

146

Automatic Construction of Typologies for
Massive Collections of Projectile Points

Eamonn Keogh,1 Lexiang Ye,1 Taryn Rampley,2 and Sang-Hee Lee2

1 Department of Computer Science, University of California, Riverside. USA.

2 Department of Anthropology, University of California, Riverside. USA.

Abstract

In the last few decades there have been several attempts to use computers to automatically construct typologies (keys, classifiers,
decision trees, etc) for projectile points. However, all these methods require human effort to extract the features. There are three
problems with this. First, it is clearly not scalable to large data collections. Second, human extraction of features is subjective, with
all the attendant problems. Finally, and most importantly, all such attempts essentially put the cart before the horse in using
preconceived ideas to build classifiers. Here we demonstrate a classification algorithm that tells us the defining features for each
class. All the user does is provide two or more labeled sets of photographs/drawings. Our method classifies projectile points with a
high degree of accuracy and produces inuitive explanations as to what makes the classes different. We demonstrate the utility of our
work on a large dataset of North American projectile points.

Keywords: projectile points, typology, classification

1 INTRODUCTION

The classification of projectile points faces a number of
problems because there is no universal classificatory
system. Work has been informed, instead, by a number
of theoretical frameworks that have influenced (1) the
choice of attributes used to create classes or types, and
(2) the methods that have been applied in segregating
classes depending on the questions being asked.
Additionally, because data collection of selected
projectile point attributes requires human effort, there
are limitations to the size of the data set to be analyzed.

We present here preliminary work on the automatic
construction of typologies for massive collections of
projectile points utilizing time series classification, an
approach not previously applied to lithic analysis. In
time series classification, the two-dimensional shape
outline of the projectile point is converted into a one-
dimensional representation called a pseudo-time series.
In this case, the time series is an ordered set of n real-
valued variables where ordering is not temporal, but
spatial.

While the last decade has seen a huge interest in time
series classification, to date the most accurate and
robust method is the simple nearest neighbor algorithm.1
algorithm.1 While the nearest neighbor algorithm has

1Hui Ding et al., “Querying and Mining of Time Series Data:
Experimental Comparison of Representations and Distance
Measures,” Proceedings of the 34th International Conference
on Very Large Data Bases (2008) 1542–1552; Steven L.
Salzberg, “On Comparing Classifiers: Pitfalls to Avoid and a
Recommended Approach,” Data Mining and Knowledge
Discovery 1 (1997): 317–328; Xiaopeng Xi et al., “Fast Time

the advantages of simplicity and not requiring extensive
parameter tuning, it does have several important
disadvantages. Chief among these are its space and time
requirements, and the fact that it does not tell us
anything about why a particular object was assigned to a
particular class.

In this work we present a novel time series data mining
primitive called time series shapelets. Informally,
shapelets are time series subsequences which are in
some sense maximally representative of a class. While
we believe shapelets can have many uses in data
mining, one obvious implication of them is to mitigate
the two weaknesses of the nearest neighbor algorithm
noted above.

Because we are defining and solving a new problem, we
will take some time to consider a detailed motivating
example. Figure 1 shows examples of projectile points
from two classes. In order to build a classifier to
distinguish between these two types, what features
would be appropriate? Due to the effects of
resharpening, size is not always a reliable method of
classification. However, shape is a generally accepted
method for classifying projectile points. As illustrated in
figure 1, the overall shape of the projectile points is
fairly similar. Both types may be described as
triangular, side notched, eared projectile points with
straight to concave bases. Furthermore, it is not
uncommon to recover broken projectile points which
are likely to confuse any global measures of shape.

Series Classification Using Numerosity Reduction,” Pro-
ceedings of the 23rd International Conference on Machine
Learning 148 (2006) 1033–1040.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/158279231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automatic Construction of Typologies for Massive Collections of Projectile Points

147

Instead, we attempt the following. We first convert each
projectile point into a one-dimensional representation as
shown in figure 2.

Figure 1. Examples of projectile points from two classes. Note
that several points have damage due to breakage.

Figure 2. A shape can be converted into a one dimensional
“time series” representation. The reason for the highlighted
section of the time series will be made apparent shortly.

Such representations have been successfully used for
the classification, clustering, and outlier detection of
shapes in recent years.1 However, here we find that
using a nearest neighbor classifier with either the
(rotation invariant) Euclidean distance or Dynamic
Time Warping (DTW) distance does not significantly
outperform random guessing. The reason for the poor
performance of these otherwise very competitive
classifiers seems to be due to the fact that the data is
somewhat noisy (due to breakage, resharpening, etc.),
and this noise is enough to swamp the subtle differences
in the shapes.

Suppose, however, that instead of comparing the entire
shapes, we only compare a small subsection of the
shapes from the two classes that is particularly
discriminating. We can call such subsections shapelets,
which invokes the idea of a small “sub-shape” (see fig.
3). For the moment we ignore the details of how to

1Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing
of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures,” Proceedings of the
32nd International Conference on Very Large Data Bases
(2006) 882–893.

formally define shapelets, and how to efficiently
compute them.

Figure 3. Here, the shapelet hinted at in figure 2 (in both
cases shown with a bold line) is the subsequence that best
discriminates between the two classes.

As we can see, the shapelet has “discovered” that the
defining difference between the two classes of projectile
points is that points with angled side-notches have barb
tips that are defined by a more acute angle. Having
found the shapelet and recorded its distance to the
nearest matching subsequence in all objects in the
database, we can build the simple decision-tree
classifier shown in figure 4.

Figure 4. A decision-tree classifier for the projectile point
problem. The object to be classified has all of its subsequences
compared to the shapelet, and if any subsequence is less than
(the empirically determined value of) 0.47, it is classified as
Horizontal Side-Notch.

The reader will immediately see that this method of
classification has many potential advantages over
current methods:

 Shapelets can provide interpretable results, which
may help domain practitioners better understand
their data. Most other state-of-the-art time
series/shape classifiers do not produce interpretable
results.2

 Shapelets can be significantly more accurate/robust
on some datasets. This is because they are local
features, whereas most other state-of-the-art time
series/shape classifiers consider global features,
which can be brittle to even low levels of noise and

2Hui Ding et al., “Querying and Mining of Time Series Data:
Experimental Comparison of Representations and Distance
Measures,” Proceedings of the 34th International Conference
on Very Large Data Bases (2008) 1542–1552; Eamonn Keogh
and Shruti Kasetty, “On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demon-
stration,” Proceedings of the 8th ACM Special Interest Group
on Knowledge Discovery and Data Mining (2005) 102–111.

Eamonn Keogh, Lexiang Ye, Taryn Rampley and Sang-Hee Lee

148

distortions.5 In our example, projectile points which
have damage are still usually correctly classified.

 Shapelets can be significantly faster at classification
than existing state-of-the-art approaches. The
classification time is just O(ml), where m is the
length of the query time series and l is the length of
the shapelet. In contrast, if we use the best
performing global distance measure, rotation
invariant DTW distance,1 the time complexity is on
the order of O(km3), where k is the number of
reference objects in the training set.2 On real-world
problems the speed difference can be greater than
three orders of magnitude.

2 RELATED WORK AND BACKGROUND

While there is a vast amount of literature on time series
classification and mining,3 we believe that the problem
we intend to solve here is unique. The closest work is
that of Geurts.4 Here the author also attempts to find
local patterns in a time series which are predictive of a
class. However, the author considers the problem of
finding the best such pattern intractable, and thus resorts
to examining a single, randomly chosen instance from
each class, and even then only considering a reduced
piecewise constant approximation of the data. While the
author notes “it is impossible in practice to consider
every such subsignal as a candidate pattern,” this is in
fact exactly what we do, aided by eight years of
improvements in CPU time, and, more importantly, an
admissible pruning technique that can prune off more
than 99.9% of the calculations. Our work may also be
seen as a form of supervised motif discovery algorithm.5

1Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing
of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures,” Proceedings of the
32nd International Conference on Very Large Data Bases
(2006), 882–893.

2There are techniques to mitigate the cubic complexity of
rotation invariant DTW, but unlike shapelets, the time is
dependent on D.

3Eamonn Keogh and Shruti Kasetty, “On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration,”Proceedings of the 8th ACM Special Interest
Group on Knowledge Discovery and Data Mining (2005):
102–111; Hui Ding et al., “Querying and Mining of Time
Series Data: Experimental Comparison of Representations and
Distance Measures,” Proceedings of the 34th International
Conference on Very Large Data Bases (2008): 1542–1552;
Xiaopeng Xi et al., “Fast Time Series Classification Using
Numerosity Reduction,” Proceedings of the 23rd International
Conference on Machine Learning (2006): 1033–1040.

4Pierre Geurts, “Pattern Extraction for Time Series
Classification,” Proceedings of the 5th Conference on
Principles and Practice of Knowledge Discovery in Databases
(2005) 115–127.
5Bill Chiu et al., “Probabilistic Discovery of Time Series
Motifs,” Proceedings of the 9th Conference on Principles and
Practice of Knowledge Discovery in Databases (2003) 493–
498.

2.1 Traditional Projectile Point Classification

The classification of projectile points is a complex
problem because there is no universal classificatory
system and work has been informed by a number of
theoretical frameworks that have influenced the choice
of attributes used to create classes or types. In addition,
the methods that have been applied in segregating
classes have varied depending on the questions being
asked. Much of the early work in projectile point
classification was concerned with the construction of
culture-history and was largely descriptive.6 Later work
was concerned with explaining culture change, and
more recently, an interest in evolutionary archaeology
has applied a biological perspective to understanding
changes in artifact form.7

Traditional methods of projectile point classification can
only employ a limited number from a nearly infinite
number of attributes to create types or classes.
Commonly used non-metric attributes include flaking
patterns on the face of the point, haft characteristics,
notch and base shapes, and edge treatments. Early work
in descriptive classification called for consistent
terminology so that readers could develop “…a proper
mental picture of the object.”8 Classification was
accomplished by description of the geometric shape of
the point and how the point was modified. Finkelstein9
suggested a taxonomic system with the goal of
providing an objective means of forming purely
morphological classes.

6Glenn A. Black and Paul Weer, “A Proposed Terminology
for Shape Classifications of Artifacts,” American Antiquity 1
(1936): 280–294; Joe Finkelstein, “A Suggested Projectile-
Point Classification,” American Antiquity 2 (1937): 197–203.

7Briggs Buchanan and Mark Collard, “Investigating the
Peopling of North America through Cladistic Analyses of
Early Paleoindian Projectile Points,” Journal of
Anthropological Archaeology 26 (2007): 366–393; Briggs
Buchanan and Mark Collard, “Phenetics, Cladistics, and the
Search for the Alaskan Ancestors of the Paleoindians: A
Reassessment of Relationships among the Clovis, Nenana, and
Denali Archaeological Complexes,” Journal of
Archaeological Science 36 (2008): 1683–1694; Michael J.
O’Brien et al., “Cladistics Is Useful for Reconstructing
Archaeological Phylogenies: Paleoindian Points from the
Southeastern United States,” Journal of Archaeological
Science 28 (2001): 1115–1136; Michael J. O’Brien et al.,
“Two Issues in Archaeological Phylogenetics: Taxon
Construction and Outgroup Selection,” Journal of Theoretical
Biology 215 (2002): 133–150.

8Glenn A. Black and Paul Weer, “A Proposed Terminology
for Shape Classifications of Artifacts,” American Antiquity 1
(1936): 280–294.

9J. Joe Finkelstein, “A Suggested Projectile-Point
Classification,” American Antiquity 2 (1937): 197–203.

Automatic Construction of Typologies for Massive Collections of Projectile Points

149

With an interest in increasing objectivity and the ability
to more easily apply complex statistical analyses, metric
attributes have also gained importance, including length,
width, thickness, and weight, the ratios of which may
also be used to summarize the overall “shape” of a
projectile point.1

While each of these methods has demonstrated utility in
being able to discriminate different classes of projectile
points, they also suffer from some disadvantages. All of
these methods, even those relying heavily on computers
for complex statistical analysis, require human effort to
extract features or measurements, making these methods
unsuitable for very large datasets because of the time
involved in data extraction. Additionally, human
extraction is subjective and susceptible to inter-observer
error.

The traditional approach poses a problem in data-
sharing and the comparability of results. A different
approach, which has not previously been applied to
lithic analysis, is the conversion of the two-dimensional
shape outline of the projectile point to a one-
dimensional representation called a pseudo-time series
(referred to here as time series).

2.2 Converting Shapes into Time Series

Computer technologies have been used to identify or
classify shapes in various domains, such as bone
fragments, projectile points, and petroglyphs. To make
the similarity measure invariant to many distortions like
scale and offset, we use a well-known method to
convert the shape into time series. The example of
obtaining a time series from a projectile point is shown
in figure 5.

Using this method, we simply convert the two-
dimensional image into a one-dimensional
representation. Note that this method is only one of
many proposed in the literature. A recent paper2 has

1Briggs Buchanan and Mark Collard, “Investigating the
Peopling of North America through Cladistic Analyses of
Early Paleoindian Projectile Points,”Journal of Anthro-
pological Archaeology 26 (2007): 366–393; Briggs Buchanan,
“An Analysis of Folsom Projectile Point Re-sharpening Using
Quantitative Comparisons of Form and Allometry,” Journal of
Archaeological Science 33 (2006): 185–199; Michael J. Shott,
“Stones and Shafts Redux: The Metric Discrimination of
Chipped-Stone Dart and Arrow Points,” American Antiquity
62 (1997): 86–101; David H. Thomas, “Arrowheads and Atlatl
Darts: How the Stones Got the Shaft,” American Antiquity 43
(1978): 461–472.

2Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing
of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures,” Proceedings of the
32nd International Conference on Very Large Data Bases
(2006) 882–893.

shown that this method achieves higher or at least the
same accuracy as six other “sophisticated” methods.
Therefore, we prefer this method because of its
simplicity.

Figure 5. Convert projectile point to time series. (a) An
original photo of projectile point. (b) The value of each point
of the projectile point shape is represented by the distance
between the point itself and the center; see (c), where the X-
axis represents continuous points of the shape and the Y-axis is
the distance value of the point.

2.3 Notation

Symbol Explanation
T, R time series
S subsequence
m, |T| length of time series
l, |S| length of subsequence
d distance measurement
D time series dataset
A,B class label
I entropy
Î weighted average entropy
sp split strategy
k number of time series objects in
C classifier
S(k) the kth data point in subsequence S

Table 1. Symbol table.

Table 1 summarizes the notation in the paper; we
expand on the definitions below. We begin by defining
the key terms in the paper. For ease of exposition, we
consider only a two-class problem. However, extensions
to a multiple-class problem are trivial.

Definition 1: Time Series. A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Data points t1,…,tm are typically arranged by temporal
order, spaced at equal time intervals. We are interested
in the local properties of a time series rather than the
global properties. A local subsection of time series is
termed as a subsequence.

Eamonn Keogh, Lexiang Ye, Taryn Rampley and Sang-Hee Lee

150

Definition 2: Subsequence. Given a time series T of length
m, a subsequence S of T is a sampling of length l ≤ m of
contiguous positions from T, that is, S = tp,…,tp+l-1, for 1 ≤ p
≤ m – l + 1.

Our algorithm needs to extract all of the subsequences
of a certain length. This is achieved by using a sliding
window of the appropriate size.

Definition 3: Sliding Window. Given a time series T of
length m, and a user-defined subsequence length of l, all
possible subsequences can be extracted by sliding a window
of size l across T and considering each subsequence Sp

l of T.
Here the superscript l is the length of the subsequence and
subscript p indicates the starting position of the sliding
window in the time series. The set of all subsequences of
length l extracted from T is defined as ST

l, ST
l={Sp

l of T, for
1 ≤ p ≤ m – l + 1}.

As with virtually all time series data mining tasks, we
need to provide a similarity measure between the time
series Dist(T, R).

Definition 4: Distance between the time series. Dist(T, R) is
a distance function that takes two time series T and R which
are of the same length as inputs and returns a nonnegative
value d, which is said to be the distance between T and R.
We require that the function Dist be symmetrical; that is,
Dist(R, T) = Dist(T, R).

The Dist function can also be used to measure the
distance between two subsequences of the same length,
since the subsequences are of the same format as the
time series. However, we will also need to measure the
similarity between a short subsequence and a
(potentially much) longer time series. We therefore
define the distance between two time series T and S,
with |S| < |T| as:

Definition 5: Distance from the time series to the
subsequence. SubsequenceDist(T, S) is a distance function
that takes time series T and subsequence S as inputs and
returns a nonnegative value d, which is the distance from T
to S. SubsequenceDist(T, S) = min(Dist(S, S’)), for S’ 
ST

|S|.

Intuitively, this distance is simply the distance between
S and its best matching location somewhere in T, as
shown in figure 6.

Figure 6. Illustration of best matching location in time series
T for subsequence S.

As we shall explain in Section 3, our algorithm needs
some metric to evaluate how well it can divide the entire
combined dataset into two original classes. Here, we use
concepts very similar to the information gain used in the

traditional decision tree.1 The reader may recall the
original definition of entropy which we review here:

Definition 6: Entropy. A time series dataset D consists of
two classes, A and B. Given that the proportion of objects in
class A is p(A) and the proportion of objects in class B is
p(B), the entropy of D is: I(D) = -p(A)log(p(A)) -
p(B)log(p(B)).

Each splitting strategy divides the whole dataset D into
two subsets, D1 and D2. Therefore, the information
remaining in the entire dataset after splitting is defined
by the weighted average entropy of each subset. If the
fraction of objects in D1 is f(D1) and the fraction of
objects in D2 is f(D2), the total entropy of D after
splitting is Î(D) = f(D1)I(D1) + f(D2)I(D2). This allows us
to define the information gain for any splitting strategy:

Definition 7: Information Gain. Given a certain split
strategy sp which divides D into two subsets D1 and D2, the
entropy before and after splitting is I(D) and Î(D). So the
information gain for this splitting rule is

Gain(sp) = I(D)-Î(D),
Gain(sp) = I(D)-f(D1)I(D1) + f(D2)I(D2).

As hinted at in the introduction, we use the distance to a
shapelet as the splitting rule. The shapelet is a
subsequence of a time series such that most of the time
series objects in one class of the dataset are close to the
shapelet under SubsequenceDist, while most of the time
series objects from the other class are far away from it.

To find the best shapelet, we may have to test many
shapelet candidates. In the brute force algorithm
discussed in Section 3.1, given a candidate shapelet, we
calculate the distance between the candidate and every
time series object in the dataset. We sort the objects
according to the distances and find an optimal split
point between two neighboring distances.

Definition 8: Optimal Split Point (OSP). A time series
dataset D consists of two classes, A and B. For a shapelet
candidate S, we choose some distance threshold dth and split
D into D1 and D2, such that for every time series object T1,i
in D1, SubsequenceDist(T1,i, S) < dth and for every time
series object T2,i in D2, SubsequenceDist(T2,i, S) ≥ dth. An
Optimal Split Point is a distance threshold that

Gain(S, dOSP(D, S)) ≥ Gain(S, d’th)
for any other distance threshold d’th.

So using the shapelet, the splitting strategy contains two
factors: the shapelet and the corresponding optimal split
point. As a concrete example, in figure 4 the shapelet is
shown in red in the shapelet dictionary, and the optimal
split point is 0.47.

We are finally in the position to formally define the
shapelet.

1Leo Breiman et al., Classification and Regression Trees
(Belmont, CA: Wadsworth, 1984).

Automatic Construction of Typologies for Massive Collections of Projectile Points

151

Definition 9: Shapelet. Given a time series dataset D which
consists of two classes, A and B, shapelet(D) is a
subsequence that, with its corresponding optimal split point,

Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S))
for any other subsequence S.

Since the shapelet is simply any time series of some
length less than or equal to the length of the shortest
time series in our dataset, there are an infinite amount of
possible shapes it could have. For simplicity, we assume
the shapelet to be a subsequence of a time series object
in the dataset. It is reasonable to make this assumption
since the time series objects in one class presumably
contain some similar subsequences, and these
subsequences are good candidates for the shapelet.

Nevertheless, there is still a very large number of
possible shapelet candidates. Suppose the dataset D
contains k time series objects. We specify the minimum
and maximum length of the shapelet candidates that can
be generated from this dataset as MINLEN and
MAXLEN, respectively. Obviously MAXLEN ≤ min(mi),
mi is the length of the time series Ti from the dataset, 1 ≤
i ≤ k. Considering a certain fixed length l, the number of
shapelet candidates generated from the dataset is:

)1(


lm
DT

i

i
So the total number of candidates of all possible lengths
is:

 
 


MAXLEN

MINLENl DT

i

i

lm)1(

If the shapelet can be any length smaller than that of the
shortest time series object in the dataset, the number of
shapelet candidates is linear in k, and quadratic in (the
average m length of time series objects). For example,
the three-class Avonlea-Clovis-Mixture projectile point
dataset we will see in Section 5 has 36 instances, each
of length 1030. If we set MINLEN=3, MAXLEN=1030,
there will be 19,040,616 shapelet candidates. For each
of these candidates, we need to find its nearest
neighbors within the k time series objects. Using the
brute force search, it will take approximately four days
to accomplish this. However, as we will show in Section
3, we can achieve an identical result in a tiny fraction of
this time with a novel pruning strategy.

3 FINDING THE SHAPELET

We first show the brute force algorithm for finding
shapelets, followed by two simple but highly effective
speedup methods.

3.1 Brute Force Algorithm

The most straightforward way for finding the shapelet is
using the brute force method. The algorithm is
described in table 2.

FindingShapeletBF (dataset D, MAXLEN, MINLEN)

1
2
3
4
5
6
7
8
9
10

candidates GenerateCandidates(D, MAXLEN,
MINLEN)
bsf_gain  0
For each S in candidates
 gain  CheckCandidate(D, S)
 If gain > bsf_gain
 bsf_gain  gain
 bsf_shapelet  S
 EndIf
EndFor
Return bsf shapelet

Table 2. Brute force algorithm for finding shapelet.

Given a combined dataset D, in which each time series
object is labeled either class A or class B, along with the
user-defined maximum and minimum lengths of the
shapelet, line 1 generates all of the subsequences of all
possible lengths, and stores them in the unordered list
candidates. After initializing the best information gain
bsf_gain to be zero (line 2), the algorithm checks how
well each candidate in candidates can separate objects
in class A and class B (lines 3 to 7). For each shapelet
candidate, the algorithm calls the function
CheckCandidate() to obtain the information gain
achieved if using that candidate to separate the data
(line 4). As illustrated in figure 7, we can visualize this
as placing class-annotated points on the real number
line, representing the distance of each time series to the
candidate. Intuitively, we hope to find that this mapping
produces two well-separated “pure” groups. In this
regard the example in figure 7 is very good, but clearly
not perfect.

Figure 7. The CheckCandidate() function at the heart of the
brute force algorithm can be regarded as testing to see how
mapping all of the time series objects on the number line
based on their SubsequenceDist(T, S) separates the two
classes.

If the information gain is higher than the bsf_gain, the
algorithm updates the bsf_gain and the corresponding
best shapelet candidate bsf_shapelet (lines 5 to 7).
Finally, the algorithm returns the candidate with the
highest information gain in line 10. The two subroutines
GenerateCandidates() and CheckCandidate() called in
the algorithm are outlined in
Table 3 and
Table 4, respectively.
In
Table 3, the algorithm GenerateCandidates() begins by
initializing the shapelet candidate pool to be an empty
set and the shapelet length l to be MAXLEN (lines 1 and
2).

Thereafter, for each possible length l, the algorithm
slides a window of size l across all of the time series
objects in the dataset D, extracts all of the possible
candidates and adds them to the pool (line 5). The
algorithm finally returns the pool as the entire set of
shapelet candidates that we are going to check (line 9).

Eamonn Keogh, Lexiang Ye, Taryn Rampley and Sang-Hee Lee

152

In table 4 we show how the algorithm evaluates the
utility of each candidate by using the information gain.

GenerateCandidates (dataset D, MAXLEN, MINLEN)
1
2
3
4
5
6
7
8
9

pool  Ø
l  MAXLEN
While l ≥ MINLEN
 For T in D
 pool  pool  ST

l
 EndFor
 l  l-1
EndWhile
Return pool

Table 3. Generate all the candidates from time series dataset.

CheckCandidate (dataset D, shapelet candidate S)

1
2
3
4
5
6

objects_histogram  Ø
For each T in D
 dist  SubsequenceDist(T, S)
 insert T into objects_histogram by the key dist
EndFor
Return
CalculateInformationGain(objects_histogram)

Table 4. Checking the utility of a single candidate.

First, the algorithm inserts all of the time series objects
into the histogram objects_histogram according to the
distance from the time series object to the candidate in
lines 1 to 4. After that, the algorithm returns the utility
of that candidate by calling CalculateInformationGain()
(line 6).

The CalculateInformationGain() subroutine, as shown in
Table 5, takes an object histogram as the input, finds an
optimal split point split_dist (line 1) and divides the
time series objects into two subsets by comparing the
distance to the candidate with split_dist (lines 4 to 7).
Finally, it calculates the information gain (cf. definitions
6, 7) of the partition and returns the value (line 10).

CalculateInformationGain (distance histogram obj_hist)
1
2
3
4
5
6
7
8
9
10

split_dist  OptimalSplitPoint(obj_hist)
D1  Ø, D2  Ø
For d in obj_hist
 If d.dist < split_dist
 D1  D1  d.objects
 Else
 D2  D2  d.objects
 EndIf
EndFor
Return I(D)-Î(D)

Table 5. Information gain of distance histogram optimal split.

After building the distance histogram for all of the time
series objects to a certain candidate, the algorithm will
find a split point that divides the time series objects into
two subsets (denoted by the dashed line in figure 7). As
noted in definition 8, an optimal split point is a distance
threshold. Comparing the distance from each time series
object in the dataset to the shapelet with the threshold,
we can divide the dataset into two subsets, which
achieves the highest information gain among all of the
possible partitions. Any point on the positive real
number line could be a split point, so there are infinite

possibilities from which to choose. To make the search
space smaller, we check only the mean values of each
pair of adjacent points in the histogram as a possible
split point. This reduction still finds all of the possible
information gain values, since the information gain
cannot change in the region between two adjacent
points. Furthermore, in this way, we maximize the
margin between two subsets.

The naïve brute force algorithm clearly finds the
optimal shapelet. It appears that it is extremely space
inefficient, requiring the storage of all of the shapelet
candidates. However, we can mitigate this with some
internal bookkeeping that generates and then discards
the candidates one at a time. Nevertheless, the algorithm
suffers from high time complexity. Recall that the
number of the time series objects in the dataset is k and
the average length of each time series is m . As we
discussed in Section 2.3, the size of the candidate set is

)(2kmO . Checking the utility of one candidate takes

)(kmO . Hence, the overall time complexity of the

algorithm is)(23kmO , which makes the real-world

problems intractable.

3.2 Subsequence Distance Early Abandon

In the brute force method, the distance from the time
series T to the subsequence S is obtained by calculating
the Euclidean distance of every subsequence of length
|S| in T and S and choosing the minimum. This takes |T|-
|S|+1 distance calculations between subsequences.
However, all we need to know is the minimum distance
rather than all of the distances. Therefore, instead of
calculating the exact distance between every
subsequence and the candidate, we can stop distance
calculations once the partial distance exceeds the
minimum distance known so far. This trick is known as
early abandon,1 which is very simple yet has been
shown to be extremely effective for similar types of
problems.

Figure 8. (left) Illustration of complete Euclidean distance.
(right) Illustration of Euclidean distance early abandon.

While it is a simple idea, for clarity we illustrate the
idea in figure 8 and provide the pseudo code in table 6.

1Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing
of Shapes under Rotation Invariance with Arbitrary Repre-
sentations and Distance Measures,” Proceedings of the 32nd
International Conference on Very Large Data Bases (2006)
882–893.

Automatic Construction of Typologies for Massive Collections of Projectile Points

153

SubsequenceDistanceEarlyAbandon(T, S)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

min_dist  ∞
stop  False
For Si in ST

|S|

 sum_dist  0
 For k  1 to |S|
 sum_dist  sum_dist + (Si(k) – S(k))

2
 If sum_dist ≥ min_dist
 stop  True
 Break
 EndIf
 EndFor
 If not stop
 min_dist  sum_dist
 EndIf
EndFor
Return min_dist

Table 6. Early abandon the non-minimum distance.

In line 1, we initialize the minimum distance min_dist
from the time series T to the subsequence S to be
infinity. Thereafter, for each subsequence Si from T of
length |S|, we accumulate the distance sum_dist between
Si and S, one data point at a time (line 6). Once sum_dist
is larger than or equal to the minimum distance known
so far, we abandon the distance calculation between Si
and S (lines 7 to 9). If the distance calculation between
Si and S finishes, we know that the distance is smaller
than the minimum distance known so far. Thus, we
update the minimum distance min_dist in line 13. The
algorithm returns the true distance from the time series
T to the subsequence S in line 16. As we will
demonstrate later, this simple trick reduces the time
required by a large, constant factor.

3.3 Admissible Entropy Pruning

Our definition of the shapelet requires some measure of
how well the distances to a given time series
subsequence can split the data into two “purer” subsets.
The reader will recall that we used the information gain
(or entropy) as that measure. However, there are other
commonly used measures for distribution evaluation,
such as the Wilcoxon signed-rank test.1 We adopted the
entropy evaluation for two reasons. First, it is easily
generalized to the multi-class problem. Second, as we
will now show, we can use a novel idea called early
entropy pruning to avoid a large fraction of distance
calculations required when finding the shapelet.

Obtaining the distance between a candidate and its
nearest matching subsequence of each of the objects in
the dataset is the most expensive calculation in the brute
force algorithm, whereas the information gain
calculation takes an inconsequential amount of time.
Based on this observation, instead of waiting until we
have all of the distances from each of the time series
objects to the candidate, we can calculate an upper
bound of the information gain based on the currently
observed distances. If at any point during the search the
upper bound cannot beat the best-so-far information

1Frank Wilcoxon, “Individual Comparisons by Ranking
Methods,” Biometrics 1 (1945): 80–83.

gain, we stop the distance calculations and prune that
particular candidate from consideration, secure in the
knowledge that it cannot be a better candidate than the
current best so far.

In order to help the reader understand the idea of
pruning with an upper bound of the information gain,
we consider a simple example. Suppose, as shown in
figure 9, ten time series objects are arranged in a one-
dimensional representation by measuring their distance
to the best-so-far candidate. This happens to be a good
case, with five of the six objects from class A
(represented by circles) closer to the candidate than any
of the four objects from class B (represented by
squares). In addition, of the five objects to the right of
the split point, only one object from class A is mixed up
with the class B. The optimal split point is represented
by a vertical dashed line, and the best-so-far information
gain is:

Figure 9. Distance arrangement of the time series objects in a
one-dimensional representation of best-so-far information
gain. The positions of the objects represent their distances to
the candidate.

We now consider another candidate. The distances of
the first five time series objects to the candidate have
been calculated, and their corresponding positions in a
one-dimensional representation are shown in figure 10.

Figure 10. The arrangement of the first five distances from the
time series objects to the candidate.

We can ask the following question: of the 30,240
distinct ways the remaining five distances could be
added to this line, could any of them result in an
information gain that is better than the best so far? In
fact, we can answer this question in constant time. The
idea is to imagine the most optimistic scenarios and test
them. It is clear that there are only two optimistic
possibilities: either all of the remaining class A objects
map to the far right and all of the class B objects map to
the far left, or vice versa. Figure 11 shows the former
scenario applied to the example shown in figure 10.

Figure 11. One optimistic prediction of a distance distribution
based on distances that have already been calculated in fig.
10. The dashed objects are in the optimistically assumed
placements.

The information gain of the better of the two optimistic
predictions is:

Eamonn Keogh, Lexiang Ye, Taryn Rampley and Sang-Hee Lee

154

[-(6/10)log(6/10)-(4/10)log(4/10)]-[(4/10)[-
(4/4)log(4/4)]+(6/10)[-(4/6)log(4/6)-(2/6)log(2/6)]]=0.2911

which is lower than the best-so-far information gain.
Therefore, at this point, we can stop the distance
calculation for the remaining objects and prune this
candidate from consideration forever. In this case, we
saved 50% of the distance calculations. But in real-life
situations, early entropy pruning is generally much more
efficient than we have shown in this brief example. This
intuitive idea is formalized in the algorithm outlined in
table 7. The algorithm takes as the inputs the best-so-far
information gain, the calculated distances from objects
to the candidate organized in the histogram (i.e., the
number line for figures 8, 9 and 10) and the remaining
time series objects in class A and class B, and returns
TRUE if we can prune the candidate as the answer. The
algorithm begins by finding the two ends of the
histogram (discussed in Section 3.1). For simplicity, we
make the distance values at two ends as 0 and maximum
distance +1 (in lines 1 and 2). To build the optimistic
histogram of the whole dataset based on the existing one
(lines 3 and 8), we assign the remaining objects of one
class to one end and those of the other class to the other
end (lines 4 and 9). If in either case, the information
gain of the optimistic histogram is higher than the best-
so-far information gain (lines 5 and 10), it is still
possible that the actual information gain of the
candidate can beat the best so far. Thus, we cannot
prune the candidate and we should continue to test
(lines 6 and 11). Otherwise, if the upper bound of the
actual information gain is lower than the best so far, we
save all of the remaining distance calculations with this
candidate (line 13).

The utility of this pruning method depends on the data.
If there is any class-correlated structure in the data, we
will typically find a good candidate that gives a high
information gain early in our search, and thereafter the
vast majority of candidates will be pruned quickly.

EntropyEarlyPrune (bsf_gain, dist_hist, cA, cB)

1
2
3
4
5
6
7
8
9
10
11
12
13

minend  0
maxend  largest distance value in dist_hist + 1
pred_dist_hist  dist_hist
Add to the pred_dist_hist, cA at minend and cB at
maxend
If CalculateInformationGain (pred_dist_hist) >
bsf_gain
 Return FALSE
EndIf
pred_dist_hist  dist_hist
Add to the pred_dist_hist, cA at maxend and cB at
minend
If CalculateInformationGain (pred_dist_hist) >
bsf_gain
 Return FALSE
EndIf
Return TRUE

Table 7. Information gain upper bound pruning.

There is one simple trick we can do to get the maximum
pruning benefit. Suppose we tested all of the objects
from class A first, then all of the objects from class B. In

this case, the upper bound of the information gain must
always be maximum until at least after the point at
which we have seen the first object from class B. We
therefore use a round-robin algorithm to pick the next
object to be tested. That is to say, the ordering of objects
we use is a1, b1, a2, b2,…, an, bn. This ordering lets the
algorithm know very early in the search if a candidate
cannot beat the best so far.

3.4 Techniques for Breaking Ties

It is often the case that different candidates will have the
same best information gain. This is particularly true for
small datasets. We propose several options to break this
tie, depending on the application. We can break such
ties by favoring the longest candidate, the shortest
candidate, or the one that achieves the largest margin
between the two classes.

3.4.1 Longest Candidate
The longest candidate always contains the entire
distinguishing feature that is in one class and absent
from the other class. However, it is possible that the
longest candidate might also contain some irrelevant
information or noise near the distinguishing feature
subsequence, which is likely to reduce the accuracy in
some applications.

3.4.2 Shortest Candidate
In contrast, favoring the shortest candidate can avoid
noise in the shapelet. The shortest candidate is useful
when there are multiple, discontinuous features in one
class. To enumerate each of these shapelets, each time,
after the algorithm finds a shapelet, we replace the
feature subsequences in all of the time series objects
with random walk subsequences of the same length and
rerun the algorithm. By running the algorithm multiple
times like this, the method will return short,
discontinuous shapelets.

3.4.3 Maximum Separation
Using the maximum separation to break the tie follows
the same basic idea of SVMs. The algorithm finds the
shapelet that maximizes the distance between the two
classes. The distance between two classes is defined by
first calculating the mean distances from the time series
objects in each individual class to the shapelet, then
returning the difference between the mean distances.

Based on comprehensive experiments, the best accuracy
is most often achieved when breaking the tie using the
shapelet that has the maximum margin, which is
reasonable since this rule maximizes the difference
between classes.

4 SHAPELETS FOR CLASSIFICATION

While we believe that shapelets can have implications
for many time series data mining problems, including
visualization, anomaly detection, and rule discovery, for

Automatic Construction of Typologies for Massive Collections of Projectile Points

155

brevity we will focus only on the classification problem
in this work. Classifying with a shapelet and its
corresponding split point produces a binary decision as
to whether a time series belongs to a certain class or not.
Obviously, this is not enough to deal with a multi-class
situation. Even with two-class problems, a linear
classifier is sometimes inadequate. In order to make the
shapelet classifier universal, we frame it as a decision
tree.1 Given the discussion of the information gain
above, this is a natural fit. At each step of the decision
tree induction, we determine the shapelet and the
corresponding split point over the training subset
considered in that step. (A similar idea is considered in
Geurts2).

After the learning procedure finishes, we can assess the
performance of the shapelet decision tree classifier by
calculating the accuracy on the testing dataset. The way
we predict the class label of each testing time series
object is very similar to the way this is done with a
traditional decision tree. For concreteness the algorithm
is described in table 8.

CalculateAccuracy (shapelet decision tree classifier C,
dataset Dt)

1
2
3
4
5
6
7

For each T in Dt
 predict_class_label  Predict(C, T)
 If predict_class_label is the same as actual class
label
 correct  correct + 1
 EndIf
EndFor
Return correct / | Dt |

Table 8. Calculating the accuracy of the shapelet classifier.

The technique to predict the class label of each testing
object is described in table 9. For each node of the
decision tree, we have the information of a single
shapelet classifier, the left subtree and the right subtree.
For the leaf node, there is additional information of a
predicted class label. Starting from the root of a shapelet
decision tree classifier, we calculate the distance from
the testing object T to the shapelet in that node. If the
distance is smaller than the split point, we recursively
use the left subtree (lines 6 and 7) and otherwise use the
right subtree (lines 8 and 9). This procedure continues
until we reach the leaf node and return the predicted
class label (lines 1 and 2).

1Leo Breiman et al., Classification and Regression Trees
(Belmont, CA: Wadsworth, 1984).
2Pierre Geurts, “Pattern Extraction for Time Series
Classification,” Proceedings of the 5th Conference on
Principles and Practice of Knowledge Discovery in Databases
(2005) 115–127.

Predict (shapelet decision tree classifier C, testing time
series T)

1
2
3
4
5
6
7
8
9
10
11

If C is the leaf node
 Return label of C
Else
 S  shapelet on the root node of C
 split_point  split point on the root of C
 If SubsequenceDistanceEarlyAbandon (T, S) <
split_point
 Predict (left substree of C, T)
 Else
 Predict (right substree of C, T)
 EndIf
EndIf

Table 9. Predicting the class label of a testing object.

5 EXPERIMENTAL EVALUATION

We begin by discussing our experimental philosophy.
We have designed and conducted all experiments such
that they are easily reproducible. With this in mind, we
have built a webpage3 which contains all of the datasets
and code used in this work, together with spreadsheets
which contain the raw numbers displayed in all of the
figures, and larger annotated figures showing the
decision trees, etc. In addition, this webpage contains
many additional experiments which we could not fit into
this work; however, we note that this paper is
completely self-contained.

Projectile point classification continues to be of use in
archaeology. Projectile points can be divided into
classes based on the location they are found, the group
that created or used them, the dates they were in use,
etc. In figure 12, we show some examples of the
projectile points used in our experiments.

Figure 12. Examples of the three classes of projectile points in
our dataset. The testing dataset includes some broken points,
and some line drawings.

We converted the shapes of projectile points to a time
series using the angle-based method.4 We then
randomly created a 36/175 training/test split. The results
are shown in figure 13.

3www.cs.ucr.edu/~lexiangy/shapelet.html.
4Eamonn Keogh et al., “LB_Keogh Supports Exact Indexing
of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures,” Proceedings of the
32nd International Conference on Very Large Data Bases
(2006) 882–893.

Eamonn Keogh, Lexiang Ye, Taryn Rampley and Sang-Hee Lee

156

Figure 13. (top) The dictionary of shapelets, together with the
thresholds dth. (bottom) The decision tree for the 3-class
projectile points problem.

The Clovis projectile points can be distinguished from
the others by an un-notched hafting area near the bottom
connected by a deep concave base. After distinguishing
the Clovis projectile points, the Avonlea points are
differentiated from the mixed class by a small notched
hafting area connected by a shallow concave base.

The shapelet decision tree classifier achieves an
accuracy of 80.0%, whereas the accuracy of rotation
invariant one-nearest-neighbor classifier is 68.0%.
Beyond the advantage of greater accuracy, the shapelet
decision tree classifier produces the classification result
3×103 times faster than the rotation invariant one-
nearest-neighbor classifier, and it is more robust in
dealing with the pervasive broken projectile points in
most collections.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a new primitive for time series and
shape mining, time series shapelets. We have shown
with extensive experiments that we can find the
shapelets efficiently, and that they can provide accurate,
interpretable and fast classification decisions for the
discrimination of projectile points. Ongoing and future
work includes extensions to the multivariate case and
detailed case studies in the domains of anthropology and
MOCAP analyses.

APPENDIX: A Note on Notation

The text of this paper features ‘Big O’ notation in the
introduction section, such as “The classification time is just
O(ml).” Big O notation is used in computer science to describe
the computational complex of the algorithms. The notation
explains the increaseing speed of the computational time of
the algorithm as its input size increases. So O(n) means the
computational time increases linearly with the input size,
which means, if you double the input size, then the time you
get the final answer is also doubled. O(n3) indicates the
computational time increases cubically with the input size; if
you double the input size, then the time you finish computing
is eight time longer. Figure 14 shows the how the running time
increases on input size under different big O notations.

Figure 9. Different running time increasing speed as the input
size increases under different big O notation.

ACKNOWLEDGEMENTS

This work was funded by NSF 0803410 and 0808770.

BIBLIOGRAPHY

Black, Glenn A., and Paul Weer. “A Proposed Terminology for Shape Classifications of Artifacts,” American Antiquity

1 (1936): 280–294.
Breiman, Leo, et al. Classification and Regression Trees. Belmont, CA: Wadsworth, 1984.
Buchanan, Briggs. “An Analysis of Folsom Projectile Point Resharpening Using Quantitative Comparisons of Form

and Allometry,” Journal of Archaeological Science 33 (2006): 185–199.
Buchanan, Briggs, and Mark Collard. “Investigating the peopling of North America through Cladistic Analyses of

Early Paleoindian Projectile Points,” Journal of Anthropological Archaeology 26 (2007): 366–393.
———. “Phenetics, Cladistics, and the Search for the Alaskan Ancestors of the Paleoindians: A Reassessment of

Relationships among the Clovis, Nenana, and Denali Archaeological Complexes,” Journal of Archaeological
Science 35 (2008): 1683–1694.

Chiu, Bill, et al. “Probabilistic Discovery of Time Series Motifs,” Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2003) 493–498.

Automatic Construction of Typologies for Massive Collections of Projectile Points

157

Ding, Hui, et al. “Querying and Mining of Time Series Data: Experimental Comparison of Representations and
Distance Measures,” Proceedings of the 34th International Conference on Very Large Data Bases (2008) 1542–
1552.

Finkelstein, J. Joe. “A Suggested Projectile-Point Classification,” American Antiquity 2 (1937): 197–203.
Geurts, Pierre. “Pattern Extraction for Time Series Classification,” Proceedings of the 5th Conference on Principles

and Practice of Knowledge Discovery in Databases (2001) 115–127.
Keogh, Eamonn, and Shruti Kasetty. “On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical

Demonstration,” Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2005): 102–111.

Keogh, Eamonn, et al. “LB_Keogh Support Exact Indexing of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures,” Proceedings of the 32nd International Conference on Very Large Data
Bases (2006) 882–893.

O’Brien, Michael J., et al. “Cladistics Is Useful for Reconstructing Archaeological Phylogenies: Palaeoindian Points
from the Southeastern United States,” Journal of Archaeological Science 28 (2001): 1115–1136.

———. “Two Issues in Archaeological Phylogenetics: Taxon Construction and Outgroup Selection,” Journal of
Theoretical Biology 215 (2002): 133–150.

Salzberg, Steven L. “On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach.” Data Mining and
Knowledge Discovery 1 (1997): 317–328.

Shott, Michael J. “Stones and Shafts Redux: The Metric Discrimination of Chipped-Stone Dart and Arrow Points,”
American Antiquity 62 (1997): 86–101.

Thomas, David Hurst. “Arrowheads and Atlatl Darts: How the Stones Got the Shaft,” American Antiquity 43 (1978):
461–472.

———. “How to Classify the Projectile Points from Monitor Valley, Nevada,” Journal of California and Great Basin
Anthropology 3 (1981): 7–43.

Wilcoxon, Frank. “Individual Comparisons by Ranking Methods,” Biometrics 1 (1945): 80–83.
Xi, Xiaopeng, et al. “Fast Time Series Classification Using Numerosity Reduction,” Proceedings of the 23rd

International Conference on Machine Learning 148 (2006): 1033–1040.

