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Abstract

Low/equatorial latitudes vertical plasma drifts and electric fields govern the formation and changes

of ionospheric density structures which affect space-based systems such as communications, navi-

gation and positioning. Dynamical and electrodynamical processes play important roles in plasma

distribution at different altitudes. Because of the high variability of E × B drift in low latitude

regions, coupled with various processes that sometimes originate from high latitudes especially dur-

ing geomagnetic storm conditions, it is challenging to develop accurate vertical drift models. This

is despite the fact that there are very few instruments dedicated to provide electric field and hence

E × B drift data in low/equatorial latitude regions. To this effect, there exists no ground-based

instrument for direct measurements of E×B drift data in the African sector. This study presents

the first time investigation aimed at modelling the long-term variability of low latitude vertical

E ×B drift over the African sector using a combination of Communication and Navigation Out-

age Forecasting Systems (C/NOFS) and ground-based magnetometer observations/measurements

during 2008-2013. Because the approach is based on the estimation of equatorial electrojet from

ground-based magnetometer observations, the developed models are only valid for local daytime.

Three modelling techniques have been considered. The application of Empirical Orthogonal Func-

tions and partial least squares has been performed on vertical E×B drift modelling for the first

time. The artificial neural networks that have the advantage of learning underlying changes be-

tween a set of inputs and known output were also used in vertical E×B drift modelling. Due to

lack of E×B drift data over the African sector, the developed models were validated using satellite

data and the climatological Scherliess-Fejer model incorporated within the International Reference

Ionosphere model. Maximum correlation coefficient of ∼ 0.8 was achieved when validating the

developed models with C/NOFS E×B drift observations that were not used in any model devel-

opment. For most of the time, the climatological model overestimates the local daytime vertical

E ×B drift velocities. The methods and approach presented in this study provide a background

for constructing vertical E×B drift databases in longitude sectors that do not have radar instru-

mentation. This will in turn make it possible to study day-to-day variability of vertical E×B drift

and hopefully lead to the development of regional and global models that will incorporate local

time information in different longitude sectors.
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Chapter 1

Introduction

Low/equatorial latitude ionospheric changes are controlled by both dynamic and electrodynamic

processes. For-example, vertical coupling between low and higher altitude regions exhibit influ-

ences from E-region migrating and non-migrating tides’ effect on the electric field and this varies

longitudinally (Millward et al., 2001; Lühr et al., 2008). Electro-dynamical processes mainly arise

from changes in solar quiet-day (Sq) wind dynamo current system within the E-region (90-120 km)

partly due to differential heating of the Earth’s atmosphere (e.g., Richmond, 1973; Immel et al.,

2006a). Continuous changes in the wind dynamo current system and the orientation of the Earth’s

magnetic field in the equatorial regions result in Lorentz force which is the primary factor in de-

termining the latitudinal distribution of plasma in low latitudes (Anderson, 1973; Sastri, 1990).

Therefore, equatorial vertical E × B drift and dynamo electric field E in the E- and F-region

ionosphere are important parameters driving low latitude electrodynamics (e.g., Rishbeth, 1971,

1997; Fejer, 2011). Vertical drifts are mainly driven by complex interactions of E- and F-regions

processes which vary substantially with the solar cycle, season, local time, geomagnetic activ-

ity and longitude (e.g., Fejer et al., 1979; Fejer, 1997). During quiet geomagnetic conditions,

daytime E × B drift is mostly upward and reverses to downward during the nighttime (e.g.,

Scherliess and Fejer, 1999; Kil et al., 2007). However, ionospheric disturbance dynamo and solar

wind-magnetospheric electric fields significantly affect vertical drifts during geomagnetic active

periods (e.g., Scherliess and Fejer, 1997). Prompt penetrating electric fields during the southward

turning of the interplanetary magnetic field z component (IMF Bz) usually enhances the east-

ward electric field during the local daytime and are westward during nighttime causing further

downward drift in equatorial latitude regions (e.g., Spiro et al., 1988; Fejer and Scherliess, 1995;
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Peymirat et al., 2000). Electric fields due to ionospheric disturbed dynamo are westward and east-

ward during local daytime and nighttime respectively (Blanc and Richmond, 1980; Sastri, 1988;

Scherliess and Fejer, 1997; Fejer and Emmert, 2003). There is therefore a complex variability of

low latitude vertical E×B drifts with local time and in different longitudes due to different con-

tributions relating mainly to effects of E region tides on the electric field (e.g., Millward et al.,

2001; Lühr et al., 2004; Maute et al., 2012), coupling between E and F-region electrodynamical

phenomena (e.g., Heelis et al., 1974; Richmond, 1995a; Anderson, 1973), geomagnetic activities

especially on short-time scales during disturbed conditions (e.g., Fejer et al., 1979; Gonzales et al.,

1979; Fejer, 1997; Scherliess and Fejer, 1997) and solar activity on long-term scale in different

seasons (e.g., Fejer et al., 1991; Chandra et al., 1997). Understanding the variability of vertical

E×B drifts is critical for both scientific and practical purposes such as the ones which involve the

use of communication and navigation applications (Anderson et al., 2004). Due to the nature and

dynamics of different contributors to vertical E × B drifts, it is important to develop models in

different longitude regions as a result of unusual observations made over time. For-example, it has

been observed and reported that vertical E×B drifts are higher in the American sector than in the

African sector and yet the latter experiences more ionospheric irregularities (e.g, Yizengaw et al.,

2014b).

Despite the demonstrated importance of vertical E×B drift, direct observations of low latitude

electric field are very scarce, only available in few longitude sectors. The only place where day-

to-day direct measurements of low latitude vertical drifts are made is Jicamarca (11.8◦S, 77.2◦W;

0.8◦N geomagnetic) where there is an incoherent scatter radar (ISR) that has been in existence since

1960s (Woodman and Hagfors, 1969). However due to operational costs, the radar is not run on a

continuous basis through out the year. Advances have been made in using other instrumentation

to monitor day-to-day vertical E×B variability. Results showing that Doppler velocities of 150 km

echoes were a representation of F-region vertical E×B drifts and changes in equatorial electrojet

derived from ground-based magnetometer measurements (e.g., Kudeki and Fawcett, 1993; Chau,

1998; Woodman and Villanueva, 1995; Chau and Woodman, 2004) have broadened the data cover-

age of low latitude vertical drift studies in some longitude sectors such as India and Indonesia (e.g.,

Patra and Rao, 2006; Patra et al., 2008, 2012) during local daytime. To date, there exists no direct

vertical drifts in the African sector using ground-based instrumentation such as ISR or the oper-

ational back scatter radars in India and Indonesia (Patra and Rao, 2006; Patra et al., 2008) that
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provide 150 km echoes during local daytime. Inference of the changes in vertical E×B drifts over

the African sector is usually done using empirical models such as the one developed using Jicamarca

ISR data along with space based observations from the Atmospheric Explorer (AE) and Repub-

lic of China Satellite (ROCSAT-1) which are climatological in nature (Scherliess and Fejer, 1997,

1999; Fejer et al., 2008). There also exists theoretical models which estimate vertical E×B drifts

globally when provided with relevant inputs/parameters. Examples of these are the thermosphere-

ionosphere-electrodynamic general circulation model (TIEGCM) which self consistently solves the

thermosphere-ionosphere dynamics from first principles (Richmond et al., 1992) and the thermo-

sphere/ionosphere general circulation model (CTIP) that couples the thermosphere and ionosphere

while allowing inclusion of tidal forcing (Millward et al., 2001).

Other low latitude vertical drift investigations in the African sector which are mainly case stud-

ies determine E×B drifts using virtual height observations from ionosonde data (e.g., Bilitza et al.,

2004; Oyekola and Oluwafemi, 2007; Adebesin et al., 2013; Grodji et al., 2017) and EEJ with the

help of ground-based magnetometers (e.g., Doumouya et al., 1998, 2003; Haile, 2003; Rabiu et al.,

2011; Yizengaw et al., 2012; Habarulema et al., 2016). The utilization of magnetometer obser-

vations relies on the differential approach where observations at the equator and away from the

equator (6-9 degrees) are subtracted to obtain a proxy of daytime vertical E × B drifts (e.g.,

Rastogi and Klobuchar, 1990; Anderson et al., 2004). This gives what is normally known as △H

(nT) derived from horizontal components of the Earth’s magnetic field data at the two mag-

netometer stations; which is directly related to the vertical E × B drift during local daytime.

Therefore △H refers to variation of field values detected by magnetometer at equatorial latitude

which are subsequently used for deriving vertical plasma drifts. It has also been demonstrated

that in situ satellite observations from the Communications and Navigation Outage Forecasting

System (C/NOFS) can be used to study climatological changes in vertical E × B drifts (e.g.,

Rodrigues et al., 2011; Stoneback et al., 2011; Yizengaw et al., 2014a). Satellite data provide the

extended global coverage, but are non-continuous over particular longitude sectors and local time

and are hence more suitable for developing climatological models. On the other hand, ground-

based magnetometer data is continuous and with high temporal resolution in addition to being

inexpensive to maintain and operate a magnetometer. In this thesis, efforts to model vertical

E × B drifts over the African sector using local African data have been attempted for the first

time. A combination of ground-based magnetometer and C/NOFS observations have been used
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during the period 2008–2013 when magnetometers were simultaneously operational in the African

low latitude region.

1.1 Aims and Objectives

The overall aim of the study is to investigate possibilities of modelling vertical E ×B drifts over

the African low latitude region using local data. This first involved a detailed review of E × B

drift studies in low/equatorial over other longitude sectors to benchmark the requirements for the

African region investigation. The specific objectives included

� Consolidation and processing of magnetometer observations over the African low latitude

region in a format suitable for estimation of vertical E×B drift

� Investigation of different approaches used in E ×B drift modelling along with the relevant

inputs

� Development of the mathematical expression relating in situ satellite (C/NOFS) vertical

E×B drifts and magnetometer derived EEJ over the African sector, for the first time.

It is important to mention that there are no previous vertical E × B drift modelling studies

that concentrated on the African sector for comparisons and therefore the comparative anal-

ysis of the results was performed using outputs from the global Scherliess-Fejer (SF) model

(Scherliess and Fejer, 1999).

1.2 Overview of the thesis

The thesis has six chapters. Chapter 1 has provided an introduction to the study and the broad

motivation/objectives that necessitated us to carry out this investigation. Chapter 2 provides the

brief background theory about the ionosphere and a relatively detailed treatment of the low latitude

electrodynamics. In Chapter 3, measurements and modelling techniques are described. Measure-

ments include C/NOFS vertical E×B drift observations over equatorial region and necessary data

processing steps. Moreover the procedure followed in estimating the EEJ from magnetometer data

is also described. Some details of modelling techniques that have been employed in the thesis

(empirical orthogonal functions, partial least squares and artificial neural networks) are provided.
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Chapter 4 describes the application of empirical orthogonal functions on modelling vertical E×B

drift for the first time. The source of the modelled data was based on the analytical empirical

expression developed by Anderson et al. (2004) which was used to derive vertical E×B drift using

magnetometer data over the African sector.

In Chapter 5, an expression relating C/NOFS vertical E×B drift velocities and magnetometer

data (derived from the H-component, △H) has been established. The developed expression is later

used to derive E×B drift data for the entire △H data from 2008–2013 that is used to develop both

partial least squares and neural network models using relevant physical and geophysical inputs.

Chapter 6 provides a summary of the findings of the study and puts forward suggestions to improve

on this research in future.
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Chapter 2

Earth’s Atmosphere, ionosphere and low

latitude electrodynamics

2.1 Introduction

The rapid increase of space-based technologies with applications mainly in communications and

navigation systems poses serious challenges for accurately predicting temporal and spatial varia-

tions of the ionospheric plasma and thus space weather forecasting (e.g., Fuller-Rowell et al., 1997;

Fejer, 2011). Low latitude electric field E and vertical ionospheric vertical drifts play significant

role in the dynamics of the ionosphere. At equatorial ionosphere, a daytime eastward E drives

ionospheric vertical drifts and equatorial electrojet (EEJ) current which are processes governing

the ionospheric composition and distribution leading to the generation of plasma waves and density

structures. Morphology of vertical E×B drift has been studied extensively over the South Ameri-

can sector with incoherent and coherent scatter radar measurements (e.g., Woodman and Hagfors,

1969; Kudeki and Fawcett, 1993; Chau, 1998). However, over the African sector, fewer stud-

ies of vertical E × B drift derived from ionosonde measurements (e.g., Oyekola and Oluwafemi,

2007; Adebesin et al., 2013) and daytime equatorial magnetic field from magnetometer observa-

tions (e.g., Yizengaw et al., 2012) have been undertaken. Launching of satellites such as Atmo-

spheric Explorer-E (AE-E) and Republic of China Satellite (ROCSAT-1)(e.g., Su et al., 1999), Dy-

namics Explorer-B (DE-2) (Coley and Heelis, 1989), Communications/Navigations Outage Fore-

casting Systems (C/NOFS) (de La Beaujardière et al., 2004; de La Beaujardiere et al., 2009) and

CHallenging Minisatellite Playload (CHAMP) (Wickert et al., 2001) into space provided an op-
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portunity to study the longitudinal variability of vertical E × B drift, EEJ, spread-F, electron

density and total electron content (TEC) (e.g., Su et al., 1999; Lühr et al., 2004; Fejer et al.,

2008; Fejer, 2011). Empirical models of vertical E × B drift are mainly based on radar mea-

surements and satellite observations (e.g., Batista et al., 1996; Scherliess and Fejer, 1997, 1999;

Fejer et al., 2008; Alken, 2009). Numerical modelling efforts include the SAMI2 (Sami2 is Another

Model of the Ionosphere) (Huba et al., 2000), Coupled Thermosphere-Ionosphere-Plasmasphere

(CTIP)(e.g., Millward et al., 1996), and time-dependent National Center for Atmospheric Re-

search (NCAR) models (Thermosphere-Ionosphere-Electrodynamics General Circulation Model,

TIE-GCM or Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model,

TIME-GCM) (Richmond et al., 1992). The following sections will briefly introduce the atmo-

sphere/ionosphere and comprehensively discuss the fundamental ionospheric vertical drifts from E

and F region dynamos and the associated changes in ionospheric currents which is the major focus

of this thesis.

2.2 The Earth’s Atmosphere

The atmosphere is a highly variable medium and extends from the surface of the Earth to many

orders of kilometers above it. It is relatively dense near the Earth’s surface and consists of gases

such as oxygen (O2), nitrogen (N2), while traces of carbon dioxide (CO2), various other gases and

water also exist. Characteristics and properties of the atmosphere such as composition, pressure,

temperature and ion/electron density have been shown to largely depend on altitude, latitude,

longitude and season (Hargreaves, 1992; Schunk and Nagy, 2009; Kelley, 2009). Temperature

gradient divides the neutral atmosphere into distinct layers known as troposphere, stratosphere,

mesosphere, and thermosphere. Figure 2.1 shows temperature and plasma density profiles at

different altitudes (Kelley, 2009). The distinction between daytime and nighttime is obvious on

plasma density profile.

Characteristics and properties of the atmospheric layers are different. In the troposphere, the

temperature decreases with altitude at a rate of ∼ 7 K/km, while temperature increases with

altitude in the stratosphere due to absorption of mainly solar ultra-violet radiation by ozone

layer (e.g., Hines, 1965; Finlayson-Pitts and Pitts Jr, 1999; Craig, 2016). Temperature in the
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Figure 2.1: Temperature distribution of neutral atmosphere with altitude (left). Plasma density

profile with altitude during daytime and nighttime (right) (Kelley, 2009).

mesosphere decreases with altitude mainly because of radiative cooling, while in the thermosphere

the temperature rises exponentially with altitude reaching a steady value of about 1000 K near

500 km (e.g., Kelley, 2009). In this altitude range, neutral particles maintain diffusive equilibrium,

thus the vertical distribution of the neutrals is governed by respective masses of the species (Rees,

1989).

2.3 Ionosphere

Characteristics and properties of ionosphere depend on longitude, season, altitude, local time, so-

lar and magnetic activities (Davies, 1990). While the neutral species are the main constituents

at low altitudes (neutral species density decreases with altitude), solar ultra-violet radiation and

X-ray emissions penetrate into neutral atmosphere causing photo-ionization and heating of at-

mospheric species to steady temperature (generally over 1000 K) from an altitude of about 500

km (Hargreaves, 1992; Kelley, 2009). Although, the proportion of charged particles is very small

(∼ 1%) in comparison with neutral species, they significantly affect properties and behavior of

the atmosphere (e.g., Richmond, 1995d). Since atmospheric layers at different altitudes absorb
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different amount of solar energies, the ionosphere is layered into D (∼ 60-90 km), E (∼ 90-150

km) and F (∼ 150-500 km) regions as shown in Figure 2.1. The D and E regions ionosphere are

dominated by photo-chemical processes (e.g., Rishbeth and Garriott, 1969). Higher pressure in the

D region enables both major and minor species to participate in photo-ionization processes. This

layer is generated when NO absorbs X-rays (0.1–0.8 nm), H Ly α (121.6 nm) and cosmic rays. The

D region is responsible for the absorption of high frequency radio waves (Ondo and Marubashi,

2000). Typical electron densities in the D layer are in the range 102 − 104 cm−3 during daytime

and negligible at nighttime (Kelley, 2009).

Unlike the D region ionosphere, the E region consists of NO+ and O+
2 ions and is dominated

by the transport processes which re-distribute electrons and ions to higher altitudes (Seaton,

1955). Ionization in the E region ionosphere is mainly via soft X-rays (0.8–14 nm), Ly β and UV

radiations of wavelengths in the range 79.6–102.7 nm (Rishbeth and Garriott, 1969). The typical

electron densities are ∼ 105 cm−3 and 104 cm−3 during daytime and nighttime (Hargreaves, 1992),

respectively.

Daytime F region ionosphere is defined by two sub-regions, F1 (150-250 km) and F2 (250-500

km). While production and loss of charged species are still more dominant in the F1 region, pro-

duction and transport processes dominate in the F2 region ionosphere (e.g., Rishbeth and Garriott,

1969; Schunk and Nagy, 2009). From F1 layer to about 600 km, the ionosphere is dominated by

atomic oxygen ions (O+). The typical electron densities in F1 layer are 105 − 106 cm−3 during

daytime and negligible during nighttime. Typical electron densities of the F2 layer are 106 cm−3

and 105 cm−3 during daytime and nighttime (Hargreaves, 1992; Kelley, 2009), respectively.

Ionospheric sounding based instruments such as ionosonde and radars have been used in the

study of E, F1 and F2 ionospheric layers since 1920s (e.g., Breit and Tuve, 1926; Villard, 1976;

Adams et al., 1986; Vincent and Lesicar, 1991). In the case of ionosonde, the resulting iono-

grams show critical frequencies of the layers (f◦E, f◦F1 and f◦F2) which are measure of the

maximum electron densities of the respective layers (e.g., Smith and Kirby, 1937; Davies, 1990).

Since the electron density changes with time and altitude, the critical frequencies and other elec-

tron density parameters are used in the ionospheric plasma studies at different heights. The D

region ionosphere has lower density and thus has been studied with instruments such as rock-

ets (Mechtly and Smith, 1968; Sechrist, 1968). Recent measurements of D layer involve using

broadband VLF and low-frequency (30–300 kHz) radio signals from lightning discharges (e.g.,
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Cummer et al., 1998; Lay and Shao, 2011). Nowadays, satellites such as C/NOFS, ROCSAT,

CHAMP and DMSP are commonly used to study the ionosphere at different heights and longi-

tudes (e.g., Su et al., 1999; Lühr et al., 2004; de La Beaujardiere et al., 2009; Fejer et al., 2008;

Fejer, 2011)

2.3.1 Ionospheric variability

As mentioned earlier, ionospheric variability depends on solar activity, season, latitude, longitude,

local time and geomagnetic activity (Davies, 1990). Long- and short-term variability studies of

the ionosphere have been possible through monitoring the spatial and temporal electron density

changes over some extended time (Davies, 1990). Among these dependencies, activities of the Sun

mostly govern the ionospheric variability. The major factors influencing the ionospheric variability

are briefly described as follows,

� Diurnal variation:

– Day-night electron density varies as a result of the Earths rotation with respect to the

Sun (Chapman, 1931). Large EUV and X-ray radiations from the Sun cause large elec-

tron density during the daytime compared to nighttime where photo-ionization is absent

(Chapman, 1931; Rishbeth and Garriott, 1969; Kelley, 2009). Since solar radiation ion-

izes neutral species, which then dissociate into electrons and corresponding positive ion

species, recombination greatly reduces the electron density during the night, but some

free electrons still remain until dawn (McNamara, 1991).

� Solar activity:

– Intensity of the 10.7 cm radio flux, rate at which flares occur and sunspot number

(SSN) on the solar disk change with the activity of the Sun going through a 11-year

cycle (Davies, 1990). Solar cycle defines periods of high and low ionospheric variability

based on the levels of photo-ionization. Figure 2.2 shows the long-term variation of total

electron content (TEC) with solar spot number (SSN). Generally, high and low electron

density values are expected during high and low solar activity periods respectively.

� Latitudinal variation:
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Figure 2.2: Variation of sunspot number (black curve) and TEC observations (red curve) over

Sutherland (32.38◦S,20.81◦E) during 2000-2007 (Habarulema, 2011).

– The Sun is irradiating directly overhead at geographic equator, while the solar radia-

tion arrives at an oblique angle at other latitudes away from equator (Chapman, 1931).

Hence, we expect large decrease of ionospheric ionization as the Sun moves far from the

equator. The solar zenith angle (SZA) determines the ionization levels over a range of

latitudes, thus geographic locations with low SZA are expected to show higher electron

densities (McNamara, 1991). Figure 2.3 shows the latitudinal variation of ionospheric

plasma using the total electron content (TEC) during the quiet (left) and disturbed

(right) conditions in July 2017. Large enhancement in TEC variation are observed dur-

ing disturbed geomagnetic condition (2017-07-16) than quiet time period (2017-07-05)

and the variability extends to midlatitude regions. Vertical E × B drift and therefore

EEJ govern the ionospheric variability at low/equatorial latitude regions. Since the

equatorial electrojet (EEJ) and therefore vertical E × B drift are typical features of

low/equatorial latitude ionosphere (Baker and Martyn, 1952; Hirono, 1952), they in-

fluence electron density distribution during both quiet and disturbed conditions. For

example, ions and electrons lifted to higher altitudes by vertical E × B drift diffuse

along magnetic field B resulting in equatorial ionization anomaly (EIA) formation at
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15◦−18◦ from geomagnetic equator (Anderson, 1981; Sastri, 1990). The EIA can extend

towards mid latitude regions during storm conditions.

� Seasonal variation:

– Due to changing orientation of the Sun with respect to the Earth’s axis, high electron

density values are generally observed around the equinoxial months (March and Septem-

ber) and in summer, while low values are seen in winter (Chapman, 1931). Although

one may expect large electron densities in the ionosphere (for both hemispheres) during

summer than in winter, this may not be necessarily true since the neutral atmospheres

composition also exhibits seasonal variations (e.g., McNamara, 1991; Balan et al., 1998;

Meggs, 2005). Large electron density during equinoxes (in March and September) occurs

during both solar maximum and minimum (McNamara, 1991).

� Geomagnetic activity:

– The EUV radiation from the Sun governs the thermal convection at ionospheric heights,

and thus leads to the movement of ions and electrons across the geomagnetic field

B. Consequently, ionospheric currents are generated and they give rise to a magnetic

field around the ionosphere, the variations of which are subsequently observed on the

Earths surface as geomagnetic field fluctuations (Ondo and Marubashi, 2000). Dur-

ing periods of geomagnetic storms, the ionospheric electron density may get enhanced

or reduced leading to either positive or negative storm effects depending on the na-

ture/characteristics of disturbances and latitudes (Prölss, 1993; Prölss and Bird, 2004).

The right panel of Figure 2.3 demonstrates that TEC was enhanced (compared to the

quiet day 2017-07-05 at the same time of 12 UT) as a result of geomagnetic storm that

occurred on 2017-07-16. This is an illustration of a positive storm effect.

2.4 Low latitude electrodynamics

Diurnal absorption of solar ultra-violet radiation governs changes in the thermospheric winds and

therefore leads to the development of day-to-night pressure gradient (Jursa et al., 1985; Hargreaves,

1992). The thermosphere is a region of the atmosphere above ∼ 100 km in which the ionosphere is
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Figure 2.3: Global total electron content (TEC) map during quiet and disturbed periods in July

2017. Data source: ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex.

embedded. Thermospheric winds refer to neutral winds which are blowing at those high altitudes.

Since the horizontal dimension (defined by zonal and meridional components) of the Earth’s atmo-

sphere is large in comparison with the vertical extent, winds and neutral motions considered are

mainly in the horizontal direction. Meridional winds can move plasma up or down the geomag-

netic field B (Krishna Murthy et al., 1990). Zonal winds are blowing westward during daytime and

eastward during the nighttime. At high altitudes when collision rates are low, winds enable the

electrons to move relative to the ions and thus generating electric fields and currents (Hargreaves,

1979), the resulting dynamo equations (Blanc and Richmond, 1980) can be defined as follows,

J = σP (E⊥ + u×B) + σHb× (E+ u×B) + σ◦E‖ (2.1)

▽ ·j = 0 (2.2)

E = −▽ φ (2.3)

where σP , σH , σ◦ are Pedersen, Hall and direct conductivities; E‖ and E⊥ are parallel and

perpendicular components of E with reference to geomagnetic field B; b is unit vector parallel

to B, and thus showing direction of σ◦ which increases exponentially upwards but limited at

great heights by ion-electron collisions; φ is the electrostatic potential. The Pedersen conductivity,

σP , acts along the direction E, but perpendicular to B. It peaks at altitudes where the ratios

( νi
ωi

= νe
ωe

≈ 1) for both ions and electrons are comparable and each nearly equals to unity which

often occurs at altitudes around 125 km (Rishbeth, 1997). In the ratios above, νi and ωi, refer

to collision and gyro-frequencies for ions, respectively. Similarly, νe and ωe are collision and gyro-

frequencies for electrons. σH is described in the direction perpendicular to both E and B. Near
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magnetic equator where B is nearly horizontal, σH results from electrons moving in the E × B

direction and peaks at around 105 km (Richmond, 1995c; Rishbeth, 1997).

Figure 2.4: Schematic describing the evolution of the equatorial ionospheric anomaly (Immel et al.,

2006b).

Figure 2.4 shows a schematic picture illustrating the dynamo action leading to ionospheric

features such as fountain effect, EEJ and E and vertical E×B drift during daytime (Immel et al.,

2006b). While the E region ionosphere has large conductivity (Hall conductivity) during daytime,

the F region dynamo actions during daytime are suppressed and they operate rather differently

(e.g., Rishbeth, 1977, 1997; Fang et al., 2008; Maute et al., 2012). E region dynamo action results

in eastward electric field E which can be transferred into F region via equipotential B near magnetic

equator (Heelis et al., 1974). The dynamo actions of E and F regions can be described as voltage

and current generators, respectively. Given the westward zonal wind velocity U in the E and F

regions, then the E region dynamo processes can be described as follows,

1. For neutral wind with velocity U blowing across the geomagnetic field B, electric field EI =

U×B,

2. The field EI drives a current, j = σ(EI + Ep), where σ is conductivity tensor and Ep is

polarization electric field which originates from (i) a distribution of electrostatic charges to

maintain divergence free currents (▽·j = 0) everywhere, and (ii) magnetospheric fields which

reach the low latitude ionosphere through magnetic field from polar regions (Rishbeth, 1997).

If there is eastward E and is perpendicular to B, Hall currents flow downward within the E

region ionosphere. The Hall current which is carried by electrons, polarizes the E-region iono-
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Figure 2.5: Simulated vertical E × B drift at 12 UT due to neutral winds (solid-green curve),

neutral wind in the E-region below approximately 140 km (long dashed/blue curve) and neutral

wind in the F region above approximately 140 km (short-dashed/red curve) (Maute et al., 2012).

sphere so that an upward directed polarization electric field (Ep) is produced (Kelly, 1989). The

Pedersen current due to the primary eastward electric field (EI) and the eastward Hall current

due to the Ep and geomagnetic field B, add up to yield a substantial eastward current known as

equatorial electrojet (EEJ). It is a strip of enhanced current flowing within ±3◦ of dip equator

which causes large enhancement in the horizontal component of geomagnetic field (H) near the

equator (Rastogi and Klobuchar, 1990).

Figure 2.5 shows results from simulations demonstrating the contribution of winds in the magni-

tude and direction of E and F regions vertical E×B drift (Maute et al., 2012). Diurnal variation

of simulated E×B drift is represented with reference to geomagnetic longitudes, hence MLT=12

shows the variability at noon when the Sun is directly overhead. Similarly, MLT=0 or MLT=24

refers to positions where there is no solar irradiation. During nighttime, F region dynamos are
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significant as the E region ionosphere significantly decreases. After sunset the polarization field

in the F region is enhanced and results in vertical E × B drift reaching the velocity of winds

(U). Large enhancement of vertical drift around sunset is known as pre-reversal enhancement

(PRE) and is attributed to zonal electric field associated with F region dynamo and Pedersen

conductivity (Rishbeth, 1971). Therefore, the E region dynamo action is no longer effective after

sunset. The large enhancement of E×B drift in Figure 2.5 during late hours may reflect a rapid

decrease of Hall conductivity in comparison with Pedersen conductivity in the F region ionosphere

(Rishbeth, 1997). Large polarization fields in F region also increases the wind speed during the

nighttime (Rishbeth, 1971). The daytime F region dynamo near geomagnetic equator results from

the horizontal orientation of equipotential B lines (ν ≪ ω) enabling electrons to move with elec-

trodynamical force. Therefore electrons move in the direction perpendicular to B given in Kelley

(2009) as follows,

(V′
i)⊥ =

(

1/B2
)

[

E′ −
(

kBTi

qi

) ▽n

n
+

(

M

qi

)

g

]

×B (2.4)

where (V′
i)⊥ is the plasma drift velocity; the second and third terms refer to pressure and gravity

forces. In most altitudes, the electric field E′ contribution (first term) is identical for electrons and

ions since it is independent on the electric charge. Moreover, E′ dominates over plasma pressure

and gravity forces (e.g., Kelley, 2009). Therefore (V′
i)⊥ is mainly governed by ambient electric

field E perpendicular to the B, thus it is commonly referred to as E×B drift. In the F region, the

zonal E causes the plasma to drift upward during the day and downward during the night in the

low latitudes, while the vertical electric field E causes zonal drifts which are westward during the

daytime and eastward during the night (Fejer et al., 1991). Vertical E×B drift results in fountain

effect, lifting plasma upwards where it eventually diffuses along geomagnetic field lines forming

crests at latitudes about 15◦ − 18◦ from the equator (Sastri, 1990; Anderson, 1981).

While vertical E × B drift and EEJ are permanent features of low/equatorial latitude iono-

sphere, changes in geomagnetic activity may significantly influence the variations of the electric

fields (e.g., Blanc and Richmond, 1980; Fejer et al., 1979; Retterer and Kelley, 2010). Modifica-

tion of low/equatorial latitude electric fields during storm conditions is mainly due to ionospheric

disturbed dynamo (Blanc and Richmond, 1980) and prompt penetrating electric fields of magne-

tospheric origin (Fejer et al., 1979; Fejer, 1997). Usually, prompt penetrating electric fields lead to

eastward (westward) electric fields and therefore enhances (decreases) vertical E×B drift during

local daytime (nighttime) in low latitude ionosphere (Fejer, 1997). Figure 2.6 shows a comparison
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Figure 2.6: Vertical E × B drift observations (red) at Jicamarca during geomagnetic storm, 09

November 2004. Quiet time Scherliess-Fejer model (blue) and the quiet time plus Kelley model

for the penetration field (green) are shown (Retterer and Kelley, 2010).

of vertical E × B drift (red curve) over Jicamarca with quiet time Scherliess-Fejer model (blue

curve) (Scherliess and Fejer, 1999) and the quiet time model plus the Kelley model for penetrating

electric fields (green curve) during the disturbed period of 09 November 2004 (Retterer and Kelley,

2010). Retterer and Kelley (2010) reported enhanced penetration of westward daytime electric field

leading to counter electrojet conditions during the abrupt turning of IMF Bz into the northward

direction that may have suppressed the normal evening pre-reversal enhancement. The horizontal

black bar in Figure 2.6 shows downward pre-reversal enhancement occurring at the time of usual

PRE (Retterer and Kelley, 2010).

Due to thermosphere-ionosphere coupling, E and therefore vertical ionospheric drifts can be

easily perturbed by lower atmospheric gravity waves and planetary waves, even during magnet-

ically quiet periods and by magnetospheric processes emanating from high-latitude ionosphere

during magnetically disturbed periods (e.g., Rishbeth and Garriott, 1969; Rishbeth, 1971; Forbes,

1995; Richmond, 1995b,c; Muller-Wodarg, 1997; Millward et al., 2001; Kelley et al., 2003). Tides

of different wavelengths rise from lower and middle atmosphere and affect the wind structure and

temperatures of the lower atmosphere. In the E region of equatorial ionosphere, the largest ampli-

tude diurnal modes are the west wave number one migrating tide (W1) and the diurnal eastward

propagating tide with zonal wave number 3 (DE3) (e.g., Fesen et al., 2002; England et al., 2006).
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Radiative heating of the troposphere mainly govern the formation of W1, while additional con-

tributions come from radiative heating in the stratosphere, mesosphere and lower thermosphere

(Forbes, 1982). DE3 primarily affects longitudinal wind structure and temperatures in the lower

atmosphere, thus some longitudinal dependence on the modulation of equatorial dynamo can be

attributed to it (England et al., 2006). The formation of DE3 is mainly governed by latent heat

release in the troposphere (Hagan and Forbes, 2002).

Figure 2.7 shows the vertical E×B drift (ion drift) over different longitudinal sectors estimated

by SF (Scherliess and Fejer, 1999) and coupled ionosphere-thermosphere-plasmasphere (CTIP)

(Millward et al., 1996) models. CTIP model allows contribution of tidal forcing in vertical ion drift

(Millward et al., 2001). In the simulation study by Millward et al. (2001) only migrating tides of

different modes were considered. Their finding showed that the semi-diurnal tides dominate the

daytime equatorial electrodynamics (vertical E×B drift) for both solar minimum and maximum

conditions, while diurnal tides contribute very little. Similar work by Fesen et al. (2002) which

was based on TIME-GCM simulation produced almost the same results which also agree with

observations.

Figure 2.8 shows the seasonal and longitudinal variability of vertical E×B drift measured by the

IVM instrument on-board the C/NOFS satellite for the period within 2009–2013 (Yizengaw et al.,

2014a). The C/NOFS E × B drift observations were taken within ±8◦ of geomagnetic equator

around different longitudes (shown at the top axis of Figure 2.8) and below 500 km in altitudes.

The C/NOFS E × B drift velocities for the period studied were time averaged for each longitu-

dinal sector. The results shows that the vertical E × B drift velocities are generally stronger in

the American sector compared to the African sector during almost all local times. The longitu-

dinal dependence of C/NOFS E × B can be attributed to non-migrating tides and difference in

geomagnetic field (e.g., Immel et al., 2006b; Yizengaw et al., 2014a).

2.5 Summary

Vertical E × B drift results from complex interaction between the E and F region process which

changes with seasons, solar cycle, local time, geomagnetic activity and longitude (e.g., Fejer et al.,

1979; Fejer, 1997; Forbes, 1995; Kelley et al., 2003; Kelley, 2009). Different tidal components

resulting from upward propagating tides and their non-linear interactions, generally govern and
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Figure 2.7: Diurnal variation of vertical E×B drift from CTIP (solid curve) and SF (dashed curve)

models for solar maximum conditions (F10.7 = 180) and with a solitary (2, 2) tidal components

(semi-diurnal tide). Rows show longitudinal variation of vertical E × B drift, while columns

describe the corresponding seasonal variations based on results from both models (Millward et al.,

2001).
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Figure 2.8: Diurnal, seasonal, and longitudinal variation of vertical E×B from ion velocity meter

(IVM) on-board C/NOFS satellite for the period 2009–2013. Colors of the curves are associated

with different geographic longitudes (sectors) shown on the axis above (Yizengaw et al., 2014a).

modulate the neutral winds at different altitudes (within E and F regions). Migrating tides move

westward with the apparent motion of the Sun, while the non-migrating tides move at different

speed with the apparent motion of the Sun. Diurnal and semi-diurnal migrating tides have domi-

nant effects in upward E ×B drift (Maute et al., 2012). Diurnal eastward propagating tide with

zonal wave number 3 (DE3) are dominant non-migrating tides (Hagan et al., 2007). Non-migrating

tides results in regular wave-4 pattern in the upward E×B drift during daytime (Lin et al., 2007;

Kil et al., 2007). Wave-4 pattern is a wavelike characteristics observed in the longitudinal structure

of the ionosphere (Sagawa et al., 2005). However, Maute et al. (2012) showed that longitudinal

variation of upward E × B drift are mostly due to the strength of geomagnetic main field which

changes with longitudes. Their finding confirms largeE×B drift reported over South American sec-

tor in comparison with the weak vertical ionospheric drift over the African sector (Yizengaw et al.,

2014a). The migrating and non-migrating tides modulates the E and F region dynamos and

they change with seasons, solar cycle and local time (e.g., Crain et al., 1993; Lühr et al., 2012;

Maute et al., 2012). The simulation results from Millward et al. (2001) were used to demonstrate
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the influence of semi-diurnal migrating tides in longitudinal and seasonal variations of vertical E×B

drift. Their results showed mostly larger amplitudes (in comparison with the vertical ionospheric

drifts from SF model) and they were sometimes slightly shifted in local time distribution, con-

firming the importance of migrating semi-diurnal tides in the equatorial electrodynamics. During

storm conditions, changes of low/equatorial latitude electric fields and hence vertical E×B drifts

are mainly due to disturbed Ionospheric dynamo and penetration electric fields of magnetospheric

origin (e.g., Blanc and Richmond, 1980; Fejer, 1997).

Comparison of 1-year geomagnetic field data recorded in 2009 (mean annual sunpot number

Rz = 3.1) over South American, Philippine and African sector have recently been used to in-

vestigate longitudinal variation of EEJ and CEJ during quiet conditions (Ap ≤ 3) (Rabiu et al.,

2017). Their results revealed larger occurence of CEJ over the African sector; AAE and Ilorin are

dominated by morning and evening CEJ, respectively. Previously, (e.g., Yizengaw et al., 2011b)

showed in a case study a prominent occurence of CEJ in the African sector than in the American

sector. CEJ occurence during morning and afternoon hours over the western Africa longitudinal

sectors was reported as seasonal effect (Doumouya et al., 1998).

Using ground-based magnetometer andE×B drift (JULIA) data over the African and American

sectors, Habarulema et al. (2016) discovered and confirmed that poleward travelling ionospheric

disturbances (TIDs) which are of geomagnetic equator origin may be due to changes in ionospheric

electrodynamics.

Oyekola and Kolawole (2010) estimated vertical E × B drift from the hourly hmF2 values

acquired from ionogram data over a near dip equatorial station Ouagadougou (12.4◦N, 358.5◦E,

dip angle 5.9◦N) in Africa. When comparing the ionosonde derived E ×B drift with E×B drift

from IRI, larger values (than those of IRI) were observed during daytime and smaller values at

nighttime.
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Chapter 3

Measurements and Modelling techniques

3.1 Introduction

In this chapter, C/NOFS satellite and magnetometer observations are described. Previous studies

related to vertical E×B drift over the African and other longitudinal sectors are briefly presented.

Different modelling techniques used in the estimation of ionospheric vertical drift are also presented.

3.2 Measurements

Since the E region ionosphere is present only during daytime, dynamo action is effective during

daytime and results in eastward electric field E which can be transferred into F region via equipo-

tential magnetic field B near magnetic equator (Heelis et al., 1974). Figure 3.1 shows components

of Earth’s geomagnetic fields in geographic coordinate system. The horizontal component of ge-

omagnetic field, H =
√
X2 +Y2 was used in this work as measurements from the pair of low

latitude magnetometers, where X and Y are northward and eastward components of B. For small

declination angle, D = arctan(Y/X), X is approximately equal to H, since X = HcosD ≈ H.

Due to the orthogonal orientation of eastward E with nearly horizontal B at the magnetic equator,

collective effort of E and B (Lorentz force) known as vertical E×B drift moves ions and electrons

in the E and F regions. Ionospheric vertical drifts primarily drive low latitude electrodynamic

processes such as fountain effect, changes in equatorial electrojet (EEJ), plasma irregularities and

ionospheric density structures (e.g., Anderson, 1973; Fejer, 1997).

As described earlier, EEJ is a strip of enhanced current flowing within ±3◦ of dip equator which
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Figure 3.1: Schematic which shows components of Earth’s magnetic field in geo-

graphic coordinate system. D=magnetic declination and I is magnetic inclination

which is positive downward. F is the total intensity of magnetic fields. Source:

http://roma2.rm.ingv.it/en/research_areas/1/earth-s_magnetic_field/8/.

causes large enhancement in the horizontal component of geomagnetic field (H) near the equator

(Richmond, 1973; Forbes, 1981; Rabiu et al., 2013). Figure 3.2 shows variation of simulated hor-

izontal component of Earth’s magnetic field during daytime near dip equator, Jicamarca (11.8◦S,

77.2◦W; 0.8◦N geomagnetic) and another off the magnetic equator, Piura (5.18◦S, 80.64◦W; 6.8◦N

geomagnetic) over the South American sector (Fang et al., 2008). The horizontal fields (△H) from

stations near dip equator and ≈ 6 − 9◦ away, represents variation of EEJ current and therefore

E × B drift during local daytime (Fang et al., 2008). Due to the importance of vertical E × B

drift, the effort of measuring it started decades ago in Jicamarca (Woodman and Hagfors, 1969).

Incoherent scatter radar (ISR) was the primary instrument to measure vertical E×B drift in the F

region. ISR determines the direction of B and can measure plasma velocities perpendicular to the

magnetic field. Doppler effect radar which provides vertical E×B drift at about 150 km (around

E region) are now taking over ISR because of their low operation cost (e.g., Kudeki and Fawcett,

1993; Chau, 1998; Alken, 2009; Patra et al., 2014). However, they provide observations during

daytime since they are applicable when the E region is present (E-region is negligible during night-
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Figure 3.2: Latitudinal H field variations and the corresponding magnetic perturbation △H . The

white arrows point to the location of magnetometer stations at dip equator (Jicamarca, Jro) and

outside EEJ footprint (Piura, Piu) (Fang et al., 2008).

time). Satellite-based sensors such as Atmospheric Explorer E (AE-E), Republic of China Satellite

1 (ROCSAT-1) and Communication/Navigation Outage Forecasting System (C/NOFS) have been

providing equivalent measurements at higher altitudes and enable studies of longitudinal variation

of ionospheric vertical drifts. However satellite data have poor local time coverage, thus cannot

provide conclusive ionospheric variability over a single location. In the absence of instruments

providing ionospheric vertical drifts over the African sector, studies of vertical E × B drift and

therefore EEJ have been ongoing with the help of mainly ionosondes (e.g., Bilitza et al., 2004;

Oyekola and Oluwafemi, 2007; Adebesin et al., 2013) and magnetometers (e.g., Doumouya et al.,

1998, 2003; Haile, 2003; Rabiu et al., 2011). However, ionosonde vertical E × B drift measure-

ments during daytime are often underestimated from actual values since photo-chemistry governs

the reflection height of the F layer (e.g., Bertoni et al., 2006; Joshi and Sripathi, 2016). Since the

deployment of pairs of low latitude and equatorial magnetometer stations over the African sector,

differential magnetometers approach has been a preferred method in the estimation of vertical

E×B drift (e.g., Yizengaw et al., 2012). However this approach only provides E×B drift during

daytime since it is based on EEJ current. Despite the importance of E × B drift, there is still a

lack of instruments and local models providing ionospheric vertical drifts over the African sector.
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Hence, the motivation to estimate the vertical ionospheric drifts on long term over this longitude

sector based on magnetometer data, with the aim of developing models based on African data.

Global empirical models of plasma drift have been developed and mainly use Jicamarca E × B

drift observations from ISR and satellite-based sensors on-board the Atmospheric Explorer E (AE-

E), Republic of China Satellite 1 (ROCSAT-1) (e.g., Scherliess and Fejer, 1999; Fejer et al., 2008).

There have been other regional E×B drift models developed (e.g., Abdu et al., 1995; Batista et al.,

1996; Sastri, 1996; Alken, 2009). The Scherliess-Fejer (SF) model (Scherliess and Fejer, 1997,

1999) has been incorporated in other global empirical models such as SAMI2 (SAMI2 is Another

Model of the Ionosphere) (e.g., Huba et al., 2000) and International Reference Ionosphere (IRI)

(Bilitza and Reinisch, 2008). The global models have longitudinal coverage and thus can estimate

E × B drift along any equatorial regions. Regional models such as the one that was developed

in Brazil (Batista et al., 1996) cannot work well in other longitude sectors because of tidal effect

and local times. Alken (2009) developed vertical E×B drift model using JULIA observation and

although this model was validated against global model by Scherliess and Fejer (1999), it can only

work well in South American longitude sector.

However global models are climatological in nature and are mainly based on observations over

the South American sector and therefore may not be accurate over the African sector. In this

work, an effort is made to develop empirical model to estimate vertical E × B drift over the

African sector based on ground magnetometer and C/NOFS measurements/observations. Figure

3.3 shows geographic location of instruments (magnetometers) and an examples of a possible

orbit followed by the C/NOFS satellite over the region of study. Magnetometer stations used are

Addis Ababa, AAE 9.0◦N, 38.8◦E, 0.18◦N geomagnetic and Adigrat, ETHI (14.3◦N, 39.5◦E, 6.0◦N

geomagnetic). Details related to magnetometer and satellite data processing are described in the

following sections.

3.2.1 Magnetometer observations

A pair of magnetometers one near dip equator (EEJ region) and another 6◦–9◦ away, can be used

in the estimation of equatorial electrojet (EEJ) current during daytime and thus E×B drift (e.g.,

Rastogi and Klobuchar, 1990; Anderson et al., 2004). Equatorial and low latitude magnetometers

measure the same currents from different sources such as magnetopause, ring currents, main field,

solar quiet Sq, and field aligned current (FAC), but in addition EEJ currents are also observed by
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Figure 3.3: Map demonstrating geographic location of the ground-based magnetometers (red dots)

used for this study and possible regions near Addis Ababa, AAE (9.0◦N, 38.8◦E, 0.18◦N geomag-

netic) where C/NOFS satellite passes (orbit number = 20515 shown in connected magenta solid

dots). The nearly horizontal solid line (black) depicts the geomagnetic equator, and the two dashed

lines (black) indicate the EEJ region.

equatorial station. The main field originates from convection of the Earth’s core and the changes

associated with this field during magnetically quiet days is known as solar quiet Sq variation

(Chapman and Bartels, 1940). While FAC are typically a high-latitude phenomenon, the electric

field and currents from the dynamos in the magnetosphere flow down to the equatorial ionosphere

via the polar ionosphere. Since FAC are mainly divided into region 1 (R1 FAC) and region 2 (R2

FAC) currents, R1 FAC connects the currents in the ionosphere to currents in the magnetopause

and the magnetotail, while R2 FAC connects to the partial ring current in the inner magneto-

sphere (e.g., Iijima and Potemra, 1978; Cowley, 2000; Clausen et al., 2013; Coxon et al., 2014).

Depending on the direction of IMF Bz, R2 FAC can reduce penetrating magnetospheric origin
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electric field and therefore causing westward equatorial electric during daytime (such electric fields

are possible source of CEJ (e.g., Daglis et al., 1999; Kikuchi et al., 2000; Yizengaw et al., 2011a).

Because of the additional EEJ contribution into the equatorial magnetometer observations, differ-

encing the respective H-components from locations at the equator and outside the EEJ footprint

(6–9 degrees away from the equator) provides the EEJ current (Rastogi and Klobuchar, 1990)

which is linearly related to the vertical E × B drift during local daytime (e.g., Anderson et al.,

2002, 2004; Yizengaw et al., 2012). Since the geomagnetic field B at the magnetic equator are

orientated approximately horizontally, variation of EEJ is represented by horizontal components

of geomagnetic field near dip equator (△H). In this work, horizontal components of geomagnetic

field (H) measurements for the magnetometer stations Addis Ababa, AAE (9.0◦N, 38.8◦E, 0.18◦N

geomagnetic) and Adigrat, ETHI (14.3◦N, 39.5◦E, 6.0◦N geomagnetic) were corrected each day for

different offset values associated with magnetometers at different locations before computation of

daytime △H variations. Nighttime ionospheric currents are weak to be clearly detected by ground

magnetometers. Hence the average of the hourly H field measurements was computed for each day

during 23:00-03:00 LT as a baseline value (Yizengaw et al., 2012).

Figures 3.4 (a)-(d) and (e)-(h) show variations and processing of H fields during quiet (2008-

11-19) and disturbed (2012-01-25) conditions leading to the computation of △H variations. Sub-

traction of baseline values (shown as dashed lines) from geomagnetic field measurements of a

corresponding day yields daytime H field variations (dH◦). In Figure 3.4 (a)-(d) and (e)-(h), varia-

tions at ETHI and AAE are plotted in green and red colors respectively. However, the effect of ring

current, main field, magnetopause, FAC and solar quiet (Sq) are still involved in the variations

of dH◦. Thereafter differencing of these measurements from two stations was done on a corre-

sponding day and local time to yield △H variations which reflects only changes in EEJ current

(e.g., Rastogi and Klobuchar, 1990; Anderson et al., 2002). The final computed △H variations

representing EEJ changes are shown in Figure 3.4 (d) and (h) for quiet (2008-11-19) and disturbed

(2012-01-25) days respectively.

Figure 3.5 shows the daytime △H data at one minute time intervals obtained by considering

available data from AAE and ETHI during 2008–2013. Although part of △H data is missing, the

magnitudes of daytime △H for different months are also oscillating at different periods. Equatorial

and low latitude geomagnetic fields have been reported to change at different periods, such as pole

tide signal of 14-months (e.g., Rao and Rangarajan, 1978) and Quasi-biennial Oscillation (QBO)
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Figure 3.4: (a)-(b) Comparison of H field variations from AAE (green curve) and ETHI (red curve)

relative to their baseline values (green and red dashed horizontal lines) during quiet day of 2008-

11-19. (c)-(d) Corresponding daytime variation of H fields (dH◦) and subsequently computation

of △H (black curve), and (e)-(h) similarly derivation of △H during the storm day of 2012-01-25.

(e.g., Sugiura, 1976; Rangarajan, 1985). QBO has been reported prominent near geomagnetic

equator due to enhanced Cowling conductivity (e.g., Kane, 1996). It results from strong signals of

period ∼ 2-years especially in meteorological and geomagnetic parameters (e.g., Bhardwaj, 2009)

and can contribute to the observed △H oscillations. Long-term variation of △H data is worth be-

ing investigated to confirm the nature of such oscillations. Previous studies have shown that E×B

inferred from the equatorial and low latitude pair of magnetometers compare well with those of

Jicamarca’s ISR, Jicamarca Unattended Long-term studies of the Ionosphere and Atmosphere (JU-

LIA) in Peru (e.g., Anderson et al., 2002, 2004), and ion velocity meter (IVM) instrument on-board

C/NOFS satellite over the African sector (e.g, Yizengaw et al., 2012). Magnetometer inferred ver-

tical E×B observations from different longitude sectors (Peruvian, Philippine, and Indian) were

found to agree well with Scherliess-Fejer model (e.g. Anderson et al., 2006; Anghel et al., 2007) on
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a climatological basis.
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3.2.2 C/NOFS observations

The C/NOFS satellite was launched into a low Earth orbit at 13◦ inclination in April 2008. It had

an orbital period of 97.3 minutes, with its perigee and apogee are at about 405 km and 850 km,

respectively. The main purpose of C/NOFS was monitoring and forecasting ionospheric irregulari-

ties which strongly affect communications and navigation systems (de La Beaujardière et al., 2004;

de La Beaujardiere et al., 2009). It consisted of six instruments (VEFI-Vector Electric Field In-

strument, CERTO-Coherent Electromagnetic Radio Tomography, CORISS-C/NOFS Occultation

Receiver for Ionospheric Sensing and Specification, CINDI-Coupled Ion-Neutral Dynamics Investi-

gation which consists of sensors (IVM-Ion Velocity Meter and NWM-Neutral Wind Meter), PLP-

Planar Langmuir Probe), for measuring electric fields E, plasma characteristics, the strength of

scintillation, ion drifts and neutral winds (de La Beaujardière et al., 2004; de La Beaujardiere et al.,

2009). In this work, IVM sensor is used as a source of E×B observations. Based on International

Geomagnetic Reference Field (IGRF) model, the measured ion drift is resolved into components

parallel and perpendicular to field B. Both components of the ion drift are then resolved into com-

ponents with respect to magnetic meridian plane. The perpendicular component of ion drift in the

magnetic meridian plane (meridional) is used as vertical E×B in this work (Stoneback et al., 2011).

Since the accuracy of IVM depends on the O+ concentration, the vertical E×B drift observations

were taken when the altitudes of satellite were within ∼ 400-550 km (e.g., Stoneback et al., 2011;

Patra et al., 2014). While it is desirable to use C/NOFS E×B observations at reasonable low alti-

tudes for comparison with other E×B observations from other sources such as 150 km echo radar

and ISR, the satellite’s lowest altitude is about ∼ 400 km. Vertical E×B observations are taken as

the satellite passes over AAE within 0.18◦N±4◦ geomagnetic latitude and 38.8◦E±11.2◦ geographic

longitude at an altitude range within ∼ 400-550 km (e.g., Stoneback et al., 2011). The selection of

the spatial extent between satellite and ground-magnetometer based on their longitudinal and lati-

tudinal separation will be discuss later. Large C/NOFS vertical E×B drifts (≈200 m/s) which fol-

low large plasma depletion were reported at dawn during quiet condition (low solar activity period)

in the America–Africa and India–Indonesia longitude sectors by (e.g., de La Beaujardiere et al.,

2009). However, 15-minute average annual vertical ionospheric drift velocities over AAE for the

period 2009–2013 were within ≈ -25–25 m/s during daytime (Yizengaw et al., 2014b). Quiet time

C/NOFS E×B observations in the range -50 m/s–50 m/s were seen at longitude sectors 0◦–60◦E

during spring in 2010 (Stoneback et al., 2011). Therefore, in-situ C/NOFS ion drift observations in
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our work were within ± 60 m/s considering possible geomagnetic disturbances. These observations

were further corrected for any potential outliers using median filtering procedure for each satellite

pass. Rodrigues et al. (2011) compared the C/NOFS vertical E × B drift with ISR E × B drift

observations and climatological model during 25–30 January 2009 (Scherliess and Fejer, 1999).

They corrected C/NOFS observations using 15-point median filtering for each satellite pass. In

this work, a technique based on medians together with median absolute deviation (MAD) is used.

After correcting for outliers ∼ 5% of the observations were removed. The calculated mean (-10.05

m/s) and median (-10.06 m/s) from the overall C/NOFS E × B observations are nearly equal,

and therefore suggesting low volume of outliers within dataset (Smith et al., 2015). Median is

normally stable to outliers than mean, it has a breakpoint of 50% (Huber, 1981). That is to say,

the median filtering can start to fail for observations consisting of about 50% of outliers. Similarly,

the MAD has 50% breakpoint and thus it can be used together with medians in removing outliers

in C/NOFS E×B drift observations. As the name suggests, MAD is the median of the absolute

deviation of observations from a particular median value (Huber, 1981),

MAD = b ·Mi(‖Xi −Mj(Xj)‖), (3.1)

where Mi and Mj are median values for i-th absolute deviation and j-th observations and b is the

numeric value describing the distribution of data. As a rule of thumb, datasets with Kurtosis and

Skew distribution less than ±1 enable making an assumption of normal distribution valid, hence

the upper and lower limit for a median filter can be written as follows,

Xupper > M +MAD and Xlower < M −MAD (3.2)

where M is the median value of C/NOFS E × B drift per satellite pass and b = 1/Q(0.75) =

1.4826 for normal distributed observations (Huber, 1981) was used in the computation of MAD

(small Skewness, ≈ 0.1 and Kurtosis, ≈ 0.5). 1/Q(0.75) refers to a 0.75 percentile of underlying

distribution.

Only one MAD was used (equation (3.2)) in order to suppress large fraction of potential

outliers with the intention of possibly increasing the correlation between the △H and E×B drift

observations as it will be shown later.

Figure 3.6 (a)–(d) shows theE×B drift observations during quiet and storm periods 2008/11/19

and 2012/01/25 used for illustration. These days were extracted from large dataset during the

period 2008–2013 as they have reasonable amount of observations and again for comparison with
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Figure 3.6: C/NOFS vertical E×B drift before and after removing outliers using median and MAD

filtering technique ((a) and (b)) during the quiet day of 2008-11-19. Panels (c)-(d) show C/NOFS

vertical E×B drift before and after correction for outliers on a disturbed day of 2012-01-25.

△H measurements in Figure 3.4. Through visual inspection of E×B drift observations in Figure
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Figure 3.7: Vertical E×B drift observations from IVM sensor on-board the C/NOFS satellite at

one-minute interval for the period 2008–2013 after correction for outliers.

3.6, it can be evident that few data-points were removed as outliers for both quiet and disturbed
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periods. Figure 3.7 shows the resulting E×B drift observations for period 2008–2013 after limiting

the magnitudes of vertical ionospheric drifts and removal of possible outliers. Since C/NOFS

E ×B drift measurements are provided at 0.5 seconds resolution, large observations can be seen

per satellite pass. In this way, relatively large E×B drift values centered nearly close to a minute

were averaged alongside their corresponding altitudes. Hence, E×B drift values shown in Figure

3.7 are given in one minute intervals and at different altitudes around AAE. C/NOFS data are

available through an open repository (http://cdaweb.gsfc.nasa.gov/).

Patra et al. (2014) compared quiet time C/NOFS E × B drift observations with E × B drift

observations from two radars over Kototabang (10.36◦S magnetic latitude, Indonesia) and Gadanki

(6.5◦N magnetic latitude, India) and they found correlation coefficient value of ∼ 0.86 (when using

175 points) at both stations. Rodrigues et al. (2011) also compared C/NOFS E ×B drift obser-

vations over Jicamarca (77.2◦ ± 40◦) longitude with ISR and climatological model during sudden

stratospheric warming event in 25–30 January 2009. In their analysis, most radar observations

fell within one standard deviation of C/NOFS E × B variability, suggesting a good agreement

between two different observations (Rodrigues et al., 2011). They also reported large deviation

between C/NOFS E × B drift and respective values from climatological model (Scherliess-Fejer)

for a particular day (27 January 2009) where E×B drift values of -20 m/s and ∼ 5 m/s were seen

for C/NOFS and climatological model at about 1300–1400 LT. Stoneback et al. (2011) compared

C/NOFS E×B drift with E×B drift from climatological model and ISR for longer period 2008–

2010. They showed that C/NOFS E×B drift observations compare approximately well especially

with the ISR observations than climatological model, but also reported some deviations especially

during morning, afternoon and nighttime hours.

3.3 Modelling techniques

Three different empirical modelling techniques were used to estimate vertical E × B drift based

on △H measurements. These modelling techniques are empirical orthogonal functions (EOFs),

neural network (NN) and partial least squares (PLS) whose performances in estimating ionospheric

vertical drifts were compared in next chapters. Brief descriptions of these modelling techniques

are presented in the next subsections.
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3.3.1 Empirical Orthogonal Functions (EOFs)

EOFs have the capability of revealing hidden patterns and reducing the dimensions of a series of

images and continuous signals along with their proportion of variance (Lorenz, 1956). In the field

of signal processing and mathematical statistics, method of EOF analysis is a decomposition of

signal or data based on orthogonal basis functions. Unlike other decomposition techniques such

as Fourier and Wavelets analysis which decompose data using pre-defined base functions (e.g.,

Butzer and Nessel, 1971; Mallat, 1989), the orthogonal basis functions used in EOF analysis are

derived purely from variations of dataset (e.g., Lorenz, 1956; Kelly, 1985). Hence, the eigen series

defined by these basis functions converge quickly, making it possible to represent most variance of

original dataset with fewer EOF components. While EOF decomposition technique is equivalent

to the principal components (PCs) analysis, EOF method describes both spatial and temporal

patterns (e.g., Lorenz, 1956; Kelly, 1985). The underlying physical meaning of EOF analysis is

finding uncorrelated linear combinations of the different variables that explain maximum variance

of spatio-temporal field Xm such that,

Xm =

M
∑

i=1

ui(s)cim(t), (3.3)

where M is the number of orthogonal basis functions (modes), while ui(s) and cim(t) are associated

EOF coefficient and EOF basis function satisfying the relation,

M
∑

m

uimujm = δij =











1 i = j

0 i 6= j

(3.4)

and

ci(t)cj(t) = λiδij (3.5)

where the over-bar in equation (3.5) refers to a time averaged of ci(t), and λi is the variance

(eigenvalue) of the i-th eigenvector such that, λi ≥ λi+1 ≥ λi+2 ≥ ...... ≥ λM . Hence, it is possible

to write the relation as follows,

c2i (t) =
1

N

M
∑

m=1

c2i (tm) = λi (3.6)

where N refers to the number of associated EOF coefficients (time series). It can be shown that ci

and ui always satisfy the constraints defined in equations (3.3), (3.5) and (3.6). Let E be a matrix

with columns being the spatial patterns (ui) and matrix A constructed such that rows are time
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series (ci), then the summation over the eigenvector above of the product of time series and spatial

patterns shown in equation (3.3) is simply the matrix product:

X = EA (3.7)

The matrix E needs to satisfy the property,

AAT = λI = Λ (3.8)

where I is the identity matrix, while Λ is a matrix where off-diagonal elements are zero and diagonal

elements (λi) are arranged in descending order (e.g., Hannachi et al., 2007).

The covariance matrix Ce can be constructed from eigenvectors ci(t),

Ce = XXT =
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. (3.9)

From above relations it follows that,

XXT = EA(ETAT ) = EAATET = E(λI)ET = EΛET = ΛEET

The orthogonal basis functions ui(s) are typically obtained from computing the eigenval-

ues/eigenvectors of the covariance matrix ci based on dataset,

ciui = λiui (3.10)

where λi are the eigenvalues.

However, EOF technique is mainly based on using the spatial correlation of continuous field

variable, i.e. covariance matrix only considers simultaneous information (in time) between grid

points. Dynamical structures such as oscillations, propagation structures, and trends are ignored in

the conventional EOF technique. In an attempt to capture propagation structures, EOF has been

generalized into Extended EOF (EEOF) (Weare and Nasstrom, 1982) and Hillbert EOF (HEOF)

(e.g., Rasmusson et al., 1981; Von Storch, 1999). Unlike EEOF, HEOF method does not explicitly

incorporate the lagged information, hence it avoids using lagged auto-covariance matrix and thus
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avoiding the problems associated with choosing the lag-window. Magnitude of spatial EOF pattern

can be forced to change with time using complex part of the continuous time series,

Y (t) = A · exp(iωt) + Φ (3.11)

are used in the analysis. A is the wave amplitude, while ω and φ are its frequency and phase

shift (at the origin). More details related to the theory and implementation of EEOF and HEOF

can be obtained from several studies (e.g., Rasmusson et al., 1981; Weare and Nasstrom, 1982;

Von Storch, 1999). Here, EOF analysis is used in modelling the vertical E ×B drift for the first

time. EOF technique used in this study is based on spatial correlation. It has been valuable in

other ionospheric studies including modelling of critical frequency, f◦F2 (Zhang et al., 2011); peak

height, hmF2 and propagation factor M(3000)F2 (Zhang et al., 2009, 2010) of the F2-layer, and

total electron content (TEC) (e.g. A et al., 2011; Uwamahoro and Habarulema, 2015).

3.3.2 Partial Least Squares (PLS)

PLS regression is a multivariate method which has been proven to be particularly suited to highly

collinear data (Dhanjal et al., 2009; Montgomery et al., 2012). Since its discovery, PLS technique

has been mainly used in the field of chemometrics (e.g., Wold et al., 1966, 1984; Lindberg et al.,

1983; Geladi and Kowalski, 1986; Höskuldsson, 1988) and has also found applications in modelling

and process monitoring (e.g., Fuller et al., 1988; Wise and Ricker, 1990; Qin, 1998; Rosipal and Krämer,

2006; Helland et al., 1992). PLS is well established framework for estimation, regression, and clas-

sification whose main objective is predicting a set of dependent variables (responses or even one

response) from a set of independent variables (predictors) through the extraction of a small number

of latent variables (also known vectors/components). An introduction to PLS is well presented in

another sources (e.g., Manne, 1987; De Jong, 1993). Assuming linearly related set of predictors

(X) and responses (Y) as matrices then,

Y = XA+Rn, (3.12)

where A and Rn are coefficients and noise matrices, respectively. PLS uses principal component

analysis (PCA) on both predictor (X) and response (Y) variables, while their relationship is mainly

governed by covariance. PLS regression method builds a linear model by decomposing both X and

Y matrices into bilinear terms,

X = TPT + E and Y = UQT + F (3.13)
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where T and U are matrices of latent vectors ti and ui, while P and Q are corresponding matrices

of loading vectors pi and qi, and E and F are residuals corresponding to X and Y respectively.

PT and QT are transpose matrices of P and Q, respectively. Since the latent vectors are deter-

mined iteratively, t1 and u1 correspond to the first set of latent vectors and they are eigenvectors

of XXTYYT and YYTXXT , respectively (Manne, 1987; Wold et al., 1993; Montgomery et al.,

2012). Since YYTXXT is the transpose of XXTYYT and vice versa, both matrices have identical

eigenvalues (e.g., Montgomery et al., 2012). The above defined the PLS outer model, while latent

vectors ti and ui define PLS inner model given as,

u1 = b1t1 + r1 (3.14)

where b1 is the coefficient and r1 is residual of the first latent vector. The second and other higher

order latent vectors are determined from residuals. Nonlinear Iterative PArtial Least Squares

(NIPALS) and Statistical Inspired Modification to Partial Least Squares (SIMPLS) describe the

iterative algorithms generally followed in the PLS regression technique. For this study, the PLS

modelling technique is centered on NIPALS. While it is difficult for PLS method to model time

varying processes, recursive PLS (RPLS) algorithms were first reported by Helland et al. (1992)

and later improved to allow an existing model to get updated for every new observations added

(Dayal and MacGregor, 1997; Qin, 1993; Wang et al., 2003). RPLS techniques are mainly used

in the industrial process monitoring (e.g., Wang et al., 2003). Some of the algorithms related to

RPLS are discussed in details by Qin (1998). As there are several algorithms implemented by PLS

technique, this work provides detailed description of NIPALS which is used throughout, and also

describes SIMPLS which is common alternative algorithm.

3.3.2.1 Nonlinear Iterative PArtial Least Squares (NIPALS)

NIPALS is the simplest algorithm used in PLS technique. This algorithm is initialized with a

random value of the latent vector ui (Geladi and Kowalski, 1986). Given thatY is one-dimensional,

NIPALS assigns u0 values to first latent vector u1 as a random 1-dimensional vector or uses Y as

a vector (step (a)) for initialization of the iterative process. A series of latent vectors (orthogonal

components) t and u which are principal components describing the partial regression of Y on

X in the orthogonal subspace are computed stepwise. An iterative process is used to find a

set of weights w and c such that X and Y are represented in orthogonal subspaces as latent

vectors t = Xw and u = Yc, with constraints that wTw = 1, tT t and tTu be maximal (e.g.,
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Geladi and Kowalski, 1986; Rosipal and Krämer, 2006; Ciclo and Stefania, 2013). The iterative

process starts with estimates of first latent/orthogonal vectors leading to a PLS model and process

defined as follows,

1. X1 = X, Y1 = Y (Y is 1-dimensional since one parameter E ×B drift is being modeled. The

process iterates over i PLS components commonly known as latent/orthogonal vectors.)

2. Iterate over i until XT
i Xi = 0: (u0 (random number or Y) initializes the process)

(a) u1 = u0;

(b) wi =
XT

i
ui

uT

i
ui

(compute covariance weight wi);

(c) ti = Xiwi and calculate corresponding loading vector pi =
XT

i−1
ti

tT
i
ti

;

(d) ci =
Y

T

i
ti

tT
i
ti
;

(e) ui = Yici and calculate corresponding loading vector qi =
Y

T

i−1
ui

uT

i
ui

;

(f) Ei = Xi−1 − tip
T
i and Fi = Yi−1 − uiq

T
i (return information contained within i-th set of

vectors while the next components contain information that can be extracted from residuals

(Ei and Fi) by repeating steps (b)-(f).)

Upon convergence of each i-th iteration, Y is partially regressed on residual E which was

computed from previous step until X is an empty matrix. As can be seen from NIPALS algorithm

(steps (a)-(f)), partial regression of Y on X involves computing the covariance weight w (step

(b)) and then computing latent vector of predictors t (step (c)). Therefore Y is regressed on the

linear combination of the inputs set (step (d), t = a1x1 + a2x2 + .... + akxk = Xw), so that the

weight c which is used for projection is computed. Here k refers to the total number of inputs

represented inX. Loading vectors p and q in (step (c)) and (step (e)) are coefficients of regressing

X on t and Y on u. Hence the PLS model Ŷ can be fitted if the requirements and constraints

in steps (a)-(f) are satisfied. Since Y = UQT + F, the estimated response Ŷ is the sum of m

optimal latent vectors,

Ŷ =

m
∑

i=1

tibi where, bi = uT
i ti(t

T
i ti)

−1 (3.15)

3.3.2.2 Statistical Inspired Modification to Partial Least Squares (SIMPLS)

Latent vectors described above can be calculated from original variables X and Y in SIMPLS

algorithm (De Jong, 1993). The variables are first centered X0 and Y0 prior to the computation
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of latent vectors. Learning with SIMPLS algorithm is advantageous since it does not explicitly

enforces updating X0 and Y0 after each iteration, thus making it computational faster than PLS

based on NIPALS algorithm (Martins et al., 2010). SIMPLS algorithm starts by constructing the

covariance matrix S = XT
0Y0. Singular value decomposition (SVD) is used to find the left and

right eigenvectors, r1 and c1 from S, respectively. The first latent and loading vectors of X are

then calculated as t1 = X0r1 and p1 = XT
0 t1, respectively. The next stage is updating the S which

is then used to compute the next set of vectors, i.e., S = S − p1(p
T
1 p1)

−1pT
1 S . The algorithm

follows the steps below.

1. S = XT
0Y0

2. for i = 1 to k

(a) if i = 1, [u, s,v] = SVD(S)

(b) if i > 1, [u, s,v] = SVD(S−Pi−1(P
T
i−1Pi−1)

−1PT
i−1S)

(c) ri = u(:, 1) first left singular vector

(d) ti = X0ri

(e) pi = XT
0 ti/(t

T
i ti)

3. end

where u (m×m) and v (n×n) are real or complex left and right singular vectors, while s (m×m)

is diagonal rectangular matrix with positive diagonal elements (Golub and Van Loan, 1996). The

resulting ti, ri, pi and ci are then stored in Tk, Rk, Pk and Ck matrices, respectively. Therefore,

estimated coefficient is BPLS = Rk(T
T
kTk)

−1TT
kY0, such that Ŷ0 = BPLSX0.

3.3.2.3 PLS summary

For the first time, PLS technique is being investigated for ionospheric modelling. Since it was

discovered in the field of chemometrics, it is inherently capable of estimating multiple responses

using the same set of inputs. Therefore its success in the field of ionospheric studies can be

advantageous.
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3.3.3 Neural Networks (NNs)

The development of artificial neural networks was motivated by functioning of biological neurons

in a human brain. Desirable characteristics of human brain include (1) learning ability, (2) massive

parallelism, (3) distributed representation and computation, (4) adaptivity, (5) inherent contextual

information processing, (6) low energy consumption, (7) fault tolerance, and (8) generalization

ability (Lippmann, 1987; Jain et al., 1996). However, advancement in technology enables digital

computers to outperform humans’ capabilities in the domain of numeric computation and related

manipulation (Lippmann, 1987; Jain et al., 1996). A neural network (NN) is a computer software

which uses a set of processing units (neurons) in a manner nearly analogous to biological neurons

in the human brain (e.g., Jesan and Lauro, 2003). The ability of NNs to learn underlying rules

(relationships between inputs and outputs) make it more attractive over traditional techniques

for classification, function estimation, forecasting and optimization. McCulloch and Pitts (1943)

describes NNs with a set of n input signals, xi (i = 1, 2, 3, ..., n) through neurons which generates an

output y if the corresponding weighted sum is above a certain binary threshold value u, otherwise

an output is zero. They made simplifying assumptions that are different from biological neurons

and yielded a mathematical relationship,

y = θ

(

n
∑

i=1

wixi − u

)

(3.16)

where θ is a binary unit step function at 0, wi is the weight of associated i-th input. De-

pending on the nature of problem, there have been a generalization of McCulloch-Pitts neuron,

e.g., replacing θ in equation (3.16) with other activation functions such as sigmoid, Gaussian, tanh

functions (e.g., Kalman and Kwasny, 1992). There are several NN algorithms for different applica-

tions (e.g., Specht, 1991; Fausett, 1994; Haykin, 1994; Zell et al., 1995; Bataineh and Marler, 2017;

Qiao et al., 2017). For example, feed-forward and recurrent networks are generally known NN and

employ different learning rules (Elman, 1990; Haykin, 1994; Watson, 2012). For this study, the

feed-forward NN was explored and is briefly described below. Recurrent networks which follow

different algorithms are also briefly described for comparative purposes.

3.3.3.1 Feed-forward NNs

NNs pass and process information fed into input, hidden and output layers (units) where connec-

tions between layers are all fed into the next layer and therefore no closed paths within the entire
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network connections (e.g., Fausett, 1994; Watson, 2012). Back-propagation is a popular learning

algorithm of updating connection weights since error information is fed from output layer back-

wards. Supervised, unsupervised and hybrid learning algorithms refer to a procedure of updating

the connection weights of a NN (e.g., Rumelhart and Mcclelland, 1986; Fausett, 1994). Figure

5.11 shows a schematic illustration of the feed-forward NN setup. Each layer can be customized

to have different number of neurons during the NN implementation depending on the amount of

data being dealt with (Haykin, 1994). It is desirable to speed up the training time required for

optimization; therefore increasing the number of hidden layers may make training the neural net-

work easier (Haykin, 1994; Fausett, 1994). Three main stages define back-propagation algorithm

(Fausett, 1994),

1. Feed-forward of the input pattern to the input layer,

2. The computation of responses and back-propagation of the errors,

3. Adjustment of the randomly assigned synaptic weights.

In the following description, the notation and mathematical relations in the algorithm are based

on material found in Fausett (1994). Feed-forward of input patterns Xi, i = 1, 2, 3, ..., n via input

layer into hidden layer is the first step in neural network shown in Figure 5.11. Each hidden neuron

Zj , i = 1, 2, 3, ..., p sums the weighted signals from these patterns,

zinj = υ0j +

n
∑

i=1

xiυij, (3.17)

where υ0j refers to bias on the hidden layer neuron j and υij is the connection weight between

input neuron i and hidden neuron j. The activation function determines the state of each neu-

ron based on its bias/threshold weights of incoming connections and on the states of the neurons

connected to it by these connections (e.g., Müller et al., 1990). Random values within some in-

terval, e.g.,(-1,1) are used to initialize the weights at the start of the training in order to achieve

generalization. Different activation functions exist, however they should satisfy several characteris-

tics such as being continuous, differentiable, and monotonically non-decreasing (e.g., Müller et al.,

1990; Kalman and Kwasny, 1992).

Hidden neurons compute the activation function zj = f(zinj ) and broadcast the response zj

onto the output layer (Yk, k = 1, 2, 3, ..., p); weighted sum of zj are computed as follows,

ynik = ω0k +

p
∑

j=1

zjωjk, (3.18)
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Figure 3.8: Schematic showing architecture of feed-forward artificial neural network.

where ω0k refers to bias on the output layer neuron k and ωjk is the connection weight between

hidden neuron j and output neuron k. Activation functions are used to calculate the output

pattern given by yk = f(yink ) and this ends the first feed-forward process of the training patterns.

One complete feed-forward process defines one epoch. For each estimated response yk, individual

output neuron (Yk, k = 1, 2, 3..., m) receives a target pattern corresponding to the input training

pattern Xi and calculates its error information term;

δk = (tk − yk)f
′

(yink ), (3.19)

where tk refers to the target response and δk are used to compute weight correction △ωjk = αδkzj

and bias correction △ω0k = αδk terms, where α is the learning rate. Subsequently, δk are broad-

casted back onto neurons in the hidden layer. Since, the error information is being back propagated

the weighted δk signals are summed,

δinj =
m
∑

k=1

δkωjk (3.20)

In the hidden layer, the error information received by individual neuron is defined as follows,

δj = δinj f
′

(zinj ), (3.21)

which is then used to update the υij, computed as △υij = αδjxi. Subsequently, the bias correction

term △υ0j = αδkxj is computed. Therefore, updates on weights and biases are defined as follows,

(a) For each output neuron (Yk, k = 1, 2, 3..., m), the weights and corresponding bias (j =

0, ..., p) are given as follows,

ωjk(current) = ωjk(previous) +△ωjk. (3.22)
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(b) In the hidden layer, each neuron (Zj , i = 1, 2, 3..., p) also updates its weights and bias (i =

0, ..., n):

υjk(current) = υjk(previous) +△υjk. (3.23)

When training the NN, the data is split into training, validation and testing sets. As the name

suggests, training dataset is used for training the NN through the adjustment of weights between

neurons in the input, hidden and output layers, while the validation dataset is used to measure the

performance of the NN on patterns that were left out during the training process. Subsequently,

the overall performance of the NN (Zell et al., 1995) is assessed using testing dataset.

3.3.3.2 Recurrent Neural Networks (RNNs)

A recurrent NN (RNN) is different from standard feed-forward network since it can contain several

feed-back connections to allow activations to flow around in a loop (Hecht-Nielsen, 1990; Elman,

1990; Haykin, 1994; Fausett, 1994). RNNs are used in learning time varying patterns and they can

have different forms, such as Jordan network, Hopfield network, Echo state network, and Elman

network (e.g., Karunanithi et al., 1992; Jaeger, 2001; Haykin and Network, 2004; Elman, 1990).

Figure 3.9 shows Elman network comprising of input neurons, hidden neurons, one output neuron

and the context neurons.

Figure 3.9: Schematic illustration of a simple Elman network with one input, one hidden and one

output layer (Habarulema, 2011).
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One common type is the standard multi-layer NN with added feed-back loop. For recurrent

network which uses multi-layered NN, one can exploit the powerful non-linear mapping capabilities

and some form of memory (e.g., Jesan and Lauro, 2003). The outputs of each hidden neuron

are propagated to each context neuron and back to neurons in the hidden layer along with the

incoming training pattern at time, t + 1 from the input layer. The process is iterative and stops

when the number of iterations specified within the network is complete. Unlike back-propagation

network, weight adjustment of each copy of the network are obtained individually and averaged

over the number of time steps used in the training process (e.g., Hertz et al., 1991; Fausett, 1994).

Since RNN can be considered as back-propagation in time (Hecht-Nielsen, 1990) these NNs enable

correction of the time delay between the corresponding input parameters and the output parameter

during the training and validating processes. The major difference is the inclusion of an additional

layer consisting of context neurons and therefore allowing hidden layer patterns to be fed back to

themselves (Hecht-Nielsen, 1990; Elman, 1990). Therefore, the hidden layer has a corresponding

context unit in the RNN and the number of hidden neurons is equal to the number of context units

in the context or copy layer (Marra and Morabito, 2005). Detailed information and mathematical

relations regarding RNN can be obtained in several sources (e.g., Karunanithi et al., 1992; Jaeger,

2001; Haykin and Network, 2004; Elman, 1990).

3.3.3.3 ANN summary

NNs have capacity to learn the underlying relationships between inputs and outputs in modelling.

They have found many applications in ionospheric physics such as modelling electron densities and

critical frequencies of different layers (e.g., Cander, 2015; McKinnell and Poole, 2001; Ma et al.,

2005; Oyeyemi et al., 2007) and vertical plasma drift (Anderson et al., 2004). In this thesis, NNs

are used as one of the modelling techniques to model vertical E×B drift based on C/NOFS drifts

and magnetometer observations over the African sector.

3.4 Summary

This chapter provided details of the data sources with focus on magnetometer and C/NOFS vertical

E×B drift measurements/observations. The procedure of deriving △H which corresponds to EEJ

and hence local daytime vertical E × B was described. The process of minimizing outliers from
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C/NOFS vertical E×B drift based on median and median absolute deviation (Huber, 1981) was

demonstrated based on quiet and disturbed condition days. Finally, the EOFs, PLS and NNs

modelling techniques utilized in thesis were presented.
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Chapter 4

E×B drift model based on EOF

technique

4.1 Introduction

This chapter presents the model estimating the vertical E×B drift using EOF technique for the

first time. Most of the results and description in this chapter rely on the information presented

in the published paper (Dubazane et al., 2017). The EOF decomposition of vertical E × B drift

provides an opportunity to investigate its overall temporal variability over Addis Ababa, AAE

(9.02◦N, 38.77◦E, 0.18◦N geomagnetic). EOF basis functions and their associated coefficients are

used in the analysis and vertical E×B drift modelling. As mentioned earlier, EOF technique has

been used in ionospheric studies for modelling ionospheric parameters such as critical frequency

of the F2 layer, f◦F2 (Zhang et al., 2011); peak height hmF2 and propagation factor M(3000)F2

(Zhang et al., 2009, 2010) of the F2-layer, and total electron content (TEC) (e.g. A et al., 2011;

Uwamahoro and Habarulema, 2015). Derivation of vertical E × B drift from EEJ (△H) which

was used as observations is also described.

4.2 Magnetometer data and E×B drift observations

Vertical E × B drift is derived from horizontal magnetic field components (H) of low and equa-

torial stations based on the differential magnetometer approach (Rastogi and Klobuchar, 1990;

Anderson et al., 2004; Yizengaw et al., 2014a). Vertical E × B velocities during local daytime
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(0700–1700 LT) from 2008–2013 were derived using the empirical expression in equation (4.1)

presented in Anderson et al. (2004),

E×B = 5.2889 + 0.1947△H + 0.0001△H2 + 0.0000021△H3 (4.1)

In Anderson et al. (2004), the relationship between E × B and △H was developed based on

JULIA observations and magnetic field data for the period 2001–2003 over the Peruvian longitude

sector. This relationship was argued to be applicable in other longitudinal sectors (Anderson et al.,

2004), since the climatological daytime vertical ionospheric drifts over all the longitudinal sectors

are similar (Scherliess and Fejer, 1999). It was later demonstrated applicable over the Peruvian,

Phillipine and Indian sectors (e.g., Anderson et al., 2006; Anghel et al., 2007) and African sector

(Yizengaw et al., 2012). However, it should be mentioned that the solar activity period used to

derive the Anderson et al. (2004) relationship is different from the considered period (2008–2013)

in this study. As will be shown later, the applicability of the relationship may depend on the solar

activity period when the analysis is performed. In this study, the vertical E × B drift velocities

derived from △H for the period 2008–2013 were used throughout the model development and

validation in place of observations. However, data for year 2009 were not included since ETHI

magnetometer was not operational. In this context, it is important to state that the period of

our study includes the anomalous and prolonged solar minimum between solar cycles 23 and 24

(e.g., Chen et al., 2011; Liu et al., 2011; Bakunina et al., 2013; Solomon et al., 2013; Ezquer et al.,

2014; Perna and Pezzopane, 2016). The transition period between solar cycles 23 and 24 especially

during 2008–2009 exhibited lower thermospheric electron densities compared to the previous solar

minimum (e.g., Solomon et al., 2013). There were complex variations in different solar activity

indices (e.g., Perna and Pezzopane, 2016) and as a result, it was difficult to model/predict the solar

indices for 2008–2009. This led to challenges in accurate modelling and predictions of ionospheric

parameters even on a climatological basis (e.g., Bakunina et al., 2013; Zakharenkova et al., 2013).

The solar extreme ultra-violet (EUV) radiation represents the main ionization source of the F2

ionospheric layer (e.g., Tobiska, 1996; Chen et al., 2012), explaining most variance (90%) of the

ionospheric variability such as hmF2 and f0F2 (e.g., Elias, 2014). Although solar flux index F10.7

correlates well with solar activity based on EUV and X-ray emissions (Solomon et al., 2013), it

was shown that F10.7 cannot properly described ionospheric variations based on f0F2 for the very

anomalous minimum of solar cycle 23/24 (Perna and Pezzopane, 2016). Levels of geomagnetic
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activity were also reduced in solar cycle 23/24 (e.g., Richardson, 2013; Selvakumaran et al., 2016),

since geomagnetic activity results from coronal mass ejections (CMEs) and corotating interaction

regions (CIRs) originating from the Sun that evolve through the interplanetary medium before

impacting the magnetosphere (e.g., Brueckner et al., 1998; Gopalswamy et al., 2010). During the

rise of cycle 24, interplanetary CMEs and high-speed stream storm activity were low in comparison

with other cycles (e.g., solar cycle 20 and 23), and therefore no severe storm (Dst < −200 nT)

was seen (Richardson, 2013; Selvakumaran et al., 2016). With regard to our modelling efforts,

due to incomplete dataset especially for the ETHI station only 972 days in this period have data

and moreover 219 of these days have incomplete dataset which are not included in the model

development. Hence, only 753 days were available for the EOF model development. Out of these

753 days, data for 7 days (in different years) were randomly removed and reserved for model

validation and hence 746 days were used in developing the EOF model. Figure 4.1 presents

histograms showing the number of days (with complete data at 15 minute intervals from 0700–

1700 LT) considered per month in a given year from 2008– 2013 (with exception of 2009) in EOF

model development.

EOF model was developed using E×B values at 15-minutes intervals during daytime 0700–1700

LT, giving 41 values per day. The time period covered by the model is limited to 0700–1700 LT

due to the approach used in estimating E×B drift data. The differential magnetometer approach

reliably estimates EEJ and hence E×B drift during daytime only because the nighttime current is

too weak to be detected by the magnetometer (e.g., Yizengaw et al., 2012, 2014a). Since EEJ can

change abruptly on a day-to-day basis and especially during disturbed conditions, E×B data at

15-minute intervals will not be able to capture some EEJ dynamics. Based on the EOF modelling

technique, the 15-minute intervals data was used since it gave larger data-points in comparison

with high resolution (1-minute) E×B data.

4.3 E×B drift decomposition using EOF

The matrix of observations D was constructed by arranging day-to-day vertical E×B drift from

0700–1700 LT along y-axis (rows). Therefore columns of D show simultaneous temporal evolution

of E×B drift for the period 2008–2013. Hence D has the dimensions of the total number of days

(N) used in the modelling and local time (t) where E × B drift values were considered. Since
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Figure 4.1: Histograms showing number of days per month between 2008 and 2013 (excluding

2009) with complete dataset at 15 minute intervals during 0700–1700 LT.

N = 746 days are used in EOF analysis during daytime (0700–1700 LT) where E×B drift values

are taken at 15-minute intervals, D is a 746 × 41 matrix. D was used to compute the covariance

matrix C which has k × k dimension as follows,
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(4.2)

where DT is a transpose of data matrix. For i and j sets of observations, entries of C are co-

variance between the entries of Di and Dj defined as,

cij =
1

N

N
∑

l=1

(Dli − D̄i)(D̄lj − D̄j) (4.3)

where l refers to rows of matrix D and D̄i and D̄j are average values of the i-th and j-th E ×B

drift values, while N refers to the number of rows of D describing the temporal variability. The

eigenvectors of C are Ek, which describe temporal evolution of E×B drift for different orthogonal

directions (k = 41) and are obtained from equation (e.g., Riley et al., 1999; Zhang et al., 2009),

CEk = λkEk (4.4)

where λk refers to a set of the corresponding eigenvalues. C is a square symmetric matrix defined

by k orthonormal eigenvectors (Ek) and corresponding λk which can be obtained by solving the

characteristics equation,

|CkEk − λkEk|= 0.

Using the E×B drift values and computed Ek one can deduce the associated EOF coefficients

Ak as follows

Ak = DET
k (4.5)

where ET
k is a transpose of Ek. Hence, observations were decomposed into a series of Ek and Ak

as follows,

E×B(t, d) =

N=41
∑

k=1

Ak(d)Ek(t). (4.6)
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Table 4.1: The first ten EOF components describing variance of E×B drift.
EOF component Proportion of Variance(%) Cumulative Proportion of Variance(%)

A1×E1 51.41 51.41

A2×E2 28.11 79.52

A3×E3 9.07 88.59

A4×E4 4.47 93.06

A5×E5 1.58 94.64

A6×E6 1.11 95.75

A7×E7 0.65 96.40

A8×E8 0.52 96.92

A9×E9 0.34 97.26

A10×E10 0.31 97.57

Since most variance of original observations are contained within the first few EOF compo-

nents (Björnsson and Venegas, 1997), the series defined by equation (4.6) converges quickly. The

cumulative proportion of variance Prp of the E × B dataset as represented by the first p EOF

components is computed as follows,

Prp = 100×
∑p

k=1 λk
∑N=41

j=1 λj

% (4.7)

Similarly, the ratio of i-th eigenvalue to the sum of all eigenvalues indicates the proportion of

the total variance in the original data explained by the i-th EOF component (Hannachi, 2004),

ri = 100× λi
∑p

j=1 λj

% (4.8)

Hence, the order of importance of ri which is known as variance decreases with increasing order of

EOF components (PCs).

By considering E×B drift data distributed according to Figure 4.1, proportion of variance of

each EOF component are shown in Table 4.1. The EOF components explaining lower than 1% of

the total variance in the original dataset were regarded as noise and hence neglected. Therefore

the first six EOF components representing 95.75% of original E×B drift dataset were used in EOF

modelling. Figure 4.2 shows the variances of origin E ×B drift dataset in a orthogonal subspace

defined by E × B. Since Ek are eigenvectors of C, the diagonal entries of the covariance matrix

provide variances of original E × B drift dataset for each k orthogonal direction. The elbow of

the screeplot is often used as a guide of selecting the minimum number of EOF components which

are necessary to represent the overall variation of the original dataset (Jolliffe, 2002). The elbow

is found at the third orthogonal direction (E3) which is shown as third principal component (PC)
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Figure 4.2: Schematic showing distribution of variances of the original dataset in k = 10 orthogonal

directions (Ek).

in Figure 4.2, thus at least three EOF components representing ∼ 89% of original dataset could

have to be used. Hereafter, the eigenvectors (Ek) for each k direction is presented as ’Ek’.

Table 4.1 shows that the first and second EOF components represent ∼ 80% of total variance

of E×B drift showing how quickly the EOF series converges. The six EOF components represent

∼ 96% of total variance of E×B drift while the remaining components account for ∼ 4%.

Figure 4.3 (a)-(b) shows first six EOF basis functions and the associated EOF coefficients.

The dominant variation of the original dataset is represented by E1 (51.41%). E1 (black curve)

is highly correlated (correlation coefficient, R = 0.964) with average E × B drift (blue curve).

Hence, E1 can represent the diurnal variation of vertical drifts. Similarly, E3 (representing 9.07%

of the original dataset) showed clear correlation (R = 0.825) with average vertical drifts. E2

which represents 28.11% of original E×B drift observations contains semi-diurnal variation (e.g.,

Anderson and Araujo-Pradere, 2010). With reference to temporal averaged E × B drift (blue

curve), E3 is slightly shifted in time. Migrating semi-diurnal tides are thought to be a reason for

such local time shift (e.g., Millward et al., 2001)

Figure 4.3 (b) shows variation of different associated EOF coefficients (A4-A6) over a period

within 2008–2013. It should be noted that only 746 days within this period are included for

analysis. The associated EOF coefficients provide spatial patterns over long period (2008–2013).

The first EOF component A1 represents the long term changes of E×B drift with solar activity

as will be demonstrated in subsection 4.3.1. Since other higher EOF components present smaller

variability of E×B drift which is predominantly quiet during this period of study (e.g., Chen et al.,
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Figure 4.3: Diurnal variation of (a) EOF basis functions E1-E6, and (b) long-term variation of

associated EOF coefficients for period 2008–2013. Diurnal averaged E × B drift (blue curve) is

shown in the plots of E1 and E3 to show their agreement in variability.

2011; Richardson, 2013; Selvakumaran et al., 2016), the relationship of their associated coefficients

(A1-A6) with geomagnetic activity (presented by Dst index) was investigated. Figure 4.4 shows
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Figure 4.4: Comparison of Dst index with three EOF coefficients in panels (a)-(c) during the

period within 2008–2013.

long term variation of Dst index (which measures the level of energy stored in the ring current)

and changes of EOF coefficients (A4-A6) in panels (a)-(c). There is low or no correlation between

Dst and A4-A6 which can be largely associated with unusual low geomagnetic activity levels

observed during this period (e.g., Richardson, 2013; Selvakumaran et al., 2016). There was clear

no correlation when A1-A3 (not shown) were compared with changes in Dst index.

4.3.1 Modelling of the EOF coefficients Ak

After E × B drift decomposition as shown in equation (4.6), Ak were modeled as a function of

inputs which influence vertical drifts. Over one location, the main factors that play a major role in

E ×B drift variability on a long term include changes in solar activity and geomagnetic activity.

Richmond (1973) established that an increase in △H (which is proportional to daytime E × B

drift) of 10% gave an equal increase (10%) in the maximum electron density of the ionospheric
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E-layer (NmE) over the same time period. The relationship between solar activity and E×B drift

is well articulated in Anderson et al. (2004). In general daytime △H represents EEJ changes (∝
daytime E ×B drift) that are proportional to the product of the ionospheric conductivity σ and

the eastward electric field E in the low latitude E-region. At E region altitudes, the ionospheric

conductivity and EEJ have a direct relationship with NmE which mostly depends on the solar

activity F10.7 (e.g., Richmond, 1973; Yamazaki et al., 2010; Hamid et al., 2013),

EEJ ∝ σE ∝ NmE ∝ F10.7 + other factors (4.9)

Therefore in modelling E×B drift, it is appropriate to use a solar activity indicator represent-

ing the flux of the ionizing radiation which in this case is the solar radio flux F10.7. In contrast,

our period of study includes very low values of solar activity which are characterizing the pas-

sage between solar cycles 23 and 24, with a weak correlation between the E × B drift and the

solar index F10.7 (e.g., Chen et al., 2011; Liu et al., 2011; Solomon et al., 2013). It is well known

that the low latitude electric field is influenced during disturbed conditions either due to the dis-

turbed ionospheric dynamo (Blanc and Richmond, 1980) or by the penetrating electric fields of

magnetospheric origin (e.g. Fejer et al., 1995; Scherliess and Fejer, 1997). Disturbed ionospheric

dynamo leads to westward (eastward) electric field during local daytime (nighttime) while the

effect of penetrating electric field is the exact opposite when the Bz component of interplanetary

magnetic field (IMF Bz) is southward (Blanc and Richmond, 1980; Fejer and Scherliess, 1995).

If the IMF Bz reverses from southward to northward abruptly, westward electric field may be

induced within the low latitude ionosphere during daytime (e.g. Kelley et al., 1979; Wei et al.,

2009) resulting into downward vertical drift. Eastward electric field increases E × B for local

daytime low latitudes, while a westward electric field leads to a decrease in vertical drift. Since

the storm-time equatorial/low latitude electric field depends on the level of geomagnetic activity

(e.g., Scherliess and Fejer, 1997), the Dst index that represents energy stored in equatorial ring

current can be used to account for geomagnetic dependence of E×B variability during modelling.

Rastogi and Chandra (2015) used deviation of northward component of geomagnetic field △X as

a proxy of EEJ variation and obtained large correlation coefficient values of ≈ 0.75 and 0.95 be-

tween EEJ and Dst index during midday and midnight for days in September and October 1963.

Therefore, Dst and F10.7 indices were used as inputs since the solar and geomagnetic activities

influence the EEJ current and therefore E×B drift (e.g. Yamazaki et al., 2010; Hamid et al., 2013;

Scherliess and Fejer, 1997). Considering that E × B drift has annual and semi-annual variations
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(e.g. Chapman and Rao, 1965; Stening, 1995; Yamazaki et al., 2009) the associated coefficients

were modeled (e.g. A et al., 2011) as follows,

Ak(d) = rk1(d) + rk2(d) + rk3(d) + ǫk (4.10)

where ǫk is the error associated with each estimate for k = 1, 2, 3, 4, 5, 6. The expressions, rk1, rk2

and rk3, are described as follows,

rk1 = ak1 + bk1F10.7 + ck1Dst (4.11)

rk2 = {qk2 + ek2F10.7 + gk2Dst}cos
(

2πd

365.25

)

+ {ik2 + jk2F10.7 + sk2Dst}sin
(

2πd

365.25

)

(4.12)

rk3 = {qk3 + ek3F10.7 + gk3Dst}cos
(

4πd

365.25

)

+ {ik3 + jk3F10.7 + sk3Dst}sin
(

4πd

365.25

)

(4.13)

A factor of 0.25 in the denominator of rk2 and rk3 accounts for leap years, while d represents

day of the year. The coefficients ak1, bk1, ck1, qk2, ek2, gk2, ik2, jk2, sk2, qk3, ek3, gk3, ik3, jk3 and

sk3 were computed using least squares method.

From Figure 4.5 (a)-(b), there is a clear expected correlation (for most dataset) between solar

activity and ionospheric vertical drifts. However, there seems to be a low correlation between

F10.7 and E × B during the low solar activity (2008–2011). The reason for this low correlation

may be partly related to the level of solar activity during which the relationship between △H and

vertical drifts was developed by Anderson et al. (2004). Figure 4.6 shows variation of F10.7 index

from 1995–2016.

The magenta block in Figure 4.6 shows the period of data availability used to develop the

analytical expression by Anderson et al. (2004). The period covered by our model is indicated by

the red block. Anderson et al. (2004) developed the expression between E×B and △H based on

August 2001-December 2003 data, and as it can be seen in Figure 4.6, this period was more active

than our low solar activity study period of 2008–2011. Moreover, it should be emphasized that

relationship was developed over Jicamarca (Anderson et al., 2004), although it was demonstrated

to be useful in other longitude sectors based on limited datasets in terms of temporal coverage

(Anderson et al., 2006; Anghel et al., 2007; Yizengaw et al., 2012). Results in Figure 4.5 suggest
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Figure 4.5: Comparison of (a) long-term mean of E×B drift from 1000-1200 LT and F10.7 index,

(b) the first associated EOF coefficient A1 with F10.7 index for 2008–2013.

that the analytical expression in Anderson et al. (2004) may not be valid for all solar activity pe-

riods, especially for periods of very low and prolonged solar activity like the one characterizing the

transition between solar cycles 23 and 24 (e.g., Chen et al., 2011; Liu et al., 2011; Solomon et al.,

2013; Ezquer et al., 2014; Perna and Pezzopane, 2016).

4.4 Modelling results and discussion

4.4.1 Introduction

In this section vertical E × B drift derived for quiet (Kp ≤ 3) and disturbed (Kp > 3) condi-

tions were selected for validating the models. Vertical E × B drift velocities used for validation

were removed from the dataset utilized in model development. However, it should be noted that
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the period when the analytical expression between vertical E × B drift and △H was developed

by Anderson et al. (2004). The red block shows the period covered by the data used in the study

to develop the EOF model based on vertical E × B drift estimated using Anderson et al. (2004)

expression.

both datasets (for model development and validation) were derived using the same expression in

Anderson et al. (2004). Where possible the C/NOFS E×B observations are used as an additional

validation source. For quiet conditions, 6-days from complete (data-points=41 for each day during

0700–1700 LT) and incomplete (data-points<41 for each day during 0700–1700 LT) E×B datasets

(which were not used in either decomposition or model development) were selected for different

years within our period of study. Two disturbed periods (6-days) from 2011 (06-08 Jan 2011)

and 2013 (18-20 Sept 2013) comprising of complete and incomplete E × B drift data was only

used for model validation. It should be further emphasized that only 7-days of complete data was

only reserved for model validation purposes, while the rest of days used for validation purposes

consisted of E×B drift data with gaps (data-points<41 values per day) which was also not used

in either decomposition or modelling.

4.4.2 Quiet conditions

The EOF model’s results are presented alongside those of Scherliess-Fejer model (Scherliess and Fejer,

1997, 1999) in the estimation of day-to-day variability of E×B drift. Scherliess-Fejer model (here-
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after, SF) was developed using vertical E × B drift observations from incoherent scatter radar,

ISR (12.0◦S, 76.9◦W, magnetic dip 2◦N) in Jicamarca while the low inclination Atmospheric Ex-

plorer E (AE-E) with ion drift meter (IDM) on-board provides longitudinal dependence of vertical

ionospheric vertical drifts. The SF model was developed by fitting observations and inputs with

cubic-B splines basis functions, while day of the year (d), solar flux (F10.7) and local time (t) were

used as inputs (Scherliess and Fejer, 1999). Another quiet time vertical E×B drift model was de-

veloped by Fejer et al. (2008) using observations from Republic of China Satellite 1 (ROCSAT-1)

for a period within 1999–2004. This model agrees well with SF model, however it showed more

clear longitudinal effect that was lacking in the SF model. However, SF model still performs bet-

ter during nighttime. For storm time, SF model uses auroral electrojet index as the main input

and its results agree well with the disturbance dynamo model developed by Blanc and Richmond

(1980). As mentioned earlier, the E × B drift used as observations were derived from the re-

lationship by Anderson et al. (2004) which was found applicable in other longitude sectors such

as (Peruvian, Philippine, and Indian) (e.g. Anderson et al., 2004, 2006; Anghel et al., 2007) and

African sector (Yizengaw et al., 2012) due to the similarity of climatological daytime vertical drifts

(Scherliess and Fejer, 1999) at all longitudes. Figure 4.7 shows a comparison of averaged vertical

E × B drift from the quantitative relationship (Anderson et al., 2004) and climatological model

(SF) in Peruvian, Philippine, Indian longitude sectors during quiet conditions (Anderson et al.,

2006; Anghel et al., 2007). It is clear that the diurnal variation of average E × B drift inferred

from △H agrees approximately with those from the SF model for most seasons and longitude

sectors. However, the magnitude of the E×B drift values at different longitudes, local time and

seasons are sometimes slightly different. Standard deviation corresponding to △H inferred vertical

ionospheric drifts was about 5 m/s around noon and 2.5 m/s in the morning and afternoon hours.

Therefore the overall △H inferred E×B drift over different longitude were comparing reasonable

well with the SF model. With reported standard deviation values using climatological values, it is

reasonable to expect higher differences when performing day-day E×B drift variability as seen in

this chapter.

When available, in-situ C/NOFS E×B observations are included as an independent validation

data source. Data from IVM instrument on-board the C/NOFS satellite was used as independent

validation data source. The E × B drift at ±6◦ geographic longitude over AAE and within the

altitude range ∼ 400–500 km (e.g. Stoneback et al., 2011) near magnetic equator (± 4.0◦ geomag-
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Figure 4.7: Comparison of quiet times averaged vertical E × B drift derived from magnetic field

(red) (Anderson et al., 2004) and Scherliess-Fejer model (Scherliess and Fejer, 1999) (blue) for the

equinox period, June and December solstices in Peruvian, Philippine and Indian longitude sectors.

The number of quiet days used for a corresponding season and longitude are shown in each panel

(Anghel et al., 2007).

netic) were considered for validating our EOF modeled results. Figure 4.8 shows diurnal variation

of measured/observed E × B (black curve) drift, E × B estimated from EOF (magenta curve)

and SF models (blue curve) for selected periods in 2008, 2010, 2011, 2012 and 2013 during quiet

geomagnetic conditions (Kp ≤ 3). In-situ C/NOFS observations are shown as red-dots. It is

important to emphasize that the Anderson E × B drift data in Figure 4.8 (black curve) was not

used in EOF model development and therefore gives an independent way of evaluating the model’s

performance. In a similar way, for the rest of the discussion, the validation data was independent

of the model. In Figure 4.8, days 2008-09-06, 2012-12-28 and 2013-03-22 had incomplete E × B

drift data, however models have advantage of filling in these data gaps.

From Figure 4.8, the determined root mean square (RMS) error between E × B and vertical

drifts from SF and EOF models were 6.49 m/s and 1.59 m/s, respectively. SF model’s results

clearly show larger deviation from magnitude of E × B drift than vertical drifts estimated from
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Figure 4.8: Comparisons of SF (blue curve) and EOF (magenta curve) models in estimating the

quiet time vertical E×B drift (black curve). In-situ C/NOFS E×B drift observations are shown

as red-dots.

EOF model. Figure 4.9 (a)-(b) shows scatter plot of Anderson E × B drift with vertical drifts

estimated from EOF and SF models during quiet conditions. Computed correlation coefficient (R)

values between Anderson E ×B drift and E ×B drift from SF and EOF models were 0.728 and

0.90, respectively. Available C/NOFS E×B are closer to Anderson E×B drift (and EOF modeled

vertical drifts), than the vertical drifts from climatological SF model. From the limited dataset of

2008-08-27 and 2012-12-28, the R values between observed vertical drifts from C/NOFS and EOF

model were 0.891 and 0.577, respectively. The calculated R values between E×B from C/NOFS

and SF model were 0.887 and 0.268, for 2008-08-27 and 2008-12-28, respectively. Therefore, EOF

model also performs better than SF when estimating the in-situ C/NOFS observations.

Over the African sector there are no previous local modelling efforts to compare our results

with. But studies which uses time derivative of peak height of the F2 layer ( d
dt
(hmF2)) (e.g.,

Oyekola and Kolawole, 2010; Adeniyi et al., 2014) and △H (e.g., Yizengaw et al., 2012) in the

effort to estimate the vertical E × B drift are available. These works are mostly case studies,

except the seasonal variability analysis that was presented in Yizengaw et al. (2014a). Figure

4.10 shows quiet time vertical E×B drift derived from ionosonde in the African longitude sector
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Figure 4.9: Scatter plots of (a) Anderson E × B drift versus EOF model results, and (b) model

values (SF model) during quiet conditions

Figure 4.10: Comparison of vertical E × B drift in Africa (Ouagadougou, 12◦N, 1.8◦W, 15.9◦W

geomagnetic) and Scherliess-Fejer empirical model (Oyekola and Kolawole, 2010).
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(Ouagadougou, 12◦N, 1.8◦W, 15.9◦W geomagnetic) (Oyekola and Kolawole, 2010) using hourly

monthly median values data for May-August (left) and November-February (right) in 1989. In

Figure 4.10, the SF model (Scherliess and Fejer, 1999) was compared with ionosonde derived E×B

drift and it was reported that the SF model values are overestimated and underestimated during

daytime and nighttime, respectively.

4.4.3 Disturbed conditions

Lower panels of Figure 4.11(a)-(b) shows diurnal variation of E × B drift, and vertical drifts

estimated from the SF and EOF models when Kp > 3. Days 2011-01-06 and 2013-09-18 had

some missing data points for E×B drift. Variations of the geomagnetic indices (Kp and Dst) are

included in top panels, (a) and (b), to show the strengths of geomagnetic activities for each period

investigated.

Top panel of Figure 4.11 (a) shows that there was a minor storm which started during nighttime

of 06 January 2011 and continued to the next day. MaximumKp was 5 andDst reached a minimum

of -42 nT at 0600 UT on 07 January 2011. Top panel of Figure 4.11 (b) shows there was a minor

storm with maximum Kp of 4, and the minimum Dst value reached was -19 nT at 0500 UT on

19 September 2013. Both storms of 06-08 January 2011 and 18-20 September 2013 recovered very

slowly, a characteristic of corotating interactive region (CIR) storms (e.g. Miyoshi and Kataoka,

2005; Borovsky and Denton, 2006; Tsurutani et al., 2014) which normally occur during low solar

activity periods. While Figure 4.11(a) shows that the minimum Dst and maximum Kp values were

reached at a time not covered by our modelling results, it is known that CIR driven storms have

long recovery phases during which the ionosphere could remain active. For-example, Chen et al.

(2015) reported that during the recovery phase of CIR driven geomagnetic storms, positive electron

density response in low latitudes can last for 2-4 days. Positive storm effects in low latitudes during

storms were found to be associated with penetrating electric fields which are well known to cause

increase in E × B drift during daytime in low latitudes (e.g., Fejer et al., 1979; Fejer, 1997).

Considering the two storm periods, the calculated RMS error values were 4.57 m/s and 1.68 m/s

between observed E×B and vertical drifts from the SF and EOF models, respectively.

Figure 4.12 (a)-(b) show scatter plots of vertical drifts from EOF and SF models against

Anderson E × B drift during disturbed conditions (Kp > 3). The computed R values based on

81 data-points of E × B and vertical drifts from the SF and EOF models were 0.922 and 0.927,
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Figure 4.11: Lower panels: Diurnal variation of E × B drift (black) and vertical drifts estimated

with EOF (magenta curve) and SF (blue curve) models, respectively, for Kp > 3. Top panels:

Changes of Kp and Dst indices with time for the period indicated. The disturbed periods shown

are for (a) 06-08 January 2011 and (b) 18-20 September 2013.

respectively. For both storm periods, the EOF emerges as a better empirical model. It should

again be emphasized that the SF model is being compared with a dataset which is derived in

the same way as the data used to develop the EOF model. Unfortunately, there was no available

C/NOFS data to perform direct comparison with both SF and EOF models during the selected

disturbed conditions.
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Figure 4.12: Scatter plot of E×B drift versus EOF model results during disturbed days (07 Jan

2011 and 19 Sept 2013) (a), and with climatological model values (SF model) (b) during relatively

disturbed conditions (Kp > 3)

4.5 Summary

An empirical model for the African low latitude region of daytime vertical E×B drift, based on the

EOF decomposition, is proposed here. Our estimation of E×B drift was based on EEJ determi-

nation using low latitude magnetometer data (e.g. Rastogi and Klobuchar, 1990; Anderson et al.,

2002; Yizengaw et al., 2012), and the empirical formula developed by Anderson et al. (2004)

which has been found to be applicable in the Peruvian, Philippine, Indian and African sectors

(Anderson et al., 2006; Anghel et al., 2007; Yizengaw et al., 2012). A comparison between corre-

sponding outputs and those measured shows that the technique is promising, also when compared

with the climatological model. At the same time, we have also shown that the empirical formula

introduced by Anderson et al. (2004) presents some problem for very low values of solar activ-

ity like those characterizing the passage between solar cycles 23 and 24, with a poor correlation

between the E×B drift and the solar index F10.7.
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Chapter 5

High resolution E×B drift models based

on magnetometer and satellite

observations

5.1 Introduction

In this chapter, high resolution empirical models based on partial least squares (PLS) and artificial

neural networks (ANN) techniques are developed and used in the estimation of the vertical E×B

drift over the African sector. In contrast to EOF model which is based on vertical E×B drift data at

15-minute intervals, PLS and ANN are considered high resolution models since they were developed

from 1-minute data. Some of the results and description in this chapter are also presented in the

paper by Dubazane and Habarulema (2017). While ANN have previously been used in modelling

ionospheric vertical drifts in other longitudinal sectors (e.g., Anderson et al., 2004; Anghel et al.,

2007), this chapter presents the first results where PLS and ANN techniques are being used in

modelling vertical E × B drift over the African longitudinal sector. Due to a general lack of

observations over the African sector, an expression relating C/NOFS vertical E×B drift and △H

observations is developed during 2008–2013. Previously, Anderson et al. (2004) developed a third

order polynomial function of △H to estimate E × B drift based on JULIA and magnetometer

measurements. Very recently, Habarulema et al. (2017) investigated different functions relating

C/NOFS vertical E ×B drift and △H over Jicamarca (11.8◦S, 77.2◦W; 0.8◦N geomagnetic) and

validated the approaches with JULIA and ISR measurements from 2008–2014. The third order
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polynomial function emerged as a better expression to derive vertical E×B drift from △H from

quantitative relationship,

vDrift = −1.872 + 0.399△H − 0.0002△H2 − 6× 106△H3, (5.1)

This chapter presents the expression/equation (5.1) based on Habarulema et al. (2017) results

relating C/NOFS E × B drift and △H . Thereafter, the E × B drift values derived from our

developed quantitative relationship are used as observations in the modelling process.

5.2 Magnetometer and E×B drift observations over Jica-

marca

As mentioned earlier, studies of E×B drift started years ago over Jicamarca

(e.g., Woodman and Hagfors, 1969). Over this longitude sector, there exists more instruments

for providing vertical E ×B drift measurements such as pair of low latitude magnetometers (for

local daytime EEJ), Jicamarca’s Incoherent Scatter Radar (ISR) (e.g., Woodman and Hagfors,

1969; Anderson et al., 2004; Stoneback et al., 2011). It is for this reason that Habarulema et al.

(2017) chose to investigate the long-term estimation of C/NOFS vertical E × B drift velocities

from magnetometer △H over Jicamarca so that it would be possible to validate the developed

expression with actual data. In their analysis, linear, quadratic, third to fifth order polynomial

functions were investigated and validated using ISR measurements during 2008–2014.

Figure 5.1 shows a scatter plot of vertical ionospheric drifts from ISR (red-dots) and JULIA

(black-dots) and derived vertical E × B drift using the third order polynomial of △H . The

computed R values of 0.78 and 0.83 for ISR and JULIA, respectively, confirm the reliability of

the quantitative relationship (equation (5.1)) developed by Habarulema et al. (2017). Diurnally,

Figure 5.2 shows a comparison of the observed ISR and derived vertical E × B drift velocities

for days (2014-04-23, 2014-05-06, 2014-11-26 and 2014-12-16) which were not covered during the

derivation of the relationship.

Table 5.1 shows a summary of the correlation coefficient (R) and root mean square error

(RMSE) values obtained for different functions, showing that the third order polynomial yields

high R and low RMSE making it the most appropriate for estimating vertical E×B drift from△H .

Habarulema et al. (2017) stated that their expression was developed using data from September
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Figure 5.1: Scatter plots of vertical E×B drift, from the ISR (red-dots) and JULIA (black-dots)

and derived E×B (m/s) derived from △H measurements (Habarulema et al., 2017).

Table 5.1: Correlation coefficient (R) and root mean square error (RMSE) values between E×B

drift estimated from the C/NOFS E×B drift-magnetometer△H relationship and ISR observations

over Jicamarca for period 2008–2014 (Habarulema et al., 2017).

Function of △H for E×B estimation R RMSE (m/s)

Linear 0.762 7.27

Quadratic 0.774 7.309

Cubic 0.777 7.134

Fourth order polynomial 0.774 7.198

Fifth order polynomial 0.756 7.437

2008 to March 2014 and results in Figure 5.2 indicate that the relationship achieves generalization.

While there are some slight overestimations and underestimations, their results showed that the

vertical ionospheric drift derived from third order polynomial of △H agrees well with vertical

E × B drift observations from ISR. Based on these results, the third order polynomial function

was adopted in deriving the quantitative relationship between C/NOFS E×B drift and △H over

the African longitude sector. It is however noted that Anderson et al. (2004) used the same order

of polynomial in estimating JULIA E×B drift from △H over Jicamarca during 2001–2003.
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Figure 5.2: Comparison of ISR observed and derived E ×B (m/s) for randomly selected days in

2014 where measured data exists. Observed and derived E×B (m/s) are plotted in black and red

dots respectively (Habarulema et al., 2017).

5.3 Relationship between △H and C/NOFS vertical drift

over the African sector

As mentioned in Chapter 3 (section 3.2.1) and Chapter 4, the difference of horizontal component of

geomagnetic field (△H) were derived from magnetic field data using Addis Ababa, AAE (9.0◦N,

38.8◦E; 0.18◦N geomagnetic) and Adigrat, ETHI (14.3◦N, 39.5◦E; 6.0◦N geomagnetic) stations.

The IVM sensor on-board C/NOFS satellite was a source of vertical E×B drift (Stoneback et al.,

2011; Rodrigues et al., 2011) as described in section 3.2.2. The development of the expression

is limited to 2008–2013 when the two magnetometer stations were simultaneously operational to
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allow for the estimation of EEJ. During the period of this research, publicly available C/NOFS

data was from 2008–2014.
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Figure 5.3: (a) Distribution of C/NOFS E×B observations over AAE (0.18◦N ±8◦ geomagnetic,

38.8◦E ±3.5◦), (b) daytime △H measurements used in the period of study (2008–2013) , (c)

comparison of the variability of daytime magnetic field perturbation (△H) and C/NOFS E × B

at 1-minute intervals.

Figure 5.3 (a)-(b) shows the distribution of C/NOFS E×B drift and △H dataset used in the

effort to investigate their quantitative relationship. It can be seen that these datasets do not always
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occur at similar times. The relationship is developed based on dataset for a period 2008–2013

(excluding 2009 where △H measurements are missing). C/NOFS observations are not uniformly

distributed in the period investigated with data mostly missing in 2008 and in the second half of

2013. Also a significant amount of △H data are missing in 2008, 2011 and 2013, in addition to

the gap for the whole 2009. Figure 5.3 (c) shows a scatter plot of local daytime △H and C/NOFS

E × B values taken at one-minute intervals (when both datasets were available) from where a

mathematical relationship between the two sets of data was deduced. Longitudinal variations of

vertical E × B drift are taken at 38.8±11.2 to avoid large local time difference in observations,

while C/NOFS observations within ±4 degrees geomagnetic latitude from the geomagnetic equator

are based on the fact that the EEJ is a narrow strip of enhanced current within ±3◦ from the dip

equator. C/NOFS E×B observations within altitude range (400–500 km) have been used in other

investigations (e.g., Stoneback et al., 2011; Yizengaw et al., 2014a; Rodrigues et al., 2015).

The correlation coefficient (R) value of 0.50 was computed based on N=3140 data-points of

C/NOFS E × B and △H . Although this R value seems to be low, other studies have reported

comparable results using satellite and magnetometer observations. For example, recently using E×
B drift from Republic of China Satellite 1 (ROCSAT-1) and EEJ (from ground-magnetometer data)

over the Indian and Japanese sectors during solar maximum period (2001–2003), Kumar et al.

(2016) showed R values of ≈ 0.61 and 0.56 over the Indian and Japanese sectors, respectively.

They attributed the low R values to altitude difference since ROCSAT-1 provides E × B at 600

km, while EEJ is a narrow band of current flowing at lower altitude within the E region (≈ 105

km). Figure 5.4 shows seasonal variation of ionospheric vertical drifts from ISR and JULIA at

different altitudes (Hui, 2015).

Investigations of quiet time E × B drift variability has shown that the bimonthly vertical

ionospheric drifts change linearly with altitude, it can be often increasing and decreasing during

morning and afternoon hours (Hui, 2015). From Figure 5.4, large bimonthly averaged vertical

E × B drift velocities were observed in March–April and September–October. Largest averaged

upward vertical E × B drift was seen in September–October (Hui, 2015). The differences in

altitudes is one of the major reasons for the low correlation between C/NOFS E × B and △H

due to the different physical mechanisms at different heights (e.g., Heelis et al., 1974; Rishbeth,

1997). Nevertheless, using C/NOFS and △H data that gave R value of 0.57 over Jicamarca,

Habarulema et al. (2017), showed that it was still possible to estimate ISR vertical E × B drift
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Figure 5.4: Bimonthly averaged seasonal variations of vertical E × B drift measured at different

altitudes (Hui, 2015).

from △H . Kumar et al. (2016) reported low R values of ≈ 0.60 and 0.52 between E × B and

△H during quiet conditions (Kp < 3) over Indian and Japanese sectors, respectively. While we

have not performed the study based on different geomagnetic activity levels, the R value of 0.50

obtained in our study is consistent/comparable with reported results (Kumar et al., 2016) and

suggests that C/NOFS E×B drift and △H may be driven by different processes which depend on

altitude. Neutral winds at both E and F regions potentially lead to vertical E×B drift. However,

the effect of winds at the different altitudes also depends on the strength of the Pedersen and Hall

conductivity at different local times (e.g., Fambitakoye et al., 1976; Crain et al., 1993; Fang et al.,

2008; Maute et al., 2012). In the E-region, the Hall conductivity is dominant, while the Pedersen
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conductivity governs F region dynamo. Winds in the low altitude correlates positively with △H ,

while westward winds in the high altitudes generates an upward/poleward electric polarization field

which governs eastward currents around magnetic equator (Fang et al., 2008). Based on simulated

results, Maute et al. (2012) concluded that only winds below about 200 km are contributing in the

upward vertical E×B drift.

Using dataset shown in Figure 5.3 (c), a relationship between the C/NOFS E×B drift and△H

observations (at 1-minute interval) was developed based on the similar procedure in Anderson et al.

(2004) and Habarulema et al. (2017), yielding the following expression

vdrift = −14.726 + 0.3098△H + 0.0005△H2 + 0.0000032△H3, (5.2)

where vdrift is the estimated vertical E × B. Equation (5.2) was developed based on C/NOFS

observations and hence it contains less data than the overall △H data available. However △H

data is completely missing during 2009, hence this dataset is not included in the development

of the quantitative relationship. The expression in equation (5.2) was used to derive E × B

drift values from the entire △H dataset during 2008–2013. Figure 5.5 (a) shows a sample of

E × B drift results extracted at 15-minutes intervals plotted with solar flux index (F10.7), while

Figure 5.5 (b) shows scatter plot of E×B drift derived from our relationship and equation (1) in

Anderson et al. (2004). High R value of ≈ 0.99 was calculated based on N=30 996 data-points of

E×B values (with a resolution of 15-minute intervals). Therefore, these quantitative relationships

compare well with each other, although our equation (5.2) gives larger negative E×B values. Large

negative E×B values from equation (5.2) could be due to the magnitudes of C/NOFS observations

which have an average ≈ -10 m/s over the entire period of study. Based on Thermosphere-

Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) simulation, Fang et al. (2008)

observed the negative intercept in a linear relationship between E × B and △H datasets and

the physical meaning was centered on the EEJ and off-equatorial wind-driven current system at

different altitudes. However, large negative values of △H can also be seen in Figure 5.3 (b)–(c)

and may be attributed to reversal of EEJ current mainly during quiet conditions. The reversal of

EEJ during daytime is known as counter-electrojet (CEJ) and is more common during low solar

activity periods (Rastogi, 1974; Patil et al., 1990). It was realized by Mayaud (1977) that during

most magnetically quiet conditions, CEJ events were from minimum solstice months. Daytime

△H measurements consists of ≈ 40% of total observations within this period of study which are

most quiet (Kp ≤ 2) and some have large negative values at different local times. This number
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rises to ≈ 72% when considering Kp ≤ 3 as a criterion for selecting quiet periods. Therefore, large

depression of△H (CEJ signatures) are also expected to contribute to negative E×B values derived

from equation (5.2). Solar semi-diurnal tidal modes were reported by Alex and Mukherjee (2001)

to be source of CEJ over Addis Ababa, AAE (9.0◦N, 38.8◦E geographic) and Trivandrum, TRD

(8.5◦N, 77.0◦E geographic) for the period 1991–1993. They reported that the varying amplitude

of semi-diurnal tides influence the local time distribution of CEJ. Alex and Mukherjee (2001)

observed CEJ during morning (0600–0800 LT), noon (1100–1200 LT), afternoon (1300–1400 LT)

and evening (1500–1800 LT).
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Figure 5.5: (a) Long-term variability of E×B drift derived from our relationship and F10.7 index

for 2008-2013, (b) scatter plot of E ×B values derived from our relationship and equation (1) in

Anderson et al. (2004) denoted as E×BA, respectively.

Recently, geomagnetic field data recorded in 2009 (mean annual sunspot number Rz = 3.1) over

South American, Philippine and African sectors were used by Rabiu et al. (2017) to investigate

longitudinal variation of EEJ and CEJ during quiet conditions (Kp ≤ 3). Their results revealed

larger occurrence of CEJ over the African sector; AAE and Ilorin (8.50◦N, 4.68◦E) which dominated

during morning and evening periods. CEJ occurrence during morning and afternoon hours over

the western Africa longitudinal sectors was reported as seasonal effect (Doumouya et al., 1998).
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Our period of study included one of the anomalous and prolonged solar minimum conditions that

were extremely quiet (e.g., Ezquer et al., 2014; Perna and Pezzopane, 2016) and as a result the

variability analyses relating ionospheric and solar activity behavior were very complicated (e.g.,

Chen et al., 2011; Solomon et al., 2013). From Figure 5.5 (a) it can be observed that there is

some correlation between F10.7 and ionospheric vertical drifts, although the investigated period

have a significant amount of missing E×B drift data. Previously, a correlation coefficient of 0.53

between EEJ and F10.7 datasets for a period 1996–2005 in the east Asian region was reported

(Yamazaki et al., 2010) based on quiet condition (Kp ≤ 2+). Hamid et al. (2013) used EEJ and

F10.7 datasets in 2011 and revealed a 5-day and 7-day peaks when performing the auto-correlation

of EEJ, and they suggested that modulation of the EEJ by variations from lower atmosphere could

have resulted in lower correlation with F10.7 index. Due to a close relationship between EEJ and

vertical E×B drift, waves from lower atmosphere may contribute to the low correlation observed

between the derived E × B drift and F10.7 index during some periods shown in Figure 5.5(a).

Using the derived vertical E×B drift values (with equation (5.2)), E×B drift models have been

developed based on PLS and ANN approaches with relevant physical/geophysical inputs described

in the next section.

5.4 Modelling Inputs

Different physical/geophysical input parameters which potentially influence vertical E × B drift

were investigated before developing vertical drift models. Thus diurnal and seasonal variations

(including geomagnetic activity) of E×B drift were considered during modeling.

5.4.1 Diurnal variations

Observations have shown that daytime vertical E×B drift peaks at local noon and is a minimum at

sunrise and sunset (e.g., Farley et al., 1986; Haile, 2003; Adebesin et al., 2013). Post-sunset upward

plasma drift (pre-reversal enhancements) is seasonal and solar cycle dependent (e.g., Fejer et al.,

1991; Vichare et al., 2012; Adebesin et al., 2013) and thereafter the vertical E×B drift is directed

downwards. EEJ which is a basis of our investigation is a local time phenomenon and hence short

term temporal E×B drift changes can be represented by local time, t. To ensure data continuity

between consecutive days t was decomposed into cyclic components (Poole and McKinnell, 2000),
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tc = cos

(

2πt

24

)

, ts = sin

(

2πt

24

)

(5.3)

where tc and ts refer to cosine and sine components of the t, respectively.

5.4.2 Seasonal variations

Vertical E×B drift largely shows annual variations where it peaks during equinox and is minimum

at solstice (e.g., Woodman et al., 1977; Fejer et al., 1979; Yamazaki et al., 2010). Characterization

of EEJ revealed annual variations, however semi-annual variations have been reported predominant

(e.g., Stening, 1995; Yamazaki et al., 2009, 2010). Figure 5.6 shows variation of EEJ (and therefore

E×B drift due to their close relationship) in the eastern Asian region with day of the year (d) for

the period 1996–2005 during quiet condition (Kp ≤ 2+).

 

 

 

 

 

 

 

 

Figure 5.6: Variation of EEJ at Davao station (7.0◦N, 125.4◦E) as a function of the day number.

The solid gray-line refers to 30–day–centered moving average of the data. The vertical dashed

lines indicate the equinoxes (Yamazaki et al., 2010).

Annual and semi-annual periodic structure of the E × B drift can be represented by Fourier

series of day of the year (e.g., Alken, 2009) as shown below,

dca = cos

(

2πd

365.25

)

, dsa = sin

(

2πd

365.25

)

(5.4)

dcs = cos

(

4πd

365.25

)

, dss = sin

(

4πd

365.25

)

(5.5)
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where dca and dsa are cosine and sine components of day of the year (d) capturing annual -

variations, while dcs and dss represent cosine and sine components of d for semi-annual variations.

A factor of 0.25 was added in 365 days of the year to account for leap years.

From Figure 5.6, it is clear that EEJ has a predominant semi-annual variation in accordance

with the work by Stening (1995). Yamazaki et al. (2010) suggested that the observed semi-annual

variations are associated with geometric effects as they cause semi-annual changes of solar ioniza-

tion and heating of the ionosphere at equatorial latitudes.

5.4.3 Geomagnetic activity

Magnetospheric electric fields during intense geomagnetic storms could partially penetrate to the

low latitude ionosphere as prompt penetration electric field (PPEF) thereby modifying electrody-

namics (e.g., Fejer and Scherliess, 1995). If the Bz component of IMF is southward, the resultant

electric field is eastward (westward) during daytime (nighttime), respectively. This additional

eastward field enhances the magnitude of daytime vertical E×B drift causing significant changes

in ionospheric density structure which could be felt even at midlatitude ionosphere (e.g., Nishida,

1968). Other phenomena of geomagnetic activities such as ionospheric disturbance dynamo could

cause westward current (reducing the normal daytime eastward EEJ) and thus downward vertical

E×B drift during daytime (e.g., Nishida, 1968; Blanc and Richmond, 1980), in low latitude iono-

sphere. Figure 5.7 shows the correlation between changes in △H (and therefore E×B drift), and

Bz component of the interplanetary magnetic field (IMF Bz) and interplanetary electric field (IEF)

for 09 August 2008 (Yizengaw et al., 2011b). The △H and vertical E×B drift data are over AAE,

African sector. They reported reduction in the △H during daytime and therefore CEJ signatures.

Yizengaw et al. (2011b) noticed a complete reversal of △H around 0730–0840 UT when IMF Bz

turns north for a short duration, thus leading to westward zonal electric field and CEJ as suggested

in (e.g., Kikuchi et al., 2000).

Disturbance storm time (Dst) and symmetric H-component (SYM-H) indices measure storm

time ring currents (Sugiura, 1963; Scherliess and Fejer, 1997; Wanliss and Showalter, 2006). In

our modeling, we used the SYM-H index due to its high time resolution and ability to show fast

changes in equatorial ring current during storms. Equatorial electric field during active geomag-

netic conditions were reported to depend on the history and present geomagnetic activity levels

(e.g., Scherliess and Fejer, 1997; Yamazaki and Kosch, 2015). Therefore, the history of geomag-
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Figure 5.7: (Top panel) Variation of △H (solid black curve) obtained from magnetometer data

near dip equator (AAE) and off the equator (ETHI) used in the estimation of vertical E×B drift

(solid blue curve). The dashed-dotted curves are H variations after baseline correction for AAE

(blue) and ETHI (black). The middle and bottom panels show the interplanetary electric field

(IEF) and Bz component of interplanetary magnetic field (IMF Bz) on 09 August 2008 (middle

panel) solar wind electric field estimated from ACE data, and (bottom panel) IMF Bz orientation

(Yizengaw et al., 2011b).

netic activity level is represented in modeling as a rate of change of SYM-H ( d
dt
(SYM-H)). Other

geomagnetic indices include Auroral Electrojet (AE) which measures geomagnetic activities in

the auroral region (Davis and Sugiura, 1966) and Kp (Bartels, 1963) index that provides a gen-

eral measure of geomagnetic activity level using magnetic field observations of the mid and high

latitudes.
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5.4.4 Solar activity

Solar flux index F10.7 is a proxy of Extreme Ultraviolet radiation (EUV) released by the Sun (e.g.,

Hinteregger, 1976; Warren et al., 1998). The EUV ionizes neutral atoms in the Earth’s atmosphere

and thus different amounts of electrons and ions exist at different layers of the atmosphere. Post

sunset upward E×B drift observations from Jicamarca were reported to significantly change with

F10.7 than daytime drifts (e.g., Fejer et al., 1991). Vichare et al. (2012) confirmed these findings

using observations in the Philippine sector at 120◦E longitude. E-region ionospheric conductivity

σ and peak electron density NmE change throughout the day and they are roughly related to the

solar flux index F10.7 (e.g., Richmond, 1973) as follows,

EEJ ∝ σE ∝ NmE ∝ F10.7 + other factors (5.6)

where E is the eastward electric field. With exception of the extended solar minimum (2008–2010),

Figure 5.5 shows that the derived E ×B drift approximately has a linear relationship with solar

flux index F10.7 and hence the latter was used as a modelling input.

5.5 Selection of inputs for modelling E×B drift

A total of 15 combinations were developed using linear regression (also known as LS) to quantify

the influence of each parameter on E ×B drift. The combinations (LS1–LS15) use different sets

of inputs shown in Table 5.2. LS is a well-known statistical learning technique (Pearson, 1896)

that has been previously used in estimating EEJ and daytime E×B (e.g., Anderson et al., 2004;

Stolle et al., 2008; Alken, 2009; Yamazaki et al., 2010). Vertical E × B drift data inferred from

pair AAE-ETHI from 2008-2013 (except 2009) were divided into modeling and validation datasets.

Four quiet (Kp ≤ 3) days in each year, and four disturbed (Kp > 3) periods in years (2008, 2010,

2011, and 2012) were reserved for validation. The combinations are developed based on 1-minute

datasets, however for presentation purposes E×B drift datasets taken at 3-minute intervals were

used in validating the models. This is possible since these datasets (3-minute intervals) were not

averaged, merely taken at every 3-minute intervals. Figure 5.8 shows the performance of 15–

combinations of input parameters investigated in the effort to estimate the vertical E × B drift.

Performance of each combination was evaluated based on the validation dataset described above

and compared statistically using root mean square error (RMSE) and correlation coefficient R.
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Figure 5.8: A statistical comparison of LS models of quiet time (a) and storm (b) E × B drift

using RMSE and R.

A better model is described by lower RMSE calculated using,

RMSE =

√

√

√

√

1

N

N
∑

i=1

(E×Bmod − E×Bobs)
2 (5.7)

where E×Bmod and E×Bobs are modeled and observed E×B values, respectively.

From Figure 5.8 (a) it is clear that combinations LS1, LS4, LS5, LS7, LS9, LS11, LS13 and

LS15 models have comparable RMSE and R values during quiet conditions. Figure 5.8 (b) which

represents the performance of the models during disturbed condition (Kp > 3), clearly shows that

LS7 and LS15 are better combinations with comparable R and RMSE values. LS7 and LS15

showed identical R and RMSE values of ≈ 0.62 and 5.35 m/s. Based on statistical analysis

and physical importance of each investigated input, LS15 was chosen as an ideal/representative

combination. The LS quantitative relationship of E×B drift from model set of inputs described

by LS15 is as follows,

vlm = −22.790 + 1.275dca + 0.3275dsa − 1.9420dcs + 0.1111dss

−11.680tc+ 0.8074ts+ 0.05703SYM-H+ 0.04488F10.7 + 0.1934
d

dt
(SYM-H)

(5.8)

where vlm is a plasma drift velocity estimated using least-squares (LS) model.

Before proceeding with the final model development, we investigated the Gaussian-like func-

tions Gtµ of local time to describe the diurnal variation of EEJ and therefore E × B drift
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Table 5.2: Parameters used to develop different LS models of E×B drift.
Model Input combinations

LS1 t, d

LS2 t, F10.7

LS3 t, SYM-H

LS4 t, d, F10.7

LS5 t, d, SYM-H

LS6 t,F10.7, SYM-H

LS7 t, d, F10.7, SYM-H

LS8 t, d

dt
(SYM-H)

LS9 t, d, d

dt
(SYM-H)

LS10 t, F10.7, d

dt
(SYM-H)

LS11 t, d, F10.7, d

dt
(SYM-H)

LS12 t, SYM-H, d

dt
(SYM-H)

LS13 t, d, SYM-H, d

dt
(SYM-H)

LS14 t, F10.7, SYM-H, d

dt
(SYM-H)

LS15 t, d, F10.7, SYM-H, d

dt
(SYM-H)

(Doumouya et al., 2003),

Gtµ = exp

(

−t− µ

w0

)

(5.9)

where µ (= 10, 11, 12, and 13) is a parameter which represents occurrence of peak values of

EEJ (and thus E × B drift) at different local times with respect to different days and seasons,

w0 is the fitting parameter governing the time window of the Gaussian-like functions (e.g., Haile,

2003; Doumouya et al., 2003). This parameter is data-driven and it was determined by trial and

error; where w0 = 1hour was used in our analysis. Figure 5.9 shows the diurnal variation of △H

(EEJ) taken from observations in the period 2008–2013 at different years and seasons to illustrate

different local time occurrence of day-to-day peak EEJ.

From Figure 5.9, it can be seen that peak △H occurs at different local times for such different

periods. Settings with either one or more combinations of Gtµ centered at different local times

defined by parameter µ = 10, 11, 12, and 13 were investigated and the input space with all µ

values (10, 11, 12, and 13) was found to have an effect on improving E×B results.

Using the same validation dataset, the resulting setting (re-formulated LS15) was performing

better (RMSE ≈ 6.22 m/s and R ≈ 0.72) than the one based on cyclic components local time

(RMSE ≈7.02 m/s and R ≈ 0.58). Hence, the Gtµ centered at µ = 10, 11, 12, and 13 along with

other inputs were used to develop the functions estimating E×B drift. Subsequently, the artificial

neural network (ANN) and partial least squares (PLS) models were developed using Gaussian

functions of t, centered at µ = 10, 11, 12, and 13 which replaced cyclic components of local time.
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Figure 5.9: The diurnal variation of the △H illustrating seasonal dependence and day-to-day

occurrence of peak EEJ at different local times for some days during the period 2008–2013.

5.6 Developing high resolution models

5.6.1 PLS technique

Regression based on PLS technique was used to model the vertical E×B drift velocities derived

from △H measurements during the period 2008–2013. For a number of predictors which could

be correlated, it is possible to over-fit a PLS model during the development. In this work, 10-

fold cross-validation was used to test the significance of each PLS component (Höskuldsson, 1988;

Wold et al., 1993). In cross-validation the data, X and Y, is split into a number of blocks, M,

and a one orthogonal vector model is built from remaining (M-1) blocks of data. Based on this

one orthogonal vector model, the excluded block of data is used for testing and an individual

PRedicted Error of Sum of Squares (PRESS),

PRESS1 =
10
∑

i

|yi − ŷi|2, (5.10)

82



is calculated for one orthogonal vector, where yi and ŷi are the actual and predicted response of

the i−th excluded block of data. The procedure is repeated, excluding each block of data once,

and then the total of PRESS values corresponding to respective 10-blocks of excluded data is

calculated for one orthogonal vector by summing the individual PRESS values. PRESS estimates

the predictive ability of the model. Figure 5.10 shows a procedure of cross-validation based on

PRESS for choosing optimal number of latent/orthogonal vectors (Geladi and Kowalski, 1986).

PRESS =

p
∑

l=1

k
∑

i=1

(yli − ŷli)
2 , (5.11)

where yli and ŷli are the actual and predicted response of excluded block of data for each l orthog-

onal vector. The procedure is repeated for each orthogonal vector (l = 2, 3, 4, ..., p) until PRESS

reaches a minimum value.

Figure 5.10: Schematic illustrating the cross-validation process of choosing the optimal PLS com-

ponents (orthogonal/latent vectors) using PRESS (Geladi and Kowalski, 1986).

Therefore, optimal number of orthogonal vectors which are PLS components are taken around

minimum PRESS value (Stone, 1974; Wold, 1978; Geladi and Kowalski, 1986). From Figure 5.10,

it is clear that PRESS reached a minimum value near the PLS component of 7, hence similar

procedure was used in our study. It should be emphasized that the cross-validation above was

performed to train/optimize the PLS model. From a set of 11-inputs described in section 5.4 and

5.5, the estimated ionospheric vertical drift Ŷ was calculated from seven orthogonal components,

Ŷ =
7
∑

i=1

tibi where, bi = uT
i ti(t

T
i ti)

−1 (5.12)
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For each set of orthogonal vectors (ti and ui), bi represents a set of coefficients associated with

each input parameter as described in details in Chapter 3, section 3.3.2. The resulting relationship

between ionospheric vertical drift and the inputs considered was obtained as,

vpls = −18.090 + 8.410Gt10 + 3.937Gt11 + 4.705Gt12 + 3.182Gt13 + 1.297dca + 0.3225dsa

−1.942dcs + 0.09268dss + 0.05754SYM-H + 0.04536F10.7 + 0.1856
d

dt
(SYM-H)

(5.13)

where vpls is the E ×B drift estimated from the PLS technique. PLS was discovered in the field

of econometrics by Wold et al. (1966). It neglects the fundamental assumption of linear regression

where a response is estimated from independent variables and no collinearity. We have used PLS

modeling approach based on Non-linear Iterative Partial Least Squares (NIPALS) described in

section 3.3.2.1. This work presents the PLS technique in the ionospheric studies for the first time.

5.6.2 ANN technique

Estimation of vertical E×B drift has also been performed with ANN, since it has the ability to learn

underlying rules and therefore attractive over traditional classification and regression techniques

(e.g., Rumelhart and Mcclelland, 1986; Fausett, 1994). Back-propagation algorithm has been used

due to its popular supervised procedure of updating connection weights in multi-layered neural

network (Rumelhart and Mcclelland, 1986; Le Cun et al., 1988).

A set of 11-inputs described in section 5.4 and 5.5 and E×B drift values were used in the devel-

opment of the neural network. Large fraction of dataset was used for training (90%), while the re-

maining data was used for validation or optimization (5%) and testing (5%) the performance of the

resulting ANN model. For neural network training, the Levenberg-Marquardt back-propagation

algorithm was used due to its fast and stable convergence (Levenberg, 1944; Marquardt, 1963).

Number of neurons for hidden layers of a neural network were determined statistically using the

RMSE between observed and predicted E × B drift values. Figure 5.11 (a) shows a schematic

illustration of the neural network setup, where L1, L2, L3 are sets of neurons defining the input,

hidden and output layers, respectively. Figure 5.11 (b) shows RMSE values between the observed

and predicted E×B drift values when the number of neurons in the hidden layer (L2) were varied

from 11-20. From Figure 5.11, the left pointed arrow in the direction where errors are propagation

backward from output layer for updating the connection weights, while right pointed arrow refers
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Figure 5.11: (a) Schematic showing architecture of feed-forward artificial neural network, (b)

variation of RMSE computed from predicted and observed E ×B drift values (for all validation

dataset) when the number of neurons in a hidden layer varies from 11-20.

to information fed into the network for the learning process. Low RMSE values of ≈ 6.29 m/s and

6.23 m/s were seen when 14 and 20 neurons were used, respectively. However, for artificial neural

network (ANN) model generalization 14-neurons were used for the neural network architecture.

Since the ANN can reveal most underlying complex relationships governing a process, it has

also been used in ionospheric studies, for example, in the modeling of vertical E × B drift (e.g.,

Anderson et al., 2004; Anghel et al., 2007; Joshi and Sripathi, 2016) and other ionospheric param-

eters (e.g., Uwamahoro and Habarulema, 2015; Altinay et al., 1997; Cander, 2015). Cander (2015)

modeled f◦F2 and MUF (3000)F2, and the resulting model gave RMS values of around 0.4 MHz

between the actual observations and modeled results. Cander (2015) model was good considering

the period of study, 6–10 February 1986 characterized by a minimum value of the Dst index equal

to 307 nT. Anderson et al. (2004) estimated vertical E × B drift from JULIA using △H as the

input. They achieved RMSE value of ∼ 4.0 m/s when comparing the observations with ANN
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modeled results.

5.7 RESULTS AND DISCUSSION

In this section, both measured and modeled results are presented at 3-minute intervals during

local daytime (07:00-18:00 LT) for the sake of limiting the size of graphics for a thesis. For

quiet (Kp ≤ 3) conditions, four days in each year were selected for validating the ANN and PLS

models, while four storm periods for each year (except 2013 and 2009) were reserved for validation

during disturbed (Kp > 3) conditions. Model validation was therefore performed on independent

dataset that was not used in developing it. An attempt was also made to compare the ANN

and PLS modeled values with corresponding E×B drift values from Scherliess-Fejer (SF) model

(Scherliess and Fejer, 1997, 1999). Where possible C/NOFS vertical E×B drift observations were

used as independent validation source.

5.7.1 Quiet conditions

Figure 5.12 shows the diurnal variations of the E ×B drift during quiet (Kp ≤ 3) conditions for

selected periods. Vertical E×B drift is shown as black curve, while ANN and PLS modeled values

are represented as green and blue curves, respectively.

When validating with the quiet conditions E × B dataset (Figure 5.12), the RMSE val-

ues of 5.27 m/s and 6.00 m/s were calculated for the ANN and PLS modeled results, respec-

tively. Our models were also compared with the Scherliess-Fejer model (hereafter, SF model)

(Scherliess and Fejer, 1999) and the available C/NOFS E × B drift observations (plotted as red

dots) in Figure 5.12. Few data-points (N=28) of vertical E × B drift velocities from C/NOFS

satellite were compared with those estimated by ANN and PLS models. RMSE values of 19.93

m/s and 19.51 m/s were computed for ANN and PLS models, respectively.

In comparison with results in Anderson et al. (2004), our models showed larger RMSE values.

However, it should be noted that Anderson et al. (2004) used radar and geomagnetic field (△H)

data to perform the modeling, while our model utilized satellite and geomagnetic field (△H)

datasets.

Figure 5.13(a) shows scatter plots of measured and ANN modeled vertical E × B drift for

selected quiet periods (Kp ≤ 3), shown in Figure 5.12. A correlation coefficient value of 0.810
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Figure 5.12: Comparisons of PLS (blue) and ANN (green) models’ results in estimating the quiet

time E×B drift (black). In-situ C/NOFS E×B drift observations are shown as red-dots.
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Figure 5.13: (a) Scatter plots of ANN modeled results with derived E × B, (b) C/NOFS E × B

drift and estimated results from SF (black dots) and PLS (red dots) models for quiet conditions.

R and N represent the correlation coefficient and number of observations used.
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Figure 5.14: Scatter of C/NOFS E × B drift and modeled results from (a) SF (black), and PLS

(blue) models (b) SF and ANN (green) models during quiet conditions (Kp <= 3) in 2009.

based on 4335 data-points was computed based on ANN. Using the same dataset of vertical E×B

drift in Figure 5.12, the PLS modeled results gave R values of 0.761. Despite slightly large RMSE

values, the ANN and PLS models showed high R values (0.810 and 0.761) when estimating the

magnetometer-derived E ×B drift observations. Figure 5.13(b) shows a scatter plot of C/NOFS

vertical E × B drift velocities (shown as red-dots in Figure 5.12) and modeled values from PLS

and SF models. When quiet times C/NOFS E×B drift plotted in Figure 5.13 (b) are estimated

with SF and PLS models, R values of 0.447 and 0.478 were calculated based on N=28 data-points.

The correlation coefficient value of 0.46 was also calculated for the ANN model based on the

same C/NOFS E×B drift observations. Similarly, the calculated RMSE values for SF, PLS and

ANN models were 29.42 m/s, 17.26 m/s and 17.32 m/s, respectively. These results demonstrate

that the developed PLS and ANN models provide closer values to C/NOFS E×B drift velocities

than the climatological SF model.

Figure 5.14 shows the performance of ANN (green dots and line of best fit), SF (black dots

and line of best fit) and PLS (blue dots and line of best fit) models when validated on randomly

chosen quiet days in 2009 where △H measurements are missing. Although the data may not be

enough to conclude on the performance of both models, the calculated R values between C/NOFS

E×B and modeled values (N=65) were ∼ 0.78, 0.72, and 0.71 for the PLS, ANN and SF models,

respectively. PLS model has clearly shown larger R values than other models when C/NOFS

E ×B drift were used in validation process. Figure 5.15 shows the diurnal variation of C/NOFS

E×B drift observations (shown in Figure 5.14) estimated from ANN, PLS and SF models. Based
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Figure 5.15: Comparison of C/NOFS E×B drift velocities (red dots) with values of ionospheric

vertical drifts (at 3-minute intervals) estimated from ANN (green) and PLS (blue) during quiet

conditions (Kp <= 3) in 2009.

on the limited C/NOFS E × B dataset in Figure 5.15, the calculated RMSE values were 18.77

m/s, 18.61 m/sand 10.01 m/s for PLS, ANN and SF models, respectively, showing that the SF

model is better in this case. Reliable long-term data is required to comprehensively validate

these modelling approaches. Despite the obtained large RMSE values in comparisons with earlier

studies (Alken, 2009; Patra et al., 2014), our correlation coefficient values based on few data-

points are comparable. However, due to very limited C/NOFS observations, it is difficult to make

final conclusions on the performance of our developed models. Patra et al. (2014) validated the

SF model’s results during quiet conditions with C/NOFS observations (in January, June, July
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and December 2009) over Kototabang (10.36◦S magnetic latitude, Indonesia) and Gadanki (6.5◦N

magnetic latitude, India) and they found correlation coefficient values of 0.66 and 0.67 (when using

170 and 179 data points), respectively. A similar analysis using radar observations gave correlation

coefficient values of R = 0.59 and R = 0.51 based on 207 and 407 observations over Kototabang

and Gadanki, respectively (Patra et al., 2014). The correlation coefficient of about 0.50 was also

reported when validating JVDM with E × B drift observations from JULIA (Alken, 2009). The

PLS and ANN models perform better on estimating the vertical ionospheric drifts derived from

magnetometer compared with those from C/NOFS satellite. While the ANN model was better

in estimating magnetometer-derived E×B drift, PLS performs better when estimating C/NOFS

E×B based on few data-points. A maximum R value of ∼ 0.78, was obtained for the PLS method

when compared with C/NOFS E×B drift observations.

5.7.2 Disturbed conditions

Figure 5.16 (a)-(d) shows diurnal variation of E ×B drift and modeled values during disturbed

(Kp > 3) conditions. The onset and duration of disturbed periods are shown using the variation

of Dst and Kp indices. During storm conditions the RMSE values of 9.64 m/s and 10.82 m/s

were calculated from 4-periods of E×B observations in Figure 5.16 (a)-(d), using ANN and PLS

models’ results, respectively.

Table 5.3: Performance of the ANN, PLS and SF models during disturbed conditions.

Event RMSEPLS(m/s) RPLS RMSEANN (m/s) RANN

03-05 Sept-2008 4.08 0.871 4.31 0.803

11-13 April 2010 3.48 0.740 7.11 0.725

28 Feb-02 Mar 2011 5.47 0.922 4.88 0.901

24-26 Jan 2012 16.70 0.841 14.26 0.890

The models’ performance degrade during disturbed conditions. Table 5.3 shows the RMSE

and R values calculated for each storm period indicated in Figure 5.16 (a)-(d).

In comparison with PLS results, lower RMSE values were obtained between the observed and

ANN modeled E × B drift values during both quiet and disturbed conditions suggesting that

ANN is slightly a better model. Comparison of the PLS and ANN results with limited C/NOFS

90



0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0
Universal time (hours)

1
3
5
7
9

Kp

(a)

3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
Local time (hours)

-30
-20
-10

0
10
20
30

Ex
B 

(m
/s

)

2008-09-03 2008-09-04 2008-09-05

-100
-80
-60
-40
-20
0
20

Ds
t (

nT
)

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0
Universal time (hours)

1
3
5
7
9

Kp

(b)

3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
Local time (hours)

-30
-20
-10

0
10
20
30

Ex
B 

(m
/s

)

2010-04-11 2010-04-12 2010-04-13
ExB
PLS
ANN

-100
-80
-60
-40
-20
0
20

Ds
t (

nT
)

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0
Universal time (hours)

1
3
5
7
9

Kp

(c)

3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
Local time (hours)

-30
-20
-10

0
10
20
30

Ex
B 

(m
/s

)

2011-02-28 2011-03-01 2011-03-02

-100
-80
-60
-40
-20
0
20

Ds
t (

nT
)

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0
Universal time (hours)

1
3
5
7
9

Kp

(d)

3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
Local time (hours)

-30
-20
-10
0

10
20
30

Ex
B 
(m

/s
)

2012-01-24 2012-01-25 2012-01-26

-100
-80
-60
-40
-20
0
20

Ds
t (
nT
)

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0

Figure 5.16: Comparison of E × B drift velocities with values estimated from ANN (green) and

PLS (blue) during storm conditions of (a) 03-05 Sept 2008, (b) 11-13 April 2010, (c) 28 Feb-02

March 2011 and (d) 24-26 Jan 2012. Intensities of the storms are shown by Kp and Dst indices.

The C/NOFS E×B observations (red dots) are also shown.

E×B drift in Figure 5.16 gave RMSE values of 11.10 m/s and 10.10 m/s, respectively. Although

different data-points were used in these statistical analyses, the deviation of the models from either

C/NOFS E×B drift or magnetometer derived E×B drift is almost the same. The SF model gave

large RMSE value of 22.16 m/s when validated with the same C/NOFS E×B drift observations.

Figure 5.17 shows scatter plots of measured and ANN modeled vertical E × B drift for selected

disturbed periods (Kp > 3) within 2008–2013.

The performances of the ANN and PLS models during disturbed conditions gave R value of

≈ 0.656 and 0.658, respectively, based on 865 observations. Although the ANN model performs

slightly better on △H-derived E ×B drift than the PLS model, during disturbed period (shown

in Table 5.3) their performance is very comparable.
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Figure 5.17: Comparison of ANN modeled results with measured E ×B for disturbed condition.

R and N represent the correlation coefficient and number of observations used.

5.8 Summary

In-situ E × B drift from IVM instrument on-board C/NOFS satellite and ground-based magne-

tometers at low and equatorial latitudes have been used to develop an expression for estimating

ionospheric vertical drifts. The △H from ground-based magnetometer observations at low and

equatorial latitudes were subsequently used to derive and model E × B drift within the African

region (over AAE) using ANN and PLS approaches. Input parameters which potentially influence

the E × B drift were selected based on statistical analysis. While the performance of the two

models were comparable, the ANN gave slightly better results than the PLS method. The calcu-

lated RMSE values between observed and ANN modeled E × B drift were smaller during quiet

and disturbed conditions in comparison with those estimated with the PLS technique. Maximum

correlation coefficient values of ∼ 0.81 and 0.66 during quiet and disturbed conditions have been

achieved when our results were validated with △H inferred E × B drift. Maximum R value of

∼ 0.78, obtained for the PLS method, was computed between the modeled results and C/NOFS

E×B drift observations during quiet conditions. Although, we have limited C/NOFS E×B drift

observations, the correlation coefficient values between our models and C/NOFS E ×B drift are

comparable (sometimes better) with those in earlier studies (e.g., Alken, 2009; Patra et al., 2014).

It should be mentioned that sources of E×B drift observations and the period studied (e.g., Alken,

2009; Patra et al., 2014) are different.
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Chapter 6

Summary, Conclusions and Future work

6.1 Introduction

The main objective of this work was developing an empirical model to estimate vertical E × B

drift from △H data over Addis Ababa, AAE (9.02◦N, 38.77◦E) at all geomagnetic conditions.

EOF, ANN and PLS are modelling methods that were used to achieve this objective. This chapter

presents conclusions regarding vertical E×B drift modelling. Challenges, summary and possible

future work are also presented in this chapter.

6.2 Challenges

The complexity in changes of low latitude vertical E × B drifts with various contributions such

as local time and longitudinal effects being driven by effects of E-region tides on the equatorial

electric field (e.g., Millward et al., 2001; Fejer et al., 2008; Maute et al., 2012), coupling between E

and F-region electrodynamical phenomena (e.g., Anderson, 1973; Patra et al., 2004), geomagnetic

activity effects (e.g., Fejer et al., 1979; Gonzales et al., 1979; Fejer, 1997) and solar activity on

long-term scale in different seasons (e.g., Fejer et al., 1991; Chandra et al., 1997) necessitates the

comprehensive understanding of vertical E×B drifts variability in different longitude sectors. The

vertical E ×B modelling study over the African sector is therefore a contribution to the ongoing

E×B drift investigations in this regard.
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6.3 Summary and Conclusions

A first time attempt to estimate and model low latitude vertical E×B drifts over the African region

has been presented. Two broad approaches were investigated. The first one utilised an existing

empirical expression developed by Anderson et al. (2004) and △H measurements over the African

sector to derive vertical E × B drift data from 2008–2013. The derived E × B drifts were used

as a database to develop an empirical model over the African low latitude region using empirical

orthogonal functions for the first time (Dubazane et al., 2017). During the model development,

model inputs considered were the solar flux index (F10.7) to take into account vertical E×B drift

solar activity dependence (e.g., Richmond, 1973; Fejer et al., 1991) and Disturbance storm time

(Dst) index to account for changes inE×B drifts as a result of changing magnetic activity over time.

During geomagnetic storms, the low latitude electrodynamics may be modified either by prompt

penetrating electric field (e.g., Fejer and Scherliess, 1995) or ionospheric disturbed dynamo electric

field (Blanc and Richmond, 1980; Fejer and Scherliess, 1995). At some times, both these electric

field sources are present during one geomagnetic storm condition (e.g., Fejer and Scherliess, 1995).

One of the observations from this first modelling effort was the low or no correlation between

EEJ/E × B drift and the solar activity during the extended solar minimum period of 2009–

2010 (Dubazane et al., 2017); disagreeing with the established understanding that E × B drift

depends on solar activity (Richmond, 1973; Fejer et al., 1991). This highlights that modelling

E × B drift as a function of a solar activity indicator only would have missed the E × B drift

response during 2008–2009. The other significant finding was that the climatological SF model

(Scherliess and Fejer, 1999) strongly overestimates the △H derived vertical E × B drifts during

local day-time over the African low latitudes. Independent validation was done using C/NOFS

E × B drift measurements which were found to be closer to △H derived E × B drift (and the

corresponding modelled values) than the SF model. The second step of the investigation dealt with

C/NOFS E×B data processing during 2008–2013 and restricting the E×B drift data within ± 4

degrees latitude from the geomagnetic equator (to remain within the EEJ variability range which is

3 degrees), 38.8◦±11.2◦ longitude around the location with△H measurements, and altitude of 400-

450 km that has been used in several investigations comparing C/NOFS data with ground-based

based observations (e.g., Rodrigues et al., 2011; Stoneback et al., 2011; Yizengaw et al., 2014a;

Rodrigues et al., 2015). This was followed by finding coincidental times when C/NOFS E × B

drift and △H measurements were simultaneously present which formed the data base used to
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develop the expression relating the two sets of observations. The resulting database had 3140

datapoints from 2008–2013. A third order polynomial was then derived relating E × B and △H

(Dubazane and Habarulema, 2017), following the results by Habarulema et al. (2017) showing that

this is the suitable function to reconstruct E×B drift. The developed expression was then used to

derive E×B drift data for the entire △H database (455 012 data-points) that was subsequently

used in developing the partial least squares and neural network models. Both PLS and neural

network models were developed using similar set of inputs comprising representations of diurnal

variation, seasonal variation, solar and magnetic activities; and validated on dataset not used in

models’ development. Models’ validation showed neural network model to be better in estimating

vertical E×B drifts better than the PLS model during both quiet and disturbed conditions.

Both approaches investigated have a similar challenge of lack of ground-based observations

from radars to validate the magnitude of the derived/modelled vertical E × B drifts. However

results compare relatively well with C/NOFS measurements that were not used in models’ con-

struction. It has however been reported that C/NOFS provides downward vertical drifts in the

afternoon hours which are absent in ground-based data such as the JULIA observations (e.g.,

Rodrigues et al., 2015). Unfortunately, C/NOFS data is not continuous to validate modelled data

over the entire day. Vertical E×B drift values derived from △H using our quantitative relation-

ship are mostly smaller than those derived using the relationship by Anderson et al. (2004). It is

difficult to conclude on the most reliable results, although Anderson et al. (2004) was developed

over a different longitude sector (Jicamarca) and coefficients will therefore not contain local effects

over the African sector such as effects of E-region tides on the electric field which mostly determine

the local and longitudinal effects of vertical E × B drifts (e.g., Millward et al., 2001; Lühr et al.,

2004; Maute et al., 2012).

6.4 Future work

The reported results of vertical E×B drift over the African region are promising. Once validated

with ground-based radar measurements, the approach of deriving separate expressions to infer

vertical E×B drift has potential to increase day-day data coverage during local daytime in other

longitude sectors which has previously been confined to areas with radars. This would in turn lead

to development of equatorial vertical E×B drift models in all longitude sectors thereby increasing
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the accuracy of estimating the vertical drifts on a global scale. The current most used model for

low latitude vertical E×B drift specification and available data offer an opportunity to update the

existing models for accurate specification of the equatorial vertical drifts (e.g., Fejer and Scherliess,

1995; Rodrigues et al., 2015).

Finally, it is proposed that inexpensive radar to determine Doppler velocities of the 150 km

echoes (e.g., Woodman and Hagfors, 1969; Kudeki and Fawcett, 1993; Chau, 1998) similar to those

is operational in Indonesia (Patra et al., 2008) and India (Patra and Rao, 2006) be installed in the

African sector to validate our modelling results.
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Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M., Howard, R. and

Bougeret, J.-L. (2010), ‘Interplanetary shocks lacking type II radio bursts’, The Astrophysical

Journal 710(2), 1111.

Grodji, F., Doumbia, V., Boka, K., Amory-Mazaudier, C., Cohen, Y. and Fleury, R. (2017),

‘Estimating some parameters of the equatorial ionosphere electrodynamics from ionosonde data

in West Africa’, Advances in Space Research 59(1), 311–325.

Habarulema, J. B. (2011), A contribution to TEC modelling over Southern Africa using GPS data,

PhD thesis, Rhodes University.

Habarulema, J. B., Dubazane, M. B., Katamzi, Z. T., Yizengaw, E., Moldwin, M. B. and Uwama-

horo, J. C. (2017), ‘Long-term estimation of day-day vertical E B drift velocities using C/NOFS

and ground-based magnetometer observations’, JOURNAL OF GEOPHYSICAL RESEARCH

(Under Review).

Habarulema, J. B., Katamzi, Z. T., Yizengaw, E., Yamazaki, Y. and Seemala, G. (2016), ‘Simul-

taneous storm time equatorward and poleward large-scale TIDs on a global scale’, Geophysical

Research Letters 43(13), 6678–6686.

Hagan, M. and Forbes, J. (2002), ‘Migrating and nonmigrating diurnal tides in the middle and

upper atmosphere excited by tropospheric latent heat release’, Journal of Geophysical Research:

Atmospheres 107(D24).

Hagan, M., Maute, A., Roble, R., Richmond, A., Immel, T. and England, S. (2007), ‘Connections

between deep tropical clouds and the Earth’s ionosphere’, Geophysical Research Letters 34(20).

Haile, T. (2003), ‘Equatorial electrojet strength in the African sector during high and low solar

activity years’, SINET: Ethiopian Journal of Science 26(1), 77–81.

Hamid, N. S. A., Liu, H., Uozumi, T., Yumoto, K. et al. (2013), ‘Equatorial electrojet dependence

on solar activity in the Southeast Asia sector’, Antarctic Record 57(3), 329–337.

105



Hannachi, A. (2004), ‘A primer for EOF analysis of climate data’, Department of Meteorology,

University of Reading pp. 1–33.

Hannachi, A., Jolliffe, I. and Stephenson, D. (2007), ‘Empirical orthogonal functions and related

techniques in atmospheric science: A review’, International journal of climatology 27(9), 1119–

1152.

Hargreaves, J. K. (1979), ‘The upper atmosphere and solar-terrestrial relations-An introduction

to the aerospace environment’, New York, Van Nostrand Reinhold Co., 1979. 312 p. .

Hargreaves, J. K. (1992), The solar-terrestrial environment: an introduction to geospace-the science

of the terrestrial upper atmosphere, ionosphere, and magnetosphere, Cambridge University Press.

Haykin, S. (1994), Neural networks: a comprehensive foundation, Prentice Hall PTR.

Haykin, S. and Network, N. (2004), ‘A comprehensive foundation’, Neural Networks 2(2004), 41.

Hecht-Nielsen, R. (1990), ‘Neurocomputing.’, Reading: Addison-Wesley Google Scholar .

Heelis, R., Kendall, P., Moffett, R., Windle, D. and Rishbeth, H. (1974), ‘Electrical coupling of

the E-and F-regions and its effect on F-region drifts and winds’, Planetary and Space Science

22(5), 743–756.

Helland, K., Berntsen, H. E., Borgen, O. S. and Martens, H. (1992), ‘Recursive algorithm for partial

least squares regression’, Chemometrics and intelligent laboratory systems 14(1-3), 129–137.

Hertz, J. A., Krogh, A. S. and Palmer, R. G. (1991), Introduction to the theory of neural compu-

tation, Vol. 1, Basic Books.

Hines, C. (1965), ‘Dynamical heating of the upper atmosphere’, Journal of Geophysical Research

70(1), 177–183.

Hinteregger, H. (1976), ‘EUV fluxes in the solar spectrum below 2000 Å’, Journal of Atmospheric
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