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A TAD boundary is preserved upon deletion of the
CTCF-rich Firre locus

A. Rasim Barutcu® "2, Philipp G. Maass® ', Jordan P. Lewandowski'3, Catherine L. Weiner
John L. Rinn@® 12345

1,2,3,4 &

The binding of the transcriptional regulator CTCF to the genome has been implicated in the
formation of topologically associated domains (TADs). However, the general mechanisms of
folding the genome into TADs are not fully understood. Here we test the effects of deleting a
CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conforma-
tion capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~15 CTCF
binding sites and located at the long non-coding RNA (IncRNA) locus Firre. Specifically, this
TAD boundary is invariant across evolution, tissues, and temporal dynamics of
X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor
the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a
sex-specific or allele-specific manner. In contrast, Firre’s deletion disrupts the chromatin
super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that
apart from CTCF binding, additional mechanisms may play roles in establishing TAD
boundary formation.
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chromosomes that are separated by regions known as TAD

boundaries and exhibit higher frequency of physmal con-
tacts between genes and their cognate regulatory elements"2. The
organization of the genome into TADs is critical for coordinated
transcriptional regulation, chromatin states, and DNA replica-
tion?>~%. The CTCF proteln has been identified as one master
organizer of this process™® and its orientation-dependent DNA
binding has been implicated in establishing TAD boundaries’~!°.
However, several studies have yielded inconsistent results on the
role of CTCF in TAD boundary formation. The depletion of
CTCF affects cell survival and leads to global loss of TADs!®.
Although the deletion of a single CTCF site or of a minimal

Topologically associated domains (TADs) are units of
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genomic re% on is sufficient to perturb a TAD boundary in some
studies”!”>18; others reported that disruptions of a TAD boundary
occur only ugon deleting very large genomic regions (e.g.,
200-400 kb)"!

To address this conundrum, we focused on a locus on chro-
mosome X that exhibits dense CTCF bindin%, and that harbors
the Firre long non-coding RNA (IncRNA)!%%0 The Firre locus
topology is evolutionarily conserved across human and mouse,
and displays enriched CTCF binding across many cell types!®2°.
More recently, Firre has been found to interact with the DXZ4
macrosatellite, a region located at the hinge of the mega-domain
formation on the inactive X chromosome (Xi)!%2122. On Xij,
DXZ4 is at the anchor of a conserved super-loop formatlon
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Fig. 1 Firre is consistently located at a TAD boundary and harbors several CTCF sites. a Human Hi-C heatmaps showing +1Mb of the FIRRE locus in RPE-1
(female), K562 (female), HMEC (male), and NHEK (unisex) cell lines (upper panel), and CTCF ChlIP-seq signals across the Firre locus (lower panel). b
Mouse Hi-C heatmaps depicting the Firre locus in mESCs (male), CH12 (female), Patski (female), and mouse neuronal stem cells (mMNSCs) (unknown sex,
upper panel), and a zoom-in of the CTCF ChlP-seq signal (lower panel). ¢, d Box plot showing the number of CTCF peaks for each sliding window on the (¢)
human and (d) mouse chromosome X. The bin containing the human and mouse Firre genes is shown with a red dot. e, f Boxplot showing the TAD

boundary scores for all the boundaries on the X chromosome in different cell lines in (€) human and in (f) mouse. The TAD boundary that contains Firre is

shown with a red dot. Error bars: s.d.
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Fig. 2 Validation of Firre knockout in MEFs. a gRT-PCR analysis of Firre
expression in wild-type and knockout MEFs. Error bars: s.e.m. b Plot
showing transcripts per million (TPM) values for wild-type and Firre KO
MEF RNA-seq. Error bars: s.d. ¢ CTCF ChlIP-seq signal tracks showing the
complete loss of CTCF binding at the Firre locus in Firre KO MEFs (mm9,
chrX:47.8-49 Mb). d, e Hi-C reads per million (RPM) values for the Firre
locus in (e) wild-type and (f) Firre KO MEFs

involving the Firre locus, the inactive-X CTCEF-binding contact
element (ICCE), and a region termed “x75”2372°. Although
abolishing the DXZ4-Firre interaction by DXZ4 deletion does not
perturb the X chromosome inactivation process®®, a DXZ4
inversion results in altered chromatin interaction profiles along
the Xi%.

In this study, we demonstrate that the Firre locus is con-
sistently located at a TAD boundary in multiple species and cell
types and we confirm enriched CTCF binding. Based on these
features, the Firre locus is an ideal candidate to test the role of
CTCF binding in TAD boundary formation. Furthermore, in
addition to the role of CTCEF, using the Firre IncRNA locus as a
model has the unique advantage of allowing us to test whether the
presence and expression of a functional IncRNA contribute to
TAD boundary formation, as it was recently proposed?’~32. Thus,
we generated Firre deletion and transgenic models in mouse
embryonic fibroblasts (MEFs) and embryonic stem cells (mESCs),
and performed Hi-C in each of the genetically defined cell types,
as well as the corresponding wild-type controls. Interestingly,
deletion of Firre IncRNA locus, which contains ~ 15 CTCEF sites,
does not have any effect on TAD boundary formation. Moreover,
neither the ectopic insertions of Firre complementary DNA
(cDNA) nor its inducible expression lead to disruption of exist-
ing, or emergence of novel TAD boundaries. In contrast, the Xi
super-loop interactions were disrupted upon deleting the CTCF

| (2018)9:1444

dense Firre locus, thereby proposing a role for Firre in Xi
architecture.

Collectively, our results suggest that in addition to CTCF
binding, other mechanisms may be required for proper TAD
boundary organization.

Results

Firre harbors dense CTCF binding and strong TAD bound-
aries. In order to elucidate the contributions of CTCF binding,
the genomic insertions, and the expression of a IncRNA to form
TAD boundaries, one would ideally interrogate a locus at which
all three could be perturbed in parallel. By analyzing publicly
available chromatin immunoprecipitation sequencing (ChIP-seq)
and Hi-C datasets, we determined that the genomic region
around the Firre locus harbors one of the highest densities of
CTCF binding on chromosome X across multiple cell types
(Fig. 1a,b). On average, the Firre gene body harbors ~ 15 CTCF
sites and extensive CTCF binding occurs across multiple cell
types (Fig. 1a,b). We also find that a TAD boundary is directly
located at the Firre locus (hereinafter referred to as “Firre TAD
boundary”) (Supplementary Figure 1). This Firre TAD boundary
is characterized as one of the strongest TAD boundaries on
the X-chromosome (Fig. 1c—f, see Methods), and it is consistently
stable across human and mouse cell types. These characteristics of
the Firre locus, together with its evolutionary conservation, makes
it an optimal model to test the role of CTCF in local TAD
structure.

Deletion of Firre leads to depletion of CTCF binding. To
determine whether CTCF binding at the Firre locus is necessary
for the integrity of the Firre TAD boundary, we generated Firre
knockout (KO) MEFs, in which the ~ 82 kb deletion encompassed
the entire Firre IncRNA locus, as well as the 3’- and 5’-end (e.g.,
promoter) regions (Supplementary Figure 2, see Methods). We
verified the absence of transcriptional activity of Firre by quan-
titative reverse-transcriptase PCR (qRT-PCR) (Fig. 2a) and RNA
sequencing (RNA-seq) (Fig. 2b). The correlation analysis of the
RNA-seq replicates showed high reproducibility (Pearson’s cor-
relation >0.9) in male and female samples (Supplementary
Figure 3).

Moreover, we verified the loss of CTCF binding at the deleted
Firre locus by performing CTCF ChIP-seq in wild-type and Firre
KO female MEFs. As expected, the CTCF binding encompassing
the Firre deletion was absent in Firre KO MEFs, whereas ChIP-
seq profiles of the regions surrounding the deletion were identical
to wild-type cells (Fig. 2c). Altogether, we achieved a complete
loss of one of the densest CTCF binding regions on the X-
chromosome, which allows us to examine their effects on the
Firre TAD boundary.

Firre deletion leads to preservation of the TAD boundary. We
next assessed whether deletion of the Firre locus impacted the
Firre TAD boundary by performing Hi-C in male and female
wild-type and Firre KO MEFs. Mapping the Hi-C reads to Firre
further validates its deletion and the Hi-C interaction heatmaps
showed high reproducibility (Fig. 2d,e, Supplementary Figure
4-5, and Supplementary Table 1). Importantly, we identify that
the Firre TAD boundary is precisely located within the Firre gene
body (Supplementary Figure 7), and resides within the deletion
construct (Supplementary Figure 2). To determine whether the
effect of CTCF removal to TAD formation is allele specific, we
also generated C57BL6/Castaneous (CAST) hybrid MEFs. These
hybrid MEFs, which exhibit random Xi*?, contain one copy of the
C57BL6 allele harboring the Firre KO allele and one copy of the
wild-type CAST allele, and thus permit to distinguish between the

| DOI: 10.1038/541467-018-03614-0 | www.nature.com/naturecommunications 3
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Fig. 3 Firre KO does not result in disruption of TAD boundaries. a-d Hi-C heatmaps showing £ 5 Mb of the Firre gene locus (mm9, chr.X: 45-51Mb) in
female wild-type and Firre KO MEFs, (b) male wild-type and Firre KO MEFs, (c) allele-specific haploid chromosomes for female Cast (wild type) and
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bars: s.d. (*p-value: Wilcoxon rank-sum test)

parental KO alleles and examine their individual roles on the
Firre TAD boundary formation in female cells.

Remarkably, despite the removal of one of the highest CTCF-
binding densities and the complete deletion of the Firre IncRNA
on chromosome X (Fig. 1), the TAD boundary is consistently
preserved in either male, female, or hybrid MEFs (Fig. 3a-d).
Although the insulation scores are decreased at the Firre TAD
boundary in the KO samples compared with controls, neither the
Firre nor the neighboring TAD boundaries display any significant
changes in their insulation profiles (Fig. 3e). To rule out that these
results may be cell-type specific, we repeated Hi-C in wild-type
and Firre KO male mouse embryonic stem cells (mESCs) grown
on feeder cells (Supplementary Figure 6, see Methods). Consistent
with the MEF Hi-C results, the Firre TAD boundary is also
preserved in Firre KO mESCs. (Fig. 3f). By calculating the inter-
TAD interaction frequency in wild-type and Firre KO MEFs and
mESCs, we observe that the TADs surrounding Firre exhibit a
higher interaction frequency in the Firre KO MEFs (Fig. 3g), but
not in Firre KO mESCs (Fig. 3h), likely to be due to cell-type-
specific differences. This finding in MEFs suggests that even
though the Firre TAD boundary is preserved, it has been
weakened by the genetic deletion, allowing a higher rate of
interactions overpassing the boundary in Firre KO MEFs when
compared with wild-type controls.

4 | (2018)9:1444

Next, to assess whether the CTCF sites surrounding Firre
deletion may act as insulators that could preserve the TAD
boundary upon Firre KO, we examined the CTCF ChIP-seq data
from female MEFs (Fig. 2), as well as publicly available datasets,
for the regions flanking the Firre deletion across several cell types.
We identified four peaks flanking the Firre gene body on both
sides (Supplementary Figure 7). Of note, these surrounding CTCF
peaks are outside of the Firre TAD boundary that is located
within Firre gene body (Supplementary Figure 7). By analyzing
publicly available ChIP-seq datasets, we observed that C2C12
cells display reduced binding at the surrounding CTCF sites
(Supplementary Figure 8a—c). We reasoned that if the Firre TAD
boundary was present in C2Cl12 cells with minimal CTCF
binding at these sites, it would suggest that the surrounding
CTCEF sites are not essential for the preservation of the Firre TAD
boundary. To determine whether the surrounding CTCEF sites are
required in establishing the Firre TAD boundary, we performed
Hi-C in a third cell line: C2C12 murine muscle cells. We
identified a robust TAD boundary formation at the Firre locus in
this cell line that displays reduced binding at the surrounding
CTCF sites (Supplementary Figure 8a-d). Together, these
analyses and experiments suggest that the more variable
surrounding CTCF sites can be dispensable for the preservation
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Discussion).

Altogether, our findings indicate that the formation
and maintenance of the conserved Firre TAD boundary
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showing the interactions among the super-loop regions in wild-type (gray) and Firre KO (red) female (top) and male (bottom) MEF samples. The sample
sizes of the boxplots are n =12 for Firre-DXZ4, DXZ4-x75, and DXZ4-ICCE interactions, and n =9 for all other combinations. p-value: t-test. Error bars: s.d

Firre cDNA insertions do not alter TAD boundaries. It was
previously hypothesized that apart from binding of CTCF, the
presence of IncRNAs, or their expression, may be a driving factor
to establish TAD boundaries®®32. Therefore, although the dele-
tion of the CTCF-rich Firre locus is not sufficient to disrupt TAD
boundary formation, we sought to determine whether an ecto-
pically inserted Firre cDNA would establish novel TAD bound-
aries, either in the presence or absence of its transcription. To do
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this, we inserted Firre cDNA under the regulation of a doxycy-
cline (DOX)-inducible promoter into random genomic sites in
male MEFs that harbor one active X chromosome, but with an
endogenous Firre deletion (Fig. 4a). Upon DOX induction (DOX
T), we measured a ~ 13-fold increase of Firre cDNA expression
from the ectopic loci by qRT-PCR, confirming the induced
expression of the ectopically inserted Firre cDNA (Fig. 4b). We
then performed Hi-C on non-induced (DOX™) and induced
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Fig. 6 CRISPR live-cell imaging and 3C validates the changes in super-loop interactions. a Four-color CRISPR live-cell imaging (CLING) from female wild-
type and Firre KO MEFs. Firre (red), DXZ4 (green), and x75 (white) loci were simultaneously visualized with Hoechst staining (blue). Pseudo-coloring was
used for visual simplicity. Scale bar: 5 um. b Quantification of the colocalization percentages between Firre-DXZ4, DXZ4-x75, and Firre-x75 between wild-
type (black) and Firre KO (red) MEFs. (*p-value: y2-test, n> 80 nuclei). Error bars: s.e.m. ¢ Chromosome conformation capture (3C) analysis showing the
interaction frequency ratios of Firre-DXZ4, DXZ4-x75, and Firre-x75 in female Firre KO vs. wild-type MEFs (*p-value: t-test, n = 3). The black arc indicates
3C enrichment in the wild-type samples, whereas the red arc represents enrichment in the Firre KO samples

(DOX™) transgenic MEFs, and identified four chromosomes with
multiple Firre insertions (Fig. 4c, Methods). To determine whe-
ther the inserted Firre cDNA can recruit CTCF, we performed
CTCF ChIP-seq on DOX™ transgenic MEFs and found CTCF
binding on exon 18 on the Firre cDNA (Fig. 4d, introns and
intronic CTCF binding were excluded).

We next tested whether the local TAD boundaries at the
ectopic insertion sites were altered in any way by the presence of
the Firre cDNA or ectopic CTCF binding. By comparing the
DOX™ transgenic Firre MEFs with male Firre KO MEFs, we
found that none of the ectopic Firre insertions, despite active
CTCF binding, significantly altered the local genomic structure or
created new TAD boundaries (Fig. 4e-h). We then tested whether
the transcriptional activation of Firre at these ectopic loci would
have an impact on TAD organization. To do this, we performed
Hi-C on DOXT' transgenic MEFs, and compared the TAD
boundaries with Hi-C data of DOX™ transgenic MEFs. We
observed that the presence of transcription at the Firre insertion
sites did not affect TAD boundary formation (Fig. 4e-h).
Together, these data suggest that neither ectopically inserted
CTCEF sites nor the ectopic genomic insertion of a cDNA, nor the
act of transcription at the ectopically inserted loci are sufficient to
alter endogenous TAD boundaries or create novel TADs at target
sites.
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Firre deletion results in loss of Firre-DXZ4 interactions. X
chromosome inactivation is a critical biological process that
involves massive reorganization of chromosome X with loss of
local structures and formation of transcriptionally silent mega-
domains!>21-2° The DXZ4 macrosatellite, which is located at the
hinge point of two mega-domains, has been shown to interact
with the Firre locus?>. We therefore investigated the role of Firre
in this interaction by Hi-C. In female primary MEFs, we con-
firmed the previous finding that Firre strongly interacted with
DXZ4. However, this interaction was abolished in female Firre
KO MEFs (Fig. 5a). In contrast, Firre did not show a specific
association with DXZ4 in male MEFs, in which the only X
chromosome is active (Fig. 5a). To validate the specificity of the
Firre-DXZ4 interaction, we selected a window on the heatmap
(6 x7 =42 40kb bins) and slid it bin-by-bin across the entire
heatmap (2 Mb x 2 Mb in size). We then compared the interac-
tion frequency of the sliding window at each position with the
detected Firre-DXZ4 interaction (same window size) via a t-test.
We performed this analysis for each condition (female and male
wildtype and Firre KO). By plotting the density of the p-values (t-
test), we observed in the female wild-type dataset that the Firre-
DXZ4 interaction is significantly enriched compared with the
female Firre KO and the male samples (p < 0.05, one-way analysis
of variance).
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In human cells, the interactions of Firre on Xi have been
reported to be associated with the formation of a super-loop
involving the DXZ4 macrosatellite, x75, and ICCE regions, all of
which are IncRNA loci?3. To investigate whether such a super-
loop might occur in mice, and to determine if Firre is required to
form any such structure, we investigated the interactions between
mouse Firre, DXZ4, x75, and ICCE regions (Fig. 5c). Hi-C in
female Firre KO MEFs showed that Firre deletion disrupted its
association with DXZ4 (Fig. 5c¢,d). In contrast, male wildtype and
KO MEFs did not display any notable changes (Fig. 5¢,d). These
results suggest an architectural role of Firre in the Xi super-loop
formation.

To validate the loss of Firre-DXZ4-x75 interactions, we
performed four-color CRISPR/Cas9 live-cell imaging (CLING)
in female wild-type and Firre KO MEFs**. To do this, we used a
nuclease-null mutant of the Streptococcus pyogenes Cas9 protein
(dCas9) and pools of three single-guide RNAs (sgRNAs)
separately targeting Firre, DXZ4, and x75 regions (Supplementary
Table 4). The sgRNAs targeting Firre and DXZ4 are internally
appended with three copies of MS2 and PP7 motifs, respectively,
and the x75 sgRNAs with six copies of Pufl RNA-aptamer motifs.
Co-transfection of corresponding RNA-binding proteins (MS2,
PP7, or Puml) fused to a fluorescent proteins (mVenus,
mCherry, or iRFP670), in combination with nuclear Hoechst
staining, has enabled us to simultaneously visualize Firre, DXZ4,
and x75 loci in living cells**. The sgRNAs targeting the Firre locus
were designed within 650 bp adjacent to the Firre deletion (5'-
end), so that both the wild-type and Firre KO loci could be
visualized. When we quantified the colocalization frequencies, we
detected a significant reduction between Firre and DXZ4 in Firre
KO cells, when compared with wild-type controls (p = 8.7 x 107,
y-test, Fig. 6a,b). In contrast, the Firre KO MEFs displayed a
modest, nonsignificant colocalization increase for the DXZ4-x75
interaction (p =0.102, y’-test) when compared with wild-type
MEFs. Of note, we observed a significantly increased colocaliza-
tion of Firre with the x75 region in KO MEFs (p = 0.008, y*-test,
Fig. 6a,b).

To further verify the changes in the super-loop formation in
the Firre KO cells, we performed chromosome conformation
capture35 (3C) in female wild-type and Firre KO MEFs. We
confirmed the significant loss of Firre-DXZ4 (p = 0.02, t-test) in
the Firre KO MEFs when compared with wild-type MEFs (Fig. 6¢
and Supplementary Figure 9). The difference between the DXZ4-
x75 3C interaction frequency correlated with Hi-C and live-cell
imaging, although it was not significant (p=0.75, t-test).
Consistent with the live-cell imaging results, the Firre-x75 3C
interaction frequency was also significantly increased (p = 0.01, ¢-
test) in the Firre KO sample (Fig. 6¢). Taken together, through
Hi-C, 3C, and CLING experiments, we conclude that the Firre
locus and/or its IncRNA product are important in regulating
super-loop interactions in female cells.

Discussion

The genome harbors a non-random three-dimensional con-
formation that is dynamically reconfigured. The organization of
one of the fundamental units, TAD structures, is strongly asso-
ciated with directional binding of CTCFS. The current model
explaining the TAD boundaries, known as the loop extrusion
model, suggests that loop extruding factors such as cohesin and
condensin, slide along the chromatin and protrude the DNA until
two convergent CTCF sites are reached®'4%, therefore impli-
cating  CTCF as one of the important organizers of
chromatin”'337. However, discrepancies have been reported in

terms of the requirement of deleting CTCF-binding sites, or
depleting CTCF to disrupt TAD boundaries®!1-16:38:39,
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In this study, we genetically removed the evolutionary con-
served Firre locus that has both one of the highest CTCF densities
in the genome across and a stable TAD boundary across many
cell types and species. Interestingly, the Firre KO did not lead to
perturbation of the TAD boundary, but led to a decrease in the
strength of the Firre TAD boundary in MEFs, suggesting that
TAD organization at the Firre locus may not be individually
dependent on CTCF binding or Firre IncRNA expression.
Although not directly located at the Firre TAD boundary (Sup-
plementary Figure 7), additional flanking CTCF sites outside of
the Firre deletion may compensate for the loss of CTCF binding
at this locus and keep Firre’s TAD boundary formation intact in
Firre KO cells. In addition, we further show that, despite the
recruitment of CTCF, the ectopic insertion or the induced
expression of the Firre cDNA at ectopic sites are not sufficient to
alter the TAD landscape of local chromatin environment. These
results suggest that the establishment of TADs may be mediated
by CTCF-independent, multi-layered mechanisms, that are likely
to be redundant to preserve the robustness of TAD structures.
The current mechanistic model for intra-chromosomal chromatin
organization is the loop extrusion model”!*37. Consistent with
this model, the inversion of CTCF sites abrogates
chromatin looping interactions®®, and the depletion of
CTCF results in the weakening of TAD boundaries!S. In
addition, cohesin removal also leads to the loss of TADs**4,
The Firre locus, which is bound by CTCF, is also
extensively bound by cohesin, as well as the transcription factor
YY1, which was identified to associate with CTCF*? and was
implicated as a structural regulator of looping interactions®.
The preservation of the Firre TAD boundary in our deletion
model therefore suggest that these two factors may also harbor
redundant functions.

We therefore conclude that, in addition to the well-established
mechanism of convergent CTCF sites being the primary factor for
loop extrusion, alternative mechanisms may also be responsible
for the establishment of TADs. Several recent studies have pro-
vided support to this hypothesis®4+4°,

In addition to convergent CTCEF sites, there are other aspects of
chromatin which can mediate TAD boundary formation. It has
been shown that even though ~ 75 % of all looping interactions
can be explained by convergent CTCF orientations, the remaining
~25 % of interactions were bound by CTCF with
forward-forward, reverse-reverse, and divergently oriented
CTCF motifs®. In another report, ~ 10 % of all the CTCF motifs at
the anchor of loops did not obey the convergent rule®®. Inter-
estingly, the folding of Drosophila contact domains was found to
be independent of CTCF orientation*, suggesting the role of
alternative architectural proteins in chromosome structure.
Consistent with this, in human cells, FIRRE appears to form a
circular structure with divergently oriented CTCF sites, whereas
this circular structure is not prevalent in mouse (Supplementary
Figure 10-11). Importantly, in the mouse genome, the CTCF
orientations at the 3’-end of Firre gene and the neighboring
boundary (the —1 TAD boundary in Fig. 3a) show
forward-forward CTCF motif orientations, suggesting the pre-
sence of interactions with non-convergent CTCF-binding motifs
(Supplementary Figure 11).

There is further evidence in the literature for CTCEF-
independent mechanisms of TAD boundary formation. For
instance, gene activation and repression was shown to have
important roles in genome folding independent of CTCF*.
Additional studies have also highlighted the role of chromatin
condensation and de-condensation via topoisomerases
and chromatin remodeling factors to organize the TAD struc-
tures*6~>9, and the stiffness of chromatin has been postulated to
mediate TAD boundary formation®!. Altogether, our findings
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therefore provide experimental insight into the redundancy of
CTCF in TAD boundary organization, in the context of the Firre
locus.

Through Hi-C, CLING, and 3C, we furthermore show that the
deletion of Firre results in the perturbation of super-loop inter-
actions, specifically with the DXZ4 macrosatellite (Figs. 5,6).
Interestingly, in female Firre KO MEFs, via CLING and 3C, we
identified an increased interaction frequency between the region
surrounding Firre and x75, suggesting that apart from the
IncRNA genes in these loci, other features of chromatin may also
be involved in mediating the super-loop formation. Future studies
will determine the functional significance of the disruptions of the
super-loop formation on X chromosome inactivation.

In summary, our study suggests the redundancy of CTCF
binding, local IncRNA, and its transcription in the establishment
of TADs, and sheds new light on an architectural role for Firre in
higher order X chromosome architecture.

Methods

Publicly available Hi-C and CTCF ChIP-seq analysis. Hi-C interaction matrices
for K562 (female), HMEC (male), NHEK (unisex), sperm (male), Patski fibroblasts
(female), and mouse neuronal stem cells (male) were downloaded using the Jui-
cebox software!>°>%3, and the heatmaps were generated with the publicly available
script “heatmap.pl” available through Github (https://github.com/dekkerlab/
cworld-dekker). The RPE-1 (female) and mESC Hi-C datasets®2* were downloaded
and analyzed with the HiC-Pro package v2.7.8°%. The CTCF ChIP-seq datasets for
human RPE-1 cells and mouse sperm cells were downloaded from previously
published studies®>*°, All the other CTCF datasets were downloaded from the
ENCODE project database®”. To identify the CTCF enrichment of genomic loci, we
calculated the number of CTCF peaks for each 130 kb and 80 kb sliding window on
chromosome X, for human and the mouse genomes, respectively.

Preparation of Firre KO cells. The Firre KO mouse was generated by inserting a
neomycin cassette flanked by loxP sites at position mm9:chrX:47908463-47908464,
and by inserting a hygromycin cassette flanked by loxP sites at mm9:
chrX:47990293-47990294. Recombination between the loxP sites resulted in a ~ 82
kb deletion around the Firre locus. A tet-inducible Firre overexpression mouse was
generated by cloning a mouse isoform of Firre into a modified pTRE2 vector that
lacks the beta globin intron and the construct was microinjected into C57BL6/J-129
F1 hybrid embryos in order to generate transgenic mice. MEFs were prepared at
E13.5. Embryos were collected in 1 x phosphate-buffered saline (PBS) and indivi-
dual embryos were eviscerated and the head, forelimbs, and hind limbs were
removed. Individual embryo caucuses were then placed into 6 cm? tissue culture
plate and 1 mL of pre-warmed 37 °C TrypLE (Thermo Fisher 12604013) was added
to each well and incubated for 20 min at 37 °C. Embryos were dissociated using a
P1000 tip with gently pipetting and then MEF media was added. Cells were cul-
tured for 5-7 days and cryostocks of individual lines were generated. Subsequent
experiments were performed from thaws from the cryostocks®. Firre transgenic
female mice were mated to CAGs-rtTA3 males (Jackson Lab 016532) and indivi-
dual embryos at E13.5 were collected and used to prepare MEF lines. Firre wild-
type and KO MEFs were also prepared from E13.5 embryos. MEFs were genotyped
for the sex-specific region (Sry), Firre wild-type, Firre KO, Firre transgenic, and
rtTA3 alleles (Supplementary Table 2). MEFs were used up to passage 4. MEFs
were cultured in 1 x Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen
11965-118), fetal bovine sSerum (Gibco 10082139), L-glutamine (ThermoFisher
25030081), and penicillin/streptomycin (ThermoFisher 15140122). The DOX
induction was performed by treating the cells with 2 ug/mL DOX (Sigma D9891)
for 72 h. The media was changed every 48 h.

Wild-type C2C12 cells were obtained from ATCC (CRL-1772) and were
cultured by using the same conditions as MEFs described above.

ESCs were derived on MEF, Lif, and one inhibitor (GSK inhibitor) ES media
with serum replacement. Freeze downs were at passage 2 from a 24-well plate. The
wild-type N3 male mESCs were cultured with 2i media. The Firre KO mESCs were
co-cultured with irradiated feeder MEFs (ATCC, SCRC-1040.1) with 2i media.
Feeder depletion was performed by plating disassociated cells on a gelatinized plate
for 20 min at 37 °C followed by reseeding the supernatant containing the mESCs to
a new gelatinized plate. This procedure was repeated two consecutive times. The
animal protocols in this study have been approved by Institutional Animal Care
and Use Committee (IACUC) and Harvard University (11-13-1).

qRT-PCR analysis. RNA was extracted by using TRIzol Reagent (ThermoFisher
15596018) and cDNA was generated by using the SuperScript III Reverse Tran-
scriptase kit (ThermoFisher 18080044), according to manufacturer’s instructions.
qRT-PCR was performed by using the primers listed in Sug}))lementary Table 2.
The qRT-PCR data was analyzed by using the 2(-delta/delta €O method,
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RNA sequencing. Total RNA was extracted from wild-type and Firre KO MEFs
using TRIzol followed by RNeasy Mini Qiagen extraction kit according to man-
ufacturer’s protocol. RNA-seq libraries were generated using the Illumina TruSeq
(version 2) kit and sequenced on Illumina HiSeq2500 instrument. RNA-seq reads
were aligned with RNA-seq analysis performed by filtering and mapping the reads
by Bowtie 2°%, quantifying the transcripts by RSEM v1.2.29. Differential gene
expression was calculated using the Deseq2 version 1.4.5 package in R 3.1.0 using
the mean value of gene-wise dispersion estimates®!. To find significant differen-
tially expressed genes, we used < 0.01 for adjusted p-value and > 1 log2 fold change.

ChlP-seq analysis. The ChIP assay was performed by first crosslinking ~ 10
million cells with 1% formaldehyde at room temperature for 10 min, washing the
cells twice with 1 x PBS, and then followed by lysing the cells with 1 mL of Lysis
Buffer A (50 mM HEPES, 140 nM NaCl, 1 mM EDTA pH 8.0, 10% Glycerol (Sigma
G5150), 0.5% NP-40 (Igepal CA-630, Sigma 13021), 0.25% Triton X-100), cen-
trifuging the cells at 1,350 x g for 5 min at 4 °C, and re-suspending the pellet with 1
mL of Lysis Buffer B (10 mM Tris-HCI pH 8.0, 200 nM NaCl, 1 mM EDTA pH 8.0,
1 mM EGTA), centrifuging the cells at 1350 x g for 5 min at 4 °C, and a final
resuspension of the pellet with 300 pL of Lysis Buffer C (10 mM Tris-HCI, pH 8.0,
100 mM NaCl, 1 mM EDTA pH 8.0, 1 mM EGTA, 0.1% Sodium deoxycholate
(Sigma D6750), and 0.5% N-lauroylsarcosine (Sigma L5777)%2. All the lysis buffers
included the cOmplete, Mini Protease Inhibitor Cocktail (Sigma 11836153001).
The chromatin was sheared by using a Covaris $220 instrument. The pull-down
was performed using 10 pug of CTCF antibody (1:1000 dilution, Millipore Sigma
07-729). The reads were aligned to the mm9 human genome using the Bowtie2
tool®®. The ChIP-seq data was analyzed using the HOMER suite®. The motif
orientations were determined by the FIMO software®, using the CTCF motif
position weight matrix (MA0139.1) from the JASPAR database®.

Generation of Hi-C libraries. Hi-C libraries were generated with an in-situ liga-
tion protocol using the HindIII restriction enzyme®, Briefly, ~ 25 million cells were
crosslinked with 1% formaldehyde for 10 minutes at room temperature. Then, the
chromatin was digested with HindIII, end-labeled with biotin-14-dCTP (Thermo
Fisher 19519016), and in-situ ligation was performed. Following
phenol-chloroform extraction, the biotin was removed from unligated ends and
the DNA was sheared by using a Covaris $S220 instrument. After A-tailing, biotin
pull-down, and adapter ligation, paired-end sequencing was performed on a HiSeq
instrument. Each Hi-C library was generated in at least two biological replicates
from MEFs prepared from at least two distinct mouse embryos, with the exception
of transgenic MEFs and mESCs, which were prepared in technical duplicates.

Analysis of Hi-C datasets. Hi-C mapping, filtering, correction, and binning was
performed with the HiC-Pro software v2.7.8%%, The reads were mapped to the mm9
mouse reference genome. For allele-specific Hi-C analysis, a high-quality single-
nucleotide polymorphism (SNP) list for the C57BL6N] and CastEi] genomes was
generated by using the mm9 annotation from the Mouse Sanger Database®”’, using
the HiC-Pro “extract_snps.py” tool. Next, C57BL6N]J/CastEi] SNP-masked mm9
reference genome was generated using the bedtools “maskfasta” tool®®. Then,
allele-specific Hi-C data was analyzed using the HiC-Pro “ALLELE_SPECI-
FIC_SNP” configuration option®!. Supplementary Table 1 lists the paired-end read
counts for each biological replicate of the Hi-C datasets. There was a high corre-
lation among all the Hi-C biological replicates, indicating the high quality and
reproducibility of the datasets. Therefore, we pooled all biological replicates for
each condition and mapped, filtered, corrected and binned them as a single Hi-C
dataset and used the pooled datasets for all subsequent analyses. For the Hi-C
analysis of endogenous Firre KO with ectopic Firre cDNA insertion MEFs, the Hi-
C reads were mapped to a custom mm9 genome with an extra chromosome
consisting of the insertion cassette (TRE element, cytomegalovirus promoter, Firre
cDNA, and polyA terminator). Then, “inter-chromosomal interactions” between
the Firre custom chromosome and all the mouse chromosomes were plotted in the
DOX ™~ and DOX™" Hi-C datasets. The regions that displayed consistent “interac-
tions” with the Firre custom chromosome in DOX~ and DOX* samples were
determined as Firre cDNA insertion sites. For the super-loop analysis in Fig. 5, the
human x75 and ICCE coordinates®® were lifted over to the mm9 genome. The
center line of all boxplots represent the median, the whiskers represent the max-
imum and minimum values, and the upper and lower bounds of the box represent
the top first and third quantiles of the datasets.

Insulation and TAD Boundary Analysis. TAD analysis was performed with the
“Insulation Method”®®. A publicly available script (matrix2insulation.pl) was used
to detect the TAD boundaries, with the following options: “~is 480000 —ids
320000 —im igrMean -nt 0 —ss 160000 —yb 1.5 -bmoe 0 -bg”. The script can be
accessed through GitHub (https://github.com/dekkerlab/cworld-dekker).

Chromosome conformation capture. 3C assay was performed by using the
HindIII enzyme’®, with the modification that in-situ ligation was performed®®.
MEFs were fixed with 1% formaldehyde in serum-free a-MEM for 10 min at room
temperature. Formaldehyde was quenched by the addition of 0.125 M glycine.
Nuclei were released by dounce homogenization in ice-cold lysis buffer (10 mM

| DOI: 10.1038/541467-018-03614-0 | www.nature.com/naturecommunications 9


https://github.com/dekkerlab/cworld-dekker
https://github.com/dekkerlab/cworld-dekker
https://github.com/dekkerlab/cworld-dekker
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Tris-HCI pH 8.0, 10 mM NaCl, 0.2% NP-40) containing cOmplete, Mini Protease
Inhibitor Cocktail (Sigma 11836153001). Nuclei were collected and subjected to
overnight digestion at 37 °C with 400 U of HindIII (NEB R0104L). Then, in-situ
ligation was performed for 4 h at 16 °C%. The crosslinks were reversed by incu-
bating the samples at 65 °C overnight in the presence of proteinase K, and the DNA
was purified by phenol-chloroform extraction. Supplementary Table 3 lists the 3C
primers used in this study. The 3C libraries were prepared in three biological
triplicates, and the 3C amplicons from each replicate were quantified in three
technical replicates. The sample to sample variation was normalized by using the
Gapdh region as a control locus. The results in Fig. 6 represent the 3C interaction
frequency ratios of Firre KO / wildtype values. All 3C products were analyzed on a
2 % agarose gel stained with ethidium bromide. Gel quantifications were performed
with the Adobe Photoshop® software.

CRISPR live-cell imaging. Three specific sgRNAs for each tested locus were
designed using the Broad Institute sgRNA Design Tool (http://www.broadinstitute.
org/rnai/public/analysis-tools/sgrna-design-v1)’? and were cloned into vectors
expressing either three MS2, three PP7 or six Pufl motifs (Addgene 68426, 68424)
71, The sgRNA sequences are listed in Supplementary Table 4. Next, using Lipo-
fectamine 3000 (ThermoFisher Scientific, L3000008), pools of the three sgRNAs for
each targeted locus (375 ng), dCas9 (Addgene 68416, 625 ng), and vectors
expressing the corresponding RNA-binding proteins fused to fluorescent proteins
(MS2-mVenus, PP7-mCherry, Pum1-iRFP670, each 500 ng) were transfected into
MEFs and plated on LabTek v1 glass chamber slides. After 48 h of incubation,
FluoroBrite™ DMEM Media (ThermoFisher Scientific, A1896701), and 1 drop
NucBlue® Live ReadyProbes® Reagent (ThermoFisher Scientific R37605) were
added to stain the nuclei. Images were acquired from more than 80 live cells (95 for
wild type, 84 for Firre KO cells) by using the LSM880 with Airyscan (Zeiss)
microscope, equipped with the oil immersion objective Plan-Apochromat x 63/1.4
oil DIC M27 at the Harvard Center for Biological Imaging (HCBI). Raw images
were processed in ZEN (blue edition, Zeiss) and colocalization was assigned when
either merged or overlapping signals (< 50 nm distance) occurred. In contrast,
distinctly separated signals (> 50 nm distance) indicated no colocalization.

Data availability. Sequencing data have been deposited in the Gene Expression
Omnibus under the accession number GSE98632. All other data are available from
the corresponding authors upon reasonable request.
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