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Summary    

The proteins of Bcl-2 family, the pro-survival and the pro-apoptotic tightly regulates the             
process of apoptosis. The pro-survival proteins show a specific interaction pattern with            
BH3 domain of BH3 only proteins, determining the cellular fate during apoptotic stress.             
This interaction specificity is pivotal in designing BH3 mimetics, a class of anticancer             
drug molecules based on the BH3 domain of BH3 only proteins showing promising             
results in clinical trials. The role of the mitochondrial outer membrane in exhibiting Bcl2              
complex interactome is extensively studied recently. Overall most studies addressed so           
far on the interactions of BH3 peptides and the truncated Bcl-2 proteins are reported in               
the solution / cytosolic environment while the quantitative interactions in membranes are            
still missing. To tackle this, we systematically quantified the library of BH3 peptides             
using two-color fluorescence correlation spectroscopy in solution and in the model           
membrane. We further extended our investigations to isolated yeast mitochondria using           
ensemble FRET and in mammalian cancer cell lines using a high throughput screening             
called BH3 profiling. We show that BH3 peptides derived from Hrk and Bim are the most                
effective in disrupting cBid/Bcl-xL complexes, which correlates with their response in           
mitochondria and in cells. 
Moreover, to understand the activation process of pro-apoptotic effector protein Bax on            
membranes, we designed an ​in-vitro system to investigate its autoactivation by the            
recruitment of inactive cytosolic Bax molecules by active membrane-bound Bax.          
Furthermore, ​in vitro studies also showed active membrane-bound Bax recruits Bcl-xL           
to the membrane, which retrotranslocates active Bax back into the cytosol, thereby            
maintaining membrane integrity. Quantitative analysis showed that Bax        
retrotranslocation activity potentiates Bcl-xL antiapoptotic activity by at least 10 fold. 
 
Overall, these findings highlights the importance of the membrane in Bcl-2 family            
interactions and thereby screening peptides that can disrupt specific interactions of           
these proteins in the membrane and can improve cancer therapies.  



Zusammenfassung 
Der mitochondriale Apoptosesignalweg wird durch die anti- und pro-apoptotischen Vertreter der           
Bcl-2 Proteinfamilie kontrolliert. Die anti-apoptotischen Proteine spielen eine zentrale Rolle, in           
dem sie durch die selektive Interaktion mit der BH3 Domäne der BH3-only Proteinen den              
apoptotischen Prozess regulieren. Basierend auf dieser Interaktion und ​der BH3 Domäne           
werden BH3-Mimetika, eine Gruppe von anti-Krebs Medikamenten, entworfen. BH3-Mimetika         
zeigen in klinischen Studien eine signifikante Aktivierung von Apoptose, indem sie diese            
Interaktion stören. Der Einfluss der äußeren Mitochondrienmembran auf die Interaktion der           
Bcl-2 Proteinen wird zur Zeit detailliert untersucht. Bisher wurde ausschließlich die Interaktion            
der BH3 Peptiden mit den verkürzten Formen der Bcl-2 Proteinen nur in Lösung und im               
Zytoplasma untersucht, während quantitative Interaktionen in Membranen komplett außer Acht          
gelassen wurden. Um diese Fragestellung anzugehen, haben wir systematisch die Interaktion           
bestehender BH3 Peptiden mit Hilfe der zwei Farben Fluoreszenz-Korrelations​- Spektroskopie,          
sowohl in Lösung als auch in Modell Membranen, quantifiziert. Wir erweiterten unsere            
Untersuchungen auf isolierte Hefe Mitochondrien mit Hilfe der FRET Analyse und auf Säugetier             
Krebszelllinien mit Hilfe des Hochdurchsatz-Screenings BH3 Profiling. Wir zeigen, dass die BH3            
Peptide, die von Hrk und Bim abgeleitet wurden, die effektivesten in der Störung des cBid /                
Bcl-xL Komplexes seien. ​Diese Daten spiegeln die Antwort in Mitochondrien und in Zellen             
wieder. 

Um den Aktivierungsprozess des pro-apoptotischen Effektorproteins Bax an Membranen zu          
verstehen, haben wir ein ​in-vitro Assay entwickelt, das erlaubt, die Autoaktivierung von Bax zu              
untersuchen. Das aktive, membrangebundene Bax rekrutiert dabei das inaktive,         
zytoplasmatische Bax zu der Membran. Des Weiteren haben in-vitro Analysen gezeigt, dass            
membrangebundenes Bax, Bcl-xL zu der Membran rekrutiert. Bcl-xL retrotranloziert aktives,          
nicht oligomerisiertes Bax zurück in das Zytoplasma, um die Membranintegrität aufrecht zu            
erhalten. Quantitative Analysen zeigen, dass die Bax-retrotranslokationsaktivität die        
anti-apoptotische Bcl-xL-Aktivität um mindestens das 10fache verstärkt. 

Unsere Ergebnisse zeigen die Wichtigkeit der Membran für die Interaktion der Bcl-2 Proteinen             
auf, deshalb ist das Screening von Peptiden, die die Interaktion dieser Proteine an der              
Membran stört von großer Bedeutung für die​ ​Krebstherapie. 
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1.1 Apoptosis 

 
Apoptosis is a programmed form of cellular death that plays a central role in various               
biological processes from development to immunity and tissue homeostasis. Alterations          
in the apoptotic pathway lead to many diseases such as cancer ​(Lowe & Lin, 2000;               
Wyllie et al., 1999) and neurodegeneration ​(Mattson, 2000) ​. Apoptotic cell death is            
characterized by DNA fragmentation, blebbing of the plasma membrane, formation of           
apoptotic bodies and plasma membrane lipid rearrangements with phosphatidyl serine          
exposure to the outer leaflet ​(Edinger & Thompson, 2004; Taylor, Cullen, & Martin,             
2008) ​. The major executioners of apoptosis are the caspases (cysteine-aspartic acid           
specific proteases) ​(Edinger & Thompson, 2004; Taylor et al., 2008) ​), further divided into             
initiator caspases (caspase 8 and 9) and executioner caspases (caspase 3, 6 and 7). 
There are two major pathways of apoptosis. The extrinsic pathway and the intrinsic             
pathway of apoptosis. Briefly, the extrinsic pathway of apoptosis receives external           
signals upon binding of FasL or TNF α to death receptors to promote apoptosis, which is                
followed by the oligomerization of the death receptors in the plasma membrane forming             
a death-inducing signaling complex (DISC) that further activates caspase 8 and           
downstream executioner caspases. 
The intrinsic or the mitochondrial pathway of apoptosis responds to internal cellular            
stress or damage. The Bcl-2 family of proteins form a complex interaction network that              
regulates the intrinsic apoptotic pathway leading to the release of apoptotic factors like             
cytochrome c, Smac etc. from mitochondria, which further triggers the downstream           
cascade of apoptosis. 
 

1.2      Bcl-2 Family 

  
Bcl-2 (B-cell lymphoma 2) was first characterized in follicular lymphoma as a            
proto-oncogene marked by chromosomal translocation t (14;18) ​(Tsujimoto, Finger,         
Yunis, Nowell, & Croce, 1984)​.The Bcl-2 gene produces the Bcl-2 protein, which            
promotes cellular survival rather than proliferation ​(Cory, Huang, & Adams, 2003) ​.           
Homologous proteins were later discovered and comprise the Bcl-2 family of proteins.            
Presently, there are more than 20 members of the Bcl-2 family of proteins, which have               
opposing functions and decide the fate of the cells to live or die. 
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1.2.1    Members of Bcl-2 family 

 
The proteins of this family are divided into three groups based on the functions and the                
Bcl-2 homology domains (BH domains) they possess ​(Cory et al., 2003) ​, ​(Adams, 1998;             
Gross, McDonnell, & Korsmeyer, 1999)​ .  

1. The pro-survival or anti-apoptotic proteins like Bcl-xL, Bcl-2, Mcl-1, A-1 inhibit the            
process of apoptosis by sequestering pro-apoptotic effectors or BH3 only proteins,           
thus promoting survival. 

2. The pro-apoptotic effectors like Bax, Bak, and recently Bok, are believed to form             
pores on the mitochondrial outer membrane (MOM) releasing apoptotic factors          
thereby activating the downstream cascade of caspases leading to apoptosis. 

3. The pro-apoptotic Bh3 only proteins include the sensitizers (Hrk, Bad, Bik, etc.)            
that inhibit the anti-apoptotic members and the activators (Bim, Bid, etc.), which            
also directly activate the effectors. 

 

 
  

 
Fig.1.1: Classification of Bcl-2 family based on the Bcl-2 homology domains (BH domains) ​.             
Anti-apoptotic members are composed of multiple BH domains and inhibit the process of apoptosis.              
Pro-apoptotic members are divided into multidomain effectors responsible for forming mitochondrial outer            
membrane pores and the BH3 only proteins as activators/ sensitizers either activating the effectors directly               
and/or binding to the anti-apoptotic proteins and liberating effectors. Adapted from ​(Das, Unsay, &              
Garcia-Saez, 2015)​ with permission from Elsevier. 
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The interactions among this Bcl-2 family network are intricate and several models have             
been proposed to explain the event of mitochondrial outer membrane permeabilization           
(MOMP) ​(Chipuk & Green, 2008; Czabotar, Lessene, Strasser, & Adams, 2013) ​.  

1. The direct activation model activates effector Bax/Bak by direct activator BH3           
-only proteins in order to promote MOMP ​(Kuwana et al., 2002; Wei et al., 2000)​. 

2. The indirect ‘’displacement model’’ the Bh3 only proteins sequester the          
anti-apoptotic proteins thereby liberating constitutively active Bax/Bak and        
inducing MOMP ​(Willis, 2005; Willis et al., 2007)​. 

3. The embedded together model combines the direct and indirect activation model           
in presence of the membrane. This model introduces the role of membrane            
induced conformational changes in Bcl-2 family proteins ​(Leber, Lin, & Andrews,           
2007; Lovell et al., 2008) ​. This model is one of the most widely accepted models               
presently as shown in the figure below. 

4. The unified model is an extension of the embedded together model and            
distinguishes the preference of interaction of anti-apoptotic members either with          
activator BH3 only or effector proteins ​(Llambi et al., 2011)​. 

 
 
1.2.2    Bcl-xL 
 
Bcl-xL is a prosurvival protein that promotes cellular survival by sequestering the            
proapoptotic proteins. Its overexpression has been reported to be linked with various            
forms of carcinomas, like breast cancers ​(España et al., 2004) ​, colorectal cancers            
(Scherr et al., 2016) ​, hepatocellular ​(Watanabe et al., 2002) ​, renal ​(Gobé, Rubin,            
Williams, Sawczuk, & Buttyan, 2002) , pancreatic cancers ​(Ghaneh, Kawesha, Evans, &            
Neoptolemos, 2002) and many others. Bcl-xL is believed to shuttle between soluble and             
membrane-bound conformations between the cytosol and the mitochondrial outer         
membrane, thus existing in dynamic equilibrium in healthy cells ​(Edlich et al., 2011) ​. The              
soluble structure of Bcl-xL has eight alpha helices and a transmembrane helix ​(Petros,             
Olejniczak, & Fesik, 2004) ​. Most of the X-ray crystal and NMR structure of Bcl-xL              
included the inactive form of the protein lacking its C-terminal transmembrane region.            
The water-soluble structure of full-length Bcl-xL is predicted to have the putative            
transmembrane helix residing in the BH3 binding groove formed by helices α-2, α-3 and              
α-4. During its shuttling to the membrane either induced by stress or cBid, Bcl-xL              
undergoes a conformational change in which the transmembrane helix is believed to be             
displaced from the BH3 binding pocket and finally insert to the membrane. Recent             
studies by Yao and colleagues ​(Yao et al., 2015) ​(Yao et al., 2016) ​using NMR and ITC                 
on detergent-free lipid nanodiscs ​showed ​the conformational states of Bcl-xL protein           
differing in their C-terminus.  
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Fig.1.2 ​Models of Bcl-2 family activation. ​A) In the direct activation model, the effector proteins                
Bax/Bak are activated directly with tBid, which then oligomerize and cause MOMP. B) The Bh3 only                
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proteins sensitizers displace the sequestered active Bax/Bak from the anti-apoptotic proteins and causes             
MOMP. C) The embedded together model combines the direct and indirect activation models and presents               
the role of membrane in the conformational change of Bcl-2 proteins. D) The unified model distinguishes                
the preference of interaction of anti-apoptotic proteins with activators (Mode 1) and effectors (Mode 2).               
Reproduced from ( Das et al. 2015) with permission from Elsevier. 
 
 

 
Fig.1.3 ​ ​Schematic of Bcl-xL structure in soluble and membrane bound forms.​ A) The 
transmembrane helix is located in the BH3 binding groove. B) In membrane environment the 
transmembrane helix inserts into the membrane and thereby the protein becomes membrane bound. 
 
Recent studies have also shown that the conformation of the soluble domain of Bcl-xL              
doesn’t change significantly upon integration with lipid nanodiscs ​(Hill, Blake Hill,           
MacKenzie, & Harwig, 2015)​. Until now the most valid explanation for Bcl-xL membrane             
localization was the displacement of the transmembrane helix by the BH3 only activators             
and sensitizers, thus shifting the equilibrium from a soluble to a membrane-bound state. 
 
 
1.2.3    Bid 
 
Full-length inactive Bid (22 kDa) is activated by caspase 8 cleavage into a p7 fragment               
and a p15 fragment (truncated Bid, tBid) ​(Shamas-Din et al., 2013) ​(Leber, Geng, Kale,              
& Andrews, 2010) ​. The p7 fragment together with the p15 fragment forms a stable              
complex in solution known as cBid (cleaved Bid 22 kDa ) ​(Bleicken, García-Sáez, Conte,              
& Bordignon, 2012)​. In presence of membranes, the p7 fragment dissociates and the             
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active membrane-binding p15 fragment tBid is bound to the membrane and in turn             
activates effectors Bax/Bak to promote mitochondrial outer membrane permeabilization         
(Kuwana et al., 2002) ​. 
Recent kinetic studies have shown tBid as a potent activator of Bax without a lag phase                
compared to cBid, which causes membrane permeabilization in presence of Bax with a             
lag phase ​(Shamas-Din et al., 2013) ​. The translocation of cytosolic Bcl-xL and Bax to the               
membrane also requires cBid/tBid ​(García-Sáez, Ries, Orzáez, Pérez-Payà, & Schwille,          
2009) ​. Quantitative interaction studies have shown their interactions to be weaker in            
solution compared to those on the membrane ​(García-Sáez et al., 2009) ​(Shamas-Din et             
al., 2013) ​. Work by ​(Shamas-Din et al., 2013) showed that tBid undergoes multiple             
conformational changes upon insertion into the membrane, exposing its BH3 domain for            
interaction with pro- or anti-apoptotic proteins. 
 
1.2.4    Bax 
 
Cytosolic inactive Bax is a monomeric protein of 21 kDa and has a globular              
conformation with nine alpha helices.In its cytosolic inactive state the α9 C-terminal rests             
in the hydrophobic groove and,following its activation under stress or BH3 only proteins,             
cytosolic Bax undergoes a major conformational change from globular to extended           
membrane inserted conformation ​(Leber et al., 2007; Lovell et al., 2008) ​, ​(Gavathiotis,           
Reyna, Davis, Bird, & Walensky, 2010) ​, ​(Kim et al., 2009) ​(Cosentino & García-Sáez,             
2017) ​. The helices α5, α6, and α9 interact with the outer mitochondrial membrane during              
its active form ​(Bleicken et al., 2010; García-Sáez, Mingarro, Pérez-Payá, & Salgado,            
2004) ​. The assembly of Bax into the membrane is under debate and opposing views of               
symmetric dimers ​(Bleicken et al., 2014) ​(Kim et al., 2009) ​(Bleicken et al., 2014) and             
asymmetric dimers exist ​(Gavathiotis et al., 2010) ​. Due to its resemblance to cytolytic             
toxins, ​(Annis et al., 2005) proposed the ‘’Umbrella model’’ for Bax membrane insertion,             
where helices α5 and α6 form a transmembrane hairpin and other helices lie on the               
surface of the mitochondrial outer membrane in an umbrella-like configuration. Recently,           
the umbrella model was challenged by structural models of active Bax that showed the              
presence of a dimerization domain composed by helices α (2 - 5), whereas the helices α                
(6 - 9) form the piercing domain which destabilizes the membrane ​(Bleicken et al., 2014) ​,               
(Annis et al., 2005; Czabotar, Westphal, et al., 2013) ​. The resulting ‘’clamp-like            
conformational model’’ ​(Bleicken et al., 2014) includes a partially open conformation           
formed by helices α5 and α6. Single molecule studies on Bax using supported lipid              
bilayers provided evidence of Bax oligomerization, showing that Bax first inserts as a             
monomer and rapidly oligomerizes into different species like dimers, tetramers, and           
hexamers ​(Subburaj et al., 2015) ​. Super-resolution single molecule localization         
microscopy (SMLM) on active Bax on mitochondria of apoptotic cells showed Bax to             

11 

https://paperpile.com/c/fT6BPK/QxJb
https://paperpile.com/c/fT6BPK/587Z
https://paperpile.com/c/fT6BPK/d1ic
https://paperpile.com/c/fT6BPK/d1ic
https://paperpile.com/c/fT6BPK/d1ic
https://paperpile.com/c/fT6BPK/587Z
https://paperpile.com/c/fT6BPK/587Z
https://paperpile.com/c/fT6BPK/587Z
https://paperpile.com/c/fT6BPK/sftT+3rUh
https://paperpile.com/c/fT6BPK/nYop
https://paperpile.com/c/fT6BPK/nYop
https://paperpile.com/c/fT6BPK/KTSI
https://paperpile.com/c/fT6BPK/RZt5
https://paperpile.com/c/fT6BPK/RZt5
https://paperpile.com/c/fT6BPK/lmWB+uN37
https://paperpile.com/c/fT6BPK/lmWB+uN37
https://paperpile.com/c/fT6BPK/SI9n
https://paperpile.com/c/fT6BPK/KTSI
https://paperpile.com/c/fT6BPK/SI9n
https://paperpile.com/c/fT6BPK/nYop
https://paperpile.com/c/fT6BPK/gFpK
https://paperpile.com/c/fT6BPK/SI9n
https://paperpile.com/c/fT6BPK/gFpK+2aUD
https://paperpile.com/c/fT6BPK/SI9n
https://paperpile.com/c/fT6BPK/dHJY


 

assemble into various nonrandom architectures including rings, arcs, lines, aggregates          
and dots ​(Salvador-Gallego et al., 2016) ​.  

 
 
Fig.1.4​  ​Structure of Bax on membrane. ​Bleicken et.al proposed the membrane embedded clamp like 
model of Bax dimers using DEER (double electron-electron spectroscopy). Reproduced from (Bleicken et 
al. 2014) with permission from Elsevier. 
 
 
 

1.3     BH3 mimetics 

 
BH3 mimetic compounds and BH3 peptides are derived from the BH3 domain of the              
BH3-only proteins, usually of 26 amino acids length, which is believed to antagonize the              
prosurvival proteins thereby inducing the process of apoptosis. The small molecule BH3            
mimetics are modelled based on the BH3 domain of BH3 only proteins binding to the               
hydrophobic pocket of prosurvival proteins, thereby inhibiting their anti-apoptotic activity          
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(Baell & Huang, 2002; Lessene, Czabotar, & Colman, 2008; Ni Chonghaile & Letai,             
2008) ​. ​(Baell & Huang, 2002; Lessene et al., 2008) ​,the proposed general rule of thumb              
for authentic BH3 mimetics: ‘’high-affinity binding to targets (nM range) and induction of             
Bax/ Bak-dependent apoptosis’’. Work by the group of Letai et al showed that BH3              
domain peptides of Bid and Bim are capable of inducing Bax/Bak oligomerization directly             
to induce cell death, whereas peptides derived from Bad and Bik could only displaced              
Bid from the hydrophobic cleft of anti-apoptotic proteins thereby activating Bax/Bak           
(Certo et al., 2006; Chen et al., 2005; Letai et al., 2002)​. Various quantitative studies of                
BH3 peptides in solution have been reported ​(Certo et al., 2006; Letai et al., 2002) ​,               
(Certo et al., 2006; Chen et al., 2005; Letai et al., 2002)​(Certo et al., 2006; Letai et al.,                  
2002) ​. Peptides derived from Bim and Puma have strong affinity (low nM) for all              
pro-survival proteins, while Hrk was specific to Bcl-xL, Noxa interacted with Mcl-1 and             
A1, and Bad bound to Bcl-2, Bcl-xL and Bcl-w but not A-1 nor Mcl-1. Work from                
Walensky et al. showed the use of hydrocarbon stapled BID BH3 domain peptides,             
which significantly improves the α- helical propensity of the molecules, as well as cellular              
penetrance and cellular stability from proteases, thereby improving drastically their          
biological activity ​(Walensky et al., 2006; Walensky & Bird, 2014) ​. Bad like BH3             
mimetics like ABT 737 and its orally available form ABT 263 (navitoclax) binds to Bcl-2,               
Bcl-xL and Bcl-w have shown promising results in clinical trials ​(Tse et al., 2008) ​.              
Recently, a small molecule inhibitor targeting the Bcl-xL groove, WEHI 539, is under             
clinical trials for its high specificity and potency to Bcl-xL ​(Lessene et al., 2013) ​. Inhibitors               
of Mcl-1 and A-1 are less explored compared to other pro-survival proteins. Recent work              
on a Mcl-1 inhibitor, BH3 mimetic S63845, showed promising results in diverse cancer             
models in preclinical studies ​(Kotschy et al., 2016) ​.  
 
 

1.4     BH3 profiling 

BH3 profiling is a high throughput functional assay of MOMP that uses the peptides              
derived from the BH3 domain of Bcl-2 family proteins to induce cell death. The Letai               
laboratory developed this profiling assay which involves three basic steps: Generating           
the plate with different peptides, adding the cells of interest to expose them to the               
peptides and finally measuring MOMP by quantifying mitochondrial depolarization ​(Certo          
et al., 2006; Ryan & Letai, 2013)​. For the profiling assay, JC-1 dye is used as                
mitochondrial membrane potential indicator. When the mitochondria are polarised, JC-1          
aggregates in the matrix of the mitochondria and emits red fluorescence. Once the             
polarization of mitochondria is lost due to MOMP, the change or decay in red              
fluorescence works as an indicator of cell death. This assay allows quick screening of              
various drugs in a matter of hours, which makes this method highly versatile.  
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 1.5     Fluorescence Correlation Spectroscopy (FCS) 

 
Fluorescence correlation spectroscopy (FCS) is a technique with single molecule          
sensitivity that, measures the fluorescence fluctuations arising from the diffusion of           
molecules passing through a confocal detection volume of sub-micrometer size. FCS           
provides quantitative information about the concentration of fluorophores, their diffusion          
properties, binding/unbinding processes and conformational changes ​(Ries & Schwille,         
2012) ​. It requires very low dye concentrations (N< 100) and low excitation laser power,              
to achieve 1-10 kHz (Counts per molecule). Meseth et al characterized the ability of FCS               
to resolve species based on their diffusion time in solution: the diffusion time of the larger                
molecule must be 1.6 times or greater than that of the smaller molecule ​(Meseth,              
Wohland, Rigler, & Vogel, 1999)​. 
The basic setup and the principle of a confocal FCS microscope is shown in figure 1.5.  
 

 
 
Fig.1.5 ​Principle of FCS. ​A) Schematic representation of a confocal FCS setup. B) Fluorescence              
fluctuation traces are recorded by avalanche photodiodes (APD) as photon counts and plotted vs time. C)                
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The fluctuations are temporally autocorrelated to measure self-similarity of the signal over time and then               
fitted with a model function. Here we used a 3D diffusion model for fitting FCS of fluorophores in solution.                   
Adapted from ​(Das et al., 2015) ​ with permission from Elsevier. 
 
The derivation of FCS equations as well as different diffusion models are discussed in              
the Book chapter by ​(Das et al., 2015)​. 
In two color FCS, also called FCCS, the fluorescence signals from two respective             
channels are collected and cross-correlated with respect to to each other to obtain the so               
called cross- correlation curve. If the particles do not interact, the cross-correlation            
amplitude is zero and if the two species are co-diffusing together as a complex, the               
cross-correlation amplitude increases. 
 
In Scanning FCS or Scanning fluorescence correlation spectroscopy (SFCS) on          
membranes (2D) the detection volume is scanned perpendicular to the membrane, which            
can be used correct for membrane movements and decreases the illumination time on             
the membrane, minimizing bleaching. The principle of Scanning FCS is shown in fig 6. 
 

 
 
Fig.1.6 ​Principle of Scanning FCS. ​A) The detection volume is scanned perpendicular to the equatorial               
plane of the membrane. B) Contribution of the membrane to fluorescence fluctuations can be observed               
with the line signal plotted for all scans (scan direction/position vs scan number). C) Membrane               
movements are corrected by aligning the maxima for all scans. D) Fluctuation trace is generated, as                
summed up for the fluctuations of one scan as one time point. E) Fluctuations are temporally                
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autocorrelated and fitted with diffusion models. Here we used a 2D diffusion model for fitting the FCS data                  
obtained in membranes. Adapted from ​(Das et al., 2015) ​ with permission from Elsevier. 
 
 
Some variations of FCS, like PIE-FCS (pulse interleaved excitation), can be applied in             
case that avoiding spectral crosstalk is an issue, for example in case of 1 focus two color                 
measurements between  mCherry and GFP tagged proteins.  
2 focus two color SFCS is applied to GUVs with two parallel lines perpendicular to the                
equator of the GUV with two excitation laser lines. The spatial cross-correlation of the              
signal in the two lines allows calibration free measurements in case the distance             
between the two lines is known 
 
 
 
  

                                               ​Part 2 
 

                         ​Objectives  
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Objective 1 

The proteins of the Bcl-2 family are key regulators of cell death and  decide the cellular 
fate. The interaction network between the members of this family is tightly regulated. The 
BH3 only proteins act as sensors of apoptotic stimuli and initiate the process of 
apoptosis either by direct or indirect interactions with other proteins of the Bcl-2 family. 
Despite the fact that the interactions of Bcl-2 members with BH3 only proteins takes 
place at the mitochondrial outer membrane, almost all studies available in the literature 
have quantified the interactions of BH3 domain peptides with pro-survival Bcl-2 proteins 
in the solution environment. These raise a question about the role of the membrane in 
the conformational change of Bcl-2 family proteins, and in the affinity of interactions in 
membrane environment compared to that in solution. The quantification of interactions in 
membrane environment has remained a technical challenge. 

In order to gain insight into this question the first aim of my thesis is: 

Aim 1: To characterize the interactions of BH3 peptides derived from the BH3 only              
proteins and the BH3 mimetics in solution and on model membrane using Solution FCCS              
and Membrane Scanning FCCS. 

Aim 2: To decipher the sequence code that defines the pattern of binding affinities              
between BH3 peptides with the pro-survival members in the membrane, using BH3            
peptides derived from the BH3 only proteins and mutant BH3 peptides which can be              
useful for drug development for selective targeted BH3 mimetics. 

Objective 2 

The role of Bax auto-activation and retrotranslocation have been under investigation           
since few years. Bcl-xL retrotranslocates mitochondrial Bax to the cytosol of healthy cells             
and maintains a steady state that prevents Bax accumulation and activation in the MOM              
via a yet obscure mechanism. The process of auto-activation of Bax i.e, recruitment of              
inactive soluble cytosolic Bax from the cytosol by membrane activated Bax is not clearly              
understood either. 

To understand this two key processes in the Bcl-2 interaction network, the next aims of               
the thesis are: 

Aim 3: In-vitro reconstitution of Bax auto-activation and retrotranslocation by Bcl-xL in a             
cell-free membrane model system. 

Aim 4: Does Bax retrotranslocation potentiate Bcl-xL anti-apoptotic activity and do BH3            
peptides synergize the effect of activator BH3 only proteins like Bid for Bax activation.  

Objective 3 

A minor objective was to contribute to generating and understanding a comprehensive            
Bcl-2 interactome, by studying the interactions of Bok and Bim with other Bcl-2 family              
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Chapter 1: Comparing the activity of BH3 peptides and BH3 mimetics to inhibit             
Bcl-xL/cBid interaction  in solution and in membranes. 

  

Attached manuscript: Determinants of BH3 sequence specificity for the disruption of           
Bcl-xL/cBid complexes in membranes.  

 

Contribution: I performed all the experiments and the data analysis in this manuscript             
except figure 1 panel C and figure 7 (performed by Raed shalaby). 

 

Summary: ​In this manuscript, we systematically quantified the interaction pattern of BH3            
peptides derived from the BH3 domain of BH3 only proteins and BH3 mimetics ABT 263               
and ABT 737 in solution and in membrane model systems (GUVs). We validated these              
interactions in physiological membrane environment using mitochondria isolated from         
yeast. We performed both competitive and non-competitive assays for the interaction of            
cBid (activator) with Bcl-xL (pro-survival) and analyzed the ability of the respective            
peptides and mimetics to disrupt these complexes . Furthermore, our findings suggested            
that the available drugs in the market, ABT 263 and ABT 737 cannot disrupt cBid/Bcl-xL               
complexes preformed in membrane non competitively, but can disrupt these complexes           
competitively. The BH3 peptides derived from Hrk, Bid, Bim, and Bad were the most              
efficient in disrupting the complexes in the membrane.  

 

Additional unpublished results 

For our experiments, we expressed full-length human Bcl-xL and human cBid. To test             
the role of the C-terminal tail of Bcl-xL, we also produced a truncated form of it,                
Bcl-xL△C, and quantified its interaction with cBid using solution FCCS. The proteins            
Bcl-xL△C and Bcl-xL full length were labeled with Alexa-488, cBid labeled with            
Alexa-647 and used at 1:1 concentration of 50nM each. Figure 3.1 shows the solution              
FCCS of cBid 647 with full length Bcl-xL and Bcl-xL△C. We observed that the cross-               
correlation amplitude for Bcl-xL△C/cBid was higher compared to that of Bcl-xL full            
length, which suggests that the C-terminal transmembrane tail of full-length Bcl-xL           
occupies the BH3 binding groove in solution hindering its interaction with activator cBid,             
compared to its truncated form.  
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       ​Fig.3.1​ ​Full length Bcl-xL and Bcl-xL△C interaction with activator cBid​ ​. ​A) Solution interaction of 
Bcl-xL△C 488 with cBid 647  B) Solution interaction of full length Bcl-xL 488 with cBid 647.  

     ​  In order to mimic the physiological conditions, we decided to use the full- length Bcl-xL 
for our studies with BH3 peptides and mimetics. 

 

Chapter 2: Optimization of BH3 peptides for the inhibition of Bcl-xL/cBid           
complexes in membranes.  

Summary: Based on our previous findings of chapter 1, Hrk and Bim BH3 peptides were               
the most efficient in disrupting cBid/Bcl-xL complexes in the membrane, thereby           
liberating cBid which can then activate pro-apoptotic Bax to promote apoptosis.           
Using the peptide sequence of Hrk and Bim, we generated mutant peptides at             
specific positions in order to generate molecules with a higher activity for disrupting             
the membrane-bound complexes compared to the native peptide sequence. For a           
rational design, we docked a number of mutant peptides with Rosetta Flexpepdock            
software using the backbone of Bcl-xL and evaluated the docking score of the             
Bcl-xL/mutant peptide complexes. This score defines the stability of the complexes           
formed. Based on this, we selected 5 mutant peptides with 6 His tag residues at the                
end and validated their activity in solution and on membrane environment using            
solution and membrane FCCS. Further, to validate the ability of these peptides to             
induce apoptosis in mammalian cells we used the BH3 profiling assays discussed            
above. Concretely, we quantified the effectiveness of these peptides to promote           
mitochondrial depolarization in HCT116 WT colon cancer cell line . The outlook of             
this work will be reduce the length of the BH3 peptides and to generate stapled               
versions with higher affinity, stability and penetrance in cells that disrupt the            
membrane complexes and can be used in the generation of novel cancer            
therapeutics targeting membrane Bcl-2 interactions. 
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       Fig.3.2​ ​Sequence of BH3 peptides of BH3 only proteins. ​The red highlighted box shows the sequence 
of the peptides used as a basis to generate mutant peptides. The right panel shows the list of mutant 
peptides selected for our study.  

Firstly, to study the ability of the mutant peptides to disrupt cBid/Bcl-xL complexes , we                 
first tested their activity in solution using solution FCCS. We labeled cBid647 and             
Bcl-xL488 and incubated them for at least 30 minutes to allow them to form complexes               
(from our previous study we followed the same conditions as mentioned in the material              
and methods section of the publication). We then examined the disruption of these             
interactions non-competitively using the mutant peptides. Figure 3.3 shows the          
quantitative plot of solution FCS at different concentrations of the BH3 peptides. Most of              
the mutant peptides were able to disrupt the cBid/Bcl-xL interactions non-competitively           
compared to the negative control Noxa BH3 peptide. 

          

 Fig.3.3​ ​Quantitative analysis of the inhibitory activity of mutant BH3 peptides in solution. ​The 
normalized change in %CC of cBid/Bcl-xL in solution at different concentrations of BH3 peptides. 
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Next, we performed the competition assay with the mutant peptides to inhibit complex              
formation between cBid647 and Bcl-xL488 in model membrane systems using GUVs.           
We used peptides containing a 6-His tag to induce membrane binding, a strategy used              
successfully in our earlier paper. The working procedure was the same as discussed in              
the material and methods section of the paper. As before, the membrane complexes             
could not be disrupted non competitively. Competitive inhibition in the membrane           
inhibited the formation of the complexes compared to our control without any peptide             
treatment. Interestingly, HM3, HM4, and HB2 mutants were more effective in inhibiting            
complex formation compared to HM1 and HM2 as shown in figure 3.4.  

 

Fig.3.4​ ​Quantitative analysis of the inhibitory activity of mutant BH3 peptides on membranes. ​%CC 
of cBid/Bcl-xL complexes in presence of the respective BH3 peptides.The crosstalk between channels of 
red and green is represented in orange.The black line represents the mean of %CC of each peptide. 
Significance test (Anova Turkey’s multiple comparison test) are indicated ****P＜ 0.0001. 

 

To validate the activity of the mutant peptides in physiological membranes, we isolated             
mitochondria from wild-type yeast cells and performed ensemble FRET measurements.          
The proteins were labeled with donor and acceptor fluorophores Atto488 and Atto565.            
The experimental procedure is described in the material and methods section of the             
previous paper and we followed the same working protocol. The physiological conditions            
of isolated mitochondrial membranes correlated best with the results obtained with the            
GUVs. We found that HM3 and HB2 peptides were the most effective in disrupting              
cBid/Bcl-xL complexes, as shown by the maximum change in the %Fret efficiency in             
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figure 3.5.  

 

 

 

Fig.3.5​ ​Quantitative analysis of the inhibitory activity of mutant BH3 peptides in isolated 
mitochondria from yeast.  ​Quantitative analysis of the changes in FRET efficiency of  Bcl-xL565/cBid488 
complexes using mutant BH3 peptides. The black line represents the mean of % FRET efficiency change 
for each peptide. 

To validate our findings in a cellular context, we screened the activity of the peptides               
using the BH3 profiling assay on mammalian colon cancer HCT116 WT cells. We used              
the loss in mitochondrial potential as indicator for the effectiveness of the peptides to              
induce cell death as shown in figure 3.6.  

Material and Methods, BH3 profiling assay 

The protocol from Ryan et al. was adapted. At the start of the assay, a peptide treatment                 
plate was prepared in a 96-well black plate. Peptides were mixed with DTEB buffer (               
300mM Trehalose, 10 mM HEPES-KOH pH 7.7, 80 mM KCl, 1mM EGTA, 1mM EDTA,              
0.1% BSA, 5mM Na succinate) to 2X of the final peptide concentration and 50 μl was                
pipetted into each well. A positive control of FCCP (20μM) and a negative solvent control               
of DMSO (1μl in 49μl DTEB) were used. The final peptide concentration used was              
500μM. Each well contained 25000 cells. 4X times cell suspension was mixed with 4X              
times dye solution (digitonin 0.1%, 20 μl JC1 dye, 40 μg/ml oligomycin and 10 mM               
2-mercaptoethanol) and finally was added to the 96 well plates containing the peptides.             
We followed the kinetics of the loss of JC-1 fluorescence as indicator of mitochondrial              
membrane potential loss. Measurements were performed in a plate reader with Ex 545             
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nm and Em 590 nm for 3 hours at 37°C every 5 minutes. 

The loss in mitochondrial potential was calculated as: 

 

           %​  ​membrane potential loss = 1 - [(Sample - FCCP) / (DMSO - FCCP)] 

 

 

Fig. 3.6​ ​BH3 profiling of mutant peptides in HCT116 WT cells. ​Kinetics of loss of mitochondrial 
polarization induced by mutant peptides using JC-1.DMSO and CCCP are the negative and positive 
control respectively. Hrk BH3 peptide was included as a reference. 

As shown in Figure 3.6, HM3 exhibited slightly higher activity than Hrk BH3, while HB2               
and HM4 had a similar effect compared to the reference peptide. These results are in               
very good agreement with the in vitro data in GUVs and isolated mitochondria. 

Since all the peptides used so far contained a 6XHis tag, we compared the activity of the                 
most effective peptides (i.e. HM3 and HB2) in the absence and presence of the His-Tag               
as shown in Fig 3.7. We found that the HB2 peptide without the His-Tag was now most                 
effective in causing mitochondrial depolarisation, which was comparable to the original           
Hrk BH3 peptide with His-tag. Our results suggest that these peptides could be used as               
a leads to develop new, potent BH3 mimetics that efficiently promote cell death             
specifically targeting Bcl-xL.  
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Fig. 3.7​ ​BH3 profiling of mutant peptides with and w/o His Tag in HCT116 WT cells. ​A)​ ​Kinetics of 
loss of mitochondrial polarization monitored at Em 590 nm induced by mutant peptides using JC-1 . B) 
Percentage of mitochondrial depolarization of mutant peptides in presence and absence of His tag.  

 

Chapter 3: Quantification of a minimal Bcl-2 interaction network (cBid, Bax,and           
Bcl-xL) in solution and in membranes using FCCS and confocal imaging.  

 

Attached manuscript: Quantitative interactome of a membrane Bcl-2 network identifies          
a hierarchy of complexes for apoptosis regulation. 

 

Contribution: I performed all experiments in figure 7 to characterize the auto-activation            
and retro-translocation of Bax in model membrane systems and the corresponding data            
analysis.  

 

Summary: ​In this manuscript, we quantified the interactions of a minimal Bcl-2 network,             
comprising cBid, Bax,and Bcl-xL, in solution and in membranes. We also showed            
Bax auto-activation at physiological temperature and how active membrane-bound         
Bax molecules recruit inactive Bax molecules from solution. Surprisingly, we found           
that membrane active Bax also recruited Bcl-xL to membranes, which then           
retrotranslocated Bax molecules back to the solution. Finally, we generated an           
integrated model for Bcl-2 protein interaction network in solution and the MOM.  

Activation of Bax is a target for cancer therapy and has been under investigation for                
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decades. In chapter 1 I studied the activity of BH3 peptides/mimetics to target             
anti-apoptotic proteins and liberate activator BH3 only proteins, which finally would lead            
to the activation of pro-apoptotic Bax to induce apoptosis. The structure of active,             
membrane-bound Bax has paved our understanding of Bax pore formation at the MOM.             
The role of the membrane has been the most crucial point in recent studies and findings                
associated with Bax activation. Bax is activated by interaction with activator BH3 only             
proteins like cBid, which translocates Bax from the cytosol to the outer mitochondrial             
membrane. Here we used model membrane systems to understand the process of Bax             
autoactivation and provide evidence for another efficient mechanism contributing to Bax           
activation based on the self-recruitment from solution to the membrane.. Understanding           
Bax autoactivation will pave the way to develop new drugs that target apoptosis for              
therapy. We also found that to keep the process of Bax activation under check, the               
soluble anti-apoptotic protein Bcl-xL was also recruited to the membrane by activated            
Bax and then, membrane-bound Bcl-xL further retrotranslocated Bax back to the cytosol            
thereby maintaining membrane integrity. 

In general, understanding the key process of Bax autoactivation and retrotranslocation            
can help us in designing better BH3 mimetics and therapeutics against cancer. 

 

 

Chapter 4: In this chapter we studied how the shuttling of Bcl-2 family species              
between MOM and cytosol (solution) regulates MOMP sensitivity, and how BH3           
peptides synergize the activator BH3 only proteins for MOMP, using          
quantitative experimental and theoretical evidence. 

 

Attached manuscript: Bax retrotranslocation potentiates Bcl-xL ‘s antiapoptotic activity         
and is essential for a switch-like transitions between MOMP competency and           
resistance. 

 

Contribution ​: In this chapter, the theoretical mathematical modeling and analysis were           
done by Annika Hantusch, all the experimental part and data analysis were done by me. 

  

Summary ​: Here we examined the interplay of tBid/cBid, Bax, and Bcl-xL using theoretical              
mathematical modeling and experimental validation of the modeling predictions.         
Interestingly, we found that both our experimental and theoretical results support a            
synergistic role of BH3-only sensitizer proteins in combination with the BH3 only activator             
proteins to induce MOMP. Quantitatively, we analyzed the role of Bax retrotranslocation            
in the overall anti-apoptotic activity of Bcl-xL. We propose that this retrotranslocation            
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activity acts as a switch between MOMP competency to MOMP resistance within a             
narrow range of Bcl-xL concentrations. 

Our findings indicate that we should not neglect the role of BH3 only sensitizers in                
synergizing the process of MOMP in presence of activator BH3 only proteins. In our              
experimental assay, we used the BH3 peptides of Hrk and Bid to study their synergistic               
activity to promote the permeabilization of large unilamellar vesicles. In the future, these             
novel findings of the intricate Bcl-2 network should be kept in mind while designing BH3               
mimetics for Bax activation and cell death.  

  

Other collaboration Publications: 

 

Chapter 5: In this chapter, we studied the interaction capabilities of Bok, a poorly              
understood pro-apoptotic member of the Bcl-2 family, with cBid and Bcl-xL. In            
addition, we characterized the association of the BH3 only activator Bim with            
itself in solution and in the membrane in presence or absence of dynein light              
chain 1 (DLC-1).  

Attached manuscripts: Proapoptotic member Bok forms toroidal pores and is promoted           
by cBid.  

Investigating Bim oligomerization in solution and on the membrane using FCCS and            
confocal imaging. 

 

Contribution ​: In the article characterizing novel pro-apoptotic Bok, I contributed Figure 3            
Panel A, B, and C and in the manuscript of Bim I contributed Figure 1 E, F, G.  

  

Summary ​: We successfully purified Bok truncated at the C-terminal helix, Bok△C, and            
investigated its membrane activity using calcein permeabilization assays with LUVs,          
as well as its effect of cBid and Bcl-xL on this activity. We found Bok to be a highly                   
active pro-apoptotic protein with an IC50 of 7.5 nM. Furthermore activator cBid            
modulated its permeabilizing activity. We titrated Bcl-xL at fixed Bok concentration           
and we did not detect significant inhibition of Bok activity.To study the            
auto-interaction of Bim in solution and in the membrane in the presence or absence              
of DLC-1, we used solution and membrane scanning FCCS. Taken together, these            
findings add new light to the understanding of the Bcl-2 family that could contribute              
to targeting novel interaction partners using BH3 mimetics. 
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The BH3 only proteins of the Bcl-2 family are activated or upregulated in response to               
apoptotic stimuli. These proteins induce apoptosis by either directly activating the           
pro-apoptotic members of the Bcl-2 family or binding to prosurvival members of the Bcl-2              
family, thereby indirectly promoting the process of apoptosis. Furthermore, the          
interaction between BH3 only and antiapoptotic Bcl-xL occurs on the mitochondrial outer            
membrane. We know that interactions between Bcl-2 family members on the membrane            
is associated with major conformational changes. Thus previous studies on soluble           
conformations of the Bcl-2 family do not provide us an optimal basis for developing              
cancer therapeutics. ​(Leber et al., 2010) mentioned the importance of screening novel            
BH3 molecules that can disrupt interactions of these molecules in membranes, which            
might in future lead to specific and potent therapies to target cancer.  

Quantitative information about the binding of BH3 molecules with full length prosurvival            
Bcl-2 proteins in the membrane environment had remained a technical challenge. Most            
of these interactions have been quantified either exclusively in solution or using            
ensemble FRET measurements, which provide information both from the solution and on            
the membrane. To exclusively study the interaction on the membrane environment, we            
studied the interaction of BH3 peptides with Bcl-xL using model membrane systems            
such as GUVs mimicking the mitochondrial outer membrane composition. In recent           
studies, ​(Hockings et al., 2015) investigated these interactions in mitochondria using Bid            
chimeras. They replaced the BH3 domain of respective BH3 only proteins while keeping             
the Bid backbone intact. Their findings showed an increased interaction of BH3 chimeras             
with Bcl-2 proteins and most BH3 chimeras activated Bax and Bak. The pitfall with these               
results is that the influence of the Bid backbone on its overall interactions cannot be               
neglected, as well as its influence on the helicity content of the BH3 domain. In our                
studies, we approached all these questions using BH3 peptides derived from the BH3             
domain of BH3 only proteins, which have the potential to be further optimized into novel               
BH3 small molecules for cancer therapeutics. There has been a strong interest in the              
development of selective BH3 mimetics, with recent examples for Mcl1 specific mimetics            
(Kotschy et al., 2016) and Bcl-xL specific mimetics ​(Lessene et al., 2013) ​. These specific              
BH3 mimetics would increase the specificity of these  drug in therapy. 

To investigate the interactions in solution/cytosolic environment for cBid/Bcl-xL, we          
tested the BH3 peptides and BH3 mimetics ABTs (ABT 263 and ABT 737) using a               
noncompetitive assay to disrupt the complexes. We found that most of these BH3             
peptides and ABTs were able to disrupt the interactions after complex formation except             
Noxa and Bmf. These findings correlated with previous findings in solution by (Letai et.al              
2002), showing Noxa BH3 peptide having no effect in disrupting cBid/Bcl-xL complexes.            
This can be further explained because the Lys 11 residue of the Noxa BH3 peptide               
sequence orients towards the positively charged residues of Bcl-xL making it           
electrostatically unfavorable in the binding groove of Bcl-xL. To validate these findings in             
the membrane environment, we performed both competitive and non-competitive         
assays. As expected, in the competitive assay the BH3 peptides and ABTs were able to               
disrupt /modulate the interaction of cBid/Bcl-xL complexes, in contrast to the           
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non-competitive assay, where the complexes were allowed to form before the addition of             
the peptides/ABTs. This can be explained as a result of competition between the             
activators and the peptides for the binding groove of Bcl-xL which lowers the complex              
formation of cBid/Bcl-xL, liberating cBid free for Bax activation and cellular death.            
Peptides having higher affinity and specificity can displace the activator cBid and occupy             
the binding pocket of Bcl-xL. Interestingly, we hypothesize from our findings that ABTs             
(ABT 263 and ABT 737), which were approved in clinical trials for inducing cell death,               
bind to the newly synthesized pro-survival Bcl-2 proteins or compete with the activators             
for the common binding groove of pro-survival proteins before complexes are formed, to             
induce Bax activation and the downstream cascade of apoptosis. We found Hrk and Bim              
BH3 peptides to be the most effective in competitively disrupting the cBid/Bcl-xL            
complexes in membranes. interestingly, for Hrk has the higher specificity towards Bcl-xL            
compared with other prosurvival Bcl-2 proteins, which was previously reported by (Letai            
et.al 2002) in solution. This study underestimated its effectiveness in the membrane            
environment. When we compared these findings to ABT 263 and ABT 737, Hrk BH3              
peptide was as effective in inhibiting the complex formation in the membrane thus             
becoming a promising candidate for specifically targeting Bcl-xL. ABT 263 and ABT 737             
target the Bcl-xL, Bcl-2 and Bcl-W with slightly lower or higher affinity towards each              
other. In the future, disrupting or targeting membrane interactions with specifically           
targeted inhibitors can reduce the side effects of chemotherapy and can lead to             
better-targeted drug candidates to treat disease.  

Also, to validate these findings under physiological membrane conditions we isolated           
mitochondria from yeast cells and used ensemble FRET with donor and acceptor labeled             
proteins incubated with the respective BH3 peptides and mimetics. BH3 peptides from            
Hrk, Bim, and Bad were more effective in decreasing the fret efficiency of the complexes               
compared to other BH3 peptides. Interestingly, the results from isolated mitochondria           
correlate best with the data on GUV membranes. The lower activity of some peptides like               
Puma or Bik observed by FRET compared to lack of activity in GUVs can be due to the                  
inhibitory effect of peptides in solution as in FRET it's a bulk measurement in solution               
and membrane, unlike GUVs which exclusively measure the membrane interactions.          
Overall, these findings suggested that the membrane interaction is the most relevant and             
reproduces  best the situation in cells.  

Furthermore, to understand how the amino acid sequences codify the binding affinity,            
and with an aim to design specific Bcl-xL inhibitors which can target membrane             
interactions more effectively, we designed mutant BH3 peptides based on the amino acid             
sequence of Hrk and Bim, as these were the two most effective BH3 peptides in               
disrupting membrane interactions. We generated peptides with one, two, three and four            
point mutations based on combinatorial approach. 

We validated the efficiency of mutant peptides firstly in the solution environment, and in              
line with the previous findings of BH3 peptides in solution, the non-competitive disruption             
assay showed that most of the mutant peptides were able to disrupt the complexes              
formed by cBid/Bcl-xL . These findings suggested us that the weaker interactions in             
solution can be easily disrupted by the point variants of Hrk and Bim without any specific                
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preference for the amino acid sequence in its binding affinity. To study the inhibition on               
the membrane, we observed that mutant peptides HM3 and HB2 showed better inhibition             
activity than HM1 and HM2. The heterogeneity in the disruption of membrane complexes             
competitively can be explained due to the specific preferences of certain amino acids at              
certain positions of the BH3 peptide sequence. The replacement of a threonine with             
isoleucine and leucine to isoleucine in HM3 likely causes an increase in the hydrophobic              
interactions within the membrane-bound complex, making it more effective. When we           
compare the sequence of HM4 with HB2, we hypothesized that the presence of             
phenylalanine at its end position could make HB2 a potential candidate for disrupting             
membrane complexes. We found that the disruption of membrane interactions can be            
altered using specific amino acid mutations which in turn modifies the strength and             
binding affinity with the complexes.  

Further, to validate our findings in physiological membranes we used isolated yeast            
mitochondria and found that the HM3 and HB2 peptides best reproduced the results             
obtained in model membranes. The experiment with isolated yeast mitochondria          
recapitulated best the findings in model membranes providing us evidence that the role             
of Bcl-2 family interactions on the membrane cannot be neglected while designing novel             
BH3 mimetics. In order to validate the effectiveness of these mutant peptides to induce              
apoptosis in cells, we took advantage of the BH3 profiling assay using a HCT116 WT               
colon cancer cell line. This cell line has been reported to have overexpression of              
antiapoptotic Bcl-xL making it ideal for studying specific Bcl-xL inhibitors. The HM2            
peptide clearly showed lower ability to cause mitochondrial depolarization compared to           
HM3 and HB2, which were the most effective. We also observed some effectiveness of              
the peptide HM4, which was also observed in our FRET and membrane FCS             
experiments. Overall, these findings in cells provided us with evidence that the            
experiments using a model membrane and isolated mitochondria are valid in a more             
physiological context.. 

The peptides used in the assay have a 6XHis tagged a strategy to target them to model                 
membranes with a low percentage of Ni-NTA nickel. To test the effect of the 6XHis tag                
on the affinity, we decided to examine the activity of HM3 and HB2 without the 6XHis tag                 
by analyzing the mitochondrial depolarization using JC1. Removal of the His Tag            
reduced the activity of both HM3 and HB2 which may be due to the presence of positive                 
charged 6 histidine residues and to lower helicity of the peptides. Surprisingly the HB2              
peptide without the His tag was as much effective as the HM3 peptide without the His                
tag.  

To sum up our findings with mutant peptides, we observed that HB2 BH3 peptide was               
the most effective in disrupting interactions of cBid/Bcl-xL in solution, model membranes,            
isolated mitochondria and finally in HCT116 WT colon cancer cells. In the future, one              
could staple the peptide with a hydrocarbon moiety to improve its helical propensity,             
cellular penetrance, and cellular stability, which could provide lead for drug development            
for targeted therapy in cancers with overexpression of Bcl-xL. 

Until now, we saw how membrane plays an important role in altering cBid/Bcl-xL             
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complex formation and how BH3 peptides and mimetics differ in disrupting the            
complexes in membranes compared to solution. We also observed that results on            
isolated mitochondria and cells best correlate with the trends observed in model            
membrane systems.  

To better understand the role of the membrane in Bax activation and in the hierarchy of                
Bcl-2 complexes, we reconstituted the process in-vitro using GUVs as our model            
membrane system and by labeling Bax molecules into two different colors. We could             
detect Bax autoactivation i.e.; recruitment of inactive cytosolic Bax by membrane active            
Bax molecules. This mode of Bax activation has been in discussion for a few years. Here                
Our recent findings shed light on the activation of Bax from the cytosol to the membrane                
activated form induced by previously activated Bax molecules residing on the           
membrane. The conventional way of Bax activation is based on BH3 activators like Bid              
or Bim, which induce the translocation of Bax molecules in the cytosol to the MOM. We                
hypothesize that Bax activation is based on lowering the energy barrier for Bax             
activation, which can also be promoted by using heat, change in pH or detergents . Once                
recruited to the membrane, membrane-bound active Bax molecules can recruit more           
soluble Bax in a feedback. How the recruitment of soluble Bax by membrane active Bax               
energetically compares to its activation by activator BH3 only proteins is a question that              
remains to be answered. If Bax autoactivation is the favored mode of Bax activation,              
then the number of pores at the MOM will be lower but their sizes or the oligomerization                 
state of Bax in those pores will be larger when compared to the situation where Bax                
activation is more efficient with BH3 activators. This latter scenario would lead to more              
pores of lower size for an equal number of Bax molecules. In summary, these findings               
give us a better understanding of Bax activation, Bax pore formation and in the future               
could be translated to develop better therapies to maintain cellular homeostasis.  

On the other hand, the recruitment of soluble Bax to MOM is counteracted by its               
retrotranslocation promoted by the antiapoptotic protein Bcl-xL. We found the recruitment           
of Bcl-xL from solution by membrane active Bax and how this Bcl-xL was sufficient to               
retrotranslocate Bax from the membrane back into solution, thereby controlling Bax           
oligomerization and pore formation. 

Thus, despite various models for Bax activation in the literature, our findings using             
quantitative FCS showed that Bax/Bcl-xL interactions are weaker compared to          
cBid/Bcl-xL, which we studied earlier using BH3 mimetics/peptides. Finally, we proposed           
an integrated model for the Bcl-2 network in both solution and on the membrane that               
summarizes how multiple parallel interactions of Bcl-2 proteins are orchestrated to           
regulate apoptosis. Understanding the network on the membrane for Bax activation can            
help in the future to design BH3 mimetics to promote cell death in cancer therapy. 

To quantify how Bax retrotranslocation contributes to the overall anti-apoptotic activity of            
Bcl-xL, we used mathematical modeling and experimental validation. Strikingly, when          
we examined retrotranslocation as part of Bcl-xL activity, mathematical modeling best           
reproduced the findings of the experiments when retrotranslocation was taken into           
consideration. We quantified that retrotranslocation enhanced the prosurvival potential of          
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Bcl-xL from 300 nM to 30 nM, almost by 10 fold. These findings were the first of this kind                   
in modeling Bcl-2 family proteins. The retrotranslocation activity of Bcl-xL can further be             
extended to other antiapoptotic proteins like Mcl-1 and Bcl-2. Bak is retrotranslocated at             
a slower rate compared to Bax as studied recently ​(Todt et al., 2015) ​. In addition, we                
showed for the first time the synergistic effect of sensitizers with BH3 only activators in               
promoting MOMP. These findings explain the effectiveness of BH3 sensitizers in           
activation of apoptosis in cells. Recently, this synergism of sensitizers and activators            
have been exploited in various combination treatments in tumors ​(Inoue-Yamauchi et al.,            
2017) ​.  

Overall we found that the retrotranslocation process is crucial for a switch separating             
MOMP competence and resistance. Thus understanding the shuttling rate and dynamics           
of Bcl-2 proteins on the  membrane will help in a better prognosis of cancer.  

To extend our understanding of other Bcl-2 family proteins, other proapoptotic and BH3             
only activators were investigated in collaborations with other groups. We studied the            
proapoptotic activity of purified Bok△C and characterized its interaction with cBid and            
Bcl-xL. Bok is the most recent and widely debated proapoptotic protein, due to its              
localization in cells and its poorly understood function. Surprisingly we found that Bok             
itself is active in vitro by using LUV permeabilization assays as mitochondrial outer             
membrane mimics, and that addition of cBid modulates the activity of Bok positively. We              
also checked the antiapoptotic effect of Bcl-xL on Bok but didn’t observe any inhibitory              
effect on pore formation as reported earlier ​(Hsu, Kaipia, McGee, Lomeli, & Hsueh,             
1997) ​. This suggests that there must be an alternative mechanism to regulate Bok             
activity, as recently reported with the involvement of the ERAD pathway ​(Llambi et al.,              
2016) ​. The finding that Bcl-xL does not inhibit pore formation in presence of cBid was               
counterintuitive, as we already know from own previous studies that Bcl-xL has a high              
affinity for cBid and would be expected to sequester cBid thus preventing the synergistic              
effect of Bok pore formation.  

Lastly, we studied the self-interaction of the BH3 only activator Bim and found that Bim               
oligomerizes in solution and that the interaction is significantly increased in presence of             
Dynein light chain 1 (DLC1).We concluded that Bim binding to DLC-1 leads to the              
formation of larger complexes. Thus, the interactome of Bcl-2 family members is not just              
limited to the pro-apoptotic and anti-apoptotic members of this family, but also involves             
other proteins. Understanding these interaction partners and targeting them can be an            
emerging strategy for developing novel therapeutics. 
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ABSTRACT: The prosurvival Bcl-2 proteins exhibit a specific pattern of
interactions with BH3-only proteins that determines the cellular
dependence on apoptotic stress. This specificity is crucial for the
development of BH3 mimetics, a class of anticancer molecules based on
the BH3 domain with promising activity in clinical trials. Although
complex formation mainly takes place in the mitochondrial outer
membrane, most studies so far addressed the interaction between BH3
peptides and truncated Bcl-2 proteins in solution. As a consequence,
quantitative understanding of the sequence specificity determinants of
BH3 peptides in the membrane environment is missing. Here, we tackle
this issue by systematically quantifying the ability of BH3 peptides to
compete for the complexes between cBid and Bcl-xL in giant unilamellar
vesicles and compare it with solution and mitochondria. We show that
the BH3 peptides derived from Hrk, Bim, Bid, and Bad are the most
efficient in disrupting cBid/Bcl-xL complexes in the membrane, which correlates with their activity in mitochondria. Our findings
support the targeting to the membrane of small molecules that bind Bcl-2 proteins as a strategy to improve their efficiency.

The proteins of the Bcl-2 family are key regulators of the
mitochondrial pathway of apoptosis.1,2 They control the

permeabilization of the mitochondrial outer membrane
(MOM) that leads to cytochrome c and Smac release into
the cytosol, to caspase activation, and to cell death. Depending
on their function and the number of Bcl-2 Homology (BH)
domains they contain, Bcl-2 proteins are further classified into
three subgroups: (i) executioners Bax and Bak are proapoptotic
members that directly participate in MOM permeabilization;
(ii) their action is counterbalanced by prosurvival Bcl-2
proteins, like Bcl-2, Bcl-xL, Mcl-1, or A1, which inhibit
apoptosis by binding to Bax/Bak, and (iii) the so-called BH3-
only proteins, which are also proapoptotic.
Apoptotic stimuli promote the upregulation and/or

activation of the BH3-only proteins, including Bid, Bim,
Puma, Noxa, Bad, Bik, Bmf, and Hrk.3 These proteins induce
apoptosis by direct interaction with other Bcl-2 members via
their BH3 domain. On the one hand, BH3-only proteins
associate with prosurvival Bcl-2 proteins into inhibitory
complexes. As a result, they effectively decrease the amount
of prosurvival Bcl-2s available for Bax/Bak inhibition. On the
other hand, a subset of BH3-only proteins called “direct
activators” are also able to interact with Bax and Bak and to
promote their activation, which includes accumulation at the
MOM, oligomerization, and formation of the pores responsible
for MOM permeabilization. In contrast to the direct activators,
those BH3-only proteins that only bind to prosurvival Bcl-2 are
known as “sensitizers.” Although the boundaries between both

subtypes are not completely clear, Bid, Bim, and Puma are
classically considered direct activators.4,5 However, a recent
study suggested that only Bad and Noxa were not activators.6

This ability to activate or not activate Bax and Bak reflects a
key feature of BH3-only proteins, which is their different
binding affinities for other Bcl-2 family members.7,8 This
extends also to the prosurvival Bcl-2 homologues and results in
a pattern of interactions whose specificity is mainly determined
by the sequence of the BH3 domain. This specificity has clinical
relevance because it is critical for the development of BH3
mimetics, a set of antitumor compounds derived from the BH3
domain of proapoptotic proteins that have promising activity in
clinical trials.9−12 BH3 mimetics bind with high affinity to the
hydrophobic groove of prosurvival Bcl-2 proteins and induce
apoptosis via Bax/Bak. So far, the quantification of the affinities
between prosurvival Bcl-2s and BH3 peptides has been
performed in solution using C-terminal truncated proteins7,8

or overall in cells using a split-luciferase assay.13 However, in
recent years it has become clear that the main interactions
between pro- and antiapoptotic Bcl-2 proteins take place in the
membrane environment.14−16 Moreover, the interaction of a
BH3 peptide derived from Bid with Bcl-xL was 1.6 fold higher
in the membrane environment compared to solution.17 This
highlights the need to quantitatively analyze the interactions
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between BH3 peptides and prosurvival Bcl-2 in the membrane
environment for the improvement of BH3-based tools.
In a recent study using Bid chimeras substituted with the

BH3 domains of the different BH3-only proteins, Kluck and
colleagues elegantly showed that the BH3 domain determined
binding specificity to Bcl-xL in the presence of mitochondria.6

Overall, the interactions with other Bcl-2 proteins were
increased in this system, as most BH3 chimeras activated Bax
and Bak. However, this study cannot exclude the role of the Bid
backbone on the interaction with Bcl-2 proteins, which (1)
could contribute with additional interaction interfaces, (2)
could increase the helicity of the BH3 region, which plays a role
in binding affinity,18 and (3) could promote the association by
presenting the BH3 sequences in the optimal orientation. All of
these factors would be missing in the context of BH3 mimetics.
As a result, quantitative information about the affinity and
specificity of the interactions between small BH3 molecules and
full-length, prosurvival Bcl-2 proteins exclusively in the
membrane environment is still lacking.
Here, we addressed this question by quantifying the ability of

BH3-only peptides to compete for the membrane interaction
between full-length cBid and Bcl-xL using fluorescence cross-
correlation spectroscopy (FCCS) and giant unilamellar vesicles
(GUVs).14 We also compared the efficiency of the peptides to

disrupt the cBid/Bcl-xL interaction in solution and in isolated
mitochondria. We found that, while in solution all peptides had
comparable inhibitory activity (except for Bmf and Noxa, which
could not compete for the interaction), the most potent
inhibitors of membrane complexes were Hrk, Bim, Bid, and
Bad. Interestingly, the ability of the BH3 peptides to disrupt
cBid/Bcl-xL complexes in mitochondria correlated best with
their efficiency in the membrane. Our findings suggest that
developing inhibitors of prosurvival Bcl-2s that target
membrane complexes may improve drug design.

■ RESULTS AND DISCUSSION

Implementation of an Assay to Quantify cBid/BclxL
Interactions in Membranes. The sequence of BH3 peptides
used in the assay is shown in Figure 1A. The peptides were
designed based on the sequence and structural data available in
the literature.6,8,19−21 We designed BH3 peptides including the
13 core amino acids from the BH3 domain of the
corresponding BH3-only protein and 6X His-tag residues at
the C terminus. This ensured effective targeting to the
membrane thanks to the incorporation of NTA lipids in the
GUVs.14 The sequences map in Figure 1B highlights the
conserved and the critical amino acid residues of the BH3
domain of BH3 only proteins. Both hydrophobic and

Figure 1. Sequence of BH3 peptides and structural insight of the interacting amino acid residues with the groove of Bcl-xL. (A) Peptides derived
from the BH3 domains of Bid and seven other canonical human BH3-only proteins (Puma, Bad, Hrk, Bik, Noxa, Bmf, Bim). Sequence alignment
shows the hydrophobic residues (h1−h4) important for the hydrophobic interaction with the groove of prosurvival proteins. For the measurements
in membranes, we purchase the corresponding peptides containing additionally 6X His residues at the C-terminal end, for effective membrane
targeting. (B) Sequence map showing the conserved amino acids relevant for determining the binding specificity to pro-survival Bcl-2 proteins (blue,
green, and black represent hydrophilic, neutral, and hydrophobic amino acids, respectively). Error bars represent the Bayesian 95% confidence
interval. (C) Structure of BH3Bim (26 amino acid) interacting with the Bcl-xL hydrophobic groove (PDB id 4QVF). The gray side chains of the
amino acids pointing inside the hydrophobic groove (hydrophobic interactions); the red and blue (charged amino acids) pointing outside the groove
(electrostatic interactions) are shown in the zoom-in.
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electrostatic interactions are involved in the stabilization of the
complexes between Bcl-xL and BH3 peptides, as shown by the
structure of Bcl-xL in complex with the BH3 domain of Bim
(encompassing 26 amino acids; PDB id 4QVF;22 Figure 1C).
Residues Ile (58), Leu (62), Ile (65), and Phe (69) are facing
the interior of the hydrophobic groove of Bcl-xL, while charged
residues Glu (61), Arg (63), and Asp (67) project outward to
interact electrostatically.
In order to estimate the affinity of BH3 peptides for Bcl-xL in

solution and in the membrane, we developed a competition
assay based on the quantification of the extent of complex
formation between cBid and Bcl-xL in buffer solution and in
GUVs by point FCCS and scanning, two-focus, two-color
FCCS, respectively.14,23,24 FCCS is a technique with single
molecule sensitivity that detects in two different channels the
fluorescence fluctuations of individual particles labeled with
spectrally different dyes, as they diffuse through the focal
volume of the microscope.25 The resulting fluorescence
intensity traces are auto- and cross-correlated temporally to
generate the FCS curves (Figure 2B,C). The autocorrelation
(AC) curves (red and green lines) provide information about
the total concentration of the fluorophores (inversely propor-
tional to the amplitude of the AC curve) and their diffusion
properties (decay of the AC curves). If the two molecules of
interest form part of the same complex, they codiffuse, and the
corresponding cross-correlation (CC) curve (blue line) shows
positive amplitude, which is directly proportional to the fraction
of molecules forming complexes. By referring the amount of
complex to the total concentration of protein, the percentage of
complex formation can be calculated and from here the binding
affinity. The % CC was calculated with respect to the green
channel as the focal volume is wavelength dependent and
thereby the green channel has a smaller size compared to the
red one.26 For membrane experiments, a unique feature of
scanning FCCS is that it specifically measures the interactions
in membranes (also as cross-correlation of the fluorescence

fluctuations). This is possible because the FCCS signal is
acquired by linear scanning across the GUV membrane, so that
only the contributions of the membrane-bound proteins to the
fluorescence signal are considered in the data analysis. Here, the
FCCS analysis builds on previous work14 but incorporates the
use of full-length Bcl-xL and cleaved Bid (including the p7 and
p15 fragments) instead of tBid (only the p15). To this aim, we
characterized the interaction of purified full-length, human cBid
labeled with Alexa 647 (cBidR) and full-length, human Bcl-xL
labeled with Alexa 488 (Bcl-xLG).
As a test for protein quality, we validated the membrane

binding properties of labeled human cBidR and labeled Bcl-xLG
in GUVs made of phosphatidyl choline (PC) and cardiolipin
(CL) in an 8:2 ratio using confocal microscopy. Bcl-xLG alone
did not bind to the vesicles (Figure 2Aa,b; GUVs labeled with
red lipid dye DiD), while cBidR efficiently associated with
GUVs as long as they contained cardiolipin (Figure 2Ac,d;
GUVs labeled with green DiO lipid dye). When both proteins
were incubated together, cBidR induced the binding of the Bcl-
xLG to the vesicles as shown in Figure 2Ae,f. These results were
in good agreement with previous work reporting that cBid
recruits Bcl-xL to the membrane.14,16,27,28

To determine the incubation time required to achieve
equilibrium in the binding reaction, we monitored the kinetics
of cBidR/Bcl-xLG complex formation in solution and in the
membrane as shown in Supporting Information Figure 1. The
reaction of complex formation in solution was characterized by
an increase in the cross-correlation (CC) amplitude over time,
which reached saturation after 30 min. In the case of membrane
interactions, maximum CC was achieved after 1 h incubation.
The FCCS data in Figure 2B shows a representative

experiment of the interaction between cBidR and Bcl-xLG in
solution. The AC curves (red and green lines) comprise total
protein including the free and bound fraction. The CC curves
(blue line) provide a quantitative estimation of the interaction
between the two proteins diffusing together as a complex. Thus,

Figure 2. Binding of human cBidR and Bcl-xLG to giant unilamellar vesicles and quantification of the interaction of human cBidR and Bcl-xLG by
fluorescence cross-correlation spectroscopy (FCCS) in solution and in the membrane environment. (A) Confocal images of cBidR and Bcl-xLG
binding to GUVs. (a) Guvs PC/CL (8:2) labeled with 0.05% DiD in red. (b) Bcl-xLG binding to the same GUVs, no binding observed. (c) GUVs
labeled with 0.05% DiO in green. (d) cBidR binding to the GUVs in c. (e) cBidR binding to GUVs (PC/CL, 8:2). (f) cBidR-induced binding of Bcl-
xLG to the GUVs in e. Scale bar indicates 5 μm. (B) FCS analysis of the interactions in solution. Fitted AC curves of cBidR and Bcl-xLG are shown
in red and green, respectively. CC curve is shown in blue. (C) FCS analysis of the interactions in the membrane of GUVs. The red, green, and blue
lines correspond to cBidR, Bcl-xLG AC, and CC, respectively. (D) Diffusion coefficient of cBidR and Bcl-xLG in solution. (E) Diffusion coefficient
of cBidR and Bcl-xLG in the membrane. (F) Quantification of cBidR/Bcl-xLG complexes in solution, expressed as %CC at varying cBidR
concentrations (molecules/μm3). (G) Quantification of cBidR/Bcl-xLG complexes in membrane, expressed as %CC at varying cBidR concentrations
(molecules/μm2). (H) %CC in solution represented in a three-dimensional plot as a function of individual protein concentrations. (I) %CC in the
membrane represented in a three-dimensional plot as a function of individual protein concentrations. The error bars represent the SD.
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a larger CC amplitude indicates a higher concentration of the
cBidR/Bcl-xLG complexes in the sample. In Figure 2C, a
representative scanning FCCS experiment of the interaction of
the proteins within the membrane of GUVs (PC/CL, 8:2) after
incubation at RT for 1 h is shown. The diffusion coefficients of
cBidR and Bcl-xLG in solution were 96 ± 11 μm2 s−1 and 71 ±
11 μm2 s−1, respectively (Figure 2D), which is in agreement
with their respective molecular weight. In the membrane, cBidR
and Bcl-xLG were diffusing slower and in comparable range to
each other, as expected by their restricted mobility in two
dimensions (Figure 2E).
To compare the interactions between cBid and Bcl-xL in

solution and in membranes, we quantified the CC amplitude in
both environments at several concentrations (Figure 2F,G).
The CC in solution was concentration dependent, and at 50

nM cBidR and 100 nM Bcl-xLG, a maximum CC amplitude of
18% was yielded. In contrast, in the membrane, we measured a
CC amplitude close to 40% (with reaching saturation) already
after adding 20 nM of cBidR and 40 nM Bcl-xLG to our samples
(calculated concentration in solution). This analysis set the
basis for our further experiments. In line with previous work,14

the CC amplitude in the membrane stayed around the
saturation value at all concentrations of cBidR and Bcl-xLG in
the membrane, indicating very tight complex formation. A 3D
plot of the CC as a function of the concentration is shown in
Figure 2 H, I.
In summary, the quantitative analysis of the interaction

between the full-length forms of cBid and Bcl-xL in solution
and in membranes confirmed our previous findings that the
lipid environment strongly enhances complex formation

Figure 3. Quantitative analysis of the inhibitory activity of BH3 peptides in solution using FCCS. (A) Schematic representation of the displacement
assay. BH3 peptides (blue) disrupt the cBidR/Bcl-xLG complexes by binding to the hydrophobic groove of Bcl-xLG. (B) Auto and CC analysis of
interactions in solution. The blue curve shows the change in %CC before (high CC) and after the disruption of the complexes (low CC) in solution.
(C) Quantitative analysis of the disruption of the cBidR/Bcl-xLG complexes in solution by the respective BH3 peptides (noncompetitive). The
change in the %CC is shown at the different peptide concentrations. The red line represents the maximum CC observed in solution between cBidR
and Bcl-xLG when no peptides were present. The error bars represent the standard deviation. (D) The normalized change in %CC of the cBidR/Bcl-
xLG complexes in solution at different concentrations of the BH3 peptides. The comparative efficienty of the peptides in solution is depicted on the
basis of the two-tailed student’s t test.
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between both proteins.14 These results also indicate that this
membrane effect is therefore independent of the C-terminal
anchor. However, from this analysis we cannot discard that the
presence of the C-terminal domain may affect the preference of
the interactions of Bcl-xL with other Bcl-2 proteins, as
suggested by other groups6,17,29 and our own unpublished
observations.
Disruption of the cBid/BclxL Complexes in Solution

by BH3 Peptides. Disruption of the heterodimerization of
cBidR/Bcl-xLG complexes in solution is achieved by targeting
BH3 peptides that bind to the hydrophobic pocket of Bcl-xL
formed by its BH1, BH2, and BH3 domains and displace cBid
from this groove (schematic representation of the assay in
Figure 3A).

To optimize the conditions of the assay, we initially tested
the ability of the BH3 peptides to disrupt the complexes of
cBidR/Bcl-xLG in solution and in the membrane both
competitively (proteins and peptides all incubated together)
and noncompetitively (proteins were allowed to form
complexes and peptides were added later) as shown in
Supporting Information Figure 2. We found that while the
BH3 peptides in solution were able to disrupt preformed
cBidR/Bcl-xLG complexes in solution, they did not show any
significant disruption when the complexes were preformed in
the membrane.
These observations are in agreement with our previous

work14 and confirm the different interaction patterns in
solution and in the membrane. This also suggests that the
nature of the interactions between Bcl-xL and cBid is different

Figure 4. Quantitative analysis of the inhibitory activity of BH3 peptides in membranes using Scanning FCCS. A) Schematic representation of the
displacement assay. cBidR and BH3 peptides (blue) compete for the binding groove in membrane-associated Bcl-xLG. The blue curve shows the
change in the %CC before and after the adding the BH3 peptides. B) Representative FCCS graphs of different BH3 peptides. Fitted AC curves of
cBidR and Bcl-xLG shown in red and green respectively, CC curve is shown in blue. The line shows the average CC (%) computed after scanning
≥20 GUVs. A comparative scheme of the peptides efficiency in membrane environment is also shown, based on the statistical analysis of all peptides
(two−tailed students t test) with respect to Hrk. C) % CC between cBidR and Bcl-xLG in the presence of the respective BH3 Peptides. The
background crosstalk between two channels red and green is represented in red. The black line represents the mean %CC, and the significance of
each peptide with respect to the control (without peptides, representing the maximum possible cross-correlation between cBidR and Bcl-xLG in
membranes). Statistically significant differences (Anova Turkey’s multiple comparison test) are indicated. ****P < 0.0001, **P < 0.0052 and ns
(nonsignificant), D) GUV images of cBidR and Bcl- xLG before and after adding the BH3 peptides (Control, Puma, Bim, and Hrk). Scale bar
indicates 5 μm. The lack of fluorescence intensity at the rim shows the ability of the peptides in displacing cBidR. E) Quantification of the membrane
density of cBidR bound to GUVs before and after the addition of BH3 Peptides calculated using scanning FCCS.
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in solution and in membranes. Since complex formation in the
membrane is a reversible process,14 it is tempting to speculate
that the BH3 peptides cannot disrupt efficiently membrane
complexes due to the higher affinity between cBid and Bcl-xL in
the membrane compared to solution. The question remains
whether it will be possible to develop small molecules that
surpass the membrane affinity between cBid and Bcl-xL, or
perhaps molecules that bind irreversibly to Bcl-xL and slowly
displace cBid. This would allow targeting preformed prosurvival
Bcl-2/BH3-only complexes and direct induction of cell death,
which could be of interest for example in the case of cells
primed for death.
Moreover, our analysis is based on a competition assay of the

corresponding BH3 peptide and cBid for binding to Bcl-xL.
This is different from previous studies focused on the
estimation of the binding affinity of BH3 peptides or cBid
chimeras to Bcl-xL in the absence of BH3-only proteins.6−8 In
this sense, the assay designed here compares better to the
therapeutic situation in which BH3 mimetics compete with the
BH3-only proteins present in the cell for binding to the
prosurvival Bcl-2s.
On the basis of these results, we designed an assay to test the

effectiveness of individual BH3 peptides in solution in which
cBidR and BclxLG were allowed to form complexes and reach
equilibrium before peptide addition (Figure 3A). Figure 3B
shows a representative example of the FCCS data in an
inhibition assay, where the high initial CC amplitude (blue line)
turns into a CC amplitude close to zero after the cBidR/BclxLG
has been disrupted due to the addition of the BH3 peptide. We
performed similar displacement assays with concentrations
varying from 0 to 10 μM of each of the BH3 peptides. The
changes in %CC measured for the individual BH3 peptides as a
function of concentration are shown in Figure 3C. The red line
indicates the maximum %CC amplitude in the control without
peptide after taking into account the crosstalk between the red
and the green channels.
We found that the BH3 peptides derived from Bim, Bad, Bid,

Hrk, Puma, and Bik were able to disrupt the complexes
between cBid/BclxL in solution, but not those derived from
Bmf and Noxa. The BH3Bmf peptide was moderately effective.
The normalized change in %CC shown in Figure 3D revealed
that most of the BH3 peptides were similarly effective in
disrupting the interaction between cBidR/Bcl-xLG in solution
with slightly higher or lower preferences, except that of Bmf
and Noxa. ased on this, we classified the BH3 peptides from
Bim Bad, Bid, Hrk, Puma, and Bik as high effective peptides,
BH3Bmf as moderately active and NoxaBH3 as completely
ineffective in the solution environment. Due to the relatively
small working range of our assay in solution (change in %CC),
we cannot reliably distinguish small differences in the binding
affinity. Nevertheless, our results are in good agreement with
previous quantifications of the affinity between Bcl-xL
truncated in the C-terminus and BH3 peptides7,8 and
demonstrate that the C-terminal transmembrane domain of
Bcl-xL does not play an important role in the interaction with
cBid or with the BH3 peptides in the aqueous environment.
However, Yao et al. showed that the C-terminal domain of Bcl-
xL modulates the conformation and BH3 ligand affinity of
soluble Bcl-xL.17

BH3 Peptides Derived from Hrk, Bim, Bid, and Bad
Are the Most Potent Inhibitors of cBid/Bcl-xL Com-
plexes in Membrane. We performed the competition assay
in the membrane by adding the proteins and the peptides to a

suspension of GUVs with a lipid composition of PC:CL: NTA-
lipid (75:20:5). The 6XHis residues in the peptides ensured
effective targeting to the membranes containing NTA-lipid (see
Methods), a strategy that we and others successfully used
previously.14,30 A simple scheme of the assay is represented in
Figure 4A. By adding proteins and peptides simultaneously, the
peptides compete with cBid for binding to the groove of Bcl-xL.
Since membrane binding is faster than complex formation for
both proteins and peptides, the competitive reaction takes place
in the membrane. The inhibitory activity of the peptides can be
quantified by measuring the extent of complex formation (CC
amplitude) between labeled cBidR and Bcl-xLG within the
GUVs by scanning FCCS.
We then compared the ability of each peptide to compete

with cBidR for binding to Bcl-xLG exclusively in the membrane
environment by quantifying %CC between cBidR and Bcl-xLG
in GUVs using scanning FCCS (Figure 4B,C). We found that
the BH3Hrk peptide was the most effective inhibitor, followed
by Bim, Bid and Bad BH3 peptides. The differences between
the %CC of the BH3 peptides Hrk, Bim, Bid and Bad and the
control sample in absence of peptide were significant. In
contrast, the peptides derived from Bmf, Puma, Bik and Noxa
was less or not effective in inhibiting the membrane interactions
of cBidR and Bcl-xLG. On the basis of this, we classified the
peptides as highly effective (BH3 from Hrk Bim Bid and Bad)
and less effective BH3 peptides (from Bmf, Puma, Bik, and
Noxa).
To the best of our knowledge, the comparative, quantitative

analysis of the interactions in the membrane environment
described here is the first of its kind, as it focuses exclusively on
the effect of the peptides on the membrane complexes
(previous studies including membranes were performed in
bulk and cannot discard interactions in solution6). We found
that four BH3 peptides were most potent in competing for the
cBid/Bcl-xL interactions, namely those derived from Hrk, Bim,
Bid, and Bax. In contrast, for Noxa, Bmf, Bik, and Puma, no or
very little inhibitory activity could be detected. It is interesting
to note that the high affinity of Hrk for Bcl-xL had been
underestimated in previous studies. We found that BH3Hrk,
which has been reported to bind specifically to Bcl-xL and not
to other prosurvival Bcl-2s,7,13 was also the most potent
inhibitor of the cBidR/Bcl-xLG complexes in the membrane.
In parallel, we measured the binding of cBidR and Bcl-xLG to

the membrane of the GUVs in control samples and in the
presence of the BH3 peptides. As shown in Figure 4D, in the
absence of peptides, both proteins were clearly detected at the
vesicle rim. Strikingly, addition of BH3 peptides like those of
Puma, Bim, and Hrk at a concentration of 5 μM showed
significant reduction in the binding intensity of cBidR compared
to the controls, while that of Bcl-xLG remained constant. We
quantified this effect using scanning FCCS, which provides the
number of cBidR molecules per sqaure micrometer in each
individual vesicle (Figure 4E). In good agreement with their
ability to interfere with Bcl-xL/cBid complexes, the BH3
peptide derived from Hrk was the most potent to block the
association of cBid with the membrane. This indicates that the
BH3 peptides not only interfere with the cBidR/Bcl-xLG
complexes but also displace cBidR from the membrane. These
results suggest that although cBid can bind to the GUV
membranes in the presence of CL, it is stabilized there by
complex formation with Bcl-xL via the hydrophobic groove. If
this is not possible, a lesser amount of cBid associates with the
membrane and stays in solution (thanks to the presence of the
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p7 fragment of cBid, which contributes to solubility). As a
result, the association of cBid with membranes not only
depends on the lipid composition but also on direct binding to
Bcl-2 proteins.
BH3 Mimetics Disrupt the Interactions between Bcl-

xL and cBid Both in Solution and in the Membrane
Environment. One of the most important implications of our

study is to provide information for the optimization of small
molecule BH3 mimetics. To compare the potency of the
peptides analyzed here with current BH3 mimetics, we
quantified the ability of ABT263 and ABT737 to disrupt Bcl-
xL/cBid complexes with our FCS-based assays both in solution
and in the membrane of GUVs. As shown in Figure 5, both
molecules were efficient in disrupting the complexes in solution

Figure 5. Potency of ABT 263 and ABT 737 to disrupt the complexes between Bcl-xL and cBid in solution and in membranes. (A) Top: Schematic
representation of the assay in solution. Interaction of cBidR and Bcl-xLG in solution. Bottom: %CC in solution in the absence and presence of ABTs.
(B) Top: Schematic representation of the assay in membranes. cBidR and ABTs (BH3 mimetics) compete for the binding groove in membrane-
associated Bcl-xLG. Bottom: % CC between cBidR and Bcl-xLG in the presence of the respective BH3 mimetics (ABTs) in GUVs, where c
represents competitive and nc represents noncompetitive assays, respectively. The results obtained with BH3Hrk are included for comparison. The
black lines represent the mean %CC. The background crosstalk in solution and in membranes between the two channels is shown.

Figure 6. Quantitative analysis of the inhibitory activity of BH3 peptides in isolated mitochondria from yeast using FRET. (A) Schematic
representation of the displacement assay. The Atto 488-labeled cBid is shown in green and Bcl-xL-Atto 565 in red. The peptides in blue disrupt the
possible interaction between the proteins. (B) Schematic of the 96 well plate showing the sample controls and tests used for the measurements in the
plate reader. (C) Quantitative analysis of the change in the FRET efficiencies of cBid-Atto488/Bcl-xL-Atto565 complexes using BH3 peptides and
ABTs on isolated mitochondria. The black line represents the mean. A comparative scheme of the peptides efficiency in mitochondria is also shown,
based on the statistical analysis of all peptides (two-tailed students t test).
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and in membranes. Their potency in both environments was in
the same range as the Hrk peptide (also included in Figure 5
for comparison). And similarly to the effect of BH3 peptides,
both ABT263 and ABT737 were only effective in the
membrane environment when added simultaneously to the
proteins in a competitive assay. These results indicate that the
BH3 mimetics are not efficient either in disrupting already
formed complexes between Bcl-xL and cBid in the membrane.
Moreover, the comparable activity of BH3Hrk suggests that this
peptide could also be an interesting molecule to develop
potent, specific Bcl-xL inhibitors.
The Inhibition of BH3 Peptides in Mitochondria

Correlates Best with Their Efficiency in the Membrane.
To investigate the efficiency of BH3 peptides to displace cBidR/
Bcl-xLG complexes in a more physiological environment, we
used isolated mitochondria from yeast, which resemble the
complex protein and lipid composition found in cells but are
devoid of other Bcl-2 proteins. As so far it is not possible to
measure FCCS to quantify interactions within mitochondria,
we implemented a FRET-based assay.15,31,32 A scheme of the
experiment is shown in Figure 6A. We selectively labeled cBid
with a donor fluorophore Atto 488 and Bcl-xL with an acceptor
fluorophore Atto 565, which are a good FRET pair with high
quantum yields. To ensure that the system mimics faithfully the
natural process, we incubated six samples in parallel: (1) the
isolated yeast mitochondria alone to control for background
and light scattering effects, (2) the donor fluorophore cBid-488
at 20 nM concentration with the isolated mitochondria, (3) the
control for maximum FRET with the donor and acceptor cBid-
488:Bcl-xL-Atto565 (20 nM:100 nM) with isolated mitochon-
dria, (4) the acceptor Bcl-xL-Atto565 alone, (5) the BH3

peptides alone as a control for background fluorescence, and
finally (6) the donor and acceptor at 20/100 nM in the
presence of 5 μM BH3 peptides, as shown in Figure 6B. We
recorded the FRET signal upon excitation at 500 nm
wavelength for 90 min in a plate reader at 1 min intervals for
90 min. To calculate the FRET efficiency, we averaged the
values for the last 10−15 min of the assay, which exhibited a
stable signal (Supporting Information Table 2). We then
compared the change in the FRET efficiency in the presence
and absence of the peptides. Although FRET data do not
provide an absolute measurement of complex formation, the
relative change in the extent of binding between cBid and Bcl-
xL in the presence of the BH3 peptides could be estimated by
monitoring the change in the FRET efficiency.
A comparison of the change in the FRET efficiency measured

for the different BH3 peptides is shown in Figure 6C. Those
from Hrk, Bim, and Bad were more effective in disrupting the
cBidR/Bcl-xLG interactions in isolated mitochondria, when
compared to the ones from Bid, Puma, Bmf, Bik, and Noxa,
which were moderately effective (BH3Bid, BH3Puma,
BH3Bmf) to relatively ineffective peptides (BH3Bik,
BH3Noxa). Interestingly, the ABT compounds also showed
an effective disruption of the complex formation in the same
order of magnitude as BH3Hrk, in agreement with the data in
solution and in GUVs.
In the case of the disruption of cBid/Bcl-xL complexes in

mitochondria by BH3 peptides, the closest work is that by
Kluck and colleagues using cBid chimeras.6 Our data are
generally in good agreement with their result that BH3Noxa
does not interact readily with Bcl-xL; however, the quantitative
nature of our analysis additionally allows disentangling the

Figure 7. Snapshots of docked BH3 peptides inside the binding groove of Bcl-xL. Bcl-xL and peptides here are shown in ribbon representation; all
peptide residues and interacting residues of Bcl-xL are shown in stick representation. (A) Hrk BH3 peptide (13 a.a. length) docked (blue). (B)
Docked Bim BH3 peptide (13 a.a. length) shown in green. (C) Docked Bid BH3 peptide (13 a.a. length) shown in cyan. (D) Summary of the
docking scores. The Bcl-xL binding pocket is shown in pale yellow; hydrogen bonds are represented by green lines. Intramolecular hydrogen bonds
of the Bim BH3 peptide are represented by yellow lines.
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inhibitory activities of the different peptides. While in our case
only the BH3 sequences of Hrk, Bim, and Bad are most able to
displace cBid from the complex with Bcl-xL, in their case all
chimeras except for that with the BH3 sequence of Noxa are
able to bind Bcl-xL.
If now we compare the data obtained for the different

compartments (solution, membrane and mitochondria), the
results in isolated mitochondria correlate best with the activity
pattern found in the experiments with GUVs. Only in the case
of BH3Bid, the peptide seems less potent in mitochondria than
in GUVs. Overall, this suggests that the membrane interaction
is the most relevant and the one that recapitulates best the
situation in the cell. Moreover, there is a clear increase in the
specificity of the interactions between Bcl-xL and the BH3
peptides in the membrane environment. The lower activity in
mitochondria of the BH3 peptides from Puma, Bik, and Noxa
compared to the lack of activity in the GUV assay could be due
to the inhibitory effect of these peptides in solution. Since the
binding affinity of BH3 peptides depends on their length, we
cannot discard either that the length,33 the sequence (i.e.,
human versus mouse), or the presence of tags may be
underlying reasons for the differences among the different
studies.34 Nevertheless, in light of our findings, the consid-
eration of Bcl-xL as a prosurvival Bcl-2 with poor BH3-only
selectively mainly concluded from previous studies based on
solution experiments7,8 should be re-evaluated.
Molecular Docking of BH3Hrk, BH3Bim, and BH3Bid

As Efficient Inhibitor BH3 Peptides. We found that the
BH3 derived from Hrk was the most potent inhibitor of Bcl-
xL/cBid interactions both in the membrane and in mitochon-
dria. Although Hrk has already been acknowledged as a BH3-
only protein that specifically inhibits Bcl-xL,7 the higher
strength of the interaction compared to only BH3-only’s had
been underestimated. Hrk plays a role in apoptosis regulation
via selective interaction with its BH3 domain mainly in the
context of hematopoietic tissues and cultured neurons.35

Unfortunately, there is no structure available for Bcl-xL in
complex with the BH3 domain of Hrk.
To understand the basis for the different inhibitory activities

of the BH3 peptides, we performed molecular docking analysis.
Although little is known about the structure of Bcl-xL in the
membrane, Marassi and co-workers recently reported that Bcl-
xL inserts the C-terminal domain in the lipid bilayer, which
anchors to the membrane the rest of the protein in a globular
conformation similar to its soluble structure.17 In this
membrane bound conformation, the hydrophobic groove
remained accessible to bind a BH3 peptide from Bid,
supporting the use of the soluble structure of Bcl-xL for the
docking experiments. Previous docking studies included
additional amino acids in the BH3 peptides and cannot be
faithfully compared with our experimental data. We then
selected BH3Hrk, BH3Bim, BH3Bid (as highly active
peptides), and BH3Noxa (as ineffective peptide) for docking
with the hydrophobic groove of Bcl-xL. We numbered the BH3
peptide residues consecutively from 1 to 13 starting from the
N-terminus.
Snapshots of the docking for the BH3 peptides of Hrk, Bim,

and Bid with the hydrophobic groove of Bcl-xL are shown in
Figure 7. The visual inspection of the top 10 images of each
peptide showed that they converged to a consensus solution.
The conserved residue Asp10 in all peptides was salt-bridged to
Arg139 and formed an additional hydrogen bond with Asn136.
As it was flanked between the two residues, it was critical for

the binding to the groove. The side chain of Glu129 of Bcl-xL
accepted a proton from Gln3 of BH3Bim and Arg3 of BH3Bid,
while its backbone oxygen accepted a proton from Lys6 of Hrk.
The backbone nitrogen of Gly138 of Bcl-xL donated a proton
to Asn13 of BH3Bim and Asp13 of BH3Bid. Additionally,
BH3Hrk Arg4 and Glu11 residues showed the formation of two
additional H bonds with the side chains of Gln111 and Arg100
respectively. In contrast, the Lys11 residue in BH3Noxa was
electrostatically unfavorable in the groove, because of its
orientation toward the positive charge residues of Bcl-xL
(shown in Supporting Information Figure 3). This electrostatic
repulsion could be the reason for the poor performance of this
peptide in the complex disruption experiments. In agreement
with this, mutant versions of BH3Noxa substituting that Lys
showed increased binding to truncated Bcl-xL in solution.8 In
all docked poses, the hydrophobic residues of peptides were
directed to the “bottom” of the Bcl-xL groove while other polar
residues formed hydrogen bonds with different shallow residues
of Bcl-xL. The most important of them was the conserved Asp
that formed hydrogen bonds with two residues in Bcl-xL, and
its position seems to be very critical for binding. In addition, the
Bim peptide was further stabilized by intramolecular hydrogen
bonds that could contribute by fixing the structure in the helical
conformation required for binding.
The energy scores of the BH3 peptides were best consistent

with our experimental findings in solution, where Bim was the
most potent and Noxa was the least able to disrupt Bcl-xL/cBid
interactions. These scores are however not consistent with our
results in the membrane environment, where we observed the
trend that Hrk was more active than Bim. This is likely due to
hydrophobic effects that cannot be accounted for using the
docking study presented here.
Altogether, our findings suggest that the special features of

Hrk should be taken into account in the directed design of
small inhibitors of specific prosurvival Bcl-2 homologues.
Unfortunately, the crucial role of Bcl-xL in platelet survival
limits the use of specific Bcl-xL inhibitors in anticancer
therapy.36,37 Nevertheless, specific Bcl-xL inhibitors have
proved valuable tools for research in mitochondrial apoptosis
and in the characterization of specific Bcl-2 addiction of
tumors.34,38 Moreover, the findings reported here could be
considered when designing small molecules that specifically do
not bind to Bcl-xL10,39 and therefore expand the therapeutic
window for treatment.
In summary, we report here a comparative study of the ability

of BH3 peptides derived from Bid, Bim, Bik, Noxa, Puma, Hrk,
Bmf, and Bad to disrupt complexes between cBid and Bcl-xL in
solution, in the membrane and in isolated mitochondria. We
find that, while all peptides except those of Noxa and Bmf have
a comparable activity in solution, only those of the BH3
peptides from Hrk, Bim, Bid, and Bad are effective inhibitors of
the membrane complexes. Moreover, the inhibitory activity in
mitochondria correlates best with that of the membrane
environment, which underscores the physiological relevance
of the interactions between Bcl-2s in membranes and supports
the interest of Bcl-2 complexes in membranes as a target for
improved therapeutic treatment.

■ METHODS
Protein Production and Labeling and Peptide Preparation.

Full-length, human, mutant Bid (Bid C15S, C28S, and S64C) and full-
length, human, mutant Bcl-xL (Bcl-xL S4C and C151A) were
expressed in E. coli and purified as described in refs 40 and 41.
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From Bid, cBid was cleaved using caspase 842 and purified as described
in ref 40. All protein mutants contained only one accessible cysteine
that was labeled with Alexa 488-maleimide and Alexa 647-maleimide in
the case of the Bcl-xL and cBid, respectively. The labeling efficiency of
Bcl-xL was ≥90%, and the cBid labeling efficiency was ≥65% labeled.
Peptides 13 amino acid long from the BH3 domain of BH3-only
proteins and containing a 6His tag at the C-terminal end were
purchased from Proteogenix (France), with a purity of ≥90%. The
sequence map of the peptides was generated using webLogo 3.
Composition of the Lipid Mixtures. A lipid mixture composed

of 75% PC and 20% CL and 5% NTA-Ni-lipid (1,2-dioleoyl-sn-
glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid) succin-
yl], nickel salt) (mol/mol) was used as described earlier in ref 43.
All lipids were purchased from Avanti polar lipids (Alabaster,
Alabama).
GUV Formation and Sample Preparation. GUVs were

produced by electro-formation, and the experiments were done as
described in refs 41 and 44. Briefly, 5 μg of lipid mixture dissolved in
chloroform were spread on each platinum electrode of the electro-
formation chamber and allowed to dry, before immersion in 300 mM
sucrose. Electro-formation proceeded for 2 h at 10 Hz, followed by 30
min at 2 Hz. A total of 75 to 100 μL of the GUVs suspension was
added to a solution of PBS buffer mixed with the proteins of interest in
Lab-Tek eight-well chamber slides (NUNC) to a final volume of 300
μL.
Solution FCS Measurements. For solution FCS measurements,

the proteins of interest were mixed with PBS buffer, at pH 7.4, in a
total volume of 200 μL and incubated at least 30 min before
measurements. Incubation and measurements were done in a Lab-Tek
eight-well chamber slides (NUNC) that were blocked with BSA (10
mg mL−1) before use. To disrupt the interaction of cBid Bcl-xL BH3,
peptides were added after 30 min of incubation. For the assay, we used
cBidR, Bcl-xLG 50 nM and 100 nM (approx.), respectively, in solution
and BH3 peptides varying from 0 to 10 μM, and a fixed concentration
of ABTs 1 μM was added. The experiments were performed using a
LSM710 confocal microscope equipped with a Confocor3, a C-
Apochromat 40× N.A. 1.2 water immersion objective, and a laser to
excite at 488 and 633 nm. Each acquisition lasted at least 10 000 times
longer than the diffusion time of the labeled proteins to ensure
sufficient data points to generate the autocorrelation curves. To
calculate the diffusion time (τD), diffusion coefficients (D), the protein
concentration, and the cross-correlation, we assumed a three-
dimensional diffusion and used the equations introduced in
Supporting Information Table 1.
Membrane FCS Measurements. For (competitive) membrane

FCS measurements, the proteins cBidR, Bcl-xLG, and peptides were
mixed with PBS buffer, at pH 7.4, to 80 μL of GUVs containing Ni
lipid, in a total volume of 300 μL and incubated at least 1 h before the
measurements. For the assay, we used cBidR, Bcl-xLG 20 nM, and 40
nM, respectively, in the membrane, and 5 μM BH3 peptides and ABTs
were added.
We performed two-focus scanning FCCS measurements at 22 °C

using a Confocor 3 module. Photon arrival times were recorded with a
hardware correlator Flex 02-01D/C (http://correlator.com). We
repeatedly scanned the detection volume with two perpendicular
lines across a GUV equator (the distance between the two bleached
lines d was measured on a film of dried fluorophores). Data analysis
was performed with home-built software (see ref 43). We binned the
photon stream in 2 μs, and arranged it as a matrix such that every row
corresponded to a one-line scan. We corrected for membrane
movements by calculating the maximum of a running average over
several hundred line scans and shifting it to the same column. We
fitted an average over all rows with a Gaussian, and we added only the
elements of each row between −2.5 and +2.5 s to construct the
intensity trace. We computed the auto-, spectral, and spatial cross-
correlation curves from the intensity traces and excluded irregular
curves resulting from instabilities and distortions. We fitted the auto-
and cross-correlation functions with a nonlinear least-squares global
fitting algorithm as previously.14 The used equations are shown in
Supporting Information Table 1.

Isolated Yeast Mitochondria and FRET Experiment. Mito-
chondria were isolated from WT303a yeast cells grown in YPG media
as described.45 The FRET measurements were performed as described
in Pogmore et al.32 Mitochondria at a concentration of 1 mg mL−1

were incubated with 20 nM cBid-Atto 488 and 100 nM Bcl-xL-Atto
565. The Atto488 and Atto565 signals were recorded using a Tecan
Infinite M200 plate reader. We acquired data using excitation at 500
nm, a 5 nm slit width and emission at 590 nm, and 10 nm slit width for
90 min at 37 °C. BH3 peptides at a 5 μM concentration were added to
the corresponding samples. FRET efficiency was calculated as % E = 1
− (FDA/FD)100, where E is % fret efficiency, FDA is the donor in the
presence of labeled acceptor, and FD is the unlabeled acceptor.31

Molecular Docking. The crystal structure of Bcl-xl in complex
with Bim (26 residues) was retrieved from the PDB (id: 4QVF) and
prepared by removing Bim and water molecules followed by adding
hydrogen atoms and partial charges. The peptides 13 amino acids long
were docked into the binding site of Bcl-xL using the Rosetta
FlexPepDock application,46 which utilizes Monte Carlo simulation to
optimize the peptide backbone and its rigid-body orientation relative
to Bcl-xL. In addition, all of the peptide’s side chains and the receptor’s
interface side chains were considered flexible and were subject to
optimization. A total of 200 independent models were generated and
sorted according to Flexpepdock reweighted score, which gives
interface residues double weight and peptide residues triple weight.
The final score was the average of the top 10 models. The top-scoring
models of each peptide were inspected and visualized using UCSF
Chimera software.47
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The Bcl-2 proteins form a complex interaction network that controls mitochondrial

permeabilization and apoptosis. The relative importance of different Bcl-2 complexes

and their spatio-temporal regulation is debated. Using fluorescence cross-correlation

spectroscopy to quantify the interactions within a minimal Bcl-2 network, comprised by

cBid, Bax, and Bcl-xL, we show that membrane insertion drastically alters the pattern of Bcl-2

complexes, and that the C-terminal helix of Bcl-xL determines its binding preferences. At

physiological temperature, Bax can spontaneously activate in a self-amplifying process.

Strikingly, Bax also recruits Bcl-xL to membranes, which is sufficient to retrotranslocate Bax

back into solution to secure membrane integrity. Our study disentangles the hierarchy of

Bcl-2 complex formation in relation to their environment: Bcl-xL association with cBid occurs

in solution and in membranes, where the complex is stabilized, whereas Bcl-xL binding to

Bax occurs only in membranes and with lower affinity than to cBid, leading instead to Bax

retrotranslocation.
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The proteins of the Bcl-2 family are key regulators of several
cellular functions including mitochondrial dynamics and
apoptosis1–3. They form a complex network with multiple,

parallel interactions that regulates the permeabilization of the
mitochondrial outer membrane (MOM). Once the membrane is
perforated, cytochrome c is released, which is considered
the point of no return in the cell commitment to death. Because
the Bcl-2 network lies at the heart of apoptosis regulation and is
linked to diseases like cancer, Bcl-2 proteins are attractive targets
in drug development3, 4.

The Bcl-2 family is classified into three sub-groups: Bax and
Bak are proapoptotic and directly mediate MOM permeabiliza-
tion by opening pores at the MOM. Prosurvival proteins like
Bcl-2, Bcl-xL, and Mcl-1 promote cell survival by inhibiting their
proapoptotic counterparts. The BH3-only proteins have evolved
to sense stress stimuli and to promote apoptosis either directly by
activating Bax and Bak or indirectly by inhibiting the prosurvival
Bcl-2 proteins1, 2.

In healthy cells, Bax is monomeric and shuttles continuously
between the cytosol and the MOM5, 6. During apoptosis, it
accumulates at the MOM and undergoes a conformational change
that leads to membrane-insertion, oligomerization, and MOM
permeabilization7–12, which is accompanied by Bax assembly into
a mixture of lines, rings, and arc-like structures13, 14. The active
membrane-embedded conformation is suggested to form a clamp-
like structure that remodels the membrane and stabilizes pores of
tunable size10, 15, 16. Bax activity is regulated by other Bcl-2
members, including cBid and Bcl-xL. Bid is inactive in the cytosol
until it is cleaved by caspase 8 into the active form cBid, which
consists of two fragments: p7 and tBid17, 18. cBid translocates to
the MOM and promotes Bax activation8, as well as the insertion
of Bcl-xL into the membrane19–21. Bcl-xL inhibits apoptosis via
three incompletely understood modes (Fig. 1a). Mode 0 proposes
that Bcl-xL shifts the equilibrium between membrane-bound and
soluble Bax towards the soluble form5, 6. In Mode 1, Bcl-xL
sequesters activator-type BH3 only proteins like cBid, and thereby
prevents Bax activation21, 22. Mode 2 proposes inhibition by
direct interaction of Bax and Bcl-xL. However, this is based on
indirect evidence like co-immunoprecipitation, the use of
chimeric proteins, or interaction-defective protein mutants22–24.
In addition, Bcl-xL alters the way cBid and Bax remodel
membranes16.

Several models aim to explain how the Bcl-2 network controls
MOM permeabilization. The indirect activation or de-repression
model25 implies that Bax is spontaneously active, unless it is bound
to and inhibited by prosurvival Bcl-2 homologs. BH3 only proteins
can compete with this interaction by binding to the prosurvival
Bcl-2 family members, which releases Bax to induce MOM
permeabilization. In contrast, the direct activation model26, 27

proposes that Bax is inactive until it interacts with an activator-
type BH3-only protein, like cBid, which triggers membrane
insertion and the conformational change. The unified22, the
embedded together28, and the hierarchical models29 integrate the
de-repression and the direct activation idea into one model.

To understand how the association between Bcl-2 members is
orchestrated to regulate MOM permeabilization, a systems
approach that provides detailed, quantitative understanding of
the relative affinities between full-length Bcl-2 proteins, especially
of their active, membrane-embedded forms, is necessary.
Performing detailed interaction experiments in living cells is
extremely difficult or impossible, due to at least four reasons: (i)
the many interactions competing simultaneously, (ii) the
difficulties to calculate protein concentrations in organelles of
living cells, (iii) the presence of a mixture of different regulatory
post-translational modifications, (iv) and the use of fusions to
green fluorescent protein (GFP) or similar fluorescent proteins,

which due to their size could affect the function and interactions
of the proteins of interest. To solve these limitations, we used here
a bottom up approach based on a minimal interaction network
composed of full-length cBid, Bax, and Bcl-xL that reproduces the
functionality of the Bcl-2 family in vitro. Although the extra-
polation to the physiological context needs to be done with
extreme care, reconstituted systems allowed great advances in
understanding the detailed molecular mechanisms of Bcl-2
function26, 30, 31. The main advantage of our approach is that it
is chemically controlled so that the individual interactions
between Bcl-2 members can be studied, whereas additional fac-
tors, as well as post-translational modifications are absent, or can
be added separately when necessary.

Scanning fluorescence cross correlation spectroscopy (FCCS)
allows to selectively detect interactions within membranes by
removing signals from solution, which was not possible in earlier
studies22, 30, 32. This is a critical advantage as cBid, Bax, and
Bcl-xL constantly shuttle between soluble and membrane-bound
conformations,5, 6, 18 and both environments should be
considered separately. By applying FCCS on soluble and
membrane-embedded proteins, we show that the interactions
within the Bcl-2 family are spatially regulated. Soluble Bax is
monomeric, while upon membrane insertion, it associates into
homo-oligomers and hetero-oligomers with cBid and Bcl-xL.
In contrast, cBid/Bcl-xL hetero-dimers are detected in solution
and membranes. Bcl-xL also forms homo-dimers in solution and
its C-terminal transmembrane region modulates the preference
for interaction partners. Moreover, we show that membrane-
associated Bax recruits soluble Bax and Bcl-xL to the membrane.
Bax self-recruitment is a feed-forward mechanism to enhance
Bax activity, whereas Bcl-xL recruitment is inhibitory by
reducing the size of Bax oligomers via direct interaction and by
translocating Bax back into solution. Our findings demonstrate
that no additional components are necessary for Bcl-xL-mediated
retro-translocation of Bax, which, based on our data, might
be driven by Bcl-xL homo-dimerization in solution. This
work has implications for the understanding of the Bcl-2
signaling network in its natural context and supports a new
model for the integration of Bcl-2 interactions during apoptosis
regulation.

Results
The majority of Bcl-xL molecules are dimers in solution. Here
we used solution and scanning FCCS to quantify the
concentrations, diffusion coefficients (D), and the interaction of
cBid, Bax, and Bcl-xL (coupled to individual fluorophores) in
solution and membranes. FCCS measures intensity fluctuations of
fluorophores over time using the detection volume of a
confocal microscope. On the basis of the intensity fluctuations
over time auto-correlation (AC) and cross-correlation (CC)
curves are calculated. The detection volumes of the two detection
channels do not overlap perfectly, which affects the maximum
CC detectable and as a result our CC values are slightly
underestimated. The effect of channel cross talk and noise were
calculated with free versions of the used dyes. In solution, the
CC was below 2% (µ: 1.4, σ: 0.7; see Supplementary Fig. 1)
and values above 2.8% (µ ±2σ, or 95% confidence) indicate
protein interactions. More detailed information is given in
Supplementary Methods and in ref. 33.

We quantified the homo-interactions and hetero-interactions
between cBid, Bax, and Bcl-xL in solution (Fig. 1b, c). Bax showed
no interactions with itself, cBid or Bcl-xL, indicating that it was
present as a monomeric protein. In contrast, the small but
significant positive CC of Bcl-xL labeled with red and green dyes
indicated the formation of Bcl-xL homo-complexes, most likely
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dimers, in line with ref. 34. In addition, Bcl-xL interacted with
cBid, as shown before21, 32. By using two cBid variants labeled at
the N- (cBid-p7R) or C-terminal fragment (cBidR or cBidG,), we
found that the cBid/Bcl-xL complex contained both cBid
fragments. In addition, no homo-oligomerization of cBid
molecules was detected. Our results show that in solution three
different complexes are formed: p7/tBid, Bcl-xL/Bcl-xL, and p7/
tBid/Bcl-xL (Fig. 1d). Those complexes are potentially competing
in the cytosolic environment and based on our data only Mode 1
of Bcl-xL inhibition takes place in solution.

Contradictory results concerning the oligomeric state (mono-
meric vs. dimeric) of soluble Bcl-xL exist34–39. This is likely due
to the use of C terminally truncated protein versions, which
cannot dimerize34. Thus, the extent of Bcl-xL dimerization and its
relevance remains obscure. The CC curves of Bcl-xL self-
association showed low amplitudes, typical of weak interactions
and supporting the existence of a major monomeric population
(Fig. 1b, and Supplementary Fig. 2, KD ∼600 nM). Intriguingly,
the D of Bcl-xL (Fig. 2a) was smaller than that of cBid and Bax,
and varied strongly with protein concentration (Fig. 2a, b),
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suggesting a particle size in line with high dimer content. The
structures of the inactive, soluble conformations of cBid, Bax, and
Bcl-xL17, 36, 40 show protein radii in the range of 1.7–2.5 nm,
transferring into a D of roughly 70–110 µm2 s−1. The D of cBid,
Bax, and Bcl-xLΔCT fall in this range (Fig. 2a and DBcl-xLΔCT:
78 µm2 s−1 see21), whereas the full length Bcl-xL had a smaller D
(~ 50 µm2 s−1), as would be expected for Bcl-xL dimers.
These results indicated that, full length Bcl-xL was mainly
dimeric in solution, whereas the C-terminal truncated version
was monomeric (in agreement with refs. 21, 34).

To test whether we could detect full-length Bcl-xL monomers
in solution, we diluted the protein (Fig. 2b). Interestingly, the D of
Bcl-xL grew at concentrations below 20 nM indicating an increase
in the monomer population at lower concentrations in line with a
high binding affinity between Bcl-xL monomers (low nano-molar
KD). In human cells, the concentration of Bcl-xL (10–1000 nM)
and Bax (50–500 nM) was recently estimated41, suggesting that at
physiological concentrations Bcl-xL is mainly dimeric.

To further correlate particle mobility and interactions within
the minimal Bcl-2 network, we tested how the presence of a
second Bcl-2 protein affects the D of cBid, Bax, and Bcl-xL
(Fig. 2c). As expected from the CC data, Bax diffusion was not
affected by the presence of cBid or Bcl-xL and vice versa, whereas
the mean D of cBid decreased in the presence of Bcl-xL, as
expected for hetero-dimerization (p-value: 0.0089, unpaired two
tailed t-test). In contrast, the D of Bcl-xL was barely affected by
the presence of cBid (Fig. 2c), in line with Bcl-xL being homo- or
hetero-dimeric in solution.

cBid can dissociate Bcl-xL homo-dimers. Next, we probed
the competition between Bcl-xL homo-complexes and the
hetero-complexes by adding increasing amounts of cBidG to
Bcl-xLR and measuring the CC after 1 h incubation. As expected
for hetero-dimer formation, the amount of two colored
complexes increased with the cBid concentration (up to 40% CC,
Fig. 2d). Hetero-dimerization of this pair in solution was
reported before21, 22, 25, 32, 42–46, and in some cases quantified
(with KD’s: between 12 nM42 and 350 nM46). However, this can
only be an effective value, as it does not take into account the
presence of Bcl-xLR homo-dimers.

To understand the interaction between cBid and Bcl-xL
quantitatively, we needed to determine the exact reactions taking
place. In Fig. 3a, three possible scenarios are suggested. In the

simplest scenario 1, cBid can only interact with Bcl-xL monomers
and the formation of cBid/Bcl-xL and Bcl-xL/Bcl-xL complexes
are competing. Scenario 2 differs from scenario 1 by an additional
reaction, in which cBid is able to interact with Bcl-xL dimers,
leading to the formation of a cBid/Bcl-xL hetero-dimer and one
released Bcl-xL monomer. Scenario 3 considers instead that the
interaction of cBid with a Bcl-xL dimer forms, a hetero-trimer,
that can disassemble into two hetero-dimers after the addition of
a second cBid molecule.

On the basis of these three scenarios, we designed an
experiment that together with mathematical modeling allowed
us to falsify one of the suggested scenarios. Bcl-xLR and Bcl-xLG
were mixed and incubated for 120 min at room temperature (RT).
Afterwards, the initial CC was measured (time −20 min) and the
sample was divided into two equal parts. To one, we added
unlabeled cBid in ~ 10-fold excess (time 0 min) to shift the
equilibrium towards cBid/Bcl-xL complexes. To the second one,
we added buffer as negative control. In both samples, the CC was
followed over time (Fig. 3b). To our surprise, addition of cBid led
to a clear increase in the CC between Bcl-xLR and Bcl-xLG,
whereas the CC remained unchanged in the negative control.
Thus, cBid provoked not only hetero-dimer formation (Fig. 2d),
but additionally boosted the amount to two-colored Bcl-xL
homo-dimers (Fig. 3b). This can be explained by the existence of
stable Bcl-xL homo-dimers with very slow exchange rates, so that
in absence of cBid monomer exchange hardly takes place.
cBid addition provokes hetero-complex formation and the
release of Bcl-xL monomers, which in turn form new Bcl-xL
homo-dimers increasing the number of two-colored Bcl-xL
homo-dimers. Thereby, the total number of Bcl-xL homo-dimers
did not increase and homo-dimer and hetero-dimer formation is
in equilibrium.

Modeling cBid and Bcl-xL interactions in solution. To
discriminate between the three reaction scenarios (Fig. 3a), we
built mathematical models based on ordinary differential
equations (ODEs), and analyzed the kinetics of association and
dissociation of Bcl-xL molecules with themselves and with cBid.
For scenario 1, a simple ODE system describing the two reversible
interactions based on the law of mass action was fitted to the
experimental data shown in Fig. 3b. The increase in two-colored
Bcl-xL homo-dimers after cBid addition could not be reproduced
by the model even when searching a large parameter space with a
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global optimization method (Supplementary Fig. 3). Thus,
scenario 1 could be excluded.

In contrast, ODE modeling suggested that both scenarios 2 and
3 could quantitatively reproduce the experimental data (Fig. 3a–d
and Supplementary Fig. 4). Thus, ODE modeling supports the
idea that cBid can interact with Bcl-xL monomers and dimers.

To test whether scenario 2 or 3 are more likely, we used the
difference in Akaike’s information criterion (AIC), which
considers the difference between the experimental data and the
fit of the model as well as the number of parameters (model
complexity). The differences in AIC values and the Akaike
weights can then be used to select which scenario approximates
the data best47. In our case, the values support scenario 2 over
scenario 3 (Supplementary Table 2).

Finally, we performed a parameter identifiability analysis to
examine and compare the velocity of all modeled association and
dissociation reactions48 (Fig. 3e and Supplementary Figs. 5
and 6). For scenario 2, two of the parameters were identified with
95% confidence within the tested parameter range, and the other
could be constrained in at least one direction based on the 95%
confidence limit and a reoptimized sum of squared residuals
(SSR, with a minimum SSR value for each parameter). On the
basis of the likelihood profiles of the model corresponding to

scenario 2 (Fig. 3e), we could conclude that conversion of Bcl-xL
homo-dimers to cBid/Bcl-xL hetero-dimers via cBid addition is a
slow process (k+3 10–700 1/(M*s)). The slow association rate
constant indicates that conformational changes are involved in
the reaction leading to hetero-dimer formation49. A comparison
of the likelihood profiles for k−3 (exchange of cBid with Bcl-xL in
a hetero-dimer to form a Bcl-xL homo-dimer) and k+1
(association of two Bcl-xL) further suggested that cBid binding
to Bcl-xL may speed up Bcl-xL dimerization. The calculated weak
KD (~ 600 nM) for Bcl-xL homo-dimers (Supplementary Fig. 2)
could then be explained by a very slow dissociation of Bcl-xL
homo-dimers, causing the experimental system to reach an
equilibrium much later than experimentally accessible. Thus the
real KD for Bcl-xL homo-dimerization would be much smaller
(in the order of 10 nM), as suggested before (Fig. 2b). In
summary, our modeling data excluded scenario 1, whereas
scenario 2 and 3 were both plausible with scenario 2 being more
likely.

In the membrane only Bax and Bcl-xL can self-associate. The
active conformations of the Bcl-2 proteins are membrane-
embedded. Thus, it is crucial to understand the protein
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interactions within the membrane. For this purpose, we measured
scanning FCCS in giant unilamellar vesicles (GUVs) of two dif-
ferent lipid compositions (Methods and refs. 10, 15, 19, 30): one is
mimicking the MOM (MOM mix, ~ 5% cardiolipin (CL)),
whereas the other has a high CL content (30% CL) to enhance
protein membrane binding and therefore the contrast (Supple-
mentary Fig. 7A). Both lipid mixtures have been studied before
and Bax-induced membrane pores had similar properties in
both15, whereas permeabilization was more efficient with the
higher CL concentration15.

As a control for false-positive CC in the membrane, we
measured the CC between Bcl-xL and a lipidic dye, two molecules
that should not interact (Supplementary Fig. 7B). Based on this,
we assumed that mean CC values above 20% (for 30% CL µ+/−2σ
= 19% CC) indicated protein interactions in membranes. Some
vesicles containing cBid and/or Bax exhibited bright
spots, which we interpreted as membrane buds16. Those vesicles
were excluded from analysis as artificial CC can be detected
(Supplementary Fig. 7C). Finally, to induce Bax and Bcl-xL
membrane insertion, we used two methods: we added cBid19, or
we applied a mild heat treatment11, 50, 51 to avoid effects of
unlabeled cBid on the interactions measured.

After membrane insertion, the interaction network between
cBid, Bax, and Bcl-xL strongly changed. Once inserted into
the membrane, Bax formed homo-oligomers (in agreement with
refs. 10, 12, 19, 30, 52, 53) irrespectively of the activation method
(Fig. 4a, c, d and ref. 11). In line with oligomer formation, the
mean D of membrane-embedded Bax was clearly smaller than the
D of cBid or Bcl-xL, whereas the CC between Bax molecules was
much higher than the CC between cBid or Bcl-xL molecules
(Fig. 4a and Supplementary Fig. 8A, B). Moreover, the mean CC
between Bax molecules was higher and more disperse than
expected for pure dimers (reaching 100% in some GUVs, Fig. 4c).
This is in agreement with higher order oligomer formation and a
broad distribution of oligomers sizes (Fig. 4e and Supplementary
Fig. 8C).

We did not detect Bcl-xL homo-dimers in presence of cBid
(Fig. 4a, f and ref. 19), but when Bcl-xL membrane-insertion was
induced by heat, we observed a significant amount of CC in line
with homo-complex formation. This demonstrates for the
first time that the membrane-inserted Bcl-xL can self-associate
when no other interaction partners are present (Fig. 4f). However,
cBid and Bax were preferred interaction partners over the
self-interaction. Finally, we could not detect cBid homo-dimers in
the membrane (Fig. 4a). This is at odds with studies reporting
cBid homo-oligomerization in membranes54. One reason could
be cBid ability to reorganize membranes16, which can lead to
artificial oligomer detection (Supplemental Fig. 7c).

Of note, we published CC data on Bax and Bcl-xL
homo-interactions in membranes before19. Here, we included
those data together with two new independent experimental
repetitions, to compare the CC and D values with other
complexes, as well as measurements under different conditions,
e.g., absence of cBid (data used already in ref. 19 are included
in Fig. 4e, f and Supplemental Fig. 8a, c). In summary,
membrane-embedded Bax and Bcl-xL could be detected in
homo-complexes and hetero-complexes, whereas cBid was
present as a part of hetero-complexes or as a monomer.

In the membrane cBid–Bcl-xL complexes are stable and
exclude p7. The only complex detected in solution and mem-
branes was the cBid/Bcl-xL hetero-dimer. Upon membrane
insertion, hetero-complex formation dominated over Bcl-xL
homo-dimerization (Figs. 4a, f, g and 5a), which indicates a
stronger interaction between cBid and Bcl-xL in membranes

compared to solution. The mean CC between cBid/Bcl-xL in
membranes was close to the maximum expected considering
hetero-dimer formation (Fig. 5a), and it did not change sig-
nificantly with lipid composition (Fig. 5b) or protein concentra-
tion (Fig. 5d). The mean D for cBid and Bcl-xL was ∼5 µm2 s−1

(Fig. 5c), in line with previous work19, 21.
We also followed the kinetics of complex formation in

individual GUVs (Fig. 5e and Supplementary Fig. 9) and found
that the extent of association was high, stable over time, and
independent of membrane permeabilization. This indicates again
a very high binding affinity between cBid and Bcl-xL, and
suggests that they insert into the membrane as a complex or, if
there is recruitment, that it happens very fast. Thus, Mode 1
inhibition of MOMP will mainly happen in the membrane-bound
state.

The soluble cBid/Bcl-xL complex contained tBid and the
p7 fragment (Fig. 1c). To test if the same was true for the
membrane-embedded complex, we used cBidp7R. The CC
between labeled p7 and Bcl-xL was as low as in the negative
controls (Fig. 5f) indicating that the membrane-embedded
complex does not contain p7.

cBid–Bax interaction decreases upon Bax oligomerization. cBid
has been proposed to interact transiently with Bax to
catalyze its activation and membrane insertion12, 30, 31, 52, 55.
A transient interaction seems necessary as the binding site of Bid
to the Bax BH-groove is overlapping with one interaction inter-
face between Bax monomers in the homo-oligomer12. Detecting
the cBid/Bax complex in membranes has remained challenging
and could only be validated once30. Here, we could identify cBid/
Bax complexes as well (Fig. 6a), but the level of CC was much
lower than for cBid/Bcl-xL complexes (<40% CC compared to >
60% CC), indicating a low affinity or a short lifetime of the cBid/
Bax complex.

We wondered if the dispersed CC data (Fig. 6a) could be the
result of two populations of GUVs: one with high and one with
low cBid and Bax interaction. On average, Bax clearly diffused
slower than cBid (Fig. 6b), supporting this hypothesis. However,
in GUVs with a high CC between cBid and Bax, cBid diffused
similar to Bax (Fig. 6c), suggesting that Bax-oligomer assembly
happened faster than cBid release. In addition, kinetic
experiments revealed a decrease in the CC between cBid and
Bax over time, in line with a transient interaction (Fig. 6d and
Supplementary Fig. 10). Thus, the cBid–Bax complex in
membranes is likely transient, and cBid is released after Bax
homo-oligomerization.

In membranes Bcl-xL hetero-dimerizes with Bax, but prefers
cBid. Although the inhibitory role of Bcl-xL via direct interaction
with Bax (Mode 2) was first proposed more than two decades
ago56, the interaction between these two proteins has escaped
detailed characterization. Here, despite the lack of association in
solution (Fig. 1c), membrane-embedded Bax and Bcl-xL formed
complexes (Fig. 6e). They were mainly detectable when
membrane insertion was induced by mild heat treatment. In the
presence of cBid, we could hardly detect Bax/Bcl-xL complexes
(Fig. 6e–g and Supplementary Fig. 8D), likely due to the
formation of competing cBid/Bcl-xL complexes (Fig. 5a).
Performing these experiments was complicated as Bcl-xL
excludes Bax from membranes5, 6, 19. To overcome this
difficulty, we incubated cBid, BaxG, and GUVs for 30 min prior to
Bcl-xLR addition, which allowed Bax to insert into the membrane
before Bcl-xL was added. This experiment revealed two important
facts. First, a direct interaction between Bax and Bcl-xL is
possible, but takes place only in the membrane-bound state.
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Second, Bcl-xL interacts more strongly with cBid, when both
partners are present, which indicates that Bcl-xL has a higher
affinity for cBid than for Bax.

The presence of Bcl-xL reduces the size of Bax oligomers. These
results raised the question of the functional impact of
Bcl-xL on Bax oligomerization in membranes, which we
addressed by comparing the CC between membrane-embedded
BaxG and BaxR in presence and absence of Bcl-xL (Fig. 4c, d). To
visualize Bcl-xL binding to GUVs, we used Bcl-xL405 (labeled with
Alexa 405), which was imaged in a third detection channel. The
experiment was done after inducing Bax and Bcl-xL membrane
insertion either with heat or cBid. When heat was used, BaxR,
BaxG, and Bcl-xL405 were added simultaneously to the GUVs,
whereas when cBid was used, Bcl-xL405 was added after Bax
oligomer formation. In both cases, Bcl-xL405 decreased the
average CC between Bax molecules, indicating that Bcl-xL
inhibited Bax oligomerization or reduced the oligomer size
(Fig. 4d and ref. 11). This suggests that Bcl-xL is able to bind to
the membrane-embedded, active conformation of Bax.

FCCS is an equilibrium method that cannot establish the order
of events for single molecules or the stoichiometry within
complexes. Thus, we cannot distinguish whether Bcl-xL binds
to and disassembles large Bax oligomers or whether it
preferentially binds to monomers or dimers, preventing them
from forming larger oligomers. However, we observed that
membrane-embedded Bcl-xL diffused slightly faster in presence
of cBid than in presence of Bax (Supplementary Fig. 8E), which
suggests that Bax/Bcl-xL hetero-complexes are bigger as cBid/Bcl-
xL dimers. This supports the idea that Bcl-xL is able to bind Bax
oligomers, and suggests that one Bcl-xL molecule is able to inhibit
more than one Bax molecule. However, we cannot discard the
possibility that Bcl-xL preferentially binds Bax monomers.

Bcl-xL C-terminus regulates the preference of interactions.
Until recently, most of the work done with recombinant Bcl-2
proteins used truncated proteins without the C-terminal mem-
brane-anchoring helix. We tested the implications of this trun-
cation on Bcl-2 interactions, because this helix has been related to
homo-complex and hetero-complex formation,10, 34, 57, 58 and
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labeled) in individual GUVs (30% CL). Protein insertion into the membrane was activated by cBid or heat, as indicated (n= 3). f Percentage of membrane-
embedded Bcl-xL or Bcl-xLΔCT molecules in complex with Bax in relation to the absolute concentration of Bcl-xL (after activation by cBid (black dots) or
heat (red dots)) or Bcl-xLΔCT (blue triangles) (n= 3). g Percentage of membrane-embedded Bax molecules in complex with Bcl-xL (after activation by cBid
(black dots) or heat (red dots)) or Bcl-xLΔCT (blue triangles) in relation to the absolute concentration of Bax (n= 3). The dotted red line in a, d, and e
indicates the maximal possible CC considering the degree of labeling and dimer formation (n= 3). e–g Experiments done with one protein batch so that the
results can be directly compared
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removal of the helix interfered with homo-dimerization34 as well
as with Bax retro-translocation59, 60. To do so, we
compared the interaction of BaxR with full length Bcl-xLG and
Bcl-xLΔCTG (Fig. 6e–g). Similar to the full-length version,
Bcl-xLΔCTG did not interact with BaxR in solution (data not
shown). However, in contrast to full-length Bcl-xL, the truncated
protein failed to inhibit Bax membrane insertion, and once in the
membrane, it interacted with BaxR even in the presence cBid
(Fig. 6e–g). This demonstrates that the C-terminal helix of Bcl-xL
tunes the hierarchy of interactions with other Bcl-2 family
members.

Membrane-bound Bax can recruit soluble Bax and Bcl-xL.
After analyzing the interactions between Bax, cBid, and Bcl-xL in
solution and in membranes, we examined the translocation
between both environments. We took advantage of direct
visualization of protein binding to GUV membranes and
investigated protein recruitment and retro-translocation. The
presence of all three proteins leads to cBid and Bcl-xL
translocation to the membrane, whereas Bax stays largely in
solution19. Recently, it was suggested that membrane-bound Bax
recruits soluble Bax via an auto-activation mechanism57. To test
this hypothesis, we incubated 30% CL GUVs with BaxR at 42 °C,
inducing BaxR association to the membrane (Fig. 7a, c). After
cooling down, we added BaxG molecules, incubated for 1 h at RT
and imaged the vesicles. BaxG bound to GUVs, confirming that
membrane-bound Bax can recruit soluble Bax molecules (Fig. 7a,
c, e). Binding did not happen when BaxR was absent or not
treated with heat. To our surprise, membrane-associated BaxR
recruited not only soluble BaxG but also soluble Bcl-xLG to the
membrane (Figs. 7b, d). The accumulation of Bcl-xLG on the
membrane was accompanied by a decrease in the mean
fluorescence intensity of membrane-bound BaxR (Fig. 7b, d),
indicating that Bcl-xLG promoted the release of Bax molecules

from the membrane into solution. The kinetics of this
association/dissociation processes are shown in Fig. 7e, f.
Interestingly, Bax recruitment to the membrane increased with
the amount of Bax associated to the membrane, supporting a
positive feedback mechanism. In contrast, the association of Bcl-
xL to the membrane was faster initially, when most Bax molecules
were membrane-bound, and decreased with time as the con-
centration of Bax in the membrane decreased (Fig. 7e, f). Thus,
membrane-bound Bax recruits Bcl-xL to the membrane without
positive feedback or additional recruitment of Bcl-xL by Bcl-xL.
Most importantly, our data show that Bcl-xL promotes the
dissociation of Bax from the membrane in the absence of
any additional component. To our knowledge, this is the first
measurement of Bax retro-translocation in recombinant systems.

These findings suggest that the energy barrier for Bax binding
to the membrane, which is the limiting step in activation, is low.
Indeed, in absence of all other Bcl-2 proteins, low expression of
Bax in cells leads to its spontaneous activation, characterized by
accumulation at the MOM and cell death61. To determine the
role of temperature in Bax activation, we performed vesicle
content release assays at RT or 37 °C (Fig. 7g, h). Spontaneous
activation of Bax was negligible at RT, whereas incubation at 37 °
C induced significant permeabilization of the membrane even in
absence of cBid. As expected, at both temperatures, addition of
cBid led to full and faster membrane permeabilization.
Altogether, these findings demonstrate that Bax can sponta-
neously activate at physiological temperature, which is amplified
by a positive feedback mechanism.

Discussion
Here we report quantitative analysis of the interactions within a
minimal Bcl-2 network that takes into account the spatial
regulation of complexes in solution and membranes. One
important finding is that the association of Bcl-2 proteins changes
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markedly upon membrane insertion, which is most likely due to
the conformational changes associated with the process10, 62. In
solution, Bax was monomeric, whereas cBid was present as a
complex between its two fragments or associated with Bcl-xL.
Bcl-xL itself hardly existed as a monomer, but formed
homo-dimers and hetero-dimers with cBid (Fig. 8).

The existence of soluble Bcl-xL and Bax homo-dimers is
strongly debated. Bcl-xL homo-dimers were detected in cells34,
but structural data are controversial35, 37, 38. Jeong et al.34 showed
that the C-terminal helix of Bcl-xL is critical for homo-
dimerization and suggested that the helix of one monomer
would bind to the hydrophobic groove of the second one,
enabling dimerization. We found this hypothesis intriguing, as
the C-terminal helix would be shielded in the dimer
(Supplementary Fig. 10), which could explain why a fraction of
Bcl-xL is cytosolic in cells despite the membrane anchor. Our data
support this model, as we detected stable Bcl-xL dimers that
dissociated by the addition of cBid. In this scenario, the
C-terminal helix and the BH3 domain of cBid compete for the
same binding site (the BH groove)12, which provides a molecular
basis for how cBid facilitates Bcl-xL membrane insertion by
displacing the membrane anchor (Supplementary Fig. 10B).

In contrast to our results, the existence of soluble Bax
homo-dimers and oligomers was recently reported63, 64. Garner
et al.63 detected autoinhibited Bax homo-dimers in the cytosol of
the cell extracts of a number of cell lines, whereas in other cell
lines, no Bax homo-dimers were found, suggesting that a very
specific regulation might be necessary. Thus, the fact that we did
not detect these dimers suggests that dimerization in solution
requires additional factors (e.g., chaperones) or modifications
absent in our system. Sung et al.64 reported the oligomerization of
soluble Bax upon incubation with BH3-only peptides at
millimolar Bax concentrations. We never detected similar
oligomers upon addition of cBid in the nanomolar (analyzed
here) to micromolar52 range. However, incubation of BaxΔC and
BH3 peptides produced non-physiological swapped-dimers,12

and we cannot discard that the soluble Bax oligomers in ref. 64 are
multimers of swapped-dimers formed at very high protein
concentrations.

Upon membrane insertion, the Bcl-2 interaction network
strongly changed. Bax was always part of complexes with itself,
with cBid, or with Bcl-xL, whereas Bcl-xL existed in complex with
cBid or with Bax, or in the absence of both, as a mixture of
monomers and homo-complexes (Fig. 8). This indicates that the
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affinity of Bcl-xL to itself is lower than the affinity to cBid or Bax
molecules. A transient interaction between cBid and Bax has been
proposed as part of the “hit-and-run” model. Here, we provide
additional evidence for the cBid/Bax complex and for its
dissociation upon Bax homo-oligomization. This is in line with
the fact that one Bax oligomerization interface overlaps with the
binding site for cBid12.

Despite the many models proposed for the regulation of Bax
activation by the other Bcl-2 proteins, the lack of direct detection
of Bax/Bcl-xL complexes in membranes and the lack of a
quantitative characterization of the different interactions had left
a key question open. When all proteins are present, does Bcl-xL
inhibit apoptosis mainly by blocking the activators, like cBid, or
the executioners, like Bax? Our results point to the first, as the
affinity between Bcl-xL and cBid is larger than between Bcl-xL
and Bax. This also explains why BH3 mimetics are efficient
inducing apoptosis. Most likely they would not be as effective if
Bcl-xL/Bax interactions were the stronger ones. Remarkably,
our data showed that deletion of the C-terminal anchor of
Bcl-xL altered its interaction preferences. This is likely due
to the participation of the C-terminal helix in interaction
surfaces10, 57, 58. Our data are at odds with the claim that Mode 2
inhibition is more efficient than Mode 1 inhibition in the unified
model, but these studies where performed using C terminally
truncated prosurvival Bcl-2 homologs22. Thus, caution should
be exercised when interpreting experiments performed with
truncated Bcl-2 members.

Our findings shed new light on Bax activation and inhibition.
Recent work showed that in cells lacking all Bcl-2 proteins, Rb,
and p53, reintroduction of Bax led to its spontaneous activation
and cell death even at low Bax expression levels61, in favor of the
indirect activation model. However, the direct activation model is
supported by the fact that Bax can be produced in vitro in an
inactive form that can be activated by BH3-only activators to
form membrane pores15, 30, as well as by the structural data of
BH3 peptides bound to Bax12. To reconcile both views, it is
important to consider that activating Bax in absence of BH3
activators is also relatively easy: it can be achieved in vitro by
exposure to mild heat11, 51, acidic pH65, detergents26, or proteins
like Drp166. This all argues for a low energy barrier for Bax
activation, in the order of thermal energy at physiological
temperature. Here, we show that without activator molecules Bax
remains inactive at RT, but presents a significant membrane
permeabilizing activity at 37 °C. Once in the membrane, Bax
promotes recruitment of soluble Bax. In the context of the cell, a
small fraction of Bax molecules could spontaneously become
active, which could be kept in place by complex formation with
prosurvival Bcl-2 homologs. In agreement with this, we show that
membrane-bound, active Bax-recruited Bcl-xL to the membrane
and formed complexes with it, which led to a release of Bax from
the membrane back into solution and to a reduction in Bax
oligomer size. The protein retro-translocation into solution also
supports a low energy barrier for dissociation of Bax/Bcl-xL
complexes from the membrane. This barrier could be overcome
by the high affinity between Bcl-xL monomers in solution,
providing the necessary driving force for Bax retro-translocation.
Moreover, the fact that membrane-bound Bax can recruit Bax
and Bcl-xL supports a common molecular mechanism for both
processes that was so far unanticipated, and it demonstrates that
Bcl-xL is sufficient to retro-translocate Bax from the membrane
back into solution.

Our observations link so-far unconnected observations: the low
fraction of Bax/Bcl-xL complexes naturally found in mitochon-
dria29; the finding that in cells lacking direct activators, Bax and
Bak can still be activated and their activation depends on the
absence of prosurvival Bcl-2 proteins29, 61; and the spontaneous

minority MOM permeabilization observed when prosurvival
Bcl-2 proteins are inhibited with ABT-73767. It is important to
consider that in cells, the Bcl-2 regulation network is much more
complex and includes additional factors and post-translational
modifications that add a layer of complexity to the observations
reported here. Moreover, beyond their function in MOMP, Bcl-2
proteins have been associated with regulatory functions in mito-
chondrial dynamics and Ca2+ homeostasis1, 68–70. The underlying
mechanisms are not completely understood, but several Bcl-2
proteins are proposed to interact with MOM or ER membrane
proteins without inducing MOM permeabilization1, 68–70. There-
fore, the regulation of Bcl-2 protein function is more complex
than considered so far, which could potentially also be examined
with the system developed here.

On the basis of our findings, we propose a new, “integrated”
model that explains how the multiple, parallel interactions
between the Bcl-2 proteins are orchestrated to regulate apoptosis
(Fig. 8). In absence of proapoptotic stimuli, Bax activation could
proceed spontaneously. The membrane-bound Bax molecules
could behave as seeding points for further Bax recruitment from
solution in a positive feedback loop (here and refs. 11, 29, 61).
Direct interaction with prosurvival Bcl-2 homologs in the
membrane would inhibit MOM permeabilization by relocation of
loosely bound Bax molecules from the membrane to the cytosol,
and it would additionally block the oligomerization of
membrane-embedded Bax. In the presence of proapoptotic
stimuli, the activation of BH3-only proteins would be first
inhibited by direct association with the prosurvival Bcl-2s
proteins, for which they have a higher affinity. In this scenario,
a low level of Bax activation would still be counterbalanced by
excess prosurvival Bcl-2s, but would prime the cells to die27, 42.
On the basis of literature data, continued stress would further
increase the levels of BH3-only proteins. Above a certain
threshold in the relative concentration of proapoptotic vs.
prosurvival Bcl-2 proteins, the prosurvival Bcl-2 homologs would
be engaged mostly with BH3-only proteins and would not be able
to sustain the steady state of Bax activation/inactivation,
which would turn the balance and switch towards Bax activation
and MOM permeabilization. In situations with intense cellular
stress, any additional excess of BH3-only proteins would create a
pool of free direct activators that would promote a rapid and
efficient activation of Bax and Bak, full MOM permeabilization,
and cell death.

In summary, the minimal network reported here explains the
spatial regulation of Bcl-2 complexes in solution and membranes.
We disentangle the hierarchy of competing reactions, as well as
the modulatory role of the membrane and the C-terminal anchor,
which has implications for the prevalence of the different
inhibition modes depending on the environment and proteins
present. At physiological temperatures, a fraction of Bax
molecules spontaneously activates. These molecules can recruit to
the membrane additional soluble Bax to promote MOM
permeabilization, as well as soluble Bcl-xL, which inhibits Bax
homo-oligomerization and releases Bax back into solution,
thereby inhibiting MOM permeabilization. Altogether, these
findings support an integrated model for Bcl-2 proteins that
reconciles previously opposing experimental observations.

Methods
Protein production and labeling. Full length mouse Bid (wild type, Bid C30S, or
Bid C126S), full length human Bax (wild type and Bax S4C, C62S, C126S), and full
length human Bcl-xL (wild type and Bcl-xL S4C, C151A) were expressed in E. coli
BL21/RILP cells (Stratagene, now Agilent, Santa Clara, CA). Bacterial cultures were
started at 37 °C at OD600 ~ 0.03. Protein expression was induced with 1 mM IPTG
at OD600 ~ 0.5 followed by 4 h incubation at 20 °C. Cells were harvested by
centrifugation at 6000 ×g for 20 min. The cell pellets were shock-frozen in liquid
nitrogen and stored at −80 C. Before purification, the cells were thawed on ice,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00086-6

12 NATURE COMMUNICATIONS |8:  73 |DOI: 10.1038/s41467-017-00086-6 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


resolved in buffer, and broken on ice by five passages though an Emulsiflex C5
(Avestin, Mannheim, Germany). Afterwards, ~1–200 U DNase I were added per
liter bacterial culture (Merck, Darmstadt, Germany) and the mixture was incubated
30 min on ice. Then unbroken cells and membranes were removed by cen-
trifugation at 25,000 rpm (60min at 4 °C; using a JA25.50 rotor in a Beckmann
Avanti centrifuge (Beckman Coulter, Brea, CA). Bid variants were purified using
Nickel-NTA beads (Qiagen, Hilden, Germany) as the protein has an N-terminal
His tag (plasmid pET23-His-Bid). Purification was done using 5 ml Nickel-NTA
beads loaded into an empty gravity flow column. Buffers and purification steps
were done following the manufacturer instructions, and protein elution was done
by step a gradient adding 10, 25, and 250 nM Imidazol (in buffer). Protein purity
was tested by SDS-PAGE showing about 95% purity. Afterwards to buffer was
replaced by the caspase 8 cleavage buffer (50 mM NaCl, 5 mM DTT, 0.5 mM
EDTA, 25 mM HEPES, 5% Sucrose; pH 7.4) using dialysis. Bid was cleaved to cBid
by 4 h incubation with caspase 8 (at RT, Bid/Caspase 8 ratio ~1000:1; Caspase 8
was a gift J.-C. Martinou). Afterwards, a second purification (again based on
Nickel-NTA) was done to remove Caspase 8, followed by an SDS PAGE performed
to control protein purity (>95% see Supplemental Fig. 1E). Bax and Bcl-xL variants
were expressed as intein-fusion proteins using the IMPACT-system from NEB
(NEB, Ipswich, MA; plasmids pTYB1-BaxWT, pTYB1-Bax S4C, C62S, C126S,
pTYB1-Bcl-xLWT, or pTYB1-Bcl-XL S4C, C151A). Buffers and purification were
done following the manufacturer instructions. Samples were always kept on ice or
at 4 °C and the cleavage reaction was done ~ 16 h at 4 °C. After elution protein
purity was tested based on SDS-PAGE showing about ~ 90% purity. To remove
residual impurities the sample was further purified using an anion exchange col-
umn (using a HiTrap Q column from GE healthcare on an AKTA purifier FPLC
system from GE healthcare). First, the buffer was exchanged to 20 mM TRIS, pH 8
by dialysis to afterwards load the protein onto the column. The bound protein was
washed with >20 column volumes (CV) of the buffer and then eluted with a
gradient (8 CV) of high salt buffer (1 M NaCl, 20 mM TRIS, pH 8). The elution
fractions were analyzed by SDS-PAGE (purity >95%, see Supplemental Fig. 1E)
and finally, the buffer was exchanged using dialysis (to 150 mM NaCl, 20 mM
TRIS, pH 7.5 or 150 mM NaCL, 20 mM HEPES, pH 7.5). The wild type proteins
were aliquoted in 10 µl portions and shock-frozen in liquid nitrogen. Protein
mutants were labeled before freezing (with Alexa 488-maleimide and Alexa
633-maleimide in the case of the cBid and ATTO 488-maleimide or ATTO
655-maleimide in the case of Bax and Bcl-xL). For labeling, the protein was
incubated with threefold excess TCEP for 30 min on ice. Afterwards, a tenfold
excess of the label was added and the sample incubated 2 h at 4 °C, before another
fivefold excess of label was added and the sample incubated over night at 4 °C. Free
label and protein were separated using desalting columns, and the degree of
labeling was calculated using a combination of UV-VIS spectroscopy, Bradford
assays, and ESI-LC-MS.

Composition of the lipid mixtures. The lipid mixture mimicking the MOM had a
composition of 49% egg L-α-phosphatidyl choline (PC), 27% egg L-α phosphatidyl
ethanolamine (PE), 10% bovine liver L-α-phosphatidyl inositol (PI), 10% 18:1
phosphatidyl serine (PS) and 4% CL (all percentages mol/mol). Moreover lipid
mixtures composed of 30% CL and 70% PC or 20% CL and 70% PC (mol/mol)
were used. All lipids were purchased from Avanti polar lipids (Alabaster, AL) and
mixed in chloroform. Afterwards the chloroform was evaporated overnight under
vacuum and then flushed with nitrogen or argon gas and stored at −28 C.

GUV formation and sample preparation. GUVs were produced by
electro-formation and the experiments were done as described in ref. 19. Briefly, 5
μg lipid mixture dissolved in chloroform were spread on each platinum electrode of
the electro-formation chamber and allowed to dry, before immersion in 300 mM
sucrose. Electro-formation proceeded for 2 h at 10 Hz, followed by 30 min at 2 Hz.
Overall, 75 to 100 μl of the GUVs suspension was added to a solution of buffer
mixed with the proteins of interest in Lab-Tek 8-well chamber slides (NUNC) to a
final volume of 300 µl.

For experiments of Bax and Bcl-xL binding to GUVs, the sample mixtures were
prepared in 8-well Lab-Tek chamber slides (NUNC) in buffer (150 mM NaCl, 20
mM Tris, pH 7.5) and 80 µl of GUV suspension, in total volume of 300 µl. The
working concentration of BaxR, BaxG, and Bcl-xLG were 0.5–200 nM, respectively.
To monitor Bax auto-activation, BaxR was incubated at 42 °C for 30 min, allowed to
cool down to RT for 1 h, followed by subsequent addition of BaxG at RT and
incubation for 1 h. The binding of the proteins to GUVs was imaged using a
LSM710 confocal microscope. For Bax retro-translocation in model membranes,
BaxR was heat activated at 42 °C for 30 min, cooled down to RT for 1 h, followed by
the addition of Bcl-xLG and incubation for 1 h at room temperature. To quantify
the binding intensity of BaxR, BaxG, and Bcl-xLG, the radial profile plugin of Image
J was used with an integration angle of 60°. The background intensity was always
taken into account for the intensity measurements. The curves were fitted using a
nonlinear curve fitting function with sigmoidal dose response fit in Origin Lab.

Calcein permeabilization assay. LUVs composed of 80% PC and 20% CL were
prepared by solving dried lipid mixtures in buffer (20 nM HEPES, pH 7.4 and 80
mM Calcein [fluorescein-bis-methyl-iminodiaceticacid at pH 7.5] with 4 mgmg−1

lipid) using intensive vortexing paused by five cycles of freezing and thawing. The
multilamellar vesicles were passed 31 times through an extruder (Avestin) using
membranes with 400 nm pore size (Avestin). Calcein was entrapped in the vesicles
at a self-quenching concentration, so that its release in external medium was
accompanied by an increase of the intensity of fluorescence. LUVs were incubated
with different concentrations of Bax, varying from 0 to 400 nM at ~ 37 °C in buffer
(140 mM NaCl, 20 mM HEPES, 1 mM EDTA, pH 7.4) at room temperature with a
lipid to protein concentration of >1:500 at the highest Bax concentration. The
kinetics of calcein release were measured using a Tecan Infinite M200 microplate
reader (Tecan, Männedorf, Switzerland).

The percentage of release R was calculated from the expression:

R¼ FS� F0ð Þ � Fmax� F0ð Þð Þ ´ 100

where, F0 is the initial fluorescence of LUVs, Fmax is the maximum fluorescence
after addition of 5% TritonX-100, and FS is the equilibrium fluorescence in the
sample of interest.

FCCS measurements. All FCCS experiments were performed using a LSM710
confocal microscope equipped with a Confocor3, a C-Apochromat 40 × N.A. 1.2
water immersion objective and laser to excite at 488 and 633 nm. Photons emitted
from different fluorophores were separated by dichroic mirrors and detected by
Avalanche photo diodes placed after suitable filters (for Atto/Alexa488, 505–540
nm band pass filter; for the far red dyes a >655 nm long pass filter). Each sample
was measured at least 10,000× longer as their diffusion time to assure sufficient
data points to generate the autocorrelation curves. To calculate the diffusion time
(tD), diffusion coefficients (D), protein concentration, and the cross-correlation, we
assumed 3D Brownian diffusion and used the equations in Supplementary Table 1.

For solution FCS measurements, the proteins of interest were mixed with buffer
(150 mM NaCl, 20 mM Tris, pH 7.5) in a total volume of 100–200 µl and incubated
at least 30 min before measurements. Incubation and measurements were done in
Lab-Tek 8-well chamber slides (NUNC) that were blocked with Casein (saturated
solution in 150 mM NaCl, 20 mM TRIS, pH 7.5) before use. For all solution, FCCS
measurements we did three technical repetitions and removed traces that contained
large fluorescent particles disturbing the measurement. However, all n in the figure
legends refer to experimental repetitions.

For scanning FCCS, we performed two-focus scanning FCCS measurements at
22 °C using a Confocor 3 module. Photon arrival times were recorded with a
hardware correlator Flex 02-01D/C (http://correlator.com). We repeatedly scanned
the detection volume with two perpendicular lines across a GUV equator (the
distance between the two bleached lines d was measured on a film of dried
fluorophores). Data analysis was performed with home-build software21. We
binned the photon stream in 2 µs and arranged it as a matrix such that every row
corresponded to one line scan. We corrected for membrane movements by
calculating the maximum of a running average over several hundred line scans and
shifting it to the same column. We fitted an average over all rows with a Gaussian
and we added only the elements of each row between −2.5σ and 2.5σ to calculate
the fluorescence intensity trace. We computed the auto-cross-correlation, spectral
cross-correlation, and spatial cross-correlation curves from the intensity traces and
excluded irregular curves resulting from instabilities and distortions. We fitted the
auto-correlation and cross-correlation functions with a nonlinear least-squares
global fitting algorithm as in ref. 21. The equations used are shown in
Supplementary Table 1.

In scanning FCCS, each value measured refers to one GUV. In total, we did n ≥
3 independent experiments for each condition and interaction pair. In each
experiment, we measured several GUVs that are shown as individual data points.
Overall, 25–50% of measured GUVs were not included in the analysis for three
reasons: (1) The GUV moved out of the focal volume during the measurement time
(300 s). (2) Identification of large aggregates/buds on the surface of the GUV (see
Supplemental Fig. 7) that strongly affected the measurement. (3) Large changes in
protein concentration in the membrane during the measurement. The experiments
were set up as a way that GUVs were added with a lipid to protein ratio of ~500:1
or higher.

Mathematical modeling. For each possible interaction scenario, an ODE-based
model based on mass action kinetics was set up in COPASI (4.15, build 95)71.
Differently labeled Bcl-xL proteins were included as separate species in the
reactions.

Model parameters were fitted against four time courses of three different
particle concentrations (Bcl-xLG, Bcl-xLR, and Bcl-xLG/Bcl-xLR) measured by FCS,
with and without cBid addition. Bcl-xLG particles denote Bcl-xLG monomers and
all possible multimers including at least one Bcl-xLG (same for Bcl-xLR particles).
Bcl-xLG/Bcl-xLR particles denote any particles including at least one Bcl-xLG and
one Bcl-xLR. Initial concentrations of monomeric and homo-dimeric Bcl-xLG and
Bcl-xLR were included into parameter estimation (constrained between 0 and 10
nM).

For parameter fitting, first a global optimization method was applied by using
the Evolutionary Programming algorithm in COPASI, where the population size
was 10 times the number of parameters, and the maximum number of generations
was 10 times the population size. To further improve the best parameter set found
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by the global optimization method, the local method “Hooke and Jeeves” from
within COPASI was used with default parameter settings. This procedure was
described in ref. 72.

The following objective function was used for parameter fitting (weighted SSR,
sum of squared residuals):

SSR ¼
X

i;j

ωj� xi;j � yi;j Pð Þ� �2

with weight ωj ¼ 1

x2j

� �; j= time course of one particle type; i=measurement at one

time point; xi,j=measurement of one particle type at one time point; yi,j(P)=
simulated value of one particle type at one time point given the parameter set P.

Bcl-xLR and Bcl-xLG were mixed and incubated 2 h at RT, before the first data
point was taken at t= −20. Afterwards, the sample was split into two parts: to one
buffer was added at t= 0, to the other 400 nM cBid was added at t= 0, thereby the
sample was diluted 1:1. The dilution was accounted for by assuming half particle
concentrations in measurements at t= −20 min. To improve fit performance,
measurement of buffer control sample at 0 min was added to the time course
including cBid addition, which was possible because the time courses of buffer
control and cBid addition were derived from the same reaction sample and only
separated at t= 0 min. The value of cBid addition was set from t= 0 to 1 min,
which is justifiable by relatively long measurement times of FCS for every time
point (2 min per time point).

The experiments were corrected for unlabeled Bcl-xL proteins by adding an
unlabeled Bcl-xL species to the ODE systems. Initial concentrations of unlabeled
monomers, and (partially) unlabeled Bcl-xL dimers were calculated the following
way, assuming that the label has no influence on association and dissociation
behavior:

DOL•-labeling efficiency of Bcl-xLG (B•); DOL∘-labeling efficiency of Bcl-xLR
(B∘)

unlabeled BclxL monomer:

B½ � ¼ 1� DOLB�ð Þ � B�½ �
DOLB�

þ 1� DOLB�ð Þ � B�½ �
DOLB�

unlabeled Bcl-xL homo-dimer:

B� B½ � ¼ 1� DOLB�ð Þ2 � B � �B�½ �
DOL2B�

þ 1� DOLB�ð Þ2 � B� � B�½ �
DOLB�2

Bcl-xL homo-dimer including one labeled Bcl-xL (correspondingly for B•−B):

B � �B½ � ¼ DOLB� 1� DOLB�ð Þ � 2 � B � �B�½ �
DOL2B�

The standard deviation shown in the particle time courses of Bcl-xLG–Bcl-xLR
particles was calculated the following way: 10,000 numbers were sampled from the
cross-correlation (CC) value of Bcl-xLG with Bcl-xLR with a gaussian distribution
around the measured mean with the measured standard deviation. The same
procedure was applied vice versa (CC of Bcl-xLR with Bcl-xLG). From these 20,000
values the mean and standard deviation were calculated. All ODE equations used
are listed in Supplementary Table 3.

Differences in AICc (AIC corrected for small sample size) values and the Akaike
weight wi were calculated as following and as described elsewhere73:

k= number of parameters; n= number of data points; R = number of tested
models

AICc ¼ 2kþ n � ln SSRð Þ þ 2k � n
n� k� 1

� �

Δi ¼ AICc;i � AICc;min

wi ¼ exp �Δi=2ð Þ
PR

j¼1 exp �Δj=2
� �

Parameter identifiability analysis. Parameter identifiability analysis was
performed and the 95% confidence regions of each parameter were determined as
described in ref. 48. Briefly, the objective function was reoptimized for each
parameter on discrete logarithmic steps surrounding the optimized parameter
value p̂ with respect to all other parameters using the Hooke and Jeeves algorithm
in COPASI. The confidence region was determined as described in ref. 48:

PCR ¼ p : SSR pð Þ � SSR p̂ð Þ 1þ k
n�k F

α
k;n�k

� �n o
, where, Fα

k;n�k is the upper

α-critical value of the Fk;n�k distribution.
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Abstract 28 

The rapid, typically all-or-none process of mitochondrial outer membrane permeabilization 29 

(MOMP) constitutes a primary cell death decision that is controlled by the dynamic interplay of 30 

pro- and antiapoptotic Bcl-2 family proteins. Even though a wealth of quantitative biochemical 31 

and biophysical data on Bcl-2 family interactions is available, our understanding of how 32 

MOMP decisions are controlled by the Bcl-2 family interactome remains incomplete. Besides 33 

the question if our knowledge on Bcl-2 protein interactions is sufficient to explain MOMP 34 

decisions during cell death induction, it is unclear if and to which extent the recently described 35 

shuttling of Bcl-2 family species between lipid and aqueous phases contributes to regulating 36 

MOMP sensitivity. To address these questions, we studied the interplay of tBid, Bax and Bcl-37 

xL, using a combined approach of deterministic mathematical modeling and retrospective as 38 

well as prospective experimental testing of model predictions. We first developed a core 39 

model of the tBid-Bax interplay that accurately reproduced quantitative experimental data on 40 

tBid-triggered Bax activation and oligomerization measured in membranes. This model was 41 

then extended by heterodimeric Bcl-xL interactions, with the additional option to account for 42 

Bcl-xL-dependent retrotranslocation of Bax from the mitochondria into the cytosol. Strikingly, 43 

only when retrotranslocation was taken into account, the model outputs accurately 44 

reproduced and correctly predicted all quantitative experimental results. These included the 45 

potency of Bcl-xL in suppressing Bax oligomerization and its role in limiting Bax recruitment to 46 

membranes. Likewise, the resistance to low concentrations of MOMP triggers as well as 47 

synergistic responses to combinations of tBid and sensitizer BH3-only peptides were correctly 48 

predicted. Importantly, retrotranslocation activity of Bcl-xL seems essential to strictly separate 49 

conditions of MOMP competency and resistance, thus establishing an all-or-none cell fate 50 

decision. Our results therefore support indispensable and currently underappreciated roles of 51 

Bcl-xL-mediated Bax retrotranslocation in MOMP regulation. 52 
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Key words: Cell death, apoptosis, Bcl-2 family, mitochondrial outer membrane 54 
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 4 

Introduction 56 

Pro- and antiapoptotic members of the Bcl-2 (B-cell lymphoma 2) protein family gather signals 57 

from pathways sensing stresses, such as DNA damage or cytokine deprivation, and regulate 58 

the mitochondrial pathway of apoptosis (1,2). The primary mediators of incoming stress 59 

signals are Bcl-2 family members with a single Bcl-2 homology (BH) domain, the so-called 60 

BH3-only proteins. The subgroup of activator BH3-only proteins, such as truncated Bid (tBid), 61 

Bim or Puma, directly activate the effector Bcl-2 family proteins Bax and Bak (3,4). These in 62 

turn oligomerize to form pores in the outer mitochondrial membrane, causing the release of 63 

cytochrome c and other proapoptotic factors into the cytosol (5). This process of mitochondrial 64 

outer membrane permeabilization (MOMP) typically is an all-or-none event, resulting in the 65 

rapid and efficient activation of effector caspases and apoptosis execution (6,7). Prosurvival 66 

family members, such as Bcl-xL, Bcl-2 and Mcl-1, efficiently antagonize both activator and 67 

sensitizer BH3-only proteins as well as Bax and Bak, thereby protecting cells from unwanted 68 

MOMP. However, their increased expression might also completely prevent apoptosis and 69 

thereby the elimination of excessively stressed and damaged cells (8,9). Imbalances in the 70 

expression of Bcl-2 family members therefore interfere with normal cellular homeostasis in 71 

multicellular organisms and can contribute to the complex etiologies of diverse degenerative 72 

and proliferative diseases (3). 73 

Importantly, the majority of critical interactions between Bcl-2 family members occur at or 74 

within the outer mitochondrial membrane. Membrane association and integration significantly 75 

affect protein conformations and binding affinities of Bcl-2 family members, so that authentic 76 

interaction data cannot be obtained from studies carried out solely in aqueous environments 77 

(10,11). For example, membrane environments dramatically promote the association of tBid 78 

with Bcl-xL (10). Furthermore, membrane bound proteins induce the recruitment of further 79 

family members, and membrane insertion leads to altered interaction patterns (12). Similar 80 
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findings regarding the regulatory role of the membrane were made for various Bcl-2 family 81 

members and interactions, using NMR structure elucidation in artificial micelles (13), 82 

subcellular fractionation (14,15), or by studying GFP fusion proteins and their recruitment to 83 

the outer mitochondrial membrane (16).  84 

Recently, Bax activation was described at greater mechanistic detail. Binding of the tBid BH3 85 

domain to Bax unlatches the Bax core domain, thereby exposing the Bax BH3 domain and 86 

preparing Bax to form BH3-in-groove homodimers (17). Strikingly, the lipidic environment at 87 

the mitochondrial outer membrane appears to facilitate the disengagement of core and latch 88 

domains and provides a surface to preorientate Bax for homooligomerisation (17). Bak is 89 

likely activated by a similar molecular mechanism in mitochondrial membranes (18). Even 90 

though technologies such as scanning fluorescence cross correlation spectroscopy (sFCCS) 91 

or FRET-based assays in lipid environments now begin to provide reliable data from well-92 

controlled experimental conditions (12,19,20), obtaining a quantitative and kinetic 93 

understanding of the Bcl-2 interactome and MOMP regulation remains challenging (4,21).  94 

A further layer of complexity in the regulation of MOMP sensitivity might be added by the 95 

recently reported shuttling of Bcl-2 family members. Most prominently, it was demonstrated 96 

that the cytosolic fraction of Bax and Bax bound to the mitochondrial outer membrane exist in 97 

a dynamic equilibrium in healthy cells (22–24). Bcl-xL, a predominantly membrane integrated 98 

family member, promotes retrotranslocation of Bax from the mitochondria into the cytosol and 99 

thereby limits Bax cytotoxicity (22,25). However, to which extent retrotranslocation contributes 100 

to the antiapoptotic potential of Bcl-xL remains so far undetermined.  101 

Here, we studied the regulation of MOMP by the interplay of tBid, Bax and Bcl-xL at and within 102 

membranes, using a combined approach of deterministic mathematical modeling and 103 

experimental validation of model predictions. We were able to quantify for the first time the 104 

contribution of Bax retrotranslocation to the overall antiapoptotic potential of Bcl-xL. Bax 105 
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retrotranslocation functionally appears to be essential to provide MOMP resistance to 106 

residual, basal BH3-only protein stress while still allowing rapid and synergistic MOMP 107 

induction in response to combinations of activator and sensitizer BH3-only protein inputs. 108 

Furthermore, retrotranslocation activity is required to control switch-like transitions from 109 

MOMP competency to MOMP resistance across a narrow Bcl-xL concentration range. 110 
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Results 111 

Quantitative kinetic modeling of the tBid-Bax interplay accurately simulates Bax 112 

activation and oligomerization 113 

We initially developed a core mathematical model of the tBid-Bax interplay at and within 114 

membranes to study if membrane recruitment, activation and oligomerization of Bax, leading 115 

to MOMP, can be simulated authentically. This core model subsequently was used to analyze 116 

the potency of Bcl-xL in preventing MOMP and to determine the contribution of Bax 117 

retrotranslocation to the antiapoptotic function of Bcl-xL. All processes were modeled using 118 

ordinary differential equations (see methods section and Supplementary Material 1 for 119 

detailed information). 120 

The activator BH3-only protein tBid was implemented to promote the insertion of monomeric 121 

Bax into the outer mitochondrial membrane (26) (Figure 1a). In the model, this process 122 

comprised serial reversible reactions, including tBid-mediated Bax membrane association and 123 

subsequent membrane insertion to yield Bax in its fully active conformation (aBax). The two-124 

step activation process of Bax is in agreement with the recently proposed core/latch 125 

disengagement mechanism, in which the BH3 domain of tBid first binds to Bax and thereby 126 

induces the dissociation of Bax’s core and latch domains (17). aBax subsequently can form 127 

symmetric homodimers with other aBax molecules by BH3 domain/binding groove 128 

interactions (17). In line with experimental evidence, aBax was assumed to recruit further Bax 129 

molecules to the membrane, thereby driving a Bax autoactivation loop (27–29) (Figure 1a). 130 

Since Bax autoactivation relies on the Bax BH3 domain (27), the reaction sequence was 131 

implemented analogous to Bax activation by tBid (Figure 1a). Experimentally, mostly even-132 

numbered oligomers of aBax can be detected in membranes (30). We thus modeled aBax 133 

oligomerization by assuming dimeric aBax species aggregating into tetramers (aBax4) and 134 

hexamers (aBax6) (Figure 1b). Higher order oligomers were not explicitly modeled, since 135 
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aBax4 and aBax6 appear to be sufficient for pore formation and cytochrome c release into the 136 

cytosol (31,32). The amounts of aBax4 and aBax6 were therefore regarded as a final output of 137 

the model, indicative of the extent of membrane permeabilization (Figure 1b). 138 

Bax multimers rapidly accumulate in membranes in response to tBid addition, as was 139 

demonstrated by measuring oligomerization kinetics in lipid bilayers (30). However, the rate 140 

and dissociation constants for the underlying reactions and interactions so far can only be 141 

estimated within biologically plausible and justifiable parameter ranges. We therefore tested if 142 

model parameterizations could be obtained from these ranges that allowed us to reproduce 143 

experimental kinetics of Bax oligomerization. A detailed description of this procedure and the 144 

definition of suitable parameter ranges are provided in the methods section and in 145 

Supplementary Material 1. Results from ensemble simulations (n = 340) using optimized 146 

parameter ranges demonstrate that oligomerization of membrane bound aBax proceeds 147 

swiftly upon addition of tBid, with aBax4 and aBax6 species rapidly reaching equilibrium 148 

concentrations within 1-2 min of triggering the reaction network (Figure 2a), thus closely 149 

matching reported kinetics (30). The distribution of oligomeric Bax species indicated that 150 

predominantly Bax tetramers and, albeit in lower amounts, Bax hexamers are formed. This 151 

distribution agreed well with the distribution of Bax oligomers measured experimentally 152 

(Figure 2b). 153 

Next, we used this core model to study oligomerization of aBax resulting from autoactivation. 154 

To this end, we ran simulations in absence of tBid and used small amounts of aBax as model 155 

inputs. For inputs of up to 10-20% aBax, we noted roughly equimolar amounts of aBax2 and 156 

aBax4 forming. To validate these predictions, we examined experimental data in which heat-157 

activated aBax was used to initiate Bax oligomerization and pore formation in absence of tBid 158 

(30). Comparison of model predictions and experimentally observed distributions confirmed a 159 

close match of the results, with aBax2 and aBax4 being the predominant species (Figure 2c). 160 
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For conditions with high amounts of aBax inputs (80%), it would be assumed that oligomer 161 

distributions similar to those in presence of tBid would be obtained. Control simulations 162 

indeed confirmed this assumption (not shown).  163 

To conclude, our core model of the tBid-Bax interplay therefore reproduces experimental 164 

findings on tBid-induced Bax oligomerization, kinetically and quantitatively, and, without 165 

further modification of its structure or parameter values, accurately predicts Bax oligomer 166 

distributions obtained by autoactivation. 167 

 168 

Bcl-xL-mediated Bax retrotranslocation is critical for limiting Bax oligomerization 169 

We next integrated Bcl-xL into the model to study the interplay of this classical triad of 170 

activator, effector and prosurvival Bcl-2 family members, and to assess the potency of Bcl-xL 171 

in preventing Bax pore formation in this signaling context. Bcl-xL mediates its prosurvival 172 

function by at least two well-characterized mechanisms, i.e. (i) by binding to aBax and thereby 173 

preventing oligomerization and pore formation (33,34), as well as (ii) by sequestering BH3-174 

only proteins such as tBid (26,35). We thus accounted for heterodimerization of Bcl-xL with 175 

tBid and aBax in the extended model (Figure 3a). Recent experimental studies interestingly 176 

revealed that Bcl-xL also retrotranslocates aBax from mitochondrial membranes into the 177 

cytosol, a process that could add to the antiapoptotic potency of Bcl-xL (22,24,25). 178 

Retrotranslocation was therefore implemented as an optional model extension (Figure 3a, 179 

black box). 180 

Experimentally, the ability of Bcl-xL to disassemble tBid-induced, pre-formed aBax oligomers 181 

can be quantified in lipid bilayers isolated from large unilamellar vesicles (30) (Figure 3b). 182 

Data on steady state distributions of aBax oligomers and heterodimers with Bcl-xL indicate 183 

that aBax hexamers cannot be observed upon addition of Bcl-xL and that the majority of aBax 184 

resides within aBax2 and Bcl-xL-aBax species (Figure 3c). Interestingly, simulations 185 
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conducted with our core model, extended by the tBid-Bcl-xL and aBax-Bcl-xL interplay, failed 186 

to reproduce such data (Figure 3d). Instead, we found that the majority of aBax still formed 187 

tetramers and hexamers (Figure 3d). Even when searching a large parameter space, we 188 

failed to fit the model to the experimental data shown in Figure 3c. We next tested if the 189 

model variant that included the possibility for Bcl-xL to retrotranslocate membrane-bound Bax 190 

into the cytosol was better suited to provide outputs that correspond to experimental findings. 191 

Indeed, results obtained with this model variant agreed very well with experimentally 192 

observed aBax oligomer distributions when assuming retrotranslocation rates of 5 to 10 s-1 193 

(Figure 3e). 194 

In summary, these results demonstrate that the interplay of tBid, Bax and Bcl-xL at and within 195 

membranes can be quantitatively recapitulated by mathematical modeling, and that the ability 196 

of Bcl-xL to retrotranslocate aBax from membranes into the cytosol needs to be taken into 197 

account to reproduce experimental data on Bax oligomerization. 198 

 199 

Mathematical modeling accurately predicts limited Bax membrane recruitment in 200 

presence of Bcl-xL. 201 

We next used our model to estimate the overall amount of Bax recruitment to membranes in 202 

presence of Bcl-xL. To this end, we studied conditions at which small amounts of tBid (20 nM) 203 

activate higher concentrations of Bax (100 nM), in absence or presence of increasing 204 

amounts of Bcl-xL. To determine the overall recruitment of Bax, we took into account all Bax 205 

containing species at or within membranes (ΣBaxM) (Figure 4a). Without inclusion of Bax 206 

retrotranslocation, Bcl-xL was not able to limit Bax membrane recruitment (Figure 4b), even 207 

when assuming rapid association of Bcl-xL with tBid and aBax, and high affinity of the 208 

resulting complexes (kon 10 nM-1s-1, KD 0.1 nM). In contrast, ensemble simulations that took 209 

Bax retrotranslocation into account predicted that Bax membrane recruitment would be 210 
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antagonized very potently already at concentrations of 20 nM Bcl-xL (Figure 4c). In 211 

comparison to previously reported experimental findings (36), these predictions seemed to be 212 

highly accurate (Figure 4d). We next eliminated the binding of tBid to Bcl-xL in the model to 213 

study the contribution of this interaction to the potency of Bcl-xL in limiting Bax membrane 214 

recruitment. For these conditions, higher amounts of Bax were predicted to accumulate at 215 

membranes, with high Bcl-xL concentrations nevertheless efficiently limiting overall Bax 216 

recruitment to approximately 15% (Figure 4e). Very similar trends were observed 217 

experimentally using the tBid variant tBid-mt1 (36), albeit with our predictions slightly 218 

overestimating the potency of Bcl-xL at lower concentrations (Figure 4e,f).  219 

Overall, these findings demonstrate that the capability of Bcl-xL to retrotranslocate Bax from 220 

membranes into the cytosol significantly contributes to its antiapoptotic potential and that 221 

overall Bax membrane recruitment can be accurately predicted by mathematically modeling 222 

the tBid-Bax-Bcl-xL interplay. 223 

 224 

Activator/sensitizer BH3-only synergies can be predicted if retrotranslocation activity 225 

of Bcl-xL is taken into account.  226 

Sensitizer BH3-only proteins play major cell type- and tissue-specific roles in the regulation of 227 

apoptosis susceptibility (37). We therefore studied how sensitizer BH3 peptides (38) co-228 

regulate Bax oligomerization together with activator BH3-only protein tBid, and how the 229 

retrotranslocation activity of Bcl-xL influences Bax oligomerization in this scenario. For 230 

implementation into the mathematical model, we assumed that sensitizers and activators bind 231 

to Bcl-xL
 with identical affinity, but that sensitizers cannot interact with or activate Bax (Figure 232 

5a). We first calculated if a sensitizer alone would be sufficient to trigger efficient Bax 233 

oligomerization in presence of Bcl-xL and limited amounts of aBax (10%). At these conditions, 234 

even high amounts of sensitizer failed to induce Bax oligomerization (Figure 5b). In contrast, 235 



 12

low concentrations of >20 nM tBid were sufficient to oligomerize nearly the entire pool of Bax 236 

(approx. 95%) (Figure 5b). We next tested if these predictions could be confirmed 237 

experimentally by testing tBid and an Hrk-derived BH3 peptide (38). Indeed, Bax pores only 238 

formed when activator BH3-only protein tBid was added to Bax and Bcl-xL, as evidenced by 239 

the release of calcein from large unilamellar vesicles (LUVs) (Figure 5c). Simulations for 240 

various combinations of sensitizer and activator concentrations suggested that sensitizers 241 

would be expected to potently enhance tBid-induced Bax oligomerization and pore formation, 242 

with sensitizer in nM amounts sufficient for significantly decreasing the concentration of tBid 243 

required for Bax pore formation (Figure 5d). In comparison to the theoretical additive isobole 244 

for half-maximal Bax recruitment into pores (Figure 5d, blue line), the interaction between 245 

activator and sensitizer reveals a highly synergistic behavior. Additional simulations predicted 246 

that synergies can be expected as long as the retrotranslocation activity of Bcl-xL is taken into 247 

account, since otherwise the reaction system was hypersensitive to residual amounts of 248 

activator BH3-only proteins (Figure 5e, Supplemental Figure 1). Subsequent experiments 249 

confirmed these predictions, with combinations of suboptimal amounts of tBid and Hrk peptide 250 

inducing efficient calcein release from liposomes (Figure 5f). Of note, we utilized the Hrk 251 

peptide at micromolar concentrations, as it was shown previously that BH3 peptides are 252 

orders of magnitude less potent than the full length proteins (39), most likely due to 253 

decreased membrane binding affinity of the soluble peptides (40). Taken together, these 254 

results therefore demonstrate that upon inclusion of retrotranslocation into the model, 255 

experimentally observed synergies between activator and sensitizer BH3-only proteins can be 256 

predicted. 257 

 258 

Bax retrotranslocation is essential to separate conditions of MOMP competency and 259 

resistance. 260 
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As reported previously (5,6), MOMP typically is a rapid, all-or-none cell fate decision to initiate 261 

the apoptosis execution phase. The binary nature of death decisions (yes vs. no) implies that 262 

conditions of MOMP competency and resistance must be strictly separated to avoid or 263 

minimize the chance for an inefficient or submaximal induction of apoptosis execution (41). 264 

We therefore studied if the signaling system would be capable of controlling Bax 265 

oligomerization and pore formation competency in a switch-like manner, and to which extent 266 

this decision switch relies on the capacity of Bcl-xL to retrotranslocate Bax into the cytosol. In 267 

these simulations, we steadily upregulated Bcl-xL and calculated whether Bax oligomerization 268 

was inhibited. The results from these analyses demonstrate that as long as Bcl-xL is capable 269 

of retrotranslocating Bax, conditions of complete Bax oligomerization and absence of Bax 270 

oligomerization are separated by a very narrow concentration range of sub-stoichiometric 271 

amounts of Bcl-xL (Figure 6a,b). In contrast, loss of retrotranslocation activity resulted in an 272 

approximately inversely proportional relationship between the amounts of oligomerized Bax 273 

and the amounts of Bcl-xL, with super-stoichiometric amounts of Bcl-xL being required to 274 

prevent Bax oligomerization and pore formation (Figure 6a,b). This threshold behavior was 275 

observed regardless of whether sensitizer BH3-only contributions were taken into account or 276 

not. Based on the conditions studied here, we can estimate that retrotranslocation activity 277 

increases the antiapoptotic potency of Bcl-xL at least 10-fold (30 nM vs. 300 nM to prevent 278 

Bax oligomerization). These findings therefore demonstrate that Bax retrotranslocation is 279 

essential to generate sharp decision thresholds that separate MOMP competency from 280 

MOMP resistance, with near-binary characteristics.  281 

 282 

Discussion 283 

Here, we studied the interplay of activator BH3-only protein tBid, multi-domain effector Bax 284 

and their antagonist Bcl-xL, using a combined approach of mathematical systems modeling as 285 
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well as retrospective and prospective experimental validation of model predictions 286 

(summarized in Figure 7). The results of our simulations demonstrate that inclusion of Bax 287 

retrotranslocation by Bcl-xL is indispensable for reproducing Bax membrane integration and 288 

oligomerization quantitatively and kinetically. We furthermore determined that, under the 289 

conditions studied here, retrotranslocation enhances the antiapoptotic potential of Bcl-xL 290 

approximately 10-fold, indicating a highly significant and currently still underestimated 291 

contribution of Bax shuttling towards defining cellular apoptosis resistance. Furthermore, the 292 

process of Bax retrotranslocation is essential for the MOMP decision to display near-binary, 293 

switch-like characteristics, with the signaling system transitioning from high MOMP 294 

competency to complete MOMP resistance across a narrow Bcl-xL concentration range. 295 

Even though Bax and Bcl-xL have long been identified as key regulators of MOMP and 296 

apoptosis susceptibility (42,43), evidence for continuous shuttling of Bax from mitochondrial 297 

membranes back into the cytosol emerged only in recent years (22,23). While other 298 

antiapoptotic Bcl-2 family members might likewise possess retrotranslocation activity, the 299 

molecular mechanisms have been studied predominantly for Bcl-xL (24,25,44). For 300 

retrotranslocation to occur, Bax must interact with the hydrophobic groove of Bcl-xL via its 301 

BH3 domain and additionally with Bcl-xL’s COOH-terminal membrane anchor, since 302 

preventing any of these interactions results in mitochondrial Bax accumulation (25). 303 

Retrotranslocation can be observed in minimalistic, but well-controlled in vitro experimental 304 

settings, as evidenced by a decrease in Bax binding to the membrane in giant unilamellar 305 

vesicles upon Bcl-xL membrane insertion (12). However, within the complexity of living cells 306 

additional processes might undoubtedly play coregulatory roles. Indeed, some evidence in 307 

this direction has been provided. Mitochondrial specificity and membrane affinity for Bax may 308 

rely on additional cofactors such as VDAC2, which recently was reported to also contribute to 309 

Bax retrotranslocation (45). Additionally, mitochondria-ER contact sites seem to be 310 
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preferential binding sites for Bcl-2 family proteins, probably through the local accumulation of 311 

Ca2+, which might foster the formation of membrane microdomains rich in negatively charged 312 

cardiolipin (46–48). Cardiolipin indeed promotes tBid recruitment to membranes and efficient 313 

Bax activation (49,50). Furthermore, posttranslational modifications of Bax, such as 314 

phosphorylation of S184, were proposed to interfere with its membrane binding and apoptotic 315 

activity (51,52). 316 

Interestingly, in living cells engineered to be devoid of all known BH3-only activator proteins, 317 

antagonizing antiapoptotic family members alone is sufficient to induce Bax translocation and 318 

apoptotic cell death (53). In vitro, however, Bax does not spontaneously form pores (26,39). 319 

These results therefore hint at additional processes contributing to Bax activation in cellulo, or 320 

at environments more prone to induce basal rates of Bax membrane insertion. These 321 

observations further support an important role of retrotranslocation activity in preventing 322 

apoptosis hypersensitivity and unwanted cell death. Retrotranslocation activity is not 323 

restricted to Bcl-xL, since other antiapoptotic family members, such as Bcl-2 and Mcl-1, 324 

retrotranslocate Bax at similar rates (22). Effector protein Bak, closely related to Bax, likewise 325 

is retrotranslocated from mitochondria into the cytosol, albeit at far lower rates (24). Overall, 326 

this indicates a continuous shuttling to and from mitochondrial membranes, including all major 327 

multi-domain Bcl-2 family members. Based on our results on the relevance of 328 

retrotanslocation, it is therefore likely that the continuous interplay of pro- and antiapoptotic 329 

fluxes establishes a steady state that prevents MOMP in stress-free scenarios. Indeed, 330 

replacing the C-terminal membrane anchor of Bax with that of Bak, not only targets Bax to 331 

mitochondria, but also reduces Bax retrotranslocation and is sufficient to trigger spontaneous 332 

MOMP and apoptosis execution (24).  333 

Another notable finding of our study is that retrotranslocation generates a signaling system in 334 

which conditions of MOMP competency and MOMP resistance are separated in a near 335 
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binary, switch-like manner by small changes in the amounts of Bcl-xL. The binary nature of 336 

the MOMP decision is well known from studies on mitochondrial permeabilization during 337 

intrinsic and extrinsic apoptosis. Typically, all or no mitochondria in individual cells commit 338 

complete MOMP (6,7). Conditions of submaximal or incomplete MOMP instead appear to be 339 

exceptions (41). We furthermore show that sensitizer and activator BH3-only proteins can act 340 

synergistically in overcoming the threshold for effective MOMP execution. By sequestering 341 

Bcl-xL and thereby blocking its prosurvival functions, sensitizers efficiently lower the amount 342 

of tBid necessary for MOMP competence. This may explain the effectiveness of sensitizer 343 

BH3-mimetics in promoting apoptosis induction in cells that are addicted to prosurvival Bcl-2 344 

family proteins, where the latter hold in check subthreshold amounts of activator BH3-only 345 

proteins (54). Synergies between sensitizer and activator BH3-only proteins were also 346 

described for various combination treatments for which signal transduction pathways 347 

culminate at the level of Bcl-2 family members, resulting in improved apoptosis responses of 348 

otherwise resistant tumors (55,56). 349 

The Bcl-2 family interplay and the control of the MOMP decision have been the subject of 350 

previous systems biological studies (57,58). However, the detail at which the interactions 351 

were modeled varied greatly, and model development served different purposes. Additionally, 352 

quantitative and time-resolved data, especially for the oligomerization processes of full-length 353 

proteins in membrane environments, only recently became available by the use of biophysical 354 

methods in in vitro systems (30).  355 

In an early theoretical study, a cellular automaton as well as an ODE-based modeling 356 

approach were employed to study robustness properties  of Bax-induced MOMP. The positive 357 

feedback of activator BH3-only proteins that are freed by binding of aBax to Bcl-2 was 358 

identified to contribute substantially to a swift accumulation of active Bax molecules (60). At 359 

the time of the study, experimental information on membrane recruitment, insertion and 360 
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kinetics of oligomerization of active Bax molecules were not available, but the simulations 361 

nevertheless emphasized that non-linear causation is very likely an important driver of Bax 362 

pore formation. An expansion of this modeling strategy, using a combined experimental and 363 

mathematical approach, demonstrated that the amounts of mitochondrial Bax measured at 364 

the time of MOMP would indeed be sufficient to allow higher order oligomers to form by lateral 365 

aBax diffusion and aggregation, linking for the first time mitochondrial Bax amouts to pore 366 

formation propensity and MOMP competence (61). However, whether switching between full 367 

MOMP competency and resistance can be achieved by small changes in antiapoptotic family 368 

members was outside of the scope of the study. The so far most sophisticated and detailed 369 

model of the Bcl-2 family interplay successfully linked chemotherapy responsiveness to 370 

calculated resistances to BH3-only stress doses in colorectal cancer (62). These resistances 371 

were determined from the antiapoptotic thresholds that emerge from the interplay of 372 

prosurvival and effector Bcl-2 family protein concentrations. Interestingly, a calculated 373 

resistance to high stress doses correlated with a higher risk for disease recurrence in stage III 374 

colorectal cancer patients that received adjuvant chemotherapy, indicating the potential of 375 

mathematical models of protein interaction networks as innovative systems-based biomarkers 376 

(62,63). Since we demonstrated that retrotranslocation of Bax and, by extension, possibly Bak 377 

is crucial to strictly separate conditions of MOMP competency and resistance, it is tempting to 378 

speculate that including information on steady-state dynamics and shuttling rates of Bcl-2 379 

family members might improve the prognostic power of translationally relevant systems 380 

models.  381 

 382 

  383 



 18

Materials and Methods 384 

Model Implementation 385 

The model was implemented as an ordinary differential equations (ODE)-based model in R 386 

(version 3.3.2). Supplementary Material 1 (Supplementary Figure 2 and Supplementary 387 

Tables 1-3) provides detailed information on all species, interactions and rate constants. 388 

ODEs were integrated numerically using R's routine lsoda (package deSolve, version 1.13), 389 

which provides an interface to the lsoda FORTRAN ODE solver, which switches automatically 390 

between stiff and nonstiff methods. 391 

Parameter estimates, sampling procedure and model training 392 

Biologically plausible parameter ranges were chosen as described in Supplementary Material 393 

1. Ensemble simulations were performed as part of model training, using the following 394 

procedure. Biologically plausible parameter ranges were transformed to be log10 uniformly 395 

distributed in [0,1] and parameters were sampled from these distributions. We discretized the 396 

parameter space into a 20-level grid. Two hundred trajectories were sampled in parameter 397 

space following a previously described procedure (64): In brief, for each trajectory a random 398 

grid point was selected. From this point one parameter was changed (in- or decreased) at a 399 

time by a value of d=20/[2*(20-1)] until each parameter was changed exactly once. This 400 

provides a trajectory through parameter space with (n+1) sampling points, were n is the 401 

number of parameters in the respective model used for the simulation. The choice of d as 402 

20/[2*(20-1)] (for a 20-level grid) ensured that all levels have equal probability of being 403 

selected in the sampling strategy (64). This resulted in an ensemble size of 200*(n+1) model 404 

parameterizations. A function written in R generating trajectories in parameter space is 405 

provided as Supplementary Material 2. 406 

For each output of interest (e.g. aBax [%]), dot plots of ensemble simulations were generated, 407 

where each dot corresponds to one simulation. This allowed us to assess the influence of 408 
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each parameter on model outputs. Regions of the parameter space not providing outputs in 409 

agreement with experimental training data were excluded. Restriction of parameter ranges, 410 

simulation and analysis of dot plots in an iterative procedure lead to the parameter ranges of 411 

the trained model (see also section on parameter ranges of the trained core and complete 412 

model in Supplementary Material 1, Supplementary Figures 3-25).  413 

Simulations and Model Predictions 414 

Ensemble predictions were generated by sampling from parameter ranges of the trained 415 

models as defined in Supplementary Table 1 (Supplementary Material 1). 20 trajectories in 416 

parameter space were generated for simulations shown in Figures 2a, 5 and 6; 200 417 

trajectories were generated for all other simulations. Associated protein amounts used as 418 

model inputs are listed in Supplementary Table 2 (Supplementary Material 1). All results were 419 

reproducible by independent resampling in parameter space. 420 

Testing for Synergy 421 

Dose response curves for tBid and sensitizer addition alone or in combination were generated 422 

by evaluating the amounts of aBax4 and aBax6 at 2 h of modeled reaction time. A hill curve 423 

was fitted to these data using R’s built-in function nls (package stats, version 3.3.2, algorithm 424 

‘port’): 425 

E=
Emax · A

h

Ah + EC50
h + l 

With E = effect (Bax recruitment into tetrameric and hexameric pores), h = hill coefficient, Emax 426 

= maximal effect, E50= halfmaximal effect, A = BH3-only concentration, l = baseline effect. 427 

As described previously (65), the theoretical additive isobole was calculated from the hill 428 

curves for tBid and sensitizer inputs: 429 
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ܾ = ECହ଴,୲୆୧ୢ −	 ECହ଴,୲୆୧ୢቈ Emax,tBid

Emax,sensitizer 
ቆ1 ௖௛ೞ೐೙ೞ೔೟೔೥೐ೝܽ௛ೞ೐೙ೞ೔೟೔೥೐ೝቇܣ	+ − 1቉ ଵ௛೟ಳ೔೏ 

With b = sensitizer [nM], a = tBid [nM], Emax,tBid and Emax,sensitizer = maximal effects achieved 430 

with tBid alone or sensitizer alone (including baseline effect), EC50,tBid = concentration of tBid 431 

alone that induced half of Emax,tBid, AC = concentration of sensitizer that induced half of 432 

Emax,sensitizer, htBid and hsensitizer = hill coefficient of single treatments. 433 

Peptides and Proteins 434 

Hrk peptide H-LRSSAAQLTAARLKALGDELH-OH was ordered with > 95% purity from 435 

AnaSpec Inc (Fremont, CA). 436 

Purification of cleaved Bid, Bax and Bcl-xL was described by us previously (12)  437 

LUV permeabilization assay / Calcein release assay 438 

LUVs of a size of approximately 100 nm were prepared, composed of 80% phosphatidyl 439 

choline and 20% cardiolipin. The dried lipid mixture was dissolved in buffer (20 nM HEPES, 440 

pH7.4) and 80 mM calcein (fluorescein-bis-methyl-iminodiaceticacid at pH7.5) was entrapped 441 

in lipid vesicles at a self-quenching concentration, so that its release into the external medium 442 

is accompanied by an increase in fluorescence intensity. To form the vesicles, the solution 443 

with lipids at a final concentration of 4 mg ml-1 was vortexed and passed through 5 cycles of 444 

freezing and thawing. The generated multilamellar vesicles were extruded >30 times with a 445 

100 nm membrane filter (Avestin). LUVs were incubated with Bid, Bax, Bcl-xL and Hrk peptide 446 

at room temperature. The kinetics of calcein release were studied using a Tecan Infinite M200 447 

microplate reader (Tecan, Switzerland). 448 

The percentage of release R was calculated from:  449 

 ܴ = ܵܨ) − (0ܨ ÷ ݔܽ݉ܨ) − (0ܨ 	× 100___ 450 
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Where F0 is the initial fluorescence of LUVs; Fmax is the maximum fluorescence after final 451 

addition of 5% TritionX-100; FS is the equilibrium fluorescence following addition of Bcl-2 452 

family proteins. 453 

 454 

Supplementary information is available at Cell Death and Differentiation’s website. 455 

  456 
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 640 

Figure Legends 641 

 642 

Figure 1. Molecular mechanisms of the tBid-Bax interplay and Bax pore formation 643 

captured in the core mathematical model. a, Signaling processes providing active Bax 644 

species. Cytosolic Bax in its inactive conformation can be integrated into the membrane and 645 

activated either by interaction with tBid or with active Bax molecules (aBax) that already 646 

reside in the membrane. These processes were implemented as two-step reversible 647 

mechanisms, taking into account intermediate Bax species that are attached to but not yet 648 

fully integrated into the membrane. b, Bax oligomerization and pore formation. Dimers of 649 

aBax were implemented to from higher order oligomers (tetramers, hexamers). Tetramers 650 

and hexamers were considered as a minimum requirement for pore formation. 651 

 652 

Figure 2. Ensemble simulations accurately reproduce tBid-induced Bax 653 

oligomerization kinetics and reliably predict Bax autoactivation. a, Rapid oligomerization 654 

of Bax. Oligomerization kinetics are shown for an ensemble of 340 individual simulations. The 655 

mean kinetic is shown in blue. Input protein concentrations were 2.5 nM Bax and 5 nM tBid 656 

(30). b, Distribution of tBid-induced Bax oligomeric species obtained from the trained model at 657 

1 and 60 min. Data are shown as mean and SD of the ensemble simulations. Quantitative 658 

experimental data were estimated from (30) and are shown for comparison. c, Distribution of 659 

Bax oligomeric species obtained by autoactivation. Model predictions are shown for inputs of 660 

10% and 20% aBax. Experimental data as estimated from (30) are shown for comparison and 661 

validation of predictions. Experimentally valid observations were assumed to be within the 662 

shown errorbars. Data are shown as means and SD. 663 

 664 
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Figure 3. Retrotranslocation of Bax by Bcl-xL is required to significantly impair Bax 665 

oligomerization. a, Model extension by Bcl-xL. Bcl-xL exerts its prosurvival function by 666 

binding to tBid as well as to active Bax monomers. The extension of the model by Bcl-xL was 667 

implemented in two variants, including the retrotranslocation of mitochondrial Bax into the 668 

cytosol (black box) or not. b, Experimental conditions for studying the influence of Bcl-xL on 669 

Bax oligomerization, as described in (30). This scenario served as the reference for in silico 670 

studies. c, Experimentally measured Bax oligomer distribution in presence of Bcl-xL, as 671 

estimated from (30). Experimentally valid observations were assumed to be within the shown 672 

errorbars.  d, Bax oligomer distribution obtained from the model without Bcl-xL 673 

retrotranslocation activity. Model predictions and additional model fitting approaches failed to 674 

replicate experimental data shown in c. Shown are simulation assuming rapid binding of Bcl-675 

xL to aBax and high affinity of the resulting complex (kon 10 nM-1s-1, KD 0.1 nM). e, Bax 676 

oligomer distribution obtained from the trained model with Bcl-xL retrotranslocation activity. 677 

Experimental data shown in c can be reproduced. Data are shown as means and SD of 678 

ensemble simulations. 679 

 680 

Figure 4. Systems modeling can accurately predict Bax membrane recruitment when 681 

taking Bax retrotranslocation activity of Bcl-xL into account. a, Definition of Bax 682 

membrane recruitment. As readout for Bax membrane recruitment, all Bax containing species 683 

residing at or in the membrane were considered (ΣBaxM). b, In the mathematical model 684 

lacking retrotranslocation activity, Bax translocation to membranes cannot be prevented. c,d 685 

The mathematical model including retrotranslocation activity of Bcl-xL accurately predicts tBid-686 

induced ΣBaxM at different concentrations of Bcl-xL (c) when compared to the experimental 687 

data estimated from (36) (d). e,f Model predictions for conditions in which a tBid variant was 688 
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implemented that cannot bind to Bcl-xL. Predictions (e) correspond to trends observed 689 

experimentally as estimated from (36) (f).Data are shown as means and SD from ensemble 690 

simulations or experimental data estimated from (36), where experimental valid observations 691 

were assumed to be within the shown errorbars. 692 

 693 

Figure 5. Mathematical modeling reliably predicts activator/sensitizer BH3-only 694 

synergies. a, Model extension for inclusion of BH3-only sensitizer. The sensitizer was 695 

implemented to reversibly bind Bcl-xL, with kinetics identical to tBid. b, Bax oligomerization 696 

predictions in response to sensitizer or tBid. Starting conditions were 45 nM Bax, 5 nM aBax 697 

and 20 nM Bcl-xL. Vertical grey dashed lines indicate EC50 concentrations. c, Experimental 698 

validation of model predictions. Dose response curves of calcein release from large 699 

unilamellar vesicles after incubation with 50 nM Bax, 20 nM Bcl-xL and varying amounts of 700 

Hrk peptide or cBid (cleaved Bid, consisting of tBid and a p7 fragment). d, Isobologram of 701 

simulations with combined tBid and sensitizer addition. Black dots correspond to EC50 Bax 702 

oligomerization. The additive isobole (blue) was calculated from data shown in b (see 703 

methods for details). e, Prediction of Bax oligomerization for single or combined addition of 704 

tBid and sensitizer, when added to a system of 20 nM Bcl-xL, 45 nM Bax and 5 nM aBax. f 705 

Experimental validation of model predictions. Bax pore formation was experimentally 706 

determined by release of calcein from large unilamellar vesicles. LUVs were incubated with 707 

20 nM Bcl-xL, 50 nM Bax, and cBid and/or Hrk peptide as indicated. Data are shown as 708 

means and SD of ensemble simulations or experimental data. 709 

 710 

Figure 6. Retrotranslocation activity of Bcl-xL is essential to strictly separate 711 

conditions of MOMP competency and resistance. Simulations of Bax oligomerization into 712 

pores (MOMP competency) in relation to increasing amounts of Bcl-xL. Simulations are 713 
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performed for 50 nM bax and 10 nM tBid (a) or 10 nM tBid plus 50 nM sensitizer (b). The 714 

negative hill curve was fitted to simulated data points to determine IC50 values (see methods 715 

for details). Blue lines refer to results from the model variant including retrotranslocation 716 

activity of Bcl-xL. Data are shown as means and SD of ensemble simulations. 717 

 718 

Figure 7. Flow chart providing an overview of model training, successful predictions 719 

and experimental validation. 720 

  721 
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The BCL-2 family members are key regulators of the intrinsic apoptotic

pathway, which is defined by permeabilization of the mitochondrial outer

membrane by members of the BAX-like subfamily. BOK is classified as a

BAX-like protein; however, its (patho-)physiological role remains largely

unclear. We therefore assessed the membrane permeabilization potential of

C-terminally truncated recombinant BOK, BOKΔC. We show that BOKΔC

can permeabilize liposomes mimicking the composition of mitochondrial

outer membrane, but not of endoplasmic reticulum, forming large and

stable pores over time. Importantly, pore formation was enhanced by the

presence of cBID and refractory to the addition of antiapoptotic BCL-XL.

However, isolated mitochondria from Bax�/�Bak�/� cells were resistant to

BOK-induced cytochrome c release, even in the presence of cBID. Taken

together, we show that BOKΔC can permeabilize liposomes, and cooperate

with cBID, but its role in directly mediating mitochondrial permeabilization

is unclear and may underlie a yet to be determined negative regulation.

Abbreviations

AF488, AlexaFluor-488 dye; APC, allophycocyanin; Chol, cholesterol; CL, cardiolipin; cyt. c, cytochrome c; DiI, 1,10-dioctadecyl-3,3,30,3-
tetramethylindocarbocyanine perclorate; DPBS, Dulbecco’s phosphate-buffered saline; ER, endoplasmic reticulum; GUV, giant unilamellar

vesicles; LPC, lysophosphatidylcholine; LUV, large unilamellar vesicles; MEF, murine embryonic fibroblast; PA, phosphatidic acid; PC,

phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, L-α-phosphatidylinositol; PS, phosphatidylserine; Sph,

sphingomyelin.
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Introduction

The members of the BCL-2 family are critical regula-

tors of the intrinsic apoptotic pathway, which is

defined by mitochondrial outer membrane permeabi-

lization (MOMP). The members of the family contain

up to four short conserved BCL-2 homology domains

(BH1-4) and are subdivided into the proapoptotic

BH3-only proteins or the multi-BH domain members.

The latter comprises the prosurvival BCL-2-like group

(BCL-2, MCL-1, BCL-XL, and BFL-1/A1) and the

proapoptotic BAX-like group (BAX, BAK, and maybe

BOK) [1].

Currently, it is accepted that in the absence of cellu-

lar stress these proteins coexist in a network of bal-

anced interactions, neutralizing each other in their

functions. Upon metabolic, pathogen- or damage-

induced cellular stress, the network is altered resulting

in apoptotic cell death or survival, depending on the

magnitude of the insult. During apoptosis, MOMP is

promoted by the oligomerization of BAX and/or BAK

resulting in the release to the cytosol of apoptogenic

proteins from the mitochondrial intermembrane space,

including cytochrome c (cyt. c) and SMAC/DIABLO,

with subsequent activation of caspases [2]. A prerequi-

site for MOMP is the disengagement of BAK from

antiapoptotic MCL-1 and BCL-XL, as well as recruit-

ment of cytosolic BAX to the MOM [3]. A well-known

factor aiding BAX translocation and mitochondrial

pore formation is the p15 fragment of the BH3-only

protein BID [4]. BID is proposed to interact tran-

siently with BAX, promoting the conformational

changes for BAX membrane insertion in a catalyst-like

manner [4]. Importantly, the lipid composition of the

membranes where these proteins exert their activities

provides an extra layer of complexity [5,6]. Cardi-

olipin, a mitochondria-specific phospholipid, seems

crucial for the concerted activity of cBID and BAX

[7–10].
BCL-2-related ovarian killer (BOK, gene name BOK

or BCL2L9) is a 23.4 kDa protein highly conserved in

the animal kingdom, with sequence homology to BAK

and BAX [11]. In contrast to BAX or BAK, BOK pre-

dominantly localizes to the membranes of the endo-

plasmic reticulum (ER) and the Golgi apparatus, and

to a lesser extent to mitochondria [12]. BOK is widely

expressed and readily detectable at protein level in

mouse tissues, with high expression in reproductive tis-

sues, brain, kidney, spleen, and gastrointestinal tract

[12,13]. BOK function in cells is enigmatic. Although

enforced expression of BOK induces apoptosis

[11,12,14,15], genomic deletion of Bok/Bak or Bok/Bax

did not produce an enhanced phenotype beyond that

accounted for Bax or Bak single knockout mice, with

the exception of increased oocyte numbers in Bok�/

�Bax�/� females [16]. Recent work from Ke et al. [17]

on chimeric mice with a Bok�/�Bak�/�Bax�/� triple

knockout hematopoietic system provided evidence that

BOK’s redundancy with BAX and BAK exists but

might be restricted to specific tissues. However, other

studies suggest that depending on the tissue or the nat-

ure of the apoptotic stressor, BOK may have non-

apoptotic functions, such as in trophoblast

proliferation [18], or may even have a prosurvival

function [12,19].

BOK has been shown to interact with IP3 receptors,

protecting IP3Rs from caspase-mediated degradation

and BOK from proteasomal degradation [20,21].

Degradation of BOK via the ubiquitin/proteasome

was also shown by Llambi et al. [14] in the context of

the ERAD pathway. This paper also describes a BAX-

like apoptosis inducing function of BOK when the

ERAD pathway is blocked [14].

In this work, we generated an untagged, C-termin-

ally truncated version of recombinant BOK (BOKΔC),

and characterized its pore-forming potential in lipo-

somes and isolated mitochondria. BOKΔC provoked

the permeabilization of artificial membranes by form-

ing long-lived toroidal pores, large enough for passage

of a 104 kDa protein. BOKΔC’s induced pore forma-

tion strongly depended on the lipid composition, with

liposomes resembling MOM being much more effi-

ciently permeabilized than those mimicking ER com-

position. Importantly, we provide solid evidence that

cleaved BID (cBID) cooperates with BOKΔC in pore

formation, while BCL-XL was unable to inhibit

BOKΔC activity. Strikingly, however, our studies on

mitochondria isolated from Bax�/�Bak�/� cells indi-

cated that BOKΔC is highly inefficient in promoting

MOMP, even in the presence of cBID or after heat

activation. Overall, these data suggest that despite its

effects on artificial membranes, the role of BOK on

biological membranes may be subject to yet to be

described negative regulatory mechanisms.

Results

Purification of recombinant BOKΔC

BCL-2 proteins have been purified in the past by affin-

ity-based methodologies using histidine or GST tag-

based approaches. Tagged proteins come with the risk

of introducing artifacts. One notable exception is the

purification of full-length BAX and BCL-XL in bacte-

ria using an intein–chitin-binding domain fused to

their C termini [22,23]. The intein domain can be
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subsequently removed by addition of dithiothreitol,

releasing the untagged protein with a high purity

degree in one step. Based on these advantages, we

decided to use the same approach to produce recombi-

nant BOK and its C-terminally truncated form,

BOKΔC. A major pitfall while establishing the purifica-

tion workflow was the amount of contaminants pre-

sent in the elution from the chitin-affinity step. One

explanation would lie in the acidic nature of the

Escherichia coli proteome [24,25] contrasting with the

high isoelectric point (pI) of BOK, which seems unique

among the multidomain members of the BCL-2 family

(Fig. 1A), thus favoring the binding of unwanted pro-

teins. To overcome this effect, we incorporated a

cation-exchange step while working at high salt con-

centration and pH. This method has been reported to

outperform those using Ni-NTA and GST for the

purification of basic proteins [26]. The purified full-

length BOK did not reach an acceptable purity and

the total yield was extremely low, likely due to protein

aggregation because of its hydrophobic C-terminal tail.

On the other hand, significantly higher amounts (300–
700 lg protein from 5 L cultures) of pure (> 90%)

BOKΔC could be purified, which is comparable to the

purification of BAX (Fig. 1B–D). Therefore, we

decided to work with BOKΔC. The identity of the puri-

fied protein was assessed using western blotting and

mass spectrometry (Fig. 1C and data not shown).

BOKΔC induces membrane permeabilization of

large unilamellar vesicles depending on the lipid

composition

We hypothesized that BOK follows a similar mecha-

nism of action as BAX and BAK when interacting

with membranes. Thus, we explored the potential of

recombinant BOKΔC to promote membrane permeabi-

lization, by following content release of the fluo-

rophore calcein (~ 1 kDa) from large unilamellar

vesicles (LUVs). As BOK, under physiological

Fig. 1. Purification of recombinant BOKΔC using a two-step affinity-based strategy. (A) Predicted isoelectric point of multidomain BCL-2

family members (based on Expasy Compute pI/Mw tool, http://web.expasy.org/compute_pi/). (B) Representative Coomassie-stained SDS/

PAGE gel evaluating the purification process of recombinant BOKDC. Beads: 10 lL of chitin beads after lysate input and before DTT-induced

intein cleavage, CEX, cation affinity chromatography. (C) Immunoblot of the same samples from panel (B) using a rabbit monoclonal anti-

BOK antibody. (D) Purification tables for a typical production of recombinant BOKΔC.
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conditions, is largely localized to the membranes of

the ER [12], we reasoned that BOK might differen-

tially affect artificial membranes mimicking ER or

MOM lipid composition. Indeed, LUVs made from a

mitochondria-like lipid mixture (MITOmix) were read-

ily permeabilized, in contrast to those resembling an

ER lipid composition (ERmix), which required much

higher protein concentrations to reach comparable per-

meabilization levels (Fig. 2A).

A major difference in those membrane model com-

positions was the presence of the mitochondria-specific

lipid cardiolipin in MITOmix, while it was absent from

ERmix. Hence, we decided to test the contribution of

this lipid to the BOKΔC-induced calcein release. As

shown in Fig. 2B, the CL content positively correlated

with BOKΔC-induced calcein release from LUVs.

Cardiolipin is a negatively charged phospholipid

inducing intrinsic monolayer curvature that has been

suggested to play a specific role in BAX pore forma-

tion [8]. To find out whether this is also the case for

BOKΔC, or whether it is a general charge effect, we

substituted CL for phosphatidylglycerol (PG; Fig. 2B).

When a similar proportion of PG was used in the

assay, the dye release was similar, suggesting that the

overall negative charge of the membrane plays a role

in the pore activity of BOKΔC.

The pores formed by BOKΔC show features of

toroidal pores

Several lines of evidence suggest that BAX and BAK

form toroidal pores, which involve the participation of

lipids at the pore edge. Consequently, these pores

would be affected by lipids modulating the intrinsic

membrane curvature. The formation of nonlamellar

structures, like toroidal pores, frequently requires the

presence of lipids with opposite geometrical and intrin-

sic curvature properties to compensate the defective

packaging in the pore rim [27]. To investigate the

impact of the lipid geometry on BOKΔC-induced mem-

brane permeabilization, we varied the concentrations

of CL (cone, negative curvature inducer) and

lysophospatidylcholine (LPC; inverted cone, positive

curvature inducer). Surprisingly, even small amounts

of LPC enabled BOKΔC-mediated calcein release to a

degree comparable to that obtained using 20% of CL

(Fig. 2C). This effect was further enhanced when CL

and LPC were combined in the same vesicles, in line

Fig. 2. The lipid composition modulates the permeabilization potential of BOKΔC. Several lipid mixtures were used to determine the

influence on BOKΔC-mediated permeabilization of: (A) vesicles mimicking mitochondria (MITOmix) or endoplasmic reticulum (ERmix), (B)

negatively charged lipids (CL), (C) positive curvature inducers (LPC) and (D) nonlamellar compatible lipids (PA) together with a neutral

negative curvature inducer lipid (Chol). Lipid ratios are indicated for each composition as molar percentages. Calcein release was normalized

to the maximum release induced by Triton-X100 on each sample. PC, phosphatidylcholine; CL, cardiolipin; PG, phosphatidylglycerol; LPC,

lyso-phosphatidylcholine; PA, phosphatidic acid; Chol, cholesterol. Values correspond to mean � SEM; N = 3.

714 The FEBS Journal 284 (2017) 711–724 ª 2017 Federation of European Biochemical Societies

BOK forms stable pores in membranes Y. Fern�andez-Marrero et al.



with the idea that BOKΔC could be involved in the for-

mation of nonlamellar structures like toroidal pores.

However, we could not discard the possibility that the

role of CL was merely due to its negative curvature.

To corroborate this, we included phosphatidic acid

(PA) in our analysis, which is a lipid that combines

negative charge and a very pronounced negative curva-

ture. Indeed, from all the binary lipid mixtures tested,

those containing PA exhibited the highest sensitivity to

BOKΔC treatment (Fig. 2D). Additionally, we also

used cholesterol, which is a neutral lipid with a high

negative curvature; indeed, addition of cholesterol also

increased BOKΔC-mediated dye release, although its

impact was lower than that of LPC (Fig. 2D). These

results demonstrate that BOKΔC membrane activity

largely depends on the presence of negatively charged

lipids and on their intrinsic curvature, suggesting that

BOKΔC pores are of toroidal nature.

cBID cooperates with BOKΔC to form pores that

allow the passage of the 104 kDa protein APC

Considering the concerted mechanism described for

cBID to activate BAX to form pores in membranes

[28], we tested if the membrane activity of BOKΔC

would be modulated by cBID in a similar manner. As

BOKΔC could permeabilize LUVs of several lipid com-

positions, we choose the MITOmix for these experi-

ments due to its physiological relevance and positive,

but still moderate, reactivity to BOKΔC.

We first determined the BOKΔC concentration that

per se induced 50% of the maximum calcein release in

the LUVs (7 nM, Fig. 3A), which was then used

together with serial dilutions of cBID to test for syn-

ergy. Surprisingly, cBID, but not its BH3 peptide nor

a BIM BH3 peptide, clearly exacerbated the calcein

release activity of BOKΔC (Fig. 3B,C). Of note, cBID

also clearly enhanced the calcein release activity of

full-length BOK (Fig. 3B).

At this point, we hypothesized that, similar to BAX,

BOKΔC could promote the trespassing of molecules big-

ger than calcein (> 1 kDa). To investigate the dimension

of BOKΔC-mediated membrane pores, we used cell-sized

vesicles known as giant unilamellar vesicles (GUV), com-

posed of the MITOmix and a lipid dye to visualize the

membrane. We incubated GUVs with two differently

sized proteins: AlexaFluor-488-conjugated cytochrome c

(cyt. c488; 12 kDa) and allophycocyanin (APC; 104 kDa)

and followed their passage through the membrane in the

presence or absence of cBID, or cBID plus BCL-XL. As

positive and negative references, we used cBID and BAX

in the presence or absence of BCL-XL after incubation

time of 60 min, as shown before [29,30].

Using the previous conditions in this membrane

model, BOKΔC alone had negligible activity at 10 nM

concentration, but the population of nonpermeabilized

GUVs was significantly reduced in the samples treated

with BOKΔC and cBID. This effect was comparable to

the positive control, BAX plus cBID (Fig. 3D), and

confirmed the cBID effect on BOK activity observed

in the calcein assay. Interestingly, and contrasting with

cBID/BAX, the permeabilization of GUVs by cBID/

BOKΔC was not inhibited by BCL-XL. Analysis of

individual vesicles revealed that most were simultane-

ously filled with both dyes, indicating that the pores

formed by BOKΔC plus cBID are permissive to mole-

cules up to the size of 104 kDa (APC; Fig. 3E).

BOKΔC-induced membrane permeabilization can

be accomplished by thermal activation

A simplistic but still efficient approach described by

Pagliari et al. [31] used thermal activation of BAX and

BAK to promote cyt. c release from isolated mito-

chondria. A similar strategy has also been used to

induce BAX oligomerization and pore formation on

GUVs [29] and LUVs [32]. After the robust permeabi-

lization induced by BOKΔC alone, we investigated the

energetic threshold of this effect.

We coincubated BOKΔC or BAX with MITOmix-

derived GUVs for 45 min at 42 °C and evaluated the

permeabilization to cyt. c488 and APC. As shown in

Fig. 4A, heat-activated BOK (as well as BAX) facili-

tated the passage of both permeabilization tracers into

GUVs, indicating that cBID is not necessary for

BOKΔC to form pores capable of accommodating a

wide range of molecular sizes (Fig. 4A,B) and that

also in this aspect BOK activity is similar to BAX.

BOKΔC forms long-lived pores

After establishing the GUV permeabilization potential

by BOKΔC, we tested if BOKΔC pores were transient

and unstable structures or if they remained stably

open under equilibrium conditions. To address this

question, we used an assay previously described

[30,33] in which two additional dyes of different size

are added to GUVs preincubated with BCL-2 proteins

that have induced pores. If the dyes are still able to

enter the vesicles, this indicates that the membrane

permeabilized state is stable at least during the incuba-

tion time.

We incubated MITOmix-derived GUVs for 45 min

with BOKΔC plus cBID in the presence of free

AlexaFluor-555 (AF555) dye. Immediately after that

we added cyt. c488 and APC to the wells and
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determined their incorporation into the vesicles within

15 min. This narrow time window guaranteed that

vesicles filled with these proteins were most likely due

to the existence of a preformed pore rather than to

newly formed ones. Finally, the samples were imaged

in order to detect whether cyt. c488 and APC could

also trespass the membrane through the formed pores

(Fig. 5A), which would be indicative of cBID/BOKΔC

creating long-lived pores. Moreover, this experiment

provides information about the pore size under

Fig. 3. BOKΔC-mediated vesicle permeabilization is enhanced by cBID and allows the passage of molecules of up to 104 kDa. (A)

Determination of EC50 value for BOKΔC in PC : CL 80 : 20 vesicles. (B) Calcein release from PC : CL 80 : 20 liposomes using BOKΔC at the

EC50 concentration and variable amounts of cBID or (C) increasing concentration of BH3 peptides. Dashed lines represents the maximum

calcein release promoted by 100 nM cBID, 0.1 lM full-length BOK � 50 nM cBID, or 1 lM of the indicated BH3 peptides. (D) Fraction of

nonpermeabilized GUV to cyt. c488 (12 kDa) or APC (104 kDa) 60 min after treatment with different combinations of cBID (10 nM), BOKΔC

(10 nM), BCL-XL (50 nM), and BAX (20 nM). Bars correspond to mean � SEM; N = 3. (E) Percentage of filling degree to the indicated

fluorescent proteins for each individual vesicle across the indicated treatments. The percentage of GUV on each quadrant is indicated.

Statistical differences were calculated with a two-way ANOVA correcting the P-values using the Benjamini–Krieger–Yekutieli method.

Shared letters indicate nonsignificant differences with P-values of at least 0.05.
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equilibrium conditions and tests the impact of BOKΔC

concentration on the pore size.

The distribution of AF555 incorporation into GUVs

was quantified (Fig. 5B). As expected from the experi-

ments shown above, GUV permeabilization positively

correlated with the amount of BOKΔC used. Interest-

ingly, we noticed a decrease of GUVs per area, pro-

portional to the concentration of BOKΔC (Fig. 5C).

We attribute this to the membrane destabilizing impact

of the pore formation process, which, combined with

the mechanical stress provided while adding the size

markers, contribute to GUV destruction. A less pro-

nounced, but still similar effect has been reported for

BAX [30]. Afterwards, we focused on GUVs already

filled with AF555, which indeed consistently incorpo-

rated cyt. c488 and APC. These results indicate that the

initial pores remained permissive and stable during the

time of the assay (Fig. 5D,E).

BOKΔC is inefficient in releasing cyt. c from

isolated mitochondria

As the membrane activity of BOKΔC was comparable

to that of BAX, we next wanted to determine

whether the BOKΔC pore-forming activity demon-

strated in vitro had biological implications in the con-

text of mitochondria. We explored if recombinant

BOKΔC could mediate cyt. c release from mitochon-

dria isolated from Bax�/�Bak�/� mouse embryo

fibroblasts (MEF). Of note, and contrary to our find-

ings in artificial lipid vesicles, BOKΔC was unable to

permeabilize these mitochondria, even in the presence

of cBID (Fig. 6A). Furthermore, we incubated Bax�/

�Bak�/� mitochondria with BOKΔC at 43 °C to reca-

pitulate the heat activation process [31]. Surprisingly,

and in contrast to BAX, BOKΔC was again unable to

promote MOMP in those mitochondria (Fig. 6B).

Strikingly, this lack of activity on mitochondria was

not the result of impaired interaction with the mem-

brane, as we clearly detected association of BOKDC

with crude mitochondrial membranes isolated from

Bok�/� cells (Fig. 6C). This was also corroborated by

sucrose gradient fractionation after coincubation of

BOKDC with crude BOK-deficient mitochondrial frac-

tions. In this case, BOKDC adopted a uniform distri-

bution gradient not restricted to the mitochondria

containing fractions, irrespective of the addition of

cBID (Fig. 6D).

Fig. 4. BOKΔC can be activated by temperature. (A) Percentage of nonpermeabilized MITOmix-derived GUVs to cyt. c488 and APC after

incubation at 42 °C for 45 min with 20 nM BAX or 10 nM BOK. Bars correspond to mean � SEM; N = 3. (B) Percentage of filling degree to

the indicated fluorescent proteins for each individual vesicle across the treatments. The percentage of GUV on each quadrant is indicated.

Statistical differences were calculated with a two-way ANOVA correcting the P-values using the Benjamini–Krieger–Yekutieli method.

Shared letters indicate nonsignificant differences with P-values of at least 0.05.
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Discussion

BOK remains an enigmatic and controversial protein

among the BCL-2 members. In accordance with its

sequence homology with BAX/BAK, multiple studies,

including our own work, demonstrated that BOK pro-

motes intrinsic apoptosis upon overexpression

[11,12,14,34]. However, both BAX/BAK-dependent as

well as BAX/BAK-independent mechanisms have been

proposed since [12,14,34]. Currently, there is limited

evidence for a proapoptotic role for BOK under

physiological and pathophysiological conditions, and

several studies even point toward protective roles of

BOK in certain tissues or in response to specific stres-

sors [12,13,16–19,34–36].
We describe an approach to purify recombinant

BOK from bacteria, combining affinity and ion

exchange-based techniques. In our exploratory experi-

ments, we used full-length BOK, and detected compa-

rable pore activity to the truncated protein (data not

shown). However, we could not exclude that the

Fig. 5. Pores formed by BOKΔC are stable over time. (A) Representative pictures for the MITOmix-made GUV incubated during 45 min with

the indicated proteins in the presence of AF555, followed by addition of cyt. c488 and APC. Bars represent 50 lm. (B) Determination of the

AF555 degree of incorporation into the GUV using a filling threshold of 50%. (C) Number of GUV per area across the treatments. (D) Filling

degree to cyt. c488 and APC in those GUVs already filled with AF555 (> 50%). (E) Percentage of filling degree to the indicated fluorescent

proteins on each individual vesicle across the samples. Whiskers cover 10th–90th percentile; N = 4. Statistical differences were calculated

with a one-way (B, C) or two-way ANOVA correcting the P-values using the Benjamini–Krieger–Yekutieli method. Shared letters indicate

nonsignificant differences with P-values of at least 0.05.
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insertion of the transmembrane region simply follow-

ing thermodynamic principles was responsible for this

effect. Thus, we decided to use an untagged, truncated

version lacking the last 24 amino acids (BOKΔC24,

[12]), which resulted also in higher yields and purity.

Interestingly, BOK seems to predominantly localize

to the membranes of the ER, where it interacts with

IP3 receptors, and where it is subject to ubiquitylation

and proteasomal turnover [12,14,20,21]. In spite of

this, addressing the question whether BOK can perme-

abilize the mitochondrial outer membrane and induce

MOMP in a manner similar to BAX/BAK seems abso-

lutely critical to better understand the role and func-

tion of BOK. In a recent study, Llambi et al. [14] have

provided evidence that recombinant BOK (more pre-

cisely an 8xHis-tagged, C-terminally truncated version)

can have pore-forming activity in liposomes, which,

intriguingly, does not seem to require cooperation with

activator BH3-only proteins (e.g., tBID). However, the

ability to permeabilize membranes has also been

reported for other BCL-2 proteins, like BCL-XL,

BCL-2, or cBID, with lack of correlation regarding a

direct function in MOMP and therefore caution is

advised with the interpretation of simple experiments

of liposome permeabilization.

In this work, we analyzed in detail the pore-forming

potential of recombinant BOKΔC in artificial liposomes

and isolated mitochondria. We confirmed the recently

described ability of BOKΔC to permeabilize artificial

membranes on its own [14] and demonstrate that the

main features of BOK pore activity resemble those of

BAX and BAK. The lipid composition of biomem-

branes strongly defines critical physicochemical proper-

ties like overall charge, intrinsic curvature, and

fluidity. A concerted interplay of these parameters with

membrane proteins guarantees important physiological

processes, e.g., membrane fission and fusion, organelle

shape, or protein–lipid segregation in microdomains

[37]. Our data from calcein assays indicated that

BOKΔC permeabilized vesicles in function of their

overall negative charge and greatly depending on the

intrinsic curvature of those membranes. This link on

lipid composition and activity of BCL-2 proteins has

been documented as a key determinant of BAX, BAK,

BIM, and BID activities [5,9,10].

Further evaluation of BOKΔC-mediated pores in

GUVs indicated that they have sufficient size to allow

the passage of large proteins like cyt. c and APC, and

that those pores remain stable over time, resembling

those described for BAX [23]. This, together with the

large dependence on lipid geometry, strongly suggests

that the membrane pores induced by BOK are toroi-

dal. As with BAX, our data support the participation

of lipids in the pore structure as well as the formation

of flexible, undefined pores that reach large sizes and

remain open for a long time. Additional studies will be

required to elucidate if BOK pores are also tunable in

size [30] and correlate with a mixture of BOK

Fig. 6. Binding of BOKΔC to isolated BAX-/BAK-deficient mitochondria is not sufficient for cytochrome c release. Mitochondria isolated from

Bax�/�Bak�/� (A, B) or Bok�/� (C, D) SV40 MEF were incubated during 1 h at 37 °C (A, C, D) or 43 °C (B) with combinations of 50 nM

cBID, 100 nM BOKΔC, or 100 nM BAX; unless indicated otherwise. The release of cytochrome c (A, B) was assessed immediately after the

assay by immunoblotting of pellet (mitochondria) and supernatant fractions, respectively. (C) BOKΔC interacts with membranes in

mitochondrial preparation independent of the presence of cBID. (D) BOKΔC interacts with intracellular membranes not restricted to

mitochondria and irrespective of the presence of cBID. Presented data are representative of at least three independent experiments.
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oligomeric species [32], as well as if arc- and/or ring-

like assemblies of BOK line the pore walls [38]. Impor-

tantly, however, and in contrast to BAX plus cBID,

BOK or BOK plus cBID induced pores independently

of the presence of BCL-XL.

Of note, we demonstrate here that cBID, but not its

derived BH3-peptide, cooperates with BOKΔC to

induce permeabilization of artificial membranes model-

ing the mitochondrial lipid composition. This coopera-

tion was noticeable beyond the point of equimolarity

between the proteins, suggesting that cBID is less effi-

cient in promoting BOK activity than in activating

BAX. This result contrasts with the data provided by

Llambi et al. [14] who concluded that BOK is consti-

tutively active, independently of the influence of acti-

vator BH3-only proteins, or any other BCL-2 protein.

While we used untagged BOKΔC, Llambi et al. used

an 8xHis-tagged BOKΔC, which was then artificially

aggregated using Ni-NTA. It is conceivable to specu-

late that Ni-NTA may very strongly activate BOK,

thereby masking a possible cooperative effect by BH3-

only peptides. Importantly, we further provide evi-

dence that cBID also cooperates with full-length BOK.

We also report that the pore activity of cBID/

BOKΔC is not inhibited by BCL-XL. This is unex-

pected, as based on the literature, BCL-XL should

sequester cBID, thereby preventing the activation of

BOKΔC. We speculate that the interaction between

cBID and BOKΔC induces conformational changes

hindering the interaction between cBID and BCL-XL.

A direct inhibition of BOKΔC by BCL-XL on the other

hand seems unlikely, as others and we have failed to

show interaction between these two proteins [11,12,39].

Considering the ‘helix-loop-helix’ secondary structure

of BOK and its pore-forming activity, we hypothesized

that cBID function could be substituted by administra-

tion of heat. The incubation of BOKΔC and BAX with

mildly increased temperatures indeed provided enough

energy to induce conformational changes responsible

for their insertion in the lipid bilayer. Interestingly, in

cells stressed by heat, BAX undergoes conformational

changes, translocation to the mitochondria and apop-

tosis characterized by a significant calcium dyshome-

ostasis [40]. A thrilling possibility emerging from this

stress model is that BOK might be also activated by

the treatment, thus compromising the calcium home-

ostasis in the cell during cell death.

An intriguing result from our work is that, despite of

all the above in vitro evidence of BOKΔC being able to

permeabilize artificial membranes, we did not find evi-

dence for BOKΔC-mediated cyt. c release from enriched

mitochondrial fractions derived from Bax�/�

Bak�/� MEFs, not even when cBID was added or heat

was provided to the reaction mixture. This result con-

trasts with reports that BOK can trigger the intrinsic

apoptotic pathway independently of BAX/BAK [14,34].

However, neither of those studies provided direct proof

of cyt. c release by recombinant BOK on isolated mito-

chondria. Our data indicate that the activity of BOKΔC

in biological membranes might be subjected to impor-

tant negative regulatory steps or factors overlooked in

our assay that deserve further investigation. It remains

further possible that, despite its in vitro pore-forming

potential, BOKDC fails to remodel the mitochondria

outer membrane in a way compatible with the release of

cyt. c from the intermembrane space. Additionally, we

cannot ignore the possibility that BOK may need its C-

terminal tail-anchor for its full activity in mitochondria,

despite reports that the C terminus does not seem to be

necessary for BAK [31,41] or BAX [42,43] to release cyt.

c from isolated mitochondria.

Given that BOK does not dominantly localize to

mitochondria and that it does not efficiently release

cyt. c from them when isolated and in the absence of

BAX/BAK, we cannot discard the possibility that

MOMP induction may not be the main function of

BOK. Considering the nature of the effects when BOK

interacts with membranes, it seems conceivable that

one main function of BOK could be related with the

stabilization of regions of high membrane curvature,

which may include nonlamellar structures and mem-

brane pores. As most BOK is located at the ER, where

it has been shown to interact with IP3R and maybe to

play a role in calcium homeostasis, one possibility

might be that BOK acts at the ER/mitochondrial con-

tact sites. These sites are responsible for calcium

exchange between ER and mitochondria, are enriched

in IP3R, and likely involve special membrane struc-

tures that allow lipid exchange. The presence of BOK

at these sites may also allow their regulation by cBID

during apoptosis. Although our work sheds light on

the molecular mechanism of BOK at the membrane

and opens new research possibilities, additional efforts

will be required to connect the mechanism of action of

BOK with its biological function.

Taken together, we show that BOKΔC forms large

and stable pores in model membranes, and that BOKΔC

(and likely full-length BOK) activity is cooperatively

enhanced by cBID but not blockable by BCL-XL.

However, cyt. c release from isolated BAX/BAK-

deficient mitochondria by BOKΔC (with or without

cBID) was inefficient compared to BAX/cBID.

Although the membrane activity of both proteins in

model membranes is very similar, the latter observation

clearly distinguishes the properties of BOKΔC from

those of BAX (and BAK).
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Experimental procedures

Protein expression and purification

pCMV6 containing the full-length mouse Bok cDNA

(NM_016778.3) was purchased from Origene (SKU:

MC206561, Rockville, MD, USA). The Bok CDS was

cloned into the SapI restriction sites of the pTXB1 plasmid

(New England Biolabs, Ipswich, MA, USA), containing the

intein–chitin-binding domain tag, according to the manu-

facturer’s instructions and sequences confirmed (Micro-

synth, Balgach, Switzerland). A truncated version of BOK

lacking the C-terminal 24 amino acids (BOKΔC) was cre-

ated by PCR using the primers 50-TGCATCACGGGA

GATGCA-30 and 50-GTGGGAGCGGAAGCCAGGA-30.
A 5 L culture of BL21-CodonPlus (DE3)-RIPL E. coli

strain (Agilent Technologies, Santa Clara, CA, USA) har-

boring the pTXB1-BOKΔC construct was prepared in selec-

tive Terrific Broth media (100 lg�mL�1 ampicillin,

30 lg�mL�1 chloramphenicol) and protein expression was

induced at 20 °C for 5 h with 1 mM IPTG. The bacterial

pellet was collected, resuspended in Chitin Buffer (1 M

NaCl, 20 mM Tris/HCl, pH 8.5) supplemented with Com-

plete Protease Inhibitor Cocktail� (Roche Diagnostics AG,

Rotkreuz, Switzerland) and disrupted at 11 000 p.s.i in an

Emulsiflex-C5 homogenizer (AVESTIN Europe GmbH,

Mannheim, Germany). The lysate was cleared and recombi-

nant BOKΔC captured with chitin beads (New England

Biolabs, Hitchin, UK), followed by DTT-induced intein

autolysis during 16 h at 4 °C. The protein was eluted, dia-

lyzed, and further purified by a cation-exchange chro-

matography using a HiTrap SP FF column (GE

Healthcare, Europe, Glattbrugg, Switzerland). Purity, yield,

and protein identity were assessed by densitometric analysis

of Coomassie-stained SDS/PAGE gels using IMAGEJ [44],

protein quantification using the Bradford reagent, western

blot (using an in-house rabbit monoclonal anti-BOK anti-

body, RabMab BOK-1-5 [12]), and mass spectrometry,

respectively. Protein purity was > 90% (see also Fig. 1B,

D), except for studies of the influence of the lipid composi-

tion BOK membrane activity (Fig. 2), where a slightly less

pure batch of BOKΔC was used. Cleaved cBID (complex of

fragments p7 and p15), BAX, and BCL-XL were expressed

in E. coli and purified as previously described [4,23,30].

Preparation of artificial membranes

All the lipids used in this study were purchased from Avanti

Polar Lipids (Hamburg, Germany), resuspended in chloro-

form and mixed at the indicated ratios (w/w). LUVs were

prepared as described elsewhere [45]. Briefly, each lipid mix-

ture was vacuum dried and resuspended in a solution of

80 mM calcein, pH 7.0 to a final concentration of 4 mg�mL�1

followed by five cycles of freeze/thawing in liquid nitrogen.

The resulting multilamellar vesicles were extruded 31 times

through a 400 lm polycarbonate membrane using a Liposo-

Fast manual emulsifier (AVESTIN Europe GmbH). The

nonencapsulated calcein was removed from the mixture

using a Sephadex-G50 column previously equilibrated with

DPBS from Sigma-Aldrich (Buchs, Switzerland). Special

lipid mixtures modeling the composition of the mitochon-

drial membrane (MITOmix; PS : CL : PI : PC : PE,

10 : 8 : 11 : 46 : 25) [23] or the endoplasmic reticulum

(ERmix; Sph : PS : PI : PC : PE, 4 : 4 : 10 : 57 : 25) [46]

were prepared according to the reported composition. GUVs

were prepared as previously described [33]. Shortly, 5 lL of

a 1 mg�mL�1 lipid-chloroform solution containing the dye

Dil (< 0.05%; Thermo Fisher Scientific, Waltham, MA,

USA) was layered in two platinum electrodes, air-dried, and

immersed in a Teflon chamber containing 300 mM sucrose.

The electrodes were wired to a function generator power

source and the GUVs were electro-formed by sequential

application of 10 Hz, for 2 h and 2 Hz for 30 min.

Calcein release assay

Calcein-loaded LUVs were incubated with serial dilutions

of the recombinant proteins or BH3 peptides corresponding

to BIM or BID proteins in a fluorescent-compatible 96-well

microtiter plate (NUNC, Wiesbaden, Germany). Calcein

release was monitored by fluorescence emission at 520 nm

(kexcitation = 495 nm) during 2 h in an Infinite M200 plate

reader (Tecan, Mainz, German). The percentage dye release

was calculated as follows:

Calceinrelease ð% ofmaxÞ ¼ 100� ðFSample � FBufferÞ
ðFTX100 � FBufferÞ ;

where all the terms refer to the maximum fluorescence

registered in the wells incubated with the studied pro-

teins (FSample), with 0.125% Triton-X100 (FTX100) or

DPBS (FBuffer). The maximum values were obtained by

curve fitting to a hyperbole, or in those cases where

calcein self-quenched due to a massive release, it was

assigned to the maximum value before the quenching

started. The effective concentration of BOKΔC was

corrected between batches according to the individual

EC50 values. The sequences for the BH3 peptides are

the following: BID-BH3(IARHLAQVGDSMD), BIM-

BH3(IAQELRRIGDEFN).

GUV permeabilization experiments

Giant unilamellar vesicle permeabilization assays were per-

formed according to [23]. Briefly, 70 lL of GUVs made

from MITOmix were incubated at 25 °C for 1 h in a

casein-coated LabTec chamber (NUNC) containing

cyt. c488, APC, and the studied proteins dissolved in DPBS.

The total volume in each reaction chamber is 300 lL. After

the incubation time, at least five pictures of each condition
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were taken using a LSM710 microscope with a C-Apochro-

mat 40 1.2 water immersion objective (Zeiss, Oberkochen,

Germany). A similar setup was prepared for the heat acti-

vation of BOKΔC in GUVs, just setting the reaction tem-

perature to 42 °C for 45 min, before allowing the samples

to cool down to RT before the pictures were taken. The

evaluation of the pore stability was adapted from Bleicken

et al. [30]. Shortly, GUVs were incubated for 45 min at RT

with or without the indicated BCL-2 proteins in DPBS con-

taining AF555 as an indicator of the permeabilization sta-

tus of the vesicles. Afterwards, cyt. c488 and APC were

added to the mixture and the pictures were taken 15 min

later. For each experiment, the GUVs permeabilization

degree to the analyzed dyes was determined using the

GUVs detector software available at http://www.ifib.

uni-tuebingen.de/research/garcia-saez/guv-software.html [47].

The threshold for considering a GUV permeated was arbitrar-

ily set at 30% with the exception of the pore stability assays

where it was set up to 50%, 35%, and 40% for AF555, cyt.

c488, and APC, respectively. Data were analyzed using R ver-

sion 3.2.1 [48] and visualized using the ggplot2 package [49].

Mitochondria isolation

Cell cultures in exponential growth phase of Bax�/�Bak�/�

SV40 large T antigen immortalized mouse embryo fibrob-

lasts (SV40 MEF) were trypsinized, washed with DPBS,

and incubated for 15 min in MB buffer [210 mM mannitol,

70 mM sucrose, 1 mM EDTA, 10 mM HEPES pH 7.5 sup-

plemented with Complete Protease Inhibitor Cocktail

(Roche)]. The cells were manually disrupted by 18 passages

through a 27 G needle, and the debris was removed by cen-

trifugation at 2500 g (3 9 5 min). The mitochondria-

enriched fraction was obtained by centrifugation for

10 min at 10 000 g, resuspended in MB-EGTA buffer (MB

buffer with 1 mM EGTA instead of EDTA) and its protein

concentration determined by Bradford assay (Biorad, Cres-

sier, Switzerland). The mitochondrial preparations were

immediately used for the cyt. c release assays.

Cytochrome c release assays

Cytochrome c release from mitochondria was performed

as previously reported [50]. Briefly, 30 lg of mitochon-

dria was incubated with the following protein amounts

unless indicated otherwise (100 nM BOKΔC, 50 nM cBID,

100 nM BAX) in KCL buffer (125 mM KCl, 4 mM

MgCl2, 5 mM KH2PO4, 10 mM HEPES pH 7.4, 0.5 mM

EGTA) for 60 min at 37 °C. The supernatant was col-

lected and the pellet was washed with KCl buffer, fol-

lowed by addition of Laemmli buffer. For the

experiments using heat-activated BOKΔC, we proceeded

as described by [31] with minor modifications. Shortly,

the recombinant proteins were heated at 43 °C for 1 h in

the presence of the isolated mitochondria in KCL buffer.

Pellet and supernatant were separated afterwards by cen-

trifugation. The presence of cyt. c in the fractions was

determined by western blotting using a mouse mono-

clonal anti-cyt. c antibody (BD Biosciences, San Jose,

CA, USA, clone 7H8.2C12).

Membrane binding assays

Crude mitochondria preparations from Bok�/� SV40 MEF

were incubated with the indicated combinations of recombi-

nant proteins (200 nM BOKΔC, 100 nM cBID) at 37 °C for

1 h. Afterwards the samples were fractionated by centrifuga-

tion or linear sucrose gradient (1–2 M). The samples pro-

cessed by sucrose gradient were ultracentrifuged at 50 000 g

in a swinging bucket SW41 rotor (Beckman Coulter, Nyon,

Switzerland) during 90 min. The gradients were then split

into 1 mL fractions and precipitated using methanol/chloro-

form. The distribution of the recombinant proteins across

the gradient was detected by western blotting using the corre-

sponding antibodies: rabbit monoclonal anti-BOK (RabMab

BOK-1-5 [12]), rabbit polyclonal anti-BAX (Santa Cruz

Biotechnology, Dallas, TX, USA, sc-493), and mouse mono-

clonal anti-porin (Merck Millipore, Zug, Switzerland, clone

89-173/016).
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