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Abstract

Let f, g be elements of M, the group of Mobius transformations of the extended complex
plane C = C U oc. We identify each element of M with a 2 x 2 complex matrix with
determinant 1. The three complex numbers,

B(f) = tr*(f) = 4.8(g) = tr*(g) — 4.7([.g) = tr[f.g] - 2,

define the group (f.¢) uniquely up to conjugacy whenever v(f.g) # 0: where tr(f) and
tr(g) denote the traces of representive matrices of f and g respectively. [f, g] denotes the
multiplicative commutator fgf~'g~'. We call these three complex numbers the parameters
of (f.g). This thesis is concerned with the parameters of discrete and elementary subgroups

of M.
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Introduction

Mébius transformations were studied by the German mathematician A. F. Mébius in the
19th century. F. Klein proved the group of Mébius transformations acting on Euclidean
n-space is isomorphic to the group of isometries of hyperbolic (n 4 1)-space (see [17] , page
147). This discovery leads to a deeper understanding of hyperbolic space and relations
between conformal geometry of spheres, the models of hyperbolic space they bound and n-
dimension geometry. Relevant references can be found in the works of Beardon [1]. Ratcliffe
[17], Thurston [20], Gehring and Martin (see for example [5], [6]. [9]. [10]) and references
therein. In recent vears, the study of the 3-dimensional hyperbolic orbifolds, which can be
represented as /? /G where H? is hyperbolic 3-space (discussed in Chapter 1) and (7 is a
discrete non-elementary orientation preserving subgroup of the group of the isometry group.,
has attracted much attention. We are concerned here with such discrete subgroups G. We
shall assume a basic knowledge of group theory in our discussion.
Let M denote the group of Mobius transformations of the form:

1z 4 ¢
f(:)=u—) a,b.c,d € C.ad — be = 1. (1)
cz+d

which we associate with the matrix

A= ( u ) a,b,c.d e C,ad —be = 1. (2)
¢ d

There are two basic types of discrete subgroup of M: elementary and non-elementary, whose
definitions are given in Chapter 2. The discrete non-elementary groups are known as Kleinian
groups in memory of the Mathematician F. Klein. All the discrete elementary groups are
known and classified (see [1]), hence the study of Kleinian groups are of interest. But the
discreteness or otherwise of a Kleinian group is not easy to establish. Klimenko and Kopteva
gave a criterion for discreteness of Kleinian groups with an invariant plane (see [3]). While
for the Kleinian groups without invariant plane, we have only necessary or only sufficient
conditions for the discreteness of such groups.

Theorem 5.4.2 of [1] states that a non-elementary subgroup G of M is discrete if and only
if for each f and g in G, (f, g) is discrete. Thus the problem of deciding the discreteness or
otherwise of (¢ boils down to consideration of the two generator subgroups. We shall study
the discreteness of two generator groups (f, g). The advantage of studying a two generator
group is that for every such group (f, g), there are three complex numbers corresponding to
it, and the necessary or sufficient condition(s) for non-elementary (f, g) to be discrete can
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sometimes be described in terms of these numbers. These three complex numbers are

B(f) =tr*(f) — 4,8(9) = tr*(g) — 4.4(f,9) = tr[f. 4] - 2,

where tr( f) and tr(g) denote the traces of representive matrices of f and g respectively, and
[f.g] denotes the multiplicative commutator fgf~'g~!. see [7]. These three numbers are
called the parameters of the two-generator group (f, ¢) and we write

par((f,9)) = (+(f.9). (). 8(g))-

These parameters are independent of the choice of representive matrices for f and g and
define (f,g) uniquely up to conjugacy whenever +(f,g) # 0. See [7]. Two subgroups G,
and G| of G are conjugate if for some h in G, Gy = hGG1h~". Conjugate subgroups are the
same from a geometric point of view. For example, if there exists a unique point fixed by all
go € Gy, then there exists a unique point fixed by all ¢, € ;. The volumes of H?/(G, and
H?/Gy are the same and so forth.

The study of the discreteness of two generator groups has a rich history. see all of our
references except [15] and [16]. For example in [1], Beardon studies necessary conditions for
a two generator Kleinian group by considering the displacement function

1
z +—— sinh 3p(:.g:).

Gehring and Martin obtain conditions for (f.¢) to be discrete by examining the distances
of f.g from the identity element in M in [6]. They also obtain some sharp estimates for
the distance between the axes of elliptic elements in a discrete group in [12]. Klimenko
and Kopteva found criteria for discreteness of two generator Kleinian groups generated by a
hyperbolic element and an elliptic element of even order with intersection axes in [3]. The
most well-known necessary theorem in the subject is due to Jorgensen (see [1]):

Theorem 0.1. (Jorgensen’s inequality) Suppose that the Mdbius transformations f and g
generate a discrete non-elementary group with (f, g) =~ and 3(f) = 3. then

I+ 18] = 1. (3)

This inequality was studied by Troels Jorgensen in [19]. He proved the inequality by the
iteration of the relation
By = B, B = B AR

where A and B are the matrices representing f and g respectively. Another inequality was
studied by Delin Tan in [2]:

Theorem 0.2. Suppose that the Mébius transformations f and g generate a discrete group
with ¥(f,g) = and B(f) = B. If v # —1, then

Y +1+[8+2| 2 1. (4)
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If y=—1and 3 # -2, then

1
9 > =
|3+ 2| > 5"

Tan used Lemma 2 in his paper to prove (4); This Lemma was proved by the iteration of
the relation

‘Bl} = B-. Bn+| =S [Arw Bu]-

which is essentially the same as Jogensen’s iteration scheme. Gehring and Martin proved (3)
and (4) independently by investigating the two fixed points 0 and 3 + 1 of the polynomial
trace 7(f, gfg™") = (7 — ) in [4].

The inequalities (3) and (4) and Gehring and Martin's approach to them give a different
perspective to look at the conditions for discreteness of (f.g). The fact is that in the space
of two generator discrete groups. all two generator Kleinian groups form a closed set. This
has essentially been proved by Jorgensen in [19]. We claim that all the elementary groups
are isolated from the set of Kleinian groups in this space. This claim and precise bounds
to describe this isolation in terms of geometric quantities as well as the complex parameters
are investigated in this and future research. As we know that every two generator group
(f.g) has three complex numbers as its parameters, we can therefore view (f.g) as a point
in C?. the three dimensional complex space. Let D? be the subset of C* which contains all
the parameters of two generator discrete groups. We prove that whenever (a.b.b') € D?
corresponds to a discrete elementary group, it is isolated from the points corresponding to
Kleinian groups. We establish the isolation of (a.b.b") by proving an inequality of the form

[y +al+|3+b >2¢ (5)

where ¢ is a real positive number and (5, 4. 3') are the parameters for any Kleinian group.
The reason that the isolation of (a.b.b") only depends on a.b will be explained in Chapter
5. but note here that (5) also implies immediately that

[y +al+ |3 +b|>¢

by interchanging the order of the generators. Note also that the inequality (5) also indicates
a necessary condition for a Kleinian (f, g) to be discrete. This is the main reason for looking
at the isolation of discrete elementary groups.

The main concern of the first part of this thesis is to determine all the possible parameters
for discrete elementary groups. These are the points in C?* that we shall show to be isolated.
We then go on to give estimates on this isolation using some of the ideas discussed above
(iteration). This recovers some known results and also generates some new ones. Baribeau
and Ransford have given a general description of these parameters in [18]. Gehring and
Martin have discussed some of them in many of their papers, see for example [4], 5], [13],or
[14]. We consider all the parameters for all the discrete elementary groups more specified
in this thesis. To this end we start with some preliminary topics such as the spherical
and hyperbolic geometries, Mobius transformations, Triangle groups through Chapter 1 to
Chapter 3. The results in these three Chapters are a matter of rewriting known facts. Our




Introduction 4

main results are stated in Chapter 4. In this Chapter we investigate the parameters under
question using a combination of two methods: geometric and algebraic methods. We omit
the lengthy but purely elementary computation process and state our final results in three
tables. As we will see in these tables, for some elementary groups. we are able to find the
exact parameters; while for others we can only give a general description similar to the results
in [18] as there are parametrised families of these groups. For those whose exact parameters
are known, we shall investigate their isolation from Kleinian groups by using the inequality
of the form (5). For instance in Chapter 5, we consider several examples to show how to
derive such inequalities for (—1,—2,by), (=2, —3,52), (=1, —3.b3).



