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FUNCTIONAL METHODS IN
QUANTUM FIELD THEORY

Andrea Rondelli

March 1, 2018

(...)Who out of many, tell me, is the Skambha. (...)
Skambha set fast these two, the earth and heaven, Skambha
maintained the ample air between them.
Skambha established the six spacious regions: this whole universe
Skambha entered and pervaded.

Hymn VII, Atharva Veda.

(...) e quindi uscimmo a riveder le stelle.

Divina Commedia, Dante Alighieri

To my family, especially to Leonardo and Sofia
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INTRODUCTION
The goal of the first part of this thesis is to study the main properties of func-
tional integration, i.e. integrals over infinite dimensional Hilbert manifolds. In
particular we will focus on “Gaussian-like” functional integral and the Jacobian
determinants which arise when one performs a change of variable, namely a
linear invertible mapping on Hilbert space (we approximate locally a Hilbert
manifold with its tangent vector space). Since such determinants are as a rule
divergent we must find a way to regularize them. In the language of pertur-
bation theory the determinant of an operator is expressed as a single closed
loop graph. We shall study two regularization techniques: zeta function regu-
larization and proper time cutoff regularization. Both techniques “remove the
infinity” allowing one to obtain a finite value for the determinant, but the values
achieved differ by a finite quantity. We will compare the results and try to relate
them.

The aim of the second part is to demonstrate the fundamental path-integral
formula for probability amplitudes in QM, first obtained by Dirac and sub-
sequently formalized by Feynman.[1][2] In order to do this, we introduce the
qp-symbol formalism which allows us to write matrix elements of operators or
products of operators on Hilbert space in terms of multiple phase space inte-
grals. By using this approach, we shall express the kernel of time evolution
operator in a suitable way and, letting the number of phase space integrations
grow to infinity, we will obtain a functional integral formula for the probability
amplitude.

As is well known, in QM the amplitude has the following physical meaning:
its square absolute value is the probability of transition from an initial to a final
state. Specifically, we will calculate the probability amplitude for a particle to
propagate from point a to a point b in configuration space. The main feature
of the path integral formula is that this probability is the resultant of the con-
tributions of continuously infinitely many phase-space trajectories. One may
interpret this result by saying that the particle can follow any path joining a to
b with a weight measured by the value of the corresponding classical action, not
only the classical path that makes the action stationary.

In the third and last part we begin to extend functional integration to gauge
theory. In particular we will focus on some geometric important features of
gauge fields, viewed in fiber bundles framework.
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Part I

FUNCTIONAL
DETERMINANTS AND
REGULARIZATIONS
We try to describe a technique for regularizing quadratic path integrals in
Minkowski or Euclidean spacetime background. This approach can be gen-
eralize to curved spacetime.[3]

1 Funcional Integrals

The functional integrals are integrals over some infinite-dimensional space (a
space which can be or not be a linear one), in general somethings infinite-
dimensional manifold. For example we can choose to integrate over an Hilbert
space (which is of course a vector and Banach space) or a space of functions
like S(Rn), the Schwartz’s space. In Quantum Field Theory (QFT) one often
work in S(Rn), the vector space of functions all of whose derivatives are rapidly
decreasing to zero at infinity. Recall that S(Rn) is constituted by functions
f ∈ C∞(Rn) such that for all multi-indexes α, β we have Sup

x∈Rn

∥∥xα∂βf(x)
∥∥ <

+∞, which implies that
∣∣Dβf(x)

∣∣ ≤ CN,β(1 + |x|2)−N for every multiindex β
and N ∈ N, and for some appropriate constant CN,β . We must recall that
S(Rn)− = L2(Rn,C), i.e. the closure of the Schwartz’s space give the standard
Quantum Mechanics Hilbert space formed by the square integrable functions.
We will call J our functional integral.

Let us consider a functional F (ϕ) with ϕ : [a, b] ⊂ R → R. The ϕ(t) are
continuous functions of single real variable defined on a compact (closed and
bounded) interval:

ϕ : [a, b]→ R F [ϕ] : C([a, b])→ C, ϕ(t) continuous on [a, b] (1)

First of all we aim to “finitized” the situation, namely we want to make finite the
number of dimensions of the functions ϕ’ space, by operating some appropriate
restriction on it. We choose to be in the special case in which ϕ are piecewise
linear, segmented functions (whose graphs will be polygonal curves) on N small
segments from the initial point a to the end point b :

Let ϕ be linear in [t0, t1], [t1, t2], ... , [tN−1, tN ]

with
ti = a+ i

(b− a)

N
, ∀i = 0, 1, 2, ..., N
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so that the two extremes are t0 = a , tN = b.

We have divided the finite interval [a, b] in N subintervals of length b−a
N and we

assume that the functions are linear in each of these sub-segments, so that in
[tk, tk+1] with k = 0, 1, ..., N − 1; the function ϕ is completely determined by
its values at the edges of the sub-segment or subinterval.
ϕ(tk) and ϕ(tk+1) are sufficient to tell us all of the values assumed by ϕ in the
subinterval [tk, tk+1] ∀ k = 0, 1, ..., N − 1.
Therefore now the functional space is finite-dimensional, its dimension being
N + 1: we can in fact parameterize our space by the vector (ϕ0, ϕ1, ......., ϕN ).

ϕ(t0) ≡ ϕ0 ; ϕ(t1) ≡ ϕ1 ; ....... ; ϕ(tN ) ≡ ϕN
The functional space is thus parameterized by these numbers, in the limit N →
+∞ . We now define

JN :=

ˆ
F [ϕ]

N∏
j=0

dϕ(tj) (2)

So if we perform the limit of this integral:

J = lim
N→+∞

JN =

ˆ
F [ϕ]

+∞∏
j=0

dϕ(tj) =

ˆ
F [ϕ]

∏
a≤t≤b

dϕ(t)

Where the last equality follows from the fact that Q is dense in R, and we can
formally write

J =

ˆ ∏
∀t∈[a,b]

dϕ(t) F [ϕ] (3)

We ask ourselves if this limit always exists, the answer is: generally not. May
not exist or exist infinite. A first treatment that can be done to make converge
J is to identify the divergent part of it and redefine JN so that this part cancels
out.

Now we examine an example to illustrate this: the Gaussian functionals.
We want to consider a functional integral like

J ≡
´
H dx exp(− 1

2 〈x,Ax〉) with A¯ = A†, A > 0
A is an essentially self-adjoint, positive definite operator on a Hilbert space H
over the field of the real numbers R. The finite approximation of J is JN :

JN ≡
´
HN dx exp

(
− 1

2 〈ANx, x〉
)

with x finite-dimensional
and AN is the restriction (which is unique) of A at a N-dimensional subspace of
H; AN is a square symmetric matrix, which is also positive definite, and 〈−,−〉
is the real-valued scalar product.
Now, if lim

N→+∞
detAN < +∞ we can easily define the limit of the deter-

minants of the succession of matrices {AN} as the determinant of an operator A,
but usually this does not occurs (the limit diverges). Nevertheless we formally
write:

detA ≡ lim
N→+∞

detAN

In our case the functional integral is
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JN =

ˆ
dx e−

1
2 〈x,ANx〉 =

(2π)
N
2

(detAN )
1
2

(4)

Hence limN→+∞ JN = +∞. Since the factor (2π)
N
2 diverges, it is natural

to redefine dx
′

i 7→ dxi√
2π

. Upon doing this, we therefore have

J =

ˆ
dx exp

(
−1

2
〈x,Ax〉

)
= (detA)

− 1
2 (5)

also when the limit of the sequence of the determinants {detAN}N∈N does not
exist. When this happens we have to regularize the determinant in other ways.
The first way we want to examine is the so-called Zeta Function Regularization.

Now we generalize these basic facts about functional integration stating more
precisely our conventions and definitions. If F is a real Hilbert manifold, then,
for any f ∈ F , the tangent space TfF is a Hilbert space. A functional measure
Df on F is defined by assigning a smoothly varying functional measure Dδff
on the tangent space TfF for each f ∈ F according to the following rules.
Assuming that H is a real Hilbert space with a symmetric sesquilinear form
〈·, ·〉 we define the associated functional measure Dφ on H as the translation
invariant measure normalized so thatˆ

H
Dφ exp(−‖φ‖2/2) = 1. (6)

Following equation (5) the functional determinant det(∆) of a positive self-
adjoint linear operator ∆ : H → H is

(det(∆))−1/2 =

ˆ
H
Dφ exp(−〈φ,∆φ〉/2). (7)

Furthermore the functional Dirac delta function δ(φ) on H is normalized so that
ˆ
H
DφF (φ)δ(φ) = F (0), (8)

for any function F : H → R. So the delta function acts in the usual way.
A linear invertible mapping T : H′ → H of Hilbert spaces induces a change of
functional integration variables φ = Tφ′. Its Jacobian JT satisfies

ˆ
H
DφF (φ) = JT

ˆ
H′
Dφ′ F (Tφ′) (9)

for any function F : H → R. JT is given by

JT = (det(T †T ))1/2 (10)

with the determinant defined according to (7).
Proof:

7



1 =

ˆ
H
Dφe−‖φ‖

2/2 = JT

ˆ
H′
Dφ

′
e
−
∥∥∥Tφ′∥∥∥2/2

= JT

ˆ
H′
Dφ

′
e
−
〈
φ
′
,T †Tφ

′〉
/2

=

JT
(
det
(
T †T

))−1/2
=⇒ JT =

(
det
(
T †T

))1/2
.

When a Hilbert space H is decomposable as an orthogonal direct sum of a
collection of Hilbert spaces Hα, H =

⊕
αHα, the functional measure Dφ of H

factorizes accordingly in the product of the functional measures Dφα of Hα,

Dφ =
∏
α

Dφα. (11)

Starting from
Dφ = C

∏
α

Dφα

we can demonstrate that the constant C is equal to the unit:

1 =

ˆ
H
Dφe−‖φ‖

2/2 = C

ˆ
⊕αHα

∏
α

Dφαe
−
∑
α‖φα‖

2
α/2 =

C

ˆ
⊕αHα

∏
α

Dφα
∏
β

e−‖φβ‖
2
β
/2 = C

ˆ
⊕αHα

∏
α

(
Dφαe

−‖φα‖2α/2
)

=

C
∏
α

{ˆ
Hα

Dφαe
−‖φα‖2α/2

}
= C

∏
1

α

= C.

The other properties of functional integration are formal consequences of the
above ones.

2 ζ -function Regularization

Let A be an essentially self-adjoint, positive definite operator on H with totally
discrete spectrum. Denote by λk the non zero eigenvalues of A. We have thus
λk ∈ R, λk > 0 for k ∈ N. The ζ-function of A is then defined by the expression

ζA(s) :=

+∞∑
k=0

λ−sk (12)

For the sake of accuracy about the eventual degeneracy of the operator A, we call
{λk}k∈N the sequence of the eigenvalues counting multiplicity i.e. if degλk = p
then λk appears p times in the sequence; instead we call {λν}ν∈N the sequence
of the eigenvalues without counting multiplicity so if degλν = dν in the series it
appears with the ”weight” dν . Then we have

ζA (s) =

+∞∑
ν=0

dνλ
−s
ν (13)
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ζA (s) = Tr
(
A−s

)
(14)

Now we want to demonstrate this last equations. Let the operator A be a
Hilbert-Schmidt operator, i.e. an essentially self-adjoint, strictly positive defi-
nite, compact and trace class operator. From the compactness of A it follows
that the set of its eigenvalues {λk} is at most countably infinite (enumerable)
and λj →

j→∞
0 . Let also Pν be the orthogonal projector over the ν-th eigenspace

of H, so every operator Pν has the properties:

i)Pν = P †ν ii)PνPµ = δνµPµ iii)Tr(Pν) = dν < +∞

All projectors have finite dimensional eigensubspaces. Then from the spectral
theorem we have

A =

+∞∑
ν=0

λνPν

Hence, under the assumptions made, we have a beautiful integral expression for
the complex power of the operator A

A−s =
1

Γ (s)

ˆ +∞

0

dt ts−1
+∞∑
k=0

e−tλkPk (15)

Proof:

A−s =

+∞∑
ν=0

λ−sν Pν =
1

Γ (s)

+∞∑
ν=0

ˆ +∞

0

dt ts−1e−tλνPν =

Γ (s)
−1
ˆ +∞

0

dt ts−1
+∞∑
ν=0

e−tλνPν

Whence taking the trace of the last equation we get

Tr
(
A−s

)
=Γ (s)

−1
ˆ

R+

dt ts−1
+∞∑
ν=0

dνe
−λνt =

+∞∑
ν=0

dνλ
−s
ν ≡

+∞∑
k=0

λ−sk = ζA (s) (16)

For some mathematical details of last passages eventually look in appendix
the generalized Riemann zeta function. Now, using the derivative d

dxa
−x =

− ln (a) a−x it follows that, forgetting temporarily that we are manipulating a
divergent series, formally we have

− d

ds
ζA(s)

∣∣∣∣
s=0

=
∑
k≥0

lnλk = ln

∏
k≥0

λk

 ≡ ln detA

which suggests the following definition of detA
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detA = exp

{
− d

ds
ζA(s)

∣∣∣∣
s=0

}
(17)

This last equation defines the regularized determinant of the operator A.
The “usual” function ζ (s) is convergent in the complex half-plane Re (s) > 1
but by analytic continuation methods it is possible to extend its domain to
all the complex plane C except the point 1. The reader who wishes to delve
into this beautiful topic will find in the Mathematical Appendix some detailed
calculations about how to make analytic continuation of generalized Riemann
Zeta function and how it is possible to modify the original Euler’s series to
obtain the trace of an elliptic operator. In fact we need ζA (s) to be regular
at the origin s = 0 in order to formula (17) to furnish a sensible definition of
the regularized determinant of A. Indeed one has to derive the ζA (s) at s = 0
and only the analytic continued zeta function is regular at the origin. In fact it
can be shown that the zeta-function regularization is well and uniquely defined,
working with Hurwitz zeta function. [4]

3 Heat Kernel

We now take a scalar field ϕ defined in Rn, satisfying the Klein-Gordon equation.
Let us consider the following functional integral, i.e. the generating functional
for a free scalar field ϕ

J =

ˆ
exp

{
−1

2

ˆ [
(∇ϕ)

2
+m2ϕ2

]
dx

}∏
dϕ (x) (18)

where the argument of the exponential above is the Klein-Gordon action. If the
scalar field goes rapidly to zero at infinity the integration of the kinetic term of
the Lagrangian gives´

dnx(∇ϕ).(∇ϕ) =
¸
∂Rn d

n−1xϕ∇ϕ−
´
dnxϕ∇2ϕ = −

´
dnxϕ4ϕ

where the first surface integral goes to zero because ϕ ∈ S (Rn) and the surface
over which one integrates is at infinity. Whence using (5) we have

J =
´

exp
{
− 1

2

´
ϕ
(
−4+m2

)
ϕdx

}∏
dϕ (x) =

(
det
(
−4+m2

))− 1
2 .

We want to consider the matrix element of the exponential of the operator
Ax = −4x +m2:

〈 x, e−Atx0 〉 := K (x, x0, t) (19)

which satisfies the partial differential equation

∂tK (x, x0, t) = −AxK (x, x0, t) (20)

with the initial condition K (x, x0, t = 0) = 〈x, x0〉 = δ (x− x0)
as it is straightforwardly verified:

∂tK (x, x0, t) = ∂t
〈
x, e−Axtx0 〉 = −AxK (x, x0, t)
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This equation is formally identical to the heat equation, so we will callK (x, x0, t)
the heat kernel.

From equation (16) it follows that the zeta function of the operator A (in
this case the operator has continuous spectrum) is

ζA (s) =
1

Γ (s)

ˆ +∞

0

dt ts−1Tr
(
e−At

)
(21)

where Tr
(
e−At

)
≡
´
dx
〈
x, e−Atx 〉 is the trace inside the integral which we

want to be able to calculate. To this aim we have to evaluate the diagonal
matrix element of the heat kernel K (x, x, t). But let’s first calculate the gen-
eral matrix element K (x, x0, t). We can express the exponential operator in
the momentum space, i.e. in Fourier transform as: exp

[
−t
(
−4+m2

)]
=´

dnk |k〉 e−t(k
2+m2) 〈k|

Via Fourier decomposition the heat kernel, which is also the two-points Green
function Gt (x, x0) ≡ K (x, x0, t) =

〈
x, exp

[
−t
(
−4+m2

)]
x0 〉 becomes

Gt (x, x0) =
´
dnk 〈x, k 〉 e−t(k

2+m2) 〈k, x0〉 =
´
dnk eikx

(2π)n/2
e−t(k

2+m2) e−ikx0
(2π)n/2

where changing from one basis in the position representation to one basis in the
momentum representation brings in the factors 〈 x, k 〉 = eikx

(2π)n/2
, namely the

usual plane waves. So the two-points Green function or propagator (of the field
between two space points x and x0 in the time interval t) can be written as

Gt (x, x0) = (2π)
−n
ˆ
dnk eik(x−x0)e−t(k

2+m2)

Now to compute this integral we have to perform the inverse Fourier transform
of a Gaussian function. For this purpose we set x− x0 ≡ 4x , so the argument
of the exponential of the integrand can be rewritten as ik4x − tk2 − tm2 =

−
(√

tk − i
2
√
t
4x
)2

− (4x)2

4t − tm
2 , and putting it in the last expression of the

heat kernel we get

Gt (x, x0) = (2π)
−n

e−
(4x)2

4t −m
2t

ˆ
dnk e

−
(
k
√
t− i

2
√
t
4x
)2

=

(2π)
−n

e−
(4x)2

4t −m
2t

ˆ
dnk exp

 n∑
j=1

(√
tkj −

i

2
√
t
4xj

)2


Using the fact that the function g (z) = e−z
2

, with z ∈ C, is holomorphic and
taking a rectangle in the complex plane as integration circuit, from Cauchy’s
integral theorem it follows that I =

´
Rn
dny e−(y+ib)2 = (π)

n/2 with y, b ∈ Rn

and making a suitable change of variable, namely kj
√
t ≡ yj (with j = 1, ..., n),

so dk = t−n/2dy
we finally obtain
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K (x, x0, t) ≡ Gt (x, x0) =
2−n

(πt)
n/2

exp

{
−m2t− (x− x0)

2

4t

}
(22)

which is valid for any dimension n. We remind that we are working in Rn, n ∈ N
being the spacetime dimension with n− 1 space dimensions.

This result fits with the given initial condition because the right-hand side
of (22) is known to provide a regularization of the Dirac δ-function for finite t

lim
t→0

K (x, x0, t) = δ (x− x0)

where this limit is to be understood in a distributional sense. If we put ourselves
in the four dimensional speciale case (n = 4) it turns out the more familiar result

K (x, x0, t) =
1

16π2t2
exp

{
−m2t− (x− x0)

2

4t

}
(23)

Which is the heat kernel for a real scalar field propagating in accordance with
Klein-Gordon equation. Setting x = x0 we obtain its diagonal element

K (x, x, t) =
1

16π2t2
e−m

2t (24)

Now, starting from this it is easy to calculate the zeta function of the operator
A = −4+m2 using equation (21), but one finds that equation (24) implies that

Tr
(
e−At

)
≡
ˆ
dx
〈
x, e−Atx

〉
=

e−m
2t

16π2t2

ˆ
dx 7−→ +∞

This integral diverges because the Euclidean space is unbounded, and it is a
typical infrared divergence. Roughly speaking an infrared divergence is about
big distance and low momentum or frequency, just like this case. The simplest
way to overcome this drawback is by confining the field in a spatial “box” of
finite volume.
If the space has finite volume, i.e. the field ϕ has bounded domain Ω (Ω ⊂ R4)
with measure(Ω) = V then we have

Tr (exp (−tA)) =

ˆ
Ω

dx
e−tm

2

16π2t2
=

V

16π2t2
e−tm

2

(25)

and putting it inside equation (21) we easily obtain

ζA (s) =
1

Γ (s)

ˆ ∞
0

dt
V

16π2t2
e−m

2tts−1 =
V

Γ (s) 16π2

ˆ ∞
0

dt e−tm
2

ts−3 =

V

16π2Γ (s)

ˆ ∞
0

dt′m−2e−t
′
t′s−3m−2s+6 =

V m−2s+4

16π2Γ (s)

ˆ ∞
0

dt t(s−2)−1e−t =

V

16π2

(
m2
)2−s Γ (s− 2)

Γ (s)

12



Where we put tm2 ≡ t′. Thus

ζA (s) =
V

16π2

(
m2
)2−s Γ (s− 2)

Γ (s)

and using recursively the property of the gamma function Γ (s) = (s− 1)Γ (s− 1)
one gets

ζA (s) =
V

16π2

(
m2
)2−s

[(s− 1) (s− 2)]
−1
. (26)

The last equation tells us that ζA(s) is analytically extended to all the complex
plane except in the two points s = 1 ans s = 2 in which it exhibits two simple
poles. Thus the generalized ζ−function of the operator A = −4+m2 is analytic
at the origin s = 0 and we can do the derivative ζ ′A (s) |s=0 . We saw that
− d
dsζA (s) |s=0 = ln (detA) , and applying it to the present case we have

d

ds
ζA (s) =

d

ds

{
V

16π2
m4m−2s

(
s2 − 3s+ 2

)−1
}

=

V m4

16π2

{
− m−2s2 lnm

(s2 − 3s+ 2)
− m−2s (2s− 3)

(s2 − 3s+ 2)
2

}
from which it follows that the derivative at the origin is

ζ ′A (0) =
V m4

16π2

{
− lnm+

3

4

}
and taking the exponential

det
(
−4+m2

)
= exp (−ζ ′ (0)) = exp

{
V m4

32π2

(
lnm2 − 3

2

)}
(27)

The last equation defines the regularized determinant by zeta function of the
Klein-Gordon operator in the Euclidean formulation.

Now to conclude this section we briefly review what we have shown. We have
considered a Gaussian functional integral, i.e. an integral over an Hilbert space
H of the exponential of a negative quadratic form such that the inner product
− 1

2 〈x,Ax〉 with A being the Klein-Gordon (strongly elliptic) operator −∇2+m2

acting on real scalar fields φ . Then through Zeta function regularization we
have calculated explicitly its determinant which is given by equation (27).

4 Cutoff in Proper Time

Let A : H → H be a self-adjoint positive operator, ε > 0 an arbitrary "small"
real number. The proper time regularized determinant of A is defined by

lndetεA = −
∑
i

ˆ ∞
ε

e−
λit

t
dt. (28)
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Since from the spectral decomposition of the operator A we have
∞∑
i=0

e−tλi =

Tr
(
e−At

)
(remember that the italic indices also count multiplicity of eigenval-

ues) it follows that

ln detεA = −
ˆ ∞
ε

t−1Tr
(
e−At

)
dt.

Heuristically this definition can be understood as follows

−
∑
i

ˆ ∞
ε

e−λit

t
dt = −

∑
i

λi≤1/ε

ˆ ∞
ε

e−λit

t
dt−

∑
i

λi>1/ε

ˆ ∞
ε

e−λit

t
dt '

∑
i

λi≤1/ε

ˆ ∞
ε

e−λit

t
dt

In the second sum the argument of the exponential must satisfy the inequality
λit ≥ λiε > 1 thus the integrand is exponentially suppressed. Next we carry
out the change of variable λit ≡ u , obtaining

−
∑
i

λi≤1/ε

ˆ ∞
ε

e−λit

t
dt = −

∑
i

λi≤1/ε

ˆ ∞
ελi

e−u

u
du =

−
∑
i

λi≤1/ε

{ˆ 1

ελi

e−u

u
du+

ˆ ∞
1

e−u

u
du

}
' −

∑
i

λi≤1/ε

ˆ 1

λiε

du

u
=

+
∑
i

λi≤1/ε

lnu|λiε1 =
∑

λi≤1/ε

lnλiε =

ln

 ∏
λi≤1/ε

(λiε)

 = ln det
λ≤1/ε

(εA) .

From this calculation two important considerations arise. First, the parameter
ε makes dimensionless the argument of the logarithm, as it must be. Second,
in the limit for ε which tends to zero there are two asymptotic behaviors: on
one hand ε “sends to zero the operator A” but on the other hand the cutoff
upper-bound of its eigenvalues grows up to infinity. So we expect that these two
features will, in some way, roughly compensate each other.

Taking A = −∇+m2 equation (28) reads

ln detε
(
−4+m2

)
= −
ˆ ∞
ε

dt
1

t
Tr
{

exp
[
−t
(
−4+m2

)]}
(29)

and using equation (25) we get
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ln detε
(
m2 −4

)
= − V

16π2

ˆ ∞
ε

dt t−3e−tm
2

. (30)

One can calculate the last integral applying recursively integration by parts
obtaining:

ˆ ∞
ε

dt t−3e−tm
2

=
m4

2

{
ε−2

m4
− 2

m2
ε−1 − ln ε− lnm2 +

3

2
+ Γ′ (1)

}
+O (ε ln ε)

(31)
Proof:

ˆ ∞
ε

dt t−3e−tm
2

=

[
− t
−2

2
e−m

2t

∣∣∣∣∞
ε

− m2

2

ˆ
dt t−2e−m

2t =

1

2
ε−2e−m

2ε − m2

2

ˆ ∞
ε

dt t−2e−m
2t =

1

2
ε−2e−m

2ε +
m2

2

[
e−m

2tt−1
]∞
ε

+
m4

2

ˆ ∞
ε

dt t−1e−m
2t =

ε−2e−m
2ε

2
− m2

2ε
e−m

2ε +
m4

2

ˆ ∞
ε

dt
e−m

2ε

t
=

e−m
2ε

(
1

2ε2
− m2

2ε

)
+
m4

2

[
(ln t) e−m

2t
∣∣∣∞
ε

+
m6

2

ˆ ∞
ε

dt (ln t) e−m
2t =

e−m
2ε

(
1

2ε2
− m2

2ε

)
− m4e−m

2ε ln ε

2
+
m6

2

ˆ ∞
ε

dt e−m
2t ln t

So we have

ˆ ∞
ε

t−3e−tm
2

dt = e−m
2ε

(
1

2ε2
− m2

2ε
− m4

2
ln ε

)
+
m6

2

ˆ ∞
ε

dt e−m
2t ln t (32)

We evaluate the remained integral by breaking it as follows
ˆ ∞
ε

dt e−m
2t ln t =

ˆ ∞
0

dt e−m
2t ln t−

ˆ ε

0

dt e−m
2t ln t =

ˆ ∞
0

dt e−m
2t ln t+O (ε ln ε)

and performing the change of variable m2t ≡ t′ =⇒ dt = dt′

m2 we get

ˆ ∞
0

dt e−m
2t ln t =

ˆ ∞
0

dt′m−2e−t
′ (

ln t′ − lnm2
)

=

ˆ ∞
0

dt
e−t ln t

m2
−
ˆ ∞

0

dt
e−t lnm2

m2
= m−2Γ′ (1) +

lnm2

m2

[
e−t
∣∣∞
0

=

m−2
[
Γ′ (1)− lnm2

]
.
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Indeed

Γ′ (s) =

ˆ ∞
0

dt ts−1e−t ln t =⇒ Γ′ (1) =

ˆ ∞
0

dt e−t ln t (33)

As is easily shown:

Γ′ (s) =
d

ds

{ˆ ∞
0

dt
e−t

t
es ln t

}
=

ˆ ∞
0

dt e−t (ln t) ts−1.

So, continuing the initial calculation, one obtains

ˆ ∞
ε

t−3e−tm
2

dt = e−m
2ε

(
1

2ε2
− m2

2ε
− m4

2
ln ε

)
+

m4

2

(
Γ′ (1)− lnm2

)
+O (ε ln ε) =(

1−m2ε+
m4ε2

2
+O

(
ε3
))( 1

2ε2
− m2

2ε
− m4

2
ln ε

)
+

m4

2
Γ′ (1)− m4

2
lnm2 +O (ε ln ε) =

1

2ε2
− m2

2ε
− m4 ln ε

2
− m2

2ε
+
m4

2
− m6ε

4
+

m4

4
− m6ε

4
− m8ε ln ε

4
+
m4Γ′ (1)

2
− m4 lnm2

2
+O

(
ε2
)

=

1

2
ε−2 −m2ε−1 − m4

2
ln ε+

3m4

4
+
m4

2
Γ′ (1)− m4 lnm2

2
+O (ε ln ε) .

QED
Now, inserting (31) in (30) we finally obtain

lndetε
(
m2 −4

)
=
V m4

32π2

{
− 1

m4ε2
+

2

m2ε
+ ln ε+ lnm2 − 3

2
− Γ′ (1)

}
+O (ε ln ε) .

(34)
Evidently the first three terms diverge in the limit ε → 0+ , and the natural
question arises about how one should treat them. We simply subtract them
from the original definition and define the regularized determinant det′A of the
Klein-Gordon operator A in the following way

ln det′
(
−4+m2

)
:=

{
ln detε

(
−4+m2

)
+

V

32π2ε2
− V m2

16π2ε
− V m4

32π2
ln ε

}∣∣∣∣
ε→0+

So the regularized determinant becomes convergent and finite:

ln det′A =
V m4

32π2

(
lnm2 − 3

2
− Γ′ (1)

)
, with A = −4+m2 (35)
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Comparing this result with one obtained through zeta function regularization,
namely equation (27) we see immediately that they are different of a finite
quantity:

ln det′A = ln detA− V m4

32π2
Γ ′ (1) (36)

where ln det (A) is the one calculated via zeta function regularization. The first
observation is that in zeta function regularization we have to add, compared
to the cutoff in proper time determinant, a finite term directly proportional to
Γ ′ (1) and this fact is not fortuitous. In fact when we do the analytic continua-
tion of zeta function we remove the point s = 1 from the complex plane where
it remains a single pole of zeta function. Thus in that procedure we lost a term
proportional to the first derivative of gamma function (which is related to zeta).
The second observation is that the two regularized determinant differ of a finite
quantity, once we have removed the remaining infinite part. [5]
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Part II

APPLICATIONS TO
QUANTUM THEORY
In this part, we shall use functional integral techniques to compute relevant
physical quantities. The expressions we obtain, as in the case of the heat ker-
nel approach, are often useful in the analysis of important issues in quantum
mechanics and quantum field theory.

5 qp-symbols Quantization

Regarding the notation, since in this section we must distinguish between op-
erators (acting on Hilbert spaces) and their respective qp-symbols (which are
functions of position and momentum) we will use an “hat” over the operators
whereas the qp-symbols are denoted without it. This notation will be used only
in this section. We also set the Planck constant, as all the others physical con-
stants, egual to one (~ = 1). Let us consider the operator Â : H → H defined
by

Â :=
∑
n

an (q)

(
−i ∂
∂q

)n
≡
∑
n

an (q̂) p̂n (37)

where Â acts on functions f ∈ L2 (Rn). q̂ and p̂ are the familiar quantum
mechanical position and momentum operators. an (q̂) is an arbitrary function
of the position operator. We define the qp-symbol (or symbol) of Â as

A =
∑
k

ak (q) pk

In this formalism the quantization of the physical quantities, i.e. passing from
the qp-symbol to the operator can be easily obtained by replacing q → q̂, p→ p̂
imposing the condition of normal ordering: all the q̂′s must be to the left of all
the p̂′s. Now let define the function

f̃ (q) := Âf (q) (38)

with f̃ square-integrable whenever f is. The Fourier transform and its inverse
will be useful to us:

F {f (q)} (p) :=
1

(2π)
1/2

ˆ
dq e−iq.pf (q) ≡ f̄ (p)

F̌
{
f̄ (p)

}
(q) :=

1

(2π)
1/2

ˆ
dp eip.q f̄ (p) ≡ f (q)

18



So that we can express f̃ (q) as follows

f̃ (q) =
1

2π

ˆ
A (q, p) f (q1) eip.(q−q1)dpdq1. (39)

Proof:

f̃ (q) = Âf (q) =
∑
n

{
an (q)

(
1

i

∂

∂q

)n}
1

(2π)
1/2

ˆ
dp eip.q f̄ (p) =

1

(2π)
1/2

∑
n

[
an (q)

(
1

i

∂

∂q

)n]ˆ
dp eipq

ˆ
dq1

(2π)
1/2

e−iq1pf (q1) =

1

2π

ˆ
dpdq1f (q1)

∑
n

{
an (q)

1

in
∂n

∂qn
eipq

}
e−iq1p =

1

2π

ˆ
dpdq1f (q1)

∑
n

{
an (q)

(
1

i

)n
(ip)

n

}
eip(q−q1) =

1

2π

ˆ
dpdq1f (q1) eip.(q−q1)

∑
n

an (q) pn ≡ 1

2π

ˆ
dpdq1A (q, p) f (q1) eip.(q−q1).

QED
Equation (39) define an integral representation of f̃ (q) = Âf (q) which allows
us to express the operator Â through its qp-symbol also when A (q, p) in not
polynomial, provided that we can exchange the series with the integral in the
calculation above.
Using (39) we get an expression for the matrix entries 〈q2 , Â q1〉 in terms of the
qp-symbol A (q, p):

〈q2 , Â q1〉 =
1

2π

ˆ
dpA (q2, p) e

−ip.(q1−q2) (40)

Proof:

f̃ (q) = Âf (q) =

ˆ
dq1 〈q , Â q1〉 〈q1, f〉 =

ˆ
dq1f (q1) 〈q , Â q1〉

Thus

f̃ (q) =

ˆ
dq1f (q1) 〈q , Â q1〉 (41)

Putting together (39) and (41) one gets

f̃ (q) =

ˆ
dq1f (q1) 〈q , Â q1〉 =

1

2π

ˆ
dq1f (q1)

ˆ
dpA (q, p) eip(q−q1) =⇒

〈q , Â q1〉 =
1

2π

ˆ
A (q, p) e−ip(q1−q)dp
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The last equation is the same of (40) with q instead of q2, QED
Now let Â, B̂, Ĉ be operators such that Ĉ = ÂB̂, then we can express the

qp-symbol of Ĉ in a integral form in terms of the other two operators as follows

C (q, p) =
1

2π

ˆ
A (q, p1)B (q1, p) e

−i(p1−p)(q1−q)dq1dp1 (42)

Proof:

〈q , Ĉ q2〉 ≡ 〈q , ÂB̂ q2〉 = 〈q , Â
ˆ
dq1 q1〉 〈q1 , B̂ q2〉 =

ˆ
dq1 〈q , Â q1〉 〈q1 , B̂ q2〉 =

1

(2π)
2

ˆ
dq1

ˆ
dp1 A (q, p1) e−ip1(q1−q)

ˆ
dp B (q1, p) e

−ip(q2−q1)

Where we have used equation (40) to rephrase the two scalar products. Com-
paring it with

〈q , Ĉ q2〉 =
1

2π

ˆ
dp C (q, p) e−ip(q2−q)

and since one has

e−ip(q2−q1)e−ip1(q1−q) = e−ip(q2−q)e−ipqe−ip1(q1−q)eipq1 =

e−ip(q2−q)e−i(p1−p)(q1−q)

it follows that

ˆ
dp e−ip(q2−q)C (q, p) =

1

2π

ˆ
dp

ˆ
dq1B (q1, p) e

−ip(q2−q1)

ˆ
dp1A (q, p1) e−ip1(q1−q) =

ˆ
dp e−ip(q2−q)

{
1

2π

ˆ
dq1

ˆ
dp1A (q, p1)B (q1, p) e

−i(p1−p)(q1−q)
}

from which it is immediately deduced equation (42). QED
Now we want to extend formula (42) to the product of N operators Â1, Â2, ...
, ÂN and calculate its qp-symbol (A1A2...AN ) (q, p). So we have n ≡ N − 1
products between N operators and we shall proceed in an heuristic way by
calculating first the case n = 1, second the case n = 2 and so forth. Finally we
might guess the general case for arbitrary n ∈ N. In a second time we will give
a rigorous demonstration of it.

• n = 1

(A1A2) (q, p) =
1

2π

ˆ
dq1dp1 A1 (q, p1)A2 (q1, p) e

−i(p1−p)(q1−q)
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• n = 2

(A1A2A3) (q, p) =
1

2π

ˆ
dq2dp2 (A1A2) (q, p2)A3 (q2, p) .

exp [−i (p2 − p) (q2 − q)] =

1

(2π)
2

ˆ
dq1dp1dq2dp2A1 (q, p1)A2 (q1, p2)A3 (q2, p) .

exp [−i (p1 − p2) (q1 − q)− i (p2 − p) (q2 − q)] =

1

(2π)
2

ˆ
dp1dq1dp2dq2A1 (q, p1)A2 (q1, p2)A3 (q2, p) .

exp {−i [p1 (q1 − q) + p2 (q2 − q1) + p (q − q2)]}

• ... etc etc ...

• n+ 1 = N , we guess the “chain structure” form:

(A1A2A3...AN ) (q, p) = (2π)
−N+1

ˆ
dp1dq1dp2dq2...dpN−1dqN−1.

A1 (q, p1)A2 (q1, p2)A3 (q2, p3) ...AN−1 (qN−2, pN−1)AN (qN−1, p) .

exp {−i [p1 (q1 − q) + p2 (q2 − q1) + ..pN−1 (qN−1 − qN−2) + p (q − qN−1)]}
(43)

Currently we give the strict proof of (43) by mathematical induction.
Proof:

We know that equation (43) is true for n = 1 (N = 2), and assuming it is
correct also for n ∈ N let us show that is valid for n+ 1 too. Namely we assume
that (43) is true and we have to show that it involves the following equation

(A1A2...ANAN+1) (q, p) = (2π)
−N
ˆ N∏

j=1

dpjdqj .

A1 (q, p1)A2 (q1, p2) ...AN (qN−1, pN )AN+1 (qN , p) .

exp {−i [p1 (q1 − q) + p2 (q2 − q1) + ...+ pN (qN − qN−1) + p (q − qN )]}

(44)

Starting from equation (42) with A ≡ A1...AN and B ≡ AN+1 and using (43)
we obtain
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(A1A2...ANAN+1) (q, p) =
1

2π

ˆ
dqNdpN (A1A2...AN ) (q, pN )AN+1 (qN , p) .

exp {−i [(pN − p) (qN − q)]} =
1

(2π)
N

ˆ N∏
j=1

dpjdqjA1 (q, p1)A2 (q1, p2) ...

...AN (qN−1, pN )AN+1 (qN , p) .

exp−i[p1 (q1 − q) + p2 (q2 − q1) + ...

...+ pN (q − qN−1) + pN (qN − q) + p (q − qN ) ] =
1

(2π)
N

ˆ N∏
j=1

dpjdqj .

A1 (q, p1)A2 (q1, p2)A3 (q2, p3) ...AN−1 (qN−2, pN−1)AN (qN−1, pN )AN+1 (qN , p) .

exp−i[p1 (q1 − q) + p2 (q2 − q1) + p3 (q3 − q2) + ....

+pN−1 (qN−1 − qN−2) + pN (qN − qN−1) + p (q − qN ) ].

So equation (43) is rigorously proved via mathematical induction. QED

6 Evolution Operator and Heat Kernel

Now we shall write the evolution operator Û (t) through a time interval of du-
ration t as the product of N evolution operators on a time interval of duration
t/N and then take the limit N →∞:

e−itĤ = lim
N→∞

(
e−i

t
N Ĥ
)N

(45)

An approximation will be sufficient for our purpose: by Taylor expanding the
exponential e−i(t/N)Ĥ in the right hand side of (45) we get

e−itĤ ≡ lim
N→∞

(
e−i

t
N Ĥ
)N

= lim
N→∞

(
1̂− i t

N
Ĥ +O

(
N−2

))N
=

lim
N→∞

(
1̂− i t

N
Ĥ

)N
Indeed from the Taylor series of the exponential ex =

∑∞
k=0

xn

n! one gets ex =
1 + x+O

(
x2
)
thus for N “very large” we have, with good approximation

(
e−i

t
NH
)

(q, p) '
(

1− i t
N
H

)
(q, p) = 1− i t

N
H (q, p) ' e−i tNH(q,p)

So we have (
e−i

t
NH
)

(q, p) ' e−i tNH(q,p) , for N � 1 (46)
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Combining together equations (43), (45) and (46) we get

[exp (−itH)] (q, p) ≡
[
exp

(
−i t
N
H

)
exp

(
−i t
N
H

)
... exp

(
−i t
N
H

)]
(q, p) =

1

(2π)
N−1

ˆ N−1∏
α=1

dqαdpα

(
e−i

t
NH
)

(q, p1)
(
e−i

t
NH
)

(q1, p2)
(
e−i

t
NH
)

(q2, p3) ...(
e−i

t
NH
)

(qN−2, pN−1)
(
e−i

t
NH
)

(qN−1, p)

exp {−i [p1 (q1 − q) + p2 (q2 − q1) + ...+ pN−1 (qN−1 − qN−2) + p (q − qN−1)]} =

(2π)
−N+1

ˆ N−1∏
α=1

dqαdpα exp

{
− it
N

[
N∑
α=1

H (qα−1, pα)

]
− i

[
N∑
α=1

pα (qα − qα−1)

]}

with the initial conditions qN = q0 = q , and pN = p.
Thus the symbol (or qp-symbol) of the unitary time evolution operator e−itĤ is

[exp (−itH)] (q, p) ≡ G (q, p, t) ' (2π)
−N+1

ˆ N−1∏
α=1

dqαdpα.

exp

{
+i

t

N

[
−

N∑
α=1

pα (qα − qα−1)

t/N
−

N∑
α=1

H (pα, qα−1)

]} (47)

with boundary conditions qN = q0 = q , and pN = p and when the approxima-
tion is good for large N .
We notice the cyclic structure of the integral above, so we can visualize the
generalized coordinates q0, ..., qN standing on a circle, starting from q0 = q and
ending at qN = q.
To cast expression (47) in a more natural form we perform a relabelling of
indices and then a change of variable, as we show now. We want to invert the
sign of the sum −

∑N
α=1 pα (qα − qα−1) and in order to do this we exchange the

extremes 1 ←→ N of the set {α}Nα=1 by performing the next permutation of
indices:

• α = 1 −→ β = N

• ...

• α = N −→ β = 1

Thus we “guess” the relabelling β = −α + N + 1. Since it is a permutation,
i.e. a bijection from the set of indices {α}Nα=1 to itself, the sum

∑N
α=1 does

not change. Thus the argument between square brackets of the exponential of
equation (47) becomes
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−
N∑
α=1

pα (qα − qα−1)

t/N
−

N∑
α=1

H (pα, qα−1) =

−
N∑
β=1

p−β+1+N
(q−β+1+N − q−β+N )

t/N
−

N∑
β=1

H (p−β+1+N , q−β+N ) =

−
N∑
β=1

p̃β
(q̃β − q̃β+1)

t/N
−

N∑
β=1

H (p̃β , q̃β+1) = +

N∑
β=1

p̃β
(q̃β+1 − q̃β)

t/N
−

N∑
β=1

H (p̃β , q̃β+1) .

Where, in the step before the last, we have performed the change of variables
q−(γ−1)+N := q̃γ , p−(γ−1)+N := p̃γ so we have q−β+1+N = q̃β , q−β+N = q̃β+1

and p−β+1+N = p̃β . Then equation (47) can be rewritten, for N � 1 as

[exp (−itH)] (q, p) ≡ G (q, p, t) ' (2π)
−N+1

ˆ N∏
α=2

dqαdpα.

exp

{
+i

N∑
α=1

t

N

[
pα

(qα+1 − qα)

t/N
−H (pα, qα+1)

]} (48)

with the new edge conditions q1 = qN+1 = q , p1 = p. Note that the shift
between the two arguments qα+1 and pα of the Hamiltonian is very slight for
N � 1. Now we can finally give an approximation to the heat kernel

〈
y, e−itĤx

〉
substituting (48) into equation (40) (setting Â ≡ e−itĤ):

〈
y, e−itĤx

〉
= (2π)

−1
ˆ
dp
(
e−itH

)
(y, p) e−ip.(x−y) ≡

(2π)
−1
ˆ
dp1G (y, p1; t) e−i(x−y).p1 ' (2π)

−N
ˆ N∏

α=1

dpα

N∏
α=2

dqα

exp

{
i

N∑
α=1

[
pα (qα+1 − qα)− p1 (x− y)− t

N
H (qα+1, pα)

]}

with the boundary conditions y = q = q1 = qN+1 , whereas for the moment
x remains free. Note also that now al the momentums from p1 to pN are
integrated. Now let us “manipulate” the first sum at the exponent of the last
expression in the following way:
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N∑
α=1

pα (qα+1 − qα)− p1 (x− y) =

p1 (q2 − q1)− p1 (x− y) +

N∑
α=2

pα (qα+1 − qα) =

p1 (q2 − y) + p1y − p1x+

N−1∑
α=2

pα (qα+1 − qα) + pN (y − qN ) =

p1 (q2 − x) +

N−1∑
α=2

pα (qα+1 − qα) + pN (y − qN ) =

N∑
α=1

pα (qα+1 − qα)

where is fixed that q1 = x , qN+1 = y.
Thus finally one has a integral (approximate) expression for the heat kernel:

〈
y, e−itĤx

〉
' (2π)

−N
ˆ N∏

α=1

dpα

N∏
α=2

dqα.

exp

{
i

N∑
α=1

t

N

[
pα

(qα+1 − qα)

t/N
−H (qα+1, pα)

]} (49)

with boundary conditions q1 = x and qN+1 = y and for N � 1. The approxi-
mation gets better as N increases.

7 The Continuum Limit

We think of qα , pα as the values of continuous functions q (τ) , p (τ) at τ = α t
N :

qα ≡ q
(
α
t

N

)
, pα ≡ p

(
α
t

N

)
.

Thus we have

N∑
α=1

pα
qα+1 − qα
t/N

−
N∑
α=1

H (qα+1, pα) =

N∑
α=1

q
(
(α+ 1) t

N

)
− q

(
α t
N

)
t/N

p

(
α
t

N

)
−

N∑
α=1

H

[
q

(
(α+ 1)

t

N

)
, p

(
α
t

N

)]
from which it is clear that when one takes the limit N →∞ the difference, but
only in the arguments of the Hamiltonian, between α+1

N and α
N is very slight

and thus negligible.
Now we take the limit N → +∞ of equation (49). While N grows up to infinity
the time interval t

N = ∆t becomes infinitesimal and one can formally write:
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{
t
N

N→+∞−→ dt∑N
α=1

N→+∞−→
´ t

0

We can call this procedure a limit of the continuum because it makes us pass
from discrete quantities to continuous ones, and through it we pass from multiple
integrals to functional ones, as we shall see now. According to the definition of
the derivative as limit of the difference quotient we have

lim
N→+∞

qα+1 − qα
t/N

≡ lim
∆t→0

qα+1 − qα
∆t

=
dq (τ)

dτ
.

Now let us implement the passage as follows

〈
y, e−itĤx

〉
N�1' 1

(2π)
N

ˆ N∏
α=2

dqα

N∏
α=1

dpα.

exp

{
i

N∑
α=1

t

N

[
pα
qα+1 − qα
t/N

−H (qα+1, pα)

]}
N→∞−→

ˆ ∏
τ∈[0,t]

dp (τ) dq (τ) exp

{
i

ˆ t

0

dτ [p (τ) q̇ (τ)−H (p (τ) , q̇ (τ))]

} (50)

with q (0) = x , q (t) = y and where the exponent can be recognized as the
action , i.e. the functional defined by

S =

ˆ t

0

dτ

[
p (τ)

dq (τ)

dτ
−H (q (τ) , p (τ))

]
=

ˆ t

0

L (τ) dτ (51)

where L is the Lagrangian of the system.

8 Path Integral of Probability Amplitude

Equation (50), which we have obtained with considerable effort, is the cele-
brated Feynman’s path-integral formula of probability amplitude in Quantum
Mechanics, namely:

〈
y, exp

(
−itĤ

)
x
〉

=

ˆ ∏
0≤τ≤t

dq (τ) dq (τ) exp {iS [q (τ) , p (τ)]} . (52)

It gives us a functional integral expression for the probability amplitude that
a single quantum particle, whose dynamics is governed by the Hamiltonian Ĥ,
goes from a point x to a point y in space. This is called path integral because
one has to integrate over all paths that go from the initial point to the ending
one , i.e. over all possible phase-space trajectories such that q (0) = x and
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q (t) = y. It is remarkable to note that, compared with the classical case, here
we do not integrate only over the trajectories that makes stationary the action,
as the Hamilton principle tells us. With the appropriate modifications this
formula is valid in Quantum Field Theory too. [6] One of the difference is that
in modern QFT it is usually preferred to use Lagrangian formalism rather then
Hamiltonian one, because the former is more appropriate to deal with relativistic
theories. Indeed Lagrangian formulation ensures manifest relativistic spacetime
invariants, whereas Hamiltonian operator involves a specific time coordinate
choice.

9 Euclidean Formulation

If we continue analytically the time parameter t to purely imaginary values by
the substitution t→ (−it) then equation (49) becomes

〈
y, exp

(
−tĤ

)
x
〉
N�1' (2π)

−N
ˆ N∏

α=1

dpα

N∏
α=2

dqα.

exp

{
t

N

N∑
α=1

[
ipα

(qα+1 − qα)

t/N
−H (qα+1, pα)

]}
= (2π)

−1
.

ˆ N∏
α=1

dpα√
2π

N∏
α=2

dqα√
2π

exp

{
N∑
α=1

(t/N)

[
ipα

qα+1 − qα
t/N

−H (qα+1, pα)

]}

This analytical continuation is called “Wick rotation” and it can be performed
directly on the path-integral. Then taking the limit N → +∞ we get〈

y, exp
(
−tĤ

)
x
〉

=
1

2π

ˆ ∏
0≤τ≤t

dq (τ) dp (τ) .

exp

{
i

ˆ t

0

p (τ)
dq (τ)

dτ
dτ −

ˆ t

0

H (q (τ) , p (τ)) dτ

} (53)

10 An Example of Hamiltonian

Le us consider now a quantum system governed by the following Hamiltonian

H (q, p) =
1

2

d∑
i,j=1

aij (q) pipj + V (q) (54)

where
(
aij
)
≡ a is a positive definite matrix and d is the dimension of the

configuration space. We introduce the following notation

q ≡
(
q1, q2, ..., qd

)
∈ Rd belonging to the configuration space
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whose square norm is given by q2 ≡ q · q = aij (q) qiqj

p ≡ (p1, p2, ..., pd) ∈ Rd belonging to the cotangent space

whose square norm is given by p2 ≡ p · p = aij (q) pipj
And (aij (q)) is the inverse matrix of

(
aij (q)

)
. We view (q, p) as a fiber bundle,

of which q is the basis coordinate, belonging to the configuration space and p
is the fiber coordinate “standing on” q. For q fixed p is the coordinate of the
cotangent space at q, i.e. q is a coordinate of a point of the configuration space
and p is a coordinate for the cotangent space at that point. The collection of
all tangent spaces to all points of configuration space is the cotangent bundle.
Regarding sums over indices we use Einstein’s notation.
Now using equation (49) we evaluate the approximate value of the heat kernel
with the Hamiltonian operator given by (54):

〈
y, exp

(
−itĤ

)
x
〉
N�1' (2π)

−N
ˆ N∏

α=1

dpα

N∏
α=2

dqα·

exp

{
i

N∑
α=1

[
pα · (qα+1 − qα)− t

2N
pᵀαa (qα+1) pα −

t

N
V (qα+1)

]}
= (2π)

−N ·

ˆ N∏
α=1

dpα

N∏
α=2

dqα exp

{
−i t
N

N∑
α=1

1

2

(
pα − a−1 (qα+1)

(qα+1 − qα)

t/N

)ᵀ

a (qα+1) ·

(
pα − a−1 (qα+1)

(qα+1 − qα)

t/N

)
+

it

2N

N∑
α=1

(qα+1 − qα)
ᵀ

t/N
a−1 (qα+1)

(qα+1 − qα)

t/N
−

− it
N

N∑
α=1

V (qα+1)

}
=

ˆ N∏
α=2

dqα·

exp

{
i

N∑
α=1

(t/N)

[
1

2

(
qα+1 − qα
t/N

)ᵀ

a−1 (qα+1)

(
qα+1 − qα
t/N

)
− V (qα+1)

]}
·

ˆ N∏
α=1

dpα exp

{
−it
2N

N∑
α=1

[
pα − a−1 (qα+1)

(qα+1 − qα)

t/N

]ᵀ
a (qα+1) ·

[
pα − a−1 (qα+1)

(qα+1 − qα)

t/N

]}
=

(
2π

it/N

)Nd
2
ˆ N∏

α=2

dqα

N+1∏
α=2

(det a (qα))
− 1

2 ·

exp

{
i

N∑
α=1

t

N

[
1

2

(
qα+1 − qα
t/N

)ᵀ

a−1 (qα+1)

(
qα+1 − qα
t/N

)
− V (qα+1)

]}
.

Hence
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〈
y, exp

(
−itĤ

)
x
〉
N�1'

(
2π

it/N

)Nd
2
ˆ N∏

α=2

dqα

N+1∏
α=2

(
det a−1 (qα)

) 1
2 ·

exp

{
i

N∑
α=1

t

N

[
1

2

(
qα+1 − qα
t/N

)ᵀ

a−1 (qα+1)

(
qα+1 − qα
t/N

)
− V (qα+1)

]} (55)

where we have done the change of variables p
′

α = pα− N
t a
−1 (qα+1) (qα+1 − qα),

which is a translation over momentums. Thus in virtue of properties of func-
tional measure (invariance under translation) our functional integral is invariant
under this change of variables: dp

′

α = dpα. We also have used equation (7) to
evaluate the Gaussian integral.
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Part III

GAUGE THEORIES
We now try to lay the basic concepts of gauge theories in the geometric frame-
work of fiber bundles. We will see that to every gauge field it is associated
a connection, i.e. a rule for transporting along curves in a manifold a vector
quantity that transforms according to a representation of a Lie group G and
that the geometric meaning of the strength field is what is called curvature.

11 Abelian Case - Electromagnetism

To introduce classical gauge theories we consider the simplest not trivial ex-
ample: Maxwell electromagnetic theory. As to notation we shall write vectors
with uppercase latin characters. Maxwell equations, which describe the time
evolution of electric and magnetic fields, read:{

∇×E + ∂tB = 0 ∇ ·B = 0

∇×H − ∂tD = J ∇ ·D = ρ
(56)

where E is the electric field, B is the magnetic induction, D is the electric
displacement and H is the magnetic field. Using Minkowski metric:

g

(
∂

∂xµ
,
∂

∂xν

)
= ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

setting ε0123 = 1 and introducing the antisymmetric tensors

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 = −Fµν

Gµν =


0 H1 H2 H3

−H1 0 D3 −D2

−H2 −D3 0 D1

−H3 D2 −D1 0

 = −Gµν

(57)

we can form the following 2-forms

F :=
1

2
Fµνdx

µ ∧ dxν =
1

2

3∑
ijk=1

εijkBidx
j ∧ dxk −

3∑
i=1

Eidx
0 ∧ dxi

G :=
1

2
Gµνdx

µ ∧ dxν =
1

2

3∑
ijk=1

εijkDidx
j ∧ dxk +

3∑
i=1

Hidx
0 ∧ dxi

(58)
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called field strength and dual field strength respectively. Introducing also the
4-current Jµ = (ρ, J1, J2, J3) we define the 3-form

j :=
1

3!
εµνλρJ

µ dxν ∧ dxλ ∧ dxρ (59)

which is the 4-current density.
Equations (56) can be re-expressed compactly in terms of the 2-forms (58) as{

dF = 0

dG = j
(60)

Proof: Indeed, we have

F ≡ 1

2
Fµνdx

µ ∧ dxν ⇒ dF =
1

2
∂ρ Fµνdx

ρ ∧ dxµ ∧ dxν =

1

2 · 3

{
∂ρFµνdx

ρ ∧ dxµ ∧ dxν + ∂µFνρdx
µ ∧ dxν ∧ dxρ+

∂νFρµdx
ν ∧ dxρ ∧ dxµ

}
=

1

6

{
∂ρFµν + ∂µFνρ + ∂νFρµ

}
dxρ ∧ dxµ ∧ dxν .

It is clear that the 3 indices must all be different, otherwise (i.e. if at least 2
of them are equal) the wedge product gives zero. Let us consider the various
components of this 3-form, with ρ 6= µ 6= ν:

• for (ρ, µ, ν) = (i, j, k) (spatial components) one has

∂iFjk+∂jFki+∂kFij = εijk∂1F23+∂2F31+∂3F12 = ± (∂1B1 + ∂2B2 + ∂3B3) ≡ ±∇·B = 0

which shows that

∇ ·B = 0 is equivalent to ∂iFjk + ∂jFki + ∂kFij = 0.

• for (ρ, µ, ν) = (0, i, j) (“mixed” spacetime components) one has

∂0Fij + ∂iFj0 + ∂jF0i =
(i, j = 1, 2) = ∂tB3 + ∂1E2 − ∂2E1 = (∇× E)3 + ∂tB3 = 0

(i, j = 2, 3) = ∂tB1 + ∂2E3 − ∂3E2 = (∇× E)1 + ∂tB1 = 0

(i, j = 3, 1) = ∂tB2 + ∂3E1 − ∂1E3 = (∇× E)2 + ∂tB2 = 0.

which shows that

∇×E + ∂tB = 0 is equivalent to ∂0Fij + ∂iFj0 + ∂jF0i = 0

Hence it follows that dF = 0, i.e. the 2-form F is closed (namely its exterior
derivative is zero). Thus from the Poincaré Lemma we know that in a star-
shaped (or simply connected) open set U ⊂ Rn F is an exact form, that is
there exists a 1-form A such that
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F = dA (61)

i.e. F is an exact form.
Now let us prove the second of equations (60):

dG :=
1

2
∂ηGµνdx

η ∧ dxµ ∧ dxν =

1

6

{
∂ηGµνdx

η ∧ dxµ ∧ dxν + ∂µGνηdx
µ ∧ dxν ∧ dxη + ∂νGηµdx

ν ∧ dxη ∧ dxµ
}

=

1

6

{
∂ηGµν + ∂µGνη + ∂νGηµ

}
dxη ∧ dxµ ∧ dxν =

1

6

{(
∂iGjk + ∂jGki + ∂kGij

)
·

dxi ∧ dxj ∧ dxk +

(
∂0Gij + ∂iGj0 + ∂jG0i

)
· dx0 ∧ dxi ∧ dxj

}
=

1

3!

{(
∂1D1 + ∂2D2 + ∂3D3

)
dx1 ∧ dx2 ∧ dx3 + cyclic permutations+(

∂0D3 − ∂1H2 + ∂2H1

)
dx0 ∧ dx1 ∧ dx2 +

(
∂0D1 − ∂2H3 + ∂3H2

)
·

dx0 ∧ dx2 ∧ dx3 +

(
∂0D2 − ∂3H1 + ∂1H3

)
dx0 ∧ dx3 ∧ dx1+

cyclic permutations
}

=

1

3!

{
∇ ·D dxi ∧ dxj ∧ dxk +

(
∂tD −∇×H

)
dx0 ∧ dxl ∧ dxm

}
=

1

3!
εµνλρJ

µ dxν ∧ dxλ ∧ dxρ ≡ j.

Thus dG = j. QED
One great advantage of rewriting Maxwell’s fields equations in the more com-
pact form (60)is that they are manifestly coordinate-free and thus relativistically
invariant. Indeed equations (60) are totally independent from any choice of a
particular coordinate system. Furthermore this equations do not require neces-
sarily a given explicit metric. So this formalism can be generalized to curved
spacetime too. It is important to remark that the field strength and its Hodge
dual field are viewed as 2-forms of spacetime. Furthermore F admits, in a star-
shaped region, a potential A give by equation (61) and understood as a 1-form
of spacetime (not only the Minkowski one). It is possible to choose a Riemann
manifold as spacetime and fields equations (60) do not change.
We can also rewrite equations (60) eliminating G from them:{

dF = 0

δF = ∗j
(62)

Proof: It is easy to check component per component that ∗F = G, i.e.
G is the Hodge star dual of the field strength F . For example:
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(∗F )01 =
1

2!
ε01ρηFµνg

µρgνη =
1

2
ε01ρηF

ρη ≡ 1

2
ε ρη
01 Fρη =

1

2

(
ε 23
01 F23 + ε 32

01 F32

)
= ε 23

01 F23 = ε0123F23 = F23 = B1 = H1 = G01.

Proceeding in a similar way for all the others components of the tensor one finds
∗F = G, and one has

d ∗ F = j ⇐⇒ ∗d ∗ F = ∗j ⇐⇒ δF = ∗j

where we use the equality ∗d∗ = δ, which is demonstrated in Mathematical
Appendix. QED

Furthermore, since d2 = 0 (the exterior derivative is nilpotent) from the
second of equations (60) it follows that dj = 0, i.e. we have 4-current density
local conservation. Introducing the electromagnetic coupling constant g and
defining

Ã = −igA, F̃ = −igF, j̃ = − i
g
j

we can write the electromagnetic Lagrangian as

LEM =
1

2g2
F̃ ∧ ∗F̃ + j̃ ∧ Ã. (63)

This Lagrangian is invariant under U (1) local transformations group:

A′µ (x) = Aµ (x) + i∂µλ (x) (64)

12 The Volume Form

Let us consider a n-dimensional oriented manifold M equipped with a metric
g. Then there exists a canonic volume form on M which can be constructed as
follows. First we cover the manifold M with oriented charts ϕα : Uα → Rn, in
each of which we set a metric gµν = g (∂µ, ∂ν) and we define

vol :=
(
|det gµν |

)1/2
dx1 ∧ dx2 ∧ ... ∧ dxn (65)

called a volume n-form. We remember that the standard volume form in Rn is
ω = dx1∧ ...∧dxn. Let us take two different oriented charts ϕ, ϕ′ (ϕ : U → Rn,
ϕ′ : U ′ → Rn), the latter one being equipped with a metric g′µν = g

(
∂′µ, ∂

′
ν

)
.

In addiction to the volume form 65 associated to the chart ϕ we have then the
volume form associated to the chart ϕ′:

vol′ =
(∣∣det g′µν

∣∣)1/2dx′1 ∧ dx′2 ∧ ... ∧ dx′n.
We want to find a volume form well defined over all the manifold M , that is we
require that
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vol = vol′ , on U ∩U ′ (66)
This equation holds true if we assume that the metric transforms as a covariant
tensor of rank two.

Proof: On the overlap of the two charts ϕ and ϕ′ we have

dx′ν = T νµdx
µ , with T νµ =

∂x′ν

∂xµ

hence

dx′1 ∧ ... ∧ dx′n =
(
detT

)
dx1 ∧ ... ∧ dxn. (67)

Since the metric tensor gµν transforms with the inverse matrix T−1:

g′µν ≡ g
(
∂′µ, ∂

′
ν

)
= g

(
∂xα

∂x′µ
∂α,

∂xβ

∂x′ν
∂β

)
≡

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ =

(
T−1

)α
µ

(
T−1

)β
ν
gαβ

and taking the determinant of this equation it follows that

det g′µν =
(
detT

)−2
det gµν . (68)

But since both charts ϕ ϕ′ are oriented we have detT > 0 and on the overlap
U ∩U ′ we can extract the square root and find√∣∣det g′µν

∣∣ =
(
detT

)−1
√
|det gµν |. (69)

Or, defining g := |det gµν | equivalently

(g′)
1/2

=
(
detT

)−1
(g)

1/2 (70)
from which (on U ∩U ′) it follows that

(g′)
1/2

=
(
detT

)−1
(g)

1/2 ⇐⇒

(g′)
1/2

dx′1 ∧ ... ∧ dx′n =
(
detT

)−1(
detT

)
(g)

1/2
dx1 ∧ ... ∧ dxn =

(g)
1/2

dx1 ∧ ... ∧ dxn

namely vol = vol′. QED
Thus we have found an invariant volume n-form defined by

vol = g1/2 dx1 ∧ ... ∧ dxn. (71)

In general relativity it is used to write it simply as vol =
√
g dnx. Since this

volume form is well defined over all an oriented manifold M (curved spacetime)
and it is totally independent from any choice of the chart we can use it as volume
measure in the action integral for gauge fields on curved spacetime:

dV =
√
g d4x (72)
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13 Connections

How can we differentiate a vector field in a (vector) fiber bundle in general? We
need to extend the concept of differentiation to the vector bundle in such a way
that we get infinitesimal variations of sections of the fiber bundle. This problem
is not trivial. A section of a fiber bundle is a map that associates smoothly to
each point x of the base manifold (physically the spacetime manifold) a vector
s (x) belonging to the fiber Ex lying above that point. To differentiate a vector
field in a direction v tangent at a point x one would naively take the limit of
the appropriate incremental ratio:

Dvs (x) := lim
ε→0

s (x+ εv)− s (x)

ε
, v ∈ TxM.

This implies that one has to compute the difference of vectors belonging to
distinct vector spaces. However this difference is not defined in any natural way
because distinct fibers are different spaces. Let see it in greater detail.

Let E be a vector bundle over the manifold M : we view E as a smooth
family of vector spaces parametrized by the corresponding point x of M . We
denote as Γ (E) the space of sections of E. A section s is a continuous map
which associates a point of a fiber over x ∈M with each point x. A connection
D of E associates with each vector field v overM a function Dv : Γ (E)→ Γ (E)
such that, ∀v, w ∈ V ect (M), ∀s, t ∈ Γ (s):

• i) Dv (αs) = αDv (s) ∀ α ∈ R

• ii) Dv (t+ s) = Dv (t) +Dv (s)

• iii) Dv (fs) = v (f) s+ fDvs ∀ f ∈ C∞ (M)

• iv) Dv+ws = Dvs+Dws

• v) Dfvs = fDvs ∀ f ∈ C∞ (M)

We note that the definition of connection extends the notion of vector field from
functions to sections, and it depends on the vector field v defined overM : Dv (s)
is the covariant derivative of the section s along the direction of v. We must
think D as a collection of functions Dv with all possible vector fields v over M .
The third property above is nothing less that Leibniz rule and it makes Dv a
derivative operator.

Now we try to make this definition less abstract and to do this let us express
the connection in terms of local coordinates of M and a basis of sections of the
bundle E. Let {xµ} be a set of coordinates of a open subset U of the manifold
M , {∂µ} the corresponding basis of the tangent bundle at U and let {ei} be a
basis of sections of E over U (so {ei} spans all Γ (E)). We also set Dµ ≡ D∂µ .
Since for every section s of E Dv (s) is also a section of E and the ei form a basis
in Γ (E) then we can express in a unique way Dµej (with arbitrary µ and j) as
a linear combination of ei with appropriate coefficients which will be functions
on U :
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Dµej = Akµjek. (73)

The functions Akµj defined on U are the components of the connection (i.e.
physically the gauge field). Let now see that the connection allows us to express
explicitly the covariant derivative of any section of the bundle E in the direction
of any vector field v. Writing s (∀s ∈ Γ (E)) as s = siei we have

Dv (s) ≡ Dvµ∂µ (s) = vµDµ

(
siei

)
= vµ

[(
∂µs

i
)
ei + siDµei

]
=

vµ
{(
∂µs

i
)
ei +Aiµkeis

k
}

= vµ
(
∂µs

i +Aiµks
k
)
ei.

We obtain therefore the expression

Dv (s) = vµ
(
∂µs

i +Aiµks
k
)
ei (74)

From which it is manifest that the covariant derivative Dv (s) is indeed a form
of differentiation of the section s in the direction of v. Note that, physically
speaking, the n-dimensional vector v is a spacetime quantity whereas the values
of the section s belong to a “inner” space, the fiber, which is connected to
spacetime but is “above” it. Equation (74) also tells us that the connection
D associates a covariant derivative Dv to each vector field v defined on the
manifold M once the connection components Aµ =

(
Akµj

)
∈ C∞ (U , GL (d,C))

are given.

14 Curvature

Let E be a vector bundle over the manifold M equipped with a connection D.
The “curvature” of a connection is somehow a measure of the failure of covariant
derivative to commute. Given two vector fields v and w on M , we define the
curvature F (v, w) to be the operator acting on sections of E given by

F (v, w) := DvDws−DwDvs−D[v,w]s ≡ [Dv, Dw]−D[v,w]. (75)

In the simplest case of a trivial bundle with vector fiber V with a standard flat
connection and where a section is a function f : M → V one has

F (v, w)s = vwf − wvf − [v, w]f = 0

A connection such that F (v, w)s = 0 for all vector fields v, w and sections s has
vanishing curvature and is said to be flat. Curvature is manifestly antisymmet-
ric:

F (v, w) = −F (w, v). (76)

It is also a linear operation over C∞(M) in each argument and in this sense it
is often said to be a ’tensor’:

F (fv, w)s = F (v, fw)s = F (v, w)(fs) = fF (v, w)s (77)
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for any f ∈ C∞(M).
Proof: By definition of curvature and using the Lie Brackets of vector

fields we have

F (v, fw) = DvDfw −DfwDv −Df [v,w]+v(f)w =

DvfDw − fDwDv − fD[v,w] − v(f)Dw =

fDvDw + v(f)Dw − fDwDv − fD[v,w] − v(f)Dw =

f [Dv, Dw]− fD[v,w] ≡ fF (v, w).

F is also linear in the first argument:

F (fv, w) = −F (w, fv) = −fF (w, v) = fF (v, w).

And finally we have F (v, w)fs = fF (v, w)s, indeed:

F (v, w)(fs) = DvDw(fs)−DwDv(fs)−D[v,w](fs) =

fDvDws+ v(f)Dws+ w(f)Dvs+ v(w(f))s− fD[v,w]s− ([v, w]f)s =

f [Dv, Dw]s− fD[v,w]s = fF (v, w)s.

Thus F (v, w) defines a smooth linear map from Γ(E) to itself. QED
By virtue of linearity property of the curvature F (v, w) must correspond to

a section of End(V ) and we can write

F (v, w) = vµwνFµν . (78)

with

Fµν = F (∂µ, ∂ν) = [Dµ, Dν ]. (79)

Using a local basis of sections ei we have

Fµνei = DµDνei −DνDµei = Dµ(Ajνiej)−Dν(Ajµiej) =(
(∂µA

j
νi)− (∂νA

j
µi) +AjµkA

k
νi −A

j
νkA

k
µi

)
ej .

And suppressing the internal indices i, j, k associated with the local basis of
sections of E we can finally write the curvature in the more familiar way:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (80)

15 Change of Basis of Sections

Let U ,V be neighborhoods of the manifold M with U ∩ V 6= ∅, {ei}i=1,...,d a
basis of sections on U and {fi}i=1,...,d a basis of sections on V . On the overlap
U ∩ V we have ei = T jkfj and it follows that

(e)

Aµ = T−1
(f)

A T + T−1∂µT (81)
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where Dµej =
(e)

Akµjek

Dµfl =
(f)

Amµlfm

(82)

Proof:

(e)

Akµjek =
(e)

AkµjT
l
kfl = Dµej = Dµ

(
T ljfl

)
= T ljDµfl + ∂µ

(
T lj
)
fl =

T lj
(f)

Amµlfm + fl∂µT
l
j ⇐⇒

(e)

AmµjT
k
mfk =

{
Tmj

(f)

Akµm + ∂µ
(
T kj
)}
fk

from which it follows that

(e)

AmµjT
k
m = Tmj

(f)

Akµm + ∂µT
k
j

or without indices in the form

T
(e)

Aµ =
(f)

AµT + ∂µT.

Now we multiply both sides of last equation for T−1 from the left and we finally
obtain the famous gauge transformation law

(e)

Aµ = T−1
(f)

AµT + T−1∂µT. (83)

QED
Thus we see clearly that a gauge transformation arises naturally when one per-
forms a change of basis in the space of sections Γ (E) of the fiber bundle. It is
easy to show that equation (83) reduces to (64) if the gauge group of the bundle
is U(1).

16 Yang-Mills Action

The basic data of a gauge theory are a Euclidean Riemannian manifold M and
a gauge compact Lie group G. The fundamental field of the gauge theory is the
gauge field Aµ, which is a 1-form over M with values in the Lie algebra g of G.
Introducing the gauge strength field (i.e. the curvature)

Fµν = ∂µAν − ∂νAµ +
[
Aµ,Aν

]
(84)

the action functional reads

Seucl. =
1

4g2
YM

ˆ
dV gµαgνβ〈Fαβ ,Fµν〉 =

1

4g2
YM

ˆ
dV 〈Fµν ,Fµν〉 (85)
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where gYM is the coupling constant and 〈 · , · 〉 is a quadratic gauge-invariant
form on the Lie algebra. The basic property that characterizes all gauge theories
(Abelian and not) is the invariance under local G-transformations, where G is
the compact Lie group. A gauge transformation is given by the laws{

γAµ = γAµγ
−1 − ∂µγγ−1

γFµν = γFµνγ−1
(86)

where γ ∈ Map(M,G) is the G-valued function that represent the local gauge
transformation.
Let consider the Yang-Mills Lagrangian with fermionic term too

LYM (x) = −1

4
F (x)aµνF

µνa(x) + Ψ(x)
(
iγµDµ −M

)
Ψ(x). (87)

This Lagrangian is invariant under the gauge transformation (86) if the quadratic
form 〈·, ·〉 is gauge-invariant, namely if for X,Y ∈ g and h ∈ G one has

〈hXh−1, hY h−1〉 = 〈X,Y 〉. (88)

So it follows that the quadratic form in the Yang-Mills action in invariant under
gauge transformations:

〈γFµν , γFµν〉 = 〈γFµνγ−1, γFµνγ−1〉 = 〈Fµν ,Fµν〉. (89)

Thus the action (85) is gauge invariant. The transposition of equation (86) in
terms of operators (i.e. in second quantization) is expressed by

A′µ(x) = Uh(x)Aµ(x)U−1
h (x) + ∂µUh(x)U−1

h (x) (90)

where h is an element of the gauge group G and Uh is a unitary representation
of G on Fock space.

17 Path-Ordered Exponential

Then, let G be a Lie group, g its Lie algebra and V a r-dimensional vector space
which is a representation space of g. Let ρ : G → GL (V ) be a representation
of g on the linear space V and ρ′ : g → gl (V ) the associated representation
of g. We consider a scalar field φ, which can be viewed as a V-valued 0-form:
φ : U → V (U ⊂ R4), and a local gauge transformation γ given by the G-valued
function γ : U → G. The field φ transforms according to the law:

φ′ (x) = ρ (γ (x))φ (x) (91)

We shall understand that γ acts through the representation ρ and we shall write
equation (91) in a more simple way as

φ′ (x) = γ (x)φ (x) (92)
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Now let C be a curve with initial point x and end point y and let consider
the parallel transport Γ [C]: the operator that associates with each vector of
the space Vx a corresponding vector in the fiber Vy. Our construction will be
gauge-invariant if

Γ′ [C] = γ (y) Γ [C] γ−1 (x) . (93)

Since the parallel transport of a vector should be a continuous operation Γ [C]
must be infinitesimally closed to the identity for an infinitesimal curve C. Now
we consider a curve C parameterized as Q (τ) : [0, 1] → U (0 ≤ τ ≤ 1). The
tangent vector at C in Q (τ) is given by Q̇ (τ) ≡ d

dτQ (τ). Let φ (τ) ∈ V be
the result of the parallel transport of φ (0) along the segment of the curve C
that goes from Q(0) to Q(τ). Similarly for ε → 0+ φ (τ + ε) results from the
parallel transport of φ (0) along the partial piece of C from Q(τ) to Q(τ + ε).
The infinitesimal generator of parallel transport at Q(τ) is the component of
the gauge field AQ(τ), along Q̇ (τ):

φ (τ + ε) = Γ
(
CQ(τ),Q(τ+ε)

)
φ(t) = φ (τ)− εAQ(τ)

(
Q̇ (τ)

)
φ (τ) +O

(
ε2
)

=[
1− εAµ

(
Q(τ)

)
Q̇ (τ)

µ
]
φ (τ) +O

(
ε2
)

from which it follows the differential equation for the parallel transport

d

dτ
φ (τ) = −Aµ

(
Q(τ)

)
Q̇ (τ)

µ
φ (τ) (94)

Let see this from a more geometric perspective. Let E be a vector bundle
over the manifold M equipped with a connection D, γ : [0, T ] → M a smooth
path that goes from a point p to a point q of M and let u (t) be a section of the
bundle E over the curve γ (t). We want to write an equation which describes
the ’parallel transport’ of u (t) along γ (t). Calling γ′ (t) the tangent vector at
γ (t) we must require that

Dγ′(t)u (t) ≡ 0. (95)

This equation states that the vector u (t) is transported “parallel to itself” along
γ (t), since its variation along the direction in which the curve “runs” is zero.
Equation (95) explicitly reads

Dγ′(t)u (t) =
d

dt
u (t) +A (γ′ (t))u (t) = 0 (96)

Thus one gets the equation of parallel transport:

d

dt
u (t) = −A (γ′ (t))u (t) (97)

The formal solution of this differential equation is
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u (t) =

+∞∑
n=0

{
(−1)

n
ˆ

0≤tn≤tn−1≤...≤t1≤t
dtn...dt1A (γ′ (t1)) ...A (γ′ (tn))

}
u0.

(98)
Proof: Let us solve equation (97). We first note that one particular

solution is given by

u(t) = u0 −
ˆ t

0

dt1A (γ′(t1))u (t1) , u0 ≡ u(0) (99)

Indeed one has

d

dt
u(t) = − d

dt

{ˆ t

0

dt1A (γ′(t1))u (t1)
}

= −A (γ′(t))u (t) (100)

Thus the expression (99) solves the equation of parallel transport, nevertheless
it does not provide a solution but only an integral equation for the solution . So
let us proceed by iteration, namely we substitute (99) into u(t) in the integrand
n times as follows:

u(t) = u0 −
ˆ t

0

dt1A (γ′(t1))u (t1) =

u0 − u0

ˆ t

0

dt1A (γ′(t1)) +

ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2))u (t2) =

u0 − u0

ˆ t

0

dt1A (γ′(t1)) + u0

ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2))−

u0

ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2))

ˆ t2

0

dt3A (γ′(t3)) + ...+

(−1)
n
ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2)) ·
ˆ t2

0

dt3A (γ′(t3)) ....

ˆ tn−1

0

dtnA (γ′(tn))u(tn) ={
1−
ˆ t

0

dt1A (γ′(t1)) +

ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2))−

ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2))

ˆ t2

0

dt3A (γ′(t3)) + ...+

(−1)
n
ˆ t

0

dt1A (γ′(t1))

ˆ t1

0

dt2A (γ′(t2)) ·
ˆ t2

0

dt3A (γ′(t3)) ....

ˆ tn−1

0

dtnA (γ′(tn))
u(tn)

u0

}
u0
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and taking the limit when n tends to infinity, since u(tn) −→
n→∞

u0 , we finally
get

u(t) =

+∞∑
n=0

{
(−1)n

ˆ
0≤tn≤tn−1≤...≤t1≤t

A (γ′(t1)) .....A (γ′(tn)) dtn.....dt1

}
u0.

(101)
QED
It is apparent that the parameter t ∈ [0, T ] of the path γ is decreasingly ordered
in the series of the above integrals and if t were a time parameter we should say
that equation (101) is time ordered. Now we ask whether the infinite sum (101)
converges. Surprisingly that sum converges!

Proof: Let give a norm in the vector space V and let define a norm in
End(V ) by ‖T‖ := sup

‖u0‖=1

‖Tu0‖. Furthermore defining K := sup
t∈[0,T ]

‖A (γ′(t))‖

we consider the n− th term of the series (101):

un ≡ (−1)n
ˆ

0≤tn≤tn−1≤...≤t1≤t
dt1....dtn A (γ′(t1)) ....A (γ′(tn))u0.

We have

‖un‖ = |(−1)n| sup
‖u0‖=1

∥∥∥∥∥
ˆ

0≤tn≤tn−1≤...≤t1≤t
dt1....dtn A (γ′(t1)) ....A (γ′(tn))u0

∥∥∥∥∥ ≤
sup
‖u0‖=1

ˆ
0≤tn≤tn−1≤...≤t1≤t

dt1....dtn ‖A (γ′(t1))‖ .... ‖A (γ′(tn))‖ ‖u0‖ ≤

Kntn ‖T‖
n!

n→∞
−→ 0 .

Thus the series (101) is convergent and it defines a good solution u(t) of equation
(97). QED
Equation (101) can be re-expressed as

u(t) = P exp

{
−
ˆ t

0

A(γ′(s))ds

}
u0. (102)

Proof:
Let us define the path-ordered product as

P
{
A(γ′(t1))...A(γ′(tn))

}
:= A(γ′(tσ(1)))...A(γ′(tσ(n))), tσ(1) ≥ ... ≥ tσ(n)

where σ ∈ Sn (i.e. an element of the finite symmetric group of n objects) is
a permutation such that larger values of ti appear first in the product (of the
gauge fields). Then we have
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ˆ
0≤tn≤tn−1≤...≤t1≤t

dt1....dtn A (γ′(t1)) ....A (γ′(tn)) =

1

n!

ˆ
ti∈[0,t]

dt1...dtnP
{
A(γ′(t1))...A(γ′(tn))

}
≡ 1

n!
P
(ˆ t

0

A(γ′(s))ds
)n
.

(103)

Thus defining the path-ordered exponential by

P exp
{
−
ˆ t

0

A(γ′(s))ds
}

=

+∞∑
n=0

(−1)n

n!
P
(ˆ t

0

A(γ′(s))ds
)n

(104)

one has

u(t) = Pe−
´ t
0
A(γ′(s))dsu0. (105)

QED
The physical meaning of path-ordering may be that gauge fields are ordered in
decreasing way following the path from the initial to the end point. If A(γ′(s))
is independent of the parameter s the path-ordered exponential reduces to the
ordinary one. Instead when G is Abelian A(γ′(s)) commute for different values
of s and the path-ordering operation has no effect:

P
{
A(γ′(t1))...A(γ′(tn))

}
:= A(γ′(t1))...A(γ′(tn))

and (105) reduces to

u(t) = e−
´
γ
Au0 (106)

This expression remembers very closely the phase acquired by a charged particle
moving along a path through a magnetic field:

e−
i
~ q
´
γ
A

18 Holonomy and Wilson Loop

Let us consider a piecewise smooth path γ and let break it up into maximal
smooth pieces γi : [ti, ti+1]→M (1 ≤ n ≤ n). We define the holonomy by

H (γ,D) = H (γn, D)...H (γ1, D) (107)

It is easy to show that holonomy H (γ,D) is affected in a simple way when we
perform a gauge transformation g to the connection D:

H (γ,D′) = g(γ(tf ))H (γ,D)g(γ(0)) (108)

where applying the gauge transformation g to the connection the holonomy is
the linear map that sends u(0) to u(tf ). If we consider the holonomy around a
loop (i.e. a closed path) last equation reduces to
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H (γ,D′) = g(q)H (γ,D)g(q)−1 (109)

for q ∈M a point of the loop. Thus if we take the trace of H (γ,D) we obtain
a number that does not change under gauge transformations:

tr(H (γ,D′)) = tr
[
g(q)H (γ,D)g(q)−1

]
= tr [H (γ,D)] . (110)

Thus tr(H (γ,D)) is gauge invariant and it is called Wilson loop:

W (γ,D) := tr(H (γ,D)). (111)

19 Isometric Group Actions

Let us consider a left action G ×M → M of the group G over the manifold
M . Supposing that G is equipped with a bi-invariant metric then for g ∈ G the
tangent space TgG is endowed with a metric (·, ·)g such that, for ξ, η ∈ TgG:

i)
(
Lh∗gξ, Lh∗gη

)
hg

=
(
ξ, η
)
g
,

(
Rh∗gξ,Rh∗gη

)
gh

=
(
ξ, η
)
g

(112)

Then (·, ·) is the bi-invariant adjoint metric of the Lie algebra g = TeG. From
(112) follows that

(Adh ξ,Adh η)e := (Lh∗h−1 ◦Rh−1∗eξ, Lh∗h−1 ◦Rh−1∗eη)hh−1 =

(Rh−1∗eξ,Rh−1∗eη)h−1 = (ξ, η)e
(113)

Thus we have a bi-invariant metric, i.e. a metric invariant under right and left
translations. Suppose that also the manifold M is endowed with a metric. The
left action G ×M → M is said to be isometric if the following property holds
true. For any g ∈ G let us define a map Ag : M → M given by Ag(x) = gx,
with x ∈M . Then we require that(

Ag∗xu,Ag∗xv
)
gx

= (u, v)x u, v ∈ TxM. (114)

Then the tangent space TxM is equipped with an invariant metric, i.e. the
action of all group elements through the map Ag does not change the metric
properties of the manifold. The action G ×M → M is also associated with
other maps. Let x ∈ M , Bx : G → M the map defined as Bx(g) = gx (with x
fixed while g varies on all G). Then Bx∗g : TgG→ TgxM and Bx∗e : g→ TxM .
Given ξ ∈ g we can also consider the map Cξ(x) = Bx∗eξ which defines the
so-called fundamental vector field of ξ. Finally if we consider an element h of
the stabilizer of x we have Bx(h) = hx = x.
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20 Measures

It is possible to define a measure (dµ) over G by assigning to each element g of
the group a measure (dξ)g in the tangent space TgG. The measure (dξ)g is a
standard Lebesgue measure over TgG with the normalization condition:

ˆ
TgG

(dξ)g exp

{
−1

2
(ξ.ξ)g

}
= 1. (115)

For h ∈ G the map Lh : G → G is invertible and then also the map Lh∗g :
TgG → ThgG is invertible. So we can define the Jacobian J(Lh∗g) of the left
translation by the property:

J(Lh∗g)

ˆ
TgG

(dξ)g exp

{
−1

2
(Lh∗gξ, Lh∗gξ)hg

}
=

ˆ
ThgG

(dξ)hg exp

{
−1

2
(ξ, ξ)hg

}
(116)

which expresses the invariance of the measure under (left) translations. Since
the scalar product is preserved by left translations: (Lh∗gξ, Lh∗gξ)hg = (ξ, ξ)g
it follows that

J(Lh∗g) = 1. (117)

Proceeding in a very similar way in the case of right translations, given by the
invertible maps Rh : G→ G, one gets

J(Rh∗g) = 1. (118)

It must be clear that the measure (dµ)g is defined over the manifold representing
the locally compact Lie group G whereas the measure (dξ)g is defined over the
tangent space TgG at that manifold in the point g. In any neighborhood of the
group manifold we have

(dµ)g = (dξ)g. (119)

From equations (116), (117) it follows that

ˆ
G

J(Lh∗g)(dµ)gf(hg) =

ˆ
G

(dµ)hgf(hg) ≡
ˆ
G

(dµ)gf(g) =

ˆ
G

(dµ)gf(hg)

(120)

and similarly
ˆ
G

(dµ)gf(gh) =

ˆ
G

(dµ)gf(g). (121)

Thus (dµ)g is a bi-invariant Haar measure over G and leads to the definition of
an integral for functions on G. An Haar measure assigns an “invariant volume”
to subsets of a locally compact topological group G.
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Now let us define a measure (dm) over the manifold M assigning to every
g ∈ G a measure (du)x on the tangent space TxM . (du)x is defined as a standard
Lebesgue measure normalized as usual:

ˆ
TxM

(du)x exp

(
−1

2
(u, u)x

)
= 1. (122)

Since the maps Ag : M → M and Ag∗h : TxM → TgxM are invertible we can
define the associated Jacobian J(Ag∗x) by

ˆ
TgxM

(dµ)gx exp(−1

2
(u, u)gx) = J(Ag∗x)

ˆ
TxM

(du)x exp(−1

2
(Ag∗xu,Ag∗xu)gx).

(123)
Since (Ag∗xu,Ag∗xu)gx = (u, u)x also this Jacobian must be equal to unit:

J(Ag∗x) = 1. (124)

When we pass to the tangent space TM to the manifold M we can use the fact
that locally (dm)x = (du)x in any neighborhood of x. Thus we have

ˆ
M

J(Ag∗x)(dm)xf(Agx) =

ˆ
M

(dm)xf(gx) =

ˆ
M

(dm)gxf(gx) ≡
ˆ
M

(dm)xf(x)

(125)

which tells us that the left action of an element of G on the function f : G→ G
preserves the invariant measure onM (the same holds true for the right action).

21 Faddeev-Popov Determinant

Let us introduce the notion of the Faddeev-Popov determinant. Recall the map
Bx : G → M that we defined as the left action of g on x. Bx(g) is the orbit of
the point x and it is not an invertible map since it is not injective. We define
the Faddev-Popov function WFP : M → R by

WFP (x)−1 =

ˆ
G

(dµ)g δ(F ◦Bx(g)) (126)

where F is a gauge-fixing vector-valued function. F must be chosen such that
∀x ∈M , there exists a gx ∈ G that satisfies:

F ◦Bx(gx) = 0. (127)

WFP is gauge-invariant, indeed for h ∈ G one has:

W−1
FP (hx) =

ˆ
G

(dµ)g δ(F ◦Bx(gh)) =

ˆ
G

(dµ)g δ(F ◦Bx(g)) = W−1
FP (x) (128)

46



where we have assumed that there exists a unique hg ∈ Hx (with Hx stabilizer
of x) such that g = gxhg. From these properties it follows that

1

V ol (G)

ˆ
M

(dm)xf(x) =

ˆ
M

(dm)xf(x)WFP (x) δ (F (x)) (129)

Proof:
ˆ
M

(dm)x f(x) · 1 =

ˆ
M

(dm)x f(x)

ˆ
G

WFP (x)δ(F ◦Bx(g)) =

ˆ
G

(dµ)g

ˆ
M

(dm)xf(gx)WFP (gx)δ(F (gx)) =

ˆ
G

(dµ)g

ˆ
M

(dm)xf(x̃)WFP (x̃)δ(F (x̃)) =

Vol(G)

ˆ
M

(dm)xf(x)WFP (x)δ(F (x)).

QED
An important special case of equation (129) is the following

1

Vol(Gauge)

ˆ
gauge fields

(dA)eiS[A] =

ˆ
gauge fields

(dA)eiS[A]WFP [A]δ(∂µA
µ).

(130)
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Part IV

MATHEMATICAL APPENDIX

A Gamma Function

Let z ∈ C , for Re (z) > 0 we can define tha Euler’s Γ function by means of the
integral

Γ (z) :=

+∞ˆ

0

dt tz−1e−t (131)

First of all let us see that for Re (z) > 0 this integral in well defined and
convergent, indeed:∣∣∣∣+∞́

0

dt tz−1e−t
∣∣∣∣ ≤+∞́

0

dt
∣∣tz−1e−t

∣∣ =
+∞́

0

dt e−ttRe(z)−1 < +∞

iff Re (z) > 0 , because the power x−α , with α > 0 , is integrable at the origin
when α < 1.
Furthermore the recurrence formula{

Γ (z + 1) = zΓ (z)
Γ (1) = 1

(132)

holds.

Indeed Γ (1) =
+∞́

0

dt e−t = e−t|0+∞=+1, and integrating by parts one finds

Γ (z + 1) =
+∞́

0

dt tze−t = −tze−t|+∞0 +
+∞́

0

dt e−tztz−1 = z
+∞́

0

dt e−ttz−1 =

zΓ (z) .
If we restrict our consideration to the special case z = n ∈ Z+ a very

interesting property arises:

Γ (n+ 1) = nΓ (n) = n (n− 1)Γ (n− 1) = n (n− 1) (n− 2) ...3 · 2 · 1 = n!

So we see that the Euler’s Gamma function is a sort of generalization at the
complex plane of the factorial:

Γ (n+ 1) = n! , n ∈ N

From these formulas it follows that Γ (z) = Γ (z+n+1)
z(z+1)(z+2)...(z+n) , for an arbitrary

natural number n. As a matter of fact, by iteration we have

• Γ (z + 1) = zΓ (z)

• Γ (z + 2) = (z + 1)Γ (z + 1) = (z + 1) zΓ (z)
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• Γ (z + 3) = (z + 2) (z + 1) zΓ (z)

• ...

• Γ (z + n+ 1) = (z + n) (z + n− 1) (z + n− 2) ... (z + 2) (z + 1) zΓ (z)⇒

Γ (z) =
Γ (z + n+ 1)

z (z + 1) (z + 2) ... (z + n)
, n ∈ N (133)

The very last equation is useful for making the analytic continuation of Γ func-
tion over the complex left half-plane, i.e. to extend the domain of the gamma
function to the left half-plane of the complex plane C, apart from a countable
infinite set of points. Indeed by analytic continuation tool our special function
Γ is well defined everywhere in the complex plane apart the countable set of
simple poles

z = 0,−1,−2,−3, ...,−n, ... , ∀n ∈ N

An alternative definition of the gamma function is

Γ (z) = lim
k→+∞

k!kz−1

z (z + 1) (z + 2) ... (z + k)
which manifests too the numerable infinity of simple poles in z ∈ Z−.

B Euler-Riemann Zeta Function

The Euler-Riemann ζ-function is defined as

ζ (z) :=

+∞∑
n=1

1

nz
, z ∈ C withRe (z) > 1 (134)

A relation exists between Γ and ζ as we shall see now. We try to make the
substitution u = t

n in the integral which define Gamma function and we get

Γ (z) =
+∞́

0

dt e−ttz−1 =
+∞́

0

du (un)
z−1

e−nun = nz
+∞́

0

du e−nuuz−1

n ∈ N, u ≡ t/n⇒ dt = ndu
which implies

ζ (z)Γ (z) =

{
+∞∑
n=1

n−z
}
nz

+∞́

0

du uz−1e−nu =
+∞∑
n=1

+∞´
du
0

uz−1e−nu

The last equality is allowed by the fact that ∀u ∈ R+ and ∀n ∈ N ∃t ∈ R+

such that nu = t .
The integrals above don’t make troubles for Re (z) > 1 because the integrand
function stays limitated. Applying the Lebesgue’s dominated convergence the-
orem we get

ζ (z) =
1

Γ (z)

+∞̂

0

tz−1

et − 1
dt (135)
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because of the geometric series
+∞∑
n=1

e−nt = (et − 1)
−1 , since for t ≥ 0 the

absolute value of the ratio of the series is less than one and we get
+∞∑
n=1

(e−t)
n

=
+∞∑
n=0

(e−t)
n − 1 = 1

1−e−t − 1 = 1
et−1

C The Generalized Zeta Function

It’s clear that the Euler’s Riemann
+∞∑
k=1

k−s = ζN+1(s) , where N is the number

operator, is different from the trace of the complex power of an operator
+∞∑
k=1

λ−sk

, so we want to extend the original definition of zeta function. During the
proceedings we will find a Mellin transform. Let ak be a real number such that
0 < ak < 1 and consider the following steps (where we set t = u(k + ak)): Il

Γ (s) =

ˆ

R+

dt ts−1e−t = (k + ak)
s
ˆ

R+

duus−1e−u(k+ak)

⇒ (k + ak)
−s

= Γ (s)
−1

+∞̂

0

dte−t(k+ak)ts−1

Now we set k + ak ≡ λk .

Then it follows that
N∑
ν=1

nνλ
−s
ν =

1

Γ (s)

N∑
ν=1

+∞́

0

dt ts−1e−tλνdν , and taking the

limit N → +∞

ζA (s) =
1

Γ (s)

+∞∑
ν=1

ˆ

R+

dt ts−1e−tλνdν

This last expression define a modified version of the generalized or Hurwitz
zeta function:

ζN+a (s, a) :=
+∞∑
n=0

(a+ n)
−s

n ∈ N, s ∈ C with Re (s) ≥ 1 + δ, δ > 0

a ∈ R with e 0 < a ≤ 1
Proposition: Let s ∈ C such that Re(s) > 1, and a ∈ R such that 0 <

a ≤ 1 , then

ζ (s, a) =
1

Γ (s)

ˆ +∞

0

dx
xs−1e−ax

1− e−x
, Re (s) > 1 (136)

Proof:

+∞∑
n=0

(a+ n)
−s

= lim
n→+∞

1

Γ (s)

n∑
k=0

+∞̂

0

dxxs−1e−(a+k)x ⇐⇒
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Γ (s) ζ (s, a) = lim
n→∞

n∑
k=0

ˆ

R+

dxxs−1e−(k+a)x =

= lim
n→∞

+∞̂

0

dxxs−1e−ax
n∑
k=0

(
e−x

)k
= lim
n→∞

ˆ

R+

dxxs−1e−ax
(

1− e−x(n+1)

1− e−x

)
=

=

+∞̂

0

dx
xs−1e−ax

1− e−x
− lim
n→∞

+∞̂

0

dx
xs−1e−(a+n+1)x

1− e−x

But the limit tend to zero as we shall see now. In fact we have

ex > 1 + x =⇒ ex − 1 > x =⇒ 1

ex − 1
=

e−x

1− e−x
<

1

x
. Thus:∣∣∣∣∣∣

+∞̂

0

dx
xs−1e−x(n+a+1)

1− e−x

∣∣∣∣∣∣ ≤
+∞̂

0

dx

∣∣∣∣xs−1 e−x

1− e−x
e−(n+a)x

∣∣∣∣ <
<

+∞̂

0

dx
xRe(s−1)e−x(n+a)

x
=

+∞̂

0

dxxRe(s)−2e−x(n+a) = #

But Γ (Re (s)− 1) ≡
+∞́

0

dt e−ttRe(s)−2 so acting a change of variable we find

# =

+∞̂

0

dt (n+ a)
−1 e−ttRe(s)−2

(n+ a)
Re(s)−2

=

= (n+ a)
1−Re(s)

+∞̂

0

dt e−ttRe(s)−2 = (n+ a)
1−Re(s)

Γ (Re(s)− 1)

⇐⇒

∣∣∣∣∣∣
+∞̂

0

dx
xs−1e−x(n+a+1)

1− e−x

∣∣∣∣∣∣ < Γ (Re(s)− 1) (n+ a)
1−Re(s)

And the right hand side of the very last inequality tend to zero when n→ +∞,
under the assumption that Re(s) > 1. Hence

lim
n→+∞

+∞̂

0

dx
xs−1e−(a+n+1)x

1− e−x
= 0 =⇒ Γ (s) ζ (s, a) =

+∞̂

0

dx
xs−1e−ax

1− e−x

Thus we have proved that the equation (136) holds true. QED
One can get the same result applying the dominated convergence theorem of
Lebesgue, but it is very quite similar.
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D Analytic Continuation of Zeta Function

Now our aim is to extend analytically the hyperfunction ζ , in such a way that
its domain coincides with all the complex plane C apart from the single point
s = 1

D (ζ) = C− {1} (137)

Proof:
To this end let z ∈ C and let study the next function, very similar to the

integrand of equation (136) extended to complex domain

z ∈ C , a ∈ R with 0 < a ≤ 1 , f (z) =
(−z)s−1

e−az

1− e−z

The function f (z) has simple poles when its denominator vanishes, i.e. in the
points z = 2πki , k ∈ Z . Furthermore when s /∈ Z , f (z) is a multivalued
function with branch point z = 0 .
We assume the cut of the complex plane along the positive semiaxis of abscissa
coordinate x: 0 < arg (z) < 2π ⇐⇒ −π < arg (−z) < π. We set z = eiϑ, with
0 ≤ ϑ ≤ π and 0 < ε < 1 and taking a piecewise regular (i.e. smooth) curve C
in the complex plane, as shown in the figure we integrate f(z) along C:

ˆ
C

(−z)s−1e−az

1− e−z
dz =

ˆ +ε

+∞

xs−1e−πi(s−1)e−ax

1− e−x
dx+

ˆ 2π

0

(−εeiϑ)s−1e−aε(cosϑ+i sinϑ)

1− e−ε(cosϑ+i sinϑ)
(iεeiϑ)dϑ+

ˆ +∞

+ε

eπi(s−1)xs−1e−ax

1− e−x
dx

And taking the limit ε→ 0+ we find that the second integral makes zero:

lim
ε→0+

iε

ˆ 2π

0

(−εeiϑ)s−1e−aε(cosϑ+i sinϑ)

1− e−ε(cosϑ+i sinϑ)
eiϑdϑ

' lim
ε→0+

i

ˆ eπ

0

eiϑs(−ε)s

ε(cosϑ+ i sinϑ) +O(ε2)
dϑ = lim

ε→0+
εs−1

ˆ 2π

0

I(ϑ)dϑ = 0

if Re(s− 1) > 1. So, required that Re(s− 1) ≥ 1 + δ (δ > 0) we get

ˆ
C

(−z)s−1e−az

1− e−z
dz =

[
eπi(s−1) − eπi(s−1)

] ˆ +∞

ε→0+

dx
xs−1e−ax

1− e−x
=

−2i sin[π(1− s)]
ˆ +∞

ε→0+

xs−1e−ax

1− e−x
dx

and using the reflection formula of Euler

− 2i sin[π(1− s)] =
−2iπ

Γ(1− s)Γ(s)
(138)
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we finally obtain
ˆ
C

(−z)s−1e−az

1− e−z
dz =

−2πi

Γ(1− s)
Γ(s)−1

ˆ +∞

0

xs−1e−ax

1− e−x
dx ≡

−2πi

Γ(s− 1)
ζ(s, a).

Thus we have reached the following important formula:

ζ(s, a) = −Γ(1− s)
2πi

ˆ
C

(−z)s−1e−az

1− e−z
dz (139)

from which it is manifest that the extended domain of zeta function must be all
complex plane except for the unique point 1. Indeed we know that initially the
zeta domain was the complex half-plane Re(z) > 1, and now ζ must have at
least all the domain of Γ(1 − s) because the integral above defines an analytic
function. And since we have

D(Γ(1− s)) = C− {1, 2, 3, ..., n, ....} (140)

and at the same time ζ is well defined in all points s = 2, 3, 4, ..., n, ... we must
infer that

D(ζ) = C− 1. (141)

QED

E Euler’s Reflection Formula

The reflection relation that we used previously reads

Γ(1− s)Γ(s) =
π

sin(πs)
(142)

Proof:

F Exterior Derivative

The exterior derivative d maps p-forms into (p+1)-forms. Let U ⊂ Rn be an
open subset and let ΛpU denote the set of all p-forms defined on it. We recall
that we always use Einstein’s notation about indices’ contractions. For p = 0
the exterior derivative acts on functions f ∈ Λ0U (0-forms are functions) as
follows

df =
∂f

∂xi
dxi , x ∈ U , f : U → R

so df ∈ Λ1U and it is equivalent to the standard differential of a function.
Instead if we evaluate the exterior derivative along a tangent vector v = vi ∂

∂xi ∈
TxU we find
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(df)x (v) = 〈df, v〉 =
〈 ∂f
∂xi

dxi, vj
∂

∂xj

〉
=

∂f

∂xi
δijv

j =
∂f

∂xi
vi

from which it is evident that df gives the derivative of f along the direction of
v. Let us now consider the exterior derivative of an arbitrary p-form.
Proposition: Let U ⊆ Rn , ΛU :=

n
⊕
p=0

ΛU . There exists a unique map

d : ΛU → ΛU such that

• i) d is a linear map

• ii) for p = 0 it reduces to the differential just seen above

• iii) d (ΛpU ) ⊂ Λp+1U

• iv) Leibniz rule: d (ϕ ∧ ψ) = dϕ ∧ ψ + (−1)
p
ϕ ∧ dψ , ϕ ∈ ΛpU

• v) nilpotent: d2 = 0

Proof: Let assume that there exists an operator d acting on p-forms
in U having all the properties above and let us show that it is unique. Let
ϕ ∈ ΛpU be an arbitrary p-form, then we can express it as:

ϕ = (p!)
−1
ϕi1...ip dx

i1 ∧ dxi2 ∧ ... ∧ dxip . (143)

From properties i), ii), iv) and v) it follows that

dϕ =
1

p!

{
d
(
ϕi1...ip

)
∧ dxi1 ∧ ... ∧ dxip + (−1)

0
ϕi1...ipd

(
dxi1 ∧ ... ∧ dxip

)}
=

1

p!

(
dϕi1...ip

)
∧ dxi1 ∧ ... ∧ dxip + ϕi1...ip

[(
ddxi1

)
∧ ... ∧ dxip−1 ∧ dxip+

(−1) dxi1 ∧
(
ddxi2

)
∧ ... ∧ dxip + ...+

(−1)
p−1

dxi1 ∧ dxi2 ∧ ... ∧ dxip−1 ∧
(
ddxip

)]
=

1

p!

(
dϕi1...ip

)
∧ dxi1 ∧ ... ∧ dxip

So we have just shown that the exterior derivative of a p-form generally expressed
by equation (143) is given by:

dϕ =
1

p!

(
dϕi1...ip

)
∧ dxi1 ∧ ....... ∧ dxip (144)

where dϕi1...ip is the exterior derivative of the functions ϕi1...ip . Since it is
uniquely defined it follows that the map d : ΛU → ΛU exists unique. Now,
by inverse, we have to demonstrate that if we define the operator d through
equation (144) then all five properties i) - v) are satisfied.

• i) d is clearly a linear map.
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• ii) for p = 0, i.e. when ϕ is a function, equation (144) reduces to

dϕ =
∂ϕ

∂xi
dxi

which is the well known differential of a 0-form.

• iii) d (ΛpU ) ⊂ Λp+1U is evidently true because given ϕ ∈ ΛpU then dϕ
expressed via (144) is an element of Λp+1U .

• iv) Leibniz rule is fulfilled since, given arbitrary forms ϕ ∈ ΛpU and
ψ ∈ ΛqU :

ϕ = (p!)
−1
ϕi1...ip dx

i1 ∧ dxi2 ∧ ... ∧ dxip

ψ = (p!)
−1
ψj1...jq dx

j1 ∧ dxj2 ∧ ... ∧ dxjq

Hence

d (ϕ ∧ ψ) =
1

p!q!
d
{
ϕi1...ipψj1...jq dx

i1 ∧ ... ∧ dxip ∧ dxj1 ∧ ... ∧ dxjq
}

=

1

p!q!

(
dϕi1...ip

)
ψj1...jq ∧ dxi1 ∧ ... ∧ dxip ∧ dxj1 ∧ ... ∧ dxjq+

1

p!q!
ϕi1...ip

(
dψj1...jq

)
∧ dxi1 ∧ ... ∧ dxip ∧ dxj1 ∧ ... ∧ dxjq =

1

p!

{
dϕi1...ip ∧ dxi1 ∧ ... ∧ dxip

}
∧ 1

q!

{
ψj1...jqdx

j1 ∧ ... ∧ dxjq
}

+

1

p!

{
ϕi1...ip (−1)

p
dxi1 ∧ ... ∧ dxip

}
∧ 1

q!

{
dψj1...jq ∧ dxj1 ∧ ... ∧ dxjq

}
=

dϕ ∧ ψ + (−1)
p
ϕ ∧ dψ.

• v) The operator d is nilpotent. Indeed we can write the exterior derivative
of a p-form as

dϕ =
1

p!

∂

∂xi
ϕi1 ...ip dx

i ∧ dxi1 ∧ ... ∧ dxip .

Thus

d2ϕ = (p!)
−1 1

2

(
∂

∂xj∂xi
ϕi1...ip dx

j ∧ dxi ∧ dxi1 ∧ ... ∧ dxip+

∂

∂xi∂xi
ϕi1...ip dx

i ∧ dxi ∧ dxi1 ∧ ... ∧ dxip
)

=
1

2
(p!)
−1 ∂

∂xj∂xi
ϕi1...ip(

dxj ∧ dxi ∧ dxi1 ∧ ... ∧ dxip − dxj ∧ dxi ∧ dxi1 ∧ ... ∧ dxip
)
≡ 0.

where we have used dxi ∧ dxj = −dxj ∧ dxi and ∂
∂xj∂xi = ∂

∂xi∂xj . QED
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G Poincaré Lemma

Proposition: If U ⊂ Rn is an open and star-shaped subset, a form ϕ ∈ ΛU
is closed if and only if it is exact. An open subset of Rn is called star-shaped if
∃x0 ∈ U such that ∀x ∈ U the straight line connecting x and x0 is entirely
contained in U .

Proof: Let ϕ ∈ Λ1U . The demonstration can then be generalized to
p > 1. A 1-form ϕ can always be expressed as ϕ = ϕidx

i and we already know
that an exact form is closed. So we have to show that, in a star-shaped domain,
if ϕ is closed (i.e. dϕ = 0) then is exact:

dϕ ≡ ∂kϕidxkdxi =
1

2

(
∂kϕi − ∂iϕk

)
dxkdxi = 0⇐⇒ ∂kϕi = ∂iϕk.

So we can define a 0-form (i.e .a function) f (x) :=
´ 1

0
dtϕi (tx)xi such that its

exterior derivative is

df = d

ˆ 1

0

dt ϕi (tx)xi =

ˆ 1

0

(
∂kϕi (tx) txidxk + ϕi (tx) δikdx

k
)

=

ˆ 1

0

(
∂iϕk (tx) txidxk + ϕi (tx) dxi

)
=

ˆ 1

0

dt
d

dt

(
ϕi (tx) tdxi

)
=

ϕi (x) dxi ≡ ϕ.

Since the straight line going from t = 0 to t = 1 is all contained in U . Thus
there exists a function f such that

df = ϕ (145)

and this equation tells us that ϕ is an exact form. QED

H Parallel Transport and Holonomy Group

Given two curves C : x → y and C ′ : y → z over the manifold M , let consider
their concatenation C ′ ◦ C : x → z, the inverse curve C−1 : y → x and the
constant curve C0 : x→ x. The operator of parallel transport Γ(C) : Vx −→ Vy
must satisfy the following properties:

• i) Γ(C ′ ◦ C) = Γ(C ′)Γ(C)

• ii) Γ(C−1) = Γ(C)−1

• iii) Γ(C0) = idVx

where idVx is the identity operator on the vector space Vx, which is a copy of V
at the point x of M . It should be clear that
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Γ(C) : v ∈ Vx −→ Γ(C)v ∈ Vy (146)

that is the parallel transport associates (linearly) vectors belonging to different
fibers over distinct points of the base manifold. Indeed since the differential
equation that defines parallel transport is linear the map Γ(C) is also linear.
Now let us see what is holonomy along a path C. It is clear that the parallel
transport depends on the particular path and this dependence leads to the notion
of holonomy group. Let E be a principal bundle endowed with a connection A.
If we parallel transport a x ∈ E along a closed curve C we return to the fibre in
which x lies. Thus there must exists a unique g ∈ G such that ΓC(x) = xg. As
C varies over all closed paths the corresponding elements of G form a subgroup
called the holonomy group H (x) of A at x. The main property of the holonomy
group is

H (xg) = g−1H g ∀g ∈ G (147)

and furthermore for any curve C in M one has

H (x) = H (ΓC(x)). (148)

I Left and Right Cosets, Stabilizer and Or-
bits

Given a group G and a subgroup H ⊂ G, H can act on G from the left (right)
through the left (right) translation Lh : H × G → G (Rh : G ×H → G), with
h ∈ H. Lh and Rh are defined by

Lh(g) = hg , Rh(g) = gh. (149)

We define the orbit of g ∈ G as

Orbg = {Rh(g) | h ∈ H} = {g̃ ∈ G | gh = g̃, h ∈ H, g ∈ G} (150)

Orbits are equivalence classes and we call the quotient or coset space G/H the
partition of G induced by orbits. The stabilizer Hg of g ∈ G is defined as

Hg := {h ∈ G | gh = g ∀g ∈ G} . (151)
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