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Extracellular RNAs Are Associated
With Insulin Resistance and
Metabolic Phenotypes
Diabetes Care 2017;40:546–553 | DOI: 10.2337/dc16-1354

OBJECTIVE

Insulin resistance (IR) is a hallmark of obesity and metabolic disease. Circulating
extracellular RNAs (ex-RNAs), stable RNA molecules in plasma, may play a role in
IR, though most studies on ex-RNAs in IR are small. We sought to characterize the
relationship between ex-RNAs and metabolic phenotypes in a large community-
based human cohort.

RESEARCH DESIGN AND METHODS

We measured circulating plasma ex-RNAs in 2,317 participants without diabetes
in the Framingham Heart Study (FHS) Offspring Cohort at cycle 8 and defined
associations between ex-RNAs and IR (measured by circulating insulin level).
We measured association between candidate ex-RNAs and markers of adiposity.
Sensitivity analyses included individuals with diabetes. In a separate cohort of
90 overweight/obese youth, we measured selected ex-RNAs and metabolites.
Biology of candidate microRNAs was investigated in silico.

RESULTS

The mean age of FHS participants was 65.8 years (56% female), with average BMI
27.7 kg/m2; participants in the youth cohort had a mean age of 15.5 years (60%
female), withmean BMI 33.8 kg/m2. In age-, sex-, and BMI-adjustedmodels across
391 ex-RNAs in FHS, 18 ex-RNAswere associatedwith IR (of which 16weremicroRNAs).
miR-122 was associated with IR and regional adiposity in adults and IR in children
(independent of metabolites). Pathway analysis revealed metabolic regulatory roles
formiR-122, including regulation of IR pathways (AMPK, target of rapamycin signaling,
and mitogen-activated protein kinase).

CONCLUSIONS

These results provide translational evidence in support of an important role of
ex-RNAs as novel circulating factors implicated in IR.

Insulin resistance (IR) is a hallmark of human obesity and associated with the risk of
developing diabetes and cardiovascular disease. IR can exist across the spectrum of
BMI from lean (,25 kg/m2) to overweight/obese (.25 kg/m2). These findings in-
dicate that a BMI-centric definition of obesity may not capture its underlying biology
(1). Investigation of clinical and molecular markers that define architecture of IR has
intensified, focusing on adipose tissue distribution and function, metabolite pro-
files, gut microbial diversity, and epigenetic and genetic variation. Recently, RNA
located outside of cellular structures (extracellular RNAs [ex-RNAs]), circulating RNA
molecules that are stable in plasma, have emerged as potential novel mediators in
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IR, potentially orchestrating control over
networks of gene expression. Indeed, an-
imal models suggest exquisite regulation
of circulating ex-RNAs in the develop-
ment and resolution of obesity and in
metabolic cross talk between various or-
gans involved in adipocyte dysfunction
(2), suggesting their importance as clinical
and functional biomarkers. As such, stud-
ies in small groups of patients with obe-
sity and IR have identified candidate
ex-RNAs associated with metabolic dys-
function (3–6), though there is absence
of validation in large at-risk populations
and against metabolic phenotypes (e.g.,
visceral and hepatic adiposity) known to
impact cardiometabolic risk.
In this study, we investigate plasma-

circulating ex-RNA abundance in two sep-
arate cohorts across the life span of
human obesitydthe 8th Framingham
Heart Study (FHS) Offspring Cohort
(adults) and the POOL study (obese/
overweight youth)dto study ex-RNAs as-
sociated with IR. We further investigate
the relationship between these ex-RNAs
and several clinical hallmarks ofmetabolic
dysfunction. We subsequently tested the
association of two top candidate ex-RNAs
discovered in FHS with IR in the POOL
study and defined a relationship between
miR-122 and IR independent of adverse
metabolite profiles in youth.

RESEARCH DESIGN AND METHODS

Framingham Heart Study
The Framingham Heart Study (FHS) is a
community-based, prospective study of
cardiovascular disease conducted in Fra-
mingham,MA,with serial examinationsev-
ery 4–8 years and concomitant in-depth
phenotyping of metabolic traits over mul-
tiple prior examinations. The study design
has been published (7). Standard anthro-
pometric indicesweremeasuredasreported
(8). Diabetes was defined as fasting
plasma glucose$126mg/dL, hemoglobin
A1c $6.5% (where measured), or treat-
mentwith either insulin or a hypoglycemic
agent.
Blood collected in Framingham for the

FHS Offspring Exam Cycle 8 (March
2005 to January 2008) was analyzed in
this study. Venipuncture was performed
on study participants in a supine position.
Blood was collected into blood collection
tubeswith a liquid-buffered sodiumcitrate
additive (0.105 mol), centrifuged, and
plasma separated and frozen at 280°C
within 90 min of collection. Insulin was

measured by ELISA (Roche e411; Roche
Diagnostics, Indianapolis, IN; intra-assay
coefficient of variation [CV] 2.0%). HOMA
of IR (HOMA-IR), a marker of IR, was cal-
culated as the product of insulin (mIU/mL)
and glucose (mmol/L) divided by 22.5 (9).
Insulin (pmol/L) was converted tomIU/mL
by multiplying by 0.144, and glucose
(mg/dL)was converted tommol/Lbymul-
tiplying by 0.0555. Interleukin-6 (IL-6;
ELISA, R&D Systems, Minneapolis, MN;
intra-assay CV 3.7%) and soluble tumor
necrosis factor receptor II (TNFRII; ELISA;
R&D Systems)weremeasured at the time
of FHS Offspring Exam Cycle 8. Total adi-
ponectin from FHS Offspring Exam Cycle
7 (1998–2001) was included, measured by
ELISA (R&D Systems) as described (10). For
ex-RNAanalysis, analiquotof170mLplasma
sampleswas transferred toour laboratory in
March 2014 and stored at280°C for analy-
sis. A subset of participants underwent
abdominal computed tomographic (CT) im-
aging (June 2002 to April 2005) for quanti-
fication of visceral and subcutaneous
adipose tissue volume and fat attenuation
(with lower attenuation as a marker of fat
quality [11]) and liver attenuation (a surro-
gate of hepatic steatosis [12]), with previ-
ously described methods (13).

Written informedconsentwasobtained
from all study participants, with Institu-
tional Review Board approval at Boston
University, Massachusetts General Hospi-
tal, and the University of Massachusetts.

Study Population and Clinical
Assessment in POOL
POOL is an ongoing, prospective research
registry of overweight and obese youth
and young adults, 2–25 years old (Boston
Children’s Hospital, Boston,MA). Subjects
were local residents who were over-
weight or obese at study entry (BMI
more than or equal to age/sex-specific
85th percentile on Centers for Disease
Control and Prevention growth charts
for those ,18 years of age or $25
kg/m2 for those $18 years of age). In-
formedconsent toparticipatewasobtained
from a parent or legal guardian for minors
(,18 years of age; with participant as-
sent) or from adult participants. Clinical
and demographic data were collected, in-
cluding height and weight (measured
twice to the nearest 0.1 cm and kg, re-
spectively). Total body fat was measured
using a plethysmographic method that
uses whole-body densitometry to deter-
mine fat and fat-free mass. Insulin was

measured using an electrochemilumines-
cence immunoassay (Roche Elecsys/
Cobas immunoassay analyzer; CV 1.1–
4.9%). HOMA-IR was calculated as speci-
fied above. Blood for plasma specimen
storage was collected in the fasting state
in lithium heparin-containing tubes,
centrifuged immediately at 4°C, then
transferred into cryovials, and frozen
at280°C for long-term storage.

Quantification of Plasma Extracellular
Circulating ex-RNAs
Detailed methods for quantification of
ex-RNAs in FHS have been published by
our group (14). In the initial study in FHS,
plasma small RNA sequencing was per-
formed in 40 FHS participants to deter-
mine which ex-RNAs were abundantly
and reliably expressed in human plasma
(14). A plasma microRNA (miRNA) was
chosen to be included for validation in
the full FHS Offspring Exam Cycle 8 co-
hort if it was expressed at .10 reads
per kilobase transcript per million reads
mapped by sequencing. Because of the
novelty and limited understanding of
the other (non-microRNA) ex-RNA tar-
gets, we included all expressed small
nucleolar RNAs (snoRNAs) and Piwi-
interacting RNAs (piRNAs). We subse-
quently included only those plasma
ex-RNAs detectable in at least 100 FHS
participants for this analysis (as deter-
mined from the final analytic cohort
specified below; N = 2,317). Of the
2,822 plasma samples from the FHS Off-
spring Exam Cycle 8 in FHS, 59 (2%)
subjects were excluded because of lab-
oratory error (e.g., inaccurate volume
of plasma pipetted,N = 31; poor protein
precipitation performance, N = 23; or
potential contamination, N = 5), result-
ing in 2,763 subjects. We subsequently
excluded individuals who were not fast-
ing at the time of the blood draw for at
least 8 h (N = 54), individuals without
insulin or fasting blood glucose mea-
sured (N = 2), and individuals with di-
abetes, as defined above (N = 390),
yielding a final analytic cohort of 2,317
study participants.

Finally, based on our analyses of
ex-RNAs in FHS, we selected two miRNAs
(miR-122 and miR-192) to analyze in a
separate study of 90 obese/overweight
young participants (POOL). Of note,
miRNA quantification in POOL was per-
formed by our group in a separate project
with a separate set of 90 ex-RNA targets.
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We chose to direct our analysis in POOL
toward those ex-RNAs associated with
metabolic phenotypes in FHS. Therefore,
we only analyzedmiR-122 andmiR-192 in
this POOL. (piRNAs and snoRNAs were
not assessed in POOL.)

Metabolite Profiling in POOL
We performed polar metabolite profil-
ing as previously described (15) (across
82 metabolites). Metabolites were nor-
malized to internal standards. Metabo-
lites below detection limit were counted
as “0” in analyses.

Statistical Analysis
Clinical and demographic data are pre-
sented as mean and SD, with appropriate
tests for intergroup comparison (Wilcoxon
for continuous and x2 for categorical). In
the absence of formal glucose tolerance
testing performed alongside ex-RNA mea-
surements, we defined the degree of IR by
plasma insulin level (16) (our primary IR
measure); HOMA-IRwas used as a second-
arymeasure of IR.We recognize that these
are crude measures of IR, but they are
rapidly available and used in clinical prac-
tice. As described above, we included 391
ex-RNAs (297miRNAs, 36 snoRNAs, and 58
piRNAs) in our analysis (Supplementary
Table 1). Of note, because any given
ex-RNA was not necessarily detectable in
every FHS participant, models for insulin
or HOMA-IR had a different number of
study subjects for each ex-RNA (denoted
in regression models in RESULTS). Of note,
we specifically chose not to perform impu-
tation (or set below–detection limit ex-RNA
expression to “23,” the highest PCR cycle
number possible on theBiomark system) to
avoid bias.
Our first step was to identify ex-RNAs

associated with IR. We constructed age-,
sex-, and BMI-adjusted linear models to
measure association of log-transformed
insulin (primary) or HOMA-IR (secondary)
with each ex-RNA (mean-centered and
standardized). Given the multiple models
constructed (onemodel for eachex-RNA),
we used a false discovery rate (FDR) cor-
rection using the Benjamini-Hochberg
method with a threshold of 0.05 (using
PROC MULTTEST in SAS) pooling raw
P values for all ex-RNAs together.
We next quantified the association of

candidate ex-RNAs (associated with IR)
with CT-defined regional adiposity and
adipokines using linear models. Our pri-
mary analysis was based on imaging
data available from the population

used in the miRNA-insulin/HOMA rela-
tionships above (N = 2,317). In addition,
we performed a sensitivity analysis to
maximize population size (and power
to detect association) across individuals
with available imaging, anthropometric,
or biochemical measures in the overall
cohort (N = 2,763, including diabetes). In
addition to BMI and waist circumfer-
ence, we included several imaging-
based measures of regional adiposity:
visceral and subcutaneous fat volume
(log-transformed),visceral-to-subcutaneous
fat volume ratio (a measure of propen-
sity to store fat viscerally, log-transformed),
hepatic attenuation (a measure of he-
patic steatosis), and visceral and subcu-
taneous fat attenuation (a measure of
fat “quality” and adipose tissue meta-
bolic function).Moreover, we examined
the relationship of our candidate ex-RNAs
with circulating adiponectin, IL-6, TNFRII,
and triglyceride-to-HDL ratio (all bio-
markers log-transformed). Of note, for
IL-6 and TNFRII, 116 subjects (from the
overall set of assayed samples) had sam-
ples run twice; we retained the higher
value for this analysis arbitrarily. We ad-
justed all models for age and sex. As in
previousmodels, we used an FDR correc-
tion to guard against multiple hypothesis
testing.

To examine the role of selected ex-RNAs
associated with IR in FHS on cardiome-
tabolic dysfunction in a younger popu-
lation, we studied the association of
two candidate ex-RNAs consistently as-
sociated with IR-based phenotypes in
FHS (miR-122 and miR-192) with IR in
90 obese/overweight individuals from
POOL. We next analyzed association be-
tween miR-122 and insulin, independent
of age, sex, BMI, and circulating metabo-
lite profiles (as defined by principal com-
ponents [PCs] of 81 polar metabolites,
using varimax rotation).

All statistics were performedwith SAS
9.3 software (SAS Institute, Cary, NC) or
R (R Project, www.rproject.org) with a
two-tailed P value ,0.05 (with appro-
priate FDR thresholds, as noted) consid-
ered statistically significant.

Pathway Analysis and Network
Visualization
Sixteen miRTarBase identifiers served as
input to the Pathway Finder bioinfor-
matics tool, which compares miRNA lists
against a table of pathways, their miRNA
elements, and the miRNAs that target

their protein elements. The strategy of
preannotating pathways with targeting
miRNA is described by Godard and van
Eyll (17). The pathways were sourced
fromWikiPathways (18). The code to gen-
erate the lookup table, the tables them-
selves, and the Pathway Finder tool are all
freely available as open source code at
https://github.com/nrnb/mirna-pathway-
finder. The output of the tool is a ranked
list of pathways with miRNA–protein tar-
get event counts. Gene identifiermapping
was performed using BridgeDb databases
(19) derived directly fromEnsembl release
83. The mappings of miRNA-Entrez Gene
targets were extracted from miRTarBase
version 6.1 (20).

Sixteen miRTarBase identifiers were en-
tered into theTarget InteractionFinder tool,
which compares miRNA lists against an
XGMML representation of the miRTarBase
database produced by CyTargetLinker (21).
The database contains experimentally val-
idated miRNA–gene target interactions.
The tool outputs a new XGMML file that
focused on target interactions involving
the input list of miRNA. The XGMML file
was then imported into Cytoscape (22) for
further filtering and visualization. A gene
list from the “insulin signaling” pathway
was used to perform a selection within
the complete miRNA gene target net-
work, and first neighbors were also se-
lected. This subnetwork was extracted
as a representationof themixed targeting
events by the 16 miRNAs and 69 insulin
signaling pathway genes.

RESULTS

Baseline Characteristics of the FHS
Offspring and POOL Cohorts
Selected clinical, demographic, and re-
gional adiposity characterization of our
analytic sample in the FHS Offspring
Exam Cycle 8 (N = 2,317) and POOL study
(N = 90) are shown in Table 1. Our cohort
was elderly (mean age 66 years old), 56%
female, and overweight (median BMI
27.7 kg/m2). The POOL cohort had a
mean age of 15.5 years (range 4.6–25.5
years; 60% female),without diabetes, and
with an average BMI percentile of 97%
(mean BMI 33.8 kg/m2).

Identification of ex-RNAs Associated
With IR and IR-Related Adiposity
Phenotypes in FHS
We constructed age-, sex-, and BMI-
adjusted linear models to identify
ex-RNAs associated with IR. From the
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overall panel of 391 ex-RNAs included in
our analysis, we identified 16 miRNAs,
1 piRNA, and 1 snoRNA associated with
insulin (Table 2), our primary outcome.
An additional two ex-RNAs were associ-
ated with HOMA-IR, our secondary out-
come. Of note, we observed a stepwise
increase in plasma abundance of miR-
122 across quartiles of insulin after ad-
justment for age, sex, and BMI (Fig. 1).
We next measured association among

18 insulin-associated ex-RNAs with meta-
bolic phenotypes to begin to discern poten-
tial mechanisms by which these functional
biomolecules may promote IR. As noted in
RESEARCHDESIGNANDMETHODS, for the analysis of
miRNA–phenotype associations, we in-
cluded individuals from our primary popu-
lation (N = 2,317, no diabetes) and in a
sensitivity analysis (across allN = 2,763 par-
ticipants) in whom imaging or biochemical
indices were available. The results of these
models are shown in Supplementary Table
2A. In our primary analysis (from cohort
excluding diabetes), we found consistent
associations between a greater plasma
abundance of miR-122 and greater BMI
(P = 1.32 3 1027), waist circumference
(P = 8.41 3 1026), visceral fat quantity

(P = 5.72 3 1027) and quality (P =
3.923 1026), and lower liver attenuation
(P = 2.51 3 1025), but not subcutaneous
fat (P = 0.005; did not survive FDR) or qual-
ity (P = 0.26). In addition, greater miR-122
was associated with increased TNFRII and
triglyceride-to-HDL ratio. miR-122 was not
significantly associated with adiponectin
after FDR (b =20.024 for log-adiponectin;
P = 0.004; did not survive FDR).

We found similar results for miR-122
when the entire population was consid-
ered (Supplementary Table 2B). In addi-
tion, we observed that miR-192 was
consistently associated with several car-
diometabolic phenotypes, including
BMI, waist circumference, and liver at-
tenuation, but not subcutaneous fat. In
addition, across the overall population,
we observed greater miR-122 and miR-
192 associated with lower adiponectin.

miRNAs Associated With IR in the FHS
Target-Relevant Signaling Pathways
We next performed a pathway analysis to
addresswhether the16miRNAsassociated
with insulin in FHS target pathways were
relevant to IR.We identified “insulin signal-
ing”asapathwaytargetedbyall16miRNAs

(Supplementary Table 3). Interactions
among all 16 target miRNAs and genes in
the insulin signaling pathway are shown in
Supplementary Fig. 1, suggesting signifi-
cant cross-targeting of multiple IR-related
genes bymultiple miRNAs identified by as-
sociation. In addition, we visualizedmiRNA
gene expression targeting events from se-
lected pathways (as described in RESEARCH

DESIGNANDMETHODS) to identify functional tar-
gets ofmiR-122 (denoted in blue),miR-192
(denoted in red), and the other 14miRNAs
(denoted in gray) on insulin signaling (Fig. 2
and Supplementary Fig. 2). We selected
four specific pathways given their impor-
tance in IR: 1) “insulin signaling” (shown in
Fig. 2); 2) “factors and pathways affect-
ing insulin-like growth factor signaling”; 3)
target of rapamycin signaling; and
4) AMPK signaling (all shown in Supple-
mentary Fig. 2). Of note, several genes
targeted by miR-122 had been previ-
ously implicated in pathogenesis of IR,
including protein tyrosine phosphatase,
nonreceptor type 1 (also called PTP1B)
(23), mitogen-activated protein (MAP)
kinases (24), and AMPK (25).

Given consistent association with IR,
adiposity, and pathways involved in IR,

Table 1—Clinical and biochemical characteristics in our study

Variable

FHS Offspring Cohort POOL Youth Cohort

N Value N Value

Age (years) 2,317 65.8 6 8.9 90 15.5 6 4.8

Female sex, n (%) 2,317 1,307 (56) 90 54 (60)

Current smoking, n (%) 2,314 191 (8) d d

BMI (kg/m2) 2,313 27.7 6 5.1 90 33.8 6 10.0 (percentile: 97 6 3)

Waist circumference (cm) 2,302 97.1 6 14.2 d d

Systolic blood pressure (mmHg) 2,315 128 6 17 90 110 6 11

Diastolic blood pressure (mmHg) 2,313 74 6 10 90 66 6 8

Glucose (mg/dL) 2,317 100 6 9 90 80.2 6 6.9

Biochemical indices*
Triglycerides (mg/dL) 2,317 113 6 63 90 92.3 6 55.6
HDL cholesterol (mg/dL) 2,316 59 6 18 90 47.0 6 11.5
Insulin (pmol/L) 2,317 69 6 46 90 17.8 6 13.3
Hemoglobin A1c, % (mmol/mol) 2,316 5.6 6 0.3 (38) d d

IL-6 (pg/mL) 2,246 2.58 6 3.04 d d
TNFRII (pg/mL) 2,314 2,592 6 1,033 d d

Adiponectin (ng/mL) 1,812 10.6 6 6.3 d d

HOMA-IR 2,317 2.51 6 1.82 90 3.59 6 2.95
C-reactive protein 2,315 3.2 6 7.3 90 4.5 6 9.6

Regional adiposity
Percent body fat (%) d d 90 38.4 6 10.3
Liver attenuation (HU) 1,089 65.9 6 9.0 d d

Subcutaneous fat volume, cm3 1,061 2,961 6 1,299 d d
Visceral fat volume, cm3 1,061 1,970 6 1,022 d d

Subcutaneous fat attenuation (HU) 1,061 2101 6 4.7 d d

Visceral fat attenuation (HU) 1,061 293.7 6 4.5 d d

Data are mean 6 SD unless otherwise noted. HU, Hounsfield units. *All biochemical indices were measured at the 8th examination, except for
adiponectin, which was measured at the 7th examination. Timing of adiposity measures discussed in text.
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we carried forward miR-122 and miR-
192 to the POOL cohort.

miR-122 Is Associated With Metabolic
Phenotypes in Youth
After adjustment for age, sex, and BMI, a
higher miR-122 (but not miR-192) abun-
dance was associated with greater IR, as

measured by insulin (b = 0.12 log change
per twofold increase in plasma miR-122;
P = 0.004) and HOMA-IR (b = 0.12 log
change per twofold increase in miR-122;
P = 0.006). Neither miR-122 nor miR-192
was associated with hs-CRP or percent
body fat in POOL, but they were associ-
ated with triglyceride-to-HDL ratio

(miR-122: b = 0.14, P = 0.002; and miR-
192: b = 0.14, P = 0.02, respectively). We
found three PCs that explained 52.5%
variance in the polar metabolome as-
sayed. Of note, the first PC was highly
loaded on several different metabolites
implicated in IR, including leucine, iso-
leucine, and phenylalanine (branched-
chain and aromatic amino acids). To
assesswhethermiR-122hadametabolism-
independent association with IR, we es-
timated the association of insulin with
miR-122, adjusted for age, sex, BMI, and
all three metabolite PCs. Greater miR-
122 was associated with greater insulin
(b = 0.10 log change in insulin per two-
fold increase in miR-122; P = 0.005), in-
dependent of age, sex, BMI, ormetabolite
profile.

CONCLUSIONS

In a large community-based population of
adults, we identify circulating ex-RNAs
that are associated with markers of IR
and adiposity, independent of age, sex,
andBMI. Specifically,miR-122was consis-
tently related to dysfunctional adiposity
phenotypes previously demonstrated to
influence downstream cardiometabolic
risk, including visceral and hepatic fat
and selected adipokines and inflamma-
tory mediators. In a separate cohort of
90 overweight/obese youth without dia-
betes, we demonstrated that miR-122
was associated with IR independent of
metabolite profile (via metabolomics),
age, sex, or BMI, suggesting that
ex-RNAs may have a role in IR indepen-
dent of emerging metabolic markers of
IR. Based on in silico pathway analyses
for the 16 miRNAs found in FHS (of total
18 ex-RNAs), we found that the identified
miRNAs targeted several key pathways
previously implicated in IR (including
mammalian target of rapamycin, insulin
signaling, and AMPK), with significant
cross-targeting of multiple IR-related
genes by multiple miRNAs (Fig. 2). Specif-
ically, miR-122 targeted several genes
previously implicated in IR, including
genes involved in muscle responses to in-
sulin (e.g., PRKAB1, a subunit of AMPK, a
critical regulator of metabolism in IR
[26]). Collectively, these findings provide
translational support for a role of ex-RNAs
(specifically miR-122) in IR across weight
class, metabolism, and age, calling for
further mechanistic investigation to
delineate a role for ex-RNAs in the meta-
bolic architecture of IR.

Figure 1—Age, sex, and BMI-adjusted plasma abundance of miR-122 across quartiles of circu-
lating insulin. Comparisons across all quartiles were statistically significant (after Bonferroni
correction for type 1 error), except 1st vs. 2nd quartile and 2nd vs. 3rd quartile.

Table 2—Ex-RNAs associated with IR

Candidate ex-RNAs

Insulin (log-transformed) HOMA-IR (log-transformed)

N Estimated b P value Estimated b P value

miR-122-5p 2,198 0.041 1.68 3 1028 0.046 2.98 3 1029

miR-16-5p 2,278 0.022 1.68 3 1023 0.024 1.54 3 1023

miR-191-5p 2,225 0.033 8.40 3 1029 0.037 2.56 3 1029

miR-192-5p 1,725 0.047 3.13 3 1025 0.053 1.32 3 1025

miR-194-5p 2,023 0.031 3.25 3 1025 0.033 3.52 3 1025

miR-197-3p 2,013 d d 0.038 2.00 3 1023

miR-19b-3p 2,230 0.034 3.08 3 1025 0.037 2.58 3 1025

miR-24-3p 2,220 d d 0.032 1.00 3 1023

miR-301b-3p 1,419 0.027 5.57 3 1025 0.029 6.93 3 1025

miR-30d-5p 2,221 0.030 1.26 3 1024 0.033 7.39 3 1025

miR-320a 2,208 0.029 1.07 3 1023 0.035 2.87 3 1024

miR-320b 1,665 20.015 2.87 3 1024 20.016 1.98 3 1024

miR-342-3p 2,246 0.037 1.09 3 1024 0.045 1.48 3 1025

miR-4446-3p 2,104 20.032 8.84 3 1025 20.033 1.43 3 1024

miR-486-5p 2,268 0.028 2.98 3 1024 0.030 3.25 3 1024

miR-574-3p 1,917 0.030 4.28 3 1024 0.035 1.35 3 1024

miR-616-5p 1,089 0.039 1.37 3 1023 0.040 2.34 3 1023

miR-664b-3p 1,678 0.014 1.95 3 1025 0.015 2.23 3 1025

piRNA-48383 1,799 20.025 1.62 3 1023 20.027 2.14 3 1023

snoRNA-1210 1,531 0.015 1.74 3 1023 0.016 1.56 3 1023

All models were adjusted for age, sex, and BMI. We accounted for multiple hypothesis
testing with an appropriate prespecified 5% FDR threshold. N denotes number of observations
in each model. An estimated b that is listed as “d” represents an ex-RNA that did not pass
FDR. Each estimated b is change in log insulin or HOMA-IR per twofold increase (one PCR
cycle change) in plasma ex-RNA concentration.
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There is increasing recognition that
specific ex-RNAs function in pathways
critical to obesity andmetabolic disease,
including adipocyte differentiation, an-
giogenesis, hepatic steatosis, oxidative
stress, and inflammation. Furthermore,
adipocyte-derived miRNAs can mediate
cross talk with circulating macrophages
(27) or hepatocytes (28), or in muscle
tissue (29), altering mRNA expression
of key intermediates involved in IR.
These findings implicate ex-RNAs as
functional biomarkers that may orches-
trate high-level transcriptional and met-
abolic control in humans. Accordingly,
there has been a surge in translational
investigation in this area, demonstrating
involvement of miRNAs in brown/white
fat specification and adipose tissue in-
flammation (30), pancreatic b-cell func-
tion (31), and hepatic steatosis (32).

Human investigation in both children
(6) and adults (3) has demonstrated sev-
eral miRNAs dysregulated in obesity and
progression of cardiometabolic disease,
with dynamic changes in miRNAs during
weight loss. Despite these important ad-
vances, most studies have been limited
by sample size, profile preselected
miRNA candidates (excluding piRNAs
or snoRNAs), and restrict their popula-
tion of interest to obesity. Given the im-
portant differences between animal
models of diabetes or obesity and
human disease, large-scale human trans-
lational data alongside detailed obesity-
relatedphenotypes (e.g., regional adiposity)
are critical.

In this report, we identify ex-RNAs as-
sociatedwith IR in the FHS, demonstrating
associations with key phenotypes central
to IR, including adipokines, inflammation,

and regional adiposity, specifically miR-
122. Using pathway analysis across all
16 miRNAs with curated pathways (of
the total 18 ex-RNAs),we found that these
miRNAs targeted genes involved in central
pathways of IR, with some genes targeted
by multiple miRNAs. These translational
findings are in keeping with several prior
reports from smaller cohorts on the signif-
icance of miR-122 in obesity and IR path-
ogenesis (33). miR-122 is dynamically
regulated during surgical weight loss and
is associated with hepatic steatosis
(32,34), with a near abolition of circulating
miR-122 levels after bariatric surgery (35).
Seminal work by Esau et al. (36) demon-
strated that direct antisense-mediated si-
lencing of miR-122 caused a reduction in
hepatic steatosis, decreased circulating
cholesterol levels, and global shifts in lipid
metabolism. Taken in concert with our

Figure 2—Visualization of selected miRNA targeting events on the insulin signaling pathway (fromWikiPathways). The genes targeted by miRNA per
pathway, as counted in Supplementary Table 3, are visualized in this figure for selected pathways. Pathway was imported into Cytoscape from
WikiPathways, and ID mapping was performed to obtain Entrez Gene identifiers for each gene. An intermediate file from the Pathway Finder tool
was parsed and imported into Cytoscape to supply the mappings between Entrez Gene and the selected set of miRNAs. A visual style was defined in
Cytoscape to highlight any gene targeted by these miRNAs in preferential order: miR-122 (blue), miR-192 (red), and any of the other 14 possible
miRNAs (gray). Other selected pathways from WikiPathways are shown in Supplementary Fig. 1.
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findings of an association between miR-
122 and CT-determined hepatic fat in
Framingham, these findings suggest a
potential role for miR-122 in hepatic
steatosis, a major comorbidity involved
in IR pathogenesis. In addition, in pathway
analyses, miR-122 appeared to target
PRKAB1, amember of the AMPK pathway,
a regulator of IR inmuscle, suggesting that
liver-derived miR-122 may target remote
metabolically active tissues as an endo-
crine mediator of disease. Indeed, miR-
122 has been found in circulating
exosomes (37) that may transfer epige-
netic information across tissue types.
Finally, the finding of an association be-
tween IR and non-miRNA ex-RNAs (e.g.,
piRNA and snoRNA) is intriguing, as the
role of non-miRNA ex-RNAs (e.g., piRNAs)
in metabolic diseases is just beginning to
be clarified: several non-miRNA species
(e.g., piRNAs) have been recently shown
to transfer epigenetic information from
sperm to egg (38). Ultimately, although
these human translational findings are as-
sociational in nature, they motivate fur-
ther mechanistic research into ex-RNA
biogenesis and the role of ex-RNAs in
cell–cell communication and target organ
metabolic signaling.
The limitations of our study should be

viewed in light of its design. We focused
on ex-RNAs commonly abundant in
plasma of FHS participants, limiting dis-
covery of low-abundance ex-RNAs. In ad-
dition, we included those participants
with expressed levels of each miRNA in
regressions for insulin (not “imputing”
values for miRNAs that were below de-
tection limit). Although this limits conclu-
sions to participants in whom each
miRNA was expressed, complex traits
like IR are likely influenced by variation
in common epigenetic factors. Although
CTmeasures or biomarkers were not pre-
sent in all FHS participants with ex-RNA
quantification (a potential source of bias),
the observed associations are strong in
the largest cohort studied so far in meta-
bolic disease. Finally, use of gold-standard
methods to determine insulin physiology
in individuals with diabetes (e.g., clamp)
will be important in future studies to ex-
tend our results to diabetes.
In conclusion, we identified a group of

plasma-circulating ex-RNAs related to IR
and related adiposity, inflammatory, and
metabolic phenotypes. These associa-
tions are independent of sex and BMI
and conserved across age, suggesting an

age-independent role for ex-RNAs in in-
tegrating metabolic inputs in IR. Selected
miRNAs associated with IR target genes
implicated in IR in muscle and may
have a functional, trans-organ role in me-
diating IR. These results provide large-
scale human translational epidemiologic
data to support a role for ex-RNAs in IR
and its metabolic consequences. Future
investigation into specific mechanisms
and modulation of ex-RNA biology to re-
duce the burdenof diabetes iswarranted.
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