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Abstract 
 
In the last few decades there have been several attempts to use computers to automatically construct typologies (keys, classifiers, 
decision trees, etc) for projectile points. However, all these methods require human effort to extract the features. There are three 
problems with this. First, it is clearly not scalable to large data collections. Second, human extraction of features is subjective, with 
all the attendant problems. Finally, and most importantly, all such attempts essentially put the cart before the horse in using 
preconceived ideas to build classifiers. Here we demonstrate a classification algorithm that tells us the defining features for each 
class. All the user does is provide two or more labeled sets of photographs/drawings. Our method classifies projectile points with a 
high degree of accuracy and produces inuitive explanations as to what makes the classes different. We demonstrate the utility of our 
work on a large dataset of North American projectile points. 
 
Keywords: projectile points, typology, classification  
 
 
1 INTRODUCTION 
 
The classification of projectile points faces a number of 
problems because there is no universal classificatory 
system. Work has been informed, instead, by a number 
of theoretical frameworks that have influenced (1) the 
choice of attributes used to create classes or types, and 
(2) the methods that have been applied in segregating 
classes depending on the questions being asked. 
Additionally, because data collection of selected 
projectile point attributes requires human effort, there 
are limitations to the size of the data set to be analyzed. 
 
We present here preliminary work on the automatic 
construction of typologies for massive collections of 
projectile points utilizing time series classification, an 
approach not previously applied to lithic analysis. In 
time series classification, the two-dimensional shape 
outline of the projectile point is converted into a one-
dimensional representation called a pseudo-time series. 
In this case, the time series is an ordered set of n real-
valued variables where ordering is not temporal, but 
spatial. 
 
While the last decade has seen a huge interest in time 
series classification, to date the most accurate and 
robust method is the simple nearest neighbor algorithm.1 
algorithm.1 While the nearest neighbor algorithm has 

                                                            
1Hui Ding et al., “Querying and Mining of Time Series Data: 
Experimental Comparison of Representations and Distance 
Measures,” Proceedings of the 34th International Conference 
on Very Large Data Bases (2008) 1542–1552; Steven L. 
Salzberg, “On Comparing Classifiers: Pitfalls to Avoid and a 
Recommended Approach,” Data Mining and Knowledge 
Discovery 1 (1997): 317–328; Xiaopeng Xi et al., “Fast Time 

the advantages of simplicity and not requiring extensive 
parameter tuning, it does have several important 
disadvantages. Chief among these are its space and time 
requirements, and the fact that it does not tell us 
anything about why a particular object was assigned to a 
particular class. 
 
In this work we present a novel time series data mining 
primitive called time series shapelets. Informally, 
shapelets are time series subsequences which are in 
some sense maximally representative of a class. While 
we believe shapelets can have many uses in data 
mining, one obvious implication of them is to mitigate 
the two weaknesses of the nearest neighbor algorithm 
noted above. 
 
Because we are defining and solving a new problem, we 
will take some time to consider a detailed motivating 
example. Figure 1 shows examples of projectile points 
from two classes. In order to build a classifier to 
distinguish between these two types, what features 
would be appropriate? Due to the effects of 
resharpening, size is not always a reliable method of 
classification. However, shape is a generally accepted 
method for classifying projectile points. As illustrated in 
figure 1, the overall shape of the projectile points is 
fairly similar. Both types may be described as 
triangular, side notched, eared projectile points with 
straight to concave bases. Furthermore, it is not 
uncommon to recover broken projectile points which 
are likely to confuse any global measures of shape. 

                                                                                              
Series Classification Using Numerosity Reduction,” Pro-
ceedings of the 23rd International Conference on Machine 
Learning 148 (2006) 1033–1040. 
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Instead, we attempt the following. We first convert each 
projectile point into a one-dimensional representation as 
shown in figure 2. 
 

 
Figure 1. Examples of projectile points from two classes. Note 
that several points have damage due to breakage. 
 
 

 
Figure 2. A shape can be converted into a one dimensional 
“time series” representation. The reason for the highlighted 
section of the time series will be made apparent shortly. 
 
Such representations have been successfully used for 
the classification, clustering, and outlier detection of 
shapes in recent years.1 However, here we find that 
using a nearest neighbor classifier with either the 
(rotation invariant) Euclidean distance or Dynamic 
Time Warping (DTW) distance does not significantly 
outperform random guessing. The reason for the poor 
performance of these otherwise very competitive 
classifiers seems to be due to the fact that the data is 
somewhat noisy (due to breakage, resharpening, etc.), 
and this noise is enough to swamp the subtle differences 
in the shapes.  
 
Suppose, however, that instead of comparing the entire 
shapes, we only compare a small subsection of the 
shapes from the two classes that is particularly 
discriminating. We can call such subsections shapelets, 
which invokes the idea of a small “sub-shape” (see fig. 
3). For the moment we ignore the details of how to 
                                                            
1Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing 
of Shapes under Rotation Invariance with Arbitrary 
Representations and Distance Measures,” Proceedings of the 
32nd International Conference on Very Large Data Bases 
(2006) 882–893. 

formally define shapelets, and how to efficiently 
compute them. 
 

 
Figure 3. Here, the shapelet hinted at in figure 2 (in both 
cases shown with a bold line) is the subsequence that best 
discriminates between the two classes. 
 
As we can see, the shapelet has “discovered” that the 
defining difference between the two classes of projectile 
points is that points with angled side-notches have barb 
tips that are defined by a more acute angle. Having 
found the shapelet and recorded its distance to the 
nearest matching subsequence in all objects in the 
database, we can build the simple decision-tree 
classifier shown in figure 4. 
 

 
 
Figure 4. A decision-tree classifier for the projectile point 
problem. The object to be classified has all of its subsequences 
compared to the shapelet, and if any subsequence is less than 
(the empirically determined value of) 0.47, it is classified as 
Horizontal Side-Notch. 
 
The reader will immediately see that this method of 
classification has many potential advantages over 
current methods: 
 

 Shapelets can provide interpretable results, which 
may help domain practitioners better understand 
their data. Most other state-of-the-art time 
series/shape classifiers do not produce interpretable 
results.2 

 Shapelets can be significantly more accurate/robust 
on some datasets. This is because they are local 
features, whereas most other state-of-the-art time 
series/shape classifiers consider global features, 
which can be brittle to even low levels of noise and 

                                                            
2Hui Ding et al., “Querying and Mining of Time Series Data: 
Experimental Comparison of Representations and Distance 
Measures,” Proceedings of the 34th International Conference 
on Very Large Data Bases (2008) 1542–1552; Eamonn Keogh 
and Shruti Kasetty, “On the Need for Time Series Data 
Mining Benchmarks: A Survey and Empirical Demon-
stration,” Proceedings of the 8th ACM Special Interest Group 
on Knowledge Discovery and Data Mining (2005) 102–111. 
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distortions.5 In our example, projectile points which 
have damage are still usually correctly classified. 

 Shapelets can be significantly faster at classification 
than existing state-of-the-art approaches. The 
classification time is just O(ml), where m is the 
length of the query time series and l is the length of 
the shapelet. In contrast, if we use the best 
performing global distance measure, rotation 
invariant DTW distance,1 the time complexity is on 
the order of O(km3), where k is the number of 
reference objects in the training set.2 On real-world 
problems the speed difference can be greater than 
three orders of magnitude. 

 
2 RELATED WORK AND BACKGROUND 
 
While there is a vast amount of literature on time series 
classification and mining,3  we believe that the problem 
we intend to solve here is unique. The closest work is 
that of Geurts.4 Here the author also attempts to find 
local patterns in a time series which are predictive of a 
class. However, the author considers the problem of 
finding the best such pattern intractable, and thus resorts 
to examining a single, randomly chosen instance from 
each class, and even then only considering a reduced 
piecewise constant approximation of the data. While the 
author notes “it is impossible in practice to consider 
every such subsignal as a candidate pattern,” this is in 
fact exactly what we do, aided by eight years of 
improvements in CPU time, and, more importantly, an 
admissible pruning technique that can prune off more 
than 99.9% of the calculations. Our work may also be 
seen as a form of supervised motif discovery algorithm.5 
                                                            
1Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing 
of Shapes under Rotation Invariance with Arbitrary 
Representations and Distance Measures,” Proceedings of the 
32nd International Conference on Very Large Data Bases 
(2006), 882–893. 
 
2There are techniques to mitigate the cubic complexity of 
rotation invariant DTW, but unlike shapelets, the time is 
dependent on D.  
 
3Eamonn Keogh and Shruti Kasetty, “On the Need for Time 
Series Data Mining Benchmarks: A Survey and Empirical 
Demonstration,”Proceedings of the 8th ACM Special Interest 
Group on Knowledge Discovery and Data Mining (2005): 
102–111; Hui Ding et al., “Querying and Mining of Time 
Series Data: Experimental Comparison of Representations and 
Distance Measures,” Proceedings of the 34th International 
Conference on Very Large Data Bases (2008): 1542–1552; 
Xiaopeng Xi et al., “Fast Time Series Classification Using 
Numerosity Reduction,” Proceedings of the 23rd International 
Conference on Machine Learning (2006): 1033–1040. 
 
4Pierre Geurts, “Pattern Extraction for Time Series 
Classification,” Proceedings of the 5th Conference on 
Principles and Practice of Knowledge Discovery in Databases 
(2005) 115–127. 
5Bill Chiu et al., “Probabilistic Discovery of Time Series 
Motifs,” Proceedings of the 9th Conference on Principles and 
Practice of Knowledge Discovery in Databases (2003) 493–
498. 

2.1 Traditional Projectile Point Classification 
 
The classification of projectile points is a complex 
problem because there is no universal classificatory 
system and work has been informed by a number of 
theoretical frameworks that have influenced the choice 
of attributes used to create classes or types. In addition, 
the methods that have been applied in segregating 
classes have varied depending on the questions being 
asked. Much of the early work in projectile point 
classification was concerned with the construction of 
culture-history and was largely descriptive.6 Later work 
was concerned with explaining culture change, and 
more recently, an interest in evolutionary archaeology 
has applied a biological perspective to understanding 
changes in artifact form.7  
 
Traditional methods of projectile point classification can 
only employ a limited number from a nearly infinite 
number of attributes to create types or classes. 
Commonly used non-metric attributes include flaking 
patterns on the face of the point, haft characteristics, 
notch and base shapes, and edge treatments. Early work 
in descriptive classification called for consistent 
terminology so that readers could develop “…a proper 
mental picture of the object.”8 Classification was 
accomplished by description of the geometric shape of 
the point and how the point was modified. Finkelstein9 
suggested a taxonomic system with the goal of 
providing an objective means of forming purely 
morphological classes. 
 

                                                                                              
 
6Glenn A. Black and Paul Weer, “A Proposed Terminology 
for Shape Classifications of Artifacts,” American Antiquity 1 
(1936): 280–294; Joe Finkelstein, “A Suggested Projectile-
Point Classification,” American Antiquity 2 (1937): 197–203. 
 
7Briggs Buchanan and Mark Collard, “Investigating the 
Peopling of North America through Cladistic Analyses of 
Early Paleoindian Projectile Points,” Journal of 
Anthropological Archaeology 26 (2007): 366–393; Briggs 
Buchanan and Mark Collard, “Phenetics, Cladistics, and the 
Search for the Alaskan Ancestors of the Paleoindians: A 
Reassessment of Relationships among the Clovis, Nenana, and 
Denali Archaeological Complexes,” Journal of 
Archaeological Science 36 (2008): 1683–1694; Michael J. 
O’Brien et al., “Cladistics Is Useful for Reconstructing 
Archaeological Phylogenies: Paleoindian Points from the 
Southeastern United States,” Journal of Archaeological 
Science 28 (2001): 1115–1136; Michael J. O’Brien et al., 
“Two Issues in Archaeological Phylogenetics: Taxon 
Construction and Outgroup Selection,” Journal of Theoretical 
Biology 215 (2002): 133–150. 
 
8Glenn A. Black and Paul Weer, “A Proposed Terminology 
for Shape Classifications of Artifacts,” American Antiquity 1 
(1936): 280–294. 
 
9J. Joe Finkelstein, “A Suggested Projectile-Point 
Classification,” American Antiquity 2 (1937): 197–203. 
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With an interest in increasing objectivity and the ability 
to more easily apply complex statistical analyses, metric 
attributes have also gained importance, including length, 
width, thickness, and weight, the ratios of which may 
also be used to summarize the overall “shape” of a 
projectile point.1  
 
While each of these methods has demonstrated utility in 
being able to discriminate different classes of projectile 
points, they also suffer from some disadvantages. All of 
these methods, even those relying heavily on computers 
for complex statistical analysis, require human effort to 
extract features or measurements, making these methods 
unsuitable for very large datasets because of the time 
involved in data extraction. Additionally, human 
extraction is subjective and susceptible to inter-observer 
error.  
 
The traditional approach poses a problem in data-
sharing and the comparability of results. A different 
approach, which has not previously been applied to 
lithic analysis, is the conversion of the two-dimensional 
shape outline of the projectile point to a one-
dimensional representation called a pseudo-time series 
(referred to here as time series). 
 
 
2.2 Converting Shapes into Time Series 
 
Computer technologies have been used to identify or 
classify shapes in various domains, such as bone 
fragments, projectile points, and petroglyphs. To make 
the similarity measure invariant to many distortions like 
scale and offset, we use a well-known method to 
convert the shape into time series. The example of 
obtaining a time series from a projectile point is shown 
in figure 5. 
 
Using this method, we simply convert the two-
dimensional image into a one-dimensional 
representation. Note that this method is only one of 
many proposed in the literature. A recent paper2 has 

                                                            
1Briggs Buchanan and Mark Collard, “Investigating the 
Peopling of North America through Cladistic Analyses of 
Early Paleoindian Projectile Points,”Journal of Anthro-
pological Archaeology 26 (2007): 366–393; Briggs Buchanan, 
“An Analysis of Folsom Projectile Point Re-sharpening Using 
Quantitative Comparisons of Form and Allometry,” Journal of 
Archaeological Science 33 (2006): 185–199; Michael J. Shott, 
“Stones and Shafts Redux: The Metric Discrimination of 
Chipped-Stone Dart and Arrow Points,” American Antiquity 
62 (1997): 86–101; David H. Thomas, “Arrowheads and Atlatl 
Darts: How the Stones Got the Shaft,” American Antiquity 43 
(1978): 461–472. 
 
2Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing 
of Shapes under Rotation Invariance with Arbitrary 
Representations and Distance Measures,” Proceedings of the 
32nd International Conference on Very Large Data Bases 
(2006) 882–893. 

shown that this method achieves higher or at least the 
same accuracy as six other “sophisticated” methods. 
Therefore, we prefer this method because of its 
simplicity. 
 
 

 
 
Figure 5. Convert projectile point to time series. (a) An 
original photo of projectile point. (b) The value of each point 
of the projectile point shape is represented by the distance 
between the point itself and the center; see (c), where the X-
axis represents continuous points of the shape and the Y-axis is 
the distance value of the point. 
 
 
2.3 Notation 
 

Symbol Explanation 
T, R time series 
S subsequence 
m, |T| length of time series 
l, |S| length of subsequence 
d distance measurement 
D time series dataset 
A,B class label 
I entropy  
Î weighted average entropy 
sp split strategy 
k number of time series objects in 
C classifier 
S(k) the kth data point in subsequence S 
  

 
Table 1. Symbol table. 
 
Table 1 summarizes the notation in the paper; we 
expand on the definitions below. We begin by defining 
the key terms in the paper. For ease of exposition, we 
consider only a two-class problem. However, extensions 
to a multiple-class problem are trivial.  

 
Definition 1: Time Series. A time series T = t1,…,tm is an 
ordered set of m real-valued variables.  

 
Data points t1,…,tm are typically arranged by temporal 
order, spaced at equal time intervals. We are interested 
in the local properties of a time series rather than the 
global properties. A local subsection of time series is 
termed as a subsequence. 
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Definition 2: Subsequence. Given a time series T of length 
m, a subsequence S of T is a sampling of length l ≤ m of 
contiguous positions from T, that is, S = tp,…,tp+l-1, for 1 ≤ p 
≤ m – l + 1.  

 
Our algorithm needs to extract all of the subsequences 
of a certain length. This is achieved by using a sliding 
window of the appropriate size. 

 
Definition 3: Sliding Window. Given a time series T of 
length m, and a user-defined subsequence length of l, all 
possible subsequences can be extracted by sliding a window 
of size l across T and considering each subsequence Sp

l of T. 
Here the superscript l is the length of the subsequence and 
subscript p indicates the starting position of the sliding 
window in the time series. The set of all subsequences of 
length l extracted from T is defined as ST

l, ST
l={Sp

l of T, for 
1 ≤ p ≤ m – l + 1}. 

 
As with virtually all time series data mining tasks, we 
need to provide a similarity measure between the time 
series Dist(T, R). 

 
Definition 4: Distance between the time series. Dist(T, R) is 
a distance function that takes two time series T and R which 
are of the same length as inputs and returns a nonnegative 
value d, which is said to be the distance between T and R. 
We require that the function Dist be symmetrical; that is, 
Dist(R, T) = Dist(T, R).  

 
The Dist function can also be used to measure the 
distance between two subsequences of the same length, 
since the subsequences are of the same format as the 
time series. However, we will also need to measure the 
similarity between a short subsequence and a 
(potentially much) longer time series. We therefore 
define the distance between two time series T and S, 
with |S| < |T| as: 

 
Definition 5: Distance from the time series to the 
subsequence. SubsequenceDist(T, S) is a distance function 
that takes time series T and subsequence S as inputs and 
returns a nonnegative value d, which is the distance from T 
to S. SubsequenceDist(T, S) = min(Dist(S, S’)), for S’   
ST

|S|. 
 
Intuitively, this distance is simply the distance between 
S and its best matching location somewhere in T, as 
shown in figure 6. 
 

 
 
Figure 6. Illustration of best matching location in time series 
T for subsequence S. 
 
As we shall explain in Section 3, our algorithm needs 
some metric to evaluate how well it can divide the entire 
combined dataset into two original classes. Here, we use 
concepts very similar to the information gain used in the 

traditional decision tree.1 The reader may recall the 
original definition of entropy which we review here: 
 
 

Definition 6: Entropy. A time series dataset D consists of 
two classes, A and B. Given that the proportion of objects in 
class A is p(A) and the proportion of objects in class B is 
p(B), the entropy of D is:  I(D) = -p(A)log(p(A)) -
p(B)log(p(B)). 

 
Each splitting strategy divides the whole dataset D into 
two subsets, D1 and D2. Therefore, the information 
remaining in the entire dataset after splitting is defined 
by the weighted average entropy of each subset. If the 
fraction of objects in D1 is f(D1) and the fraction of 
objects in D2 is f(D2), the total entropy of D after 
splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). This allows us 
to define the information gain for any splitting strategy:  

 
Definition 7: Information Gain. Given a certain split 
strategy sp which divides D into two subsets D1 and D2, the 
entropy before and after splitting is I(D) and Î(D). So the 
information gain for this splitting rule is  

Gain(sp) = I(D)-Î(D), 
Gain(sp) = I(D)-f(D1)I(D1) + f(D2)I(D2). 

 
As hinted at in the introduction, we use the distance to a 
shapelet as the splitting rule. The shapelet is a 
subsequence of a time series such that most of the time 
series objects in one class of the dataset are close to the 
shapelet under SubsequenceDist, while most of the time 
series objects from the other class are far away from it.  
 
To find the best shapelet, we may have to test many 
shapelet candidates. In the brute force algorithm 
discussed in Section 3.1, given a candidate shapelet, we 
calculate the distance between the candidate and every 
time series object in the dataset. We sort the objects 
according to the distances and find an optimal split 
point between two neighboring distances. 

 
Definition 8: Optimal Split Point (OSP). A time series 
dataset D consists of two classes, A and B. For a shapelet 
candidate S, we choose some distance threshold dth and split 
D into D1 and D2, such that for every time series object T1,i 
in D1, SubsequenceDist(T1,i, S) < dth and for every time 
series object T2,i in D2, SubsequenceDist(T2,i, S) ≥ dth. An 
Optimal Split Point is a distance threshold that 

Gain(S, dOSP(D, S)) ≥ Gain(S, d’th) 
for any other distance threshold d’th. 

 
So using the shapelet, the splitting strategy contains two 
factors: the shapelet and the corresponding optimal split 
point. As a concrete example, in figure 4 the shapelet is 
shown in red in the shapelet dictionary, and the optimal 
split point is 0.47. 
 
We are finally in the position to formally define the 
shapelet. 

 

                                                            
1Leo Breiman et al., Classification and Regression Trees 
(Belmont, CA: Wadsworth, 1984). 
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Definition 9: Shapelet. Given a time series dataset D which 
consists of two classes, A and B, shapelet(D) is a 
subsequence that, with its corresponding optimal split point,  

Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S)) 
for any other subsequence S. 

 
Since the shapelet is simply any time series of some 
length less than or equal to the length of the shortest 
time series in our dataset, there are an infinite amount of 
possible shapes it could have. For simplicity, we assume 
the shapelet to be a subsequence of a time series object 
in the dataset. It is reasonable to make this assumption 
since the time series objects in one class presumably 
contain some similar subsequences, and these 
subsequences are good candidates for the shapelet.  
 
Nevertheless, there is still a very large number of 
possible shapelet candidates. Suppose the dataset D 
contains k time series objects. We specify the minimum 
and maximum length of the shapelet candidates that can 
be generated from this dataset as MINLEN and 
MAXLEN, respectively. Obviously MAXLEN ≤ min(mi), 
mi is the length of the time series Ti from the dataset, 1 ≤ 
i ≤ k. Considering a certain fixed length l, the number of 
shapelet candidates generated from the dataset is: 

)1( 


lm
DT

i

i  
So the total number of candidates of all possible lengths 
is:  

 
 


MAXLEN

MINLENl DT

i

i

lm )1(

 
 

If the shapelet can be any length smaller than that of the 
shortest time series object in the dataset, the number of 
shapelet candidates is linear in k, and quadratic in (the 
average m  length of time series objects). For example, 
the three-class Avonlea-Clovis-Mixture projectile point 
dataset we will see in Section 5 has 36 instances, each 
of length 1030. If we set MINLEN=3, MAXLEN=1030, 
there will be 19,040,616 shapelet candidates. For each 
of these candidates, we need to find its nearest 
neighbors within the k time series objects. Using the 
brute force search, it will take approximately four days 
to accomplish this. However, as we will show in Section 
3, we can achieve an identical result in a tiny fraction of 
this time with a novel pruning strategy. 
 
 
3 FINDING THE SHAPELET 
 
We first show the brute force algorithm for finding 
shapelets, followed by two simple but highly effective 
speedup methods. 
 
3.1 Brute Force Algorithm 
 
The most straightforward way for finding the shapelet is 
using the brute force method. The algorithm is 
described in table 2. 
 
 

FindingShapeletBF (dataset D, MAXLEN, MINLEN) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

candidates GenerateCandidates(D, MAXLEN, 
MINLEN) 
bsf_gain  0 
For each S in candidates 
  gain  CheckCandidate(D, S) 
  If gain > bsf_gain 
   bsf_gain  gain 
   bsf_shapelet  S 
  EndIf 
EndFor 
Return bsf shapelet

 
Table 2. Brute force algorithm for finding shapelet. 
 
Given a combined dataset D, in which each time series 
object is labeled either class A or class B, along with the 
user-defined maximum and minimum lengths of the 
shapelet, line 1 generates all of the subsequences of all 
possible lengths, and stores them in the unordered list 
candidates. After initializing the best information gain 
bsf_gain to be zero (line 2), the algorithm checks how 
well each candidate in candidates can separate objects 
in class A and class B (lines 3 to 7). For each shapelet 
candidate, the algorithm calls the function 
CheckCandidate() to obtain the information gain 
achieved if using that candidate to separate the data 
(line 4). As illustrated in figure 7, we can visualize this 
as placing class-annotated points on the real number 
line, representing the distance of each time series to the 
candidate. Intuitively, we hope to find that this mapping 
produces two well-separated “pure” groups. In this 
regard the example in figure 7 is very good, but clearly 
not perfect.  
 

 
 

Figure 7. The CheckCandidate() function at the heart of the 
brute force algorithm can be regarded as testing to see how 
mapping all of the time series objects on the number line 
based on their SubsequenceDist(T, S) separates the two 
classes. 
 
If the information gain is higher than the bsf_gain, the 
algorithm updates the bsf_gain and the corresponding 
best shapelet candidate bsf_shapelet (lines 5 to 7). 
Finally, the algorithm returns the candidate with the 
highest information gain in line 10. The two subroutines 
GenerateCandidates() and CheckCandidate() called in 
the algorithm are outlined in  
Table 3 and  
Table 4, respectively.  
In  
Table 3, the algorithm GenerateCandidates() begins by 
initializing the shapelet candidate pool to be an empty 
set and the shapelet length l to be MAXLEN (lines 1 and 
2). 
 
Thereafter, for each possible length l, the algorithm 
slides a window of size l across all of the time series 
objects in the dataset D, extracts all of the possible 
candidates and adds them to the pool (line 5). The 
algorithm finally returns the pool as the entire set of 
shapelet candidates that we are going to check (line 9). 
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In table 4 we show how the algorithm evaluates the 
utility of each candidate by using the information gain. 
 

GenerateCandidates (dataset D, MAXLEN, MINLEN) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

pool  Ø 
l  MAXLEN 
While l ≥ MINLEN 
  For T in D 
   pool  pool  ST

l 
  EndFor 
  l  l-1 
EndWhile 
Return pool 

 
Table 3. Generate all the candidates from time series dataset. 

 
 

CheckCandidate (dataset D, shapelet candidate S) 

1 
2 
3 
4 
5 
6 

objects_histogram  Ø 
For each T in D 
  dist  SubsequenceDist(T, S) 
  insert T into objects_histogram by the key dist 
EndFor 
Return 
CalculateInformationGain(objects_histogram) 

 
Table 4. Checking the utility of a single candidate. 
 
First, the algorithm inserts all of the time series objects 
into the histogram objects_histogram according to the 
distance from the time series object to the candidate in 
lines 1 to 4. After that, the algorithm returns the utility 
of that candidate by calling CalculateInformationGain() 
(line 6). 
 
The CalculateInformationGain() subroutine, as shown in  
Table 5, takes an object histogram as the input, finds an 
optimal split point split_dist (line 1) and divides the 
time series objects into two subsets by comparing the 
distance to the candidate with split_dist (lines 4 to 7). 
Finally, it calculates the information gain (cf. definitions 
6, 7) of the partition and returns the value (line 10).  
 

CalculateInformationGain (distance histogram obj_hist) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

split_dist  OptimalSplitPoint(obj_hist) 
D1  Ø, D2  Ø 
For d in obj_hist 
  If d.dist < split_dist 
   D1  D1  d.objects 
  Else 
   D2  D2  d.objects 
  EndIf 
EndFor 
Return I(D)-Î(D) 

 
Table 5. Information gain of distance histogram optimal split.  
 
After building the distance histogram for all of the time 
series objects to a certain candidate, the algorithm will 
find a split point that divides the time series objects into 
two subsets (denoted by the dashed line in figure 7). As 
noted in definition 8, an optimal split point is a distance 
threshold. Comparing the distance from each time series 
object in the dataset to the shapelet with the threshold, 
we can divide the dataset into two subsets, which 
achieves the highest information gain among all of the 
possible partitions. Any point on the positive real 
number line could be a split point, so there are infinite 

possibilities from which to choose. To make the search 
space smaller, we check only the mean values of each 
pair of adjacent points in the histogram as a possible 
split point. This reduction still finds all of the possible 
information gain values, since the information gain 
cannot change in the region between two adjacent 
points. Furthermore, in this way, we maximize the 
margin between two subsets. 
 
The naïve brute force algorithm clearly finds the 
optimal shapelet. It appears that it is extremely space 
inefficient, requiring the storage of all of the shapelet 
candidates. However, we can mitigate this with some 
internal bookkeeping that generates and then discards 
the candidates one at a time. Nevertheless, the algorithm 
suffers from high time complexity. Recall that the 
number of the time series objects in the dataset is k and 
the average length of each time series is m . As we 
discussed in Section 2.3, the size of the candidate set is 

)( 2kmO . Checking the utility of one candidate takes 

)( kmO . Hence, the overall time complexity of the 

algorithm is )( 23kmO , which makes the real-world 

problems intractable. 
 
 
3.2 Subsequence Distance Early Abandon 
 
In the brute force method, the distance from the time 
series T to the subsequence S is obtained by calculating 
the Euclidean distance of every subsequence of length 
|S| in T and S and choosing the minimum. This takes |T|-
|S|+1 distance calculations between subsequences. 
However, all we need to know is the minimum distance 
rather than all of the distances. Therefore, instead of 
calculating the exact distance between every 
subsequence and the candidate, we can stop distance 
calculations once the partial distance exceeds the 
minimum distance known so far. This trick is known as 
early abandon,1 which is very simple yet has been 
shown to be extremely effective for similar types of 
problems. 
 

 
 
Figure 8. (left) Illustration of complete Euclidean distance. 
(right) Illustration of Euclidean distance early abandon.  
 
While it is a simple idea, for clarity we illustrate the 
idea in figure 8 and provide the pseudo code in table 6. 
 
 
 

                                                            
1Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing 
of Shapes under Rotation Invariance with Arbitrary Repre-
sentations and Distance Measures,” Proceedings of the 32nd 
International Conference on Very Large Data Bases (2006) 
882–893. 
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SubsequenceDistanceEarlyAbandon(T, S) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

min_dist  ∞ 
stop  False 
For Si in ST

|S| 

  sum_dist  0 
  For k  1 to |S| 
   sum_dist  sum_dist + (Si(k) – S(k))

2 
   If sum_dist ≥ min_dist 
     stop  True 
     Break 
   EndIf 
  EndFor 
  If not stop 
   min_dist  sum_dist 
  EndIf 
EndFor 
Return min_dist 

 
Table 6. Early abandon the non-minimum distance. 
 
In line 1, we initialize the minimum distance min_dist 
from the time series T to the subsequence S to be 
infinity. Thereafter, for each subsequence Si from T of 
length |S|, we accumulate the distance sum_dist between 
Si and S, one data point at a time (line 6). Once sum_dist 
is larger than or equal to the minimum distance known 
so far, we abandon the distance calculation between Si 
and S (lines 7 to 9). If the distance calculation between 
Si and S finishes, we know that the distance is smaller 
than the minimum distance known so far. Thus, we 
update the minimum distance min_dist in line 13. The 
algorithm returns the true distance from the time series 
T to the subsequence S in line 16. As we will 
demonstrate later, this simple trick reduces the time 
required by a large, constant factor.  
 
3.3 Admissible Entropy Pruning 
 
Our definition of the shapelet requires some measure of 
how well the distances to a given time series 
subsequence can split the data into two “purer” subsets. 
The reader will recall that we used the information gain 
(or entropy) as that measure. However, there are other 
commonly used measures for distribution evaluation, 
such as the Wilcoxon signed-rank test.1 We adopted the 
entropy evaluation for two reasons. First, it is easily 
generalized to the multi-class problem. Second, as we 
will now show, we can use a novel idea called early 
entropy pruning to avoid a large fraction of distance 
calculations required when finding the shapelet.  
 
Obtaining the distance between a candidate and its 
nearest matching subsequence of each of the objects in 
the dataset is the most expensive calculation in the brute 
force algorithm, whereas the information gain 
calculation takes an inconsequential amount of time. 
Based on this observation, instead of waiting until we 
have all of the distances from each of the time series 
objects to the candidate, we can calculate an upper 
bound of the information gain based on the currently 
observed distances. If at any point during the search the 
upper bound cannot beat the best-so-far information 

                                                            
1Frank Wilcoxon, “Individual Comparisons by Ranking 
Methods,” Biometrics 1 (1945): 80–83. 

gain, we stop the distance calculations and prune that 
particular candidate from consideration, secure in the 
knowledge that it cannot be a better candidate than the 
current best so far. 
 
In order to help the reader understand the idea of 
pruning with an upper bound of the information gain, 
we consider a simple example. Suppose, as shown in 
figure 9, ten time series objects are arranged in a one-
dimensional representation by measuring their distance 
to the best-so-far candidate. This happens to be a good 
case, with five of the six objects from class A 
(represented by circles) closer to the candidate than any 
of the four objects from class B (represented by 
squares). In addition, of the five objects to the right of 
the split point, only one object from class A is mixed up 
with the class B. The optimal split point is represented 
by a vertical dashed line, and the best-so-far information 
gain is:  
 

 
 
Figure 9. Distance arrangement of the time series objects in a 
one-dimensional representation of best-so-far information 
gain. The positions of the objects represent their distances to 
the candidate. 
 
We now consider another candidate. The distances of 
the first five time series objects to the candidate have 
been calculated, and their corresponding positions in a 
one-dimensional representation are shown in figure 10. 
 

 
 
Figure 10. The arrangement of the first five distances from the 
time series objects to the candidate. 
 
We can ask the following question: of the 30,240 
distinct ways the remaining five distances could be 
added to this line, could any of them result in an 
information gain that is better than the best so far? In 
fact, we can answer this question in constant time. The 
idea is to imagine the most optimistic scenarios and test 
them. It is clear that there are only two optimistic 
possibilities: either all of the remaining class A objects 
map to the far right and all of the class B objects map to 
the far left, or vice versa. Figure 11 shows the former 
scenario applied to the example shown in figure 10. 
 

 
 
Figure 11. One optimistic prediction of a distance distribution 
based on distances that have already been calculated in fig. 
10. The dashed objects are in the optimistically assumed 
placements. 
 
The information gain of the better of the two optimistic 
predictions is:  
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[-(6/10)log(6/10)-(4/10)log(4/10)]-[(4/10)[-
(4/4)log(4/4)]+(6/10)[-(4/6)log(4/6)-(2/6)log(2/6)]]=0.2911 

 
which is lower than the best-so-far information gain. 
Therefore, at this point, we can stop the distance 
calculation for the remaining objects and prune this 
candidate from consideration forever. In this case, we 
saved 50% of the distance calculations. But in real-life 
situations, early entropy pruning is generally much more 
efficient than we have shown in this brief example. This 
intuitive idea is formalized in the algorithm outlined in 
table 7. The algorithm takes as the inputs the best-so-far 
information gain, the calculated distances from objects 
to the candidate organized in the histogram (i.e., the 
number line for figures 8, 9 and 10) and the remaining 
time series objects in class A and class B, and returns 
TRUE if we can prune the candidate as the answer. The 
algorithm begins by finding the two ends of the 
histogram (discussed in Section 3.1). For simplicity, we 
make the distance values at two ends as 0 and maximum 
distance +1 (in lines 1 and 2). To build the optimistic 
histogram of the whole dataset based on the existing one 
(lines 3 and 8), we assign the remaining objects of one 
class to one end and those of the other class to the other 
end (lines 4 and 9). If in either case, the information 
gain of the optimistic histogram is higher than the best-
so-far information gain (lines 5 and 10), it is still 
possible that the actual information gain of the 
candidate can beat the best so far. Thus, we cannot 
prune the candidate and we should continue to test 
(lines 6 and 11). Otherwise, if the upper bound of the 
actual information gain is lower than the best so far, we 
save all of the remaining distance calculations with this 
candidate (line 13). 
 
The utility of this pruning method depends on the data. 
If there is any class-correlated structure in the data, we 
will typically find a good candidate that gives a high 
information gain early in our search, and thereafter the 
vast majority of candidates will be pruned quickly.  
 
 

EntropyEarlyPrune (bsf_gain, dist_hist, cA, cB) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

minend  0 
maxend  largest distance value in dist_hist + 1 
pred_dist_hist  dist_hist 
Add to the pred_dist_hist, cA at minend and cB at 
maxend 
If CalculateInformationGain (pred_dist_hist) > 
bsf_gain 
  Return FALSE 
EndIf 
pred_dist_hist  dist_hist 
Add to the pred_dist_hist, cA at maxend and cB at 
minend 
If CalculateInformationGain (pred_dist_hist) > 
bsf_gain 
  Return FALSE 
EndIf 
Return TRUE 

 
Table 7. Information gain upper bound pruning. 
 
There is one simple trick we can do to get the maximum 
pruning benefit. Suppose we tested all of the objects 
from class A first, then all of the objects from class B. In 

this case, the upper bound of the information gain must 
always be maximum until at least after the point at 
which we have seen the first object from class B. We 
therefore use a round-robin algorithm to pick the next 
object to be tested. That is to say, the ordering of objects 
we use is a1, b1, a2, b2,…, an, bn. This ordering lets the 
algorithm know very early in the search if a candidate 
cannot beat the best so far. 
 
3.4 Techniques for Breaking Ties 
 
It is often the case that different candidates will have the 
same best information gain. This is particularly true for 
small datasets. We propose several options to break this 
tie, depending on the application. We can break such 
ties by favoring the longest candidate, the shortest 
candidate, or the one that achieves the largest margin 
between the two classes. 
 
3.4.1 Longest Candidate 
The longest candidate always contains the entire 
distinguishing feature that is in one class and absent 
from the other class. However, it is possible that the 
longest candidate might also contain some irrelevant 
information or noise near the distinguishing feature 
subsequence, which is likely to reduce the accuracy in 
some applications. 
 
3.4.2 Shortest Candidate 
In contrast, favoring the shortest candidate can avoid 
noise in the shapelet. The shortest candidate is useful 
when there are multiple, discontinuous features in one 
class. To enumerate each of these shapelets, each time, 
after the algorithm finds a shapelet, we replace the 
feature subsequences in all of the time series objects 
with random walk subsequences of the same length and 
rerun the algorithm. By running the algorithm multiple 
times like this, the method will return short, 
discontinuous shapelets. 
 
3.4.3 Maximum Separation 
Using the maximum separation to break the tie follows 
the same basic idea of SVMs. The algorithm finds the 
shapelet that maximizes the distance between the two 
classes. The distance between two classes is defined by 
first calculating the mean distances from the time series 
objects in each individual class to the shapelet, then 
returning the difference between the mean distances.  
 
Based on comprehensive experiments, the best accuracy 
is most often achieved when breaking the tie using the 
shapelet that has the maximum margin, which is 
reasonable since this rule maximizes the difference 
between classes. 
 
 
4 SHAPELETS FOR CLASSIFICATION 
 
While we believe that shapelets can have implications 
for many time series data mining problems, including 
visualization, anomaly detection, and rule discovery, for 
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brevity we will focus only on the classification problem 
in this work. Classifying with a shapelet and its 
corresponding split point produces a binary decision as 
to whether a time series belongs to a certain class or not. 
Obviously, this is not enough to deal with a multi-class 
situation. Even with two-class problems, a linear 
classifier is sometimes inadequate. In order to make the 
shapelet classifier universal, we frame it as a decision 
tree.1 Given the discussion of the information gain 
above, this is a natural fit. At each step of the decision 
tree induction, we determine the shapelet and the 
corresponding split point over the training subset 
considered in that step. (A similar idea is considered in 
Geurts2). 
 
After the learning procedure finishes, we can assess the 
performance of the shapelet decision tree classifier by 
calculating the accuracy on the testing dataset. The way 
we predict the class label of each testing time series 
object is very similar to the way this is done with a 
traditional decision tree. For concreteness the algorithm 
is described in table 8. 

 
CalculateAccuracy (shapelet decision tree classifier C, 
dataset Dt) 

1 
2 
3 
4 
5 
6 
7 

For each T in Dt 
  predict_class_label  Predict(C, T) 
  If predict_class_label is the same as actual class 
label 
   correct  correct + 1 
  EndIf 
EndFor 
Return correct / | Dt | 

 
Table 8. Calculating the accuracy of the shapelet classifier. 
 
 
The technique to predict the class label of each testing 
object is described in table 9. For each node of the 
decision tree, we have the information of a single 
shapelet classifier, the left subtree and the right subtree. 
For the leaf node, there is additional information of a 
predicted class label. Starting from the root of a shapelet 
decision tree classifier, we calculate the distance from 
the testing object T to the shapelet in that node. If the 
distance is smaller than the split point, we recursively 
use the left subtree (lines 6 and 7) and otherwise use the 
right subtree (lines 8 and 9). This procedure continues 
until we reach the leaf node and return the predicted 
class label (lines 1 and 2). 
 
 
 
 
 
 
 

                                                            
1Leo Breiman et al., Classification and Regression Trees 
(Belmont, CA: Wadsworth, 1984). 
2Pierre Geurts, “Pattern Extraction for Time Series 
Classification,” Proceedings of the 5th Conference on 
Principles and Practice of Knowledge Discovery in Databases 
(2005) 115–127. 

Predict (shapelet decision tree classifier C, testing time 
series T) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

If C is the leaf node
  Return label of C 
Else 
  S  shapelet on the root node of C 
  split_point  split point on the root of C 
  If SubsequenceDistanceEarlyAbandon (T, S) < 
split_point 
   Predict (left substree of C, T) 
  Else 
   Predict (right substree of C, T) 
  EndIf 
EndIf

 
Table 9. Predicting the class label of a testing object. 
 
5 EXPERIMENTAL EVALUATION 
 
We begin by discussing our experimental philosophy. 
We have designed and conducted all experiments such 
that they are easily reproducible. With this in mind, we 
have built a webpage3 which contains all of the datasets 
and code used in this work, together with spreadsheets 
which contain the raw numbers displayed in all of the 
figures, and larger annotated figures showing the 
decision trees, etc. In addition, this webpage contains 
many additional experiments which we could not fit into 
this work; however, we note that this paper is 
completely self-contained. 
 
Projectile point classification continues to be of use in 
archaeology. Projectile points can be divided into 
classes based on the location they are found, the group 
that created or used them, the dates they were in use, 
etc. In figure 12, we show some examples of the 
projectile points used in our experiments. 
 

 
 

Figure 12. Examples of the three classes of projectile points in 
our dataset. The testing dataset includes some broken points, 
and some line drawings. 
 
We converted the shapes of projectile points to a time 
series using the angle-based method.4 We then 
randomly created a 36/175 training/test split. The results 
are shown in figure 13.  
 

                                                            
3www.cs.ucr.edu/~lexiangy/shapelet.html. 
4Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing 
of Shapes under Rotation Invariance with Arbitrary 
Representations and Distance Measures,” Proceedings of the 
32nd International Conference on Very Large Data Bases 
(2006) 882–893. 
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Figure 13. (top) The dictionary of shapelets, together with the 
thresholds dth. (bottom) The decision tree for the 3-class 
projectile points problem. 
 
The Clovis projectile points can be distinguished from 
the others by an un-notched hafting area near the bottom 
connected by a deep concave base. After distinguishing 
the Clovis projectile points, the Avonlea points are 
differentiated from the mixed class by a small notched 
hafting area connected by a shallow concave base. 
 
The shapelet decision tree classifier achieves an 
accuracy of 80.0%, whereas the accuracy of rotation 
invariant one-nearest-neighbor classifier is 68.0%. 
Beyond the advantage of greater accuracy, the shapelet 
decision tree classifier produces the classification result 
3×103 times faster than the rotation invariant one-
nearest-neighbor classifier, and it is more robust in 
dealing with the pervasive broken projectile points in 
most collections. 
 
 
 
 
 
 

6 CONCLUSIONS AND FUTURE WORK 
 
We have introduced a new primitive for time series and 
shape mining, time series shapelets. We have shown 
with extensive experiments that we can find the 
shapelets efficiently, and that they can provide accurate, 
interpretable and fast classification decisions for the 
discrimination of projectile points. Ongoing and future 
work includes extensions to the multivariate case and 
detailed case studies in the domains of anthropology and 
MOCAP analyses.  
 
 
APPENDIX: A Note on Notation 
 
The text of this paper features ‘Big O’ notation in the 
introduction section, such as “The classification time is just 
O(ml).” Big O notation is used in computer science to describe 
the computational complex of the algorithms. The notation 
explains the increaseing speed of the computational time of 
the algorithm as its input size increases. So O(n) means the 
computational time increases linearly with the input size, 
which means, if you double the input size, then the time you 
get the final answer is also doubled. O(n3) indicates the 
computational time increases cubically with the input size; if 
you double the input size, then the time you finish computing 
is eight time longer. Figure 14 shows the how the running time 
increases on input size under different big O notations.  
 

 
 

Figure 9. Different running time increasing speed as the input 
size increases under different big O notation.  
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