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Full-length mRNA sequencing uncovers a
widespread coupling between transcription
initiation and mRNA processing
Seyed Yahya Anvar1,2,3*, Guy Allard1, Elizabeth Tseng4, Gloria M. Sheynkman5,6, Eleonora de Klerk1,7,
Martijn Vermaat1,2, Raymund H. Yin8, Hans E. Johansson8, Yavuz Ariyurek1,2, Johan T. den Dunnen1,2,
Stephen W. Turner4 and Peter A. C. ‘t Hoen1,9

Abstract

Background: The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at
transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation,
splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing.

Results: In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation,
splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of
coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues
(brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA
processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and
obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously
unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes
and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells.

Conclusions: Our findings demonstrate that our understanding of transcriptome complexity is far from complete
and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA
processing.

Background
The formation of a mature messenger RNA (mRNA) is a
multi-step process. In higher eukaryotes, variations in
each of these steps, including alternative transcription
initiation, differential splicing of exons, and alternative
polyadenylation site usage, change the content of the
mature transcript. The multitude of transcripts arising
from these events offers an enormous diversity of pro-
tein isoforms that can be produced from a single gene
locus. Tight regulation and coordination of these pro-
cesses ensures the production of a (limited) set of cell-,

tissue-, and condition-specific transcript variants to meet
variable cellular protein requirements [1–4]. Whether
these processes are co-transcriptionally linked is cur-
rently largely unknown, as are the mechanisms that
couple transcription with 5′ end capping, splicing, and
3′ end formation (reviewed in [5]). Thus, resolving full
transcript structures and accurate quantification of the
abundance of alternative transcripts are important steps
towards the detection and understanding of these
mechanisms.
RNA sequencing (RNA-seq) has become a central

technology for deciphering the global RNA expression
patterns. However, reconstruction and expression level
estimation of alternative transcripts using standard
RNA-seq experiments is limited and prone to error due
to relatively short read length (typically up to 150 nt)
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and required amplification steps of second-generation
sequencing technologies [6, 7]. It is apparent that single-
molecule long reads that capture the entire RNA mol-
ecule can offer a better understanding of the rich pat-
terns of alternative transcription initiation and mRNA
processing events and, hence, the underlying biology.
Despite a number of studies that have pursued long

read sequencing to connect different exons or even cap-
ture entire transcripts with a rather limited sequencing
depth [6, 8–14], the coupling between transcription initi-
ation and mRNA processing has not been extensively
studied. Here, we investigate the global pattern of coup-
ling between transcription initiation, splicing, and polya-
denylation in MCF-7 human breast cancer cell line and
three human tissues, which are deeply sequenced using
the single-molecule real-time Pacific Biosciences RSII se-
quencing platform. We show that transcription initiation
and mRNA processing are tightly coupled and that such
interdependencies can be found across the entire RNA
molecule and across large intra-molecular distances. We
demonstrate that transcript identification and under-
standing of coupling between processes that are involved
in the formation of these transcripts is far from
complete, even in well-characterized human cell lines
such as MCF-7. This study provides an in-depth view of
the true complexity of the transcriptome and, for the
first time, shows the tight and global interdependency
between alternative transcription initiation, splicing and
polyadenylation. We also show the value of this resource
in relation to translation and sample-specific survey of
the proteome.

Results
Detection and quantification of full-length transcripts in
MCF-7 cells
To investigate the genome-wide coupling of transcription
initiation and mRNA processing, full-length mRNAs from
MCF-7 human breast cancer cells were sequenced on 147
SMRT cells using the Iso-Seq method on the Pacific Biosci-
ences RSII platform (Additional file 1: Table S1). Before se-
quencing, parts of the sequencing library were size selected
to allow for a good representation of longer transcripts.
Transcript structures were defined by applying the

isoform-level clustering algorithm (ICE) on full-length
reads [15], capturing the entire mRNA molecule (con-
taining both 5′ and 3′ primer sequences). Final consen-
sus sequence of each transcript cluster was obtained by
using both the full-length and associated partial reads
(Fig. 1a). The analysis pipeline precisely determined the
position of polyadenylation sites (presence of poly(A) tail
in the sequence) and intron-exon boundaries, as evident
from the presence of the canonical GU motif in 93% of
donor splice sites and the canonical AG motif in 95% of
acceptor splice sites. In fact, 90% of introns were defined

by canonical splice-site motifs (GU-AG). In addition to
7364 single-exon transcripts, the MCF-7 transcriptome
consists of 11,350 multi-exon genes, of which 69% pro-
duced multiple transcript structures (Additional file 1:
Figure S1). Multi-exon transcripts range from 54 bp
(matching ANKRD36–004 transcript) to 10,792 bp
(matching TAX1BP1 gene with novel splice junctions) in
length with an average of 82 supporting reads
(Additional file 1: Figure S1). Moreover, 49% of identi-
fied transcripts in MCF-7 were found to be potentially
novel in comparison with the Gencode annotation
(Additional file 1: Table S2). In case of single-exon tran-
scripts, the majority (78.7%) were located within genes.
However, we could find a Gencode match for only 9.2%
of single-exon transcripts in our dataset. This may be
due to the fact that resolution of single-exon transcripts
with classical experiments and standard RNA-seq ap-
proaches is very challenging and, therefore, it has re-
sulted in underrepresentation of such mRNA molecules
from current annotations of many vertebrates [16].
To support the qualitative and quantitative accuracy of

the analysis pipeline, the measured gene expression levels
were compared to those obtained from five publicly avail-
able RNA-seq MCF-7 datasets generated on Illumina
HiSeq2000 or HiSeq2500 platforms. Spearman correla-
tions between Iso-Seq and standard RNA-seq were in the
range of 0.69–0.75 (Additional file 1: Figure S2A). Differ-
ences in library preparation protocols, presence of fewer
duplicates, and uniformity of coverage in the PacBio data
as well as contrast in sequencing dynamics contribute to
minor differences observed in estimated gene expression
levels [17]. Although we observed some inter-dataset dif-
ferences in detected genes, for most genes, the results
from all datasets were in concordance (Additional file 1:
Figure S2B). Transcript lengths and loading bias did not
significantly contribute to inter-platform differences for
gene detection as similar results were also found for intra-
platform comparisons (Additional file 1: Figure S2C).
Thus, the full-length mRNA sequencing data can be reli-
ably used for locus-specific quantification in MCF-7 cells.
To further establish the accuracy of the transcriptional

start sites (TSSs) and polyadenylation sites (PASs) obtained
with the Iso-Seq method, we performed a transcriptome-
wide comparison of 5′ and 3′ ends of full-length transcripts
with those found in Encode CAGE and RNA-PET experi-
ments in MCF-7 cells. The majority of TSSs detected by
full-length mRNA sequencing were in close proximity to
their counterpart in the Encode CAGE dataset, with a me-
dian distance of 1 bp (Additional file 1: Figure S3A). In
addition, 99.5% of genes with multiple TSSs in the CAGE
dataset were also represented by multiple TSSs in PacBio
data. We could identify 1386 additional multi-TSS genes
using full-length mRNA sequencing. The Encode RNA-
PET dataset captures the connections between 5′ and 3′
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ends of transcripts. These data were used for the validation
of the combinations of TSSs and PASs in the transcript
structures identified by full-length mRNA sequencing in
MCF-7 cells. However, it is important to note the limited
resolution of RNA-PET data as 5′ and 3′ tags that were lo-
cated within 100 bp of another tag were merged into a sin-
gle cluster. The results of this comparison further confirm
the validity of detected TSSs and PASs of identified tran-
scripts as the majority of RNA-PET terminal sites were in
close proximity of their counterparts in Iso-Seq data, with
median distance of 70 bp and – 11 bp, respectively

(Additional file 1: Figure S3B). Overall, these results provide
an independent confirmation that reported transcripts are
most likely full-length and no systematic bias is introduced
during the full-length complementary DNA (cDNA) syn-
thesis and computational resolution of mRNA sequences
(Additional file 1: Figure S3C).

Identification of interdependencies between transcription
initiation, splicing, and polyadenylation
To detect and characterize the dependency between
transcription initiation and mRNA processing events, we

Fig. 1 Schematic overview of the approach to characterize the interdependencies between mRNA transcription initiation and processing events. a
Identified full-length reads (reads with RNA inserts between 5′ and 3′ primers) are clustered into unique transcript structures using the ICE algorithm
and further polished using the partial reads, where one of the primer sequences is missing. b Based on available transcripts per locus, available sequence
(union of all exonic sequences that are observed at each locus) and unique set of features and splice sites are identified. Feature sets comprise
unique transcriptional start sites (TSS), exons, and polyadenylation sites (PAS). The unique set of splice sites consists of unique donor and
acceptor splice sites as well as all alternative TSSs and PASs. c The survey of coupling events is done by performing all possible pairwise
tests between unique features in genes. The sum of the coverage of all transcripts that support the inclusion or exclusion of each pair is
used in a contingency table to perform a Fisher’s exact test for statistical significance. The odds ratio (OR) is used to differentiate between
mutually inclusive and exclusive coupling. d Set of interdependent coupling events were identified based on networks of coupling between features
in each gene. Nodes represent features and links depict the mutual inclusivity (black edges) or mutual exclusivity (red edges) of each feature pair. Unique
network components can thereby be filtered based on the type of interaction: mutual inclusive or mutual exclusive coupling events. e For all
alternative exons that show significant coupling, a motif search is performed to assess the enrichment of specific RNA-binding protein
motifs. For all alternative exons, 35-bp intronic sequences upstream of the acceptor site are defined as R1 domain (depicted in orange),
32-bp exonic sequences downstream of the acceptor site and upstream of the donor site are defined as R2 domain (depicted in dark
gray), and 40-bp intronic sequences downstream of the donor site are defined as R3 domain (depicted in purple); 35-bp sequence upstream of each
PAS (depicted in red) is searched for the presence of canonical and non-canonical poly(A) signals
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designed the following analysis strategy (Fig. 1): for each
gene, the union of all exonic sequences was considered as
the available sequence and the union of all unique tran-
scriptional start sites, exons (defined as having distinct
donor and acceptor splice sites), and polyadenylation sites
was used as a set of available features (Fig. 1b). Inter-
dependency between all valid combinations of features (al-
ternative TSSs, exons, and PASs) was assessed based on
the number of reads that support the preferential inclu-
sion or exclusion of each pair of features (Additional file 1:
Figure S4). The following criteria were used to assess
interdependency between meaningful pairs of features: (1)
only multi-transcript loci were examined; (2) single-exon
transcripts were excluded from the analysis; (3) two fea-
tures should not partially or fully overlap; (4) dependency
between alternative TSSs and features located in their up-
stream region were omitted as their exclusivity is given
(the same rule was applied to downstream of alternative
PASs); and (5) only transcripts that fully encompass the
region represented by two features were used to pop-
ulated the two-by-two contingency table. To test pre-
ferred mutual inclusion/exclusion of each pair of
features, we applied a Fisher’s exact test followed by
Bonferroni multiple testing correction to evaluate
statistical significance of the interdependency (Fig. 1c;
also see “Methods”). Since features may be coupled to
a few other features, the actual coupling events were
summarized into a series of network components
within a gene-specific interaction network to capture
the independent coupling events (Fig. 1d). These
components can be summarized based on the level of
connectivity or mutual inclusivity or exclusivity within
each network to construct subnetworks. We subse-
quently searched the sequences containing the
coupled alternative exons or poly(A) sites for enriched
sequence motifs and tested whether they contain mo-
tifs of known RNA-binding proteins (RBPs) (Fig. 1e).

General properties of coupling in human MCF-7
transcriptome
The MCF-7 transcriptome consists of 11,350 multi-exon
genes that present 3,532,796 combinations of features
(TSSs, exons, and PASs), mainly representing exon–exon
pairs as single TSS or PAS was found in many loci
(Additional file 1: Figure S5). After initial filtering, 7708
genes and 3,055,099 pairs of features were considered
for statistical analysis of their interdependence.
Almost 10% of all feature pairs were significantly coupled

(p value < 1.4e-08, after Bonferroni correction for multiple
testing). We observed almost equal distribution over mutu-
ally inclusive (52%) and mutual exclusive pairwise inter-
dependencies (Additional file 1: Figure S6A). Notably, we
found coupling between mRNA features in over 60% of
all multi-exon genes (6825 out of 11,350; Fig. 2a),

represented by 18,078 mutually inclusive and 10,092
mutually exclusive subnetwork components (Fig. 2b).
Particularly, alternative TSSs appear to have a signifi-
cant impact on mRNA processing as > 80% of multi-
transcript genes exhibit interdependency between the
choice of TSS and alternative splicing. Of the 6825
genes with at least one coupling event, 2700 (37%)
showed interdependencies between all classes of fea-
tures (Fig. 2b; Additional file 1: Figure S6A): alterna-
tive TSS linked to alternative exons, alternative exon
to alternative exon linkage, alternative PAS linked to
alternative exons, and alternative TSSs to alternative
PASs. Thus, the deep sequencing of full-length
mRNAs provided a first image of the large degree of
coordination in the usage of alternative TSSs, exons
and PASs, restricting the number of produced tran-
scripts given the substantial amount of combinatorial
possibilities.
The length of individual transcripts was not associated

with the likelihood of a significant coupling event in that
transcript (Additional file 1: Figure S6B). However, after
examining the length of the union of exonic sequences
per gene and the likelihood of observing coupling, we
found that significant coupling events were enriched in
genes with larger available exonic sequences (Additional
file 1: Figure S6B). As expected, a larger exonic region in
each locus gives rise to a larger repertoire of possible
transcripts, requiring more extensive regulation of the
synthesis for transcripts containing different subset of
features.
To decipher whether observed interdependencies pri-

marily occur between proximal features, we also examined
the effect of the relative position in the gene and the dis-
tance between features on the observed degree of coup-
ling. As expected, most TSSs were located at the most 5′-
end of genes. However, interdependency of alternative
TSSs was observed across the entire gene (Fig. 2c, left
panel). Alternative TSSs were preferentially coupled to al-
ternative splicing events in relatively close proximity to
the TSSs, near the 5′-end, as well as distal exons at the 3′-
end (Fig. 2c, right panel). Examples of the coupling of al-
ternative TSS and alternative exon usage across large dis-
tances, and spanning multiple exons were frequently
observed (Additional file 1: Figure S7,8; ALDOA and
C1QTNF6). More evidence for interactions across the en-
tire length of genes comes from the significant coupling
between TSS and PAS, the two most distant features in an
mRNA molecule (Additional file 1: Figure S9; NCAPD2).
Dependencies between multiple alternative splicing

events were uniformly observed across the entire gene
(Fig. 2d; Additional file 1: Figure S10, LMNA). Despite
the uniform distribution of exon–exon coupling events
and the presence of distant coupling events (Additional
file 1: Figure S11, RELA), most interdependent
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alternative splicing events were between nearby or
neighboring exons (Additional file 1: Figure S12, CALU).
Like alternative TSSs, coupling events linked to alterna-

tive PAS usage were found across the entire gene (Fig. 2e).
In concordance with published literature [18–20], alterna-
tive PAS usage was preferentially coupled to nearby alter-
native exons (Fig. 2e). Nevertheless, many alternative

PASs were coupled to alternative exons proximal to 5′-re-
gions of genes.
We performed Sanger sequencing to independently

verify identified coupling events for a set of gene loci.
Due to limited range of alternative technologies such as
Sanger sequencing, only relatively close coupling events
could be assessed. In most cases, the Sanger sequencing

Fig. 2 Alternative transcription, splicing, and polyadenylation are highly interdependent. a Bar charts illustrate the number and proportion of genes
that show significant coupling in MCF-7 cells. Genes with TSS- or PAS-coupled features are also presented. b Venn diagram shows the number of genes
with various types of coupling representing interdependencies between different alternative processes. The total number of mutually inclusive and
exclusive networks are also listed. c Histogram of the relative positions of TSSs with (blue) and without (gray) significant coupling to mRNA processing
events. Relative positions are calculated based on the length of the total exonic sequence at each locus. Scatter plot shows the fraction of significantly
coupled TSSs (blue) to alternative exons (black) and PASs (red), plotted at each relative position. d Histogram of the relative positions of alternative
exons with (brown) and without (gray) significant coupling to other exons. Scatter plot shows the fraction of significantly coupled exons to other exons,
plotted at each relative position. e Histogram of the relative positions of PASs with (red) and without (gray) significant coupling to alternative
transcription and splicing events. Scatter plot shows the fraction of significantly coupled PASs (red) to alternative TSSs (blue) and exons (black), plotted
at each relative position. For plots depicting the percentage of linked features per position, the bin size of 0.02 was used

Anvar et al. Genome Biology  (2018) 19:46 Page 5 of 18



results were in full concordance with the coupling
events identified using full-length mRNA sequencing
(Additional file 1: Figure S7, 8, 10, and 11). In addition,
we carried out a single-molecule RNA in situ fluores-
cence (smRNA FISH) co-localization approach [21, 22]
to examine the alternative splicing events that were
identified by full-length RNA-seq and confirmed by
Sanger sequencing. Four probe sets were designed to de-
tect different segments of the CALU mRNAs at single-
molecule level. The full CALU_E probe set covers the
common exons on the full-length variants, whereas the
9-oligo CALU_E4 and CALU_E5 sets were designed to
specifically hybridize to either exon 4 or 5. The signal
from the common exon probes was easily detected
(Additional file 1: Figure S12) and could be used for co-
localized signals from the exon 4, exon 5, and intron 1
sets. The average numbers and distribution of signals re-
vealed that cytoplasmic mRNAs predominantly either
include exon 4 (~ 50 copies per cell) or exon 5 (~ 10
copies per cell), followed by mRNAs that do not include
exon 4 and 5 (~ 9 copies per cell). The co-localized sig-
nals from all three exon sets and all four sets were exclu-
sively located in the nuclear domain with much lower
abundance (Additional file 1: Figure S12). This is con-
sistent with active CALU gene transcription bursts that
contain pre-mRNAs in various states of post-
transcriptional processing and thus expected to contain
common exons, alternative exons, and introns. In short,
by applying RNA FISH, we could reveal the identity and
distribution of single mRNA molecules of CALU as well
as independently confirm the mutual exclusivity of exon
4 and 5 in MCF-7 cells. Together, the results of Sanger
sequencing and RNA FISH experiments are in concord-
ance with full-length RNA-seq and support the coupling
events identified.

Poly(A) signal usage for coupled polyadenylation sites
Most alternative PASs in MCF-7 cells were found in tan-
dem (in the same terminal exon, generating a longer or
shorter 3’-UTR). From 5498 genes with multiple PASs,
we identified 10,927 tandem PASs in the same exon
across 3983 genes (72%). From these, 3465 loci (87%) in-
cluded PASs that were significantly coupled with alterna-
tive TSSs or alternative exons. Still, many coupling
events between alternative PASs and inclusion or exclu-
sion of alternative exons were due to the use of exonic
and intronic PASs (8171 non-tandem PASs), leading to
the formation of new 3’ UTRs.
To assess whether certain poly(A) signals are preferen-

tially associated with alternative transcription and spli-
cing, we searched for canonical (AATAAA and
ATTAAA) and 11 known non-canonical poly(A) signals
in the 35-bp sequences upstream of the identified PASs.
Canonical and known non-canonical poly(A) signals

could be found in the 35-bp sequences upstream of 54%
and 18% of all PASs, respectively (Fig. 3a). The propor-
tion of PASs that could be associated with canonical
poly(A) signals was unchanged (55.7%) for those that
were coupled with TSSs or alternative exons. However,
PASs that were linked with TSSs showed a lower propor-
tion of canonical poly(A) signals (38.6%). Although this
decrease was accompanied by a slight increase in known
non-canonical poly(A) signals, it was mainly due to the
use of alternative PASs for which no known poly(A) sig-
nal could be found (Fig. 3a, b). This suggests that novel
poly(A) signals and other mechanisms may be involved
in transcription-coupled polyadenylation in MCF-7 cells.
Thus, we screened for enriched motifs in the 35-bp se-
quences upstream of PASs that were not associated with
known poly(A) signals. Based on a de novo motif enrich-
ment analysis, we identified the enrichment of
AKCCTGG for PASs with unknown poly(A) signal
(Table 1). This motif was also significantly enriched in
PASs that were coupled with alternative TSSs or splicing.
Interestingly, this motif could be associated with the
binding site of muscleblind-like (MBNL) protein family,
known to play a dual role in the regulation of splicing
and polyadenylation [23, 24]. Each MBNL isoform can
bind to slightly different motifs [24] and a few motifs
have been previously associated with MBNL proteins
[24–26]. Although all three MBNL proteins are
expressed in MCF-7 cells, the enrichment of de novo
identified AKCCTGG and the recently reported
CWGCMWKS motifs (mainly recognized by MBNL3
protein [24]) were more prominent. Additionally, previ-
ously identified binding motifs for MBNL1 (CTSCYB
[25] and RSCWTGSK [24]) and MBNL2 (TGCYTSYY
[24]) were also enriched in sequences upstream of the
PASs without a known poly(A) signal (Table 1). How-
ever, these motifs were not found to be preferentially as-
sociated with PASs that were coupled with alternative
TSSs or alternative exons. Together, these results suggest
that MBNL proteins may play a role in mediating alter-
native splicing and alternative polyadenylation.

Identification of binding motifs for RNA-binding proteins
potentially involved in coupling
We examined the potential involvement of RBPs in the
coordination of alternative transcription initiation and
mRNA processing events by enrichment analysis of their
binding motifs in coupled vs non-coupled exons (back-
ground set). We screened three genomic domains rela-
tive to donor and acceptor splice sites of coupled exons
for enriched sequence motifs (Fig. 1e; also see
“Methods”): the 35-bp intronic sequences upstream of
the acceptor site (R1), the 32-bp exonic sequences
downstream of the acceptor sites and upstream of the
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donor sites (R2), and the 40-bp intronic sequences
downstream of the donor sites (R3).
For coupled non-terminal exons, the sequences from

the R1 domain (upstream of the acceptor) were enriched
for motifs (Table 2) that can be recognized by the spli-
cing modulators RBM24 [27] and SAMD4A [28] pro-
teins. In addition, the R2 sequences were enriched for
binding sites of RBM4B [29], NOVA2 [30, 31], and

RBM28 [32] proteins, known to play a role in regulating
alternative splicing. In fact, many RBM proteins have
been associated with pre- and post-mRNA splicing
events. R3 regions (downstream of the donor splice
sites) were also enriched for motifs associated with alter-
native splicing modulators: FUS [33–35]; SRSF2 [36];
RBM5 [37–39]; PCBPI1; and PCBPI2 [40, 41] (Table 2).
Together, we observed a clear indication that RBPs

Table 1 Enrichment of MBNL binding site motifs in sequences upstream of alternative PAS with unknown poly(A) signal that are
coupled with alternative TSS or alternative exons

Motifs Source Total Random set p value a Coupled PAS Not coupled PAS p value b

AKCCTGG DREME 1271 35 0 881 390 9.8E-44

CTSCYB Masuda, 2012 [25] 898 708 2.6E-07 442 456 9.7E-01

YGCY Purcell, 2012 [26] 2961 3139 1.0E-00 1578 1383 3.2E-02

RSCWTGSK Batra, 2014 [24] – MBNL1 145 93 4.1E-04 80 65 2.5E-01

TGCYTSYY Batra, 2014 [24] – MBNL2 95 55 6.5E-04 50 45 4.9E-01

CWGCMWKS Batra, 2014 [24] – MBNL3 1306 139 4.7E-262 870 436 1.5E-32

Total PASs 6979 6979 – 3614 3338 –
aThe enrichment of binding motifs in sequences upstream of PASs without a known poly(A) signal were calculated by Fisher’s exact test (one-sided). A randomly
generated set was used as a background for enrichment analysis
bPASs without significant coupling were used as the background set to identify a binding site that is enriched in the coupled PASs without a known poly(A) signal

Fig. 3 Alternative TSSs and exons are significantly associated with known and novel poly(A) signals. a Bar charts show the number and relative
proportion of PASs that are associated with canonical or non-canonical poly(A) signals for all PASs, PASs with significant coupling, and alternative
exon- and/or TSS-linked PASs. b Bar charts represent the number and relative proportion of known and unknown poly(A) signals for TSS-linked,
exon-linked, or TSS- and exon-linked PASs
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involved in regulation of alternative splicing and mRNA
stability are likely to play a role in preferential selection
of alternatively spliced exons.

Conservation of interdependencies across human tissues
We investigated whether the interdependent transcrip-
tion initiation, splicing, and polyadenylation events iden-
tified in MCF-7 cancer cells could also be found in the
full-length transcriptomes of three primary human tis-
sues: brain; heart; and liver. As the sequencing depth in
the primary tissues was lower than that of MCF-7, we
could only examine the relatively abundant genes. In the
human brain, of 5381 genes that could be assessed for
coupling between transcription initiation and mRNA
processing, 30.7% were found to have at least one coup-
ling event (Additional file 1: Figure S13A). In total, we
identified 7% of 789,054 possible combinations to be sig-
nificantly interdependent. Similar patterns could be
found in heart and liver, having 25% and 26% of genes
exhibiting at least one coupling event, respectively
(Additional file 1: Figure S13A). Pairwise comparison of
coupling rates between transcriptomes revealed that the
proportion of genes exhibiting coupling in multiple sam-
ples show a modest range of 5–13%, whereas for multi-
transcripts genes, a larger proportion (in the range of
24–40%) exhibit at least one coupling event (Additional
file 1: Figure S13B). Overall, MCF-7 transcriptome
showed the largest gene overlap with other datasets sug-
gesting that by achieving a deeper coverage many more
interdependencies may be found that are conserved be-
tween tissues.
Next, we assessed the conservation of individual coup-

ling events in different samples. From the total number
of feature pairs that were found to be interdependent in
at least one sample, by far the majority were found to be
specific to a given tissue or MCF-7 cells since only 6–

14% were found to be coupled in two examined datasets
(Additional file 1: Figure S13C). Interestingly, feature
pairs that were found to be interdependent in two sam-
ples were generally (~ 77%) mutually inclusive or exclu-
sive in both tissues (Additional file 1: Figure S13C). This
observation suggests that although most coupling events
are tissue- or condition-specific, there seems to be a set
of interdependencies that are conserved across multiple
human tissues.
Finally, we performed a survey of Gencode annotation

to identify the number of preferentially interdependent
alternative exons that are already reflected in annotated
transcripts. To do this, for all coupled exons, locus-
specific relative number of transcripts that support the
inclusion of two alternative exons was compared to the
relative number of transcripts that only contain one of
the two. Importantly, only Gencode transcripts that fully
encompass the coupled exons were included in the ana-
lysis. In MCF-7 cells, > 91% of alternative exons could
be found in the Gencode, from which the majority were
mutually inclusive (Additional file 1: Figure S14A). The
majority of alternative exons that were found to be mu-
tually exclusive (87%) also seem to only occur independ-
ently in the Gencode annotation, whereas for those that
were found to be mutually inclusive the concordance
was weaker (58%). Nevertheless, in almost 79% of the
cases, we found over twofold more incidences of mutu-
ally inclusive exons being annotated in the same tran-
script than independently. Overall, similar patterns were
observed for three primary human tissues (Additional
file 1: Figure S14B–D) except for greater proportion of
alternative exons with novel splice-site junctions in brain
(17.3% whereas other datasets contain < 10% novel alter-
native exons) and that the concordance between
Gencode annotation and liver was much weaker than
that of other datasets (31% concordance for mutually

Table 2 The RNA-binding protein motifs associated with alternative exons that are coupled to TSS, other alternative exons, or PAS

R1 domain

Motif Length Coupled (28,716) Not coupled (70,336) E-value Pfam ID RBP

SVGV 4 nt. 12,121 23,872 6.0E-127 PF00536 SAMD4A

TGTCTGAA 8 nt. 108 70 1.2E-014 PF00076 RBM24; ENOX1

R2 domain

Motif Length Coupled (53,490) Not coupled (131,953) E-value Pfam ID RBP

GSSB 4 nt. 29,261 65,661 2.4E-078 PF00076; PF00098 RBM4B

GGGAYTAC 8 nt. 223 164 2.8E-027 PF00013 NOVA2

AGTMGCT 7 nt. 262 234 2.8E-024 PF00076 RBM28

R3 domain

Motif Length Coupled (28,591) Not coupled (70,138) E-value Pfam ID RBP

SGTRAG 6 nt. 1043 1330 7.6E-051 PF00076; PF00641
PF00013

FUS; SRSF2
PCBP1; PCBP2

GAAGGTGA 8 nt. 98 49 1.5E-016 PF00076; PF00641 RBM5
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inclusive exons and 66% concordance for mutually ex-
clusive exons).

Characterization of the proteome of MCF-7 cells in light
of full-length transcripts
The integration of full-length mRNA sequences with
mass-spectrometry (MS) proteomics data provides a
unique opportunity to investigate the multitude of pro-
tein isoforms that arise from transcripts that underwent
alternative transcription initiation and mRNA process-
ing. Specifically, the Iso-Seq data can serve as a source
of predicted full-length open-reading frames (ORFs),
which enables the detection of novel peptides from the
MS data and assignment of peptides to specific protein
isoforms. In traditional MS-based proteomics workflows
that use canonical protein databases, such novel peptides
would remain undetected or may be misassigned with-
out the knowledge of candidate ORFs. From the 11,350
multi-exon genes and 7364 polyadenylated single-exon
transcripts found in the MCF-7 cells, we could respect-
ively identify 10,385 and 3591 ORFs that were in the
range of 48–3087 amino acids (aa) in length (Additional
file 1: Figure S15). A majority of 7814 genes that under-
went alternative transcription initiation or mRNA pro-
cessing were predicted to have coding capacity (97.4%).
However, a smaller proportion of 3536 single-transcript
genes (78.4%) and single-exon transcripts (48.8%) con-
tained a predicted ORF.
To characterize the translated component of the

MCF-7 transcriptome, especially in relation to the alter-
natively spliced isoforms, we analyzed a publicly avail-
able, deep-coverage MS dataset [42]. For MS searching,
a customized protein search database was constructed,
consisting of protein sequences derived from Gencode
v19 (95,309 entries), ORFs predicted from MCF-7 Pac-
Bio sequences (47,325 entries), and a database of fre-
quently observed contaminant proteins (115 entries) [43,
44]. The inclusion of the Gencode database allows for
identification of any peptides derived from transcripts
that may not have been detected in the PacBio data. The
MS searching was done using the Morpheus algorithm
[45], wherein all theoretical peptides resulting from an
in silico tryptic digestion of protein entries (from Gen-
code, PacBio, or contaminants database) were matched
against the raw mass spectra to identify peptides. We de-
tected 38,628 unique peptides, passing a global false dis-
covery rate (FDR) of 1%, that could be unambiguously
associated with the Gencode (version 19) and/or PacBio-
based predicted protein-coding sequences in MCF-7
cells. In 2872 cases, the identified peptide was only
present in the Gencode database, whereas in 358 cases,
the peptide was only found in the PacBio database. In
addition, we found 2150 peptides associated with 481
single-exon transcripts.

Identified peptides are in the range of 7–56 aa with an
average of > 15 aa in size (Fig. 4a). We observed a strong
correlation (r = 0.96; p < 2.2e-16) for the number of pep-
tides per gene based on full-length PacBio or Gencode
transcripts (Fig. 4b), suggesting that full-length RNA-seq
data can capture a comparable repertoire of protein-
coding sequences in MCF-7 cells. Still, it is evident that
for a few select ultra-long transcripts, such as AHNAK,
DYNC1H1, and PLEC, or for particularly low abundant
transcripts such as HUWE1, peptides were underrepre-
sented in the PacBio database compared to Gencode
(Additional file 1: Figure S16–19). It is challenging to
synthesize ultra-long transcripts using current full-
length cDNA synthesis protocols. For example, the cen-
tral domain of AHNAK consists of a tandem 128 aa re-
peats that is absent in its ultra-long form in PacBio data,
whereas the short forms were detected (Additional file 1:
Figure S16). In the case that ultra-long or low-abundant
transcripts are of interest for study, alternative experi-
mental protocols are needed to enrich for such
products.
The MCF-7 dataset described in this manuscript rep-

resents an in-depth characterization of a unique per-
sonal transcriptome that gives rise to unique protein
sequences (i.e. different from canonical proteome refer-
ence sequences). To find evidence for potentially novel
protein isoforms derived from alternatively spliced tran-
scripts, we characterized the specificity of peptides in
terms of its ability to distinguish between one or more
isoforms – many peptides map ambiguously to multiple
isoforms whereas others that arise from unique alterna-
tive mRNA processing events may only map to a subset
of isoforms. Accordingly, peptide hits were classified
into four groups, ranging from most to least specific in
their mapping precision: single-transcript hits represent-
ing peptides that could uniquely map to a single isoform
sequence; sub-transcript hits representing peptides that
are associated with only a subset of transcript isoforms
for a given gene; all-transcripts hits representing pep-
tides that are associated with all transcripts of a given
gene; and multi-gene hits that represent peptides associ-
ated with transcripts of multiple genes. This classifica-
tion serves as a measure of specificity for peptide
matches (Additional file 1: Figure S20) as well as evalu-
ating the specificity of transcript annotation in repre-
senting alternatively spliced isoforms in MCF-7 cells.
Comparison between Gencode- and PacBio-based

classification of peptides revealed that PacBio-based ana-
lysis of protein peptides provides a more specific peptide
assignment. For example, PacBio-mapped peptides were
more often associated with a subset of transcripts rather
than ambiguously assigned to all transcripts. This in-
creased specificity is due to the use of a sample-specific
set of predicted protein isoforms from the MCF-7 full-
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Fig. 4 Comprehensive map of protein peptides supports novel alternative splicing events in full-length MCF-7 transcriptome. a Histogram shows
the distribution of peptide amino acid (aa) lengths that could be associated with either Gencode or PacBio transcript variants. b Scatter plot illustrates
the number of unique peptide hits per gene based on PacBio (x-axis) or Gencode annotation (y-axis). Each dot represents a single gene locus based
on matching of PacBio and Gencode genes. c Empirical cumulative distribution of relative peptide counts per gene for each peptide hit category.
Genes with a single transcript annotation (single-transcript category) are shown in light blue. Multi-transcript genes with peptides matching to a subset
of transcripts (sub-transcripts category) are shown in yellow. Multi-transcript genes with peptides matching to all annotated transcripts (all-transcripts
category) are shown in brown. Multi-gene hits are shown in black. Dotted lines represent the cumulative distributions based on the Gencode
annotation. d Bar charts illustrate the comparison of Gencode- or PacBio-based classification of Peptides. e Bar charts show the number
of peptides derived from exon–exon junctions of transcripts. The number of peptides that match exon–exon junction of mutually inclusive (blue)
or exclusive (yellow) exons. f Peptides with different classification matching to multiple transcripts of ITGB4. Black peptides are all-transcripts hits
whereas, based on full-length MCF-7 transcriptome data, yellow peptides are only associated with a subset of transcripts. Exons are colored based
on coupling networks, shown in red and blue
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length transcriptome over the Gencode annotation
(Fig. 4c, d; Additional file 1: Table S3). Indeed, Gen-
code represents protein annotations for the entire hu-
man proteome, whereas the MCF-7 derived proteome
is specific to MCF-7 cells. As shown in the empirical
cumulative distribution of relative peptide counts per
gene (Fig. 4c), there is a clear enrichment of peptides
that discriminate between different isoforms of a gene
in PacBio data vs Gencode annotation, while at the
same time the overall peptide counts per gene remain
the same between the two. In fact, 50% of peptides
that are classified as single-gene hits (matching all
transcripts of the associated gene) were classified as
sub-transcript hits based on PacBio transcripts, some
of which due to alternative splicing events were ab-
sent in Gencode version 19 annotation (Additional
file 1: Table S3). Conversely, some peptides that were
classified as single-transcript hits in Gencode were
classified as sub-transcript (46%) or single-gene (18%)
hits in PacBio, as many more isoforms were detected
in MCF-7 cells than annotated in Gencode.
We identified 358 novel peptide hits that were missed

in Gencode (Fig. 4d; Additional file 1: Figure S21). The
quality of these novel peptide hits only matching
PacBio-derived ORFs (“novel” peptides) were compar-
able to that of peptide hits matching Gencode (“known”
peptides). Furthermore, peptides that had discordant
classification (i.e. categorized as single-transcript in Gen-
code but sub-transcripts in PacBio) were also found to
have a comparable quality (Additional file 1: Figure S22).
The quality was assessed by statistical analysis of the dis-
tribution of peptide MS search scores (i.e. q-value or
Morpheus score). We found that the discordant gene as-
signments for a set of peptides was primarily due to
them containing single amino acid substitutions (SAS)
that are present in MCF-7 cells but not in the reference
sequence (Additional file 1: Figure S23). Without know-
ledge of SAS provided by sample-specific protein data-
base, traditional proteomics workflows can either lead to
mismatch or failure to detect peptides using general an-
notations such as Gencode [46]. This is more prominent
for sample-specific differential expression of paralogous
genes (Additional file 1: Figures S24 and S25). These ob-
servations are partly reflected by 41% multi-gene pep-
tides that can be specifically assigned to a single gene
using PacBio data.
Although most peptide hits were found within a single

exon boundary, 30% were associated with exon–exon
junctions covering up to five consecutive exons (Fig. 4e).
From 49,263 peptides derived from parts of the tran-
scripts that span exon–exon junctions, 10,364 peptides
were associated with exons that were found to be mutu-
ally inclusive as we rarely (< 2%) observed peptides that
matched mutually exclusive exons (Fig. 4e). As shown

for ITGB4 gene (Fig. 4f ), differential splicing pattern in
MCF-7 transcriptome can strongly influence the
characterization of matching peptides given the number
of isoform-specific peptides found based on the detec-
tion of novel splice isoforms that are absent in Gencode.

Discussion
Short-read RNA-seq has become central in assessing
global RNA expression patterns. However, as a result of
the complexity of human transcriptome and limited size
of the sequenced RNA fragments, this approach disap-
points in precise reconstruction and reliable expression
estimation of transcript variants [6, 7, 47]. In contrast,
single-molecule long-read sequencing provides a unique
opportunity to reveal the true complexity of the tran-
scriptome [9, 10, 16, 48] as it can determine the full
structure of individual transcripts by full-length
sequencing.
Here, we have analyzed the deepest and longest tran-

scriptome data so far to better understand the extent of
interdependencies between transcription initiation and
mRNA processing. Notably, full-length mRNA sequen-
cing and de novo identification of high-quality (HQ) se-
quence of transcript variants uncovered an
unprecedented amount of potentially novel transcripts
in MCF-7 cells and three human tissues. Our findings
not only reveal a higher level of alternative transcription
initiation, splicing, and polyadenylation in MCF-7 tran-
scriptome than previously appreciated, but also provide
valuable information on the preferential selection and
interdependency between these processes.
We showed that transcription initiation, splicing, and 3′

end formation are tightly coupled in > 60% of genes with
multiple transcripts and such interdependencies can be
found across the entire length of the mRNA molecules.
Notably, we report an unforeseen and unprecedented
number of genes that undergo a vigorous preferential se-
lection during transcription initiation and mRNA process-
ing as the choice of transcription start site subsequently
influences both alternative splicing of exons and the usage
of alternative poly(A) site. Ample evidence points at the
critical role for RNA Pol II in the coordination between
these processes (reviewed in [5, 49–51]). It has been
shown that RNA Pol II initiation, pausing, and elongation
rate can influence alternative splicing and polyadenylation
of transcripts [52–55]. Moreover, the C-terminal domain
of RNA Pol II likely acts as a scaffold for regulatory factors
that are involved in splicing and polyadenylation (reviewed
in [51]). Concordantly, we found an enrichment of coup-
ling events in larger genes that seem to undergo a more
extensive regulation during mRNA synthesis. However,
the exact mechanisms by which the coordination is
achieved remain largely unclear.
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From previous studies, it became clear that polyadeny-
lation couples with splicing machinery to influence the
removal or inclusion of the last intron [18, 56, 57]. We
now show that: (1) the interdependencies between spli-
cing and polyadenylation are not necessarily restricted to
the final introns; (2) that they can also involve introns
that are far from the poly(A) site; and (3) that the coup-
ling between splicing and alternative polyadenylation is
not restricted to tandem 3’ UTRs. The exact mecha-
nisms by which these coupling events are achieved fall
beyond the scope of this study. Previously, it has been
shown that spliceosome components are also part of the
human pre-mRNA 3′-end processing complex [58].
Moreover, it is likely that there are RNA-binding pro-
teins with a dual role in alternative splicing and poly-
adenylation to coordinate mRNA processing events.
hnRNP H [20], CstF64 [57], MBNL1, and ELAV1
(HuR) [23, 59–61] are a few examples of such pro-
teins. Importantly, sequences upstream and down-
stream of splice sites (R domains) of coupled exons
were enriched for motifs that can be recognized by
RNA-binding proteins with known role in regulating
alternative splicing. In addition, we found MBNL
binding motifs enriched in the sequences upstream of
polyadenylation sites coupled with alternatively spliced
exons. Interestingly, these regions lacked canonical or
non-canonical poly(A) signals. This suggests that
MBNL proteins mark alternative poly(A) sites and
play a dual and possibly coordinating role in alterna-
tive splicing of exons and polyadenylation. This is in
line with previous studies in MBNL1-deficient cells
where both splicing and polyadenylation were shown
to be disrupted [23, 24]. However, it is not clear to
what extent these findings are biologically meaningful
and if they can be extrapolated to other cell lines and
cell types. Our analysis also identified a few more
candidates with dual roles in mRNA processing, not-
ably multiple RBM proteins SAMD4A, NOVA2, FUS,
and SRSF2, which warrant further investigations by
performing additional functional assays.
In MCF-7 cells, the multitude of protein isoforms aris-

ing from alternative transcription initiation and mRNA
processing is not fully reflected in Gencode protein an-
notation as sample-specific set of predicted ORFs seem
to provide a better specificity in discriminating peptides
based on differences in ORFs derived from the same
gene locus. Furthermore, as shown in this study, the
presence of sample-specific single amino acid substitu-
tions and splice-site junctions can lead to loss or mis-
match of peptides when using a canonical proteome
reference database. Thus, a personalized full-length tran-
scriptome and its associated full-length ORF predictions
serve as a valuable resource to capture the true com-
plexity of the proteome and to study the global

functional divergence between protein isoforms. How-
ever, it is important to note that the comprehensiveness
of such databases vastly depends on the sequencing
depth and library preparation strategy and, therefore, it
is currently indispensable that such analyses need to be
performed using the combination of Gencode and
sample-specific protein sequences.

Conclusions
This study demonstrates that our understanding of tran-
script structures and coordinating mechanisms that
regulate transcription initiation and mRNA processing is
far from complete, even in well-characterized human cell
lines such as MCF-7. Single-molecule full-length RNA-
seq of other human tissues also provide an additional
evidence for the true complexity of the human transcrip-
tome. Moreover, although it has been shown that single-
nucleotide variants can alter the inclusion of exons in
transcripts [9], it is of interest to identify variants that
can affect allele-specific coupling between transcription
initiation and mRNA processing. Together, these can
offer a better understanding of the mechanisms that
control gene regulation. As alternative splicing is a key
mechanism in functional divergence of human genes, ac-
cess to full-length sequence of potential protein isoforms
allows us to better understand biological function
through examining interactions and cross-tissue dynam-
ics of protein isoforms [62]. In turn, this unique set of
protein isoform interactions serves as a global view of
protein functional repertoire and thereby provide valu-
able insights into underlying mechanisms of diverging
physiological, developmental, or pathological conditions.

Methods
RNA sample preparation, library preparation, and
sequencing
Total RNA of the MCF-7 cell line was purchased from
Biochain. The cDNA library was constructed using the
Clontech SMARTer cDNA kit. The majority of the size
selection and sequencing was performed using agarose
gel cutting at 1–2 kbp, 2–3 kbp, and > 3 kbp. A total of
119 SMRT cells (1–2 kbp for 37 cells, 2–3 kbp for 37
cells, > 3 kbp for 33 cells, and 12 cells for no size se-
lected library) were sequenced for the first set of librar-
ies using P4-C3 chemistry and 2-h movies. Later, with
improved chemistry and size selection method, add-
itional libraries were made using the same Clontech
SMARTer cDNA kit followed by size selection using
SageELF to create fractions at 0–1 kbp, 1–2 kbp, 2–3
kbp, 3–5 kbp, and 5–7 kbp. Sequencing was done using
P5-C3 chemistry and 4-h movie time for a total of 28
SMRT cells (0–1 kbp for 4 cells, 1–2 kbp for 5 cells, 2–3
kbp for 5 cells, 3–5 kbp for 7 cells, 5–7 kbp for 7 cells).
Together, 147 SMRT cells were sequenced. The
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schematic overview of the library preparation, sequen-
cing, and data analysis is provided in Additional file 1:
Figure S26.
The methodologies and experimental settings for RNA

preparation, cDNA synthesis, library preparation, and
sequencing are further described at https://github.com/
PacificBiosciences/DevNet/wiki/IsoSeq-Human-MCF7-
Transcriptome. We downloaded the 2015 dataset, which
is an updated version of the original 2013 release. In
addition, we used publicly available data from three hu-
man tissues (brain, heart, and liver) for comparative ana-
lysis. These datasets are described at http://www.pacb.
com/blog/data-release-whole-human-transcriptome/.

Annotation of full-length high-quality transcripts using
isoform-level clustering algorithm
The identification, polishing, and annotation of tran-
scripts were previously carried out using the Iso-Seq bio-
informatics pipeline made public by Pacific Biosciences.
A full description of the algorithm is available in a previ-
ous publication [15]. Reads were first classified into full-
length and non-full-length based on the presence of 5′
and 3’ cDNA primers, as well as the polyA tail preceding
the 3′ primer. To find transcript clusters, an isoform-
level clustering algorithm (ICE) performs a pairwise
alignment and reiterative assignment of full-length reads
to clusters based on likelihood. After ICE, partial reads
are added to the isoform clusters to increase coverage
for a final consensus using the Quiver algorithm [63].
The output from the bioinformatics pipeline is a set of
full-length transcript sequences that can be mapped to
the reference genome for identifying genes and isoform
relationships. For further information on the method-
ology and experimental settings visit https://github.com/
PacificBiosciences/IsoSeq_SA3nUP/wiki.
Based on the Quiver algorithm’s predicted consensus

accuracy, transcript sequences that had a predicted ac-
curacy of > 99% (excluding QVs from the first 100 bp
and last 30 bp due to occasionally insufficient coverage
for accurate estimation of accuracies) were considered
HQ transcripts and used for further analysis. The HQ
transcript sequences were mapped back to the human
genome (hg19) and filtered for > 99% alignment cover-
age and > 85% alignment identity. Of 280,051 HQ tran-
scripts in MCF-7, nine did not map to hg19, 13,543
were filtered due to low coverage, and 14 were filtered
due to low identity. Redundant transcripts were then
collapsed to create a final dataset used in this study.

Comparison to the GENCODE annotation
We used GENCODE annotated transcripts (version 19)
as reference to compare with the identified transcripts in
the human MCF-7 transcriptome data. The comparison

for transcript annotations was carried out using cuffcom-
pare from the Cufflinks suite [64].
To identify interdependent alternative exons that are

already represented in the Gencode annotation, for each
exon–exon coupling, we performed the following: (1) all
transcripts that encompass both interdependent exons;
(2) assessed whether the same splice-site junctions were
annotated; (3) counted the number of transcripts that
contain both exons, only one of the two exons, or none;
(4) relative counts were calculated based on the total
number of transcripts that encompassed the two exons.
For each dataset, the relative counts of co-occurrence
and independent observations were compared for mutu-
ally inclusive and mutually exclusive exons separately.

Comparison to standard RNA-seq datasets
We used five publicly available RNA-seq datasets
(SRR1035698, SRR1107833, SRR1107834, SRR1107835,
and SRR1313067; generated on Illumina HiSeq2000 or
Illumina HiSeq2500 platforms) to evaluate the reliability
of gene expression quantification based on full-length
mRNA sequencing data used in this study. As accurate
transcription reconstruction is not feasible for short-
read RNA-seq data, the comparison is made at the gene
level using GENCODE annotation (version 19). As part
of the GENTRAP pipeline [65], GSNAP aligner with de-
fault parameters was used to align paired-end Illumina
reads to the human genome (hg19). Next, HTSeq [66]
with default parameters was used to calculate the frag-
ment counts per gene, which was subsequently adjusted
for gene length to provide a median measure of gene ex-
pression. All statistical analyses were performed in R.

Definition of transcription start site, polyadenylation site,
and donor and acceptor splice sites
In this study, by processing the GFF file that contains
the annotation of all identified transcripts and exon/in-
tron boundaries (defined by the genomic position and
strand on the hg19 reference sequence), a list of all tran-
scription and mRNA processing events is produced.
TSSs are defined as the first genomic position of each
transcript structure. PASs are defined as the last gen-
omic position of each transcript. The most upstream
and downstream genomic positions of exons were used
to define donor and acceptor splice sites, respectively.
However, for the first exon only the donor site is de-
scribed as the first position is defined as transcription
start site. Likewise, the last exon does not contain a
donor splice site as the position is defined as polyadeny-
lation site. If multiple transcripts share the same feature,
then only one copy is kept in the unique set of features
at each locus. Furthermore, the union of all unique
exons is defined as the available sequence at each locus.
This is also illustrated in Fig. 1b. Terminal positions of
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transcripts were curated based on a 10-bp window to re-
move stochastic noise and minimize the number of false
TSS and PAS for each locus.

Comparison to Encode CAGE and RNA-PET datasets
We used the publicly available MCF-7 cells CAGE
(GSM849364) and RNA-PET (GSM1006905) datasets
from the Encode project to evaluate the reliability of 5′
and 3′-ends of identified transcripts in PacBio data. We
used Bedtools to identify base-pair distance between
CAGE tags and TSSs found in PacBio data. For RNA-
PET, both 5′ and 3′-ends were simultaneously compared
to TSSs and PASs identified in PacBio to report the dis-
tances for the best matching full-length transcripts. All
data processing was done using Bedtools closest func-
tion. Since Bedtools may report multiple hits, we have
selected the one with the least number of differing nu-
cleotide positions as the best hit.

Alignment and quantification of supporting reads for
each transcript
The number of reads aligned to each transcript was used
as the supporting evidence for each transcript structure.
To identify the number of supporting reads, the polished
sequences of all unique transcripts were used as a refer-
ence for the unique alignment of raw reads using BLASR
[67]. Other parameters were set to default and according
to the Pacific Biosciences guidelines.

Statistical analysis
After defining unique features (TSSs, exons, and PASs)
and identifying the number of supporting reads for tran-
scripts at each locus, all possible pairwise comparisons
between features were made. To do this, a two-by-two
contingency table is constructed based on the following
criteria: (1) two features should not partially or fully
overlap; (2) dependency between alternative TSSs and
features that are located in their upstream region are
omitted as their exclusivity is given. The same rule is ap-
plied to downstream of alternative PASs; (3) only tran-
scripts that fully encompass the region that is
represented by two features are used to populate the
two-by-two contingency table. This is to ensure that all
counts are based on direct observation of their mutual
inclusion/exclusion in identified transcripts; (4) single-
exon transcripts are excluded from the analysis; (5) only
multi-transcript loci are examined for possible inter-
dependencies between alternative transcript initiation,
alternative splicing, and alternative polyadenylation. The
table describes the number of times two features are ob-
served in the same transcript or exclusively, as well as
the sum of reads that are mapped to transcripts that do
not support the presence of either features (Fig. 1c). A
significant coupling between two features is assessed

using Fisher’s exact test. The mutual inclusivity or exclu-
sivity of coupled features are defined using their log-
transformed odds ratio. All p values are adjusted using
Bonferroni multiple testing correction.
Coupling network is constructed based on detected

interdependencies between pairs of features for each
gene. Nodes represent features and mutual inclusivity or
exclusivity is represented by black or red edges, respect-
ively, in the network. Mutual inclusivity or exclusivity
sub-networks are constructed after removing all the
other edges. No further filtration is performed on gene
coupling networks.

Sanger sequencing validation
The polymerase chain reaction (PCR) for Sanger se-
quence validation was performed using the 2× Phusion
High-Fidelity PCR master mix with HF buffer (NEB).
Briefly, the PCR ran for 30 cycles with 1-min elongation
at 72 °C. The PCR products were purified using Ampure
XP beads following the guidelines of the manufacturer.
The sizing of the amplicons was checked using Agilent’s
Labonachip system. The Sanger sequencing of the prod-
ucts was performed by the LGTC and the sequences
were analyzed using Sequence Scanner Sofware 2
(Applied Biosystems, CA USA).

Single molecule RNA fluorescence in situ hybridization
Single-molecule RNA FISH relies on the combined
fluorescence from 25 to 48 singly fluorophore labeled ol-
igonucleotides bound to the same RNA. By using the
fluorescence from a guide probe set in one dye, the
fluorescence from one or more exon-specific probe sets
with < 25 oligonucleotides, and each labeled with a sep-
arate dye, can be accurately registered as belong to the
same RNA. The optimal number of oligonucleotides per
specific set must be experimentally determined.

Probe sets
Four probe sets were designed at www.biosearchtech.
com/stellarisdesigner to detect: (1) the common exons
of the human CALU (Calumenin; NCBI Gene ID: 813;
7q32.1) mRNAs (CALU_E); (2) the alternatively spliced
exon 4 (CALU_E4); (3) the alternatively spliced exon 5
(CALU_E5); (4) and the common first intron (CALU_
I1). The probe set target sequences were as follows:
CALU_E: NM_001199671.1 nts 1–141, 957–1188,
1383–1610, 1811–2875; CALU_E4: NM_001199671.1,
nts 1177–1394; CALU_E5: NM_001199672.1, nts 1177–
1394; and CALU_I1: NC_000007.14, nts 128,739,433–
128,747,432. CALU_E is an inclusive probe set designed
to detect the following variants: NM_001219.4, NM_
001130674.2, NM_001199671.1, NM_001199672.1, NM_
001199673.1, and NR_074086.1. Both CALU_E and
CALU_I1 are full sets with > 32 oligonucleotides,

Anvar et al. Genome Biology  (2018) 19:46 Page 14 of 18

http://www.biosearchtech.com/stellarisdesigner
http://www.biosearchtech.com/stellarisdesigner


whereas the sets targeting the short exons 4 and 5 have
nine oligonucleotides each. The four sets were synthe-
sized at LGC Biosearch Technologies as custom Stellaris®
probe sets with unique fluorophores: CALU_E: Quasar®
670; CALU_E4: Quasar 570; CALU_E5: Cal Fluor ® Red
610; and CALU_I1: FAM. The CALU_E4 and CALU_E5
probes were further purified by reverse phase HPLC, to
ensure full labeling.

Reagents and smRNA FISH
Human breast adenocarcinoma MCF-7 cells (ATCC-
HTB-22) were obtained from ATCC (Manassas, VA, USA)
and cultured as recommended by the provider. The hypo-
triploid karyotype is available at the provider’s website and
shows three chromosomal loci for 7q32.1. 2-(4-Amidi-
nophenyl)-6-indolecarbamidine dihydrochloride, 4′ 6-
Diamidino-2-phenylindole dihydrochloride (DAPI),
molecular biology grade ethanol, acetic acid, and
methanol were from Sigma Aldrich (St. Louis, MO,
USA). Vectashield was from Vector Laboratories
(Burlingame, CA, USA). Stellaris RNA FISH
hybridization and wash buffers were from LGC Bio-
search Technologies. Stellaris RNA FISH was per-
formed as previously described for methanol/acetic
acid-fixed cultured cells [68, 69].

Image acquisition and analysis
DAPI-stained nuclei, fluorescein (FAM), Quasar 570
(Q570), CalFluor 610 (CF610), and Quasar 670 (Q670)
dyes were imaged through a 60X 1.4NA oil-immersion
lens on a Nikon TI widefield microscope using the ap-
propriate filters: 49000-ET-DAPI; 49011-ET-FITC;
SP102v1; SP103v2; 49022-ET-Cy5.5, respectively. The
exposure and sequence of channels to acquire were de-
termined based on the brightness and photostability of
the dye with which each probe set was labeled. The se-
quence of exposure was Q670, followed by FAM, and
then either Q570 or CF610, or both. Each Z-slice was
exposed for 1 s, except for Q670 which required 2-s ex-
posures. For each field of view, a range spanning the ver-
tical dimension of the cell (typically 10 um) is defined
and for each channel, a series of images were acquired
through this span at 0.3 μm increments by using Nikon
Elements’Advanced Research software.
Each Z-series was collapsed and rendered as a single,

max-intensity projected image. Translational registration
to align images shifted relative to another was accom-
plished by ImageJ macros after identification of a region
containing overlapping signals in each channel. Peak po-
sitions of these signals were determined relative to each
other to inform the shift of each channel. Next, spots
and their centroid positions were identified in each
channel using the ImageJ Find Maxima utility. These po-
sitions were then compared to one another and co-

localized spots were grouped if within 3 pixels (330 nm).
Based on these groupings, spots were categorized into
separate transcript variants and displayed on the image
for review. Finally, cell borders were defined and spots
associated with distinct cells for per-cell and per-
transcript variant copy number determination. RNA
FISH features were counted in at least ten cells.

Sequence motif analysis relative to polyadenylation sites
For each detected locus, we reported the last nucleotide
as polyadenylation site. Each genomic location was con-
verted into a BED format. Strand-specific genomic se-
quences located up to 35 nt upstream of each unique
polyadenylation site were extracted, in a FASTA format,
using UCSC Table Browser (GRCh37/hg19). FASTA files
were parsed using a custom bash script to count the
number of sequences containing specific 6-mer motifs:
one of the two canonical polyadenylation signals
AATAAA and ATTAAA; or one of the 11 non-canonical
polyadenylation signals (AAGAAA, AATACA,
AATAGA, AATATA, AATGAA, ACTAAA, AGTAAA,
CATAAA, GATAAA, TATAAA, TTTAAA). Subse-
quently, the same 6-mer motifs were counted for each
unique PAS significantly coupled to TSSs or exons and
for each unique PAS that did not show a significant
coupling.
For PASs that could not be attributed to known

poly(A) signals, we ran DREME [70] (v. 4.11.4) to iden-
tify enriched motifs. A randomly shuffled set of se-
quences was generated from the original sequences of
the examined PASs and used as a background set. In
addition, the sequences of known recognition motifs for
MBNL proteins [24–26] were counted for each set using
a custom script. Subsequently, the enrichment of each
motif was assessed by Fisher’s exact test.

Tandem 3’ UTR analysis
This analysis was performed to identify loci that contain
tandem 3’ UTRs (loci that contain more multiple PASs
located in the same last exon). Custom scripts were used
to identify loci that contain at least two PASs that share
the same coordinates of the last exon start. The number
of loci with tandem 3’ UTRs was calculated for those in
which PAS was significantly coupled to alternative exons
and for those that did not show any significant inter-
dependencies between alternative exons and the PAS
usage.

Sequence motif analysis relative to acceptor and donor
sites
For each detected locus, we reported the first and last
nucleotide of each exon as acceptor splice site and donor
splice site, respectively. Each unique genomic position
was converted into a BED format and the strand specific
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sequences of 2 nt in length were extracted using UCSC
Table Browser (GRCh37/hg19) for both acceptor and
donor splice sites. A custom bash script was used to
count the number of dinucleotide sequences containing
“GT” and/or “AG.”

RNA-binding motif analysis
We used MEME suite tools to identify enriched se-
quence motifs present in exons significantly coupled
with TSSs, PASs, or other alternative exons. For each
unique exon, three regions were considered: R1 (con-
taining up to 35 nt upstream of the acceptor splice site);
R2 (containing 32 nt downstream of the acceptor splice
site and 32 nucleotides upstream of the donor splice
site), and R3 (containing up to 40 nt downstream of the
donor splice site). The R1, R2, and R3 regions were ob-
tained by extracting strand-specific FASTA sequences
using UCSC Table Browser (GRCh37/hg19).
We locally ran DREME [70] (v. 4.11.4) for each region

separately and performed a motif search using a negative
background (R1, R2, and R3 regions from exons that
were not significantly coupled). In each case, a max-
imum of ten motifs with E-values < 0.05 was reported.
The remaining parameters were kept as default. We then
compared each motif found by DREME against the hu-
man RNA-binding motifs database CISBP-RNA using
TOMTOM Motif Comparison tool [71]. We ran the
analysis by setting the Pearson correlation coefficient as
comparison function and considered only matches with
a minimum FDR (q-values) < 0.05.

Open-reading frame prediction and proteomics data
analysis
ORF prediction was done on the PacBio MCF-7 se-
quences using ANGEL [72]. Prediction was done on
both the PacBio consensus reads and a genome-
corrected version of the transcript; whichever produced
the longer ORF was chosen to represent the transcript
CDS. The predicted MCF-7 ORF sequences were
concatenated with Gencode version 19 and protein se-
quences representing common mass spectrometry (MS)
contaminants, creating a customized FASTA file (i.e.
proteomics search database). The Morpheus software
(version 131) was employed for MS searching of the cus-
tom database against the MCF-7 Thermo Raw files ob-
tained from the study by Geiger et al. [42]. Unknown
precursor charge state range was set to + 2 to + 4. Abso-
lute and relative MS/MS intensity thresholds were dis-
abled. Maximum number of MS/MS peaks were set to 400.
Assign charge state was set to true. De-isotoping was dis-
abled. The protease specificity was set to trypsin with no
proline rule enabled. Up to 1 missed cleavage was allowed
and N-terminal methionine truncations was variable. Fixed
modifications used were carbamidomethylation of cysteines.

Variable modification used was oxidation of methionines.
Precursor mass tolerance used was 2.1 Da (monoisotopic)
and product mass tolerance was 0.025 Da (monoisotopic).
Modified forms of the same peptide were collapsed and
treated as one peptide identification for calculation of FDR.
An FDR of 1% was used to filter for final peptide identifica-
tions. All identified peptides were categorized as: single-
transcript if the peptide matches to only one gene with one
transcript; sub-gene if the peptide matches to a subset of
transcripts of only one gene; single-gene if the peptide
matches to all transcripts of only one gene; and multi-gene
if the peptide matches to multiple transcripts from multiple
genes.

Data availability
Iso-seq datasets used in this manuscript were provided by
Pacific Biosciences and are publicly available [73–75]. For
the comparison with standard RNA-seq, the following
publicly available RNA-seq datasets were used:
SRR1035698, SRR1107833, SRR1107834, SRR1107835,
and SRR1313067. To assess the reliable detection of 5′-
and 3′-ends of identified transcripts, we used the publicly
available MCF-7 cells CAGE (GSM849364) and RNA-
PET (GSM1006905) datasets from the Encode project. All
Python scripts and research data are made open-source
and publicly available at Zenodo public repository [76]. In
addition, a detailed description of the methodologies along
with all open-source Python scripts and generated results
are also made publicly available at https://git.lumc.nl/s.y.
anvar/mRNA-Coupling/wikis/home.
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