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Abstract. Motivated by the requirements of present day archaeology, we are developing an automated documentation system 
for archaeological classification and reconstruction of ceramics. Our system works with the profile of an archaeological frag-
ment, which is the cross-section of the fragment in the direction of the rotational axis of symmetry. Ceramic fragments are rec-
orded automatically by a 3D-measurement system based on structured (coded) light. The input data for the estimation of the 
profile is a set of points produced by the acquisition system. A function fitting this set should be constructed and later on pro-
cessed to find the extremal and inflection points necessary to classify the original fragment. The one we propose is based on 
cubic B-splines. This paper shows a method for shape classification of archaeological fragments. 
Keywords. classification, segmentation, pottery, splines 

 
1 Introduction 

Motivated by the requirements of present day archaeology, 
we are developing an automated system for archaeological 
classification of ceramics. Ceramics are among of the most 
widespread archaeological finds, having a short period of use. 
Since the 19th century, the physical characteristics of archaeo-
logical pottery have been used to assess cultural groups, popu-
lation movements, inter-regional contacts, production con-
texts, and technical or functional constraints (archaeometry). 
Because archaeometry of pottery still suffers from a lack of 
methodology, it is important to develop analytical classifica-
tion tools of artefacts (Orton C., Tyers P., and Vince A., 
1993). A large number of ceramic fragments, called sherds, 
are found at every excavation. These fragments are docu-
mented through photographs, measurements and drawings; 
then they are classified. The purpose of classification is to get 
a systematic view on the excavation finds. 

Traditional archaeological classification is based on the so-
called profile of the object, which is the cross section of the 
fragment in the direction of the rotational axis of symmetry. 
This two-dimensional plot holds all the information needed to 
perform archaeological research. The correct profile and the 
correct axis of rotation are thus essential to reconstruct and 
classify archaeological ceramics. 

Fragments of vessels are thin objects, therefore 3D-data of 
the edges of fragments are not accurate and this data cannot be 
acquired without placing and fixing the fragment manually. 
Ideally, the fragment is placed in the measurement area, a 
range image is computed, the fragment is turned and again a 
range image is computed. To perform the registration of the 
two surfaces, we use a-priori information about fragments 
belonging to a complete vessel: both surfaces have the same 
axis of rotation since they belong to the same object. Using the 
axis of rotation based registration technique, (Sablatnig R. and 
Kampel M., 2002) a profile is generated automatically. Fur-
thermore the rotational axis is used for the proper orientation 
of the fragments. 

For classification into the different types of vessel the pro-
file is used. Archaeologists use the number of extremal points 
and their distance ratios to determine which type of vessel a 
sherd belongs to. (Ettlinger, et. Al, 1990) 

The next section explains the acquisition and processing of 
the 3D-data in order to archive the profile section. Section 3 
describes the automatically segmentation of the profile for the 
correct classification of the fragment. Results are presented in 
Section 4. The paper concludes with a discussion of the results 
and gives an outlook on future research. 

2  Data Acquisition & Processing 
In our system, the profile sections are achieved automati-

cally by a 3D-measurement system based on structured (coded) 
light technique. Shape from structured light is a method, 
which constructs a surface model of an object based on pro-
jecting well-defined light patterns onto the object. The image, 
together with the knowledge about the pattern and its relative 
position to the camera are used to calculate the coordinates of 
points belonging to the surface of the object (Kampel M. and 
Sablatnig R., 1999). 

 
Fig. 1. Connected vertices along patch edges. 
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The 3D-data is stored as 3D-points (called vertices) that are 
connected in form of triangles (called patches). These vertices 
and patches are stored in an indexed list. A sample of vertices 
and patches is shown in Fig.1. 

Every patch consists of three indices to the corresponding 
vertices and for every patch the texture is stored as RGB-
value. This kind of representation has been selected to export 
and import the data as VRML-file in order to enable software 
independency. 

We use the oriented sherd for the estimation of the longest 
profile line, which is supposed to be the longest elongation 
along the surface of the sherd parallel to the rotational axis rot 
through two points {pr1, pr2}. This profile line is located where 
the fragment has its maximum height hmax. The height hi is 
defined as the orthogonal distance from a point pi of the sherd 
to the orifice plane of the object. For every point of the 3D-
model of the sherd the height has to be calculated and point 
pmax with maximum height hmax = max(hi) is selected. Next, 
the parameters for the intersecting plane e = {pr1,pr2,pmax} 
spanned through the points of the rotational axis rot and this 
point pmax are calculated. 

With the parameters of plane e  that intersects the fragment 
where the longest profile line is located the distances between 
the plane e and each vertex of the 3D-model are calculated. 
Then the nearest 1% of points are selected as candidates for 
the profile. For each of those vertices all patches they belong 
to are filtered by a search in the patch list with their index 
number. In Fig 2 a sherd shaded by the value of distance is 
shown (lighter means nearer to the intersecting plane).  

 
Fig. 2. Nearest points of the sherd to the plane. 

As mentioned before every patch is a triangle, which con-
sists of three points that are connected through three lines. For 
all three combinations of pairs of points of the filtered patches 
the position is calculated using the Hessian normal form 

0222 =++ czbyax . The result of the Hessian normal form 
is the distance to the plane and the sign corresponds to the 
side - left or right – where the point is located. Every pair of 
vertices that has both points on different sides of the plane is 
part of the profile line, because its connection intersects the 
plane. The coordinates of these pairs are rotated into the xy-
plane and the z-coordinate is removed. The result is a proper 
oriented profile line (Fig. 3). 

This profile line is stored as indexed list pli of 2D-
coordinates pi = (pi1,pi2) of curvature points and a list of index 
pairs con = ({i,,j}). These index pairs represent the connection 
between the points pi. The pairs of vertices of the profile line 
are sorted, so that each point pi in the list is connected to its 
immediate neighbour pi-1 and pi+1. The profile is stored as a 
single closed list of connected pairs of points. The indexed list 
pli and the list of pairs con are transformed into an indexed 
list rel of angles αi and distances di between connected pairs of 
points and the coordinate of the first point pi=1 of the indexed 
list pli. This representation is used for segmentation of the 
profile-line, explained in the next section. 

 
Fig. 3. Estimated oriented profile. 

3  Segmentation of the profile section 
Following the manual strategy of the archaeologists, the 

profile should first be segmented into its parts, the so-called 
primitives, in an automatic way. The profile determined has to 
be converted into a parameterized curve (Shoukry A. and 
Amin A., 1983, Hu Z. and Ma S.D., 1995) and the curvature 
has to be computed (Bennett J.R. and MacDonald J.S. 1975, 
Matas J., Shao Z., and Kittler J.V. 1995). Local changes in 
curvature (Rosenfeld A. and Nakamura A, 1997) are the basis 
for rules required for segmenting the profile. Our approach is 
a hierarchical segmentation of the profile into rim, wall, and 
base by creating segmentation rules based on expert knowl-
edge of the archaeologists and the curvature of the profile. The 
segments of the curve are divided by so called segmentation 
points. If there is a corner point, that is a point where the 
curvature changes significantly, the segmentation point is 
obvious. If there is no corner point, the segmentation point has 
to be determined mathematically. 

Several points characterize the curve. Fig. 4 shows the 
segmentation scheme of an S-shaped vessel as an example. A 
set of points is defined like, 

• Inflexion point ( IP ): point, where the curvature chang-
es its sign; 

• Local maximum ( MA ): point of vertical tangency; 
• Local minimum ( MI ): point of vertical tangency; 
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• Orifice point ( OP ): outermost point, where the profile 
line touches the orifice plane; 

• Base point ( BP ): outermost point, where the profile line 
touches the base plane 

• Point of the axis of rotation ( RP ): point, where the pro-
file line touches the axis of rotation. 

 
Fig. 4. S-shaped vessel: profile segmentation scheme. 

By means of these curve points several main segments of a 
vessel are distinguished: rim, upper part, lower part, neck, 
shoulder, belly and bottom. On the basis of the number and 
characteristics of these segments different kinds of vessels can 
be classified. Segmentation is done only on the outer half of 
the profile (Orton C., Tyers P., and Vince A., 1993), because 
the inner side does not contain information. So the profile is 
divided in the outer and inner profile at the orifice and the 
bottom point, which is calculated by knowledge of the orienta-
tion. The next step is to split the outer profile into its primi-
tives by locating the characteristic points. These points are 
found within the transformed data from Section 2: For each 
point jp  the change of angle is calculated as angle between 
the vector ji pp −  and the vector kj pp −  shown in Fig. 5. 

 
Fig 5 part of the profile line 

This is done using angles in the transformed data rel . The 
list of changing angles are smoothed with multi-spline-

representation (Adler K., et al 2001), so that distortions are 
eliminated and the characteristic points for further classifica-
tion in the curvature can be calculated.  

Our formalized approach uses mathematical curves to de-
scribe the shapes of the vessels and their parts. The profile is 
thus converted into one or more mathematical curves. We 
apply four methods for interpolation and four methods for 
approximation by B-splines on the reconstruction of the vessel 
profiles (i.e. the profiles are projected into the plane). 

3.1 Interpolation by Cubic Splines 

The following definitions were adopted from (DeVore and 
Lorentz G., 1993). We suppose that the planar closed curve r  
to be fitted (interpolated or approximated) will be represented 
by parametric equations  

( ) ( ) ( )[ ]tytxtr ,=  (1) 

in an interval in the Cartesian coordinates of 2R . The curve 
has continuous second derivatives. The curve is given by a set 
of points ( ) ( )[ ]tytxPi ,=  together with the non-decreasing se-
quence of knots { }1,...,1, += niti  of parameter t . Constructing 
a curve ( )tS , which approximates the function given by the 
points can be done by a cubic spline with an adequate parame-
terization and external conditions. The curve must be initially 
divided into sub-intervals, where functional approximation 
and interpolation methods can be applied. 

The support of a cubic spline is 5 intervals. Denote by 
4
iB an thk − order spline ( )3≤k  whose support is [ ]4, +ii tt . 

Then, it is possible to normalize these splines so that for any 
[ ]bax ,∈  
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Any cubic spline ( )xSn  with knots nt t,....,0 , and coefficients 

naaa ,...,2,3 −− , can be written in the form 
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There are 3+n  coefficients ia  in equation 3 showing that 
the vector space of cubic splines has dimension 3+n , so that 
the 1+n  functional values will not determine ( )xSn  uniquely 
– two additional constraints must be supplied. Cardinality of 
the basis has been sacrificed for small support in the basis. 
Consequently, in evaluating ( )xS  for any [ ]bax ,∈ , only four 
terms at most in the sum (3) will be non-zero. 

The basis cubic splines can be constructed by the following 
recurrent relationship: 
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1,...3 −−= ni  and .4,3,2,1=n  A useful convention is to define 
the first-order splines as right-continuous so that 

( ) [ ] 3,...,2,3,, 1
1 +−−=∈= + nittxforxB iiii δ  (5) 
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The method is of local character: the change of the position 
of one control vertex influences only 4 segments of the curve. 
The resulting curve is in particular coordinates a polynomial 
of 3rd degree for ( )1, +∈ jj ttt  and has continuous all derivatives 
in these coordinates. 

Since ( )xBn
i  is nonzero only on the interval [ ],, 4+ii tt  the 

linear system for the B-spline coefficients of the spline to be 
determined, by interpolation or least-squares approximation, is 
banded, which makes the solving of that linear system particu-
larly easy. 

( ) ( )∑
=

===
n

i
jijij njyaxBxS

0

44 ,...,0,  
(6) 

We selected four interpolation methods: 

a) Cubic spline interpolation with Lagrange end-
conditions 1cs  (i.e. it matches end slopes to the slope 
of the cubic that matches the first four data at the re-
spective end); 

b) Cubic spline interpolation with not-a-knot end-
condition 2cs  

c) Spline interpolation with an acceptable knot sequence 
3cs ; 

d) Spline interpolation with an optimal knot distribution 
4cs . As 'optimal' knot sequence the optimal recovery 

theory of Micchelli, Rivlin and Winograd (Micchelli 
T. and Winograd S., 1976) is used for interpolation at 
data points ( ) ( )nττ ,...,1  by splines of order k; 

All the discussed interpolation methods satisfy the Schoen-
berg-Whithey conditions, i.e. the achieved representation is for 
the method, the given data and knot sequences unique. These 
methods were applied to each of the intervals of the curve, and 
compared from the point of view of their approximation error 
(least mean square of the differences of the input value and the 
spline value) on the given data. 

 We made a surprising observation: Spline interpolation 
with an acceptable knot sequence in all intervals of all profiles 
approximated the data with a smaller error than spline inter-
polation with optimal knot distribution. 

We select an 'optimal' method according to the following 
criteria: The first criterion for selection of the most appropri-
ate interpolation method is the minimal approximation error 
on the data in the corresponding interval. To rule out ambigui-
ty, the second criterion is applied: minimal length of the knot 
sequence corresponding to the method. For further exclusion 
of ambiguity, the third criterion is applied: The priority of the 
interpolation method is based on the statistical observations. 
The priority of the methods was achieved experimentally on 
profiles and their particular intervals and expresses a 
'statistical' ordering according to the smallest approximation 
error over all intervals of the tested profiles. 

3.2 Approximation by Cubic B-Splines 

Since in the task being solved, the amount of data pairs ac-
quired to describe a vessel or its parts do not always suffice to 
represent the shape of the vessel reliably, interpolation does 
not have to be always the appropriate method. From this rea-

son, we compared the approximation methods on representing 
the overall shape of the whole curve with respect to the inter-
polation methods. 

The following approximation methods were applied and 
compared:  

a) Cubic smoothing spline with the smoothing parame-
ter ( )50 csp > ; 

b) Smoothing spline with the smoothing parameter; 
( )60 cstol >  

c) Least squares spline approximation with the number 
of knots equal to a half of the amount of the data 
( )7cs ; 

d) Least squares approximation with the number of 
knots equal to the number of data - degree of the 
spline in the particular interval ( )8cs ; 

4 Results 
When the most appropriate interpolation and approxima-

tion methods are computed and selected for each of the inter-
vals of the curve, the method with a smaller error (in case of 
ambiguity, the interpolation method is preferred) is selected 
for the interval. The approximation error of the representation 
over the whole curve is computed. This representation is 
unique and optimal with respect to the above-mentioned crite-
ria. The method was tested on computed profiles like shown in 
Fig. 6. 

  
 

Fig. 6. Profiles of different fragments. 

All interpolation and approximation methods are applied 
for every sub-interval of the curve after each run of the pro-
gram. While the curve is generated gradually for each sub-
interval of the curve, the overall approximation error is com-
puted. As a result the profile is constructed from the selected 
methods and is compared to the data set. 

Table 1 displays the approximation errors for all methods in 
all intervals of the leftmost profile in Fig 6, including the 
selected interpolation and approximation methods for the 
corresponding interval and the selected overall method for the 
whole profile. The whole data sets contained approximately 
350 data points and the length of the whole curve was approx-
imately 400 points. 
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method / interv. 1 2 3 4 
cs1 0,2163 0 0.6047 0.0781 
cs2 0,2163 0 0,5994 0,0782 
cs3 0,2163 0 0,5994 0,0782 
cs4 0,2163 0,6169 2,1080 0,0877 
cs5 (tol = 5) 0,2163 2,3114 0,5994 1,1816 
cs6 (p = 1) 0,1350 0 0,6229 0,0781 
cs7 0,2163 5,9470 5,5298 0,5015 
cs8 0,2163 0,0032 0,6014 0,1308 
select. intp. 1 1 2 1 
select. appr. 6 6 5 6 
overall 6 1 2 1 
     
method / interv. 5 6 7 8 
cs1 1,1685 2,2497 1,1424 0,0884 
cs2 1,1686 2,2514 0,1433 0,0884 
cs3 1,1686 2,2514 0,1430 0,0883 
cs4 1,4510 2,3485 0,1615 0,0991 
cs5 (tol = 5) 2,9430 2,2514 2,2073 0,0884 
cs6 (p = 1) 1,1687 2,2496 0,1646 0,0884 
cs7 6,9127 6,2323 0,8617 1,0675 
cs8 1,1850 3,8347 0,1430 0,2551 
select. intp. 1 1 1 1 
select. appr. 6 6 8 6 
overall 1 6 1 6 

Table 1. Approximation errors for all methods in 8 intervals. 

The most frequently selected interpolation method was cs1 
and the most frequently selected approximation method was 
cs6 in our experiments. An interpolation method was preferred 
in the intervals, where a sufficient number of data with respect 
to the length of the interval was given. An approximation 
method was preferred in the intervals, where there was a lack 
of data. 

Fig. 7 right half shows one example of an automatically 
segmented pot with the characteristic points detected and the 
appropriate manual segmentation on the left of Fig. 7. Another 
example of automatic segmentation is shown on Fig.8. Pro-
cessing time for all fragments tested was less then 10 seconds. 

 
Fig. 7. Manual drawing and detected classified. 

 
Fig. 8. Detected characteristic points. 

Conclusion and Outlook 

The method presented for selection of an 'optimal' represen-
tation (optimal with respect to the considered methods and 
selection criteria) of a 2D profile of an archaeological frag-
ment computes and displays a unique solution. The achieved 
fragment representations, the first part of an automated system 
for classification of archaeological fragments, are the input of 
the second part, the classification. 

The profile parts, the so-called profile primitives, are used 
to perform the classification. The segmentation (division) into 
primitives depends on the orientation of the fragment. In order 
to achieve a unique representation, it is important to set a 
unique orientation for all fragments. The classification will be 
solved in the high dimensional real space and therefore the 
uniqueness and the high precision of the profile representation 
are very important. 

The method has been tested on synthetic and real data with 
reasonable good results, the accuracy of the method is suffi-
cient since the computed position of the characteristic points is 
much more precise and more objective than the manually 
estimated positions performed by archaeologists. The current 
task is to do extensive experiments in order to meet all archae-
ological requirements and to show the applicability of the 
approach. 
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