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ABSTRACT 

Malaria remains a major health concern with a complex parasite constantly developing resistance 
to the different drugs introduced to treat it, threatening the efficacy of the current ACT treatment 
recommended by WHO (World Health Organization). Different antimalarial compounds with 
different mechanisms of action are ideal as this decreases chances of resistance occurring. 
Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new antimalarial 
with a novel mode of action..  

From literature, all the enzymes of the MEP pathway have also been shown to be indispensable 
for the synthesis of isoprenoids. They have been validated as drug targets and the X-ray structure 
of each of the enzymes has been solved. DXR is a protein which catalyses the second step of the 
MEP pathway. There are currently 255 DXR inhibitors in the Binding Database (accessed 
November 2017) generally based on the fosmidomycin structural scaffold and thus often showing 
poor drug likeness properties. 

This  study  aims to  research new DXR inhibitors using in silico techniques. We analysed the 
protein sequence and built 3D models in close and open conformations for the different 
Plasmodium sequences. Then SANCDB compounds were screened to identify new potential DXR 
inhibitors with new chemical scaffolds.  

Finally, the identified hits were submitted to molecular dynamics studies, preceded by a 
parameterization of the manganese atom in the protein active site. 
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CHAPTER 1: LITERATURE REVIEW 

1.1  Introduction 

Malaria is a disease caused by a protozoan parasite of the genus Plasmodium. There are four main 
species of Plasmodium that cause the disease in human: P. falciparum, P. vivax, P. ovale and P. 
malariae (Control et al. 1991). Rare cases of the simian parasite P. knowlesi causing human 
malaria in Southeast Asia have been reported (Barber et al. 2017). These parasites are transmitted 
to human by the bite of the female anopheles mosquitoes (Winzeler 2008). The clinical 
manifestations of malaria include fever, headache, nausea and vomiting, diarrhea and abdominal 
pain (Crutcher and Hoffman 1996).  

Considerable advancements have been made in the fight against malaria. According to the WHO 
(World Health Organization) report of the year 2016 on malaria, the disease incidence rate has 
fallen by 21% in the world during the period 2010-2015. The global mortality rates fell by an 
estimated 29% globally and by 31% in the African region (WHO | World Malaria Report 2016 n.d.).  

Despite these advances, many challenges remain to be addressed as malaria remains a major 
health concern. The same report indicates a global tally of malaria of 212 million new cases and 
429 000 deaths in 2015 (WHO | World Malaria Report 2016 n.d.). The main burden of malaria is 
carried by the Sub-Saharan region of Africa which accounts for 90% of malaria and 92% of malaria 
deaths. The most vulnerable segment of the population is children under the age of five years 
with an estimated 70% of all malaria deaths (WHO | Malaria Control Improves for Vulnerable in 
Africa, but Global Progress off-Track n.d.).  

The parasite’s ability to develop resistance is another key concern. There has been a continual 
development of resistance to each class of drugs introduced to fight malaria (see Figure 1-1): 
quinine, chloroquine, proguanil, sufadoxine-pyrimethamine, mefloquine, atovaquone (Cui et al. 
2015). Artemisinin-based combination therapies (ACTs) are currently the WHO recommended 
drugs for malaria treatment (WHO | Overview of Malaria Treatment n.d.). The use of combining 
drugs with different modes of action greatly decrease the chances of resistance occurring (White 
1999), requiring thus various antimalarial compounds with orthogonal mechanisms (Lunev et al. 
2016). 

Cases of resistance to artemisinin have been recorded in five countries in Southeast Asia: 
Cambodia, Laos, Myanmar, Thailand and Wet Nam. The spread of this resistance to other regions 
could severely impact all the previous effort done to fight the disease. Separate to antimalarial  
treatment is the plasticity of the mosquitoes, which may lead to the development of resistance 
to insecticides remains also another major concern (Hemingway et al. 2016; WHO | 10 Facts on 
Malaria n.d.).   
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Figure 1-1: Time to first detection resistances to antimalarials   (Kennedy and Read 2017). (Reproduced 
with permission). 

In vaccine research, intense efforts have been made by diverse groups during the last two 
decades. The most advanced one, RTS,S/AS01, an anti-sporozoite has progressed through phase 
III clinical trials (Cowman et al. 2016). In spite of all these efforts, there is still no licensed vaccine 
for malaria (WHO | Tables of Malaria Vaccine Projects Globally n.d.). These diverse reasons show 
the urgent need of new antimalarial drugs to always keep a step ahead of the resistance curve 
(Hemingway et al. 2016).  

1-Deoxy-d-xylulose 5-phosphate reductoisomerase of P. falciparum (PfIspC or PfDXR) is currently 
one of the clinically validated malaria drug targets (Konzuch et al. 2014). The enzyme is involved 
in the nonmevalonate pathway. It converts 1-deoxy-d-xylulose 5-phosphate (DXP) to 2-C-methyl-
d-erythritol 4-phosphate (MEP), thus playing a key role in the production of isoprenoid precursors 
(Cobb et al. 2015). DXR is also essential to different phases of the parasite's life cycle (Saggu et al. 
2016). 

Thus, due to its uniqueness and its key role for the parasite, it has become an attractive drug 
target in the fight against malaria. The natural product fosmidomycin, a promising antimalarial 
drug is an inhibitor of PfDXR. However, fosmidomycin shows poor pharmacokinetic properties 
hampering its usage. During the past years, several research groups focused on the development 
of fosmidomycin analogues offering better drug-like properties (Saggu et al. 2016). 

1.2  Biology of Plasmodium 

Plasmodium spp are unicellular eukaryotes and belong to the large phylum of protozoan 
parasites, the apicomplexan. The Apicomplexa are characterized by the apicoplast, an essential 
organelle responsible for the synthesis of key molecules like isoprenoids and fatty acids required 
for the growth of the parasite. They are obligate intracellular parasites interacting with diverse 
hosts (Wirth 2002; Morrissette and Sibley 2002).   

Plasmodium spp causing human malaria have a complex life cycle (see Figure 1-2) that are 
characterized by distinct phases and host-parasite interactions (Antinori et al. 2012). Through this 
cycle, the parasite moves between the mosquito vector and the human host, in three phases: the 
liver phase, the blood phase, and the mosquito phase (Control et al. 1991).  
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The parasite is first inoculated to the human through the bite of the mosquito vector. From the 
salivary glands of the mosquito, thousands of sporozoites are released into the blood stream. 
These sporozoites then migrate to the host liver (Control et al. 1991).  They invade the host’s 
hepatocytes and commence an endogenous asexual multiplication also known as schizogony, 
which takes 5 to 15 days depending on the specie of Plasmodium (Antinori et al. 2012). The 
sporozoites mature into schizonts containing about 10,000 merozoites in P. vivax/P. ovale and up 
to 30,000 merozoites in P. falciparum. In the case of P. vivax, and P. ovale, some sporozoites 
differentiate to the hypnozoite form, a latent form, that can proliferates days to years later 
leading to a relapse (Soulard et al. 2015; Campo et al. 2015). The mature schizont ruptures 
(together with the infected hepatocytes) releasing merozoites into the blood stream (Antinori et 
al. 2012).  

During the blood phase, the merozoites invade the erythrocytes where they multiply asexually 
(within 48 to 72 hours). In the erythrocytes, the merozoites take different forms: rings, 
trophozoites, schizonts (Biamonte, Wanner, and Le Roch 2013). Each schizont contains about 6 
to 36 merozoites. The rupture of erythrocytes releases into the blood these merozoites which 
would infect other erythrocytes. The clinical symptoms of the disease are visible during this stage  
(Biamonte, Wanner, and Le Roch 2013; Antinori et al. 2012). During this erythrocytic cycle, some 
parasites further differentiate into male and female gametocytes (Biamonte, Wanner, and Le 
Roch 2013).  

These gametes can then be ingested by a female anopheline mosquito (Bennink, Kiesow, and 
Pradel 2016; Antinori et al. 2012)  corresponding to the transmission of the parasite to the 
mosquito. The parasites can now develop into their sexual forms, the female macrogametes and 
male microgametes, and then commence sexual reproduction (Bennink, Kiesow, and Pradel 
2016). During this mosquito phase, the fusion of the macrogamete with a single microgamete 
results in fertilization and the formation of the ookinete (Control et al. 1991). The ookinete 
converts to oocysts, in which sporogonic replication takes place. This takes roughly 2 weeks and 
results in the formation of infective sporozoites.  These sporozoites will migrate to the salivary 
glands and will be released into the human dermis during the next blood meal of the mosquito. 
The life-cycle of the Plasmodium will be thus completed (Bennink, Kiesow, and Pradel 2016). 
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Figure 1-2: Plasmodium life cycle. Adaptated from (Winzeler 2008)  

1.3  Isoprenoid biosynthesis in Plasmodium 

Also known as terpenoids, isoprenoids constitute one of the largest classes of biological 
compounds and they are ubiquitous in all domains of life: bacteria, archaea, and eukaryotes 
(Chang et al. 2013).  They include the carotenoids as photosynthetic biopigments, the sterols as 
cell membrane components,  the steroid hormones for the regulation  of  growth  and  
development, the quinones involved in the electron transport chain, dolichol in glycoprotein and 
bacterial cell wall biosynthesis, linear prenyl diphosphates as protein prenylation units for intra-
cellular protein targeting, and PfPRL prenylation for erythrocyte invasion (Sacchettini and Poulter 
1997; Holstein and Hohl 2004; van der Meer and Hirsch 2012).  

All this structural and functional diversity is derived from two precursors: isopentenyl 
diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) (Biamonte, Wanner, and Le 
Roch 2013). To produce IPP and DMAPP, two main pathways exist: MVA pathway (mevalonate 
pathway or the isoprenoid pathway or HMG-CoA reductase pathway) and the MEP pathway 
(methylerythritol phosphate or non- mevalonate pathway). Two other pathways discovered from 
late 1990: a modified MVA pathway and the 5-Methylthioadenosine shunt pathway also exist 
(Chang et al. 2013).  

The mevalonate (MVA) pathway was first discovered in the 1950s. Over the decades, it was 
accepted as the main source of IPP and DMAPP (Chang et al. 2013). In the 1990s, eventually,  the 
groups of Arigony and Rohmer independently showed the existence of another route for 
isoprenoid biosynthesis, the non-mevalonate pathway (Rohmer et al. 1993; van der Meer and 
Hirsch 2012).  
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1.1.1 Biochemistry of the non-mevalonate pathway  

The MEP pathway is comprised of seven enzymatic steps.  

The first step in the non-mevalonate pathway involves the condensation of pyruvate (Pyr) and D-
glyceraldehyde-3-phosphate (D-GLP) to form 1-deoxy-D-xylulose-5-phosphate  (DXP)  and  CO2. 
This first reaction of the pathway is catalysed by 1-deoxy-D-xylulose-5-phosphate synthase (DXS).  

The following reaction is the NADPH-dependent reductive rearrangement of DXP to 2-C-methyl-
D-erythritol  4-phosphate  (MEP). It is catalysed by  D-xylulose-5-phosphate reductoisomerase  
(DXR also known as IspC) (Chang et al. 2013). In the next reactions, MEP is coupled with cytidine 
5'-triphosphate (CTP) to produce methylerythritol cytidyl diphosphate (CDP-ME, 14). The step is 
catalysed by CDP-ME synthetase (IspD) (Zhao et al. 2013). 

 This product is then phosphorylated by IspE to produce 4-diphosphocytidyl-2-C-methyl-d-
erythritol-2-phosphate (CDP-MEP) which will be cyclized by IspF to 2-C-methyl-D-erythritol-2,4-
cyclodiphosphate (MEcPP) (Chang et al. 2013). 

 Then, we have the ring-opening and reductive dehydration of MEcPP to produce 4-hydroxy-3-
methylbutenyl 1-diphosphate (HMBPP) catalysed by IspG. And finally, IspH catalyses HMBPP by 
reductive dehydration to produce both IPP and DMAPP (Imlay and Odom 2014). 

 

1.1.2 The non-mevalonate pathway as drug target  

 

The building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) for 
isoprenoids are synthesized in the apicoplast of Plasmodium spp (Wiley et al. 2015). The 
Apicomplexans do not have the MVA pathway and rely entirely on the MEP pathway to generate 
isoprenoids (Odom 2011). The first evidence for MEP pathway in Plasmodium and its presence in 
the apicoplast by Jomaa et al. in 1999, and its validity as a drug target was also proven. DOXP 
reductoisomerase was also shown to be a key enzyme of this pathway as its inhibition by 
fosmidomycin and its derivative FR-900098  showed antimalarial activity in vivo and in vitro 
(Jomaa et al. 1999). The existence of the natural product fosmidomycin attired much attention 
toward the DXR enzyme, and made it the most widely cited therapeutic target in the MEP 
pathway (Hale et al. 2012). Still, its poor pharmacokinetic properties are hampering its usage. 
Fosmidomycin has been shown to be only effective for short-term treatment. Researches on 
finding a potential partner drug to improve the efficiency of fosmidomycin are needed 
(Bhagavathula, Elnour, and Shehab 2016).  

Up to now, several DXR inhibitors have been identified. The natural acetyl derivative of 
fosmidomycin, FR900098, has shown better activity (IC50 = 0.018 μM) than fosmidomycin. It also 
shows a good toxicity profile, supporting its future development as an antimalarial drug (Wiesner 
et al. 2016).  

More studies could help in the development of fosmidomycin derivatives and similar compounds, 
to be used as anti-malarial (Saggu et al. 2016). Also, the combination with a potential drug partner 
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is another area of research. Fosmidomycin-clindamycin and fosmidomycin-piperaquine are in 
Phase II clinical trials (Mishra et al. 2017).  

The other enzymes of the pathway have also been shown to be indispensable for the synthesis of 
isoprenoids. As the MEP pathway is linear, each enzyme is essential for isoprenoid biosynthesis 
(Odom 2011). Several research groups studied these enzymes identify/design probable inhibitors. 
They have been validated as drug targets and the X-ray structure of each of the enzymes has been 
solved. But most inhibitors have been shown to be weak inhibitors, or do not possess drug like 
characteristics (Hale et al. 2012). In view of the essentiality and the uniqueness of the pathway 
for the survival of the parasite, more extensive studies on the remaining enzymes of the pathway 
are needed (Saggu et al. 2016).  

In addition, the pathway is indispensable at different stages of the parasite life cycle. During the 
asexual phase, the it has been reported to be essential for both liver and blood stages.  In recent 
studies, products of the pathway are also required during for the early phases of parasite gamete 
development, thus showing the pathway as a valid drug target for the development of malaria 
transmission-blocking inhibitors (Saggu et al. 2016). 

The MEP pathway is indispensable for most eubacteria, and none of its enzymes has a homolog 
in human or other mammalian cells. Many human pathogens, Escherichia coli, Mycobacterium 
tuberculosis, Mycobacterium leprae, Helicobacter pylori, Vibrio cholera, Bacillus anthracis rely 
exclusively on the MEP pathway for the biosynthesis of their isoprenoid compounds (Murkin, 
Manning, and Kholodar 2014; van der Meer and Hirsch 2012). With the problem of drug 
resistance in Gram-negative bacteria, M. tuberculosis, and P. falciparum, inhibition of the MEP 
pathway hold great potential for broad-spectrum agents, and their use in combinational 
treatments (Odom 2011). 

Nevertheless, a distinct DXR-like (DRL) protein can also catalyse the same reaction to produce 
MEP in some MEP dependant organisms. This includes the human and animal pathogens 
Bartonella and Brucella (Pérez-Gil et al. 2012; Sangari et al. 2010). 

Elsewhere, the MEP pathway is exclusively responsible for IPP, DMAPP, and the isoprenoids in a  
number of problematic weeds. So the enzymes of the pathway can also be used as targets for the 
development of novel herbicide (van der Meer and Hirsch 2012). 

1.4  Catalytic Mechanism of 1-Deoxy-D-xylulose-5-phosphate reductoisomerase 

1.1.3 1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) 

1.1.3.1  Structure  
Encoded in the ispC gene, DXR is the most studied drug target in the MEP pathway.  There are 
more than thirty published crystal structures of DXR from different organisms, including P. 
falciparum, M. tuberculosis and E. coli. The general structure of PfDXR is comparable to the 
structure of the enzyme in other species. In its active form (Lys75 to Ser488), PfDXR is a 
homodimer in a V shape with a molecular mass of approximately 47 kDa. Each monomer contains 
an NADPH molecule and a divalent metal ion (Mg2+, Co2+ or Mn2+) required for the catalytic 
activity of the enzyme  (Umeda et al. 2011).   
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Each monomer has two large domains, a linker region, and a small C-terminal domain.  The two 
large domains are separated by a cleft containing a deep pocket. One of them will bind NADPH, 
and the other domain provides the groups necessary for catalysis (metal and substrate binding). 
The NADPH domain contains 154 residues (residues 77 to 230) (see Figure 1-3), while the catalytic 
domain, in the centre of the V shape, covers 139 residues (residue 231 to 369). The residues’ 
numbers refer to  the P. falciparum sequence. The linker region spans from residue 370 to 395 
and the C-terminal domain from residue 396 to 486. The first 74 residues are similar to an 
endoplasmic reticulum signal (the first 30 residues) and plastidial targeting sequences (for the 
next 44 amino acids) (Umeda et al. 2011). A flexible loop region (residues 291 to 299) is inserted 
in the catalytic domain. Apart from for Pro294, buried residues (His293, Trp296, and Met298) in 
this region are completely conserved (Umeda et al. 2011).  

Comparative studies between different DXR structures revealed three conformations: the open 
form with the loop opened (no substrate/inhibitor), the open form with the flexible loop closed 
(with substrate/inhibitor, prepared by soaking), and the configuration with the flexible loop 
covering the active site (with substrate/inhibitor, prepared by co-crystallization) (Takenoya et al. 
2010). The flexible loop undergoes a movement of about 16 Å to close the active site, ordering 
and acting as a lid isolating the active site from bulk solvent after inhibitor binding (Kholodar and 
Murkin 2013).  

77   NADPH domain 230-231 catalytic(M-Subs) domain 369-370   LR 395-396       C-ter      486  

 

 

 

Figure 1-4: Subunit structure of fosmidomycin-bound quaternary complex of PfDXR. 

Subunit structure of fosmidomycin-bound quaternary complex of PfDXR. The subunit structure of the 
fosmidomycin-bound quaternary complex of PfDXR. The NADPH-binding (blue), catalytic (green), linker 

Figure 1-3:  PfDXR domains and residue numbers. NADPH binding domain (residues 77-230), catalytic (Metal 
and Substrate binding, residues 231-369), Linker region (residues 370-395), C-terminal domain (396-486). 
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(yellow), active site flap (pink) and C-terminal domains (red). The bound fosmidomycin (gold) and NADPH 
(grey and red) molecules are shown as ball-and-stick models. Adapted from (Umeda et al. 2011). 

 

 

 

Figure 1-5: The overall three-dimensional structure of PfDXR (Umeda et al. 2011). The overall structure of 
PfDXR. One monomer is colored in cyan the other as in Figure 1-4. Adapted from PDB structure 3AU9 
(Umeda et al. 2011). Each monomer contains fosmidomycin, the cofactor NADPH and the metal ion. 

The NADPH binding domain (in blue Figure 1-4 and Figure 1-5) at the N-terminal region is a 
member of dinucleotide binding fold knows as Rossmann fold, composed of two βαβαβ units. In 
the PfDXR NADPH-binding domain, an additional αβ motif is inserted after β3. This domain 
consists of a seven-stranded β-sheet in the centre of the domain sandwiched by two arrays of 
three α-helices (Umeda et al. 2011; Saggu et al. 2016).  

Then we have the catalytic domain (in green Figure 1-4 and Figure 1-5 ). It comprises the binding 
sites for the inhibitor fosmidomycin and for the bivalent cation. The catalytic flap covers residues 
291 to 299. Its structure is of an α/β-type made up of five α-helices and four β-strands (Umeda et 
al. 2011).  

The catalytic domain is connected to the C-terminal domain (red) through the linker region 
(residues 370 to 395, in yellow in Figure 1-5). The linker region spans the open face of the catalytic 
domain. The C-terminal domain (residues 396 to 486) is comprised of a four-helix bundle structure 
(Umeda et al. 2011).  
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1.1.3.2 Mechanism of action 
DXR catalyses the second step of the MEP pathway. The enzyme is classified as a class B 
dehydrogenase as it uses the pro-S hydride of NADPH. The reaction converts DOXP to 2-C-methyl-
D-erythritol-4-phosphate (MEP) by isomerization and followed by NADPH reduction. It is a rate 
limiting step of the pathway. Its mechanism of action of the enzyme has been widely studied 
(Murkin, Manning, and Kholodar 2014).  

Two main chemical mechanisms were first proposed for the chemical reaction: the alpha-ketol 
rearrangement and the retro aldol sequence (see Figure 1-6).  In the first one, the C-3 hydroxyl 
group is first deprotonated, followed by a 1,2-migration to yield methylerythrose phosphate.  This 
is followed by a reduction to MEP by NADPH. In the second mechanism, a three-carbon and a 
two-carbon phosphate intermediate are generated through the cleavage by DXR of DXP C3-C4 
bond in a retro aldol way. The two compounds are then combined in an aldol reaction to form a 
new C-C bond, giving an aldehyde intermediate which would be reduced to MEP by NADPH. 
Finally, the retro aldol is adopted as the most plausible mechanism supported by multiple studies 
(Li et al. 2013; Munos et al. 2009; Murkin, Manning, and Kholodar 2014).  

 

Figure 1-6:  The alpha-ketol rearrangement (A) and the retroaldol (B) mechanism adapted from (Munos et 
al. 2009). 

1.1.4 DXR Inhibition 

1.1.4.1 Fosmidoycin - PfDXR 

 

Figure 1-7: Fosmidomycin chemical structure (Wiesner et al. 2016) 

Currently, there are 255 DXR inhibitors in the Binding Database (accessed November 2017) (Liu 
et al. 2007). These inhibitors are mainly based on the fosmidomycin chemical scaffold. 
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Fosmidomycin ( FR31564 or 3-(N-formyl-N-hydroxyamino) propylphosphonic acid) (chemical 
structure in Figure 1-7) is a natural antibiotic isolated from Streptomyces lavendulae  and first 
discovered by Fujisawa Company in the 1970s (Iguchi et al. 1980). With its structural similarity to 
DXOP, it inhibits the DXR enzyme by imitating the binding mode of the substrate. The binding 
region of the molecule consists of three different parts: the phosphonate moiety binding pocket, 
a hydrophobic patch for the carbon backbone and the hydroxamate group binding pocket (Umeda 
et al. 2011).  

The crystal structures of PfDXR with fosmidomycin and other analogues inhibitors show high 
conservation of the residues involved in the binding region. The catalytic domain presents the 
binding sites for divalent cations (Mn2+, Mg2+ or Co2+) and the substrate. The domain has been 
shown to be highly conserved across multiple organisms through diverse multiple sequence 
alignments (Murkin, Manning, and Kholodar 2014). The metal ion is binding to residues Asp231, 
Glu233, and Glu315 in the bottom of a cleft in the catalytic domain in a distorted trigonal 
bipyramidal geometry (Umeda et al. 2011; Xue et al. 2012; Kunfermann et al. 2013; Konzuch et 
al. 2014). The affinity of fosmidomycin to DXR does not depend on the type of the metal cation 
Mg2+ or Mn2+ (Murkin, Manning, and Kholodar 2014). In general, DXR showed higher specificity 
for Mn2+ than Co2+ and more than Mg2+ while in plants and the parasite Toxoplasma gondii, the 
enzyme has comparable degrees of activation by both Mn2+ and Mg2+ and less or no activation by 
Co2+. In general, Mn2+ remains the most effective metal cation (Argyrou and Blanchard 2004). In 
the case of PfDXR, studies showed that Mn2+ and Mg2+ were the metal cations used by the parasite 
enzyme, and it could not use Co2+ (Jessica L. Goble n.d.). Bodill et al. underlined the importance 
of the charge and parameters of the metal cation in DXR docking studies (Bodill et al. 2011). 

The hydroxamate group chelates that metal cation in a binding pocket with carboxylate groups 
of Asp231, Glu233 and Glu315 residues (see Figure 1-8) (Umeda et al. 2011). Many other 
inhibitors have also been reported to bind the same residues (Kunfermann et al. 2013; Xue et al. 
2012; Konzuch et al. 2014) . The oxygen atoms of the inhibitor hydroxamate group should be in a 
cis conformation. This is required for the tight binding of the inhibitor to the active site metal 
(Umeda et al. 2011) but this chelation is not an indispensable interaction (Murkin, Manning, and 
Kholodar 2014).  
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Figure 1-8: Metal chelation with hydroxamate group  of fosmidomycin and carboxylate groups of Asp231, 
Glu233 and Glu315. Image Discovery Studio created from PDB ID 3AU9 (Umeda et al. 2011). 

The negatively charged phosphonate moiety of the substrate binds in a polar environment, 
forming hydrogen bonds with, Ser270, Asn311, His293 and two water molecules  (Kunfermann et 
al. 2013; Xue et al. 2012; Umeda et al. 2011), with the histidine residue having a key interaction 
with one of the phosphonate oxygens. This interaction is implied in the pre-orientation of the 
ligand in the active site. The phosphonate moiety is supposed to trigger the closure of a flexible 
loop over the active site of DXR thus acting as an allosteric effector (Kholodar and Murkin 2013; 
Murkin, Manning, and Kholodar 2014).  

The three-carbon spacer in fosmidomycin backbone lies parallel to the indole ring of the 
tryptophan in the flexible loop region (Trp296) (see Figure 1-9). There is interaction with Met298 
(Umeda et al. 2011). Mutagenesis studies on this Trp296 have shown its role in substrate 
discrimination by DXR and the condition of an aromatic residue for binding and catalysis. In the 
same way, mutating Met298 made DXP binding and turnover less efficient (Murkin, Manning, and 
Kholodar 2014; Fernandes and Proteau 2006).  
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Figure 1-9: Left: Fosmidomycin complex with PfDXR. The carbon atoms of fosmidomycin (in yellow), the 
four buried water molecules (cyan), and the bound Mg2+ ion (green). Right: 2D diagram of fosmidomycin 
binding mode (Umeda et al. 2011; Konzuch et al. 2014). (Reproduced with permission). 

The cofactor binds to the cavity composed of conserved residues D231, E233, S269, S270, W296, 
M298, S306, N311, K312, and E315 (Saggu et al. 2016). These residues are conserved across all 
human malaria species (Kunfermann et al. 2013). The enzyme in Esherichia coli showed a 
preference for NADPH contrary to NADH. Combining the enzyme with NADH in EcDXR, Takahashi 
et al. observed a reduction to 1% of the reaction rate (Takahashi et al. 1998).  

After inhibitor binding, an induced fit movement of the enzyme accommodates the bound 
inhibitor in the active site (Umeda et al. 2011).  The catalytic site is then covered by a movement 
of the flexible loop critical to the enzymatic reaction (Reuter et al. 2002; Yajima et al. 2002; 
Henriksson et al. 2007). In fact, the loop has been shown to be determinant in inhibition through 
interaction with the ligand directly of via active site water molecule. The kinetics of inhibition first 
requires the binding of the NADPH to DXR. The complex DXR-NADPH is essential for fosmidoycin 
competitive inhibition against DXP. Fosmidomycin showed a two-step mechanism for a slow tight 
binding mechanism. A first slow-onset phase is observed, then the ternary complex (DXR-NADPH-
Fosmidomycin) undergoes a conformational change to form a stronger binding (Murkin, Manning, 
and Kholodar 2014; Kholodar et al. 2014).  
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Table 1-1: Some PfDXR residues and their identified/suggested roles in inhibition.  

 

1.1.4.2 FR900098 
Also, isolated from Streptomyces, FR900098 was first identified by Fujisawa Pharmaceutical in 
the 1970s as a new antibiotic. The molecule differs from fosmidomycin by a methyl group (Iguchi 
et al. 1980). In 1999, Jomaa et al. established the antimalarial activity of FR900098 and 
fosmidomycin (Jomaa et al. 1999:199). The molecule is twice as active as fosmidomycin and has 
good toxicity profile in animal models (Wiesner et al. 2016).  It shows similar binding mode to 

   

   

   

   

   

   

   

   

   

   

PfDXR Residues  Role References 

Ser269, Ser270, Ser306, 
Asn311, Lys312, His293 

Binding phosphonate moiety of 
fosmidomycin 

(Kunfermann et al. 2013; Xue et al. 2012; 
Umeda et al. 2011) 

Thr86, Gly87, Ser88, Ile89, 
Asn115, Lys116, Ser117, 
Glu206, Gly299 

NADPH binding (Umeda et al. 2011)  

Asp231, Glu233, and Glu315 Binding hydroxamate group of 
fosmidomycin Divalent metal cation 
coordination (pentacoordinate trigonal 
bipyramidal geometry) 

(Umeda et al. 2011; Xue et al. 2012; 
Kunfermann et al. 2013; Wadood et al. 
2017; Konzuch et al. 2014) . 

His293 Suggested to be important in ligand pre-
orientation in the active site and loop 
closure. 
Hydrogen bonding and/or salt bridging 
with the phosphodianion of the ligand. 

(Murkin, Manning, and Kholodar 2014) 

Pro294 Important for maintaining the structure of 
the flexible loop. 

(Umeda et al. 2011) 

Gly299 May contribute to the flexibility of the 
flexible loop as an active site flap. 

(Umeda et al. 2011) 

Met298 Hydrophobic interactions with the 
backbone of the inhibitor or the 
nicotinamide moiety of NADPH. Mutation 
of this residue to alanine or valine was 
reported to significantly impair DXP 
binding and turnover. 

(Murkin, Manning, and Kholodar 2014) 

Trp296 Important role in discriminating DXR 
inhibitors,  
Induced-fit conformational change upon 
fosmidomycin binding, closing over and 
interacting with the bound inhibitor. 
Interact better with electron-deficient, 
hydrophobic group. 

(Deng et al. 2010) 
(Sooriyaarachchi et al. 2016) 
 (Umeda et al. 2011) 
 

Linker region Structural support for the catalytic domain  (Saggu et al. 2016). 
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fosmidomycin in its quaternary complex (PfDXR-NADPH-Mg2+ - FR900098). FR900098 methyl 
group is accommodated in the active site through a suggested induced-fit movement. The van 
der Waals interaction between Trp296 indole ring in PfDXR and FR900098 methyl group could 
explain its increased activity compared to fosmidomycin (Umeda et al. 2011). Also, by the 
presence of the acetyl group in place of the formyl group of fosmidomycin, FR900098 closely 
mimics the natural substrate DXP (Murkin, Manning, and Kholodar 2014). 

 

Figure 1-10: Fosmidomycin and FR-900098 structures (Wiesner et al. 2016). 

Fosmidomycin and FR900098 (see chemical structures in Figure 1-10) are the two most studied 
inhibitors of DXR. Unfortunately, fosmidomycin has poor pharmacological properties: short half-
life in plasma as well as poor oral availability and low lipophilicity, and this emphasizes the need 
for new and more efficient inhibitors.  

1.1.4.3 Other DXR Inhibitors 

1.1.4.4 Chemical synthesis approaches 
Since its discovery, diverse research groups have extensively worked on the development of 
fosmidomycin/FR900098 analogues for DXR inhibition. Maintaining the main frame of these 
molecules, efforts for new inhibitors focused on improving the lipophilicity for better druglike 
properties. Different strategies were used for that purpose: modification of the phosphonate 
group, modification of the hydroxamate group, modification on the three-carbon spacer. Hybrid 
methods combining previous ones and prodrug approaches were also used. Several compounds 
have been synthesized and tested in vitro or/and in vivo for their antiplasmodial activity. Many of 
these compounds showed good inhibitory activities against PfDXR compared to the reference 
molecules, fosmidomycin/FR900098, supporting their further studies as potential drug candidate 
(Aneja et al. 2016; Chofor et al. 2014).  

These studies have revealed some key features on the structure-activity relationships of DXR 
inhibition. The two main chemical groups, the phosphonate group and the hydroxamate group 
have been shown to be essential for inhibitory activity (see Figure 1-11). A reverse orientation of 
the hydroxamate is also as effective as the normal one. The group chelates the metal ion, essential 
for inhibitory activity. N-methyl substituted hydroxamic are preferred. The three-carbon propyl 
provides the optimal length between these two previous chemical groups to maintain them in 
good binding position (Chofor et al. 2015; Murkin, Manning, and Kholodar 2014; Saggu et al. 2016; 
Aneja et al. 2016).  
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In review studies, Saggu et al. 2016 and Aneja et al. 2016 reported numerous synthesized DXR 
inhibitors. Many of these compounds showed high potent inhibitory activities against PfDXR with 
IC50 and Ki values in the low nanomolar range.  An equal or improved inhibitory activity with 
respect to fosmidomycin has been recorded for many of them. Notably, among lipophilic 
inhibitors, a pyridine-containing fosmidomycin derivative showed 11-fold improved inhibitory 
activity against PfDXR compared to fosmidomycin, the reference molecule. The compound also 
showed better antiplasmodial activity. Some of these inhibitors, thus, show high potential as a 
drug candidate for further pharmacological studies (Saggu et al. 2016; Aneja et al. 2016). 

Despite these advancements, Deng et al. synthesized compounds structurally different from 
fosmidomycin missing either the hydroxamate or the phosphonate group, which showed 
unexpectedly interesting biological activities illustrating the challenge of rational chemical design 
(Deng et al. 2010; Chofor et al. 2015). According to Mercklé et al. the rational design of new 
inhibitors of DXR difficult at best (Mercklé et al. 2005) . Chofor et al. underlined the daunting 
challenge of finding different and efficient bidentate ligands, mirroring the fosmidomycin 
hydroxamate for metal chelation (Chofor et al. 2014). 

 

Figure 1-11: Important structural features of fosmidomycin. 

1.1.4.5 In silico drug discovery approaches in DXR inhibition 
 

The first solved DXR crystal structure was of E.coli (EcDXR, PDB IDRE 1K5H) (Reuter et al. 2002). 
With no crystal structure available, homology modeling was used to generate 3D structures for 
the Plasmodium enzyme (Goble 2011; Singh et al. 2007). Goble et al. and Singh et al. developed 
and validated a model for PfDXR to analysis functional and structural features of the enzyme 
inhibition. Docking studies were performed on the model, revealing structural information on the 
importance of the flexible loop, and ligand binding sites. Good correlations were found between 
inhibitors’ activity and their binding energies and thus the potential of docking to identify good 
inhibitors.  

In parallel to these efforts, data from several DXR X-ray structures from multiple organisms helped 
to improve the precision of prediction of structural affinity for related ligands without losing the 
capability to estimate the affinities of structurally distinct inhibitor (Silber et al. 2005). 
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Elsewhere the different potential binding pockets in DXR have been analysed and the crystal 
structure (PDB ID: 1Q0Q) presented mainly two binding pockets: the substrate binding and the 
cofactor binding pockets. Both were found to be druggable assessed by DoGSiteScorer (Volkamer 
et al. 2012) and presenting a Dscore of 0.8 for the fosmidomycin binding pocket and 0.76 for the 
NADPH binding pocket. The Dscore evaluates the druggability of binding pockets in protein and 
varies from 0 (poor druggability score) to 1  (high druggability score). Even though this latter 
pocket presents a low lipophilic character, it is still worth exploring especially for bisubstrate 
analogues (Masini, Kroezen, and Hirsch 2013; Deng et al. 2010).  

Using fosmidomycin fragments, Mercklé et al. tested different compounds. None of them showed 
time-dependent inhibition of DXR.  It was then suggested that these compounds were not able to 
induce the required reorganisation of the active site and the full-loop closure for inhibition. More, 
computational modeling and docking studies showed that a close structural analogue of 
fosmidomycin ((S)-N-hydroxy-4-(phosphoryloxy) methyloxazolidin-2-one) could bind to DXR. 
Unfortunately, this compound also could not show cooperative nor time dependent inhibition 
against the enzyme revealing challenges with the computational approaches: the problem of 
force field parameters for metal ions and the challenge to predict or simulate DXR flexible loop 
movement upon inhibitor binding (de Ruyck, Wouters, and Poulter 2011). Also, Deng et al. 
observed inhibitors binding in reverse mode with the phosphonate binding to Mg2+ and the 
hydroxamate located in the phosphonate binding site in docking studies on Ec-DXR (Deng et al. 
2010). A similar observation was made in a docking study on PfDXR (Bodill et al. 2013).  

Umeda et al. solved the first PfDXR crystal structure, revealing the intrinsic flexibility of the 
molecule and especially of its active site (Umeda et al. 2011). Subsequently, other crystal 
structures, complexed with different inhibitors were solved. This provided much insight on 
structural and kinetics information of DXR and inhibitors interactions (Xue et al. 2012; 
Kunfermann et al. 2013; Konzuch et al. 2014; Chofor et al. 2015; Sooriyaarachchi et al. 2016). 
Currently (July 2017), there are PfDXR crystal structures complexed with diverse ligands available 
in the PDB database (Berman et al. 2000).  

Based on previous quantitative structure–activity relationship (QSAR) and crystallographic 
studies, Xue et al. synthesized pyridine-containing fosmidomycin derivatives (see Figure 1-12) 
which showed to be potent inhibitors with Ki values of 1.9–13 nM. Crystallographic complexes 
containing these pyridine fosmidomycin derivatives showed the movement of the flexible loop 
upon ligand binding away from the active site centre to hold the pyridine group and allow the 
receptor to have favourable hydrophobic interactions with the inhibitor (Xue et al. 2012). 

Through crystallographic and kinetics studies of chiral inhibitors, Kunfermann et al. showed that 
PfDXR has a high level of enantioselectivity for an α-substituted fosmidomycin derivative (see 
Figure 1-12). More potent inhibitory activity was observed for S-(+)-enantiomer derivatives.  (+)-
enantiomers showed IC50 values of 94 nM (+) while (−)-enantiomers showed >10 μM (−) against 
Pf IspC. A similar observation was made in EcIspC MtIspC. Bulkier substituents like the phenyl 
group could adapt in the active site thanks to the mobility of the loop region (Kunfermann et al. 
2013).  
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Chofor et al. synthetized β substituted fosmidomycin analogues (see Figure 1-12)  with high 
inhibitory activity on P. falciparum growth in vitro. Crystal structures of complexes with the most 
active ligands revealed a different flap structure with the aromatic group of the ligand lying 
between the tryptophan of the flexible loop and the hydroxamate’s methyl group. This 
reorganization of the flap results in favourable interactions between the phenyl ring of the 
inhibitors and the tryptophan of the flexible loop for better inhibitory activity (Chofor et al. 2015). 

Based on a similar observation that the N-methyl group of FR900098 has favourable van der 
Waals contact with the indole ring of Trp-296 resulting in higher inhibition, Cobb et al. synthetized 
a n-propionyl FR-900098 derivative (FR-900098P) (see Figure 1-12). This could extend the inhibitor 
into the hydrophobic pocket flanked by Met-298 and Met-360 for more favourable van der Waals 
interactions and better binding affinity. FR-900098P showed inhibition constants Ki value of 0.92 
± 0.19 nM much better than the parent compounds (Cobb et al. 2015).  

In recent years, new ligands with potential inhibitory effect on P. falciparum were identified 
through successfully multiple structure-guided designs and virtual screenings 
(Tangyuenyongwatana and Gritsanapan 2017; Wadood et al. 2017; Chaudhary and Prasad 2014; 
Cobb et al. 2015; de Ruyck et al. 2016).  

Drug like molecules from the ZINC (Irwin et al. 2012) database were screened with the help of 
FRED module of Open Eye software against followed by docking study of selected hits. These hits 
showed better binding energies than fosmidomycin. A final compound with good toxicological 
profile was assessed through OSIRIS Property explorer (Chaudhary and Prasad 2014). Using a 
pharmacophore model of PfDXR active site and molecular docking, Wadood et al. identified new 
potent inhibitors from the ChemBridge (http://www.chembridge.com/) database. Their 
pharmacokinetic properties were also assessed through in silico ADME studies. Computational 
promiscuity binding data revealed that the identified hits could as well bind others P. falciparum 
drug targets (Wadood et al. 2017). Through a shape-based search approach using ArgusLab, the 
ZINC12 database was docked against PfDXR to find hits with similar functional group to 
fosmidomycin interacting with residues in the active site (Tangyuenyongwatana and Gritsanapan 
2017).  

By means of chemical and computational approaches, many advancements have been made in 
the research of pharmacological effective DXR inhibitors and in the understanding of its inhibition 
mechanism. Despite all these efforts, an exhaustive structural description and detailed reaction 
mechanism of DXR inhibition remain incomplete and there is still room for exploring clinically 
effective DXR inhibitors. 
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Figure 1-12: Some DXR inhibitors 

1.5  Research problem statement and justification 

Malaria remains a major health concern with a complex parasite constantly developing resistance 
to the different drug introduced to treat malaria, threatening the current ACT treatment 
recommended by WHO. Different antimalarial compounds with different mechanisms of action 
are ideal as this decreases chances of resistance occurring (Lunev et al. 2016). With no currently 
available effective vaccine, these factors underscore the necessity for new antimalarial to 
constantly feed the antimalarial pipeline and to stay ahead of resistance (Hemingway et al. 
2016:201). Inhibiting DXR and consequently the MEP pathway is a good strategy to find a new 
antimalarial with a novel mode of action. 

Furthermore, while developing new antimalarials, an ideal drug should combine the following 
profiles: matching or improving the ACT 3 days treatment, curing the blood-stage, blocking the 
parasite transmission and hypnozoiticidal properties (Burrows et al. 2014).  The MEP pathway has 
been shown to be present in all intra-erythrocytic stages of the parasite and is required for 
optimal development of the hepatic stage (Guggisberg, Amthor, and Odom 2014). Even though 
fosmidomycin does not inhibit gametocytes, MEP intermediates are present in gametocyte and 
isoprenoid are essentials to gametocytogenesis, showing thus potentiality for transmission 
blocking compounds (Wiley et al. 2015). In addition, the MEP pathway is indispensable for many 
human and animal pathogens, and also problematic weeds. None of its enzymes has homologs in 
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human. It thus presents an interesting potential as broad-spectrum antimicrobial agents with a 
novel mode of action and novel herbicides (Odom 2011).  
 
Currently, numerous DXR crystal structures from diverse organisms M. tuberculosis and E. coli 
and P. falciparum are available. Also, numerous in silico structure-based studies have been done 
on these structures complexed with various ligands. These studies revealed much information on 
SAR of DXR inhibition but also revealed its mechanistic and structural complexity (Murkin, 
Manning, and Kholodar 2014). Currently, except for P. falciparum there is no crystal structure 
available for any of the other Plasmodium species. Comparative protein modeling can be used 
here to obtain protein structural information in the absence of an experimentally determined 
structure (Webb and Sali 2014).  

Although previous studies shed much light on the SAR of DXR inhibition, these findings are not 
exhaustive as the protein active site remains very flexible (Murkin, Manning, and Kholodar 2014). 
Other compounds with significantly different scaffolds from fosmidomycin also showed 
interesting inhibitory potency, and reverse binding modes in docking studies were also observed 
(Deng et al. 2010; Bodill et al. 2013). Thus, exploring new compounds can contribute to extend 
the understanding of DXR inhibitory mechanism.  

Natural products have been a major source of pharmaceutical drugs. Still only 6% of existing plant 
species have been systematically studied for pharmacological activity (Atanasov et al. 2015). The 
South Africa Natural Compounds Database (SANCDB) (Hatherley et al. 2015) has not been 
explored yet for potential activity against DXR. SANCDB is a database of diverse natural 
compounds from aquatic and land-based origin. These natural products offer compounds with 
diverse chemical and biological properties. Evaluated through the Lipinski’s rules of five, 60% of 
the compounds met the conditions, and up to 80% violate at most only one rule (Hatherley et al. 
2015). They, thus, present good potential for exploring compounds with good pharmacological 
properties. Currently (July 2017) the database contains around 700 compounds from 166 
different organisms. These compounds often present better properties for drug development 
compared to synthetic ones. They play an important role in drug discovery and development, and 
much of their potentiality remains to be discovered (Newman and Cragg 2016). SANCDB database 
has not previously been screened against DXR. It, thus, constitutes an excellent source for 
potential DXR inhibitors with good drug likeness properties. For that purpose, computational 
docking provides a fast and efficient method for virtual screening of large libraries of compounds 
(Lionta et al. 2014). 

1.6  Aims 

The aim of the project is to investigate the SANCDB database for new DXR inhibitors. First 
homology models will be built for the different Plasmodium species (P. malariae, P. vivax, P. 
ovale, P. knowlesi, P. berghei, P. yoelii yoelii and P. chaubadi.). This will be followed by the 
exploration of hits from SANCDB using molecular docking. Finally, the identified hits will be 
further evaluated through molecular dynamics. 



 

20 
 

1.7  Objectives 

1. Retrieve PfDXR and ortholog protein sequences P. falciparum,  P. malariae, P. vivax, P. 
ovale, P. knowlesi, P. berghei, P. yoelii yoelii  and P. chaubadi from PlasmoDB 
(Aurrecoechea et al. 2009) database and their homologs (Escherichia coli, Synechocystis 
sp., Bacillus anthracis, Mycobacterium tuberculosis, Arabidopsis thaliana, Chlamydia 
trachomatis, Clostridium tetani, Vibrio cholerae, Zymomonas mobilis) from NCBI 
(NCBI Resource Coordinators 2017) to perform sequence analysis. 
 

2. Perform comparative multiple sequence analysis of PfDXR orthologs to deduce residue 
variations and to investigate their effect on substrate binding. 
  

3. Build and validate 3D structures in open and closed conformations through homology 
modeling for Plasmodium sequences: P. falciparum, P. malariae, P. vivax, P. ovale, P. 
knowlesi, P. berghei, P. yoelii yoelii  and P. chaubadi.  
 

4. Perform high throughput screening of SANCDB (Hatherley et al. 2015) compounds against  
PfDXR crystal structure and the 3D models of other Plasmodium species to identify 
potential inhibitors and assess their drug likeness properties.   
 

5. Develop and validate force field parameters for the metal ion in DXR active site. 
 

6. Molecular dynamic studies using GROMACS protein-ligand complexes of hits to evaluate 
the stability of each complex.  
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CHAPTER 2: SEQUENCE ANALYSIS 

2.1  Introduction  

Protein functions are related to their 3D structures. Sequence variations can impact protein 3D 
structure resulting in differences in functions and in inhibition. Sequence variations may be 
related to key residues or regions in the protein sequences, consequently impacting the different 
functions the protein can be implied in.  For example, in enzyme inhibition, the same ligand can 
show different type of binding depending on the sequence and structural variation of the targets. 
This is important especially for key residues. Two or more biological sequences can share similar 
regions, domains and/or residues. Aligning these regions/residues may suggest that these 
sequences share their related functionality. Conservation of residues in an enzyme catalytic site, 
for example, suggests the common activity shared across the different sequences. The validity of 
such hypothesis also depends on the quality of the alignment conducted (Baxevanis and Ouellette 
2001).  

Animal models are often used during drug development. Rodent models are important 
translational models for research on protozoan parasites. In malaria, rodent models (P. yoelii 
yoelii, P. chabaudi and P. Berghei) are often used in vivo experiments for drug and vaccine 
development. Elucidating sequence and structural variations through comparative studies can 
help understand and interpret experimental results variation across the different disease models 
(Ehret et al. 2017).  

This chapter aims to analyse homolog protein sequences of different Plasmodium species. 
Analysis of sequence features relating to substrate binding and interactions compared with 
similar types of DXR found in Plasmodium, Apicomplexa and eukaryotes is to be performed with 
the main aim to identify regions that are conserved. Important sequence features related to the 
protein function and its inhibition will be analysed across the different species (P. falciparum, P. 
malariae, P. vivax, P. ovale, P. knowlesi, P. berghei, P. yoelii yoelii and P. chaubadi). Residues of 
interest will be those involved in substrate/inhibitor binding and enzyme inhibition. These 
variations will be considered during docking analysis (Chapter 4) to find out if they have significant 
effects on inhibitor binding modes. 

DXR is well studied enzyme. Multiple crystal structures of the protein with different ligands from 
different organisms have been solved. Critical residues implied in binding to the protein and 
protein inhibition has been identified not only in P. falciparum but also in other organisms. Also, 
residues involved in binding of the cofactor and in the active site flap region have been identified.  

In this chapter, a comparative analysis including some non-apicomplexan species (Escherichia coli 
(Ec), Mycobacterium tuberculosis (Mt), Helicobacter pylori (Hp), Vibrio cholera (Vc), Bacillus 
anthracis (Bc), Arabidopsis thaliana (At), Synechocystis sp (Sy)) will also be done. This will allow 
us to identify region and residue differences within the apicomplexans which may impact on 
inhibitors selectivity across the different Plasmodium DXR. Our results will be compared to the 
literature. 
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2.1.1 Biological databases and information search 

Biological information comprises different types of data including: literature, genomic and protein 
sequences, sequence annotation information, motifs and domains and protein 3D structures. 
These data are saved in different file formats and often organized in biological databases. This 
allows for efficient storage of data but also facilitates the search of this data using different 
criteria, access to this data, and allows for downloading and the management of information. 
These different features help in knowledge discovery but also this is very important as the 
development of new technologies and their decreasing costs have caused an increase in the 
amount of available data. As a consequence, a large community of scientists can now submit 
information into biological databases which raises the need for curation of data (Marx 2013).  

Depending on their level of curation, biological databases can be classified into primary databases 
(example GenBank), and secondary databases (example SWISS-PROT). The first category contains 
sequences or structural data submitted by the scientific community, while secondary databases 
contain data automatically treated using computers or manually curated information (Baxevanis 
and Ouellette 2001). There are also specialized databases which tend to focus on information 
related to a specific area of research or an organism such as PlasmoDB (Aurrecoechea et al. 2009). 
To retrieve information from these databases, a classic word search based method, searching 
with key/identifiers, usage of Boolean operators and ability to specify some additional criteria can 
be done. Some advanced features also as the use of API (Application Programming Interface) are 
implemented on some of these databases. More specific to the biological field is the search for 
similarity between biological sequences through sequence alignment (Xiong 2006).  

2.1.2 Sequence alignment 

Sequence alignment is a fundamental method used in bioinformatics to compare and find the 
similarity and identity between DNA, RNA and proteins sequences by arranging them in a certain 
way. This can be done between two sequences (pairwise alignment) or multiple sequences 
(multiple sequence alignment; MSA). Similarities and differences are thus revealed with their 
implication for structural, functional, and evolutionary relationships between the sequences 
(Baxevanis and Ouellette 2001). A key purpose of sequence alignment is to infer sequence 
homology based on their identity and length, especially important for homology modeling studies 
in the next chapter. When sequence identity and length falls in the safe zone of  the homology 
detection graph established by Rost, the proteins are homologous. The graph has a twilight zone 
in which inferring homology is risky and a midnight zone, where in which inferring homology is 
not reliable. A cutoff of 20% of identity is enough for sequences longer than 250 amino acids. 
Shorter sequences require higher cutoffs for inferring homologous relationships than longer 
sequences (Rost 1999). 

 Most of the alignment programs use two main algorithms: Smith-Waterman and Needleman-
Wunsch.  The first method uses a local alignment strategy trying to spot regions of similarity 
within sequences that may not be evident when maximizing the alignment over the entire 
sequences. Whereas, Needleman-Wunsch algorithm makes use of a global alignment approach 
trying to find the maximum similarity between sequences across their full span. A hybrid method, 
semi-global alignment compromises between the two previous approaches, and is ideal when 
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regions of similarity are found in the ending part of the sequences.  The results produced by these 
procedures can be manually adjusted to reflect biological meanings related to research questions 
(Baxevanis and Ouellette 2001).  

To characterize the biological meaning of amino acid similarity in protein sequences, substitution 
matrices are used. They characterize the likelihood of sequence character to replace each other. 
PAM (Point Accepted Mutation) and BLOSUM (BLOck SUbstitution Matrix) are the two most 
commonly used series of matrices. For the PAM1 matrix approach, probabilities of substitution 
are calculated when 1% of the amino acids had changed; other PAM matrices are then derived 
using mathematical matrix operations. PAM was obtained by observing global alignment of 
closely related sequences while the BLOSUM series was derived from local alignment of 
evolutionary divergent sequences. Different identity thresholds were fixed for the set of 
sequences, giving thus the different BLOSUM matrices. The matrix probabilities were calculated 
from observation of the conserved regions (blocks) (Henikoff and Henikoff 1992; Pevsner 2009). 

Ideally, computational implementations of these algorithms use dynamic programing as it 
produces the best alignment(s) possible for the sequences. Unfortunately, the method is 
computationally expensive when it comes to data as large as the biological data used. Heuristic 
approaches are then used. BLAST (Basic Local Alignment Tool) is a fast and heuristic approach for 
sequence similarity search in large biological databases. As algorithm, a word-based search 
method is used to find short matches and extend upon them by local alignment if the alignment 
score is above a set threshold. The significance of an alignment is estimated by the E-value 
(Expected value) (Altschul et al. 1997).  

MSA is used when aligning more than two sequences. As for pairwise alignment, dynamic 
programming provides the most efficient algorithm to find the exact solution. Unfortunately, as 
the number of sequences increase, the approach becomes impractical. Heuristic approaches 
which do not guarantee the most accurate solution are then used (Altschul et al. 1997). They are 
the progressive and the iterative methods. In the first approach, two sequences from the set are 
first aligned. These two sequences are the closest ones selected from a guide tree. A third 
sequence following the order in the guide tree is alignment with the resulting alignment. This 
process is repeated to progressively align all sequences in the set (Wallace, Orla, and Higgins 
2005). Some examples of tools using this method are Clustal and T-Coffee. The second approach 
starts with a low-quality alignment of the sequences. Then improvements are done by realigned 
in an iterative way until no more improvement can be done.  A program like PRRN uses an 
iterative alignment method (Xiong 2006). 

This helps to identify conserved regions and residues across these sequences but also insertions 
and deletions. These features can be difficult to identify in a pairwise alignment. To quote Arthur 
M. Lesk, “Two homologous sequences whisper, a multiple alignment shouts loudly”. Adding more 
sequences to the alignment improves its accuracy. Residues or regions implied in key structural 
or mechanistic functions in a protein will show high degrees of conservation across this protein. 
For example, the conversation of an enzyme’s catalytic residues across sequences can indicate 
the conservation of the same catalytic activity across these organisms. But, it is notable that there 
are some exceptions. One interesting example is the recognition region in antibodies and MHC 
molecules. They remain key functional regions but hypervariable (Reche and Reinherz 2003). 
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Aligning multiple sequences is also used in protein classification into families, in motif search and 
phylogenetic tree construction (Pevsner 2009).  

 

2.1.3 Phylogenetic trees 

Phylogenetic trees are diagram-like representations depicting evolutionary relationships 
between organisms. They have a broad sphere of application, such as in helping species 
classification, the study of disease origin, resistance evolution, protein families coevolution and 
gene transfers and speciation events (Brown 2002). In homology modeling, they can help 
reconstruct an ancestral sequence to be modelled (Studer et al. 2014). They are based on 
organism molecular (genes and proteins) or physical information and give the information on 
sequence’s origin, identify paralog and ortholog sequences and gene transfers. Trees can be built 
using different UPGMA (Unweighted Pair Group Method with Arithmetic Mean), neighbor-
joining, maximum parsimony, maximum likelihood and Bayesian methods. The first two methods 
are fast, based on distance-matrices (based on sequence similarity) and do not imply a biological 
model of evolution. The other methods are character based, trying to estimate dynamic of 
mutations traced back to ancestral sequences. Maximum parsimony uses a minimum evolution 
model by minimizing the number of mutations. Finally, maximum likelihood and Bayesian 
methods use an explicit evolution model that fit best the data. They are more robust methods, 
but also are more computationally demanding (Xiong 2006; Pevsner 2009; Baxevanis and 
Ouellette 2001).  

 

2.2  Methodology 

2.2.1 Data retrieval 

PlasmoDB (Aurrecoechea et al. 2009) and the NCBI (National Center for Biotechnology 
Information) databases were used to retrieve the sequence data. Protein sequences in Fasta 
format were retrieved from PlasmoDB (Aurrecoechea et al. 2009) for the Plasmodium species. 

On PlasmoDB, the sequence of the most documented crystal structure 3AU9 was used to search 
for Plasmodium orthologs through BLAST. The BLAST search was conducted with the following 
parameters: Matrix: BLOSUM62, Gap Penalties: Existence: 11, Extension: 1, Neighboring words 
threshold: 11, Window for multiple hits: 40. The search was limited to the databases of the 
different Plasmodium species to select only ones from the organisms of interest. 

The protein sequences for the other organisms were obtained from the NCBI. A BLAST search was 
conducted with 3AU9 sequence as query and the following default parameters were used: 
Gapcosts 11.1 , Matrix BLOSUM62, window size 40, word size 6. Endoplasmic reticulum signal and 
plastidial targeting sequences were trimmed from the N-terminal for the search as these regions 
are absent in the mature protein.   
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2.2.2 Multiple Sequence Alignment  

PROMALS3D (available at http://prodata.swmed.edu/promals3d/promals3d.php), and MUSCLE 
(http://www.ebi.ac.uk/Tools/msa/muscle/) were used to perform the MSA. PROMALS3D has the 
advantage to introduce structural constraints in the alignment. PSI-BLAST and secondary 
structure prediction from PSIPRED are used to build hidden Markov model (HMM) forming 
sequence constraints. PROMALS3D default parameters were used. When using PROMALS3D, a 
3D structure from the PDB (Protein Data Bank)  (Berman et al. 2000) database if available for each 
sequence was added in the alignment.  

MUSCLE stands for MUltiple Sequence Comparison by Log- Expectation. As previously described, 
it uses a progressive alignment method (Pei, Kim, and Grishin 2008; Edgar 2004). The default 
parameters were used: BLOSUM62 matrix, gap opening of -12.0 and gap extension of -1.0 with 
CLUSTALW as weighting scheme and UPGMB for clustering.  

The outputs of the alignments were visually inspected for misalignment(s) and edited with Jalview 
(Waterhouse et al. 2009) where necessary, and the best alignment based on regions and residues 
conservation was selected. The best results were obtained with MUSCLE. 

2.2.3 Phylogenetic analysis 

From the alignment obtained from MUSCLE a phylogenetic analysis was conducted. MEGA 
(Molecular Evolutionary Genetic Analysis) version 7.0.26 was used. The tool provides 
sophisticated approaches for phylogenetic analysis.  

Any of the tree construction methods is not guaranteed to produce the most accurate tree. 
Combining different construction methods and validating the consistency of the produced tree 
provides a strong support for the tree accuracy (Xiong 2006). MEGA allows to select between 
different evolutionary models depending on the datatype (amino-acids, DNA, RNA) to estimate 
the pairwise evolutionary distance. Then using the bootstrap method and analytical formulas 
MEGA computes the standard errors for the estimates. The number of bootstrap replication for 
test of phylogeny was set to 1000. The statistical method of Maximum Likelihood was used for 
the phylogeny analysis. The substitution type was amino acid. The lowest BIC score (Bayesian 
Information Criterion) model describes the best substitution pattern. The three lowest BIC scores 
models (LG+G32, LG+G+I33, WAG+G+I33) were selected. Different site coverage cut-offs to 
remove gaps in the alignment were tried: 100%, 90%, 85%, 80% (see Table 2-1).  The tree 
inference method was the Nearest Neighbor Interchange (NNI) with a strong branch swap filter 
and a bootstrap value of 1000.  Depending on the model selected and the site coverage cut-offs, 
different trees were generated.   

Table 2-1: Models and site coverage cut-offs for phylogenetic tree construction 

Models Site coverage cut-offs 

LG+G32 100%, 90%, 85%, 80%.   

LG+G+I33,  100%, 90%, 85%, 80%.   

WAG+G+I33 100%, 90%, 85%, 80%.   
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The trees were assessed using the bootstrapping method through their consistency with the 
bootstrap tree and the bootstrap support values. The tree with the highest log likelihood is 
selected.  

2.2.4 Motifs analysis 

MEME (Multiple EM for Motif Elicitation) (Bailey et al. 2009) webserver 
(http://www.meme.nbcr.net/meme/cgi-bin/meme.cgi) was used for motifs finding and analysis. 
The program uses expectation maximization (EM) algorithm and can take multiple sequences to 
identify motifs across these sequences.  The search was conducted on the set of 17 sequences. 
The minimum motif width was 3 and the maximum width was 20. A gradual search was performed 
to identify all motifs with no repetition. The search was first performed for a high number of motif 
which may return repetitive motifs. Then this number was reduced to finally  only unique motifs. 
21 unique motifs were identified.  The ‘E-value’ of the motif, the probability of finding it in random 
sequences (Bailey et al. 2006), was used to assess the significance of a motif.  A Python script: 
Motif analyser written by Ngonidzashe Faya and Pr. Ozlem Tastan Bishop was used to produce a 
heatmap for the identified motifs. The motif search was performed to analyse similarity and 
variations of motifs across the different Plasmodium species, especially motif located in the 
binding sites. 

2.3  Results and Discussion: 

2.3.1 Sequence data 

PfDXR ortholog sequences from PlasmoDB showed an expected high percentage of similarity (see 
Table 2-2). Sequences showing lowest sequence identity to 3AU9  were PBANKA_1330600 and 
PCHAS_1335200 from P. berghei and P. chabaudi chabaudi respectively. As the crystal structure, 
the PF3D7_1467300 sequence from P. falciparum 3D7 shows 100% identity to 3AU9. These 
sequences were further confirmed through PlasmoDB orthology classification. All the sequences 
belonged to the same ortholog group OG5_130462. 

 

 

 

 

 

 

 

 

http://orthomcl.org/cgi-bin/OrthoMclWeb.cgi?rm=sequenceList&groupac=OG5_130462
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Table 2-2: Plasmodium DXR sequences retrieved from PlasmoDB. New ID is the ID used in this thesis. 

Accession numbers New ID Organism Score E-Value %identity 
to 3AU9 

Protein 
length 

PBANKA_1330600 PbDXR P. berghei ANKA 696 0,00E+00 72% 495 

PCHAS_1335200 PcDXR P. chabaudi 
chabaudi 

687 0,00E+00 72% 495 

PF3D7_1467300 PfDXR P. falciparum 3D7 991 0,00E+00 100% 488 

PKNH_1214000 PkDXR P. knowlesi strain 
H 

653 0,00E+00 76% 519 

PVP01_1239500 PvDXR P. vivax P01 648 0,00E+00 73% 528 

PY05578 PyDXR P. yoelii yoelii 
17XNL 

694 0,00E+00 74% 493 

PmUG01_12049600 PmDXR P. malariae UG01 717 0,00E+00 82% 498 

PocGH01_12047500 PoDXR P. ovale curtisi 
GH01 

700 0,00E+00 75% 478 

The homolog sequences from the other organisms showed a lower sequence identity percentage 
compared to the Plasmodium ones as expected (see Table 2-3). Nonetheless the high sequence 
identities for the different sequences retrieved (with a minimum of 34% sequence identity) and 
the good coverage (at least 91%) indicate their homology relationship. These sequences fall in the 
safe zone of the graph for homology deduction (Rost 1999).  

Table 2-3: Plasmodium DXR homologs sequences retrieved from NCBI 

Accession numbers New ID Organism Score E-Value %identity 
to 3AU9 

Query 
coverage 

Protein 
 Length 

WP_000811927.1 EcDXR Escherichia coli 284 9e-91 37% 93% 398 

WP_041426024.1 SsDXR Synechocystis sp. PCC 6803 305 8e-102 42% 96% 393 

WP_072191693.1 BaDXR Bacillus anthracis 295 6e-97 39% 97% 385 

WP_031675280.1 MtDXR Mycobacterium tuberculosis 233 2e-71 34% 97% 413 

OAO90921.1 AtDXR Arabidopsis thaliana 315 2e-103 41% 97% 479 

CRH69109.1 CtrDXR Chlamydia trachomatis 293 8e-96 41% 92% 387 

WP_011099497.1 CteDXR Clostridium tetani 328 1e-110  49% 91% 384 

 WP_001229020.1 VcDXR Vibrio cholerae 272 2e-87 36% 99% 402 

WP_014848273.1 ZmDXR Zymomonas mobilis 269 2e-87 37% 92% 388 
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2.3.2 Multiple Sequence Alignment 

 

Figure 2-1: MSA of Plasmodium DXR and it homologs. The alignment is coloured by percentage identity.
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Only residues falling into the highest percentage identity (consensus sequence) are 
coloured. The numbering of residues (scale above) is based on the sequence of 
reference PfDXR (PDB ID: 3AU9). Columns are coloured per percentage identity. For 
each column, only residues that agree with the consensus sequence are coloured. 
Hyphens represent the absence of amino acid residues. Secondary structures 
annotations were extracted from the structure of 3AU9 and displayed below the 
alignment (Red is helices and green is sheets). Sequences are truncated to have portions of the 
N–terminus. In Plasmodium, the first 77 residues are similar to be an endoplasmic reticulum signal 
and plastidial targeting sequences (Umeda et al. 2011).  

The alignment shows the expected higher degree of conservation among Plasmodium sequences. 
Compared to other organisms, Plasmodium species present three main inserts (red frames): a 
three residue insert N101 -K102- I103, and 13 residues insert (L247 to I259) and a less evident 
insert toward the end of the alignment (see Figure 2-1).  

The NADPH binding domain is characterised by the Rossmann fold at the N-terminal. This fold is 
composed of two βαβαβ units as illustrated by the secondary structures in the alignment. 
Residues interacting with NADPH are highlighted in green in the alignment. The turn region 
between the first strand and the next helix is characterised by a consensus binding pattern 
GXXGXXG in which the first two (2) glycines participate in NAD(P)-binding, and the third facilitates 
close packing of the helix to the beta-strand. The conserved structural motif GXXGXXG as shown 
in the alignment is known for dinucleotide-binding proteins and the second glycine of the motif 
play an important role in the recognition of both cofactor and substrate (Jang et al. 2007). P. vivax 
and P. knowlesi present GSSGSI motif while the remaining Plasmodium species have a GSTGSI 
motif instead. The threonine (THR86) residue implied in the cofactor binding is substituted into a 
serine residue in P. vivax and P. knowlesi. SER117 is changed to an asparagine in P. yoelii, P. 
berghei and P. chabaudi. They all are rodent parasites.  

In the flexible loop region (residues 291 to 299), except for LYS297 in PfDXR, all residues are 
completely conserved across all Plasmodium species but presented little variations compared to 
those observed in other species. The loop presents a highly conserved motif HPXWXMG (Kholodar 
et al. 2014) which is illustrated in the alignment. Residues (His293, Pro294, Trp296, Met298 and 
Gly299), reported to be important for enzyme ligand/substrate interaction, are completely 
conserved in all organisms. The conservation of the  residues His293, Trp296, and Met298 in the 
flexible loop region were also reported in the literature (Umeda et al. 2011; Murkin, Manning, 
and Kholodar 2014; Deng et al. 2010; Sooriyaarachchi et al. 2016). These buried residues have 
been associated with loop closure (Umeda et al. 2011). LYS297 remains the most variable residue 
in that position. The residue is substituted by an Asparagine in P. ovale, P. yoelii, P. berghei and 
P. chabaudi.   

Residues Asp231, Glu233, and Glu315 (highlighted in pink) are highly conserved in all DXR family 
members as shown in the alignment. They coordinate the metal ion in the active site (Singh et al. 
2007; Wadood et al. 2017; Kunfermann et al. 2013). Except for SER269 which is conserved in 
Plasmodium species but showed variations in the other species (see Figure 2-1), residues implied 
in the phosphonate moiety binding, Ser270, Ser306, Asn311, Lys312, His293 (highlighted in red), 
are also completely conserved.
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2.3.3 Phylogenetic tree 

 

Figure 2-2: Left:  Phylogenetic Tree for 17 DXR protein sequences constructed using the software MEGA7 and the Maximum Likelihood method. A threshold of 
100% was applied for site coverage. Left botton: Scale for evolutionary change, substitution per site.  Right: Pairwise sequence identity matrix. Colours represent 
degree of similarity (Red (1) 100% identical to Bleu (0) 0% percent identical.) The pairwise sequence identity is calculated based on the same alignment used to 
construct the phylogenetic tree. The order of sequence in the tree is the same as in the identity matrix (1: PyDXR to 17 VcDXR).  
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LG (Le and Gascuel 2008)+G (discrete Gamma distribution to model evolutionary rate 
differences), LG+G+I, and WAG (Whelan and Goldman 2001)+G+I models showed the lowest BIC 
scores.  The LG+G model was selected as it generated the tree with the highest likelihood (-
8048,56). 

Phylogenetic analysis was performed to analyse evolutionary relationship between the different 
DXR protein sequences. As expected all sequences share the same root, as they are all from the 
same DXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) protein family. The Plasmodium 
species (PyDXR, PbDXR, PcDXR , PfDXR , PmDXR , PoDXR, PvDXR, PkDXR) clustered under the same 
clade. In the same way, gram positive (CteDXR, BaDXR, CtrDXR), gram negative (MtDXR, ZmDXR, 
EcDXR, VcDXR) and plant (AtDXR) clustered together (see Figure 2-2). Furthermore, the rodent (P. 
yoelii yoelii, P. chabaudi and P. berghei) DXRs formed a sub-cluster independent from the other 
Plasmodium species. Interestingly SsDXR, from Synechocystis, a freshwater cyanobacterium, had 
the closest relationship with DXR from Arabidopsis thaliana as reflected by their clustering in the 
tree and their clear green colour in the identity matrix. This coloring corresponds to sequence 
identity between 60% and 70%. Indeed, the two sequences share 65% sequence identity.  This is 
consistent with previous findings. In fact, plant DXRs are from an endosymbiotic origin and 
obtained by gene transfer from Synechocystis (Lange et al. 2000). 

Some of the bootstrap support values were low (<70%), a bootstrap proportion ≥70% 
corresponding to a probability of ≥95% that the respective clade is real (Hillis and Bull 1993). 
Nonetheless, these values were consistent across the different generated trees using different the 
three best models with different site coverage thresholds. 

2.3.4 Motifs analysis 

MEME (Bailey et al. 2006) identified a total of 21 unique motifs across the set of sequences (see 
Figure 2-3). All motifs were statistically significant, the lowest in term of significance being motif 
21 with an E-value of 1.6e-019.  

The first and most highly conserved motif 1 starting at position 293 in PfDXR corresponded to 
mainly residues in the loop region of the protein (residues HPKWKMGKKITIDSATMMNK in PfDXR).  
HIS293, PRO293, MET298, GLY299, TRP296 in this motif have been reported in different 
literatures to play major role in the protein inhibition (see Table 1-1Table 1-1: Some PfDXR 
residues and their identified/suggested roles in inhibition.). Motif 3 starting at position 224 in 
PfDXR covers the protein active site. It has two significant residues: APS231 and GLU233 implied 
in binding to the inhibitor/substrate hydroxamate moiety (Umeda et al. 2011). Motif 5 follows 
motif 1 in the protein sequence and cover GLU315 of the active site, and is implied in substrate 
binding and the metal coordination (Kholodar et al. 2014).  

As general observation, conserved motifs might be related to important functional regions of the 
protein and often reported in literature. Nonetheless, some conserved motifs that we identified, 
for example, motif 2 and motif 6, cover residues of the protein with no related known function 
reported in literature. It would be interesting to further investigate the functionality related to 
these motifs. 
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Figure 2-3: Motif analysis results. The coloring shows the degree of conservation of the motif (red: highly 
conserved to bleu: less conserved). The related motif logos are in appendix A. 

During the iterative search varying the number of motifs to be searched and the minimum and 
maximum length of motif.  Long length motifs corresponded to the protein domains, for example, 
the NADPH binding domain while shorted ones were around key conserved smaller regions of the 
protein covering known motifs or key conserved residues. An interesting example was the case 
of motif 4 which is 20 amino acid long. It contains a common DXR motif, the Rossman fold motif 
(GXXGXXG) which is 7 amino acid long and present all DXR sequences (see Figure 2-4). As 
illustrated in the motif logo, we can see GXXGXXG of the NADPH binding domain standing out 
with 3 to 4 bits. 
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Figure 2-4: Rossman fold (GXXGXXG) motif found in motif 4 of the MEME (Bailey et al. 2006) analysis.  

As expected, some motifs were unique to Plasmodium sequences due to the higher degree of 
conservation in these sequences. They are motif 13, 14, 15, 16, 19, 20, and 21. Motif 15 
corresponds precisely to the large insert in the red box seen in the sequence alignment. In the 
same way, motif 14 corresponds to the insert in the ending region of the alignment starting at 
position 447 in PfDXR. A similar observation is made on motif 16 (see Figure 2-1Figure 2-1: MSA 
of Plasmodium DXR and it homologs.). The remaining motifs (13, 19, 20, 21) show high 
conservation of residues. These motifs are clear inserts in Plasmodium sequences as shown in the 
MSA (see Figure 2-1) Interestingly the first insert in the alignment did not result in any unique 
motif to Plasmodium sequences. The closest motif to this region is motif 19 which starts with the 
last (Isoleucine) residue of the insert in the alignment. 

2.4  Conclusion 

17 DXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) protein sequences were retrieved 
from PlasmoDB and NCBI. Sequences showed high identity and coverage with respect to the 
query sequence (P. falciparum) underlining their homology relationship. Sequence analysis 
through MSA revealed the key conservation of residues implied in the enzyme active site and 
implied in the cofactor binding. The Rossmann fold motif, the GXXGXXG motif at the N-terminal, 
residues in the active site and binding cofactor, and the flexible loop show high degree of 
conservation.  The main noticeable different among the Plasmodium sequence is certainly the 
substitution of SER117 to an asparagine in P. yoelii, P. berghei and P. chabaudi, all rodent 
parasites. 

The phylogenetic analysis showed the clustering of Plasmodium sequences. The tree also 
highlights the origin of plants DXR which was transferred from Synechocystis through an 
endosymbiotic process. The motif analysis was generally in agreement with the sequence 
alignment. 

In the next chapter, homology models of the different Plasmodium species will be built. As shown 
in the sequence analysis, a conservation of residues implied in the cofactor and enzyme active 
site is expected.  

 

 

 



 

34 
 

CHAPTER 3: HOMOLOGY MODELLING 

3.1  Introduction 

High-throughput sequencing technologies by offering cost-efficient and fast techniques have 
revolutionized biology. These new sequencing techniques have made it easy to generate large 
amounts of genomic data (Marx 2013). As of August 2015, 187 million biological sequences 
were deposited in Genbank databases with 50 million protein sequences were deposited in the 
UniprotKB database (Kc 2016). Unfortunately, protein sequences do not provide much insight 
on their functionality. Protein functions are mainly related to their three dimensional structures. 
Enzymes, for example, can provide the spatial arrangement for their substrates to allow for a 
catalytic reaction. A 3D structure thus provides much better understanding of protein’s 
mechanism of action.  This provides greater insight to understand a protein and elucidate its 
interactions with other proteins and ligands, thus giving the opportunity to modify it. 
Knowledge of structural information is thus essential for structure-guided drug discovery (Meng 
et al. 2011). 

There are around 100 000 (August 2015) experimentally solved proteins structures in the Protein 
Data Bank (PDB) (Berman et al. 2000). So only around 0.2% of the known protein sequences have 
an associated solved structure. Hence there exist a huge sequence-structure gap (Kc 2016). NMR 
(Nuclear magnetic resonance spectroscopy), X-ray crystallography, electron microscopy are the 
main experimental techniques used to determine protein structure. These techniques are 
expensive, time consuming and require much expertise. Comparing them to the efficiency of 
sequencing techniques, the challenges associated with the experimental methods for solving 
protein structures associated with experimental technique do not clearly support an optimism for 
a reduction of the sequence-structure gap. That existing situation has paved the way for 
computational techniques of solving protein structures. Comparative modeling (CM or homology 
modeling), threading and free modeling (FM or ab initio) approaches offer a different approach 
of solving protein structure (Kc 2016; Zheng et al. 2015).   

Comparative modeling (also known as homology modeling) is a computational technique to 
predict a protein 3D structure from its amino acid sequence using an experimentally determined 
homologous protein structure. The technique is supported by two main assumptions. 

Historically, firstly Christian Anfinsen established the basis for the sequence–structure–function 
paradigm.  All the information required for a protein to fold into its functional structure is 
encoded in its sequence. Secondly, since 1995, 80% to 90% protein structures deposited in the 
PDB database do not introduce a significant number of different folds and since 2012 the number 
of folds in the database has remained stagnant (RCSB PDB - Content Growth Report n.d.). Protein 
structures tend to be 10 times more conserved than their sequences. During evolution, changes 
in the protein sequence generally (amino acid substitutions) result in little of no effect on the 
overall protein structure. This is particularly true for homologous sequences. However, some 
exceptions exist to this general observation. For example, Alexander et al. designed two proteins 
with 88% sequence identity but having dissimilar structure and function (Alexander et al. 2007). 
Except in rare cases, proteins presenting similar sequences, even distantly related, fold into 
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similar structures. Based on protein sequence similarity and length Rost (1999) determined a safe 
zone to assume similar structures (Rost 1999).  

Based on these observations, it is possible to predict a protein structure from its amino acid 
sequence, and homology modeling is a successful in silico approach. During the April-June 2003 
SARS (Severe acute respiratory syndrome) epidemic, a homology model for SARS coronavirus 
(SARS-CoV) Mpro, was used to dock the compound AG7088 into the substrate binding site. 
AG7088 indeed was shown to have anti-SARS activity in vitro (Anand et al. 2003). Using homology 
modeling, Cui et al. investigated the agonist binding mode to the Dopamine (D3) receptor for the 
design of new inhibitors (Cui et al. 2010). In many other cases in drug design, homology modeling 
has been successfully applied (França 2015).  

This chapter aims to build accurate 3D models for P. malariae, P. vivax, P. ovale, P. knowlesi, P. 
berghei, P. yoelii yoelii and P. chaubadi preceded by a detailed description of the methodology 
used and the steps in homology modeling. These structures will be modelled in two different 
conformations: from template 5JAZ (closed conformation) with active site ligand and metal 
maintained and from 1K5H which presents an open loop conformation of the protein. 

3.2  Steps in homology modeling 

Comparative modeling determines a protein structure based on an already known structure. The 
structure to be determined is often referred as the target and the known structure used as the 
template. These two sequences need to be homologous hence the name homology modeling.  

Thus, the first step in the modeling process is the identification of a suitable template. The Protein 
Data Bank (Berman et al. 2000) where protein structures are deposited is used to search for a 
template. A simple method is a BLAST (Altschul et al. 1997) search against the PDB (Berman et al. 
2000) database. Beside the classic BLAST search, other homology detection tools exist. PSI-Blast 
(Position-Specific Iterative Basic Local Alignment Search Tool)  (Altschul et al. 1997) is more 
sensitive for remote homologs detection. HHPred incorporates Hidden Markov  Models  (HMMs) 
which includes insertion and deletion information. Using HMM-HMM comparion has proven to 
improve search sensitivity and selectivity (Söding, Biegert, and Lupas 2005).  

The search result can present different templates and choosing an appropriate one is a critical 
step. These initial steps are important and they can significantly impact the remaining processes 
and the quality of the produced homology model. Different criteria need to be considered when 
selecting a template. The most important is to find a homologous protein for the target protein. 
One can conclude a homology relationship between two proteins based on their sequence 
identity and length. Rost established a graph to determine protein homology. From it two major 
observations could be made in the context of homology modeling: short sequences require much 
higher similarity to be inferred as homologous and the graph presents a twilight zone in which 
inferring homology is risky (Rost 1999). Other than the sequence identity, other factors need to 
be considered. The next important condition is the query coverage, the fraction of the target 
sequence covered by the template sequence. One needs to also consider the predicted secondary 
structures of the target and compare its consistency with the one of the template. Finally, an 
important feature is the quality of the template structure. The Protein Data Bank has quality 
criteria for the deposited structures. They include the resolution, the R-value, Rfree-value, 
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clashscore, Ramachandran and sidechain outliers and the presence of ligand(s). One should also 
investigate the presence of missing residues; this is especially important if long sections of 
residues are missing, or the missing residues are present in important regions of the protein 
(Sliwoski et al. 2014; Pevsner 2009).  

An approach at this step is to assess the template using the model quality assessment tools.  

If no suitable unique template is found, an alternative approach is multi-template modeling. 
Different suitable templates can be chosen to fit different portions of the target sequence. 
Regions without template coverage remain the most difficult to model and the most error prone 
in homology modeling (Fiser and Šali 2003; Webb and Sali 2016).  

After selecting a template, the next step is sequence-target alignment. Even though, the template 
search itself is based on alignments, such alignment may not be optimal as they use heuristic 
approaches favorizing speed. Different CASP experiments have underscored the accuracy of this 
alignment as a critical step for the final model quality. A 3.8 Å distortion can be introduced in the 
final model as the result of only one residue shift in the alignment (di Luccio and Koehl 2011) and 
alignment errors are practically unrecoverable. MODELLER can use an iterative alignment to 
improve alignment quality and thus improve the quality of the resulting models. Using a genetic 
algorithm, alignments are improved and when tested; in a test using this approach the resulting 
model’s accuracy increased from 43% to 54% (accuracy: percentage of the model Cα atoms within 
5 Å of the matching Cα atoms in the native structure) (Webb and Sali 2016). A MSA, including 
structural data and evolutionary information can be useful at this step, and this is especially 
important for distantly related proteins. However, it is noteworthy that including too many 
sequences in the MSA may decrease the model accuracy (Kryshtafovych, Fidelis, and Moult 2014). 
One must avoid gaps in the alignment, especially large gaps, as they result in no template to 
model from. Also, visually inspecting the template structure and analysing the effect of alignment 
gaps at the structural level and correcting them can be useful (Krieger, Nabuurs, and Vriend 2005). 
MSA tools such as PROMALS3D (Pei, Kim, and Grishin 2008) and MUSCLE (Edgar 2004) can be 
used. The alignment guides the modeling process. 

The modeling process first maps the template backbone coordinates to the target based on the 
alignment. For identical residues, side chains can also be mapped (Krieger, Nabuurs, and Vriend 
2005). Different approaches can be used at this step: satisfaction of spatial restraint used by 
MODELLER (Fiser and Šali 2003), or segment matching and assembly of rigid bodies. MODELLER 
uses satisfaction of spatial restraint as its modeling approach. The method works in two steps. 
First, based on the target-template alignment, homology-based restraints are generated. A 
probability density function is used to generate the protein 3D structure.  Considering the type of 
residue, the dihedral angles and the backbone Cα atoms distances, the most probable 3D 
structure that optimizes the density function is generated (Šali and Blundell 1993). Secondly, a 
force field CHARMM-22 is used to derive the stereochemical restraints for bond lengths and bond 
angles. The two types of restraints are finally combined into an objective function. The model is 
then obtained by optimization of the objective function. When the target sequence has regions 
which are not aligned with the template, these regions are modelled through loop modeling, a 
difficult problem in this type of modeling. As unstructured regions, they are very flexible and can 
adopt very diverse conformations. However, loops can play important functional roles in proteins, 
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in the formation of active sites for example. Two approaches can be used to address this issue: a 
database-based method by searching in a specific database of loops facilitated by the availability 
of more and more structures, and a conformational search approach. This latter is much more 
diverse and based on ab initio predictions. MODELLER implements a loop-modeling module using 
an optimization scoring function (Webb and Sali 2014; Krieger, Nabuurs, and Vriend 2005). 

It is notable that at this step, a model can be refined using an energy function.  Energy 
minimization is employed to remove unfavourable geometric imperfections such as bond lengths 
and angles to finally produce a refined structure. Another approach is through molecular 
dynamics simulations. However, these techniques should be carefully used as they may result in 
incorrect structures with atoms removed from their correct places (Xiong 2006). About side chain 
positioning, this remains a very difficult and challenging task as these can adopt various 
conformations and errors can often happen in side packing. These chains remain important as 
they can be involved in interactions with other proteins and ligands. MODELLER also uses spatial 
restraints to model side chains. Another approach is through exhaustive conformational 
searching, but this is computationally expensive. As a compromise, a search is conducted in a 
rotamer library of preferred side chains to select a rotamer with lowest energy. The software 
program SCWRL4 has shown good precision in side chain positioning (Krivov, Shapovalov, and 
Dunbrack 2009:4).  

Finally, after model building, its quality is assessed. In the absence of the real structure of the 
protein, it remains difficult to know how far is the model from the real structure. Still, an approach 
is to evaluate the model self-consistency. The model compliance with the physiochemical rules 
such as bond lengths and distance, dihedral angles is assessed. PROCHECK (Laskowski et al. 1993) 
and WHATCHECK (Hooft et al. 1996) are examples of programs which assess the stereochemistry 
of a protein structure. The second approach is knowledge-based and derives statistical potential, 
3D-profiles from experimental structures. MODELLER uses the DOPE-Z score (Discrete Optimized 
Protein Energy and Z for normalized and the score considers the full length of the protein), a 
statistical potential derived from structures in the Protein Data Bank using probability density 
functions.  ANOLEA (Melo and Feytmans 1998) and VERIFY3D (Lüthy, Bowie, and Eisenberg 1992) 
are examples of tools using statistical method for model assessment.  

Other measures for a model assessment consider the similarity between a model and the 
template it was modelled from. Some of these scores include the RMSD (Root Mean Square 
Deviation), the GDT-HA (Global Distance Test-High Accuracy), and the LDDT (Local Distance 
Difference Test). The RMSD computes the average distance between of atoms in the 
superimposed structure (model and the template). Generally, only the backbone atoms are 
considered (Kufareva and Abagyan 2012). The TM-score like the RMSD evaluates two structure 
similarity and was introduced to solve two limitations with the RMSD. It does depend on protein’s 
length and evaluates global fold similarity being thus less sensitive to local variations (Gadzała et 
al. 2017). As for the GDT is a global score for the model reflecting the accuracy Cα of positions 
using specific cut-off distances. GDT-HA is an improved version using more stringent cut-off 
distances  (Huang et al. 2014). Finally, the LDDT is a measure for a model local quality. It is based 
on the local distance difference of all atoms in a model as well as validation of stereo chemical 
quality of the model (Mariani et al. 2013).   



 

38 
 

Various errors can happen in the modeling process. They include errors in the side chain packing, 
those resulting from misalignment, and selection of an inappropriate template. It is noteworthy 
that even in correctly aligned regions, distortions and shifts can happen due to sequence 
divergence. Although some errors can happen in homology modeling, it remains the most 
accurate in silico approach to determine protein structure. The technique can get very close to 
experimental techniques such as NMR and X-ray crystallography producing models with RMSD as 
low as 1.5 for high sequence identity (90%). The technique has many applications, particularly the 
study of catalytic mechanism, defining antibodies epitopes, refining NMR structures and 
molecular replacement in x-ray crystallography and proteins ligands interactions in docking and 
virtual screening (Webb and Sali 2016). 

3.3  Methodology 

3.3.1 Template identification 

As the most important criterion for template selection in homology modeling is sequence identity 
(Webb and Sali 2016), P. falciparum DXR structures available in the PDB database were first 
assessed. The other sequences of the Plasmodium will present highest sequence identity to   
falciparum than other organisms. A Python script was written to count missing residues in the 
structures and their positions.  

As the application for the models was molecular docking, the second important criterion was the 
protein configuration and also the presence of ligand. As shown in the literature, DXR active site 
is highly flexible. The protein undergoes conformational changes after ligand binding with 
movement of the flexible loop over the active site. That open conformation presents the 
advantage to accommodate larger ligands (Mac Sweeney et al. 2005). So an inhibitor free 
structure would be interesting to study in view of the large structural motifs present in SANCDB 
(Hatherley et al. 2015).  

Also, as 1-deoxy-D-xylulose 5-phosphate reductoisomerase is a homodimer, only one chain is 
necessary for docking (the active site is far-removed from the interface). So, the chain presenting 
the highest quality in the dimer from the selected structure was used as template.  

HHPred was then used for our template identification. HHpred is a web server for protein 
homology detection. It automatically can search in multiple databases including PDB (Berman et 
al. 2000), CATH (Class, Architecture, Topology and Homology) (Sillitoe et al. 2015) , SCOP 
(Structural Classification of Proteins) (Murzin et al. 1995)  and makes use of PSI-BLAST and HMM-
HMM (Hidden Markov Model) profile comparison for remote homologs detection. Using this 
latter greatly improves the sensitivity and selectivity. The server also scores the matches between 
target predicted secondary structure using PSIPRED and the template one (Söding, Biegert, and 
Lupas 2005). The server was queried on PDB_mmCIF70 database for modeling using its default 
parameters with each of the Plasmodium protein sequences.  The sequences were trimmed to 
not include the endoplasmic reticulum signal and plastidial targeting sequences. 

For template selection, the following criteria were considered: the sequence % identity, the query 
coverage, the E-value, and the quality of the match between secondary structures. Threshold 
values were set for the coverage of the target (at least 20%), the E-value (1e-3) and the probability 
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(>10%). As sequence identity is an important criterion, available Plasmodium structures were first 
assessed.  

Two templates were finally selected: 5JAZ (chain B) for modeling Plasmodium DXRs in closed 
conformation and 1K5H (chain A) for their modeling in open conformation. 

For template evaluation, the following characteristics of the crystal structure were considered: 
the resolution of the 3D structure, the R factor and R free values, the presence of ligands in the 
structure and the completeness of the structure. HHpred server results give the convenience to 
directly compare the secondary structure of the crystal and the predicted one for the target 
sequence by scoring secondary structure similarity.  

3.3.2 Template-target alignment 

Our template and target sequences were approximately of same length and had high sequence 
identity (above 70%), any alignment method with reasonable parameters would result in the 
same alignment. Hence, MODELLER’s ALIGN2D command was used. The method uses dynamic 
programming and considers also structural information of the template. The method also tends 
to eliminate gaps from secondary structure regions and locate them in between close alpha 
carbon in space, curved and solvent exposed regions. This reduces error in the model building. 
The command (ALIGN2D) aligns only residues present in the atom section of the PDB file and also 
produces the alignment in PIR format to be used with modeler (Webb and Sali 2016). A simple 
Python script (fasta_to_ali.py) was written to quickly convert every Plasmodium Fasta file into the 
Ali format as input for ALIGN2D.  

For the template 1K5H, the sequence identity was relatively low across the different species 
compared to 5JAZ (see Table 3-1 and Table 3-2). So, MSA was used for a more accurate alignment 
in contrast to a simple pairwise alignment used in the case of 5JAZ. The sequence from 1K5H was 
added to the previous MSA generated in the sequence analysis chapter. The set of sequences was 
then realigned using MUSCLE (MUltiple Sequence Comparison by Log- Expectation) (Edgar 2004).  

Finally, Jalview (version 2.10.1) was used for alignment visualization and manual corrections. The 
sequences were trimmed at the N- and C-terminal. An important adaptation of the alignment file 
was the specification of ligands and metal ion in the active site.  

3.3.3 Homology modeling 

Modeller (Webb and Sali 2016) version 9.19 32-bits was used for the modeling. The modeling 
script “get-model.py” was obtained from the tool documentation and adapted to each model to 
be produced. The alignment PIR files and sequence codes were passed to the script. 100 models 
were generated for each protein using very slow refinement. The models were produced while 
maintaining the template ligands at their positions. The ligands were thus treated as rigid body 
and transferred to the models. This maintained the binding site geometry and environment 
reasonable similar to the template. The active site thus maintained an environment similar to 
ligand bound conditions. Its geometry is thus preserved for docking application (Šali et al. 2017).  

All modelings were carried out on a laptop: Processor: Intel(R) Core(TM) i7-3740QM CPU @ 
2.70GHz (8 CPUs), ~2.7GHz, Memory: 8192MB RAM, Operating System: Windows 10 Home 64-
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bit. Discovery Studio 2016 (Biovia, San Diego, CA) was used for visualization of the produced 
models.  

SCWRL4 (Krivov, Shapovalov, and Dunbrack 2009:4) was used in an effort to improve side chains 
positioning. The original models from MODELLER were compared with the outputs from 
SCWRL4 to judge significant improvement of the models using their Dope-Z scores. 

After modeling of the open conformation for the different P. falciparum sequence, a Python script 
was used to reassign the correct residue numbers as in the closed conformation.  

3.3.4 Model evaluation 

There are many different software and web-servers for to evaluate model quality. These tools can 
employ different approaches for model assessment. So, using different tools with different 
algorithms is good practice to have a comprehensive analysis of the model quality. Some 
assessment programs also provide means to verify local quality of models, i.e. at the residue level. 
Here, model quality assessment programs combining consistency with physicochemical rules, 
knowledge-based methods and assessment on model global and local quality were used. 
Modeller provides DOPE, GA341 and SOAP (statistically optimized atomic potentials) (Dong et al. 
2013) scores for model assessment. DOPE and SOAP showed to be better at distinguishing good 
models from bad models compared to GA341 (Modeller Tutorial available at 
https://salilab.org/modeller/tutorial/basic.html). MODELLER DOPE Z-score was used and 
provided a mean to assess using a statistical potential. 

The tools used for model assessment include Modeller (its DOPE Z-score), QMEAN, PROCHEK, 
ProQ3D and DFIRE. The models were first filtered by the DOPE Z-score. The best five models for 
each protein per DOPE Z-score were selected. These models were then assessed using a Python 
script on the available QMEAN API (Application Programming Interface). QMEAN provides an 
evaluation of ‘degree of nativeness’ of a model. The tool can also be used for local quality 
assessment (Benkert, Biasini, and Schwede 2011). For each species, models having the best 
QMEAN Z-score were finally selected.  

PROCHECK was used to assess models’ self-consistency and their stereochemistry. A more recent 
method to model assessment is through machine learning, ProQ3D uses deep learning and 
combining ProQ2 and Rosetta energies (Leaver-Fay et al. 2011). The method achieved state of 
arts performances in CASP12 in the MQA category (Uziela et al. 2017). DFIRE (distance-scaled, 
finite ideal-gas reference), a knowledge-based all-atom potential based on a distance-scaled finite 
ideal-gas reference state was used. The tool evaluates non-bonded atomic interactions in the 
protein model (Zhou and Zhou 2002). Assessment was mainly conducted in the SWISS-MODEL 
assessment Workspace (Arnold et al. 2006). Models were assessed by using their template as 
reference.  

3.4  Results and Discussion 

3.4.1 Template identification 

The different crystal structures of Plasmodium DXR were first assessed (Complete table in 
appendix B. All potential templates had missing residues at the terminal regions. It is a common 
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observation to have missing residues in protein structure at the terminal regions. These regions 
pose difficulty in crystallography as they are often flexible. Templates with too many missing 
residues were eliminated in the selection process. This was especially important for potential 
template 3AU8 (chain A) as it has all residues in the flexible loop region covering the active site 
(residues 291-299) missing. Although alternative in these cases can be to use multi-template 
modeling in MODELLER, but there were enough structure available to avoid that backup solution.  

About the different crystal structure conformations, Reuter et al. solved a DXR crystal structure 
revealing its highly flexibility, especially for the flexible loop region. In the three independent 
molecules (A, B, C) of the asymmetric unit, the loop shows very different conformations.  1K5H 
(chain C) is in open conformation (flexible loop covering the active open) with unbound inhibitor 
(Reuter et al. 2002). It would have been interesting to use an open conformation for in the docking 
experiment (see Chapter 4). The choice of this template is thus mainly motivated by its unique 
conformation (Figure 3-1). Another considerable difference between the templates used for 
modeling is the absence of metal ion in 1K5H. The difference of conformation could also influence 
significant differences in molecular docking to these structures. 

 

Figure 3-1: Molecular overlay of 5JAZ (chain B, closed loop with inhibitor in active site) and 1K5H (chain A 
– open loop conformation). Arrows show the orientation of the loop. 
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Table 3-1: Metrics for modeling from 1K5H obtained using NCBI BLASTp search (Word size: , Expect value: 
10, Hitlist size: 100, Gapcosts: 11.1, Matrix: BLOSUM62). 

Query  BLAST Hit 
 

Score E-value Identity  Query Length Query coverage 

PfDXR 1K5H 268 1e-87 37%  411 91% 

PbDXR 1K5H 273 2e-89 39% 411 90% 

PcDXR 1K5H 278 3e-91  40% 411 90%  

PkDXR 1K5H 273 4e-89 39% 413 92% 

PvDXR 1K5H 275 6e-90 38% 413 98% 

PmDXR 1K5H 264 9e-86  38% 413 89% 

PyDXR 1K5H 272 5e-89  39%  411 90% 

PoDXR 1K5H 275 4e-90 38% 410 99% 

 

Table 3-2: Selected hits from HHpred result. 

Query  1st HHpred 
Hit 

Score E-value Probabilit
y 

Identity  Score Secondary 
structure 

Cols Target 
Length 

PbDXR 5JAZ_B 703.81 2.2E-92 100 78% 47.3 407 411 

PcDXR 5JAZ_B 709.44 2.5E-9  100 79%  48.1 407 411 

PkDXR 5JAZ_B 701.98 3.1E-92 100 74% 46.5 404 413 

PvDXR 5JAZ_B 725.82 1.8E-95 100 73%  43.5 406 413 

PmDXR 5JAZ_B 770.87  2.8E-101 100 82%  50 407 413 

PyDXR 5JAZ_B 699.54  2.6E-92  100 77% 47.5  406 411 

PoDXR 5JAZ_B 698.42  2.1E-92 100 80% 47.9 406 410 

 

The column ‘Cols’ (see Table 3-2) indicates the number of matches in the target-template 
alignment. The probability (in percentage) that the hit is a true positive, a homolog to the query 
sequence, at least in some core part (Söding, Biegert, and Lupas 2005).   

The HHpred search consistently returned the same template for the different Plasmodium 
species. All results indicated 100% probability confirming the homology relationship. The lowest 
E-value was 2.8E-101 for PmDXR (see Table 3-2). For the sequence identity, the lowest value was 
73%. These high sequence identity values support the suitability of the template 5JAZ for the 
homology modeling of other Plasmodium sequences. 

Interestingly, HHpred did not return the other Plasmodium structures present in the PDB 
database which were found in our assessment of available Plasmodium structure. HHpred search 
is limited to “PDB_mmCIF70 for modeling” which seems to be a filtered PDB for modeling.  

The template is a recent crystal structure from Plasmodium falciparum. It has a resolution of 1.4 
Å, a R-Value Free of 0.207 and a R-Value Work of 0.185 (see Figure 3-2). The crystal structure 
presents highest values of zero (0) for the Clashscore and the Ramachandran outliers. It has only 
0.9% sidechain outliers and though present a low RSRZ outlier value of 8%. It contains a glycerol 
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molecule and a formic acid molecule. At the active site, there is a manganese ion Mn2+ and an 
arylpropyl substituent on the reference inhibitor fosmidomycin. The bulky substituent displaces 
the key tryptophan in the active-site flap to accommodate the ligand (Sooriyaarachchi et al. 2016). 
This structure, thus provides a wider binding pocket for docking purposes. As the application was 
docking and molecular dynamics, the presence of ligand(s) in the different crystal structure was 
also considered. The template was also selected as it a good inhibitor bound with the tryptophan 
residues (TRP296) of the flexible moved to accommodate the ligand.  

 

Figure 3-2: 5JAZ PDB metrics for structure quality 

About the structure completeness, the first 10 and the last 2 residues of this template were 
missing. Missing residues were found in all Plasmodium DXR crystal structures as indicated in the 
table above. The beginning region (residues 67 to 76) were missing in all structures. Coordinates 
for missing residues are not available and MODELLER does not automatically handle missing 
residues (Webb and Sali 2016). A solution is to use MODELLER to “fill in” the missing residues. 
Using either MODELLER automodel or loopmodel class, a new model with missing residues filled 
in is built using the original crystal structure. But both classes can move the non-missing residues 
from their position. To avoid that, the select_atoms method can be overridden to select only the 
missing residues. In our case, missing residues were the first 10 residues of the disordered region 
and two residues at the end of the sequence.  

Interesting HHpred results consistently indicated chain B for modeling. The chain B for 5JAZ was 
selected as template. The reason being that residues in Chain A had poor fit the electron density. 
In fact, the structure validation report indicates that 11% of residues in chain A have a RSRZ 
normalised real-space R-value (Kleywegt et al. 2004) above 2 compared to 4% in chain B 
(Sooriyaarachchi et al. 2016). Thus, very few RSRZ outliers were on chain B making it of better 
quality than chain A and more suitable for modeling.  

Significant errors can be found in experimentally determined protein structure (Wlodawer et al. 
2008). Hence the need for us to thoroughly evaluate our templates before proceeding to 
modeling.  
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ProQ2D: 0.827 
ProQ3D: 0.853 

Qmean6 raw score: 0.75 
Qmean6 z-score: -0.65 

DFIRE_energy:      -697.47 
Dope Z-Score: -2.47 

Figure 3-3: 5JAZ, Chain B Assessment. 

On the Ramachandran plot, red regions indicate most sterically favoured regions, dark-yellow: 
the additional allowed regions, light yellow shows the generously allowed regions. The disallowed 
regions are in white. The black dots indicate the residues in good regions and the red those in bad 
regions based on the Psi and Phi angles. The structure was visualized in Discovery Studio and 
coloured from Orange (low quality regions) to blue (Good quality regions). 

The template 5JAZ showed global good quality scores (see Figure 3-3). Only residues in the flexible 
loop of the active site shows an average to low quality local quality. The lowest quality being 
attributed to the TRP296. This can be expected as this structure contain an inhibitor with phenyl 
rings removing the TRP296 indole ring from its ‘usual’ position (Sooriyaarachchi et al. 2016). The 
remaining majority of the chain residues show good quality. From the Ramachandran plot, any 
residue is found in the outlier region and only 2% are in allowed region, the remaining 98% being 
in favourite regions. It is noteworthy that SER387 and ASN413 are not in favourable regions. 
Nonetheless these residues are not in the active site regions and are in the C-terminal region.  
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ProQ2D: 0.863 
ProQ3D: 0.859 

Qmean6 raw score:  0.80 
Qmean6 z-score:  0.60 

DFIRE_energy: -557.94 
Dope Z-Score: -1.33 

Figure 3-4: 1K5H, Chain A assessment. 

On the Ramachandran plot, red regions indicate most sterically favoured regions, dark-yellow: 
the additional allowed regions, light yellow shows the generously allowed regions. The disallowed 
regions are in white. The black dots indicate the residues in good regions and the red those in bad 
regions based on the Psi and Phi angles (see Figure 3-4Figure 3-4: 1K5H, Chain A assessment.). The 
structure was visualized in Discovery Studio and coloured from Orange (low quality regions) to 
blue (Good quality regions). 

1K5H is a crystal structure from Escherichia coli with a resolution of 2.5 Å and a R-Value Free of 
0.284 (see Figure 3-5). Its resolution remains low for molecular docking and the structure is solved 
without any ligand. The PDB metric percentiles show lower value compared to the structures of 
same resolution. Chain A in the structure presents any missing residue ideal for homology 
modeling. The template assessment shows few residues (SER258, GLN34, ARG191) in the  
generously allowed regions of the Ramanchandran plot and none in the disallowed regions. The 
Dope-Z score is -1.33, considered thus to be native. Qmean local scores illustrated in the sequence 
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shows only the flexible loop region (in orange color) with bad local quality. This is also common 
to template 5JAZ.   

 

Figure 3-5: 1K5H PDB Percentile Ranks 

Comparing the two templates, they both showed low quality scores for the residues in the flexible 
loop region. This is can be expected as the mobility of these regions can present difficulty in 
crystallization. Overall 5JAZ showed to be of better quality. The template present higher 
resolution (1.4 against 2.5). The different metrics used in their assessment (Dfire, Qmean6, 
ProQ3D, ProQ2D) show better values for 5JAZ. However, both structures remain suitable for 
homology modeling purposes.  

3.4.2 Template-Target alignment 

 

Figure 3-6: Graphical representation of the PIR file (target-template: PvDXR-5JAZ) alignment viewed in 
Jalview (Waterhouse et al. 2009). The two dots at the end indicate the positions for the ligand and the 
metal ion. The “w” indicate the two water molecules in the active site.  

The dots at the end of the alignment (see Figure 3-6) instruct MODELLER to read from the 
HETATM section to include the ligands (Šali et al. 2017). Plasmodium vivax had the lowest 
sequence identity (73%) with 5JAZ compared to other Plasmodium species from the results in 
HHpred search. Nonetheless the identity was high enough for modeling for purposes and the 
alignment shows only a few mismatches with no gap and 100% coverage of the target sequence. 
The remaining Plasmodium had a higher sequence identity in the alignment and thus make of 
5JAZ an ideal template for modeling.  
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Figure 3-7: Graphical representation of the PIR file (target-template: PfDXR-1K5H) alignment viewed in 
Jalview (Waterhouse et al. 2009).  

The sequence of PfDXR showed the lowest sequence identity to the template 1K5H with 37%. 
However, the template presents good coverage for the sequence 91% (see Table 3-1). The 
alignment presents 3 gap regions (see Figure 3-7). They are not present in key regions of the 
protein: GXXGXXG motif, NADPH or fosmidomycin binding residues or in the flexible loop region. 
More they are short enough (the longest gap being of 5 residues) to be handled by MODELLER.  

5JAZ presented better characteristics compared to 1K5H with respect to every Plasmodium 
sequence, but this latter remains satisfactory for homology modeling.  

3.4.3 Modeling and Model Evaluation 
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The script “assess_complete_models.py” (appendix C) assessed the models’ Dope scores and ranked them according to their Dope-Z 
scores. The following table report for each model, the 5 best Dope and their Qmean scores (Best Qmean score highlighted in green). 

Table 3-3: 5 Best Models for each sequence in Open conformation according to Dope-Z score. The best Q-mean score is highlighted in green. 

PbDXR_open PcDXR_open PfDXR_open PkDXR_open 

Model Dope-
Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean 

Raw score Z-score Raw score Z-score Raw score Z-score Raw 
score 

Z-score 

98 -0.96 0.62 -3.59 98 -0.92 0.64 -3.20 91 -0.99 0.64 -3.31 52 -0.90 0.64 -3.07 

37 -0.95 0.63 -3.44 22 -0.92 0.64 -3.25 83 -0.92 0.62 -3.66 97 -0.90 0.63 -3.36 

18 -0.95 0.63 -3.41 57 -0.90 0.64 -3.11 78 -0.90 0.64 -3.31 24 -0.88 0.63 -3.46 

46 -0.94 0.63 -3.52 83 -0.89 0.65 -3.04 40 -0.90 0.63 -3.34 83 -0.88 0.65 -3.02 

49 -0.94 0.63 -3.42 15 -0.87 0.65 -3.02 98 -0.90 0.63 -3.44 10 -0.87 0.63 -3.49 

PmDXR_open PoDXR_open PvDXR_open PyDXR_open 

Model Dope-
Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope- Z 
 scores 

Qmean 

Raw score Z-score Raw score Z-score Raw score Z-score Raw 
score 

Z-score 

25 -0.95 0.64 -3.15 16 -0.84 0.63 -3.53 93 -0.77 0.61 -3.96 19 -0.96 0.63 -3.36 

87 -0.91 0.64 -3.11 84 -0.81 0.62 -3.59 16 -0.76 0.64 -3.27 70 -0.95 0.63 -3.51 

90 -0.88 0.65 -2.94 50 -0.80 0.64 -3.11 34 -0.74 0.60 -4.06 100 -0.95 0.62 -3.78 

27 -0.88 0.66 -2.73 12 -0.78 0.63 -3.52 66 -0.74 0.63 -3.30 71 -0.93 0.62 -3.57 

60 -0.87 0.65 -3.03 38 -0.77 0.62 -3.62 63 -0.73 0.63 -3.34 49 -0.92 0.63 -3.52 
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Table 3-4: 5 Best Models for each sequence in Closed conformation according to Dope-Z score. The best Q-mean score is highlighted in green. 
(PfDXR_closed is absent from this able as it already has a crystal structure 5JAZ). 

PbDXR_closed PcDXR_closed PkDXR_closed 

Model Dope-
Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean 

Raw score Z-score Raw score Z-score Raw 
score 

Z-score 

07 -1.80 0.72 -1.47 04 -1.72 0.72 -1.43 -1.82 -1.82 0.71 -1.65 

41 -1.82 0.71 -1.55 31 -1.72 0.71 -1.53 -1.84 -1.84 0.72 -1.47 

58 -1.79 0.71 -1.54 33 -1.72 0.72 -1.34 -1.82 -1.82 0.71 -1.62 

59 -1.81 0.72 -1.40 42 -1.74 0.73 -1.12 -1.82 -1.82 0.71 -1.51 

88 -1.79 0.71 -1.50 77 -1.73 0.72 -1.28 -1.82 -1.82 0.72 -1.41 

PmDXR_closed PoDXR_closed PvDXR_closed PyDXR_closed 

Model Dope-
Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope-Z 
 scores 

Qmean Model Dope- Z 
 scores 

Qmean 

Raw score Z-score Raw score Z-score Raw score Z-score Raw 
score 

Z-score 

13 -1,86 0,72 -1,35 06 -1.75 0.71 -1.63 78 -1.72 0.72 -1.44 06 -1.79 0.70 -1.83 

64 -1,84 0,72 -1,41 46 -1.74 0.69 -2.04 84 -1.74 0.71 -1.52 30 -1.77 0.70 -1.97 

89 -1,84 0,72 -1,46 55 -1.75 0.70 -1.86 92 -1.76 0.72 -1.45 38 -1.77 0.70 -1.88 

93 -1,85 0,73 -1,18 87 -1.71 0.70 -1.96 93 -1.72 0.72 -1.45 60 -1.77 0.71 -1.59 

97 -1,86 0,72 -1,35 89 -1.72 0.70 -1.87 97 -1.73 0.72 -1.34 87 -1.76 0.70 -1.82 
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Table 3-5: Complete table of all final models’ evaluation. 

Template/ 
Models 
  

PROCHECK  
Dope  
Z-
Score   

Qmean6 
  

 
PROQ3D   

Most 
favored 

Allowed Generously 
allowed 

Disallowed Raw 
score: 

Z-
score 

 DFire ProQ2D ProQ3D Evaluation 

5JAZ_B 92.1%      7.3%      0.3%      0.3%   -2.47 0.75 -0.65 -
697.47 

0.827 0.853 Approved 

PbDXR_closed 93.4%       5.6%       1.1%       0.0%  -1.81 0.72 -1.40 -
628.18  

0.812 0.840 Approved 

PcDXR_closed 93.4%       5.8%       0.8%       0.0% -1.74  0.73 -1.11 -
621.84  

0.807 0.849 Approved 

PkDXR_closed 93.4%       5.6%       1.1%       0.0% -1.82  0.72 -1.41  -
628.18 

0.790 0.828 Approved 

PmDXR_closed 92.3%       7.1%       0.3%       0.3% -1.85  0.72 -1.18  -
630.61 

0.814 0.838 Approved 

PoDXR_closed 93.1%      6.6% 0.3% 0.0% -1.74  0.71 -1.63  -
628.03 

0.809 0.838 Approved 

PvDXR_closed 93.3%       5.6%       1.1%       0.0% -1.73  0.72 -1.34 -
621.20  

0.795 0.830 Approved 

PyDXR_closed 92.6%  6.6% 0.8% 0.0% -1.77  0.71 -1.59 -
624.03  

0.811 0.840 Approved 

1K5H_A 89.4% 9.8% 0.8% 0.0% -1.33 0.77 -0.09 -
557.94 

0.863 0.859 Approved 

PbDXR_open 89.2%  7.4% 1.6% 1.8% -0.95 0.63 -3.41 -
580.16 

0.710 0.751 Approved 

PcDXR_open 88.2%     9.5% 1.1% 1.3% -0.87 0.65 -3.02 -
573.93 

0.703 0.753 Approved 

PkDXR_open 89.4%  9.3% 1.1% 0.3% -0.88 0.65 -3.02 -
574.44 

0.695 0.731 Approved 

PmDXR_open 88.7%  8.4% 1.8% 1.0% -0.88 0.66 -2.73 -
579.01 

0.739 0.709 Approved 

PoDXR_open 88.9%  9.2% 1.1% 0.8% -0.80 0.64 -3.11 -
574.44 

0.751 0.715 Approved 

PvDXR_open 88.9%    9.5% 1.1% 0.5% -0.76 0.64 -3.27 -
570.45 

0.698 0.720 Approved 

PyDXR_open 89.2%  7.7% 2.1% 1.1% -0.96 0.63 -3.36 -
575.63 

0.708 0.756 Approved 

PfDXR_open 90.1%  7.6% 1.6% 0.8% -0.99 0.64 -3.31 -
574.44 

0.731 0.760 Approved 

 

Combining the Dope-Z score with the Q-mean score approach allowed to merge the results 
coming from different assessment tools in the early stages of the assessment. An interesting tool 
was, MetaMQAPII is a Meta Model Quality Assessment Program, which integrate scores from 
eight other quality assessment programs VERIFY3D, PROSA2003, PROVE, ANOLEA, BALASNAPP, 
TUNE, REFINER, and PROQRES, using multivariate regression model (Pawlowski et al. 2008). 
Nonetheless, during the model assessment, some of the eight (8) servers were not responding 
which may impact the final quality of the assessment. 

All produced models have Dope Z-Score lower than -0.5 (see Table 3-5) thus considered to be 
acceptable. Only open DXR models consistently showed a Dope Z-Score greater than -1.0, 
threshold for native state structure.  Nonetheless, the models showed values closer to -1.0 (<-
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0.90). In all cases, the closed conformation models presented better assessment scores, 
presenting a Dope Z-Score lower than -1.0.  This was expected as models’ quality decreases with 
sequence identity (Webb and Sali 2016). All the models presented a low local quality score 
(Qmean) in the flexible loop region. This observation was previously made in the two templates 
used for the modeling.  

An alternative to improve those models’ quality especially for models from the open 
conformation as all their Dope-Z scores were superior to -1 was to use SCWRL (Krivov, Shapovalov, 
and Dunbrack 2009).  The side chain positioning problem is an NP-hard problem in modeling. 
MODELLER uses a heuristic algorithm for that problem which may find the optimal solution. 
SCWRL guarantees to find a global optimal solution for the problem and remains very fast for 
many proteins (Miyano et al. 2005). Using the command line (Scwrl4 -i model_in.pdb -o 
model_out.pdb), 100 models were submitted to SCWRL4.0. Comparing models showed that the 
best models remain the ones before submission to SCWRL4.0. A Welch Two Sample t-test 
between 100 models before treatment with SCWRL and after gave t = -0.3199, df = 167.731, p-
value = 0.7495. The p-value was inferior to 0.05, so at 5% level of significance, the data provided 
enough evidence that the mean is equal in the two populations (see Figure 3-8). It is noteworthy 
that the models were compared with only the Dope-Z score.  

 

Figure 3-8: Effect of SCWRL(Krivov, Shapovalov, and Dunbrack 2009) on MODELLER (Šali et al. 2017) Dope-
Z score. 

All built models for the closed conformation presented at least 90% of their residues in the most 
favourable region of the Ramachandran plot. For open conformation six (6) out of the eight  (8) 
models have 89% of residues in the most favourable regions, the two (2) remaining models having 
90.3%. Nonetheless the template 1K5H_A itself has 89,6 % of its residues in the most favourable 
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regions. Interestingly all models showed better Dfire energy score than the template 1K5H_A. On 
contrast, it showed the best Q-mean and PROQ3D scores, even better than 5JAZ_B.  

Assessment methods measuring the similarity between a model and the template are generally 
based on the comparison of the coordinates the c-alpha alpha atoms of a crystal structure and a 
model produced from. As MODELLER methodology is to copy coordinates of matching residues in 
the alignment from the structure to the model, thus, as result, we can expect good to very good 
scores from these measurements especially when the identity (template-sequence) is high. These 
scores should thus be used cautiously when judging a model quality. When two structures match 
perfectly, the resulting TM-score is 1. 0 is the lowest TM-score. Unrelated proteins show a score 
below 0.17 while greater than 0.5 assume generally the same fold in SCOP/CATH  (Gadzała et al. 
2017:201). Thus between 0.17 and 0.5 seems to be a twilight zone.  

 

Figure 3-9: Final models superimposed in Discovery Studio 2016 (Biovia, San Diego, CA). Left: closed 
conformation (PbDXR, PcDXR, PoDXR, PmDXR, PkDXR, PyDXR, PvDXR + 5JAZ). Ligands in green in the active 
site. Right: open conformation (PbDXR, PcDXR, PoDXR, PmDXR, PkDXR, PyDXR, PvDXR and PfDXr). 

3.5  Conclusion 

A 3D structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase was modelled for the 
different Plasmodium sequences. These structures were modelled in two different 
conformations: from template 5JAZ (closed conformation) with active site ligand and metal 
maintained and from 1K5H which present an open loop conformation of the protein (see Figure 
3-9). Structure validation showed the suitability of both templates for modeling with a notable 
low local quality around the flexible loop region in both templates. As expected, models derived 
from 5JAZ showed to be of better quality than the ones from 1K5H. This later had low resolution 
and low sequence identity with Plasmodium sequences. 

 

 



 

53 
 

CHAPTER 4: MOLECULAR DOCKING 

4.1  Introduction     

During the past decades, computer aided drug design has been successfully applied for the 
research of new drug molecules. Computational methods showed to be a fast and cost-effective 
and have contributed much to recent drug research. Luminespib also known as NVP-AUY922 is a 
drug candidate for the treatment of cancer discovered using CADD techniques. The molecule 
inhibits Hsp90, a protein implied in multiple oncogenic processes regulation. Starting from a 
library of 0.7 million compounds, virtual screening and lead optimization allowed to identify NVP-
AUY922  (Sliwoski et al. 2014). Another success story was the discovery of agonists molecule for 
the M1 acetylcholine receptor. These agonists have potential for treating dementia, including 
Alzheimer’s disease. Using a homology model of the receptor, compounds were tested using 
computational methods. This helped in finding lead compounds which optimization lead to 
effective M1 mAChR agonists with excellent pharmacokinetic properties (Budzik et al. 2010). In 
the case of malaria, our topic of interest, computational methods have been recently used to 
study atovaquone drug resistance in P. falciparum.  The drug acts by binding to the parasite 
Cytochrome b protein. Using modeling, docking and molecular dynamics simulations, Akhoon et 
al. showed that a single point mutation in the active site of Cytochrome b protein  results in 
atovaquone losing its binding affinity on that site and thus leading to resistance (Akhoon et al. 
2014). These studies often use different approaches.  

Methods in computer aided drug design can be divided into two main groups: ligand-based and 
structure-based methods. The ligand-based methods predict the activity of tested compounds by 
comparing them to active and inactive known ligands using structure-activity information. In the 
structure-based approach, structural information from both target and ligand are used. For the 
target-based approach, a solved 3D structure or a generated model where relevant is used to 
calculate interaction energies for the tested ligands (Sliwoski et al. 2014).    

Molecular docking falls into this second category. It is used to study the interactions between a 
receptor/target and a ligand/small molecule. Two methods can be used: a shape based 
complementarity between the receptor and the ligand surface, and the calculation of interaction 
energies between the receptor and the ligand. Molecular docking tries to determine where the 
molecule can bind to the receptor and if so how strong is the intermolecular interaction. The 
number of hydrogen bonds and hydrophobic contacts are major contributors to the strength of 
the intermolecular interaction. Many potential ligands can be therefore tested on a target using 
a docking program, a method also known as virtual screening. The technique is a structure-based 
drug design technique in which large database of compounds can be tested against a receptor. 
These compounds do not require the labour of compounds chemical synthesis and/or laboratory 
testing. It thus offers a very time and cost saving method to test large database of compounds on 
a target (Sliwoski et al. 2014; Meng et al. 2011). 

The main aim of this chapter is to perform in silico ligand docking studies of the SANCDB 
compounds database on the PfDXR using Autodock Vina (Trott and Olson 2010) to identify hits, 
ideally with new scaffolds. Secondarily, docked compounds will be analysed for potential 
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bisubstrate hits, showing affinity for both active and cofactor binding sites.  They will also be 
investigated for potential bidentate ligand chelating the metal ion. Multiple DXR conformations 
are used: closed, closed with flexible residues and open. This can help to gain insight into the 
protein dynamic and conformational space. Finally, compounds’ drug likeness will be evaluated 
and will  constitute an integral part of the hit selection process. 

 

4.2  Docking strategies: AUTODOCK4 and AUTODOCK VINA 

Molecular docking strategies have two main components: the search algorithm and the scoring 
function. As its name indicates, the search algorithm searches through the different possible 
poses of the ligand with respect to the protein. A pose is a binding mode, an orientation of the 
ligand within the target. The binding affinities of the different poses are evaluated by the scoring 
function. Based on the different scores, the poses are ranked and the most favourable binding 
mode is found (Huang 2014).  

Ideally, all possible combinations of protein and ligand orientations should be considered by the 
search algorithm. In most protein-ligand biological interaction both remain flexible. A “hand-in-
glove” analogy describe much better these systems than a “lock-and-key” one. As it is the case of 
DXR an induced-fit movement of the protein and the conformational changes of the ligand allows 
to find the best-fit (Mukhopadhyay 2014).  Although this is the most effective solution, yet, this 
full exploration is impractical with current computational power and search algorithms. To find a 
comprise between time and efficiency, search strategies include genetic algorithms, systematic 
searches and molecular dynamics simulations. The search algorithm should also consider the 
flexibility of the entities in the system, especially for the receptor. Extensive sampling of the 
protein conformational space and all possible degrees of flexibility remain challenging. Three 
levels of search can be considered: rigid-body and flexible-ligand methods, and the flexible 
ligand–flexible protein methods. The scoring function is then applied on the different generated 
poses (Du et al. 2016). 

Scoring functions predict the binding affinities based mainly on the strength of the non-covalent 
interactions. These include hydrogen bonds, ionic bonds, van der Waals interactions, hydrophobic 
bonds, salt bridge, metal and lipophilic interactions with the hydrogen bonds being the most 
contributing ones (Bissantz, Kuhn, and Stahl 2010; Lodish et al. 2000). Ideally, other interactions 
as the solvent effect and entropic effect also should be considered. Unfortunately, this is 
impractical as it increases the system complexity and thus will require large computational time 
(Du et al. 2016). Three main methods are used to calculate binding free energies: the empirical, 
the knowledge-based (or statistical potential) and the force-field-based methods.  

In the force field approach, the binding affinity is estimated by the sum of the strength of the 
different interactions.  The strength of these interactions is calculated using parameters from 
experiments and quantum mechanical calculations. Receptor and ligand intramolecular energies 
are also often considered. Finally, explicitly or implicit solvent models such as GBSA (generalized-
Born surface area) and PBSA (Poisson–Boltzmann surface area) methods are used to account for 
the desolvation energy (Genheden and Ryde 2015). DOCK, GOLD and AutoDock are some docking 
tools using a force field scoring function (Meng et al. 2011).  
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The empirical scoring functions use ligand binding affinities from experimental structures to 
develop statistical regression models. These models are then used to estimate the binding 
affinities (Pason and Sotriffer 2016). LUDI, PLP  and ChemScore are some docking programs 
making use of an empirical scoring function(Meng et al. 2011).  

As the previous approach, knowledge-based scoring functions make use of ligand-protein 
complex crystal structures information. From these structures, interatomic contact frequencies 
and/or distances between the ligand and protein are obtained. The general assumption of the 
approach is that frequent close inter-atomic interactions are more likely to make favourable 
contributions to the binding affinity. Frequent contacts will thus have better scores. Some 
knowledge-based functions include DrugScore, SMoG, PMF, and Bleep (Du et al. 2016; Meng et 
al. 2011). 

To sum up, a molecular docking process should specify three aspects: the search algorithm, the 
scoring function and the ligand/protein flexibility. 

As search algorithm, AutoDock4 uses primarily a Lamarckian genetic algorithm. And as a scoring 
function, a combination of semi empirical free energy force field is used to estimate binding free 
energies. The two approaches are combined in a grid-based method to speed up evaluation of 
binding energies. The energy cost of placing a probe atom at each point in the grid is calculated. 
These values are stored and can then be used as a lookup table to avoid unnecessary recalculation 
and thus speed up the simulation. In its evaluation of free energy binding, ligand and protein 
intramolecular energies of both bound and unbound states are considered. AutoDock4 allows to 
have portion of the protein, for example, sidechains of the receptor, to be flexible.  Other search 
methods as simulated annealing and traditional genetic algorithms are also available in the 
program (Morris et al. 2009). 

As for Autodock Vina, it uses the iterated local search global optimizer based on stochastic global 
and local optimization procedures. Its scoring function is a hybrid empirical and knowledge based 
function inspired from X-Score (Wang, Lai, and Wang 2002). The tool has improved speed 
compared to Autodock4 by using multithreading. This allowed the tool to parallelly use 
computer’s multiple processors. The tool also automates grid calculation. Finally, comparing 
accuracy, Autodock Vina also showed significantly better binding mode prediction (Trott and 
Olson 2010). 

4.3  Methodology 

4.3.1 Ligand preparation. 

The compounds were retrieved in PDB format from the SANCDB website 
https://sancdb.rubi.ru.ac.za/.  They were already minimized at RAM1 semi-empirical molecular 
orbital model using GAMESS (Schmidt et al. 1993). Some reference ligands were added to the set 
of SANCDB compound: DXP (the natural substrate for DXR), NADPH (the cofactor), fosmidomycin 
(from PDB structure 3AU9), FR98, LC5 a beta-substituted fosmidomycin analogue (from crystal 
structure 5JAZ). They will serve as reference for comparison and filtering of the docking results 
based on their binding poses and binding energies.  The ligands were prepared using the Python 
script prepare_ligand4.py: 

https://sancdb.rubi.ru.ac.za/
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prepare_ligand4.py -l filename 

The script assigns the correct AutoDock 4 atom types, the Gasteiger charges if necessary. The 
resulting file is saved in the .pdbqt file format. The script will also merge non-polar hydrogens as 
AutoDock and its AutoDock Vina use the 'United-Atom' model, and set up the 'torsion tree'.  

4.3.2 Receptor preparation 

The set of receptors was composed of  PfDXR open (modelled from 1K5H), 5JAZ and its derived 
models. They were mainly prepared for docking using the Python script for docking 
“prepare_receptor4.py”. The different parameters of the script allow to automatically remove the 
water molecules (waters), in the case of the crystal structure, to assign atom types and Gasteiger 
charges. It also merges non-polar hydrogens (using thus the 'United-Atom' model as with the 
ligand). The option “deleteAltB” allowed to remove alternate coordinate present in 5JAZ chain B.  

prepare_receptor4.py -A checkhydrogens -U nphs_lps_waters_deleteAltB -r + protein_pdb 

Autodock Vina does not provide parameters for the Mn ion present in the protein active site. To 
calculate a more realistic charge on the metal ion, a QM (Quantum Mechanics) calculation using 
Gaussian09 (Frisch et al. 2009)  at the B3LYP/6-31G(d) level of theory was done on the metal ion 
and its coordinating residues. The resulting charge was then assigned to the Mn atom in the 
resulting pqbqt file. The following residues of the active-site (ASP231, GLU233, GLU315, SER117, 
ILE89, SER88) were assigned as flexible for the crystal structure 5JAZ. Ideally, receptor should be 
treated as flexible. This describes protein ligand interactions such as induced-fit in the case of DXR 
more accurately allowing for a better fit of ligands in the protein active site (Umeda et al. 2011; 
Meng et al. 2011).  

prepare_flexreceptor4.py -r 5JAZ_apoB.pdbqt -s ASP231_GLU233_GLU315_ SER_117_ILE89_SER_88 

The flexible residues were only added to the crystal structure (5JAZ). A rigid 5JAZ was also used. The setting 
of flexible residues poses an additional challenge, to merge the flexible and rigid portion of the protein 
after docking. A bash script flexrigidpdbqt2pdb (Moman 2011) was used for merging. 

4.3.3 Molecular Docking 

PyMOL Autodock/Vina Plugin was used to set the docking search area. Three docking experiences 
were set up: blind docking on 5JAZ, blind docking on PfDXR in open conformation (PfDXR_open) 
and targetted docking on 5JAZ and its derived models.  The box was set to simultaneously cover 
both substrate and cofactor binding site in the targetted docking. Both DXOP and NADPH binding 
site will be indeed targeted. Targeting the cofactor binding site will be used in the investigation 
of potential bisubstrate inhibitors. Many SANCDB compounds are large with phenol and fused 
rings (Hatherley et al. 2015) and thus less likely to mimic fosmidomycin and fit into its small 
binding pocket. Masini et al. showed the druggability of both sites despite and the low lipophilicity 
of the NADPH binding site. Targeting both binding sites is interesting for the development of 
bisubstrate analogues (Masini, Kroezen, and Hirsch 2013). It noteworthy that targeting only the 
cofactor binding site would not be ideal. Cofactor analogues can cause cross-reactivity because 
of the widespread of nucleotide-binding pockets on numerous different proteins (Srinivasan et 
al. 2017). Our approach is thus to cover the two adjacent binding sites for searching for 
bisubstrate ligand (see Figure 4-1). The cofactor binding site is near the active site which open 
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and extends towards it. Such approach has been previously used in docking studies on MtDXR 
leading to interesting binding modes and a compound with an IC50 of 17.8 µM (San Jose et al. 
2013). 

 

Figure 4-1: Setting of the grid box on both cofactor binding site (residues in bleu) and active site (showed 
with ligand in stick). 

Although DXR is a well-studied protein, with the different binding pockets assessed (Masini, 
Kroezen, and Hirsch 2013; Deng et al. 2010) two blind docking experiments were set up: one on 
the open conformation and one on the closed conformation. These experiments will help confirm 
the binding sites of the protein but more importantly help filter the compounds. Compounds not 
binding in the binding sites in these experiments can thus be filtered out.  

In the blind docking experiments, the grid was centred on the protein centre using PyMOL 
Autodock/Vina Plugin and then enlarge to cover the entire protein. With the resulting larger grid 
size, the exhaustiveness was proportionally increased. The high exhaustiveness allows to assure 
consistency of binding poses for selection of the best conformation of binding.  

A Python script (see appendix D) was used to automatically generate the vina files required for 
high throughput screening. A job file was then generated and contained the command “vina –
config file.vina “ for all pairs of protein-ligand. The job file was then submitted on PBS (portable 
batch system) cluster on CHPC using a walltime=48:00:00 and the normal queue provided. The 
individual dockings were performed in parallel. Ten (10) poses were generated for each 
compound docking on a receptor and ranked per binding affinities. 

Linux commands, Python and Perl scripts, PyMOL and Discovery Studio were used for analysis and 
visualization of the docking results. In analysing the docking results, two main criteria were 
considered: the binding pose and the binding energy. These two criteria were compared to the 
fosmidomycin binding pose and energy.  

4.3.4 Docking validation 

The quality of reproduction of a known binding pose is often used to validate a docking procedure. 
The docking process will be validated by redocking the ligand in the PDB (Berman et al. 2000) 
structure, the original crystallographic binding of LC5 and comparing the resulting RMSD on all 
atoms. The RMSD value between the two binding poses was computed in Discovery Studio. The 
other reference ligands DXP (the natural substrate for DXR), NADPH (the cofactor), fosmidomycin 
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(from PDB structure 3AU9), FR98 will secondarily be used. These ligands have well known binding 
poses from the literature.  

The independent docking validation tool, X-score (Wang, Lai, and Wang 2002) was used to assess 
the predicted binding energies. Xscore is a command line tool that scores the binding using 
several independent methods. The tool uses an empirical scoring function to predict protein 
ligand binding affinity between the docked conformation of a ligand and the receptor. It can 
predict the binding free energies with a standard deviation of 2.2 kcal/mol (Wang, Lai, and Wang 
2002). The best poses of the ligands from the output (pdbqt files) on the receptor 5JAZ_B were 
used for validation. The spearman correlation coefficient of binding energies between X-score 
predicted binding energies and the ones from Autodock Vina (Trott and Olson 2010) was 
calculated and the test of correlation Pearson's product-moment was conducted using the 
statistical tool RStudio Version 1.0.44  (Team 2014).  

Each docking experiment was validated following the same procedure as above except for the 
plotting of the correlation graph which was conducted only for the targeted docking on DXR in 
closed conformation. All the docking experiments followed the same methodology. For purpose 
of validation, the predicted binding energies by X-score and Vina for LC5 in each experiment were 
compared (see Table 4-1). 

Table 4-1: Summary of the different docking experiments 

Parameters Blind docking on 
DXR_closed 

Targeted docking on 
DXR_closed 

Blind docking on 
DXR_open 

Proteins 5JAZ_B 5JAZ_B + 7 Models (closed) 1K5H_A + PfDXR_open  

Grid Full protein 
size_x=63.75 
size_y=78.75  
size_z=63.75 

size_x=30, size_y=30, size_z=30 Full protein 
size_x =  63.75 
size_y =  63.75 
size_z =  63.75 

Grid centre 
coordinates 

center_x=-3.94 
center_y=24.93 
center_z=-18.38 

Fosmidomycin+ NADPH binding 
sites 
center_x=-10, center_y=30,  
center_z=-19 

center_x =  65.00 
center_y =  81.42 
center_z =  79.39 

Ligands SANCDB + FOM + FR98 
LC5 + NADPH 

SANCDB + FOM + FR98 
LC5 + NADPH 

SANCDB + FOM + FR98 
LC5+ NADPH 

CPU 12 12 12 

Exhaustiveness 384 192 408 

Validation LC51 from 5JAZ  
X-score  

LC51 from 5JAZ 
X-score 

Reference ligands 
X-score 

Flexible Residues None ASP231, GLU233, GLU315, 
SER117, ILE89, SER88 

None 
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4.3.5 Analysis and hit identification 

The main ranking criterion for hit selection was binding energy on the rigid crystal structures (5JAZ 
rigid). A threshold of binding energy of -8 Kcal/mol across the 7 Plasmodium docked proteins was 
used. Ligand efficiency (LE) and ligand lipophilic efficiency (LLE) were also used to rank and filter 
the compounds.  

The ligand efficiency was calculated by dividing the binding energy by the number of non-
hydrogen atoms in the compound (As was shown in Equation below) (Hopkins, Groom, and Alex 
2004). A Python script (see appendix E) was used to calculate the number of non-hydrogen atom 
in the compound from their mol2 format. A threshold of -0.25 Kcal/mol/Non Hydrogen-atom, 
considered to be the acceptable lower limit for ligand efficiency in screening (Hopkins et al. 2014) 
was used.  

LLE is linked to compounds’ permeability and showed good correlation between experimental 
and calculated values of binding free energy (García-Sosa, Hetényi, and Maran 2010). 

𝐿𝐸 =  
𝛥𝐺

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑣𝑦 𝑎𝑡𝑜𝑚𝑠
  

𝐿𝐿𝐸 = 𝑙𝑜𝑔 (−
𝛥𝐺

𝑃
) 

ΔG: free energy of binding 
P: octanol-water partition coefficient  (García-Sosa, Hetényi, and Maran 2010).  
 
The use of these metrics has been encouraged in early stages of hits identification. It has been 
observed that compound molecular weight and lipophilicity increases during lead optimization. 
Thus, LE and LLE metrics help maintaining compound with reasonable molecular weight and 
lipophilicity to facilitate further optimization (Doak et al. 2014). 

Across the different solved crystal structures of PfDXR, the binding pattern of the different 
inhibitors is well known. Literature showed the importance of some residues of the protein active 
site but also in the flap covering it in the protein inhibition (see Table 1-1).  Discovery Studio 
provides scripting capabilities were used to extract all interactions (protein residue/atom, ligand 
atom and the type of interaction). The scripting tool was adapted (see appendix F) to parse all 
docked ligands and derive all interactions between the ligands and the protein. The resulting file 
could then be parsed using Python (see appendix G) to derive residues mostly implied residues in 
interaction with the ligands, the number of hydrogen bond for each ligand and its interacting 
residues. Finally, the interactions were compared with the main residues involved in DXR 
inhibition from literature (see Table 1-1). The tool was also helpful in the investigation of possible 
bisubstrate inhibitors. As residues involved in interaction with NADPH are well known (Table 1.1), 
ligand presenting interaction with both substrate binding site and NADPH binding site were also 
analysed. These ligands were visualized in Discovery Studio, analysing the pose of the compound, 
its fit in the protein active site especially in the pockets and its drug likeness properties. 
Bisubstrate hits constitute a separate cluster of hits. 
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The fitting of the ligands in the protein active site was evaluated by the distance (see equation 
below) to the active site. The measure was estimated between the centre (averaging the x, z, y 
coordinate below) of the ligands and the coordinates of the C2 carbon of LC5. This allowed a quick 
filtering of the ligand before visual inspection. 

 
1

𝑛
∑ 𝑥𝑖,

𝑛
𝑖=1  

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ,

1

𝑛
∑ 𝑧𝑖

𝑛
𝑖=1  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥𝑙 −  𝑥𝑙𝑐5)2 +  (𝑦𝑙 −  𝑦𝑙𝑐5)2 +  (𝑧𝑙 −  𝑧𝑙𝑐5)2 

𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑔𝑎𝑛𝑑𝑠 

𝑥𝑙𝑐5, 𝑦𝑙𝑐5, 𝑧𝑙𝑐5: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝐿𝐶5 

The selected compounds were then cross validated against the compounds in blind docking. Any 
compound found not in the active site in the blind docking was removed from the set.   

Pharmacological properties have been a major drawback in DXR inhibitors development reason 
for us to undertake assessment of the SANCDB compounds in the early stages of virtual screening. 
The FAF-Drugs4 (Free ADME-Tox Filtering Tool) was used to evaluation the ADME-Tox properties 
(Adsorption, Distribution, Metabolism, Excretion and Toxicity) properties. In general, the use of 
ADMET properties for hit selection is also recommended (Zhu et al. 2013). The set of SANCDB 
compounds, FR98, fosmidomycin and LC5 were assessed. They were converted in mol2 format 
using Babel (O’Boyle et al. 2011) and assembled in sdf format for submission to the server. No 
FAF-Drugs4 pre-defined filters was used.  The XLOGP3 method was used for the octanol/water 
partition coefficient (logP) computation. A detailed exploration of the pharmacological properties 
of the compounds goes beyond the scope of this project. An approach could for example, 
prioritize compounds with chemical properties ideal in the context of antimalarial. The simple 
QED (Quantitative Estimate of Druglikeness) score was used to filter compounds based on their 
drug likeness. The score integrates eight (8) relevant characteristics of chemical compounds 
related to their drug likeness: number of hydrogen bond donors (HBD), number of hydrogen bond 
acceptors (HBA), molecular weight (MW), octanol-water partition coefficient (ALOGP), number of 
rotatable bonds (ROTB), the number of aromatic rings (AROM) molecular polar surface area (PSA), 
and number of structural alerts (ALERTS). The resulting scoring from 0-1 provides a more flexible 
way of filtering of scoring different from a binary black and white assessment of the compounds 
and allowing to tolerate more compounds which can later be optimized. A survey on the opinion 
of chemists’ views of chemical attractiveness on 17117 compounds associated “unattractive 
compounds” considered “too complex” with a QED score of 0.34 (and a standard deviation of 
0.24) (Bickerton et al. 2012). Therefore, a threshold of 0.4 was used for filtering. 

As different conformations of the protein (rigid, open and rigid flexible residues) were used, a 
comparative analysis of the results especially in term of compounds’ ranking was conducted. The 
nonparametric statistics test weighted Kendall’s tau (Vigna 2014) was used to compare the 
ranking of compounds between the different configurations of the receptor. The tau ranges from 
1 to -1, corresponding to observations having similar rank -1 when their rank is anti-correlated. 0 
correspond to no correlation (Vigna 2014). The measure was computed using the Python package 
SciPy (Jones, Oliphant, and Peterson 2001). Other statistical test in analysing the docking results 
were done using Microsoft Excel 2016 and RStudio Version 1.0.44  (Team 2014). 
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All processes in the methodology except in the visual analysis of the compounds’ poses have been 
automated and can easily be implemented in further studies. To conclude this section process 
followed the diagram below to finally select 5 hits (see Figure 4-2).  

 

Figure 4-2: Hit selection process. 

4.4  Results and Discussion 

Analysing docking results has been recognized as one of the most difficult and subjective steps in 
virtual screening. Inaccuracies of the scoring functions may result in errors in ranking (Cosconati 
et al. 2010). In this study, different ranking methods were used: binding energies, ligand efficiency 
and ligand lipophilic efficiency.   

4.4.1 Ligand preparation. 

A total of 699 compounds was retrieved from the SANCDB database. Using minimized ligands will 
allow Autodock Vina to start with a reasonable conformation of the ligands (bonds angles, lengths 
and torsion angles). The compounds could be further optimized using a higher level of theory, 
B3LYP density functional with the 6-31G* basis set using Gaussian (Frisch et al. 2009). Although 
its noteworthy that the search algorithm of Vina utilizes flexible ligand docking. Thus, it generates 
and searches through different conformations of the ligands. Further optimization is hence not 
indispensable.  The 699 SANCDB compounds in .pdbqt format and the five (5) ligands of reference 
were successfully generated. The total number of compounds was then of 704. 

4.4.2 Receptor preparation. 

The script prepare_receptor4.py produced the protein in .pdbqt file format for the docking. Water 
molecules were removed from the crystal structure. This latter does not contain the cofactor 

Binding Energies <=8 Kcal/mol across all 
Plasmodium DXR.

Ligand efficiency <= -0.25 Kcal/mol/Non H 
atom.

Quantitative Estimate of druggability > 
0.4

Binding to active site in blind docking

Distance to active site <= 4 Angstrom

Visual inspection

5 hits

SANCDB (699 compounds)
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NADPH. Keeping water molecules increases the number of interacting species and thus increases 
the complexity of calculation and the computational time. 

Force-field parameters for metal binding simulation in docking remain a major problem (de Ruyck, 
Wouters, and Poulter 2011). When no Gasteiger parameter is available, Autodock tools assigns a 
charge of 0.00. Nonetheless, as previously reported, this charge doesn’t describe realistically the 
metal and its surrounding negatively charged residues, nor will a charge of +2 (Bodill et al. 2011). 
The charge calculation set a charge of 1.4729 on the manganese metal, preferable to either 
extremes of charge given by the formal charge state +2 of the cation or the charge of 0 
automatically given by Autodock Vina when no parameters available. 

The docking results clearly shows the importance of the flexible residues. Ideally all residues in 
the active site should be set to be flexible. This will result in better reproducibility of the 
experiments and it models perfectly the flexible biological system and the concept of hand in 
glove (Mukesh and Rakesh 2011), especially important in the case of a DXR. In fact, the protein 
follows an induced fit movement in its active upon ligand binding.  However, such set up would 
require excessive computational cost. This is especially important in the case of high throughput 
screening of ligands. A trade-off is thus to select some of the residues to be flexible. In our case 
three residues (ASP231, GLU233, GLU315) implied in metal binding near the NADPH binding site 
were selected with three other residues (SER117, ILE89, SER88) implied in NADPH near the 
substrate binding site were set to be flexible (see Figure 4-3).  
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Figure 4-3:Bisubstrate inhibition approach. In yellow the cofactor, in green, fosmidomycin, residues are 
colored in atom types. 

4.4.3 Docking validation 

The RMSD value between the original crystallographic ligand (LC5) and the redocked ligand was 
0.58 Å (see Figure 4-4). That value is less than 1 Å, indicating good reproduction of the correct 
pose. For the cofactor NADPH, it is important to note that it mostly bound in the substrate binding 
site in the 10 poses generated by Vina. Thus, the correct pose for the cofactor was not reproduced 
as illustrated in Figure 4-14. 

 

Figure 4-4: Molecular overlay Original LC5 (color by element) in the crystal structure and recdocked LC5 
(in light bleu). RMSD= 0.58 Å.  
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Figure 4-5: Predicted Binding Energies by X-score and Autodock Vina. 

The spearman correlation of binding energies between the predicted binding energies by 
Autodock Vina (Trott and Olson 2010) and the ones by X-score (Wang, Lai, and Wang 2002:200)  
was of 0.70 (see Figure 4-5). The Pearson's product-moment correlation test was conducted at 
the 5% level of significance. The results indicated a p-value o < 2.2e-16 with t = 26.0419, df = 702. 
So at the 5% level of significance, the data do provide sufficient evidence that the two predicted 
binding energies are correlated. 

Table 4-2: X-score and Vina predicted binding energies for LC5 for docking validation. 

Binding energy 
prediction 

Blind docking on 
DXR_closed 

Blind docking 
on DXR_open 

Vina -8.7   kcal/mol -7.8 kcal/mol 

X-score -9.00 kcal/mol -7.82 kcal/mol 

 

For the two blind docking experiments, the predicted binding energies by Autodock Vina and X-
score are very similar (see 

Table 4-2). 

4.4.4 Analysis 

LC5, FR98, and fosmidomycin in decreasing order of potency in inhibiting DXR (Sooriyaarachchi et 
al. 2016; Wiesner et al. 2016:98). That order is also reflected in the predicted binding energies by 
Autodock Vina (Trott and Olson 2010).  Indeed, these ligands bounded with the following 
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energies: FR98 6.44 Kcal/mol, fosmidomycin -5.89 Kcal/mol, DXP -6.86 Kcal/mol, LC5 -8.7 
Kcal/mol. 

 

Figure 4-6: Histogram of binding energies 

Interestingly, more than 90% of the compounds showed binding energy better than FR98 and 
fosmidomycin, the reference inhibitor with DXR (see Figure 4-6). This makes the filtering process 
challenging as these compounds’ binding energies were planned to be used as a threshold for 
filtering. Thirty percent of the compounds had better binding energy than LC5 (the most potent 
among the refence ligands used and the original ligand in the crystal structure). An explanation 
for that observation is the presence of many heavy atoms in the SANCDB compounds. These 
compounds are large, and present many chemical reactive groups. As reported in a previous 
study, virtual screening has a strong bias toward large compounds, the larger the compound the 
higher the binding energy, a common problem in lead likeness of hits attributed to large 
compounds’ molecular weight and logP values (Keseru and Makara 2006). A similar observation 
was made in this study. Plotting the binding energy against the number of non-hydrogen atoms 
gave a moderate correlation coefficient of 0.58. This observation can lead to false positives in 
compound ranking. Thus, for compound filtering setting a threshold based on the binding energy 
would have been biased.  Using potency alone to rank compounds from a high throughput 
screening can lead to false positives.  A study with Autodock and Autdock Vina indicated the same 
size related bias affecting compounds with <20 heavy atoms (Shityakov and Förster 2014). 
Moreover, Autodock and Autodock Vina both achieve a comparable standard error of ±2 kcal/mol 
for Autodock and 2.85 kcal/mol for Vina in the prediction of free energies of binding. It was then 
suggested that for compound selection, the binding energy must not be the only measure (Trott 
and Olson 2010; Cosconati et al. 2010). Ligand efficiency provides a mean to normalize binding 
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energy among compounds of different molecular weight, countering thus the strong bias of 
virtual screening towards large molecules. The metric is recommended for hit identification (Zhu 
et al. 2013).  Values of ligand efficiency less than -0.3 kcal/mol per heavy atom are considered 
good (Hopkins, Groom, and Alex 2004; Cosconati et al. 2010). Nonetheless, according to more 
recent study, the threshold -0.3 kcal/mol/atom should be increased. A value of -0.3 
kcal/mol/atom for a compound of  roughly 500 Daltons or 35 heavy atoms corresponds to a 
roughly 10 nM activity, impractical for initial hit identification. Different ligand efficiency values 
have been recommended depending on the compound size (Zhu et al. 2013). For simplicity, a 
ligand efficiency threshold of -0.25 kcal/mol/atom was used.  

More, large molecules are more likely to present toxicophores or structural alerts, chemical 
structures known for having noxious properties.  These compounds also are not ideal for drug 
development.  Also, about the number of aromatic rings,  current studies support that more than 
3 aromatic rings are undesirable in drug design and that heteroaromatics perform better than 
carboaromatic (Ward and Beswick 2014). And the SANCDB database is known for presenting 
numerous compounds with many aromatic rings (Hatherley et al. 2015). 
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Figure 4-7: Heatmap of the binding energies for DXR in closed conformation (targetted docking of the protein active site). 

The heatmap shows overall the binding energies remain did not differ across the different proteins (see Figure 4-7). This can be attributed to the 
highly conversed sequences of DXR in the genus Plasmodium. Also, as previously underlined in the sequence analysis chapter through the MSA, 
residues in the protein active site are highly conserved.
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4.4.4.1 Docking with flexible residues 
Generally, for docking with flexible residues, we observe better poses, and better fitting of the 
ligands in the protein active site. For example, flexible residues allowed fosmidomycin and FR98 
to coordinate the metal ion contrary to rigid docking. DXP, fosmidomycin, and FR98 showed the 
correct orientation in the active site with the hydroxamate moiety oriented on the metal ion and 
the phosphonate moiety at the opposite site. This general observation of a better pose is also 
reflected in the binding energies.  A t-test of mean (Welch Two Sample) between the binding 
energies in the two (2) configurations showed a significance difference. The mean was of -7.8 
kcal/mole for the rigid receptor and of -11.54 kcal/mole with a p-value of 2.2e-16 (t = 58.6939, df 
= 1370.898). 

It is also notable that a reverse binding mode was observed for fosmidomycin and FR98 as often 
reported in the literature from docking studies (Deng et al. 2010; Bodill et al. 2013).  This was 
observed for fosmidomycin, FR98 and DXOP. Also, these compounds often showed a deviation of 
the hydroxamate moiety from its correct position in the active site.  

 

Figure 4-8: Best binding poses for fosmidomycin FR98 in the protein active site, metal ion in black.  

In the rigid receptor, the two molecules turn away from the metal (see Figure 4-8). This 
orientation is also observed in all Plasmodium species. While the phosphonate moiety interacting 
residues is consistent with literature (see Table 1-1), the hydroxamate moiety interacts with 
HIS341 forming a hydrogen bond with the carbonyl group. LC5 can find the right conformation in 
both settings of flexible and rigid receptors. In all receptors (open, closed, closed with flexible 
residues), NADPH showed an unlikely binding pose, attempting to fit in the protein active site.  
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Figure 4-9: Binding energies in rigid and flexible receptors. The graph shows the highest (10) differences in 
energy and the lowest the lowes (7) differences in energy indicate. The compound identification number 
(SANC00XXX) at the base of the histogramm. 

Compounds showed very significant difference of their binding energies when comparing the rigid 
and flexible receptors (see Figure 4-9). The average difference was of -3.73 Kcal/mol. A change of 
1.36 kcal/mol-1 of the binding energy results in 10-fold change in the equilibrium constant (Berg, 
Tymoczko, and Stryer 2002). As expected, none of the compound showed better binding energy 
with the rigid receptor that the flexible one. The ligands showed the highest binding energies 
when docked on the flexible receptor, ranging from -16.1 Kcal/mol (SANC00585) to -7.3 Kcal/mol 
(SANC00763). On the other hand, the rigid receptor 5JAZ, which had an energy range between -
11 Kcal/mol (SANC00585) to -4.7 Kcal/mol (SANC00631).  

Comparing the compound’s ranking in the two configurations of receptor, the test result gave a 
weighted Kendall’s tau rank-correlation (τ) of 0.61. The ranking in the two settings (flexible and 
rigid receptor) was correlated. The weighted Kendall’s tau coefficient varies −1 ≤ τ ≤ 1, with ideally 
τ = 1 with two ranking are strongly correlated and -1 when they are anticorrelated.  
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Figure 4-10: 2D plots of SANC00191 binding poses in flexible (left) and rigid (right) receptors. 

SANC00191 showed a variation in binding energy of -6.1 Kcal/mol. The compound binds to 
different residues of the two different conformations of the protein (see Figure 4-10). Flexible 
residues ILE89, SER88 play a role in its binding on the flexible receptor. The compound is forming 
a hydrogen bond with SER88 and an alkyl type of interaction with ILE89. It was expected to see 
ligand binding with better energies to the flexible receptor, and greater interaction with the 
flexible residues. This was not the case overall. The higher binding energies in the flexible receptor 
are indirectly linked to the flexible residues (see Table 4-3). Compounds showing the highest 
differences in their binding energies do not necessarily interact with the flexible residues. 

Table 4-3: Top compounds showing highest difference in binding energy and their interacting residues. In 
bold, residues set as flexible. 

Compounds Flexible Receptor Rigid Receptor Delta Binding 
Energy 
(Flexible-Rigid) 
Kcal/mol 

SANC00191 LYS205, LYS301, ILE302, SER88, ALA203, ILE89 ILE181, TYR113, HIS136, GLY84 -6.1 

SANC00637 HIS341, CYS338, GLU233, TRP296, PRO358, 
SER306 

TRP296, CYS338, GLU233, HIS341, 
SER306, PRO358 

-6 

SANC00238 SER270, GLY272, PRO273, LYS295 ASN115, GLY84, TYR113, ILE181 -5.9 

SANC00302 LYS295, GLY272, PRO273 LYS295, GLY272, PRO273 -5.9 

SANC00304 MET298, PRO273, LYS295, GLY272, PRO294, 
SER270 

PRO273, LYS295, GLY272 -5.9 

SANC00815 SER232, GLU233, CYS268, HIS341, LYS312, 
TRP296, MET298 

CYS338, GLU233, MN502, SER232, 
HIS341 

-5.9 

SANC00303 TRP296, GLY272, THR303, ALA290, PRO294, 
MET298, PRO273, SER306, SER270, LYS295, 
LYS336 

LYS295, GLY272, PRO273, TRP296, 
SER270 

-5.8 

SANC00354 ILE181, GLY84, ASN115, TYR113 ILE181, GLY84, ASN115, TYR113 -5.8 

SANC00634 GLY272, PRO273, LYS295 GLY272, PRO273, LYS295 -5.8 

SANC00655 GLY272, PRO273, LYS295, TRP296 PRO273, GLY272, LYS295, TRP296 -5.8 

SANC00792 MET360, ASP182, ILE302, GLU206, LYS205, 
VAL230, ALA203, ILE89 

HIS341, TRP296, CYS338, LYS297, 
SER270, GLU233 

-5.8 
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SANC00302, SANC00303, SANC00304 are some of the compounds showing high difference in 
binding energy: -5.9 Kcal/mol, -5.8 Kcal/mol, -5.9 Kcal/mol respectively.  The 2D plots showed 
very similar to identical interacting residues for these compounds. Interestingly, their binding did 
not differ in both flexible and rigid receptors, having the same interacting residues. The difference 
in binding, thus is not related to nor the binding pose, neither the binding residues. An explanation 
could be the possible more energetically favourable rearrangement of the flexible residues in the 
protein. 

 

Figure 4-11: 2D plot SANC00303 docked in the rigid crystal structure 5JAZ. 

These ligands have very similar chemical structures (see Figure 4-12) and are all extracted from 
Distaplia skoogi (Other name: Sea squirt). They are alkaloids known for the anticancer activity 
(Bromley et al. 2013).  

                                     

Figure 4-12: Left to Right: SANC00302 (3,6-Dibromoindole), SANC00303 (6-Bromo-3-chloroindole), 
SANC00304 (6-Bromo-2-oxindole). 

Compounds with no significant change in the binding energy in both configurations, flexible and 
rigid receptor, were found to be large compounds with high molecular weights in general: 
SANC00248 (408.57 Da), SANC00427 (606.83 Da), SANC00501 (1095.23 Da), SANC00405 (953.12 
Da), SANC00507 (1389.48 Da), SANC00398 (736.89 Da), SANC00508 (1225.32 Da).  

For the selection of flexible residues, an interesting approach would have been to set residues in 
the flexible loop as flexible. This can allow to try to simulate the movement of the loop, to account 
for the open and closed conformations of the protein. However, the loop region is composed of 
around 10 residues. Setting such number of residues to be flexible would increase the 
computation time drastically. Another approach was to generate a set of representative 
conformers through molecular dynamic simulations and finally use these representatives for 
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docking simulations. Nonetheless, using the open conformation in this study allowed to gain 
insight into the possible conformational ensemble. 

4.4.4.2 Docking on open conformation  
It was of interest to study the screening on the open conformation. The analysis here focusses in 
the comparison of the compound ranking according to their binding energies, but also and more 
their poses on the open conformation. Various proteins are known for adopting a closed 
conformation upon inhibitor binding  (Sandak, Wolfson, and Nussinov 1998). More than the 
movement of the flap covering the active site to form the closed conformation, DXR active site 
undergoes an induced fit movement to accommodate the substrate/inhibitor in the active site. 
More the open conformation may accommodate larger ligands (Mac Sweeney et al. 2005) in the 
protein active site. 

 

Figure 4-13: Left: Open conformation with three openings of the large active/cofactor binding site. Right: 
Clustering of compounds in blind docking of DXR open conformation. 

In blind docking on the DXR open conformation, the majority of the compounds bind to the large 
cavity formed by the active site, the hole formed by the loop region in the middle and the cofactor 
binding site (see Figure 4-13). This cavity forms a canal crossing the NADPH binding site and 
opening on the protein active site on the opposite side. Few compounds bind to the opposite site. 
Interestingly, the cofactor bound in the substrate binding site in most of the 10 poses generated 
by Vina. The cofactor molecule spans across the bottom of the active site to the flexible region at 
the top, adopting an unlikely conformation (see Figure 4-14). Many ligands also bind to the semi-
circle formed by the flexible loop. These ligands thus occupy a superficial region around the loop 
and do not reach the bottom of the large open cavity.  
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Figure 4-14: Cofactor in PfDXR  active site  

 

 

Figure 4-15: Clustering of compounds in the closed conformation. Left: before docking. Right: after 
docking.  

As in the closed conformation, compounds clustered mainly in the protein active site (see Figure 
4-15), cofactor binding site and the surrounding region. Though more compounds were found on 
the opposite face of the protein active site (see Figure 4-16).  Compared to the open 
conformation, more ligands are scattered on the protein surface, some clustering on the opposite 
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face to the active site. Some large ligands may be unable to bind the in  the smaller  pocket of  the  
protein in closed conformation. 

 

Figure 4-16: Compounds binding on DXR active site opposite face. 

All reference ligands and most of the compounds bind in the protein active site . Residues 
interacting with reference ligands often imply known residues implied in DXR inhibition: SER270, 
SER269, ASN311, GLU315, LYS312 (see Figure 4-17 and Table 1-1). CYS338 is also commonly found 
to interact with the reference ligands. DXP forms a strong network of hydrogen bond around the 
phosphate group which is also often involved in charged interaction in which negatively charged 
residues such as GLU233 and LYS312 are involved. Oxygens on the phosphate are frequently 
involved in the hydrogen bonding interactions. LC5 does not show any interaction with any 
residues in the flexible loop region. Its aromatic rings are associated with LYS205, ILE302 and 
LEU314. We can also note the absence of interaction with any residue in the flexible loop region 
(residues 290 to 299) for the reference ligands. 
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Fosmidomycin: -5 Kcal/mol LC5: -7.8 Kcal/mol 

 
FR98: -5.6 Kcal/mol 

 
DXP:  -6 Kcal/mol 

Figure 4-17: Reference ligands in blind docking on open conformation: 2D poses and binding energies 

Table 4-4: Interacting residues with inhibitors in closed and open conformation. Red: residues interaction 
with fosmidomycin phosphonate. Green: residues interaction with fosmidomycin hydroxamate 

 
ASN311  in the closed conformation receptor interacts with all inhibitors, forming hydrogen bon
ds, while this interaction is absent with all ligands in the open conformation. GLU233 through its 
negative charge is a key player in all inhibitors’ interactions in both open and closed conformatio
ns. In contrast, ASP231 is absent from all interactions while often reported as binding to the inhi
bitors hydroxamate group. GLN275 and ASN276 are forming hydrogen bonds with the inhibitors 

ID Molecular Interactions (Residue and Type of 
interaction) 

ID Molecular Interactions (Residue and Type of 
interaction) 

FR
9

8
 O

P
EN

 

GLU233  Charge attraction 
SER269 Hydrogen bond 
SER270 Hydrogen bond 
SER270 Hydrogen bond 
SER269 Carbon Hbond 

SER270 Hydrogen bond 
GLN275  Hydrogen 
bond 
ASN276  Hydrogen 
bond 
CYS388  Hydrogen 
bond 

FR
9

8
 C

LO
SED

 

LYS312 Charge attraction 
LYS312 Charge attraction 
GLU233  Charge 
attraction 
SER270 Hydrogen bond 

SER270 Hydrogen bond 
SER232 Unfavorable 
acceptor acceptor 
HIS341  Hydrogen bond  
HIS341  Carbon Hbond 
ASN311  Hydrogen bond 

FO
S  O

P
EN

 

LYS312 Charge attraction 
GLU233 Charge attraction 
SER232 Hydrogen bond 
SER269 Hydrogen bond 
SER270 Hydrogen bond 
HIS341 Carbon Hbond  

SER270 Hydrogen bond 
CYS388 Hydrogen bond 
GLU233 Hydrogen 
bond 
SER269 Carbon Hbond 
SER269 Carbon Hbond  
CYS388 Carbon Hbond  
 

FO
S  C

LO
SED

 

LYS312 Charge attraction 
LYS312 Charge attraction 
GLU233  Charge 
attraction 
SER270 Hydrogen bond 
SER270 Hydrogen bond 
 

SER232 Hydrogen bond 
HIS341  Hydrogen bond  
HIS341  Hydrogen bond 
HIS341  Carbon Hbond 
ASN311  Hydrogen bond 

LC
5

 O
P

EN
 

LYS312 Salt bridge 
GLU315 Charge attraction 
GLU233  Charge attraction 
GLN275  Hydrogen bond 
GLN275  Hydrogen bond 
GLN275  Hydrogen bond 
 

ILE302  Pi-alkyl 
LYS205  Pi-alkyl 
LEU315  Pi-alkyl 
ASN276  Hydrogen 
bond 
GLU281 Carbon Hbond  
 

LC
5

 C
LO

SED
 

LYS312 Salt bridge 
LYS312 Charge attraction 
GLU233  Charge 
attraction 
SER270 Hydrogen bond 
SER270 Hydrogen bond 
SER232 Hydrogen bond 
 

SER269 Hydrogen bond 
GLY271 Hydrogen bond 
ASN311  Hydrogen bond 
ASN311  Hydrogen bond 
MN502 Metal acceptor 
CYS388 Pi-sulfur 
PRO358 Pi-alkyl 
PRO358 Pi-alkyl 



 

76 
 

in the open conformation.  As previously mentioned the deviation from the metal in the closed r
igid conformation, FR98 and fosmidomycin interact with HIS341 through hydrogen binding. 
 
In terms of binding energy (see Figure 4-18), a paired t-test was conducted, comparing each liga
nd binding energy in both configurations of the protein. The test results were p-value = 0.01762, 
t = 2.3791, df = 702.The p-value was inferior to 0.05.  So, at 5% level of significance, the data pro
vided enough evidence that the compound binding energies are different in the two configuratio
ns. The difference of mean between the closed and open conformation (binding energy in closed 
conformation – binding energy in open conformation) was of 0.0596 Kcal/mol. The binding ener
gy is significantly better in the open conformation than in the closed one. Some compound show
ed significantly increased binding energies (see Figure 4-19).  
 

 

Figure 4-18: Binding energies in DXR closed and open conformation in blind docking. 
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Figure 4-19: Top 10 compounds binding better in open conformation. 

Comparing compound rankings in the two configurations, the weighted Kendall’s tau rank-
correlation (Kendall 1938) was used. The test result gave a (τ) of 0.85. Hence, the ranking in the 
two settings (open and closed conformation) was strongly correlated. This correlation coefficient 
was higher than the one with flexible residues (0.61).  

To identify hits in the open conformation, compounds were first ranked by binding energy. The 
first 32 compound had a QED score under 0.376. These were large compounds with the number 
of carbon atom ranging from 38 to 81 and molecular weight between 1033.11 Da and 510.58 Da. 
The best ligand efficiency score for these compounds was -0.289 kcal/mol/heavy-atom. The 
smallest of these compounds doesn’t fit the molecular weight component of the Lipinski rules. 
Investigating the correlation between the binding energies and the number of non-hydrogen 
atoms showed a high correlation coefficient of 0.773 and a R2 value of 0.5989. These values 
illustrate bias toward large compounds observed in a similar study with Autdock Vina (Shityakov 
and Förster 2014). More these compounds were less likely to fit in the protein active site due to 
their size.  

4.4.4.3 Bisubstrate inhibitors 

The setting of flexible residues (ASP231, GLU233, GLU315, SER117, ILE89, SER88) was planned to 
identify bisubstrate inhibitors. None of the docked compounds bind simultaneously to residues 
interacting with phosphonate moiety and the hydroxamate moiety of fosmidomycin. The 
identified hits had good binding energies ranging from -7 Kcal/mol to -9.7 Kcal/mol on the rigid 
receptor (5JAZ). Visually inspecting their binding poses revealed large compounds. This could be 
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expected as compound fitting such criteria would extend across the cofactor binding site and the 
protein active site. Among these compounds, SANC00615 showed a good druggability score: 
0.896. Moreover, the compound displayed an interesting binding pose ranging across the cofactor 
binding site and the protein binding site, interacting with GLU233, SER270, SER88, and LYS312 
(see Figure 4-20).  
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SANC00615 
Binding  energy:    -8.2 Kcal/mol (Rigid receptor). -11.4 
Kcal/mol (Flexible receptor).  QED: 0.896. 

SANC00562 
Binding  energy:  -8.4 Kcal/mol (Rigid receptor). -11.2 
Kcal/mol (Flexible receptor).   QED : 0.416. 

SANC00436 
Binding  energy: -9.7 Kcal/mol (Rigid receptor). -13.8 
Kcal/mol (Flexible receptor).   QED: 0.787. 

  

 

SANC00443  
Binding  Energy:    -8.2 Kcal/mol (Rigid receptor). -11.3 
Kcal/mol (Flexible receptor).    QED: 0.592. 

SANC00556 
Binding  energy: -7.6 Kcal/mol (Rigid receptor). -11.5 
Kcal/mol (Flexible receptor).  QED: 0.639. 

 
 
 

Figure 4-20: Compounds identified as potential bisubstrate inhibitor.  
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Table 4-5: Identified bisubstrates molecular interactions. 

 

All potential substrates presented at least an interaction with reported residues binding in the 
NADPH binding domain (in red) and in the fosmidomycin binding domain (in green) (see Table 
4-5). ILE89 is the main contributor to these interactions.   

4.4.4.4 Identified Hits 

Table 4-6: Identified hits 

Compound 
SANCDB ID 

CAS ID Name Formula Source 
Organisms 

Known 
Activity 

Binding 
energy 

LE LLE QED 

SANC00152 168075-14-7 Tsitsixenicin D C24H32O6 Capnella 
thyrsoidea 

 -8.4 -0.28 -2.73 0.466 

SANC00236 91236-90-7 Aplysulphurin-1 C22H28O5 Aplysilla 
sulphurea 

Anticancer 
activity 

-10.2 -0.38 -4.15 0.686 

SANC00438 33916-25-5 Neodiospyrin C22H14O6 Euclea natalensis Antibacterial  -9.9 -0.35 -2.73 0.787 

SANC00339 1162-10-3 Buphanidrine C18H21NO4 Boophane 
disticha 

Anti-
serotonin 
transporter 

-9.2 -0.40 -1.46 0.838 

SANC00570 1000888-69-6 3,5,7-Trihydroxy-3-(3'-
hydroxy-4'methoxybenzyl)-4-
chromanone 

C17H16O7 Pseudoprospero 
firmifolium 

 -8.1 -0.34 -1.15 0.68 

Binding energy on the rigid crystal structure: kcal/mol / LE: Ligand efficiency kcal/mol/heavy atom  
LLE: Ligand lipophilic efficiency (kcal/mol)  

 

Comparing compounds ranking across the different receptors gave high Kendall’s tau rank-
correlation (τ) coefficients (0.61 between flexible and rigid receptors and 0.85 between closed 
and open conformations). Compounds thus conserved comparable ranking across the different 
receptors. Hits were selected from the rigid crystal structure. From the initial total of 699 

ID Molecular Interactions (Residue  and type of interaction) ID Molecular Interactions (Residue and type  of interaction) 

SA
N

C
0

0
5

6
2

 

MET298 pi-Sulfur 
ILE302 pi-Alkyl 
HIS341 Unfavorable donor-donor 
ALA203 pi-Alkyl 
SER232 Hydrogen bond 
SER270 Hydrogen bond 
SER269 carbon H Bond 

ASN311 Unfavorable donor-donor 
MET360  pi-Sulfur 
GLU233 Hydrogen bond 
HIS341 Hydrogen bond 
LYS297 Hydrogen bond 
MET360 pi-Alkyl 
ALA203 Hydrogen bond 
ILE89 pi-Alkyl 

SA
N

C
0

0
6

1
5

 

MET360 pi-Alkyl 
SER88 carbon H Bond 
MET360 Hydrogen bond 
HIS335 carbon H Bond 
ASP359 Hydrogen bond 
  
 

ILE340 carbon H Bond 
MET298 pi-Alkyl 
CYS338 pi-Sulfur 
GLU233 pi-Anion 
LYS312 Hydrogen bond 

SA
N

C
0

0
4

3
6

 

MET360 pi-Alkyl 
CYS268 alkyl 
GLU233  pi-Anion 
SER232 Hydrogen bond 
MET360  pi-Sulfur 
ILE302 pi-Alkyl 

MET298 pi-Alkyl 
CYS338 pi-Alkyl 
LYS205  Unfavorable donor-donor 
ILE89 alkyl 
CYS338 alkyl 

SA
N

C
0

0
4

4
3

 

MET298  pi-Sulfur 
ILE302  alkyl 
ILE302 alkyl 
ILE302 alkyl 
SER232 Hydrogen bond 

MET360 alkyl 
MN502  Unfavorable metal donor 
MET360 pi-Alkyl 
MET298 alkyl 
ILE89 alkyl 
GLU233 Hydrogen bond 

SA
N

C
0

0
5

5
6

 

ILE89  alkyl 
MET360 alkyl 
MET360  alkyl 
ALA203  alkyl 
ASN204 carbon H Bond 
 

ILE302 pi-Alkyl 
ASP231 Hydrogen bond 
LYS205 Hydrogen bond 
ILE302 alkyl 
MET298 alkyl 
ILE89 alkyl 
ASP182  pi-Anion 
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compounds, five (5) final fits were chosen based on their binding energies, poses in the active 
site and interactions with the protein (see Table 4-6). Other metrics such as the QED score, LE, 
LLE were also used for filtering as described in the methodology section (see Figure 4-2). Hence, 
these ligands result from a careful selection process implying multiple metrics, presenting thus 
good qualities of hits compounds. Hits’ binding energies ranged from -8.1 kcal/mol  
(SANC00570) to -10.2 kcal/mol ( SANC00236). It is important to note that SANC00152 presented 
binding energies above the planned threshold of -8 kcal/mol. Indeed, the compound had -7.9 
kcal/mol on PcDXR, -7.9 kcal/mol on PmDXR and -7.8 kcal/mol on PoDXR. However, the 
compound presented in its binding a strong network of hydrogen bonds with contact with two 
of the pockets in the active site.  

About their binding poses, all ligands were in the protein active site, overlapping well with LC5. 
The most distant one (SANC00570) was 3.41 Å away. All hits present at least a moiety fitting 
well in one of the pockets. Deeply fitting in both pockets would cause an energetically 
unfavourable conformation of the molecule as observed with some compounds. A general 
observation is that all ligands fitting in the active site presented a preference of binding for the 
pocket adjacent to the phosphonate moiety of fosmidomycin binding pocket. This could be 
explained by the higher hydrophobicity of the pocket. Visually inspecting ligand binding poses 
revealed a third pocket. Any of the visualized ligands was binding in that pocket (see Figure 
4-21).  

 

Figure 4-21: Phosphonate binding pocket (red), its adjacent pocket (green) and the third pocket (blue). 

Figure 4-22 and Table 4-7 describe the molecular interactions and the fit of the hits in the protein 
active site. In bold, residues known from literature (see Table 1-1) as important for DXR 
inhibition. Among the selected hits, SANC00236 has a favourable interaction with the 
manganese metal in the active site.  SANC00152 forms a strong network of hydrogen bonds and 
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interestingly has a moiety fitting in each of the two adjacent pockets, possible through an 
adopted conformation of the macrocycle present in its structure. 

The hits showed interaction with all reported residues binding to the phosphonate moiety 
except HIS293. More this residue showed few interactions with the different ligands. Indeed, it 
showed only 4 interactions with the entire set of all SANCDB compounds. In contrast, ligands 
showed increased number of interaction with the aromatic ring of TRP296 (pi-Alkyl type of 
interaction), and MET298. This latter showed interesting pi-sulfur type of interaction with 
SANC00438, SANC00570, and SANC00339. These residues are in the loop region of the protein 
and appear among the most interacting residues. Aspartic acid 231 and the glutamic acid 315 
are absent from the interactions while often reported in fosmidomycin-like binding particularly 
for the metal coordination.  

Except for SANC00152, all ligands interact with GLU233, also known for metal coordination 
(Murkin, Manning, and Kholodar 2014). The residue generally displayed a pi-anion through its 
carboxylate group and a benzene ring found on the compound. As for SANC00152, the 
compound forms a hydrogen bond with SER232 in the same region. It is also the only compound 
showing an extension toward the cofactor binding site through an alkyl interaction with the 
aliphatic chain of ILE89. Among the hits, only SANC00438 interacted with the metal ion in the 
active site and through a hydrogen bond with SER232 and GLU233 in the same region. At the 
same time, the compound kept some interactions with SER270 and LYS312 implied in 
fosmidomycin binding. 

MET360 is present in all ligand interactions having a pi-Sulfur or an alkyl type of interaction. This 
residue is not reported as interacting with fosmidomycin-like inhibitors. Indeed, the residue is 
located outside the binding pocket, toward the NADPH binding region, closed to ILE89. It is the 
residue with the highest number of interactions with the ligands. As the residue is not located in 
a deep pocket, it could thus interact with ligand not fitting the pocket and even with those 
extending outside the pockets. In the same way, CYS338 interacts with all the identified hits 
through an alkyl type of interaction with it carbon atom bound to its sulfur. The residue is 
located near the entry of the second pocket. PRO358 is also located near the same region but 
closer to the third pocket and displayed an alky type of interaction through its pyrrole ring with 
the ligands.  In general, CYS338, MET360 and MET298 were implied in numerous sulfuric 
interactions with the ligands. 

All identified hits lack the phosphate moiety and hydroxamic acid moiety of  fosmidomycin.   
The identified compounds can thus present new scaffolds with better pharmacological 
properties  for DXR inhibition. These  moieties were associated with fosmidomycin’s poor drug 
likeness properties (Chofor et al. 2014). The interactions from closed conformation docking 
were analysed within Discovery Studio in a search for alternative bidentate ligands forming two 
or more bonds with the metal cation. Finding alternatives to the fosmidomycin hydroxamate 
group to chelate the metal is challenging (Chofor et al. 2014). None of  the compounds were 
found to chelate the metal ion.  
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Moledular Interactions 2D Plot Fit in the active site (Native ligand in Red) 
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SANC00570 

 
SANC00570 

Figure 4-22: 2D plot and fit in the active site for identified hits. 
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Table 4-7: Hits molecular interactions. Red: residues interaction with fosmidomycin phosphonate. Green: residues interaction with fosmidomycin 
hydroxamate. 

 

ID Molecular Interactions (Residue and Type of interaction) ID Molecular Interactions (Residue and Type of interaction) 

SA
N

C
0

0
1

5
2

 

TRP296 pi-Alkyl 
MET360 alkyl 
MET298 alkyl 
PRO358 alkyl 
ASN311 Hydrogen bond 
LYS312 Hydrogen bond 
ILE89 alkyl 
SER270 Hydrogen bond 

SER269 Hydrogen bond 
 CYS338 alkyl 
 HIS341 Hydrogen bond 
 GLY271 Hydrogen bond 
 HIS341 pi-Alkyl 
 ILE302 alkyl 
 SER232 Unfavorable acceptor-acceptor 

SA
N

C
0

0
2

3
6

 

TRP296 pi-Alkyl 
 GLU233 pi-Anion 
 MET360 alkyl 
 MET298 alkyl 
 PRO358 alkyl 
 SER270 Hydrogen bond 
 SER269 Hydrogen bond 
 

MET298 alkyl 
 GLY272 Hydrogen bond 
 MET360 alkyl 
 HIS341 Hydrogen bond 
 GLY271 Hydrogen bond 
 CYS338 alkyl 
 MET298 pi-Alkyl 

SA
N

C
0

0
4

3
8

 

MN502 Metal acceptor 
MET298 sulfur 
LYS312 pi-Cation 
CYS338 pi-Alkyl 
GLU233 pi-Anion 
SER270 Hydrogen bond 

MET360 pi-Sulfur 
 HIS341 pi-Alkyl 
 SER232 Hydrogen bond 
 MET298 pi-Alkyl 
 MET360 pi-Alkyl 
 LYS205 Unfavorable donor-donor 

SA
N

C
0

0
3

3
9

 

MET298 pi-Sulfur 
 SER270 Hydrogen bond 
 GLU233 pi-Anion 
 SER232 Carbon HBond 
 MET360 alkyl 

TRP296 pi-Alkyl 
 CYS338 pi-Alkyl 
 CYS338 alkyl 
 PRO358 alkyl 
 LYS312 Hydrogen bond 

SA
N

C
0

0
5

7
0

 

SER270 Hydrogen bond 
SER306 Carbon HBond 
ASP359 Hydrogen bond 
MET298 pi-Sulfur 
MET360 pi-Sulfur 

SER232 Unfavorable acceptor-acceptor 
 MET298 pi-Alkyl 
 MET360 Hydrogen bond 
 LYS312 Hydrogen bond 
 CYS338 pi-Alkyl 
 GLU233 Hydrogen bond 
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SANC00236, SANC00438, SANC00339 have recorded anticancer activity, antibacterial and anti-
serotonin transporter respectively but none has known anti-malarial activity according to the 
information on the SANCDB database. SANC00438 (Neodiospyrin) belongs to the class of 
naphthoquinones, well known for their antimalarial activity (example atovaquone). 
Nonetheless, naphthoquinones act by inhibition of mitochondrial electron transport (Schuck et 
al. 2013) while the current protein is present in the non-mevalonate pathway. SANC00339 
(Buphanidrine) belongs to the class of alkaloid and amaryllidaceae. Quinidine, cinchonine and 
cinchonidine are all alkaloid and effective against malaria (Achan et al. 2011). Lastly, SANC00570 
is a flavonoid and flavonoids from Artemisia annua L. as have been to have potential synergism 
effect when combined with artemisinin. As for SANC00236 (Aplysulphurin-1), it is a terpenoid, 
class of compound synthesized through the non-mevalonate pathway (Guggisberg, Amthor, and 
Odom 2014). 

Ranked according to ligand efficiency, top compounds showed relatively low binding energies. 
The top 20 compounds had an affinity ranging from -7.6 kcal/mol to 4.7 kcal/mol. However, this 
was expected considering the few number of carbon atoms (less than 15) among these 
compounds. Fosmidomycin and FR98 were ranked 32nd and 35th. They thus have better ranking 
than when using the sole binding energy criterion. 

Compounds were also ranked according the number of hydrogen bond formed according to the 
hydrogen bond from Discovery Studio. Even though the hydrogen bonding term is integrated in 
the scoring function to calculate the binding energies (Trott and Olson 2010), hydrogen bonds 
have been shown as major contributors to protein ligand interactions (Du et al. 2016). This was 
also supported by the observation that fosmidomycin, FR98 and LC5 showed higher number of 
hydrogen bonds 11, 9, 14 respectively compared to the rest of the SANCDB compounds. Among 
the hits, SANC00236 showed to be a promising compound with five (5) hydrogen bonds. 

It is noteworthy that the five (5) hits result from a set of preselected compounds satisfying the 
conditions described in the methodology (see Figure 4-2). These preselected compounds still 
present suitable features to be considered for further investigation. The list of compounds is in  
Table 4-8 below.  
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Table 4-8: Preselected compounds 

A general observation on these compounds was that majority of them preferred binding in the 
pocket next to the phosphonate binding pocket, with an extension toward the NADPH binding 
region for large compounds. None of them were observed to bind in the third pocket. With 
SANC00355, SANC00346, SANC00562, SANC00434 and SANC00436 a moiety of the compound 
fits well in the adjacent pocket to the phosphonate binding pocket. SANC00374, SANC00326 
present an interesting pose by fitting in the two pockets. A hydroxyl on a benzene ring fits in 
phosphonate moiety binding pocket while a pyrrole ring fits in the adjacent pocket.  The 
compounds present a pyrrole ring fitting in the pocket adjacent to the phosphonate binding 
pocket. SANC00661 presents an interesting pose by fitting well in the two pockets and forming a 
strong network of hydrogen bonds. But as for SANC00152, the compound presents a macrocycle 
allowing such pose, which may latter be identified as a problematic moiety for drug likeness. 
These macrocycles appear to be the reason for their fitting in the two adjacent pockets.  

4.4.4.5 Pharmacological properties 
The properties for the set of SANCDB compounds were evaluated (see Table 4-9).  Ten compounds 
were identified, presenting the best weighted QED scores (>=0.9). All the identified compounds 
follow the Lipinski of 5 (MWT ≤ 500, LogP ≤ 5, H-bond donors ≤ 5, and H-bond acceptor ≤ 10) 
(Lipinski 2004). Except for SANC00387, their binding energies are below -7.8 Kcal/mol on the rigid 
receptor in its close conformation (5JAZ). Their bioavailability was also assessed according to the 

compound ID Binding 
 energy  
(kcal/mol) 

LE (kcal/mol/ 
heavy atom) 

LLE (kcal 
/mol) 

# Hydrogen 
 bonds 

Distance to  
active site 
 (Angstrom) 

logP QEDw Lipinski  
Violation 

SANC00346 -10.3 -0.32 -3.13 6 3.58 4.14 0.566 0 

SANC00355 -10.2 -0.32 -3.46 6 3.40 4.47 0.522 0 

SANC00434 -9.7 -0.35 -2.74 5 3.12 3.73 0.787 0 

SANC00436 -9.7 -0.35 -2.75 3 3.51 3.74 0.787 0 

SANC00344 -9.5 -0.31 -4.54 1 3.94 5.52 0.566 1 

SANC00435 -9.3 -0.33 -2.75 4 3.31 3.72 0.727 0 

SANC00374 -9.2 -0.38 -1.96 2 1.72 2.92 0.874 0 

SANC00183 -8.9 -0.31 -2.73 8 3.92 3.68 0.625 0 

SANC00326 -8.7 -0.33 -1.42 2 2.00 2.36 0.826 0 

SANC00345 -8.7 -0.36 -0.40 5 3.54 1.34 0.816 0 

SANC00661 -8.6 -0.39 -0.50 13 2.15 1.43 0.34 0 

SANC00575 -8.6 -0.33 -1.64 8 3.85 2.57 0.846 0 

SANC00225 -8.5 -0.37 -1.89 9 3.77 2.82 0.754 0 

SANC00562 -8.4 -0.30 -0.11 13 3.40 1.03 0.416 1 

SANC00229 -8.3 -0.42 -2.29 10 3.82 3.21 0.473 0 

SANC00335 -8.3 -0.36 -2.03 8 3.02 2.95 0.672 0 

SANC00626 -8.3 -0.35 -2.23 8 2.17 3.15 0.67 0 

SANC00529 -8.2 -0.34 -1.53 10 2.63 2.44 0.493 0 

SANC00337 -8.2 -0.36 -1.13 8 2.92 2.04 0.619 0 

SANC00566 -8.1 -0.29 -1.77 10 3.87 2.68 0.776 0 

SANC00260 -8.1 -0.35 -1.91 9 3.73 2.82 0.806 0 
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VEBER rule (good oral bioavailability for range (rotatable bonds ≤10) and (tPSA ≤ 140 Å or H-Bonds 
Donors+H-Bonds Acceptors ≤ 12)) and EGAN rules (good orally available ( 0 ≥ tPSA ≤ 132 ) and ( -
1 ≥ logP ≤ 6). All compounds presented good bioavailability according to these metrics. In their 
chemical structure, they present at most 2 aromatic rings with no structural alert involved in 
toxicity problem.  

Table 4-9: Drug-like properties of top SANCDB compound according to QED score calculated using FAF 
Drugs4.  

SANCDB ID MW LogP HBA HBD TPSA Lipinski 
Violation 

QEDw RB AR SA OBV OBE Binding 
Energy 

SANC00565 314.33 2.95 5 1 64.99 0 0.94 4 2 0 Good Good -8.3 

SANC00379 327.37 1.95 5 1 60.2 0 0.9 2 1 0 Good Good -8.3 

SANC00358 300.31 3.18 5 2 75.99 0 0.91 3 2 0 Good Good -8.1 

SANC00336 300.31 2.63 5 2 75.99 0 0.911 3 2 0 Good Good -8 

SANC00688 300.31 3.18 5 2 75.99 0 0.91 3 2 0 Good Good -8 

SANC00689 298.29 3.29 5 2 79.57 0 0.909 3 2 0 Good Good -8 

SANC00385 329.39 3.01 5 2 63.36 0 0.903 4 2 0 Good Good -8 

SANC00376 341.4 3.05 5 1 51.16 0 0.93 3 2 0 Good Good -7.9 

SANC00362 314.33 3.51 5 1 64.99 0 0.935 4 2 0 Good Good -7.8 

SANC00613 314.33 3.51 5 1 64.99 0 0.935 4 2 0 Good Good -7.8 

 

BE: Binding energy 5JAZ closed conformation (Kcal/mol). RB: Rotatable Bond. AR: Aromatic Ring. 
SA: Structural Alert. OBV: Oral Bioavailability (VEBER). OBE: Oral Bioavailability (EGAN). 

These compounds can be interesting in high throughput virtual screening using multiple known 
drug targets. As they present excellent drug likeness properties, additionally testing their binding 
affinities and identifying any hit could provide a very good starting point for lead compounds.  

Table 4-10: Hits drug likeness 

SANCDB 
ID 

MW LogP HBA HBD TPSA Lipinski 
Violation 

QEDw RB AR SA OBV OBE 

SANC00152 416.51 3.65 6 0 78.9 0 0.466 7 0 2 Good Good 
SANC00236 372.45 5.16 5 0 61.83 1 0.686 3 1 1 Good Good 
SANC00438 374.34 3.73 6 2 108.4 0 0.787 1 2 0 Good Good 
SANC00339 315.36 2.42 5 0 41.36 0 0.838 2 1 0 Good Good 
SANC00570 332.3 2.06 7 4 116.5 0 0.68 3 2 0 Good Good 

RB: Rotatable Bond. AR: Aromatic Ring. SA: Structural Alert. OBV: Oral Bioavailability (VEBER). OBE: Oral 
Bioavailability (EGAN). 

The lowest QED score among the hits was 0.466 (see Table 4-10). Only SANC00236 violates one 
of the Lipinski rule of logP with a value of 5.16. Nonetheless, one can note that a variant of the 
rule has a cut-off of 5.6 (Schneider 2013). SANC00152 presents two structural alerts linked to 
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the macrocycle in its structure. Except for these two observations, the identified hits present 
good drug likeness scores.  

4.5  Conclusion 

The binding energies for the reference ligands did not provide a significant threshold for filtering 
the compounds. Hence the necessity to introduce other metrics for hit selection. Though the 
binding energy remained the main selection criteria.  LE, LLE and drug likeness properties were 
introduced as recommended in virtual screening studies (Zhu et al. 2013). Combining these 
different metrics and a visual examination of the compound allowed to finally identify 5 hits: 
SANC00152 (Tsitsixenicin D), SANC00236 (Aplysulphurin-1), SANC00438 (Neodiospyrin), 
SANC00339 (Buphanidrine) and SANC00570 (3,5,7-Trihydroxy-3-(3'-hydroxy-4'methoxybenzyl)-4-
chromanone) as new potential DXR inhibitors. More, the absence of the phosphate moiety or 
hydroxamic acid moiety of  fosmidomycin and their good QED scores  allow to expect better drug 
likeness properties for these hits. Considering its scores on the different used metrics (binding 
energy -10.2 kcal/mol,LE:-0.38 kcal/mol/heavy atom, LLE:-4.15 and QED score of 0.686), 
SANC00236 appears to be the most promising compound. 

Docking on multiple conformations of the receptor (closed, open, closed with flexible residues) 
revealed a correlated ranking of the compounds across the different settings of the receptor. 
Flexible residues allowed to have an insight into the induced fit binding mechanism of 
fosmidomycin in the protein active site. For example, in this setting, we observed a correct 
orientation of fosmidomycin around the metal atom in the active site. A significant increase in 
the binding energy was observed for the receptor with flexible residues. These configurations can 
represent different frames of the protein dynamic. Nonetheless, molecular dynamic simulations 
would certainly provide better insight in the landscape of protein conformations and help 
apprehend other factors such as the importance of solvation.   

Exploring possibility for bisubstrate inhibitors revealed an interesting compound SANC00615 (5-
Hydroxy-7-methoxy-3-(3-hydroxy-4-methoxybenzyl) chroman-4-one) with a good QED score of 
0.896, showing promiscuity for both NADPH and fosmidomycin binding site. A molecular dynamic 
simulation will certainly provide more insight into the ligand stability and its interactions with the 
two sites. Finally, none of the docked compounds were found to chelate the metal ion. 
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CHAPTER 5: MOLECULAR DYNAMICS 

5.1  Introduction 

Molecular dynamics (MD) is the movement of molecules and atoms through time. A MD 
simulation uses computational methods to follow the evolution of these particles. The ensemble 
of particles constitutes the system. Algorithms are used to follow the positions and speeds of the 
elements in the system. Time has a discrete evolution characterized by the simulation number of 
steps. The algorithms compute the position and potential energy of each element at each step 
(see Figure 5-1). Classical and ab initio molecular dynamics are the two approaches used to 
compute the positions and potential energies of atoms. In the ab initio technique, quantum 
mechanics principles through solving the Schrödinger equation are used to calculate forces and 
hence particles’ position evolution while in classical MD, force-field approaches determine the 
forces. In either case, the trajectory of particles proceeds using Newton's Laws of Motion. Hybrid  
models  combining quantum and molecular mechanics (QM/MM) can also be used (Allen and 
others 2004; Petrenko and Meller 2001).   

In any case the nuclear positions are critical. From the QM perspective, two main approximations 
are used: the Born–Oppenheimer approximation and neglecting electrons masses compared to 
the nuclei one which is consequently treated as a point particle following classical Newtonian 
dynamics (Datta, Datta, and Davim 2016). In the MM approach, the system can be described by 
a method analogous to treatment as network of balls and springs. Atoms are represented by balls 
and the interactions between atoms with springs (for the bonding interaction; other force-field 
interactions are included). The  simulation thus results in simply solving the Newton's  equations  
of  motion (see Equation 1) for the particles in the system during the defined number of steps. 
Different configurations of the systems are thus produced at each step resulting in a trajectory 
which describes the variations of positions and speeds of the elements in the system over time 
(Petrenko and Meller 2001). 

Equation 1 . 

𝐹𝑖 = 𝑚𝑖𝑎𝑖 = 𝑚𝑖

𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
 

𝐹𝑖: 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 

𝑚𝑖: 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 

𝑎𝑖 ∶ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 

𝑟𝑖: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟  

𝑡: 𝑡𝑖𝑚𝑒 

Solution to equation 1 helps find positions at time 𝑡 + ∆𝑡 based on previously known positions 
and velocities of the particles in the system. Solving the equation for the particles in the system 
requires knowledge of the forces, initial positions, velocities, and algorithms used to solve this 
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equation involves the use of numerical integrators. Initial positions can be derived from 
crystallographic data and initial velocities from a Maxwellian distribution at the temperature of 
interest. The distribution describes the probability that an atom i of mass mi has velocity vi in the 
direction x at a temperature T (González 2011). Examples of commonly used algorithms include  
Verlet,  leap-frog  and Velocity Verlet schemes (Petrenko and Meller 2001). For these, the last 
elements for use in the algorithm are the forces derived from the force fields. 

Classical MD uses empirical potentials or force fields. Forces and potentials are important in MD 
simulation as they describe the system potential energy. They describe, in the form of 
mathematical expressions, the conditions governing the interactions between the elements in 
the system. The considered interactions are the non-bonded interactions (the short-range and 
the long distance) and the bonded or intra-molecular interactions. This latter includes the 
stretching (between two atoms), the bending (three atoms) and the torsional (4 atoms) terms. 
The non-bonded forces are related to van der Waals forces and electrostatic charge. The total 
energy of the system can thus be expressed in the following form (Vanommeslaeghe, Guvench, 
and MacKerell 2014; MacKerell et al. 1998).  

Equation 2 

 𝐸 =  𝐸𝑏𝑜𝑛𝑑𝑒𝑑 +  𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 

In which: 

 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 =   𝐸𝑏𝑜𝑛𝑑 +  𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙  ; 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 =  𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 +  𝐸𝑣𝑎𝑛𝑑 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 

Some of the most popular force fields developed for simulation of macromolecules include 
AMBER (Assisted Model building with Energy Refinement) (Cornell et al. 1995), CHARMM 
(Chemistry at HARvard Molecular Mechanics) (Brooks et al. 1983), and GROMOS (GROningen 
MOlecular Simulation) (van Gunsteren et al. 1996).  

Functional form of the AMBER03  force field: 

Equation 3 

𝐸𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐾𝑏(𝑏 − 𝑏𝑒𝑞)
2

+ ∑ 𝑘𝜃(𝜃 − 𝜃𝑒𝑞)
2

+

𝑎𝑛𝑔𝑙𝑒𝑠𝑏𝑜𝑛𝑑𝑠

∑
𝑉𝑛

2
[1 + cos(𝑛∅ − 𝛾

 
)

 
] +

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠  

∑  

 

𝑖<𝑗

[
𝐴𝑖𝑗

𝑅𝑖𝑗
12

−  
𝐵𝑖𝑗

𝑅𝑖𝑗
6

+  

𝑞
𝑖
𝑞

𝑗

𝜖𝑅𝑖𝑗

]  

 

The first three terms in the above equation describe energies of the bonded interactions. 
Covalent bond stretching and angle bending are estimated by a harmonic potential with 𝐾𝑏 and 
𝑘𝜃 being the force constants for bonds and angles and 𝑏 and 𝜃 being the bond length and bond 
angle and 𝜃𝑒𝑞 , 𝑏𝑒𝑞 being the equilibrium bond lengths and angles. 𝑉𝑛, ∅, 𝛾  

  are respectively the 

force constant, dihedral angle and the phase angle for dihedrals. The last term describes the  Van 
der Waals interactions (𝐴𝑖𝑗), the London dispersion terms (𝐵𝑖𝑗) and the Coulombic interactions 

with 𝑞𝑖 𝑎𝑛𝑑 𝑞𝑗 being the partial atomic charges and 𝜖 the dielectric constant (Duan et al. 2003). 

These parameters need to be known for all atoms in the system. 
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Many research efforts allowed to have force field parameters for common biological molecules 
such as amino acids, nucleic acids, carbohydrates and small druglike molecules. Nonetheless, 
developing parameters for metal centers remain challenging. One of the reasons is the complex 
geometries of metal centers. Metals can bind different ligands and multiple atoms around them. 
More these bonds have strengths that range between covalent and hydrogen-bonding strength 
resulting in flexible geometries.  Furthermore, for transition metals, quantum mechanical ligand-
field, spin-state, trans, and Jahn–Teller effects are more significant (Neves et al. 2013; Hu and 
Ryde 2011). 

 

Figure 5-1: Simplified diagram of MD simulation. Adaptated from (Badrinarayan, Choudhury, and Sastry 
2015).  

Other important aspects of MD simulations include the statistical mechanical ensembles, the 
solvent models and the periodic boundary conditions. 

Statistical mechanical ensembles refer to all possible microstates (conformations) of the system. 
These states depend on the number of particles in the system, the volume, the pressure, the 
temperature and the energy. The volume and pressure are dependent parameters, the same 
applies for the energy and the temperature. Combining these parameters allows to have three 
main ensembles. The microcanonical or NVE in which the number of particles (N), the volume (V) 
and energy (E) are constant. The canonical ensemble or NVT in which the number of particles (N), 
the volume (V) and the temperature are constant. And finally, the isothermal-isobaric ensemble 
which maintains constant the number of particles (N), the  temperature (T) and the pressure (P). 
Newton’s Laws of motion implies the conservation of energy, thus MD trajectories become a set 
of configuration sampled from the NVE ensemble (Petrenko and Meller 2001). In reality, systems 
exchange energy, matter and volume with the environment. But such implementing such systems 
can result in much more complex algorithms (Rigden 2017). 

Water is an important parameter and can have important effects on solutes in the system. For 
example, water molecules can form hydrogen bond networks between protein and ligand and 
therefore play important role in binding affinities (Nguyen, Viet, and Li 2014; Ben-Naim 2002). To 
account for the water effect, implicit and explicit solvent models have been developed. Explicit 
models are more accurate, but computationally expensive, thus slower. While implicit ones are 

Positions of all particles x0, 𝑣0 at t0 , choose ∆𝑡

Compute all interactions forces 𝐹⬚

Derive the resulting acceleration 𝑎 =
𝐹

𝑚

Integration to have x(𝑡) and v(𝑡)

Move particles for ∆𝑡. and update t:  𝑡 = 𝑡0 + ∆𝑡, x(𝑡)
and v(𝑡).    

Repeat  
(number of step) 



 

94 
 

less accurate but computationally faster. The main difference is that this latter does not integrate 
the density fluctuation behaviour around solutes (Roux and Simonson 1999). This is some of the 
MD limitations. Some of the most popular developed water solvation models include TIP3P, 
TIP4P, TIP5P, SPC and SPC/E (González 2011). 

Another limitation is the space occupied by the system. Ideally, molecular systems behave in an 
“infinite” space. However, due to the computational cost associated with such systems, unit cells 
combined with periodic boundary conditions are used in MD simulation. Periodic boundary 
conditions are used at the frontiers of the simulation box to mimic an infinite space by stacking 
simulation boxes. When any element in the box crosses the box on one side, it re-enters it by the 
opposite side (González 2011). 

Computer’s computational capacities are limited. In a system with N particles, there are N(N-1)/2 
possible interactions. The number of interactions, thus grows in the order of 𝑂(𝑛2).  As a result, 
the number of particles in a system is also limited, limiting the size of the simulation box to 
prevent computationally demanding simulations. Interactions are limited to closest ones, using 
thresholds. However, using cut-offs can introduce error for significant long range interactions. 
Thus, methods such as Ewald summation or the particle–particle-particle–mesh (P3M) are used 
to calculate long-range interactions (Kolafa and Perram 1992; Toukmaji and Board 1996). As with 
space, MD has also a time limitation severely hampering the exploration of many biological 
processes. Due to the fast motions of molecules, time steps between integrations should be very 
small, in femtosecond (10−15 s) order. As a result, highly increased number of steps are required 
for long simulations (Petrenko and Meller 2001). 

More, force fields make use of a set of predefined bonding parameters for atoms in the system. 
Harmonical functions for bonds and angles in force field equations imply no bond breaking or 
forming. They are thus not able to model chemical reactivity with bond forming and breaking 
explicitly (González 2011). Furthermore, most of the force fields do not take into account the 
electronic polarization effect (Ganesan, Coote, and Barakat 2017).  

In terms of applications, MD has been used to study protein folding and unfolding, protein-ligand, 
protein-protein interactions, and to decipher cryptic pockets in proteins. Molecular dynamics is 
commonly used in drug discovery. Docking provides an initial estimation of protein-ligand affinity 
while MD provides a more accurate description of protein-ligand complexes in terms of 
thermodynamics and kinetics during recognition and binding. This is achieved through explicitly 
treating structural flexibility and entropic effects and it provides more insight into the induced-fit 
and conformational selection paradigms beyond the lock-and-key one (De Vivo et al. 2016).  MD 
studies have contributed to the success stories of many commercialized drugs (Mortier et al. 
2015). For example, allosteric inhibitors of the M2 muscarinic acetylcholine receptor have been 
found through MD simulations technique (Dror et al. 2013).  

Many software tools exist to conduct MD simulation. GROMACS, NAMD, LAMMPS are available 
in the public domain while GROMOS, CHARMM and AMBER are commercial ones (González 
2011).  

In this chapter, we intend to further investigate the hits identified in the docking chapter for their 
stability in the protein-ligand complexes in GROMACS (Abraham et al. 2015). DXR has a metal ion 
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in the active site. The crystal structure 5JAZ used in this study has a manganese  ion 
(Sooriyaarachchi et al. 2016). Currently, there is no parameter for the manganese atom in the 
force fields implemented in GROMACS 5.1.4 (Abraham et al. 2015). We will then start by 
developing force field parameters for that metal using PES (Potential Energy Surfaces) scans 
followed by their implementation in GROMACS. These parameters will finally be validated with 
MD simulation. 

Written in C and C++, GROMACS (Abraham et al. 2015) is a free molecular dynamics software that 
achieves state of the art performance in MD simulation by using multi-level parallelism across 
computers’ cores and optimized algorithms for modern MD.  A simulation is decomposed into 
domains using MPI and load balancing, while SIMD registers parallelize bonded interactions on 
cores and nonbonded interactions are handled by GPUs and other accelerators. GROMACS 
proposes different force fields for running simulations including GROMOS96, OPLS-AA, AMBER 
and CHARMM (Abraham et al. 2015).   

The general steps for the molecular dynamic simulation in GROMACS are the following: system 
preparation, solvation, neutralization, energy minimization, equilibration, the MD run and finally 
the analysis of the generated data (Abraham et al. 2015).  

GROMACS offers a convenient command line interface. Each command run output a log file of 
the process and results which is useful for monitoring and debugging. Most inputs and output 
files from the tool are in plain-text format, making it easy to track all simulation parameters. For 
example, an simulation .log file informs on how a simulation run and its performances. The tool 
automatically backup old output files, renaming them by using the prefix “#”. 

The following experimental method section is derived from the GROMACS online documentation 
(GROMACS Documentation n.d.), its user manual version 5.0.7 (Mark Abraham, Berk Hess, David 
van der Spoel, and Erik, Ren, and Vanden-Eijnden 2002), and from the GROMACS tutorials Protein-
Ligand Complex (Protein-Ligand Complex n.d.) available at 
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/complex/index.html 
and Lysozyme in Water (Lysozyme in Water n.d.) available at 
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-
tutorials/lysozyme/index.html.  

5.1.1 System preparation 

In this step, the system is defined. This includes protein structures retrieved from the PDB 
(Berman et al. 2000), from modeling or protein-ligand complexes from docking experiments. 
Some aspects to consider about the structures are their quality: resolution, missing residues, and 
the presence of ligand. The GROMACS command pdb2gmx is used to create topologies for the 
structures. It reads in a structure (.pdb or .gro) file, adds hydrogens and output a structure file 
(.gro), a topology (.top), and a position restraint file (.itp) in GROMACS format. The .gro contains 
atoms coordinates and their velocities information. The topology describes the system: force 
field, components, atoms, bonds, angles, position restraints... The topology file is divided in 
multiple sections. It uses the “#include” mechanism to combine the different components of the 
system listed in its “[ molecules ]” section. The sequence of molecules in the .gro must match the 
one in that section. The position restraint file is used to restrain heavy atoms positions. 
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An important step here is the choice of the force field. GROMACS proposes different force fields 
CHARMM ) (Brooks et al. 1983), AMBER (Cornell et al. 1995), GROMOS (van Gunsteren et al. 
1996), OPLS (GROMACS Documentation n.d.).  

For the ligands, different external tools can be used to generate their topologies as GROMACS 
does automatically recognized some of the species. For example, Acpype (AnteChamber PYthon 
Parser interfacE) (Sousa da Silva and Vranken 2012; Batista et al. 2006) based on the Antechamber 
(Wang et al. 2006; Wang et al. 2004) module can be used.  Other external tools include PRODRG 
web server (Schüttelkopf and van Aalten 2004), CGenFF (Vanommeslaeghe et al. 2010)  and ATB 
(Automated Topology Builder) (Malde et al. 2011) also can be used.  

These information will then be incorporated in the final coordinate to build the complex (protein-
ligand) and topology file using the “;include” statement and updating the molecules section.  

5.1.2 Defining simulation box and solvation 

The editconf module is used to set up the simulation box. Some important options are: -bt to 
specify the box type, -c to center the protein in the box, -d to specify the distance solute-box (in 
other term the box size). The box should be large enough so that an re-entering element cannot 
bump to itself. Though the box should not be too large to prevent computationally demanding 
simulation. GROMACS proposes different box shapes: triclinic, cubic, dodecahedron, octahedron 
having different implication on the box size. For example, using the same periodic boundary 
conditions (-d) the dodecahedron box is ~71% the size of the cubic one, saving thus some space 
for faster computation. 

Next, the solvate command is used to add water to the box. Options -cp specify the box and -cs 
the solvent. As previously described, different water models can be used. Non water solvent also 
can be used. The -p option specifies the topology file which is a result automatically updated with 
the number of solvent molecules added. 

Finally, to maintain the chemical neutrality of the system, ions are added to the system. The 
previous solvated system is charged based on the protein amino acid composition. Prior to adding 
ions, a .trp (portable binary run input) file is first generated using gmx grompp.  The command 
gmx grompp check and process the generated topology file from a molecular description to an 
atomic description of the system. For that process, it requires an mdp (molecular dynamics 
parameters) file, here ions.mdp. 

The command gmx genion is then used to neutralize the system. Ions are added to the system to 
neurtralize using the following options -pname, -nname (example: -pname NA -nname CL to add 
NaCl), -nn and -np to specify the number of ions, either positively or negatively charged to 
neutralize the system. More conveniently, -conc and -neutral options allow to neutralize the 
system with a certain concentration. The user is prompted to specify entities to be replaced in 
the system, resulting in a neutral solvated system. 



 

97 
 

5.1.3 Energy minimization 

This step allows to remove from the system its imperfections, steric clashes, improper solvent 
and ions orientations by finding a local energy minimum. The structures from the PDB database 
or  the ligand structure may have bond lengths, angles, interatomic distances) that are not taken 
into account perfectly by the force field. A .tpr file is first created using the grompp command, 
then the structure energy is minimized using the created .tpr file. The energy module helps to 
monitor the minimization process which is performed using the mdrun program. The main energy 
terms of the process are in the resulting .edr file. Accessorily, a .trr (binary full-precision 
trajectory) and .gro (energy minimized structure) are also obtained. 

The parameters for minimization are defined in the .mdp file and passed to the command. Some 
important ones include the algorithm used specified by value of integrator (example: steepest-
descent), the maximum number of steps for minimization (nstep) and emtol in kJ.mol-1.nm-1 
minimum force as target value to reach in order to achieve minimization. Meeting one of the two 
criteria (number of steps or the maximum force) results in minimization ending. Depending on its 
size, the system should ideally have a negative Epot in the order or 10-5  and 10-6, with  the 
maximum force lower than the set target. Though it is possible to reach a reasonable Epot with 
Fmax still greater than emtol depending on the defined value. 

5.1.4 Equilibration 

At this step, the system will be equilibrated by bringing it at proper temperature and pressure. 
Water molecules and ions are relaxed around the restrained solutes, optimizing thus the system. 
Both steps require .tpr files generated using the grompp command.  During equilibration, it is 
important to restrain the solutes in the system to avoid its collapse. The restraining is achieved 
by applying a force on the heavy atoms of the protein and ligand and using the parameter “define    
= -DPOSRES”. The pdb2gmx generated a position restraint file (.itp) for the protein and a similar 
restraint file should be generated for a ligand using the genrestr command. These information 
are included in the topology file in their correct location.  

The first phase is run under a canonical (NVT) ensemble (constant Number of particles, Volume, 
and Temperature). During it, the temperature should reach a plateau at the specified value and 
stabilizes around it. The next step, NPT equilibration, conducted under an "isothermal-isobaric" 
ensemble, stabilizes the system pressure. The parameters for the two steps are specified in their 
respective .mdp files. The modified Berendsen thermostat is used for temperature coupling and 
the Parrinello-Rahman is used for pressure coupling. 

An important aspect at this stage is the temperature coupling. Coupling every single entity in the 
system to its own thermostat group can be problematic for the coupling algorithm. The ideal 
approach is to merge some system components using the gmx make_ndx command. For example, 
one can set “tc_grps = Protein Non-Protein” in the parameters (.mdp) file after dividing the 
system into two parts, the protein and non-protein group using gmx make_ndx.  

One can monitor the equilibration by plotting the generated .edr files from the equilibrations. 
The temperature and pressure should reach the respective specified values and stabilize around 
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them. One can also compare the experimental values of density for the used water model to the 
ones obtained during equilibration. Incorrect temperature or pressure behaviour may indicate an 
incorrect system behaviour.   

5.1.5 MD simulation 

After equilibration, the system is ready for the simulation. Restraints on the protein and ligands 
are first removed. Again here the run is preceded by a grompp command with the simulation 
parameter file. Important parameters include the length defined by the number of steps, the 
integrator for Newton's equations of motion and the time step for integration which are defined 
in the .mdp file. 
At the end of the simulation, the produced files will be analysed. 

5.1.6 Analysis 

GROMACS offers diverse analysis modules to study MD results. Analysed properties depend on 
the type of study. Generally, the simulation quality and stability should first be validated and then 
subsequent analysis related to the research question can be conducted. Different ways of analysis 
include protein conformations analysis, trajectory visualization, distance, angles and 
measurements, principal component and interactions (such as hydrogen bonds) analysis. 
Some of the important modules for analysis include gmx trjconv, gmx rms, gmx rmsf, gmx gyrate. 
GROMACS also proposes the group modules which can be helpful in grouping atoms of the system 
for specific analysis for example when it comes to measuring distances.  

The stability and the dynamics of interactions of the complex protein-ligand were studied using 
the following measurements: the RMSD (Root Mean Square Deviation), RMSF (Root Mean Square 
Fluctuation) and the radius of gyration (Rg). Hydrogen bonds are essential for the stability of 
protein-ligand complexes. The gmx hbond module analyses the hydrogen bonds between 
different components of the system. The program gmx energy allows to analyse system 
properties such as temperature, potential energy, pressure, density...   

At the end of the simulation, the output files structural (.gro), compressed trajectory (.xtc), energy 
(.edr) and (.log) are often used for analysis. Visualization tools such as VMD (Humphrey, Dalke, 
and Schulten 1996) are used for trajectories and XMGRACE (Turner 2005) to plot graphs resulting 
from the different properties analysed.  

5.2  Methodology 

The methodology used for the different MD simulations and the metal parameterization are 
described in this section. 

5.2.1 Metal parameterization. 

The manganese metal ion in DXR active site is involved in substrate and inhibitor binding. 
Fosmidomycin-like inhibitors showed metal chelation as key characteristics (Umeda et al. 2011). 
The different force fields implemented in GROMACS 5.1.4 (Abraham et al. 2015) do not provide 
parameters for the Mn atom. The metal center was of interest in the investigation of DXR 
inhibition, reason to undertake its parameterization.  



 

99 
 

Various methods exist to develop force fields parameters. They include fast methods such as the 
nonbonded model with restraints, the bonded parameterization based on the method of 
Seminario or more accurate technique as the Norrby and Liljefors method (Hu and Ryde 2011). 
As often in computational biology, a compromise needs to be found between speed and accuracy 
taking into account the intended application. In this study, we used QM calculations to obtain 
parameters to be included with the AMBER03  (Duan et al. 2003) force field in GROMACS. 
Potential energy surface scans were performed on the QM optimized subset of the metal center. 
The following parameters were calculated: equilibrium bond lengths,  angles, and their 
corresponding values of force constants for each potential. 

5.2.1.1 Subset Setup and geometry optimization 
Gaussian09 was used for geometry optimization. The optimization finds a local energy minima on 
the PES. This section contextualizes information required from the Gaussian online 
documentation available at http://gaussian.com/ and its use in this study. By default, Gaussian 
optimizes the geometry in redundant internal coordinates. During the process, the geometry is 
adjusted until a stationary point is found on the potential energy surface using the Berny 
algorithm using GEDIIS (Li and Frisch 2006). The energy is calculated in Hartree (1 Hartree = 627.15 
kcal mol-1; or 1 Hartree = 2625.5 kJ/mol). Two convergence criteria are used, the changes in the 
energy gradient and the structure on two consecutive calculations. Optimization completes when 
criteria fall below the fixed threshold values for these two parameters.  

The subset of the protein active site including the metal and its coordinating residues (ASP231,   
GLU233, GLU315) and the ligand were selected in Discovery Studio maintaining the geometry 
coordination. Only the hydroxamate moiety of the ligand (LC5) was maintained. A charge of -1, 
(+2 for the Mn2+ and and -1 for each of the three negatively charged residues (ASP231,   LU233, 
GLU315) and multiplicity 1 were used when preparing the subset for optimization in Gaussian. A 
split basis set employing an ECP (effective core potential) basis LANL2DZ (Los Alamos National 
Laboratory 2 double ζ) (Chiodo, Russo, and Sicilia 2006) commonly used for the optimization of  
transition metals (Neves et al. 2013) and  B3LYP/6-31G(d) for the rest of the atoms ( C H O N ) and 
using the keyword “pseudo=read” for taking into account the pseudo potentials. Figure 5-2  and 
5-3 show the header and footer of the .com input file for Gaussian, used to achieve these ends. 

Header of the .com file:  

 
 
 
 
 
 

Figure 5-3 : Header for gaussian input. 
Footer used: 
 

 

 

%nprocshared=24 
%mem=50GB 
%chk=s_5JAZ_B_Mn_LC51_modified.chk 
# opt b3lyp/3-21g geom=connectivity pseudo= read 
 

http://gaussian.com/
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The created .com file was 
submitted for calculation by Gaussian09 on the  CHPC using 1 node and 24 cores for the 
computation. The optimized geometry was finally submitted to Metalizer (Bietz and Rarey 2016; 
Meyder et al. 2017) for prediction of the coordination geometry.  

5.2.1.2 Potential Energy Surface Scan (PES) 
A PES was performed for the bonds, angles and dihedrals around the metal. All the bonds implying 
the manganese were scanned. Due to the high number of possible angles and dihedrals 
combinations, some of them were selected for scan. This later was performed using Internal 
Redundant coordinate using the Gaussian 09 keyword Opt=ModRedundant was used. Also known 
as Relaxed PES Scan, in that scheme, the subset geometry is optimized at each step while keeping 
the scanned parameters constant. The parameters are the bond stretching, bending and torsional 
movements values. This allows to have energy profile depending only on these maintained 
constant. Force field parameters were then obtained by fitting the energy profiles to the bonded 
terms in Equation 3 using the least squares method. Microsoft Excel “solver” module was used 
for that purpose.  

Gaussian header used for PES scan: 

 

 

The scan parameters are specified in the footer section Gaussian .com file. 

The following parameters were used during the scan.  

1. Bonds: 15 steps, step size of 0.01 Angstrom 

2. Angles: 15 steps, step size of 1 Degree   

3. Dihedrals: 15 steps, step size 1 Degree 

C H O N 0 
6-31G(d) 
**** 
Mn 0 
LANL2DZ 
**** 
 
Mn 0 
LANL2DZ 
 

# opt=modredundant b3lyp/gen geom=connectivity pseudo=read scf=xqc 

Figure 5-4: Footer of the .com input file for Gaussian 
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Due to time constraint, the derived parameters from the PES for the dihedrals were not included 
in the implementation in AMBER03  (Duan et al. 2003) force field in GROMACS (Abraham et al. 
2015).  

5.2.1.3 ONIOM Setup 
In the early stages of this project, a hybrid system combining QM/MM (ONIOM) was used in order 
to derive force field parameters. The high level system included atoms for which force-field 
parameters were to be refined, while most of the protein was defined with well-known force-
field parameters. It was hoped that residue geometries and hence the geometry of the central 
metal would be more accurately defined using this approach for surface scans. Here we describe 
the methodology used to set up the ONIOM calculations. The PES scan was performed using the 
same methodology as in the subset in terms of redundant coordinates.  

The chain B of the protein, the metal ion and the only the hydroxamate moiety of fosmidomycin 
were extracted from the PDB structure (5JAZ).  The ONIOM system was set up in Gaussian. The 
H++ web server was used to protonate the structure. The server returned a charge of +5 for the 
full protein (excluding the metal ion) at pH 6.5. The metal ion and its three coordinating residues 
were selected at the high layer and the rest of the system at the low layer. A charge of -1 was set 
for the high layer (adding charges of its elements Mn +2, Glutamic acid -1, Glutamic acid -1,  
Aspartic acid -1) and +7 for the full protein (adding the +2 charges for Mn atom to the charge 
returned by H++). A multiplicity of one (1) was used. The low layer was treated at molecular 
mechanical level using UFF (Universal Force Field) while the high layer was treated using quantum 
mechanic using the b3lyp level of theory. The following steps of optimization and PES scan were 
similarly to the one used for the subset.  

5.2.2 Implementation in GROMACS 

The derived force field parameters were then implemented in the AMBER03  (Duan et al. 2003) 
in GROMACS following the following guide of the GROMACS online documentation 
(http://www.gromacs.org/Documentation/How-tos/Adding_a_Residue_to_a_Force_Field). 
Adding a new atom in a force field in GROMACS requires modifications on the parameter files of 
the chosen force field. The following paragraph summarizes the different required modifications 
to undertake.  

Before any modification to the force field, the directory containing it and the GROMACS file 
residuetypes.dat  (/usr/local/gromacs/share/gromacs/top/amber03.ff/), were first copied to the 
working directory. Then when running MD and prompted for force field selection, GROMACS 
proposes both force field options. The new atom Mn was added to the .rtp (aminoacids.rtp) of 
the force field. As the Mn atom does not require hydrogen, no modification was done to the .hdb 
file. Similarly, no modification was done to the specbond.dat file to add special connectivity to 
other residues. The new atom type was added in the atomtypes.atp and the non-bonded 
parameters in the ffnonbonded.itp file and the bonded parameters in the ffbonded.itp one. 
Finally, the Mn atom was added to the residuetypes.dat file. The required modifications were 
done following the parameters files formatting system (see result section 5.3.2 for details ).  



 

102 
 

The values for the Lennard-Jones potentials were obtained from the literature (Babu and Lim 
2006). Chapter 2 of the GROMACS manual was used for unit conversion. The following table 
summarizes the different units used and their conversion.  

Table 5-1: GROMACS units used and their conversion 

Parameters Unit from PSES fitting  Conversion factor GROMACS Unit 

Energies Kcal mol−1 1 kcal mol-1 = 4.184 kJ mol-1 kJ mol-1 

Force kcal mol-1 Å-2 1 nm-2 = 100 Å -2 

1 kcal mol-1 = 4.184 kJ mol-1 
kJ mol-1 nm−1 

Distance Å 1 nm = 10 Å nm 

Angles Degree  Degree 

 

5.2.3 Steps of Molecular dynamics  

The different systems were prepared using the same procedure. 
The following software tools were used: 

1. GROMACS 5.1.4 (GROningen MAchine for Chemical Simulations) (Abraham et al. 2015) 
on a local machine for preliminary system preparation and GROMACS version 2016.1 on 
CHPC to run the simulation and/or for energy minimization and NVT and NPT 
equilibrations.  
2. Babel: the tool offers a solution for interconversion of a large variety of chemical file 
formats (O’Boyle et al. 2011). 
3. Discovery Studio 2016 (Biovia, San Diego, CA). 
4. VMD Visual Molecular Dynamics 1.3.9: a visualization and analysis program for 
molecular structures, especially biomolecules (Humphrey, Dalke, and Schulten 1996). 
5. Acpype (AnteChamber PYthon Parser interfacE) (Sousa da Silva and Vranken 2012; 
Batista et al. 2006) was used to generate topology for the ligands. The resulting pdbqt 
format from docking were first converted to .pdb format using Babel (O’Boyle et al. 2011) 
to be used with Acpype.   
 

A MD simulation was conducted to validate the developed parameters for manganese and to 
investigate the docking complexes which also included the cofactor (NADPH). Since docking of 
the cofactor in the previous chapter did not result in the correct pose, and since the crystal 
structure used in this study (5JAZ) did not include the cofactor, this necessitated the copying of 
the cofactor pose from the PDB structure 3AU9 after molecular overlay of the two structures 
using Discovery Studio (Biovia, San Diego, CA). Both structures are DXR in a closed conformation. 
Only a monomer (Chain B) of the protein was used and all water molecules were removed. Acpype 
(Sousa da Silva and Vranken 2012; Batista et al. 2006) was used to generate topologies for the 
cofactor and the ligands. The generated topologies were adapted to GROMACS ones by renaming 
the atom types to compliant GROMACS ones. 

The adapted AMBER03  (Duan et al. 2003) force field, with the parameters for the manganese 
atom was used for all the simulations. The different systems simulated are the following: 
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1. Force field validation: Protein (5JAZ) + Mn (the ligand was not included in the 
simulation). 

2. Hit studies: Protein + NADPH + Mn + Ligand (Hits from docking: SANC00152, 
SANC00236, SANC00339, SANC00438, SANC00570). 

After preparing the topologies, the simulation box and the periodic boundary conditions were 
defined using the command editconf. A cubic box was chosen to run the simulation in with 
distance between the solute and the box set to 1.0 nm.  The Simple  Point  Charge  (spc216)  water 
was used as solvent model. A concentration of 0.15 M (Na+ (sodium) and Cl- (chloride) ions) was 
used and the system was neutralized using the -neutral option. 

The system energy was minimized using a steepest descent method with a maximum force set 
at <1000.0 kJ/mol/nm and a maximum number of steps of 50000. 

All the preparations were done on a local machine (using GROMACS 5.1.4) up to minimization 
step. The next steps were alternatively run on a remote machine at CHPC (Center for High 
Performance Computing) depending on the availability of resources. GROMACS version 2016.1 
was used. The simulation was submitted using a PBS (portable batch system) file (an example of 
job file in appendix H) on CHPC, using 10 nodes with 24 cores each (total cores of 240) using a 
walltime=48:00:00 and a normal queue.  

The temperature was set to 300K and the pressure at 1 atmosphere. A simulation of 100 
nanoseconds was run by setting 50.000.000 steps in the .mdp file, and dt of 0.002 (ps) time step 
for integration with a leap-frog algorithm leap-frog integrator. 

5.2.3.1 Analysis 

For the force field parameters, the protocol for validation consisted in first tracking the stability 
of the protein through its RMSD and then the stability of the coordination sphere. The 
GROMACS distance module was used to monitor the distance between the Mn atom and the 
bound oxygen atoms.   

For the hit-protein complexes (Protein-Ligand-Cofactor), the analysis focused on their stability. 
Compounds with poor binding can engender unstable trajectories and vice-versa. They may also 
leave the protein binding site. An unstable RMSD over time is a good indicator. On the other 
hand stable and specific interactions, for example, maintaining stable hydrogen bonds between 
the ligand and the protein is a good indicator of good binding. 

Different properties of the systems temperature, pressure, and the potential energy before MD 
run will be analysed to assure systems’ qualities.  

After simulation, the trjconv was used to correct for periodicity, centering the protein in the 
simulation box and avoiding jumps across box sides. The root-mean-square deviation (RMSD), 
root-mean-square fluctuation (RMSF) of the backbone atoms and the radius of gyration (Rg) 
were used to study the protein stability. The interactions between the ligands and the protein 
were studied through the number of hydrogen bonds. 
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5.3  Results and Discussion 

5.3.1 Metal parameterization 

5.3.1.1 Initial structure preparation and geometry optimization 
The reported geometry is described as distorted bipyramidal trigonal. It has been argued that the 
increased flexibility of the metal–ligand bonds showed by Mn2+ more easily accommodates 
distortions in coordination geometry at the transition state (Murkin, Manning, and Kholodar 
2014; Chofor 2016).  

Using Gaussian09, the geometry of the subset was optimized. The optimization process can be 
tracked in the .log file through the line containing the keyword “SCF”. The energy value is given 
in atomic unit (Hartree) for example:  

 

 

The final optimized subset had an energy of -1815.14 Hartree after 53 steps of optimization. 
Visually, the optimized structure tended toward an octahedral geometry (see Figure 5-5). 
Metalizer predicted a square pyramidal geometry would have the best score. Although, the 
octahedral geometry also has the same lowest angle RMSD of 8.12 as the square pyramidal one 
(See complete table of all possible predicted geometries in appendix I). Metalizer uses a weighted 
score that combines the RMSD, the number of free sites and the overlap of presumed free sites 
with any heavy atom in the first coordination sphere or with any non-water heavy atom for 
geometry prediction (Bietz and Rarey 2016).  

 

 

Figure 5-5: Left optimized subset. Right geometry in the crystal structure (5JAZ chain B). The backbones of 
the residues were removed for clarity. 

 

“SCF Done:  E(RB3LYP) =  -1815.14444090     A.U. after   17 cycles”. 
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The crystal structure has a distorted bipyramidal trigonal (see Figure 5-5). This is consistent with 
the different geometries observed in the same series of crystal structures (5JBI, 5JC1, 5JMP, 
5JMW, 5JO0) also having a Mn atom in their active sites with the ligand involved in the 
coordination. Coordinations implying the Mn atom and a bidentate ligand in DXR active site have 
often reported to be octahedral especially in E.coli (Mac Sweeney et al. 2005; Yajima et al. 2002; 
Steinbacher et al. 2003). In these cases, a water molecule fills the 6th coordination position.  In 
5JAZ, no water molecule was found in a radius of 3 angstroms. A water molecule was within the 
radius of 4 angstroms (3.68 angstroms, see Figure 5-6) but still too far to occupy the 6th 
coordination position. This position in the close-to octahedral geometry of the optimized subset 
is occupied by oxygen 27 (GLU233) (see Figure 5-5 ). 

 

Figure 5-6: Water molecule and Mn coordination in the crystal structure. 

Table 5-2: Bond lengths in initial crystal and optimized structure 

Bonds Length (Å) 

Atom 
Number 
In subset 

Residue  Manganese Atom 
Number 
In subset 

Simplified 
notation 

Initial Optimized Initial –  
optimized 

9 ASP231 MN 61 9 - 61 2.13 1.91 0.22 

26 GLU233 MN 61 26 - 61 2.1 2.01 0.09 

27 GLU233 MN 61 27 - 61 2.74 2.08 0.66 

44 GLU315 MN 61 44 - 61 2.13 1.85 0.28 

49 LC5501 MN 61 49 - 61 2.17 2.07 0.1 

52 LC5501 MN 61 52 - 61 2.17 1.89 0.28 
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Table 5-3: Angles in initial crystal and optimized structure 

Angles 
 

Angles (degree) 

Residues Atom 
Number 
In subset 

Manganese 
(angle 
vertex) 

Residues Atom 
Number 
In subset 

Simplified 
Notation 

Crytal  
structure 

Optimized Cryst-Opt 

GLU233 26 MN 61 ASP231 9 26 - 61 - 9    95.2 101.3 -6.1 

GLU315 44 MN 61 ASP231 9 44 - 61 - 9   96.8 99.09 -2.29 

LC5501 49 MN 61 ASP231 9 49 - 61 - 9   122.4 84.62 37.78 

LC5501 52 MN 61 ASP231 9 52 - 61 - 9 82.5 90.5 -8 

GLU315 44 MN 61 GLU233 26 44 - 61 - 26   96.4 95.7 0.7 

LC5501 52 MN 61 GLU233 26 52 - 61 - 26  107.6 93.31 14.29 

LC5501 49 MN 61 GLU315 44 49 - 61 - 44  85.6 89.16 -3.56 

LC5501 49 MN 61 LC5501 52 49 - 61 - 52  74.9 80.58 -5.68 

Comparing bond lengths in the initial crystal structure with the optimized one (see Table 5-2), values are 
not significantly different. However, one oxygen on GLU233 (atom number 27 see Figure 5-5)  has a 
significant decrease of 0.66 Å in its bond length with the manganese. The atom is not part of the trigonal 
bipyramidal geometry of the initial structure but gets closer in the close-to octahedral geometry as it is 
part of the coordination. Comparing the angles, only 52-61-26 and 49-61-9 showed significant differences 
getting compressed by 14.29° and 37.78° respectively (see  

 

Table 5-3 highlighted in brown). Again, these changes are explained by the change in geometry. 

The larger free degree of movement of the coordinating residues during optimization can explain 
the observed closed-to octahedral geometry. The sixth coordination position is occupied by the 
second oxygen atom of GLU233 (atom number 27).  

5.3.1.2 PES scans 
After geometry optimization, the force field parameters were derived through PES scan. Here 
we present the graphs obtained after least square error fitting for the PES data for bond 44-61.  
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Figure 5-7: Least square error fitting for PES data for bond 44-61.  

The change in energy represents the difference between each energy point with the minimum 
energy point on the PES. In this case, the bond length corresponding to the minimum energy was 
1.85 Å. The continuous curve represents the harmonic potential model used for fitting. In this 
case the bonded term for bond 44-61. The fitting gave a force constant of 153.89 kcal mol-1 Å-2. 
The sum of errors was 5.03, the 2nd highest value among all scanned bonds.  

 

Figure 5-8: Least square error fitting for PES data from Angle  9-61-52. 

PES scan data points for angle  9-61-52 achieved one of the best fitting to the harmonic 
potential (see Figure 5-8), achieving a sum error of 0.2755 with all the data points included in 
the error calculation. In total 7 angles were scanned. The graphs for fitting the data point for all 
angles are in appendix J.  

Table 5-4: Force parameters derived from least-square fitting of PES data. 
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Bonds  Force constant / 
equilibrium bond length 

Kb b0 

Kcal mol-1 Å-2  Å 

9-61 110.51 1.91 

26-61 84.26 2.01 

27-61 47.78 2.08 

44-61 153.89 1.85 

49-61 62.47 2.07 

52-61 112.59 1.89 
 

Angles Force constant / 
equilibrium bond length 

cth th0 

Kcal mol-1 degree-2 ° 

9-61-52 0.0173 90.50 

9-61-49 0.0144 84.64 

9-61-44 0.0144 84.64 

9-61-26 0.0144 84.64 

26-61-44 0.0144 84.64 

26-61-52 0.0229 84.64 

49-61-52 0.0148 84.77 
 

Kb: bond force constant. b0: equilibrium bond distance. 
Cth: angle force constant. th0: equilibrium angle. 

The bonds’ force constants range between 153.89 kcal mol-1 Å-2 (bond 44-61) and 47.78 kcal 
mol-1 Å-2 (bond 27-61), having respectively the lowest and highest b0. However, the b0 values 
were not significantly different, ranging from 1.85 Å to 2.08 Å (see Table 5-4).  

The different equilibrium angles were around 84.64 degrees except for 9-61-52 (see Table 5-4) 
which present a slightly different value of 90.50 degrees. This similarity can be explained by the 
symmetry in the octahedral geometry. This same similarity is observed for the force constants 
which is about 0.0144 Kcal mol-1 degree-2. Again, here 9-61-52 has a slightly different value for 
its force constant 0.0173 Kcal mol-1 degree-2. Angle 26-61-52 presents a significantly different 
force constant of 0.0229 Kcal mol-1 degree2,  two (2) times higher than the other angles. This 
could be explained that both oxygens implied in this angle are from molecules having their 
second oxygens implied in the coordination. Indeed, atom 52 belongs to the ligand and 26 to 
GLU233. Both of these molecules have two oxygens implied in the coordination. As a result, 
they can restrain the movement of atoms 52 and 26 resulting in a higher force constant.  

Compared to literature, Neves et al. determined parameters for 12 models of manganese metal 
centres for the AMBER force field using a similar procedure. A model from Mandelate racemase 
(PDB ID: 2MNR) is similar to present subset, presenting a Mn coordination with a distorted 
trigonal geometry implying two glutamic acid, one aspartic acid and a bidentate ligand. 
However, the optimized model kept the same similar geometry while the subset here tends 
toward an octahedral one. They found equilibrium bond lengths in the interval [2.00; 2.45] Å for 
the 12 models,  while a range of [1.85 ; 2.08] Å was observed in this study. Shorter b0 were thus 
observed. Their bond force constants were in the range 60−80 kcal mol−1 Å−2 while this subset 
presents a range of 153.89 kcal mol-1 Å-2  to 47.78 kcal mol-1 Å-2.  However, similarly low force 
constant were observed for the Mandelate racemase with a range 33.3 kcal mol-1 Å-2  to 49.5 
kcal mol-1 Å-2 .  It is noteworthy that a semi-flexible approach in which the non-scanned ligands 
and the backbone of the scanned ones were frozen during the optimization and PES (Neves et 
al. 2013).  

Geometry optimization and PES are tedious processes. Indeed, many optimizations and PES 
scan fail due to multiple types of error in Gaussian09. Syntax errors often occur when setting up 
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the scan in the .com files. A second common error is the “Convergence failure” occurring when  
SCF (self-consistent field) procedure fails to converge. Different convergence procedures using 
the “SCF” keyword can then be used. Mode QC can be used for a quadratically convergent SCF 
convergence and XQC adds an extra “SCF=QC” step if first-order SCF has not converged. 
Gaussian also has a “tight” optimization mode. In that scheme, the RMS force criterion is set to 
lower value (1.10-5 ) from its default value (3.10-4). The other convergence conditions are also 
scaled accordingly. Another difficulty in optimization or PES scan is the “Linear angle in Tors” 
error. During optimization, atoms of the dihedral angles may be aligned, blocking the 
optimization process. In that case, using optimization mode in cartesian using the keyword “opt 
= cartesian” can be helpful. In any case, all of these problems were solved for successful results. 

Also, one needs to carefully adjust the value for the number of steps and the step size. This is 
done in order to only scan the bottom of the Morse potential. The reason being that only near 
the equilibrium bond length, the harmonic potential approximates well the Morse potential 
(Lewars 2016). Moving away from the equilibrium bond distance, for example, for bond 
displacements greater than 10%, the harmonic potential becomes a poor approximation 
(González 2011). This is well illustrated in Figure 5-9 below. A step size of 0.01 yield better fitting 
with a sum of errors of 0.88 while using a step size of 0.05 resulted in a sum of error of 1162.26. 
A similar result could be attained by also reducing the number of steps. During the series of 
scans, multiple values for these parameters were then tried in order to scan only around the 
equilibrium bonds and angles parameters for better fitting.  

 

Figure 5-9: Implication of the step zise in PES scan. 

Considering this difference of the two models, some data points obtained from the PES scan 
may need to be adjusted. The most important points are obtained around the equilibrium bond 
lengths and angles and should always, ideally be kept for the fitting. Points on the extremities 
(far from the equilibrium bond, angles) often increase the sum of error during the least square 
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fit. This may result in incorrect parameter values. Thus, manual adjustments by removing these 
points in the extremities for a better fitting may be required.   

5.3.1.3 ONIOM 
As mentioned earlier in the methodology (section 5.2.1.3 ), an ONIOM system was first used to 
parameterize the metal ion. The system was optimized using molecular mechanics  for the low 
layer and quantum mechanics for the high layer. It is interesting to note here that the geometry 
of the coordination in the ONIOM system was still bipyramidal trigonal as in the crystal structure 
(see appendix KK). This supports the hypothesis that the change to octahedral geometry is due to 
the “free-flying” residues in the subset.  After optimization, PES scans were conducted on the 
metal center, scanning bonds, angles and dihedrals implying the metal ion as with the subset. 
Scans’ data were challenging for least square fitting to the harmonic potentials. Indeed, 
unexpected energy variations were observed in the resulting graphs, see Figure 5-10 below. 
Similar observations were made on the different angles, bonds and dihedral scanned. 

 

Figure 5-10: Example of energy variation during PES scan on the ONIOM system. 

Due to these variations, these graphs were difficult to fit to the harmonic potential model.  They 
may be explained by twists in the structure. Gaussian optimizes the system energy at each step 
of the scan by changing the system geometry. All successful optimizations locate a stationary 
point, although not always the one that was intended. The nearest stationary point from the 
initial geometry is the point often reach in geometry minimization (Ramachandran, Deepa, and 
Namboori 2008). As the ONIOM system is large, even the small step size used in PES scan may 
engender a significant structural change in the system. Consequently, the system energy can be 
greatly affected as seen in the energy graphs. The structure may thus fall into other local energy 
minima or have an increase in energy. 
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5.3.2 Implementation in GROMACS 

After fitting, the obtained parameters were first converted to GROMACS compliant units. 

Table 5-5: Parameters converted to GROMACS compliant units. 

Bonds PES GROMACS 

Kb b0 Kb b0 

kcal mol-1 Å-

2 
 Å kJ mol-1 

nm−1 
nm 

9-61 110.51 1.91 92471.06 0.19 

26-61 84.26 2.01 70504.61 0.20 

27-61 47.78 2.08 39985.89 0.21 

44-61 153.89 1.85 128777.11 0.18 

49-61 62.47 2.07 52276.69 0.21 

52-61 112.59 1.89 94215.36 0.19 

 

Angles PES GROMACS 
 

cth th0 cth th0 

kcal  mol-1 degree-2 degree kj 
mol-1 rad-2 

degree 

9-61-52 0.0173 90.50 477.8973 90.50 

9-61-49 0.0144 84.64 395.8788 84.64 

9-61-44 0.0144 84.64 395.8788 84.64 

9-61-26 0.0144 84.64 395.8788 84.64 

26-61-44 0.0144 84.64 395.8788 84.64 

26-61-52 0.0229 84.64 629.5327 84.64 

49-61-52 0.0148 84.77 407.8382 84.77 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ffbonded.itp 
[ bondtypes ] 
; i    j  func       b0          kb 
  Mn O2         1    0.20753    39985.8 ; Adding parameter for Mn 
 
[ angletypes ] 
;  i    j    k  func       th0       cth 
O2  Mn  O2           1   84.6487    395.878 ; Adding angle parameters for Mn 

ffnonbonded.itp 
[ atomtypes ] 
; name      at.num  mass     charge ptype  sigma      epsilon 
      Mn          25      54.94    0.0000  A   1.32940e-01  0.16736e+00 ; 

aminoacids.rtp 
[ MN ] 
 [ atoms ] 
   MN    Mn            2.00000     1 

atomtypes.atp 
Mn                54.94     ; manganese 

residuetypes.dat 
Mn  Ion 
MN  Ion 
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Figure 5 10 illustrates the different parameters files modified and the added values. When 
implementing the parameters, there is only one oxygen type for the carboxyl group. Indeed, in 
the AMBER03 force field, the following oxygen types exist in the atomtypes.atp with 16.0 being 
the mass.  
 
 
 

 

 

 

 

 

Both oxygens of the carboxylate group (bold line) have the same atom type (O2). In other 
words, they will be treated with the same parameters. As a result, the different oxygen atoms 
coordinating the manganese will be treated with the same set of unique parameters (bond and 
angles force constants…). However, the parameters derived from the bonds PES scans after 
fitting showed different force constants and equilibrium lengths for the oxygens (see Table 
5-4Table 5-4: Force parameters derived from least-square fitting of PES data.). But only one 
parameter could be used. The values for oxygen 26 from GLU233 were chosen to be 
implemented. 

Other approaches may have been to calculate an average value of the parameters. Elsewhere, 
one could also introduce new atom type to describe the two oxygens of the carboxylate group. 
This is, for example, the case in PDB files format in which OE1 and OE2 are used to describe the 
two oxygens for the glutamic acid and OD1 and OD2 to describe the ones on the aspartic acid. 

The parameters were included using the same oxygen (O2) of the force field. After their 
implementation, the parameters were validated through molecular dynamics. 

5.3.3 Molecular Dynamics 

5.3.3.1 Monitoring system stability before MD run 
After setting up the different MD systems, their solvation and neutralization, the systems’ 
energies minimized. The following table summarizes the values of the potential energies and 
maximum force on atom, obtained after energy minimization. 

 

atomtypes.atp 
 
O                 16.00000      ; carbonyl group oxygen 
OW                16.00000      ; oxygen in TIP3P water 
OH                16.00000      ; oxygen in hydroxyl 
group 
OS                16.00000      ; ether and ester oxygen 
O2                16.00000      ; carboxyl and phosphate 
group oxygen 
 

Figure 5-11: Force field parameters files modified and their modifications. 
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Table 5-6: Potential energies and maximum forces attained during minimization. 

 

 

 

 

 

 

During minimization, the energies of the systems dropped at some local minimum. All systems 
showed a negative Epot in the order or 10-5  and 10-6 and all the maximum forces were inferior 
to 10.0 kJ/mol (see Table 5-6). The systems were hence minimized ensuring an optimization of 
the atoms with the force field parameters. These values were thus satisfactory to proceed to 
dynamics with NVT and NPT equilibration.

Figure 5-12: Temperature variation during NVT equilibration. The legends display the SANCDB ID 
of the different ligands in the different systems. 

Systems Properties at the end Minimization 

Epot ( kJ/mol) Maximum force (kJ/mol)     

5JAZ + Mn -1.2999762e+06 9.0311633e+02 

SANC00152 -1.3123954e+06 8.7838123e+02 

SANC00236 -1.3095252e+06 8.5790820e+02 

SANC00339 -1.3033710e+06 9.9254956e+02 

SANC00438 -1.3105418e+06 8.3803802e+02 

SANC00570 -1.3115348e+06 9.3925336e+02 



 

114 
 

During NVT equilibration, the temperatures of the different systems stabilize around the target 
value of 300 k (see Figure 5-12). The systems quickly attain that value and then show little 
fluctuations around it during the remaining picoseconds of the equilibration. The temperatures 
oscillate between approximately 296 Kelvin (22.85 Celsius) and 304 Kelvin (30.85 Celsius). 

 

Figure 5-13: Pressure variation during NPT equilibration. The legends display the SANCDB ID of the 
different ligands in the different systems.  

The pressures of the different systems quickly reach the set value of 1.0 bar and then fluctuate 
around it during NPT equilibration (see Figure 5-13). The pressure is hence equilibrated around 
that value. After temperature and pressure equilibration, the system is now ready for dynamics.  
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5.3.3.2 Force field parameters validation 

 

Figure 5-14: Bond distances and protein RMSD for force fied parameters validation. 
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The RMSD of the protein backbone converged to around 0.225 nm at around 10 ns of simulation. 
The protein stabilizes with an RMSD around that value during the majority of the simulation. 
However, a little shift to 0.275 nm is visible at about 75 ns of simulation (see Figure 5-14). This 
value is maintained during the last nanoseconds. The protein, thus, is fairly stable during with an 
RMSD inferior to 0.3 nm during the 100 ns. 

The bond distances between manganese and the oxygen atoms were also measured to track the 
stability of the metal center (see Figure 5-14). A first observation is that the manganese was 
coordinated by three oxygens, one from each coordinating residues (GLU233, ASP231 and 
GLU315). This was confirmed by visulizing the subset in the last frame of simulation. As mentioned 
in the methodology (section 5.2.3), the ligand was not included in the simulation. The three 
oxygens are in the same range of bond length, 1.5 Å to 1.7 Å. As indicated earlier (see section 
5.3.2), the different oxygen atoms coordinating the manganese will be treated with the same set 
of unique parameters. This result of similar behaviour was thus expected. Also the bond distances 
remain within acceptable bounds.  All the bond distances are in the range 1.5 Å to 1.7 Å during 
the entire simulation showing very small fluctuations.  

The observed distances during simulation for parameter validation for the metal ion are 
significantly different from the ones in the crystal structure, but also from the ones observed 
during PES. Indeed, bond distances during simulation (see Figure 5-14) are in the range 1.5 Å to 
1.7 Å which is different from the range from the obtained parameters 1.85 Å to 2.08 Å.  

A plausible explanation can be the absence of ligand in this system. Indeed, both subset and 
crystal structure have a ligand. Nonetheless, the geometry of the optimized subset was also 
different from the one of the metal center in the crystal structure. This latter was more in accord 
with the optimized metal center in the ONIOM system. The ONIOM is thus definitely more 
suitable to derive force field parameters. 

Another explanation can be the low force constant of the bond. Indeed the lowest force constant 
(39985.89 kJ mol-1 nm−1) for bond Mn-O (see Table 5-4) of the different force constants obtained 
was introduced in the force field. This value showed to be 10 times lower than other bond force 
constants in the force field which are in the order of 106 while the force constants obtained were 
in the order of 105. This significant difference in the force constants may explain the compression 
of the oxygen atoms on the manganese resulting in the shorter bond distances observed in 
simulation.  
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5.3.3.3 Complex 5JAZ-SANC00152 during simulation 

 

Figure 5-15: Complex 5JAZ-SANC00152 during simulation 

The protein RMSD converged to around 0.17 nm (see Figure 5-15). The structure showed very little fluctuations around that value, indicating its 
stability. The system compactness (described in the radius of gyration) seems to decrease in the first steps of the simulation (first 5 ns) but then 
starts increasing in the remaining part of the simulation. The system is in increasing expansion from around 2.11 nm to 2.17 nm. This contrasts a 
little with the protein RMSD curve. A longer simulation would certainly inform more in that expansion. About, the hydrogen bonds, the compound 
showed 3 to 4 bonds during the majority of the simulation. This is in accord with the ligand RMSD which remains also stable at around 0.1 nm. The 
cofactor showed some fluctuations. Indeed, we can see a shift in its RMSD at around 35 ns but also in the first 2 ns of simulation. This may indicate 
a rearrangement of the molecule in the protein. The change can also be linked to the decrease in the number of hydrogen bonds at about 37 ns. 
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5.3.3.4 Complex 5JAZ-SANC00236 during simulation 

 

Figure 5-16: Complex 5JAZ-SANC00236 during simulation 

The RMSD showed a little shift at about 50 ns. The system then levelled off to around 2.1 nm, during the 2nd part (last 50 ns) of simulation (see 
Figure 5-16). Concerning its compactness, the system radius of gyration varies between the minimum 2.11 nm and maximum 2.15 nm indicating a 
stable system. Though we can note a little augmentation in the Rg at 35 ns. This change does not coincide with the same timeframe with the one of 
the RMSD plot. The ligand showed a very stable RMSD. Indeed, its value showed very little fluctuations near 0.1 nm. This can also be related to the 
number of hydrogen bonds with the protein. The ligand is consistently keeping at least two (2) hbonds with this later. Finally, the cofactor showed 
a major change in RMSD from 0.1 nm to 0.3 nm at 70 ns. The molecule then stabilizes at 0.3 nm. The protein-NADPH hbonds plot consistently 
showed a relatively high number of bonds during the entire simulation making it difficult to explain the change in its RMSD.  
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5.3.3.5 Complex 5JAZ-SANC00339 during simulation 

 

Figure 5-17: Complex 5JAZ-SANC00339 during simulation 

The structure RMSD converged at around 0.22 nm during the 2nd half of MD (see Figure 5-17). The protein showed a relatively stable radius of 
gyration throughout the entire simulation. The Rg fluctuates around 2.15 nm attaining the lowest Rg at 2.12 nm and  the highest one at 2.18 nm. 
The system is getting slightly more compact in the last 10 ns of the simulation where it attains the lowest Rg. This could be explained by a 
rearrangement of the ligand and/or cofactor in the in protein. Indeed, we can observe a shift in the cofactor RMSD at around 65 ns of simulation 
which can be linked to the change in the protein Rg. Regarding the number of hbond for the ligand, from the plot, we observed a decrease. Indeed, 
the molecule showed peaks attaining up to four (4) hydrogens in the early 20 ns of MD. But after, it showed a diminishing trend to 1-2 hbonds 
towards the end. At the same time, the RMSD also decreases from 0.08 nm to 0.04 nm. Nonetheless, the compound stabilizes with at least one 
hydrogen bond with the protein during the major part of the simulation (last 60 ns). 
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5.3.3.6 Complex 5JAZ-SANC00438 during simulation 

 

Figure 5-18: Complex 5JAZ-SANC00438 during simulation 

The complex with SANC00438 showed an increasing radius of gyration especially after the first 20 ns of simulation. This value changes from 2.13 
nm to 2.19 nm. It is noteworthy that the system displays a little compression during the first 20 ns of simulation. Concerning the ligand, it remains 
very stable during the simulation, with an RMSD fluctuating just between 0.04 nm and 0.06 nm. The compound showed the lowest RMSD value. In 
terms of its interactions with the protein, the number of hydrogen bond decreases. Showing peaks up to 5 hbonds, this number falls to 1-2 during 
the last nanoseconds of simulation. This contrasts with the stable ligand RMSD. Other interactions may be involved. However, it is notable that this 
decrease in hydrogen bonding can be linked to the increase in the protein radius of gyration. About the cofactor, its RMSD remains stable, and the 
hydrogen bonds plot shows about five (5) hbonds during the simulation. The RMSD shows very low fluctuations around 0.17 nm except for a small 
shift during the last nanoseconds. 
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5.3.3.7 Complex 5JAZ-SANC00570 during simulation 

 

Figure 5-19: Complex 5JAZ-SANC00570 during simulation 

The protein with SANC00570 is very stable during the 100 ns (see Figure 5-19). The radius of gyration indeed varies little, fluctuating around 2.13 
nm. For the hydrogen bonds, the ligand kept one hydrogen bond with the protein during the majority of the simulation even though it has about 
four (4) hbonds during the first 10 ns. It is also interesting that we observe more interactions during the last five (5) ns. In fact, we note a number of 
hydrogen bonds attaining 4 to 5. A longer simulation could have helped to explore more. The pattern of the hbond graph seems to be in correlation 
with the one of the RMSD. Actually, the changes in the number of hydrogen bonds happen during the same time frames of the RMSD ones. We can 
note a lower RMSD (0.05 nm to 0.1 nm) at the starting and end of the simulation consistent with the higher number of hbonds during the same 
period.  
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5.3.3.8 Conclusions on Hits Simulation 
 

Regarding their backbone RMSD, all proteins’ RMSDs were lower than 2.75 nm (the maximum 
value observed with SANC00339). We can thus conclude to the relative stability of the 
complexes.  

Comparatively, about their radius of gyration, SANC00570, SANC00339 exhibited the most 
stable binding. On the other hand, SANC00438 and  SANC00152 showed an increase in their Rg 
attaining values of 2.17 nm and 2.15 nm respectively. Longer simulations could help investigate 
more of the behaviour of the ligands in this binding.  

Among the different cofactors, one can note a sharp change in the RMSD in the beginning of the 
simulation (first 3 ns) for compounds SANC00570, SANC00339, SANC00152. This can be linked 
to a better rearrangement of the cofactor within the complex. This may be due to  the transfer 
of the cofactor from another structure (3AU9) as previously described in the methodology 
(section 5.2.3). These changes in RMSD can be linked to the adaptation of the molecule to the 
new protein.  

Comparing the NADPHs to the ligands, the ligands exhibited greater stability. Indeed the 
different RMSD graphs for NADPH were characterized by much larger fluctuations except in 
complexes with SANC00438 and SANC00570. In these systems, the cofactor is more stable with 
an RMSD levelling off around 0.15 nm. In the remaining complexes, the molecule displayed 
some change in the RMSD. Interestingly, in both complexes with SANC00339 and SANC00236, 
the cofactor shows a significant change in RMSD at around 60 ns of simulation. Nonetheless, in 
all complexes, in regard to the hydrogen bonding, the cofactor shows good interactions with the 
protein, showing an average of five (5) hydrogen bonds to the macromolecule during the entire 
simulation.  

About the residues’ fluctuations, a common pattern in the different RMSFs, is the higher degree 
of fluctuation observed for residues in the ranges 280-300 and 380-400. The region 290-300 
corresponds to the flexible loop covering the protein active site. These residues being in the 
loop explains their higher fluctuations on the RMSF plots. 

The different systems’ proteins showed enough stable RMSD (lower than 2.75 nm) during the 
simulation. More, the different ligands’ RMSDs showed very low values, the maximum being 
0.15 nm. SANC00438 for example, had a very low RMSD  value of 0.05 nm which remained 
stable during the simulation. The cofactors showed a high number of hydrogen bond, consistent 
throughout the simulations. This related to its initial binding mode with many interactions 
among which many hydrogen bonds. We also note variations in its RMSD probably related to its 
adaptation to the molecule. 

5.4  Conclusion 

In this chapter force field parameters have been developed for the Mn atom in DXR active site, 
implemented in GROMACS and validated using MD simulation. However, this work may be further 
refined by the inclusion of further parameters such as for dihedrals. Moreover, a validation 
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protocol including the bidentate (LC5) ligand in the protein active site can be more accurate to 
observe the close-to octahedral geometry (obtained after optimization) during simulation or the 
trigonal bipyramidal observed in the crystal structure. 

The stability of the hits complexes has been studied. The five identified hits from the docking 
chapter (SANC00152, SANC00236, SANC00339, SANC00438 and SANC00570) exhibited stable 
binding in the protein active site confirming their high binding affinities and with the good poses 
observed in docking. More, combining their stability, with their good predicted pharmacological 
properties motivates for further laboratory investigation for these compounds. 
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Future work 

 

In future, high throughput molecular dynamics for all preselected compounds in docking may be 
completed, bisubstrate hits may be explored, and all of these may also be applied to the open 
conformation of the protein. Other databases of chemical compounds can also be explored 
and/or extend the work to the other proteins of the non-mevalonate pathway. A more detailed 
study of the different residues implied in the interactions with the ligands may be followed using 
an automated pipeline. This could help shed more light in the different ligand binding modes. 
QM/MM can also be applied to explore reactivity in the protein active site, especially the reaction 
mechanisms and the involvement of the metal center. Other approaches to evaluate docking hits 
through MD such as MM-PB/GBSA for free-energy calculations and GROMACS sasa module for 
computing solvent accessible surface areas could be used to explore more the complexes. 
Extension of the simulations to longer one will provide a more comprehensive in silico 
assessment. Also using  free energy calculations such as the Molecular Mechanics Poisson 
Boltzmann Surface Area (MM-PBSA) can help explore the energy landscape of the hit complexes. 
Finally, the identified hits can be further tested in laboratory assays to investigate their potential 
antimalarial activity. 
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B. Plasmodium Crystal structures present in the PDB database (August 2017) 
PDB 
ID 

Resoluti
on 

Mis_Resid
ues 

Chain_A Chain_B Liga
nd in 
activ
e 
site 

Cofact
or 

3au8 1.86 172 1-76-291-299-485-486-
487-488 

1-76-297-298-299-485-
486-487-488  

No Yes 

3au9 1.90 156 1-76-487-488 1-76-487-486 Yes Yes 

3aua 2.15 156 1-76-487-488 1-76-487-487 Yes Yes 

3wq
q 

2.25 156 1-76-487-488 1-76-487-488 Yes Yes 

3wqr 1.97 156 1-76-487-488 1-76-487-488 Yes Yes 

3wqs 2.35 78 0 1-76, 487-488 Yes Yes 

4gae 2.30 26 63-70-487-488 63-76-487-488 Yes Yes 

4kp7 2.00 43 62-76-486-487-488 62-76 292-297-485-486-
487-488 

Yes Yes 

4y67 1.60 24 67-76  487-488    67-76-487-488 Yes No 

4y6p 1.90 24 67-76  487-488 67-76-487-489 Yes No 

4y6r 1.90 24 67-76  487-488 67-76-487-490 Yes No 

4y6s 2.10 24 67-76  487-488 67-76-487-491 Yes No 

5JAZ 1.40 24 67-76  487-488 67-76-487-492 Yes No 

5jbi 1.70 24 67-76  487-488 67-76-487-493 Yes No 

5jc1 1.65 24 67-76  487-488 67-76-487-494 Yes No 

5jmp 1.70 24 67-76  487-488 67-76-487-495 Yes No 

5jm
w 

1.55 24 67-76  487-488 67-76-487-496 Yes No 

5jnl 1.60 24 67-76  487-488 67-76-487-497 Yes No 

5jo0 1.80 24 67-76  487-488 67-76-487-498 Yes No 

 

C. Python script to calculate Dope-Z score using modeler and rank protein accordingly 
 
from modeller import * 
from modeller.scripts import complete_pdb 
env = environ() 
env.libs.topology.read(file='$(LIB)/top_heav.lib') 
env.libs.parameters.read(file='$(LIB)/par.lib') 
# Read a model previously generated by Modeller's automodel class 
 
import os 
score_dict = {} 
for file_name in os.listdir('.'): 
    if not file_name.endswith('.pdb'): 
        continue 
     
    mdl = complete_pdb(env, file_name) 
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    score = mdl.assess_normalized_dope() 
    score_dict[file_name] = score 
 
 
with open('model_assess_zDOPE.txt', 'w') as report_file: 
    for i, v in sorted(score_dict.iteritems(), key=lambda x: x[1]): 
        report_file.write("%s \t %s\n" % (i.ljust(20), v)) 

 

D. Python script to create vina file for high throughput virtual screening. 
 

import os 
Ligand_files = os.listdir('../Ligand') 
print "Ligands in", len(Ligand_files) 
 
PDB_files = os.listdir('../Target') 
print "Receptors in", PDB_files, len(PDB_files), "Receptor(s)" 
 
#go_vina = raw_input("Create vina files (y or n: )?") 
#if go_vina = "y": 
for ligand in Ligand_files: 
 if ".pdb" in ligand: 
  ligand_name = ligand[:-6] 
  for PDB in PDB_files: 
   vina_name = PDB+"_"+ligand_name+".vina" 
   with 
open("/mnt/lustre/users/bdiallo/Dockings/5JAZB_SANCDB_both_sites/Vina/"+vina_name, "w") as vw: 
   
 vw.writelines(["receptor=/mnt/lustre/users/bdiallo/Dockings/5JAZB_SANCDB_both_sites/Target/"+PDB+"
\n"]) 
   
 vw.writelines(["ligand=/mnt/lustre/users/bdiallo/Dockings/5JAZB_SANCDB_both_sites/Ligand/"+ligand_n
ame+".pdbqt", "\n"]) 
   
 vw.writelines(["out=/mnt/lustre/users/bdiallo/Dockings/5JAZB_SANCDB_both_sites/Out/"+vina_name+"a
ll.pdbqt", "\n"]) 
   
 vw.writelines(["log=/mnt/lustre/users/bdiallo/Dockings/5JAZB_SANCDB_both_sites/Log/"+vina_name+"al
l.log", "\n"]) 
    #Fix your grid center 
    vw.writelines(["center_x=-10", "\n"]) 
    vw.writelines(["center_y=30", "\n"]) 
    vw.writelines(["center_z=-19", "\n"]) 
    #Spacing 
    vw.writelines(["size_x=30", "\n", "size_y=30"]) 
    vw.writelines(["\n", "size_z=30", "\n"]) 
    vw.writelines(["cpu=12", "\n", "exhaustiveness=192"]) 
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E. Python script for counting non-hydrogen atoms in mol2 file format 
 
import os 
def count_non_H(molecule_mol2): 
    """ 
    Count the number of non H atom in a mol2 file 
    """ 
    file = open(molecule_mol2, "r") 
 
    file = file.readlines() 
    mol = 0                 #tracking when line is still in @<TRIPOS>ATOM section 
    for line in file: 
        #print line 
        if "@<TRIPOS>ATOM" in line: 
            non_H = 0 
            mol = 1 
        if "@<TRIPOS>BOND" in line: 
            mol = 0 
        if mol == 1: 
        #print line[8:11] 
            if line[8:11] != " H ": 
                non_H +=1 
 
    return non_H - 1           # -1 because the first atom doesnt include any h atom and is not part of the molecule 
 
 
for file in os.listdir("."): 
    if file.endswith(".mol2"): 
        print file, count_non_H(file) 

F. Perl script for analysing extraction all ligand interaction from Discovery Studio 
 

#!/usr/bin/perl -w 
# 
#     File: CountHydrogenBonds.pl 
# 
# Function: Counts the number of hydrogen bonds in a trajectory file. 
#            
#   Syntax: <perl> CountHydrogenBonds.pl 
# 
#  Product: Scripting, MdmDiscoveryScript 
# 
# Copyright (C) 2013 by Dassault Systèmes Biovia Corp., All rights reserved. 
#_____________________________________________________________________________ 
 
# Modification. Dr. Kevin Lobb 
# Bakary N'tji Diallo 
# Original adapted to extract all protein ligand interactions from docking results.  
 
use strict; 
use MdmDiscoveryScript; 
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#Openning protein 
opendir(PROT,"C:\\Users\\Diallo-Pc\\Google Drive\\M_T\\docking\\5JAZB_SANCDB_both_sites\\Target"); 
my @proteins = readdir PROT; 
closedir PROT; 
  
#Openning ligands 
opendir(LIGANDS,"C:\\Users\\Diallo-Pc\\Google 
Drive\\M_T\\docking\\5JAZB_SANCDB_both_sites\\Out\\5JAZB\\Best_5JAZ_B\\"); 
my @ligands = readdir LIGANDS; 
closedir LIGANDS; 
   
foreach my $protein (@proteins) 
{ 
     if($protein =~ m/.pdbqt/)  
  { 
     my $proteinname = $protein; 
     $proteinname =~ s/_apo.pdbqt//;   
     print "$proteinname\n"; 
     open(my $tee, '>', 'C:\\Users\\Diallo-Pc\\Google 
Drive\\M_T\\docking\\5JAZB_SANCDB_both_sites\\Target\\'.$proteinname.'_ligands_interactions.txt'); #opening 
an output file 
     
     foreach my $ligand (@ligands) 
     {    
        if($ligand =~ m/.pdbqt/ and $ligand =~ m/$proteinname/ )            
        { 
                 printf $tee "--------------\n--------------\n$ligand\n"; 
                  
              #Inserting the protein 
              my $document = Mdm::Document::Create(); 
              $document->Insert("C:\\Users\\Diallo-Pc\\Google 
Drive\\M_T\\docking\\5JAZB_SANCDB_both_sites\\Target\\$protein"); 
 
              #Inserting the ligand and putting it into focus 
              $document->Insert("C:\\Users\\Diallo-Pc\\Google 
Drive\\M_T\\docking\\5JAZB_SANCDB_both_sites\\Out\\5JAZB\\Best_5JAZ_B\\$ligand");              
           
              #Using the CreateLigandNonbondMonitor function 
              my $monitor = $document->CreateLigandNonbondMonitor( "True", "False",  "True"); 
              #$document->UpdateViews();                           
           
               
       # Analyse the identified (favorable/unfavorable) interactions. 
        my $nonbonds = $monitor->Nonbonds; 
        my $count = $nonbonds->Count; 
        my $favorableNonbonds = $monitor->FavorableNonbonds; 
        my $favorableCount = $favorableNonbonds->Count; 
        my $unfavorableCount = $monitor->UnfavorableNonbonds->Count; 
     
        printf $tee "\nFound %d non-bond interactions (total):", $count; 
        printf $tee "\n %d of these are favorable interactions (such as H-bonds)", $favorableCount; 
        printf $tee "\n %d of these are unfavorable interactions (such as bumps).", $unfavorableCount; 
        printf $tee "\n"; 
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        #Analyse all type of interaction 
        printf $tee "\nAnalyse all non-bond interaction:";     
        printf $tee "\nThe NonbondTypes property can be used to identify all interaction types of a non-bond.\n"; 
foreach my $nonbond (@$nonbonds) 
{ 
    printf $tee "- %s (%s) and %s (%s):",  
         $nonbond->FromSite->Name, 
         $nonbond->FromSite->ChemistryName, 
         $nonbond->ToSite->Name, 
         $nonbond->ToSite->ChemistryName; 
 
    my $nonbondTypes = $nonbond->NonbondTypes; 
    foreach my $type (@$nonbondTypes) { 
        printf $tee "$type"; 
    } 
 
    printf $tee "\n"; }           
     
    #Use sleep because code can go faster than display 
 sleep(4); 
 $document->Close(); 
  
        } 
     } 
   } 
} 
 
close my $tee; 

G. Python script for analysing protein-ligands’ interactions 
# Author:  Bakary N'tji Diallo 
# Date: October 2017 
 
import os 
import operator 
 
data = open("5JAZB_ligands_1_interactions.txt", "r")            #interactions file from Discovery Studio 
data = data.readlines() 
#List of residues and their residues in PfDXR 
amino_acids = ["MN502", 'PRO77', 'ILE78', 'ASN79', 'VAL80', 'ALA81', 'ILE82', 'PHE83', 'GLY84', 'SER85', 'THR86', 
'GLY87', 'SER88', 'ILE89', 'GLY90', 'THR91', 'ASN92', 'ALA93', 'LEU94', 'ASN95', 'ILE96', 'ILE97', 'ARG98', 'GLU99', 
'CYS100', 'ASN101', 'LYS102', 'ILE103', 'GLU104', 'ASN105', 'VAL106', 'PHE107', 'ASN108', 'VAL109', 'LYS110', 
'ALA111', 'LEU112', 'TYR113', 'VAL114', 'ASN115', 'LYS116', 'SER117', 'VAL118', 'ASN119', 'GLU120', 'LEU121', 
'TYR122', 'GLU123', 'GLN124', 'ALA125', 'ARG126', 'GLU127', 'PHE128', 'LEU129', 'PRO130', 'GLU131', 'TYR132', 
'LEU133', 'CYS134', 'ILE135', 'HIS136', 'ASP137', 'LYS138', 'SER139', 'VAL140', 'TYR141', 'GLU142', 'GLU143', 
'LEU144', 'LYS145', 'GLU146', 'LEU147', 'VAL148', 'LYS149', 'ASN150', 'ILE151', 'LYS152', 'ASP153', 'TYR154', 'LYS155', 
'PRO156', 'ILE157', 'ILE158', 'LEU159', 'CYS160', 'GLY161', 'ASP162', 'GLU163', 'GLY164', 'MET165', 'LYS166', 
'GLU167', 'ILE168', 'CYS169', 'SER170', 'SER171', 'ASN172', 'SER173', 'ILE174', 'ASP175', 'LYS176', 'ILE177', 'VAL178', 
'ILE179', 'GLY180', 'ILE181', 'ASP182', 'SER183', 'PHE184', 'GLN185', 'GLY186', 'LEU187', 'TYR188', 'SER189', 
'THR190', 'MET191', 'TYR192', 'ALA193', 'ILE194', 'MET195', 'ASN196', 'ASN197', 'LYS198', 'ILE199', 'VAL200', 
'ALA201', 'LEU202', 'ALA203', 'ASN204', 'LYS205', 'GLU206', 'SER207', 'ILE208', 'VAL209', 'SER210', 'ALA211', 
'GLY212', 'PHE213', 'PHE214', 'LEU215', 'LYS216', 'LYS217', 'LEU218', 'LEU219', 'ASN220', 'ILE221', 'HIS222', 'LYS223', 
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'ASN224', 'ALA225', 'LYS226', 'ILE227', 'ILE228', 'PRO229', 'VAL230', 'ASP231', 'SER232', 'GLU233', 'HIS234', 'SER235', 
'ALA236', 'ILE237', 'PHE238', 'GLN239', 'CYS240', 'LEU241', 'ASP242', 'ASN243', 'ASN244', 'LYS245', 'VAL246', 
'LEU247', 'LYS248', 'THR249', 'LYS250', 'CYS251', 'LEU252', 'GLN253', 'ASP254', 'ASN255', 'PHE256', 'SER257', 
'LYS258', 'ILE259', 'ASN260', 'ASN261', 'ILE262', 'ASN263', 'LYS264', 'ILE265', 'PHE266', 'LEU267', 'CYS268', 'SER269', 
'SER270', 'GLY271', 'GLY272', 'PRO273', 'PHE274', 'GLN275', 'ASN276', 'LEU277', 'THR278', 'MET279', 'ASP280', 
'GLU281', 'LEU282', 'LYS283', 'ASN284', 'VAL285', 'THR286', 'SER287', 'GLU288', 'ASN289', 'ALA290', 'LEU291', 
'LYS292', 'HIS293', 'PRO294', 'LYS295', 'TRP296', 'LYS297', 'MET298', 'GLY299', 'LYS300', 'LYS301', 'ILE302', 'THR303', 
'ILE304', 'ASP305', 'SER306', 'ALA307', 'THR308', 'MET309', 'MET310', 'ASN311', 'LYS312', 'GLY313', 'LEU314', 
'GLU315', 'VAL316', 'ILE317', 'GLU318', 'THR319', 'HIS320', 'PHE321', 'LEU322', 'PHE323', 'ASP324', 'VAL325', 
'ASP326', 'TYR327', 'ASN328', 'ASP329', 'ILE330', 'GLU331', 'VAL332', 'ILE333', 'VAL334', 'HIS335', 'LYS336', 'GLU337', 
'CYS338', 'ILE339', 'ILE340', 'HIS341', 'SER342', 'CYS343', 'VAL344', 'GLU345', 'PHE346', 'ILE347', 'ASP348', 'LYS349', 
'SER350', 'VAL351', 'ILE352', 'SER353', 'GLN354', 'MET355', 'TYR356', 'TYR357', 'PRO358', 'ASP359', 'MET360', 
'GLN361', 'ILE362', 'PRO363', 'ILE364', 'LEU365', 'TYR366', 'SER367', 'LEU368', 'THR369', 'TRP370', 'PRO371', 
'ASP372', 'ARG373', 'ILE374', 'LYS375', 'THR376', 'ASN377', 'LEU378', 'LYS379', 'PRO380', 'LEU381', 'ASP382', 
'LEU383', 'ALA384', 'GLN385', 'VAL386', 'SER387', 'THR388', 'LEU389', 'THR390', 'PHE391', 'HIS392', 'LYS393', 
'PRO394', 'SER395', 'LEU396', 'GLU397', 'HIS398', 'PHE399', 'PRO400', 'CYS401', 'ILE402', 'LYS403', 'LEU404', 
'ALA405', 'TYR406', 'GLN407', 'ALA408', 'GLY409', 'ILE410', 'LYS411', 'GLY412', 'ASN413', 'PHE414', 'TYR415', 
'PRO416', 'THR417', 'VAL418', 'LEU419', 'ASN420', 'ALA421', 'SER422', 'ASN423', 'GLU424', 'ILE425', 'ALA426', 
'ASN427', 'ASN428', 'LEU429', 'PHE430', 'LEU431', 'ASN432', 'ASN433', 'LYS434', 'ILE435', 'LYS436', 'TYR437', 
'PHE438', 'ASP439', 'ILE440', 'SER441', 'SER442', 'ILE443', 'ILE444', 'SER445', 'GLN446', 'VAL447', 'LEU448', 'GLU449', 
'SER450', 'PHE451', 'ASN452', 'SER453', 'GLN454', 'LYS455', 'VAL456', 'SER457', 'GLU458', 'ASN459', 'SER460', 
'GLU461', 'ASP462', 'LEU463', 'MET464', 'LYS465', 'GLN466', 'ILE467', 'LEU468', 'GLN469', 'ILE470', 'HIS471', 
'SER472', 'TRP473', 'ALA474', 'LYS475', 'ASP476', 'LYS477', 'ALA478', 'THR479', 'ASP480', 'ILE481', 'TYR482', 
'ASN483', 'LYS484', 'HIS485', 'ASN486'] 
 
interactions = {}                       #Dictionary containing the ligand and its interactions: 
                                        #  interactions[ligand][first_res, second_res] = interaction_type 
 
#Counting residues interacting the most with ligands, hotspot of binding 
residues_count = {}                     #dictionnary containing the residue and the number of interaction 
for line in data: 
    if ".pdbqt" in line:                #Every new ligand has .pdbqt in the name 
        ligand = line[16:-24]           #extracting the ligand name 
        interactions[ligand] = {}       #creation a dictionary containing the different type of interactions 
    if line.startswith("- "): 
        #Identifying the two interacting residues (Ligand-Protein) 
        first_res = line.split("(")[0][line.index(":"):].strip()        #First Residue:atom in the interaction 
        second_res = line.split(")")[1] 
        second_res = second_res[second_res.index(":") +1 :second_res.index("(")].strip() 
        interaction_type = line.split(":")[-1]                      #The type of interaction 
 
        #counting the number of time each residues is implied in the interactions 
        for res in amino_acids: 
            if res in first_res: 
                if ":" in first_res[1:7]: 
                   first_res = first_res[1:6] 
                else: 
                   first_res = first_res[1:7] 
                residues_count[first_res] = residues_count.get(first_res, 0) + 1            #updating residues_count 
            if res in second_res: 
                second_res = second_res.split(":")[0] 
                residues_count[second_res] = residues_count.get(second_res, 0) + 1            #updating residues_count 
            interactions[ligand][first_res, second_res] = interaction_type 
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#Printing the residues and their count 
print "Residues in protein and how much they are implied in interaction with the ligands, binding hotspots" 
for residue in residues_count: 
    for aa in amino_acids: 
        if aa in residue: 
            print residue, residues_count[residue] 
 
#Sorting the number of interaction from the residue that interacts the most to the lowest 
print "\nHighest to lowest interaction per residue" 
x = residues_count 
sorted_x = sorted(x.items(), key=operator.itemgetter(1)) 
for e in sorted_x[::-1]: 
    print e[0], e[1] 
 
#Ligand that match fosmidomycin-like inhibitors binding pattern 
 
hydroxamate = ["ASP231", "GLU233", "GLU315"] #: Binding hydroxamate group of fosmidomycin Divalent metal 
cation coordination (pentacoordinate trigonal bipyramidal geometry). 
 
phosphonate = ["SER269" , "SER270", "SER306", "ASN311", "LYS312", "HIS293"] # binding phosphonate moiety 
 
NADPH = ["THR86", "GLY87", "SER88", "ILE89", "ASN115", "LYS116", "SER117", "GLU206", "GLY299"] # : NADPH 
binding residues 
 
print "\nLigand matching known inhibitor binding pattern" 
for ligand in interactions: 
    bisubstrate_score1 = [0, 0, 0]   #binding hydroxamate, phosphonate, NADPH 
    fosmidomycin_motif = [0, 0]      #binding hydroxamate and phosphonate 
    for interaction in interactions[ligand]: 
        interaction_type = interactions[ligand][interaction[0], interaction[1]] 
        res1, res2 = interaction[0], interaction[1] 
        tot_res = res1 + res2                                                   #all residues in the interaction 
 
        if not bisubstrate_score1[0]:                                          # 
            bisubstrate_score1[0] = any(aa in tot_res for aa in hydroxamate) 
        if any([aa in tot_res for aa in hydroxamate]) : 
            fosmidomycin_motif[0] += 1 
        if not bisubstrate_score1[1]: 
            bisubstrate_score1[1] = any(aa in tot_res for aa in phosphonate) 
        if any([aa in tot_res for aa in phosphonate]) : 
            fosmidomycin_motif[1] += 1 
 
        if not bisubstrate_score1[2]: 
            bisubstrate_score1[2] = any(aa in tot_res for aa in NADPH) 
 
    # if bisubstrate_score1 == [True, False, True]:                                #compound binding to at least one residue in each 
group 
    #     print "Potential bisubstrate: hydroxamate residues + NADPH", ligand, interactions[ligand] 
    #if bisubstrate_score1 == [True, True, True]:                                #compound binding to at least one residue in each 
group 
    #    print "Potential bisubstrate: ", ligand, interactions[ligand] 
 



 

156 
 

    if fosmidomycin_motif[1] > 2 and fosmidomycin_motif[0] > 2:                                #compound binding to at least 
one residue in each group 
       print "Potential match to fosmidomycin: ", ligand, interactions[ligand] 
 
#Number of hydrogen bond per ligand 
 
print "\nHydrogen bonding" 
interactions[ligand][first_res, second_res] = interaction_type 
ligand_Hbond = {} 
for ligand in interactions: 
    total_H_bond = 0 
    for interaction in interactions[ligand]: 
        interaction_type = interactions[ligand][interaction[0], interaction[1]] 
        if "conventionalHBond" in interaction_type: 
            total_H_bond += 1 
    ligand_Hbond[ligand] = total_H_bond 
    print ligand, total_H_bond, "Hydrogen bond(s)" 
 
################################ Sorting the number of hbonding from the ligands the most to the lowest 
###################### 
print "Highest to lowest count of hbond per ligand:" 
x = ligand_Hbond 
sorted_x = sorted(x.items(), key=operator.itemgetter(1)) 
print sorted_x[::-1] 
 
# ############################## Printing interactions for specific ligand 
####################################### 
hits = "SANC00152 SANC00236 SANC00438 SANC00339 SANC00570" 
bisubstrate_hits = "SANC00615 SANC00436 SANC00556 SANC00443 SANC00562" 
for ligand in interactions: 
    if ligand.strip() in bisubstrate_hits: 
        print ligand, 
        for interaction in interactions[ligand]: 
            if interaction[0] in amino_acids or interaction[1] in amino_acids: 
                print interaction[0], interaction[1], interactions[ligand][interaction[0], interaction[1]] 
 
 
# ############################## Search for bidentate ligands chelating the metal 
####################################### 
print "###################SEARCH FOR BIDENTATE LIGANDS##########################\n" 
for ligand in interactions: 
    for interaction in interactions[ligand]: 
        interaction_type = interactions[ligand][interaction[0], interaction[1]] 
        if "etalAcceptor" in interaction_type: 
            print ligand, interaction_type          #if ligand doubly printed --> bidentate ligand  
 

 

 

H. MD simulation job file for submission on CHPH 
#!/bin/bash 
#PBS -q normal 
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#PBS -l select=10:ncpus=24:mpiprocs=24 
#PBS -l walltime=48:00:00 
#PBS -V 
#PBS -P CBBI0867 
#PBS -N Cl_152_cof 
#PBS -e /mnt/lustre/users/bdiallo/MDs/Systems/Cl_152_cof/out.err 
#PBS -o /mnt/lustre/users/bdiallo/MDs/Systems/Cl_152_cof/out.txt 
#PBS -m bea 
#PBS -M diallobakary4@gmail.com  
 
 
module load chpc/GROMACS /v2016.1dev-noomp-openmpi-2.0.0-gcc-6.2.0 
 
#Setting open mpi parameters 
OMP_NUM_THREADS=1 
NP=`cat ${PBS_NODEFILE} | wc -l` 
 
#Usage qsub -P CBBI0867 MD_protein.sh 
#Ensure that only a single (prepared) pdb file is in the directory 
 
cd $PBS_O_WORKDIR 
mkdir pbserr pbsout 
 
#Performs MD on protein-ligand complex 
#Energy minimization 
gmx_mpi mdrun -v -deffnm em 
#Check minimization  
gmx_mpi energy -f em.edr -o potential_energy.xvg > potential_energy.txt 
 
#NVT equilibration 
gmx_mpi grompp -f nvt.mdp -c em.gro -p topol.top -n index.ndx -o nvt.tpr 
mpirun -np ${NP} -machinefile ${PBS_NODEFILE} gmx_mpi mdrun -cpi -maxh 48 -deffnm nvt 
#Check NVT equilibration  
echo -e "16\n0\n" | gmx energy -f nvt.edr -o temperature.xvg > temperature.txt 
 
#NPT equilibration 
gmx_mpi grompp -f npt.mdp -c nvt.gro -t nvt.cpt -p topol.top -n index.ndx -o npt.tpr 
mpirun -np ${NP} -machinefile ${PBS_NODEFILE} gmx_mpi mdrun -cpi -maxh 48 -deffnm npt 
#Check NPT equilibration 
echo -e "17\n0\n" | gmx energy -f npt.edr -o pressure.xvg > pressure.txt 
 
#MD run 
gmx_mpi grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -n index.ndx -o md_0_1.tpr 
mpirun -np ${NP} -machinefile ${PBS_NODEFILE} gmx_mpi mdrun -cpi -maxh 48 -deffnm md_0_1  
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I. Table of the different predicted geometries by the Metalizer webserver for the optimized subset 
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J. Graphs used for fitting PES data to models used for the force field. 
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K. Molecular overlay of the optmized geometry from the ONIOM (bleu) system and the 
geometry in the crystal structure. The backbones of the residues were removed for 
clarity. 
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