shaded columns indicate no ADM cooling water discharge 
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concentration was observed. The most striking information evident in 

the table is that on the three ADM cooling water discharge days the 

maximum dye concentrations as a whole are located significantly farther 

from shore. In the lower half of the sampling reach, the maximum values 

were generally at the outer limits of the sampling points for these 

three days, whereas on the three no-cooling water discharge days the 

maximum values generally fell well within the outer sampling limits. 

This fact, coupled with the information discussed in conjunction with 

table 7, clearly shows that the ADM cooling water discharge has a major 

impact on the mixing zone configuration and dispersion pattern below the 

cooling water intake. 

The 3-foot depth values are listed in table 8 for comparative 

purposes. Any differences between these values and the surface ones 

could represent wind effects on the surface distribution. Overall no 

differences are readily discernible. Nevertheless, the maximum 

concentration positions were not always consistent between the two 

depths. This was particularly evident for the partially submerged and 

overland 1600-gpm runs. For example, the partially submerged 1600-gpm 

run produced maximum surface concentrations significantly farther out 

than the maximums produced at the 3-foot level between 49+00 and 55+00, 

while between 56+00 and 60+00, the reverse was true: the 3-foot maximum 

extended farther out than the surface maximums. During this run, a 

southwest wind persisted at an estimated velocity of 10 mph. 

Figures 18 through 23 diagrammatically illustrate the surface dye 

distribution patterns for the six runs. The contours are representative 
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Figure 18. August 3, 1983 surface percentage contours, 
partially submerged, 3200 gpm 
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Figure 19. August 9, 1983 surface percentage contours, 
partially submerged, 1600 gpm 
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Figure 20. August 16, 1983 surface percentage contours, 
overbank, 1600 gpm 
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Figure 21. August 23, 1983 surface percentage contours, 
overbank, 3200 gpm 
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Figure 22. August 31, 1983 surface percentage contours, 
overbank, 2400 gpm 
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Figure 23. September 13, 1983 surface percentage contours, 
partially submerged, 2400 gpm 

82 



of percentages of the original sewer discharge dye concentration. An 

examination of these figures reveals that each run produced its own 

"fingerprint." Common characteristics or traits among each are not 

readily apparent. Close inspection will, however, reveal some limited 

conformity within two specific groupings of runs. The first three runs, 

represented by figures 18 through 20, were conducted during the period 

ADM was withdrawing and discharging cooling water at 39+00 and 41+00, 

respectively. They all exhibited some common characteristics. 

Noteworthy is the fact that the cooling water recycling created a very 

noticeable discontinuity in the dye distribution pattern below 39+00; 

islands or random pockets of residual dye concentrations were created. 

In addition, the contours "sagged" noticeably toward the shore in the 

area of the ADM loading docks instead of displaying continual outward 

lateral dispersion. The recycling of cooling water appeared to blunt 

the downstream movement of the dye. 

During the last three runs (figures 21-23), when cooling water 

recycling was absent, the dye contours displayed good continuity in the 

area of the ADM loading docks and throughout the affected stream 

downstream of the docks. Significantly higher concentrations were 

observed in the lower sampling reaches compared to the first three runs. 

The last three runs did share one common trait with the first three 

runs: outward lateral dispersion was disrupted in the loading dock area. 

The lack of lateral dispersion was not as pronounced as that observed 

during the cooling water recycling dates. Abrupt contour 

discontinuities did not develop. The inward sag was more smooth and 
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orderly, providing a dented but unbroken link with all the downstream 

contours. Color slides taken during the runs clearly show the inward sag 

of the dye in the docking area. A large sudden increase in depth 

appears to be the cause of this phenomenon. An examination of figure 17 

reveals that in the area of 36+00 the depth abruptly increases by 5 or 6 

feet and then abruptly decreases by about 7 feet at 43+00 immediately 

below the docks. The reversal in the dispersion pattern, the great 

variability in depth, and the cooling water intake-discharge 

interference make a theoretical assessment and mathematical modeling of 

the mixing zone in the area below 36+00 almost impossible. 

The maximum surface percentages in the outfall area are noted in 

figures 18 through 23. A logical relationship appears to exist between 

the ratio of sewer and river discharge rates and the residual 

concentrations of the dye 25 feet from shore. Figure 24 shows two sets 

of curves fit to a parabolic model. The percentages represent the 

maximum values observed anywhere on the vertical 25 feet from shore. 

Only for three of the six runs did the maximum occur at the surface; the 

others occurred at 2-, 7-, and 12-foot depths. The concave curve 

represents the model fitted to the six actual observations. The fit is 

very good. The estimates are reasonable within the limits of the 

observed data; however, predictions for high discharge ratios outside 

the maximum of 0.001 observed during the study are poor. Realistically, 

the percentage for a sewer flow to river flow ratio of 0.1 should 

approach 100 percent. Using a value set composed of 0.1 and 92 percent 

in combination with the six observed value sets, a more inclusive model 
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Figure 24. Maximum dye percentage composition in river 
at Cedar Street outfall (station 30+25) 25 feet from outfall 

was derived. It is represented by the convex curve shown in figure 24 

and is mathematically described by: 

where p25 = the river dye concentration 25 feet from shore, divided by 

the sewer dye concentration, multiplied by 100 (a percentage); Q = the 

sewer flow (cfs); and Q = the river flow (cfs). The correlation with 

observed points remains high; therefore equation 4 should produce 

reasonable estimates of maximum values at 25 feet from shore over a wide 

range and combinations of sewer and river flow conditions. For example 
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if a 1.56 inch/hour storm occurs when the river flow is 6,000 cfs, 

Qs/Qr would equal 458/6000 or 0.076; following from equation 4, P25 

equals 90.1 percent. Similarly for a much smaller storm of 0.37 

inch/hour when Q equals 6000, P25 equals 46.7 percent. 

Table 9 lists some data for the three 1982 CSO sampling runs at 

Cedar Street (Staff of Water Quality Section, Illinois State Water 

Survey, 1983) and the estimated effects on the river 25 feet from shore. 

Noteworthy is the fact that although the sewer overflow rates on August 

24 were much greater than on September 17, the effects of both overflows 

on river water quality in the immediate area of the outfall were about 

the same. 

Table 9. P 2 5 Estimates for 1982 Cedar Street 
Combined Sewer Overflow Sampling Data 
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10-minute Observed Sewer Estimated River 
River Flow sewer flow Concentrations (mg/1) Concentration (P25) 

Date (cfs) (cfs) Qs/Qr NH3 Pb Sus. solids NH3 Pb Sus. solids 
6/28/82 10,335 17.6 .0017 0.9 0.28 499 0.2 0.06 128 

9.6 .0009 0.8 0.22 333 0.2 0.05 70 
2.6 .0003 0.8 0.19 304 0.1 0.03 42 

8/24/82 8,175 5.4 .0007 3.6 0.68 715 0.7 0.13 135 
131.3 .0161 1.0 0.58 831 0.5 0.31 449 
115.9 .0142 0.1 0.30 476 0.1 0.15 247 
121.0 .0148 0.1 0.24 402 0.1 0.13 211 
166.0 .0203 0.1 0.22 325 0.1 0.30 190 
316.4 .0387 0.1 0.14 281 0.1 0.10 203 

9/17/82 6,600 16.1 .0024 3.4 0.70 1100 1.0 0.20 318 
22.5 .0034 3.1 0.60 850 1.0 0.20 276 
26.7 .0040 2.0 0.58 633 0.7 0.20 217 
24.1 .0037 1.4 0.44 445 0.5 0.15 147 
14.9 .0023 1.2 0.36 382 0.3 0.10 108 
6.8 .0010 1.3 0.30 355 0.3 0.07 77 
3.8 .0006 1.5 0.11 278 0.3 0.02 50 
3.0 .0005 1.5 0.08 183 0.2 0.01 30 



DISCUSSION 

An attempt will be made in this section to provide some insight into 

what factors must be considered in developing or defining a mixing zone 

for overflow conditions similar to those simulated at Cedar Street. 

Mere visual examination of figures 18 through 23 reveals that a 

mixing zone at a given outfall cannot be viewed as a well-defined fixed 

entity. It should be viewed as variable, with the variability dictated 

by outfall types (degree of submergence, free fall, overbank) in 

conjunction with sewer flows and river discharge conditions. Lateral 

and longitudinal projections of specific percentage contour elements 

appear to be the most logical approach for establishing limits for a 

mixing zone. 

The relationship between the sewer discharges and the river flows is 

considered here to be the foremost factor. Hence, the dimensionless 

ratio, Qs/Qr, as defined in equation 4, was used to develop 

relationships for predicting the extent of the sewer discharge 

penetration into the river for any combination of sewer and river 

hydraulic conditions. Figures 25a and 25b show the plots of the three 

runs for both outfall types. The partially submerged outfall data 

(figure 25a) show that increasing hydraulic ratios (Qs/Qr) are directly 

correlated with the sewer discharge penetration into the river. While 

data for a wide range of river flows are limited, rational expectation 

would be that high sewer flows during low river flows would penetrate 

farther into the river than would low sewer flows during high river 

flows. In line with this reasoning constant penetration would be 
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Figure 25. Sewer discharge projection into river at station 30+25 
to 1 percent of the sewer composition (partially submerged and overland) 
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expected for a constant hydraulic ratio regardless of the absolute sewer 

and river discharge rates. 

The penetration distance for the overbank discharge data (figure 

25b) does not appear to be correlated with the hydraulic ratio. There 

is some rationale for this observation. It is to be expected that 

energy will be dissipated by the land surface before the sewer overflow 

reaches the river, thereby preventing detectable differences from being 

measured over the low range of sewer and river flows encountered during 

this study. Detectable differences could probably be ascertained and 

correlations made for considerably higher hydraulic ratio situations 

used in conjunction with the three points presented in figure 25b. 

A parabolic model was used to describe the relationship between the 

penetration distance from the banks into the river and the hydraulic 

ratio for specific percentage contour points. The 1-percent curve and 

respective data points are presented in figure 25a. Similar curves were 

generated for 2, 3, 4, 5, and 10 percent. This produced a family of 

essentially parallel curves when plotted on log-log scales as shown by 

figures 26a, 26b, and 26c. The generalized model used to generate these 

curves is expressed as: 

where D = the penetration distance into the river (feet) for a P 
specified percentage (p), Qs and Qr = the sewer flow and river flows, 

respectively, and "a" and "b" are coefficients derived using nonlinear 

regression techniques. Table 10 lists the "a" and "b" values associated 

with the various percentages examined. Also listed in the table is a 
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Figure 26. Lateral penetration of stated residual sewer flow 
into the Illinois River 
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Table 10. Parabolic Model Coefficients and Distances 
to Selected Percentage Points at Station 30+25 

matrix of predicted distances for specified percentages and hydraulic 

ratios. 
These curves provide a basis by which the lateral limit of the 

mixing zone can be defined. For instance the establishment of an outer 

limit at the 10 percent level would mean that any water quality 

parameter that exceeds the stream water quality standard at this point 

or beyond would be in violation of the law. A practical example based 

on observed data will serve to illustrate this concept. The maximum 

ammonia concentration observed in the Cedar Street overflow during the 

September 17, 1982 sampling run was 3.4 mg/1 (see table 9); the river pH 

was 8.0 and the temperature was 21 C. According to Section 302.212 of 

the Pollution Control Board Rules and Regulations, the maximum 

permissible stream ammonia concentration would be approximately 1.5 

mg/1. Using equation 10 in table 10 or figure 26 curves, a 

concentration of 0.34 mg/1 could be expected at a point approximately 

54.6 feet from the outfall (Qs/Qr = 0.0034 as given in table 9). This 

value of 0.34 mg/1 is well within the stream standards. Actually the 

combined sewer effluent ammonia concentration would need to exceed 15 
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Parabola Distances in Feet for Sewer to 
Coefficients River Discharge Ratios (Qs/Qr) of Eguation 

Percentages a b .0001 .001 .01 .1 Numbers 
1 850 0.374 27.1 64.2 151.9 359.3 (5) 
2 805 0.371 26.4 62.1 145.8 342.6 (6) 
3 772 0.370 25.6 59.9 140.5 329.3 (7) 
4 722 0.371 23.7 55.7 130.8 307.3 (8) 
5 668 0.367 22.7 52.9 123.2 286.9 (9) 
10 515 0.372 16.7 39.4 92.9 218.7 (10) 



mg/1 to cause a violation. Relative to this, Darst Street provided the 

highest ammonia concentration (12.5 mg/1) of any sewer sampled during 

the three 1982 CSO sampling runs during a small overflow rate of 1.5 cfs 

on September 17. 1982. If Darst had been a partially submerged outfall 

on the river bank, the 10 percent level of acceptance would have fallen 

22.7 feet from the outfall. 

An incongruity appears in this overall approach in that, for a given 

overflow rate, the allowable projection from shore increases with 

decreasing river flows. This, however, is probably not as significant 

as it appears since extremely high overflow rates are associated with 

much lower pollutant concentrations. High pollutant concentrations are 

associated more with low "first flush" overflow rates which often fall 

within the range of flows used to simulate overflows for this study. 

The data contained in table 9 illustrate this point. The 10-minute 

initial overflow rate of 5.4 cfs on August 24, 1982 at Cedar Street 

produced an ammonia concentration of 3.6 mg/1, whereas 50 minutes later 

the overflow rate of 316.4 cfs produced an ammonia concentration less 

than 0.1 mg/1. Most mixing zone sampling, to be significant, will have 

to be "first flush" discharge oriented. However, a direct approach 

could be taken to compensate for this incongruity by setting up a 

graduated percent scale inversely related to hydraulic ratio values. 

That is, for a given sewer overflow rate, a 10 percent concentration 

projection point could be arbitarily set for relatively low river flows, 

whereas during higher river flows a 5 percent projection point could be 

used. 
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Dispersion and mixing in the downstream direction, as previously 

discussed, were greatly influenced by the withdrawal and return of 

cooling water between 39+00 and 41+00. The data in table 11 clearly 

show this influence. During the first three dates, when cooling water 

recycling was in effect, the average downstream distance to the 

1-percent contour was 1182 feet, whereas for the last three dates in the 

absence of cooling water recycling, the average was 3503 feet. Even 

above the influence of the ADM docking facilities (600 feet below the 

outfall), the surface contour patterns were inconsistent. The 

10-percent line varied from only 10 feet below the outfall up to 185 

feet. A comparison of figures 18 through 23 will clearly show the 

diversity in downstream mixing patterns which occurred during this 

study. For this reason, the functional relationship describing the 

outward projection of the sewer discharge should be used for limiting 

allowable mixing for partially submerged outfalls. 

Table 11. Longitudinal Distances to 
Specified Contour Line Percentages 

Maximum Distance in Feet 
to Percentage Contour of 

Date 1 2_ 3 4 _5_ 10 
8/03 925 915 235 195 175 55 
8/09 1505 616 445 435 395 185 
8/16 1115 555 285 265 235 30 
8/23 3095 845 755 655 400 10 
8/31 4020 1095 550 515 315 45 
9/13 3395 620 485 395 345 35 

Speculative Mixing Zone 

It is clear from the data collected and observations made during the 

course of this study that many factors influence the shape and areal 

93 



extent of a mixing zone at Peoria. Among them are the type of sewer in 

terms of the degree of submergence and distance from the river, river 

widths, depths and flows, sewer flows, and probably the wind speed and 

direction and uses of the river waters. It is also clear that the range 

of river flows occurring during the study was within a limited range of 

6700 to 8500 cfs. And, too, the study was performed at one sewer site 

among 19 other sewer sites. Under these conditions a prudent course of 

action would be to present the data, offer some comments on how they may 

be useful, and rest the case. 

However, this study was undertaken for the express purpose of 

offering judgment on the shape and extent of the mixing zone at Peoria. 

It was not funded solely to develop a methodology and generate a mass of 

data. Thus these are compelling reasons to attempt to use the knowledge 

and relationships that have been gained during this study in the most 

simplified and conservative fashion for defining a mixing zone. This 

has been done with two caveats in mind: 

1. The data generated must be more rigorously examined to 
determine their usefulness in a conceptual model such as 
expressed by equation 3. 

2. The observations developed should be verified by 
additional studies at other sites in Peoria employing 
similar but less time-consuming procedures. 

A mixing zone at Peoria was developed with the following 

assumptions: 

1. Sewer discharges (Q ) were the peak flow rates for a 
storm rainfall intensity of 1.56 in/hr (see table 1). 
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2. River flows (Q ) were the average of the range 6700-8500 
cfs observed during the study. 

3. The maximum concentration of a constituent in the sewer 
overflow occurred during peak flow rates (a conservative 
estimate). 

4. All 20 sewers are partially submerged (a conservative 
estimate). 

5. The maximum lateral boundary (D ) shall be concentrations 
representative of 10 percent of the concentration emitted 
in the sewer discharge. It is defined as: 

6. The longitudinal limit of the maximum 10 percent 
penetration into the river (D ) shall be 25 feet. 

P 
7. At Caroline Street the 10 percent concentration shall be 

dissipated within the marina. 
8. At Darst Street the penetration distance of the 10 

percent concentration shall be limited to 50 percent of 
its calculated value because of basin influences. 

9. The maximum penetration of the 10 percent residual after 
extending 25 feet longitudinally shall diminish with 
downstream movement, no longer existing at the next 
downstream sewer site (see figure 27). 

10. The allowable mixing zone is an area equivalent to a 
circle with a radius of 600 feet, i.e., 1,130,972 square 
feet. 

Although the maximum lateral penetration (D ) for each sewer site 

was developed from the relationship Dp = 515(0s /Qr ) 0 . 3 7 2 , the values 

used for estimating the mixing zone were derived from figure 26. The 

distances between sewers are included in table 1, and the configuration 

of the proposed mixing zone between sewer sites is depicted in figure 

27. The results of pertinent computations are set forth in table 12. 
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Figure 27. Elements for estimating a mixing zone 

Table 12. Physical Characteristics of a Mixing Zone 
at Peoria 

Caroline 0 0 0 
Spring 150 2.1 1637 124,650 124,650 
Morgan 70 1.0 1954 69,265 193,915 
Green 75 3.0 211 8,850 202,765 
Hancock 25 1.0 950 12,188 214,953 
Eaton 100 5.0 528 27,650 242,603 
Fayette 135 6.8 158 12,353 254,956 
Hamilton 40 2.0 370 7,900 262,856 
Main 95 5.3 581 28,785 291,641 
Fulton 30 2.0 370 5,925 297,566 
Liberty 40 3.1 317 6,840 304,406 
Harrison 35 2.9 264 5,058 309,464 
Franklin 25 3.1 370 4,938 314,402 
Walnut 90 12.8 422 20,115 334,517 
State 55 7.8 422 12,293 346,810 
Oak 105 17.5 2851 150,990 497,800 
Cedar 180 22.5 2323 211,320 709,120 
South 95 10.5 2218 106,543 815,663 
Sanger 60 6.0 2270 68,850 884,513 
Darst 90 10.0 1800 82,125 966,638 

feet 
square feet 96 



As shown in table 12, the maximum penetration into the river 

occurred at the Cedar Street site. Expressed as a percentage of the 

river width, it was 22.5 percent. Upstream of Oak Street, except for 

Walnut Street, the maximum penetration did not exceed 8 percent of the 

river width. 

The total area of the mixing zone is 966,638 square feet, 

representing about 85 percent of an area equivalent to a circle with a 

600-foot radius. About 64 percent of the mixing zone lies downstream of 

the Oak Street sewer. 

The procedures used here for estimating a mixing zone may stimulate 

several questions. A basic one would be: Why choose a 10 percent 

residual as the boundary for lateral penetration? A review of the 

concentrations of BOD5, total suspended solids, ammonia-N, cadmium, 

copper, lead, zinc, and fecal coliforms occurring in the combined sewer 

overflows at Peoria indicate, with the exception of total suspended 

solids and fecal coliform, that a 90 percent reduction in these 

concentrations would produce overflows in compliance with effluent 

standards. In other words the mixing zone would provide dilution and 

dispersion equivalent to secondary treatment. Water quality standards 

were not a consideration because earlier work suggested that sewer 

overflows into the river waters, in the absence of a mixing zone, were 

not likely to violate such standards. Within the assumptions enumerated 

here the proposed mixing zone, which is considered a conservative 

estimate, is within the physical limitations set forth in the rules and 

regulations of the Water Pollution Control Board. 

97 



SUMMARY AND CONCLUSIONS 

1. Twenty combined sewer overflows exist along the 
riverfront at Peoria. They represent a variety of 
shapes, sizes, and outfall conditions and can be 
generally typed as fully submerged, partially submerged, 
free fall, and overbank. Each site possesses unique 
characteristics. Judgment and care are required when 
extending the data gained during this study to any of the 
overflow sites. 

2. The mixing characteristics of two overflow types at Cedar 
Street were sucessfully defined. Simulated overflows 
were accomplished by pumping river water into sewers. 
The mixing patterns were traced by adding fluorescent dye 
to the sewer overflows and collecting samples of the 
overflow-river mixture. 

3. Six overflow simulations were made at the Cedar Street 
location. Three runs were made using a 24-inch storm 
pipe discharging on the bank and thence to the river; 
three runs were also made using the 72-inch partially 
submerged Cedar Street combined sewer overflow. The 
mixing influence of the partially submerged sewer was 
characterized mathematically using a parabolic model. 
Relationships were developed whereby the lateral 
projection of the sewer discharge into the river could be 
predicted. No such relationship could be developed for 
the overbank discharge; for the low simulation flows 
utilized, most of the energy was dissipated on the bank 
and the effluent projection into the river was not 
well-defined. 

4. The lateral and longitudinal mixing were greatly 
influenced by a number of downstream physical factors. 
The most important was the effect of recycling cooling 
water 900 to 1100 feet below Cedar Street. Dye 
concentrations at similar percentage levels were carried 
three times farther downstream in the absence of cooling 
water withdrawal and return. Also, the great variability 
in stream depth created unusual dye distribution 
patterns. Barge traffic and wind induced significant 
variability in the mixing patterns, but the project was 
not geared to directly isolate and measure these effects. 

5. The limited range of river flows (6700-8500 cfs) 
occurring during the course of the study imposes some 
constraints on extrapolating the data for lower or higher 
river flows. 
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6. Much data have been gathered and presented in a form 
which may be useful to other investigators who have an 
interest in pursuing a conceptual mixing zone model. 

7. Rational concepts, supported by data and observations, 
led to a model for predicting the lateral projection of 
overflow influences on the river for partially submerged 
sewers. 

8. On the basis of the rational approach and certain basic 
assumptions, a conservative mixing zone for the 
riverfront at Peoria is proposed. 

9. The area of the proposed mixing zone is 85 percent of an 
area equivalent to a circle with a radius of 600 feet. 
Its maximum lateral projection is less than 25 percent of 
the river's width, and 64 percent of its total area lies 
downstream of the Oak Street overflow. 
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Appendix A 

Photographs of Combined Sewer Overflow Sites 
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Appendix B 

Equipment and Materials Specifications 
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WATER PUMP AND PRIME MOVER 

General Information 
- Model: Jaeger Sykes 10L 
- Chassis mounted on four pneumatic, 7.75x15 tires 
- 12-volt battery starting system 
- No fuel tank 
- Length = 81 in.; width = 52 in.; height = 80 in. 
- Weight = 3900 pounds 

Prime Mover 
- Model: Ford 380 Diesel 
- Six cylinder - water cooled 
- Displacement: 380 cu. in. 
- Maximum horsepower: 92 @ 2400 rpm 

Pump 
- Suction: 10 in.; Discharge 10 in. 
- Volute: self-cleaning, close grain cast iron 
- Seal ring: replaceable bronze 
- Impeller: 12 1/2 in. diameter mixed flow, close grain cast 

iron 
- Shaft seal: mechanical grease; special alloy bronze 
- Maximum passable solids: 2 in. diameter 
- Pumping rates (gpm) at 1550-1700 rpm: 

Total Dynamic Suction Lift (ft.) 
Head (ft) 10 15 20 25 

40 3700 3500 2900 2000 
50 3550 3400 2850 2000 
60 3400 3000 2600 2000 
70 3050 2700 2450 1950 
80 2700 2450 2200 1900 
90 2400 2150 2050 1700 

PIPING AND FITTINGS 

Piping - Commercial Specifications 
- Material: NIPAK Polyethylene Plastic 
- Nominal size: 12 in.; Length: 40 ft.(11 sections ordered) 
- Cell classification per ASTM D-3350: PE 335434C 
- Strength: SDR 32.5(50 psi) 
- ID: 11.964 in.; OD: 12.750 in. 
- Weight: 6.66 lbs/ft. 

Piping-physical Properties 
- Densities: 0.955 g/m3 
- Melting point: 255°F 
- Brittleness temperature: -180°F 
- Thermal expansion: 0.00008 in./in./°F 
- Tensile yield strength: 3200 psi 
- Hydrostatic design stress: 800 psi 
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IN-LINE APPURTENANCES 

Couplings 
- Manufacture: Morris Coupling Co. 
- Material: galvanized steel compression ring 
and sleeve, red-rubber gasket 

- Specifications: 

Nominal O.D. of Model Length No. Weight No. 
S i z e ( i n . ) P i p e ( i n . ) No. ( i n . ) Bol ts ( l b s . ) Ordered 

12 12.75 12-5C 12 5 48.2 32 
12 12.75 12-4C 10 4 40.9 1 
10 10.75 10-4C 10 4 33.7 1 
10 10.75 10-3C 8 3 28.0 1 
12 12.75 12-4C-SB 16 4 40.0 4 

STANDARD COUPLING 
Showing rubber gasket 
and Steel Sleeve 

SIDE BAND 
COUPLING 
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Flowmeter 
- Manufacturer: AquaMatic, Inc. 
- Type: differential pressure - Model FLY 
- Nominal size: 12 in. 
- Orifice size: 10 in. 
- Accuracy: plus or minus 2% for water 
- Pressure loss: 

Flow (gpm) Pressure Drop (psig) 
700 0.12 
1400 0.50 
2000 1.02 
2800 2.00 
3500 3.13 

- Meter scale calibration: 
Scale Reading(gpm) Test Reading(gpm) 

800 790 
1500 1483 
2500 2490 
3500 3498 
4000 4013 

FLUORESCENT DYE 
- Supplier: Crompton & Knowles Corp. 
- Appearance: clear, very dark red aqueous solution 
- Commercial concentration: 20% of aqueous solution 
- Specific gravity: 1.15 at 20/20°C 
- Optimum excitation wavelength: about 556 nm 
- Optimum analyzing wavelength: about 5 80 nm 
- pH sensitivity: insignificant fluorescence change 
between 5.5 and 11.0 

- Shipping quantity: 250 pound drums 
DYE INJECTION METERING PUMP 

- Manufacturer: Fluid Metering, inc. 
- Model: RP-B-1-CSY 
- Power: 12V, 4a D.C. 
- Type: reciprocating RR p i s ton( l /4 in . d ia . ) posi t ive 

displacement 
- Strokes: 2800 per min. maximum 
- Pressure: 70 psig 
- Displacement: variable to a maximum 750 ml/min. 
- Weight: 8 lbs. 
- Size: 11.3 in. x 3.4 in. 
- Micrometer: 0.1% settings 
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- Calibration data 
Observed Flows(ml/min) 

Micrometer Rate Flow At Positive Heads(inches) of 
Setting (ml/min) 8 _20 40 

0.1 75 122 126 132 
0.2 150 236 242 245 
0.3 225 354 360 364 
0.4 300 471 47 8 480 
0.5 375 579 595 599 
0.6 450 689 707 714 
0.7 525 706 747 795 
0.8 600 717 763 805 
0.9 675 743 7 87 822 
1.0 750 759 790 842 

SAMPLING PUMP 
- Manufacturer: Proven Pumps Corp. 
- Model: 365 
- Type: Self priming (up to 7 ft. of lift) volute 
- Power: 12 - volts D.C. 
- Ports: Dual threaded - 3/4 in. external garden hose 

thread - 3/8 in. NPT internal thread - both 
suction and discharge 

- Size: Length =6 1/8 in., Width = 3 3/8 in., 
Height = 2 3/4 in. 

- Impeller: rubber 
- Pumping rates in gph: 

Total Head (ft.) 
1 5 10 15 20 30 40 

300 258 240 222 202 150 90 

TROLLING MOTORS 

- Manufacturer: Minn Kota 
- Model: 65C 
- Power: 12 Volt D.C. 
- Controls: 5 - speed twist grip, forward - reverse switch 
- Shaft length: 3 units 30 in., 1 unit 36 in. 
- Power Specifications: 

Speed Setting Thrust (lbs.) Amp Draw 
1 5 8 
2 10 11 
3 15 14 
4 20 20 
5 26 25 
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Appendix C 

Sampling Collection Form 
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A Note Concerning Appendix D 

Appendix D, "Dye Concentrations as a Percentage of Input Concentrations," 

consists of 87 tabular data sets, similar to those given in tables 4, 5, and 

6, but given in terms of percentages. These data are available as open file 

data at the Water Quality Section, Illinois State Water Survey, Box 697, Peoria, 

Illinois 61652. 
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