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Summary 
 
Somatic stem cells all over the body have the ability to self-renew by mitotic division, 

which enables the recovery of many tissues from injuries or infections. This is not the 

case within the adult mammalian brain, where the loss of post-mitotic neurons cannot 

be compensated. An exception to that is the sustained generation of new neurons 

from a pool of neural stem cells throughout the adult life. This process, referred to as 

adult neurogenesis, is restricted to only few areas of the post-natal brain, the 

neurogenic niches. It is regulated by a complex machinery of extrinsic and intrinsic 

mechanisms. The intracellular modulation of adult neurogenesis depends on tightly 

regulated processes, including the SOX family of transcription factors. Particularly, 

the SOXC factor SOX11 is critically required during neuronal fate commitment and 

the induction of a neuron-specific gene expression program. Current models suggest 

that both stem cell maintenance and neuronal differentiation are orchestrated by 

transcriptional core networks, comprised of biochemically interacting transcription 

factors, which cooperate on the maintenance and induction of developmental gene 

expression programs. According to this, the present study aimed to determine the 

regulatory transcriptional core program of late neuronal differentiation and maturation 

that defines early neuronal identity. Due to its relevance in neuronal differentiation 

and induction of immature neuronal gene programs, SOX11 was chosen as bait for 

the identification of the underlying transcriptional network. 

As a prerequisite for the western blot analysis of the protein, SOX11-specific 

antibodies were established. The SOX11-centered network was obtained by 

determining SOX11-specific protein interactions in Neuro2a cells, using affinity-based 

purification coupled to quantitative mass spectrometry. The SOX11 interactome 

analysis revealed an enrichment of transcriptional modulators, involved in epigenetic 

mechanisms like chromatin remodelling, co-factors for transcriptional activation and 

silencing as well as transcription factors. Literature-based curation and GO term 

analysis yet identified several of the interacting proteins to participate in the 

regulation of neurogenesis, with respect to the maintenance of neural progenitor 

characteristics and the progression of neuronal differentiation. Data were further 

evaluated by establishing a SOX11-centered protein-protein interaction network 

using the experimentally derived dataset, matched with information from public 

mouse interaction databases. The network analysis revealed close connections 

between the single interactors as well as high connectivity and centrality of the 
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identified proteins. Selected SOX11 interacting proteins were further directed to 

functional characterisation by reporter assays on the SOX11-regulated immature 

neuronal markers DCX and Stathmin1. The promoter studies suggested a 

cooperative role for the SOX11 interacting transcription factors MYT1 and YY1 with 

SOX11 in the regulation of the investigated promoters. Finally, in silico promoter 

analysis on the regulatory fragments of DCX and Stathmin1 uncovered the presence 

of adjacent binding sites for MYT1 and SOX11 as well as for YY1 and SOX11 on the 

DCX promoter and for MYT1 and SOX11 in the Stathmin1 promoter, enabling a 

cooperative regulation of the early neuronal markers. The genome-wide binding 

profile revealed furthermore an enrichment of neurogenesis-related promoters in 

target sequences of MYT1 and SOX11. 

Proteomic analysis of the SOX11-centered transcriptional network combined with 

functional promoter studies revealed new players in the intrinsic modulation of late 

neurogenesis and uncovered cooperative regulation of the transcription factors MYT1 

and YY1 with SOX11 on early neuronal markers. Furthermore, a variety of new 

candidates for potential contribution in future reprogramming assays from somatic 

cells into functional neurons were identified. 
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Zusammenfassung 
 
Somatische Stammzellen können sich durch mitotische Teilung vermehren, was eine 

Regeneration vieler Gewebe nach Verletzungen oder Infektion ermöglicht. Im adulten 

Säugerhirn kann der Verlust von post-mitotischen Neuronen jedoch nicht 

kompensiert werden. Eine Ausnahme bildet die das gesamte erwachsene Leben 

andauernde Differenzierung von Neuronen aus einem Pool von neuronalen 

Stammzellen. Dieser Prozess, bezeichnet als adulte Neurogenese, ist auf einige 

spezielle Bereiche des Gehirns, die neurogenen Nischen beschränkt. Dessen 

Regulierung unterliegt einer komplexen Maschinerie aus extrinsischen und 

intrinsischen Mechanismen. Bei den intrazellulären Prozessen der adulten 

Neurogenese spielen die Proteine aus der Familie der SOX Transkriptionsfaktoren 

eine entscheidende Rolle. Das SOXC Protein SOX11 stellt einen essentiellen Faktor 

während der Festlegung des neuronalen Schicksals von Vorläuferzellen und der 

Initiierung von frühen neuronalen Expressionsprogrammen dar. Aktuelle Modelle 

deuten darauf hin, dass sowohl die Erhaltung der Stammzelleigenschaften als auch 

die Differenzierung von zentralen Transkriptionsnetzwerken reguliert werden. Diese 

bestehen aus interagierenden Transkriptionsfaktoren, welche zusammen 

Genexpressionsprogramme kontrollieren. Aufgrund dieser Erkenntnisse, wurde die 

Studie darauf ausgelegt, regulatorische Prozesse der späten neuronalen 

Differenzierung und Reifung zu identifizieren, welche die frühe neuronale Identität 

innerhalb der unreifen Neuronen definieren. Durch seine zentrale Bedeutung für die 

neuronale Differenzierung und die Initiierung der Expression neuronaler Marker, 

wurde SOX11 als Ausgangspunkt für die Analyse des zu Grunde liegenden 

Transkriptionsnetzwerks gewählt.  

SOX11-spezifische monoklonale Antikörper wurden zur Detektion des Proteins auf 

Western Blot Ebene generiert und validiert. Das SOX11-assoziierte 

Transkriptionsnetzwerk wurde durch die Bestimmung des SOX11-Interaktoms in 

Neuro2a Zellen mithilfe von Affinitätsaufreinigung und quantitativer 

Massenspektrometrie erstellt. Das identifizierte SOX11-spezifische Interaktom wies 

eine signifikante Anreicherung von Transkriptionsfaktoren und anderen Regulatoren 

auf Transkriptionsebene auf. Literaturrecherche und GO Term Analyse verifizierten  

 �2009 #103" Khalfallah et al., 

bestimmten Daten mit Informationen aus öffentlichen Interaktionsdatenbanken 
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vervollständigt wurden, zeigt die Interaktionen zwischen den Proteinen, sowie die 

Konnektivität einzelner Faktoren. Ausgewählte SOX11 Interaktoren wurden mithilfe 

von Promotorstudien funktionell charakterisiert. Analysiert wurde der Einfluss auf die 

durch SOX11 aktivierten Promotoren von DCX und Stathmin1, zwei Markerproteine 

der frühen neuronalen Identität. Zwei Transkriptionsfaktoren, MYT1 und YY1, zeigten 

einen kooperativen Effekt mit SOX11 auf die Promotoren beider Gene. In silico 

Promotoranalysen für DCX und Stathmin1 ergaben benachbarte 

Bindungssequenzen sowohl für MYT1 und SOX11, als auch für YY1 und SOX11 

innerhalb des DCX Promotors und für MYT1 und SOX11 innerhalb des Stathmin1 

Promotors, durch welche die Kooperation der Transkriptionsfaktoren auf den 

Promotoren ermöglicht wird. Zudem ergab das Genom-weite Bindungsprofil von 

MYT1 und SOX11 eine Anreicherung von in die Neurogenese involvierten Genen.  

Die proteomische Analyse des SOX11-Transkriptionsnetzwerks in Kombination mit 

funktionellen Promotorstudien identifizierte neue Faktoren, die eine Rolle bei der 

intrinsischen Modulierung der späten Neurogenese spielen und deckte die 

kooperative Aktivität von MYT1 und YY1 mit SOX11 in Bezug auf die Regulierung 

früher neuronaler Markern auf. Zusätzlich wurden einige Kandidaten identifiziert, die 

möglicherweise Strategien zur Reprogrammierung von somatischen Zellen in 

funktionelle Neuronen verbessern können und damit einen Beitrag zur regenerativen 

Medizin leisten. 
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1. Introduction 
 
During the post-natal and adult life of mammals, somatic stem cells all over the body 

have the ability to proliferate and self-renew by mitotic division. In this way, many 

tissues are capable of maintaining function by regeneration to certain extend from 

injuries, infections, intoxications or environmental pollutions and loss of cells by 

physiological wear and tear. An exception to that are the neurons within both the 

central and peripheral nervous system. These regions are not able to recover from 

neuron loss, caused by genetic or metabolic disorders, inflammatory infections or 

injuries (Kim et al., 2006). In addition, aging and neurodegenerative diseases like 

Alzheimer’s and Parkinson’s disease represent major challenges to the adult central 

nervous system, as their progression implies neurodegenerative mechanisms in the 

brain (Bredesen et al., 2006). There are two regions within the post-natal mammalian 

brain, where different types of neurons are generated from a multipotent and self-

renewing neural stem cell population throughout the adult life. The proliferation, 

migration and differentiation steps of this complex process, referred to as adult 

neurogenesis, are controlled by extrinsic and intrinsic mechanisms, including growth 

factors or signalling by neurotransmitters and a tightly regulated transcriptional 

network (Hsieh, 2012, Zhao et al., 2008). Understanding of the underlying regulatory 

machinery is of major importance, as the regenerative potential of the multipotent 

neural stem cell pool could serve as therapeutical basis with respect to the 

substitution of neurons, which are lost by neurodegenerative diseases or injuries. 

 
1.1. Adult neurogenesis 
 

1.1.1. Adult neural stem cells and neuronal precursor cells 
 

In the post-natal nervous system of the mammalian brain, adult neural stem cells 

(NSCs) are multipotent, proliferating and self-renewing cells that are able to 

differentiate into cells of the neural lineage, including neurons, astrocytes and 

oligodendrocytes (Gage, 2000). While the glial cell population, comprised of 

astrocytes and oligodendrocytes, provides together with neurons the cellular basis for 

a functioning nervous system, neurons constitute the functional players that are 

responsible for signal transmission and formation of a complex, dense and 

functionally integrated neuronal network. A variety of models aimed to describe the 

identity and properties of the neural stem cells in the adult brain with different 
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outcome, suggesting the coexistence of several types of neural stem cells of distinct 

origins (Lugert et al., 2010). As the stemness of the NSCs has only been shown in 

vitro, but could not be assessed in vivo until the year 2011 (Bonaguidi et al., 2011), 

the term ‘neural progenitors’ was introduced to subsume proliferating cells that 

exhibit differentiation potential. These precursor cells can be localized to two distinct 

areas within the adult mammalian brain where neurogenesis occurs (Zhao et al., 

2008). Adjacent to the lateral ventricle surrounding cell layer that consists of non-

proliferating ependymal cells, lies the subventricular zone (SVZ) of the lateral 

ventricle which comprises three different types of progenitor cells, implicated in 

olfactory bulb-directed neurogenesis (see figure 1A) (Consiglio et al., 2004): type A 

migrating neuroblasts (Doetsch et al., 1999), type B glial fibrillary acidic protein 

(GFAP)-positive progenitors and type C transit amplifying cells (Merkle et al., 2007). 

The second neurogenic area, the subgranular zone (SGZ) of the hippocampal 

dentate gyrus, includes two types of neural stem cells, exhibiting different molecular 

markers and cell morphologies (see figure 1B). Quiescent radial glia-like type I 

precursors feature a long radial process, which traverses the granule cell layer and 

branches when it reaches the molecular layer. They express Nestin, SRY-related 2 

(SOX2) and GFAP. (Fukuda et al., 2003, Garcia et al., 2004, Suh et al., 2007). The 

second progenitor cell type, which potentially originates from type I cells, displays 

short dendrites, expresses Nestin and SOX2, but lacks GFAP expression. It is not 

known, if the three different neural cell types, neurons, astrocytes and 

oligodendrocytes, arise from the same type of NSCs or from divergent unipotent 

progenitors, and at which point in time fate decisions are made. Furthermore, it is not 

clear whether single precursor cells display both self-renewal features and 

differentiation capacity at the same time. Additionally, the question arises, to what 

extent the NSCs of the distinct regions SVZ and SGZ exhibit the same intrinsic 

properties and reveal their diverse characteristics due to their different localisation 

(Ming and Song, 2011). 
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Figure 1: Cell type composition of the subventricular zone and subgranular zone  
(A) The subventricular zone (SVZ) is located next to ependymal cells around the lateral ventricle and 
is composed of type B radial glia-like cells which give rise to type C transient amplifying progenitors 
that differentiate to type A neuroblasts. They are under the influence of blood vessel- and astrocyte-
released factors. (B) In the subgranular zone (SGZ) of the hippocampal dentate gyrus the type I radial 
glia-like cells and type II nonradial precursors are situated beneath the granule cell layer and are 
under the control of astrocytes, interneurons, microglia and blood vessels. They differentiate and 
maturate via the stage of intermediate progenitor cells and neuroblasts into granule neurons. 
(Modified and reprinted from Neuron, Volume 70/ Issue 4, Guo-li Ming, Hongjun Song, Adult 
Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions, Pages 687–
702, Copyright © 2011, with permission from Elsevier) 
 

1.1.2. Neurogenic niches 
 

Microenvironments of the mammalian brain, where the sustained generation of new 

functional neurons takes place throughout adult life, are referred to as neurogenic 

niches. Both the subgranular zone (SGZ) of the hippocampal dentate gyrus and the 

subventricular zone (SVZ) of the lateral ventricle are defined as neurogenic niches, 

as they possess the essential conditions for the constant differentiation and 

maturation of neurons from neural stem cells (Doetsch, 2003, Morrison and 

Spradling, 2008, Palmer et al., 1997) (see figure 2). The generation of adult new-born 

neurons is restricted to the SVZ and SGZ in the brain. Progenitor cells of the SVZ are 

situated next to the ependymal cell layer of the lateral ventricles. Neurons originated 

from the SVZ migrate directly along the rostral migratory stream and are 

subsequently integrated into the olfactory bulb as granule neurons in the granule cell 

layer or as periglomerular neurons in the glomerular layer (see figure 2) (Zhao et al., 
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2008). Within the SGZ, neuronal precursor cells are located beneath the granule 

layer, which is composed of mature neurons as well as of new immature neurons. 

Also astrocytes, oligodendrocytes and different types of mature neurons are located 

in this area. Hippocampal astrocytes support the differentiation of adult neural stem 

cells and enable functional integration of the new-born neurons in vitro (Song et al., 

2002, Zhao et al., 2008).  

 

 

 
Figure 2:Neurogenic niches in the adult rodent brain  
Adult neurogenesis takes places in two neurogenic niches of the rodent brain, the subgranular zone of 
the dentate gyrus (DG) within the hippocampal formation (HP) and the subventricular zone of the 
lateral ventricle (LV). Subventricular zone-derived neurons migrate along the rostral migratory stream 
(RMS) (in red) and are integrated into the olfactory bulb (OB). 
(Reprinted from Neuron, Volume 70/ Issue 4, Guo-li Ming, Hongjun Song, Adult Neurogenesis in the 
Mammalian Brain: Significant Answers and Significant Questions, Pages 687–702, Copyright © 2011, 
with permission from Elsevier) 

 
 
1.1.3. Regulation of adult neurogenesis 
 

1.1.3.1. Extrinsic mechanisms 
 
The complex machinery of adult neurogenesis is regulated by a combination of 

extrinsic and intrinsic signals. Two excellent reviews describe the regulatory 

processes in detail (Ming and Song, 2011, Zhao et al., 2008). In extracellular 

signalling, neurotransmitters transferred through the dense integrated neuronal 

network around the NSCs play an important role. Signals can be received by 

synaptic contacts directly by the neural progenitors or indirectly by the local 

surrounding cells (Deisseroth et al., 2004, Nacher and McEwen, 2006, Tozuka et al., 

2005). Additionally, growth factors are involved in the extrinsic regulation of 
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neurogenesis. Well studied examples are epidermal growth factor (EGF) and 

fibroblast growth factor 2 (FGF2) (Kuhn et al., 1997, Zhao et al., 2007). Furthermore, 

there are other NPC-influencing mechanisms, including the neurotrophin brain-

derived neurotrophic factor (BDNF), which seems to enhance SGZ neurogenesis and 

to play a role in the survival of new neurons (Duman and Monteggia, 2006). 

Moreover, adult neurogenesis is mediated by different signalling pathways. Well 

studied regulatory pathways that are involved are Notch signalling (Imayoshi et al., 

2010, Pierfelice et al., 2011) sonic hedgehog (Shh) (Ahn and Joyner, 2005) and Wnt 

signalling (Lie et al., 2005, Song et al., 2002). Furthermore, several receptors 

modulate the progression of adult neurogenesis, such as Toll-like receptors (TLR) 

(Rolls et al., 2007) and receptors of the proinflammatory cytokine Tumor necrosis 

factor-alpha (TNF-α) (Iosif et al., 2006).  

 

1.1.3.2. Intrinsic mechanisms 
 

The major players in the intracellular regulation of adult neurogenesis are 

transcription factors and proteins involved in cell cycle control.  

Cell cycle inhibitors like p16, p21 and p53 ensure the quiescence of adult neural 

precursors, thus maintaining the stem cell pool of slowly dividing cells, which is 

indispensable for sustained neurogenesis throughout lifetime (Gil-Perotin et al., 2006, 

Kippin et al., 2005, Molofsky et al., 2006).  

The intrinsic regulatory mechanisms of both self-renewal maintenance and neuronal 

differentiation are based on a variety of transcription factors, which are connected in 

regulatory networks to control gene expression programs. The regulation is 

dependent on the distinct spatiotemporal expression of the particular transcriptional 

modulators, which is important for their sequential action (see expression in grey 

boxes in figure 3 and 4). Furthermore, the activity of transcription factors is based on 

the interaction with other factors. There is rising evidence that both stem cell 

maintenance and neuronal differentiation are orchestrated by transcriptional core 

networks, comprised of biochemically interacting transcription factors, which 

cooperate on the maintenance and induction of developmental gene expression 

programs (Chen et al., 2008, Hobert, 2011). Nevertheless, the underlying 

mechanisms remain to be fully elucidated.  

The orphan nuclear receptor TLX, which is expressed in many areas of the adult 

brain, is implicated in sustaining the undifferentiated state and proliferation capacity 
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of neural precursors (Shi et al., 2004). SOX2 is a key regulator in maintaining the 

progenitor pool of NPCs, including multipotency and self-renewal properties (Suh et 

al., 2007), mediated by the Notch/RBPJK signalling pathway (Ehm et al., 2010). This 

transcription factor seems to modulate also Shh signalling, which is critically required 

for NPC maintenance (Favaro et al., 2009). Additionally, SOX2 is involved in the 

regulation of TLX expression (Shimozaki et al., 2011). Moreover, the transcription 

factors of the FOXO family (Paik et al., 2009) as well as OLIG2 (Hack et al., 2005) 

and the RE1 silencing transcription factor (REST), which is responsible for silencing 

of neuronal gene expression in ES cells  (Ballas et al., 2005, Gao et al., 2011) are 

involved in the preservation of the undifferentiated state and maintenance of the 

quiescent NSC pool. 

Another central mechanism to be regulated during adult neurogenesis is the neuronal 

fate commitment of NPCs, followed by the differentiation and maturation into 

functional neurons. This implicates a variety of transcription factors, including paired 

box protein PAX6 and homeobox protein DLX-2 (Doetsch et al., 2002, Hack et al., 

2005).  

The maturation and survival of newborn neurons is controlled by other factors, such 

as the transcription factor cAMP response element-binding protein CREB (Jagasia et 

al., 2009), forkhead box protein G1 (FOXG1) (Shen et al., 2006) as well as the 

maturation promoting proteins homeobox factor PROX1 (Karalay et al., 2011, Lavado 

et al., 2010) and Kruppel-like factor 9  (KLF-9) (Scobie et al., 2009). 

Moreover, proneural basic helix-loop-helix transcription (bHLH) factors have 

important roles in the modulation of neurogenesis, like Neurogenin2 (NGN2) that is 

expressed in amplifying progenitors and is involved in fate specification (Ozen et al., 

2007, Roybon et al., 2010). Neurogenic differentiation factor 1 (NEUROD1) controls 

late maturation and survival of new-born neurons (Gao et al., 2009) 

Critically required for the control of neural differentiation are the SOXC transcription 

factors SOX4 and SOX11. They are expressed in progenitors within neurogenic 

niches during early neural fate commitment and promote neuronal differentiation of 

NPCs in vitro. Furthermore, they induce the activation of neuron-specific expression 

programs (Bergsland et al., 2006, Haslinger et al., 2009, Mu et al., 2012). 

Also other intrinsic mechanisms can influence the early events of neural 

differentiation, as LINE-1 transposons are found to insert into neuronal precursor 
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cells, resulting in an expression change in neural genes and neuronal somatic 

mosaicism (Muotri et al., 2005).  

 
1.1.3.3. Epigenetic regulation 
 
In addition to the molecular players, also epigenetic regulation is implicated in the 

modulation of adult neurogenesis, including the following different mechanisms: DNA 

methylation and histone modification through the Polycomb (PcG) and Trithorax 

(TrxG) complexes, ATP-dependent chromatin remodelling, histone deacetylation and 

acetylation, neuron-restrictive silencing factor (NRSF/REST)-mediated gene 

regulation and non-coding RNAs (Sun et al., 2011). A prominent example is methyl-

CpG-binding domain protein 1 (MBD1), a modulator of DNA methylation that is 

involved in FGF signalling by regulating the FGF2 promoter, a growth factor 

supporting adult neurogenesis in NPCs. Thus it controls the balance between 

proliferation and differentiation (Li et al., 2008). The H3K4 methyltransferase mixed-

lineage leukemia 1 (MLL1), a member of the TrxG chromatin remodelling complex, 

regulates DLX2 expression and in this way induces neuronal differentiation (Lim et 

al., 2009). Also the PcG complex modulates adult neurogenesis as its component 

BMI-1 maintains precursor cell properties through the cell cycle inhibitor p16 

(Molofsky et al., 2005). In multipotent NPCs, the promoters of NGN2, NEUROD1, 

NEUROD2, SOX4, and SOX11 are silenced through PcG-mediated repression. In 

later stages, during neuronal differentiation and maturation, by contrast, SOX2 

expression is impaired epigenetically by PcG (Mohn et al., 2008). Notably, Methyl-

CpG-binding protein 2 (MECP2) binds and represses the activity of the Brain-derived 

neurotrophic factor (BNDF) promoter, which plays a role in NPC self-renewal control 

(Martinowich et al., 2003). Additionally, some microRNAs contribute to the fine-tuning 

of adult neurogenesis. MiR137 for example is co-regulated by MECP2 and SOX2 

and exerts influence on the proliferation and differentiation of NPCs (Szulwach et al., 

2010). 
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1.1.4. Development and functional integration of new-born neurons 
 

In the neurogenic SVZ of the adult rodent brain, the quiescent periventricular 

astrocytes or radial glia-like cells (B cells) get activated to divide into transit 

amplifying cells (C cells), which in turn differentiate into neuroblasts (A cells) 

(Doetsch et al., 1999). These immature neurons migrate towards the olfactory bulb 

through the rostral migratory stream (RMS) (see figure 3). They are not guided by 

radial glia or axon fibers like in the developing brain, but migrate tangentially in 

chains associated with each other, also referred to as chain migration, bordered by a 

structural network of specialised astrocytes (Lois et al., 1996). When they reach the 

olfactory bulb, after migration for up to 5mm along the RMS, the neuroblasts turn 

radially away from the path to enter the adjacent cell layers, where they differentiate 

into two different types of interneurons, namely granule neurons and periglomerular 

neurons (Alvarez-Buylla and Garcia-Verdugo, 2002) (see figure 3).  

Chain migration is based on cell-cell adhesion, dependent on the polysialated neural 

cell adhesion molecule (PSA-NCAM) (Bonfanti and Theodosis, 1994, Hu et al., 

1996). It is additionally mediated by Slit/Robo-signalling, with SLIT 1 and SLIT2 being 

expressed in the SVZ and the septum and repel the neuroblasts (Wu et al., 1999). 

The Ephrin-B family of proteins, Beta 1 integrins and receptor tyrosine kinase 

ERBB4, are also involved in the direction of new-born neurons to their destination 

(Anton et al., 2004, Conover et al., 2000, Jacques et al., 1998). Besides, the 

extracellular matrix protein Reelin is crucial for the coordination of chain migrating 

neuroblasts (Zhao et al., 2007).  

As they reach their final destination, the maturating cells integrate into existing 

circuits. Initially they receive GABA inputs, before they form glutamate receptors and 

dendritic spines. (Saghatelyan et al., 2005).  

 



INTRODUCTION 

 

17 

 

 
Figure 3:Neurogenesis in the subventricular zone and migration towards the olfactory bulb  
Rarely dividing glia-like precursor cells (1) give rise to transient amplifying cells (2) which differentiate 
into neuroblasts (3). These in turn migrate along the rostral migratory stream (RMS) towards the 
olfactory bulb (OB) (4), where they differentiate into the distinct interneurons granule cells and 
periglomerular cells (5). The temporal expression of major intrinsic regulatory transcription factors is 
depicted in grey boxes. 
(Modified and reprinted from Neuron, Volume 70/ Issue 4, Guo-li Ming, Hongjun Song, Adult 
Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions, Pages 687–
702, Copyright © 2011, with permission from Elsevier) 
 

In the hippocampal SGZ of the dentate gyrus, quiescent neural stem cells get 

activated to rapidly proliferating progenitors that are committed to neuronal fate and 

maturate via neuroblasts and immature neurons into granule neurons. In the course 

of this, they migrate from the SGZ the short range into the granular zone, project their 

dendrites into the molecular layer and integrate into the existing neuronal circuity 

(see figure 4) (Zhao et al., 2006). Disrupted-in-schizophrenia (DISC1) may be 

involved in directing the new-born neurons, as decreased levels of DISC1 result in 

mispositioning to other cell layers (Duan et al., 2007). Other guidance molecules may 

additionally regulate the migration, like the Reelin pathway that seems to direct not 

only SVZ-derived neuroblasts, but also hippocampal neuronal migration (Gong et al., 

2007).  
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Initially, the new-born neurons become depolarised in response to GABA. The 

depolarisation switches to hyperpolarisation after 2-4 weeks, at the same time 

dendritic spines develop and glutamatergic responses are initiated. Long-term 

potentiation can be induced more easily at this stage, than in mature neurons. These 

mechanisms facilitate synaptic plasticity, which may play a role in the formation of 

new memories (Ge et al., 2007, Schmidt-Hieber et al., 2004). The maturation is not 

finished yet, even if the cells already possess many characteristics of mature 

neurons (Zhao et al., 2006). At the age of 4 weeks they are more likely to be 

integrated into circuits that support spatial memory, than existing granule neurons 

(Kee et al., 2007, Marin-Burgin et al., 2012). After 8 weeks, the density of mushroom 

shaped spines increase. Spine formation and integration into the neuronal network is 

under the control of DISC1 (Duan et al., 2007). Now, the maturating neurons receive 

comparable glutamatergic and GABAergic input as mature granule cells do 

(Laplagne et al., 2007).  
 

 
Figure 4:Adult neurogenesis in the hippocampal dentate gyrus  
Rarely dividing neural stem cells (type-I cells) get activated to rapidly proliferating progenitors (type-II 
cells) and are committed to neuronal fate. While migrating from the subgranular zone (SGZ) of the 
dentate gyrus to the granular zone (GZ), they develop into mature neurons and project their dendrites 
into the molecular layer (ML). The temporal expression of major intrinsic regulatory transcription 
factors is depicted in grey boxes. 
(Modified from Encinas et al., 2006, Fluoxetine targets early progenitor cells in the adult brain, Proc 
Natl Acad Sci USA 103 (21), 8233-8238 (Encinas et al., 2006) reprinted with permission of PNAS. 
Copyright (2006) National Academy of Sciences, U.S.A. 
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1.1.5. Function of adult neurogenesis 
 

1.1.5.1. SVZ-derived neurons and olfaction 
 
Subventricular neurogenesis is supposed to play a role in olfaction, as the newly 

generated neurons migrate to the olfactory bulb. This is supported by the fact that 

several mechanisms implicated in the regulation of SVZ neuronal differentiation and 

migration are associated with the olfactory sensory system. It was found, that 

olfactory experience of animals modulates adult neurogenesis. Odour deprivation 

inhibits maturation in terms of reduced spine length and density as well as survival of 

new-born neurons in the olfactory bulb. Moreover, for 2-4 week old neurons, sensory 

activity is a crucial factor for their survival (Petreanu and Alvarez-Buylla, 2002). A 

reduced population of new-born interneurons results in turn in a loss of odour 

discrimination (Gheusi et al., 2000). In coincidence with that, mice that learned an 

odour discrimination task, exhibited more 3 week old interneurons (Alonso et al., 

2006). Additionally, enriched odour exposure increases the number of newly 

generated neurons from the SVZ and enhances olfactory memory (Rochefort et al., 

2002). Also the diminished SVZ neurogenesis in aging mice, which results in 

impaired odour fine discrimination, supports the implication of the olfactory bulb new-

born neurons in olfaction (Enwere et al., 2004). 

 

1.1.5.2. Hippocampal neurogenesis and learning and memory, stress and 
depression 

 
Due to the differential connectivity of the hippocampus along the dorsal-ventral axis, 

it is functionally divided into two sub regions. The dorsal hippocampus is supposed to 

play a crucial role in learning and memory, especially spatial learning, whereas the 

ventral hippocampus may be implicated in emotional regulation like anxiety-related 

behaviours (Bannerman et al., 2004). Notably, hippocampus-mediated learning 

events are key regulators of hippocampal neurogenesis as they enhance the 

differentiation into new neurons (Gould et al., 1999). In more detail, spatial navigation 

learning ensures survival of 1 week old SGZ-derived immature neurons that already 

formed GABAergic synapses with the surrounding neuronal network. They enter the 

hyper-excitable stage, which enables their implication in memory formation, whereas 

more immature neurons are subjected to cell death and precursor cell proliferation is 

induced (Dupret et al., 2007). This suggests a selective control by the process of 
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learning concerning the survival and removal of distinct mature neurons, dependent 

on the required functions. In general, exposure to an enriched environment increases 

the rate of neurogenesis and survival of new-born neurons of certain maturities 

(Tashiro et al., 2007). Additionally, it improves ability of learning and long-term 

memory as well as object recognition (Bruel-Jungerman et al., 2005). There is rising 

evidence, that physical exercises like running supports cognition and other brain 

functions (Hillman et al., 2008). In coincidence with that, voluntary running is found to 

enhance proliferation of hippocampal NPCs and increases the success in learning 

tasks (van Praag et al., 1999). 

Moreover, hippocampal adult neurogenesis is influenced by stress and depression. 

In the brain, psychosocial stress initiates the release of hypothalamic corticotropin-

releasing factor (CRF) that results in secretion of adrenocorticotropic hormone 

(ACTH). ACTH is turn induces the release of glucocorticoids, which implicate a 

reduced hippocampal volume as well as impaired dendritic arborisation and 

neurogenesis (Dranovsky and Hen, 2006, McEwen, 2001). Furthermore, major 

depressive disorder (MDD) is associated with reduced hippocampus size, supporting 

the influence of depression on adult SGZ neurogenesis (Videbech and Ravnkilde, 

2004). In coincidence with that, the treatment with different antidepressants, such as 

serotonin reuptake inhibitors (SRI), tricyclic antidepressants (TCAs), monoamine 

oxidase inhibitors and electroconvulsive therapy (ECT) increases hippocampal 

neurogenesis (reviewed in (Duman, 2004)) 

 

1.1.6. Influence on CNS disorders 
 

Compared to rodents, in humans, adult neurogenesis takes place in the SGZ and 

potentially in the SVZ (Curtis et al., 2007, Eriksson et al., 1998, Spalding et al., 

2013). A magnetic resonance spectroscopy-based method was developed to enable 

the observation of neural progenitors and developing neurons in the living human 

brain (Manganas et al., 2007). Thus, human patients and mouse models contribute to 

the understanding of the implication of adult neurogenesis in disorders affecting the 

central nervous system. 

Seizure, being the hallmark of epilepsy, is known to induce neurogenesis in both 

neurogenic niches, the SVZ and SGZ. As the disorder leads to cognitive effects, the 

focus is laid on hippocampal neurogenesis. Up to 5 weeks lasts the seizure-
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dependent elevation of SGZ neurogenesis until it declines to a normal level, which 

induces proliferation of both progenitors and neuroblasts. Seizure-induced neurons 

display abnormal dendrite morphology and migration. Even neurons born before 

seizure activity are influenced to develop mossy fibre sprouting. The aberrant 

neurons yet integrate functionally into the neuronal circuity, despite their abnormal 

morphology. Seizure-induced neurogenesis can be inhibited by the antiepileptic drug 

VPA, which also increases the performance of rats in learning tasks (Jessberger et 

al., 2007, Walter et al., 2007). Nevertheless, the role of seizure-dependent abnormal 

neurogenesis in epilepsy is not completely understood until now. 

In animal models, it was shown that after ischemic stroke neurogenesis is promoted 

in the germinal niches SVZ and SGZ. As a consequence, new-born neurons are 

recruited and migrate to the site of injury, guided by blood vessels. The mobilised 

neurons express the neuronal markers of the cells destroyed in the injured region 

and thus contribute to the self-repair of the brain after stroke insult (Arvidsson et al., 

2002). However, the positive restorative effect of the new-born neurons is not 

sufficient to completely restore brain damage due to a limited number of generated 

neurons, the transient migration to the injury and an insufficient integration into the 

local circuities (Thored et al., 2007). Moreover, a portion of the stroke-induced new 

neurons display morphological abnormalities and integrate aberrantly into the 

neuronal network (Niv et al., 2012). The injection of NPCs from the adult brain into 

stroke-damaged regions already helped to restore brain function in mice (Bacigaluppi 

et al., 2009). The adaption of the cells to the microenvironment, their integration and 

positive influence on the homeostasis by secretion of specific factors and impact on 

the immune response (Pluchino and Cossetti, 2013) renders them to promising 

candidates for the regenerative therapy after stroke. 

The implication of adult neurogenesis in neurodegenerative diseases is to date not 

fully elucidated. Mouse models overexpressing wildtype α-Synuclein, a protein that 

accumulates in Parkinson’s disease, dementia with Lewy bodies and multiple system 

atrophy, demonstrated a reduced survival of new neurons from the SVZ and SGZ, 

but proliferation was not altered. In contrast, mutant α-Synuclein led to decreased 

proliferation of NPCs in the SVZ (Winner et al., 2008). Alzheimer’s disease is an age-

related disorder, characterised by a damage of brain regions involved in learning and 

memory (Price et al., 1986). As the hippocampus plays an important role in these 

aspects and ageing is known to be associated with a markedly decreased level of 
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adult neurogenesis (Kuhn et al., 1996), the decline of new-born neurons may be 

implicated in the pathogenesis of Alzheimer’s disease. One of the disorder’s 

hallmarks is the formation of senile plaques, containing amyloid-β (Aβ) peptide (Price 

et al., 1986). Mouse models, overexpressing variants of this protein were generated, 

which resulted in the amyloid pathology phenotype. Interestingly, the short-term 

proliferation and differentiation of hippocampal NPCs was not affected, but the long-

term survival of the new-born neurons was severely impaired. In consequence, the 

diminished regeneration of neurons caused by the protein plaques during adult life 

might contribute to the disease progression (Verret et al., 2007). Furthermore, Aβ-

induced imbalances in GABA- and glutamatergic neurotransmission may play a role 

in the reduction of hippocampal neurogenesis (Li et al., 2009, Sun et al., 2009). 

 

1.2. Immature neuronal markers DCX and STMN1 
 

The microtubule-associated protein Doublecortin (DCX) is involved in the stabilization 

of microtubules and induces their bundling (Horesh et al., 1999). Initially, DCX was 

identified through its association with X-linked lissencephaly, a severe brain 

malformation, affecting mainly males, which is characterised by abnormal cortical 

lamination and classified as a neuronal migration disorder, which is caused by 

mutations in the DCX gene (Barth, 1987, des Portes et al., 1998, des Portes et al., 

1997). Additionally, mutant DCX was found to be the major cause of another cortical 

disorder, subcortical laminar heterotopia (SCLH), marked by a heterotopic layer of 

misplaced neurons (des Portes et al., 1998, Pinard et al., 1994). 

The protein was identified to be expressed during corticogenesis in cell bodies and 

leading processes of migrating neurons as well as in axons of differentiating neurons 

(Francis et al., 1999). DCX expression was furthermore identified in neuronally 

committed progenitors and early new-born neuroblasts, aroused from the adult SVZ 

and SGZ that decreases upon the occurrence of mature neuronal markers. Based on 

its expression profile, the microtubule-associated protein is considered as one of the 

earliest markers for immature neurons that are generated in the neurogenic niches of 

the lateral ventricle and dentate gyrus during adult neurogenesis (Brown et al., 2003). 

Also on the genetic level, the marker protein was studied. The DCX-regulatory 

region, composed of a 3.5-kb fragment upstream of the ATG start codon was 

identified. This fragment displayed activity in cultured neuronal precursor cells that 
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overlapped with endogenous DCX expression as well as with the early neuronal 

markers βIII-tubulin and microtubule-related MAP2. However, neurogenesis-

associated growth factors didn’t appear to influence the regulatory region. The 

regulators of the DCX promoter, which comprises binding sites for various 

transcription factors related to neurogenesis, like the proneural factor NEUROD1, 

thus remained unknown (Karl et al., 2005). Recently, the promoter has been shown 

to be under the control of the SOXC proteins SOX11 and SOX4 in reporter assays 

using  the above-mentioned DCX regulatory element coupled to luciferase as 

reporter gene (Mu et al., 2012). 

Microtubule dynamics are known to play a role in neuronal differentiation (Poulain 

and Sobel, 2010) and migration during cortical development (Jaglin and Chelly, 

2009). This importance in the regulation of neurogenesis is furthermore underlined by 

the characteristics of another microtubule-associated protein, Stathmin1 (STMN1). 

The complete Stathmin family of microtubule-binding proteins is expressed in the 

early postnatal developing brain (Amat et al., 1991, Curmi et al., 1999). Whereas 

Stathmin2-4 are continuously down-regulated during development, Stathmin1 is still 

present in the adult brain. Considerable high expression levels of the protein are 

detected in the neurogenic niches of the lateral ventricle and hippocampal dentate 

gyrus as well as in migration pathways (Camoletto et al., 2001, Jin et al., 2004). The 

expression pattern resembles the presence of DCX in these niches. Knockout of 

either Stathmin1 or DCX in rats led to an inhibition of the neuronal chain migration of 

neuroblasts generated in the SVZ along the rostral migratory stream towards the 

olfactory bulb, indicating pivotal roles for both microtubule-associated proteins in the 

migration of new-born neurons to their final destination regions (Jin et al., 2004). Also 

in the SGZ of the dentate gyrus, Stathmin1 is expressed in neuroblasts and immature 

granule neurons, pointing to its relevance as early neuronal marker. It might be 

involved in the migration of new-born neurons as well as in the regulation of neural 

precursor differentiation into young neurons and maintenance of neuronal cell types 

(Boekhoorn et al., 2014). Moreover, Stathmin1 was recently identified as putative 

direct transcriptional target of the transcription factor SOX11 (K. Doberauer, J. v. 

Wittgenstein, D.C. Lie, unpublished data). 
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1.3. The SOX transcription factors 
 

1.3.1. Characteristics of SOX proteins 
 

The large SOX (SRY-related HMG box) family of proteins are transcription factors, 

which contain a specific DNA binding domain, called high mobility group (HMG) box 

(Laudet et al., 1993). The superordinated HMG box superfamily is divided into 2 

subgroups. Members of the TCF/SOX/MATA group comprise single sequence-

specific HMG domains while members of the HMG/UBF consist of multiple HMG 

domains that possess a general affinity for the binding to DNA sequences. Through 

their special way of binding, where the three alpha helices of the HMG box attach to 

the minor groove of the DNA, the members of the TCF/SOX/MATA group induce a 

bending of the DNA of 80° to 135°.  As this brings regulatory regions on the DNA into 

close proximity and enables gene activation by interaction of bound transcription 

factors, the SOX proteins are designated as architectural transcription factors 

(Connor et al., 1994, Grosschedl et al., 1994, van de Wetering and Clevers, 1992). 

The SOX family name giving Sex-determining region Y (SRY) gene, which is 

responsible for male sex determination, was the first identified and characterised 

member of the family (Gubbay et al., 1990). The HMG box amino acid composition of 

each SOX family member is supposed to be at least 50% identical to the 

corresponding domain of the SRY protein. The 20 until now identified SOX proteins 

are development-regulating transcription factors, divided into subgroups A-H, 

according to the similarity of their HMG box regions (see figure 5) (Bowles et al., 

2000, Schepers et al., 2002). Due to their binding to only slightly differing DNA 

consensus sequences, the SOX proteins have to be specifically activated by the 

interaction with other proteins, that enable the discrimination of their targets and lead 

to cooperative regulation of cell-specific gene expression programs (Kamachi et al., 

2000). Additional to their DNA-binding domain, the transcription factors comprise 

subtype-specific domain structures (see figure 5).  
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Figure 5:Phylogenetic relationship and domain structure of SOX subgroups  
SOX subgroups A-H, classified by the similarity of their HMG box region and domain structure, are 
illustrated as a tree. The different groups possess specific trans-activation (TA), trans-repression (TR), 
coiled-coil (CC), dimerization (D), protein-interaction (K2) or group B homology domains.  
 

SRY is the only member of the SOXA group. The SOXB subgroup comprises a 

characteristic group B homology domain directly after the HMG box. Based on the 

modulating effect of the C-terminal protein domain on gene expression, this group is 

further subdivided. The SOXB1 proteins SOX1, SOX2 and SOX3 possess trans-

activating function whereas the subgroup SOXB2, with the members SOX14 and 

SOX21, reveal trans-repressing function (Sandberg et al., 2005).  A C-terminal trans-

activation domain is the characteristic of the SOXC subgroup that consists of SOX4, 

SOX11 and SOX12. (Dy et al., 2008, Hoser et al., 2008). The SOXD members 

SOX5, SOX6 and SOX13 homo- or heterodimerise with other SOXD proteins through 

their coiled-coil domain (Lefebvre, 2010). SOX8, SOX9 and SOX10 represent the 

group of SOXE proteins and share an N-terminal dimerization domain prior to the 

HMG box, which enables cooperative DNA-binding. Members of this subgroup 

exhibit furthermore a protein-protein interaction domain and a C-terminal trans-

activation domain (Wegner, 1999). Interestingly, they bind as monomers or dimers to 

DNA sequences depending on different cellular contexts (Schlierf et al., 2002). The 

SOXF group, composed of SOX7, SOX17 and SOX18, includes two domains 

responsible for trans-activation (Francois et al., 2010). SOXG and H have with 

SOX15 or SOX30 only one subgroup member.  
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1.3.2. Functional implications of SOX proteins in the nervous system 
 
1.3.2.1. Functions in the peripheral nervous system 
 
Besides the functions of SOX transcription factors within the nervous system, they 

also exert influence on other developmental mechanisms. These include sex 

determination (Connor et al., 1995, Gubbay et al., 1990, Hacker et al., 1995, Kent et 

al., 1996, Koopman et al., 1990, Morais da Silva et al., 1996), lens development 

(Kamachi et al., 1998, Nishiguchi et al., 1998), chondrogenesis (Lefebvre, 2010, 

Smits et al., 2001, Wagner et al., 1994) and haematopoiesis (Dumitriu et al., 2006, 

Lefebvre, 2010, Liber et al., 2010, Schilham et al., 1997, Urbanek et al., 1994, Yi et 

al., 2006). 

The best investigated system, where different SOX transcription factors have various 

functions, is the nervous system. Besides the central nervous system (CNS), some of 

the proteins are implicated in the development of the peripheral nervous system 

(PNS). Peripheral ganglia of the autonomous nervous system are derived from 

neural crest cells. SOX10 is expressed in these neural crest cells from the beginning 

of their appearance and is also present in sensory, sympathetic and enteric ganglia 

as well as along nerves of the Schwann cell lineage. Whereas the expression in the 

enteric system is temporary, the other parts of the peripheral nervous system 

express the transcription factor until the adult stage, where it is then limited to 

macroglia (Kuhlbrodt et al., 1998). Mutations in SOX10, rendering the protein 

functionally inactive, lead to a neural crest phenotype, accompanied by neuron and 

glia loss in the PNS as well as the complete absence of the enteric nervous system, 

classifying the transcription factor as indispensable for the PNS development 

(Southard-Smith et al., 1998). Heterozygous mutations of SOX10 are also detected 

in patients suffering from Waardenburg-Hirschsprung disease, characterised by a 

congenital aganglionic megacolon combined with distinct pigmentation defects and 

deafness (Kuhlbrodt et al., 1998, Pingault et al., 1998). In summary, this points to a 

role for SOX10 in early neural crest development. Also proteins of the SOXC 

subgroup are involved in the sympathetic nervous system formation. SOX11 

promotes the proliferation of tyrosine hydroxylase expressing cells in sympathetic 

ganglia, whereas SOX4 is required for the cells’ survival. Knockout studies in mice 

confirmed this, as they revealed deficiencies in proliferation and survival in the 

sympathetic ganglia upon SOX4/11 depletion (Potzner et al., 2010). In addition, 
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SOX11 knockout leads to impaired survival of sensory neurons in trigeminal and 

sensory ganglia (Lin et al., 2011). In Xenopus laevis and Petromyzon marinus, the 

implication of the SOXC proteins even in early neural crest differentiation is shown 

(Uy et al., 2014). SOX11 is also implicated in nerve regeneration in the PNS, through 

activation of the regeneration-associated SPRR1A (Jing et al., 2011).  

 

1.3.2.2. Functions in the central nervous system 
 

1.3.2.2.1. Embryonic neurogenesis 
 

One characteristic of ES cells is the open chromatin state with a loose association of 

DNA to histones. This is mediated by the chromatin remodelling factor CHD1 and 

enables low expression levels of genes that are specifically expressed in defined 

tissues in later stages (Gaspar-Maia et al., 2009, Guenther et al., 2007, Meshorer et 

al., 2006). Enhancers and promoters of these genes are positioned in non-

methylated accessible parts of the DNA and feature a bivalent structure. This 

includes active chromatin modification marks, like H3K4me3 (H3 lysine 4 tri-

methylation), and repressive marks, like H3K27me3 (H3 lysine 27 tri-methylation), in 

dependence of the occupancy and activity of Polycomb complexes PRC1 and PCR2 

on the histones (Ku et al., 2008, Mikkelsen et al., 2007). Pioneer transcription factors 

bind to these regions and through their action ensure the ES cell characteristics. 

Upon differentiation, they may be replaced by other lineage specific transcription 

factors (Smale, 2010). These regulators exert their functions through biochemical 

interaction with other transcription factors. They assemble to core transcriptional 

networks that coordinate stem cell maintenance and differentiation by the synergistic 

sustainment and induction of developmental gene expression programs (Chen et al., 

2008, Hobert, 2011).  

SOX2 plays an important role in the maintenance of stem cell properties. Its action of 

is dosage-dependent and requires the cooperation with OCT-3/4 and Nanog to form 

a transcriptional network defining ES identity, which maintains pluripotency and 

inhibits differentiation (Boyer et al., 2005, Chen et al., 2008). Moreover, SOX2 is 

involved in the differentiation of pluripotent ES cells towards the early neuronal 

lineage. It supports the neuroectodermal development by silencing of 

mesendodermal fate expression programs (Thomson et al., 2011, Wang et al., 2012). 

Also in vivo, SOX2 promotes the differentiation of bipotential axial stem cells into a 
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neural tube fate, which later develop to the CNS and not to paraxial mesoderm, as 

the transcription factor TBX6 promotes (Takemoto et al., 2011). Recently, SOX9 was 

found to induce differentiation of ES cells into all three germ layers by repressing 

SOX2 expression through enhanced formation of p21, capable of silencing the SOX2 

enhancer (Yamamizu et al., 2014). All of the three SOXB1 proteins SOX1, SOX2 and 

SOX3 are expressed in the majority of multipotent neuronal progenitors in both the 

developing and the adult CNS. Studies in mouse and chicken embryos revealed a 

redundant function in the maintenance of progenitor characteristics and repression of 

neural differentiation (Bylund et al., 2003, Favaro et al., 2009, Graham et al., 2003). 

However, ablation of SOX2 in mice results in a more severe phenotype, than deletion 

of SOX1 or 3, characterised by the complete loss of NSCs and neurogenesis in the 

early postnatal hippocampus and dentate gyrus hypoplasia in embryonic mice 

(Favaro et al., 2009). The SOX2-dependent regulation of NSC properties functions 

partly through Shh and Notch signalling pathways (Favaro et al., 2009, Taranova et 

al., 2006). The SOXB1 factors have to be down-regulated upon neural differentiation, 

as they are no more present in post-mitotic neuroblasts. Proneural transcription 

factors of the basic helix-loop-helix (bHLH) class commit NPCs neural fate and 

induce progression of neurogenesis by supressing the expression of SOX1-3 (Bylund 

et al., 2003). They furthermore promote the expression of SOX21. Studies in chicken 

embryos proposed a model where SOX21 counteracts SOX1-3 and induces 

neurogenesis potentially by repressing the SOXB1 factors target genes (Sandberg et 

al., 2005).  

Proneural bHLH proteins also induce the expression of SOXC genes SOX4 and 

SOX11 during differentiation of NPCs (Bergsland et al., 2006). The third protein of 

the subgroup, SOX12, may be induced as well, but its function is supposed to be less 

dominant as is seems to possess a weak activation capacity, compared to the other 

SOXC factors. Moreover, SOX4 and SOX11 can easily compensate its loss (Hoser et 

al., 2008). Also SOX4 and SOX11 function redundantly, as deletion of one of the 

factors has only little effect on neurogenesis (Cheung et al., 2000, Sock et al., 2004). 

In agreement with this assumption, a depletion of both SOX4 and SOX11 leads to a 

massive cell death mainly in immature neurons of the developing nervous system 

(Bhattaram et al., 2010, Thein et al., 2010). The SOXC factors are critically required 

for the survival of neural progenitors and activate mediators of the Hippo signalling 

pathway (Bhattaram et al., 2010). In contrast to the SOXB1 factors, both SOXC 
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proteins promote neural fate commitment and maturation, as they induce the 

expression of early neuronal markers β-tubulin III and MAP2 (Bergsland et al., 2006). 

Transcriptional profiling in embryonic and adult neural stem cells linked SOX4 and 

SOX11 to both stem cell differentiation and neurogenesis (Miller et al., 2013). 

Moreover, epigenetic mechanisms promote neuronal differentiation by regulation of 

SOX4 and SOX11 expression (Feng et al., 2013, Ninkovic et al., 2013).  

In general, these findings suggest a crucial role for several SOX proteins in the 

progression of neurogenesis, with a defined temporal order of their expression and 

activity. SOX2, which is already expressed in ES cells is accompanied by SOX1 and 

SOX3 during the NPC state, followed by the SOX21-dependent exit of the precursor 

cell state and the induction of neuronal differentiation by SOX4 and SOX11. A 

genome-wide-binding pattern analysis of SOX2, SOX3 and SOX11 by chromatin 

immunoprecipitation (ChIP) analysis combined with ChIP sequencing in ES cell-

derived neural precursors and immature neurons revealed an overlap of 96% for 

SOX2 and SOX3 binding in NPCs (Bergsland et al., 2011). This confirms the 

assumption of functional redundancy between SOXB1 proteins. Moreover, SOX3 and 

the p300 co-activator showed many common target sites related to brain-specific 

regulatory regions, mostly enhancer rather than promoter sequences. SOX2 binds to 

ES-specific regions that are not occupied by SOX3 in NPCs. The overlapping 

sequences of SOX2 and SOX3 are situated near neural genes, partly already known 

as SOXB1 targets. Many of them are also associated with the bivalent histone 

modification marks H3K4me3 and H3K27me3. These findings identified SOX2 as a 

pioneer factor binding to neural genes in ES cells and preselecting them for 

activation by sub sequential expressed transcription factors that drive neural 

development. Notably, the genome-wide-binding profile of SOX3 in NPCs and 

SOX11 in early neurons also revealed a high overlap. 30% of the SOX3 targets are 

not bound by SOX11 and only 8% of the SOX11 targets are not recognised by 

SOX3. Genes occupied by only one of the factors are predominantly expressed in 

mature neurons and glia, pointing to a re-occurrence of SOX3 in later stages of 

neuronal maturation, as described before (Bergsland et al., 2011, Ferri et al., 2004, 

Malas et al., 2003). In contrast, targets of both factors are expressed either in NPCs 

or immature neurons, where SOX3 strongly activates the genes in NPCs and SOX11 

induces expression of neuron-specific markers. This hints at an implication of SOX3 

not only in the activation of NPC-specific genes, but also suggests a function as 
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pioneer factor for neuronal enhancers that are activated by SOX11 in later stages. 

That is supported by the active H3K4me3 mark of SOX3- activated genes in NPCS 

and both active H3K4me3 and repressive H3K27me3 histone marks of genes that 

are preselected, but not activated by SOX3. Neuronal genes in immature neurons 

are specifically marked by the active form H3K4me3 (Bergsland et al., 2011). Finally, 

a model has been established, where neurogenesis is regulated by the sequential 

action of SOXB1 and SOXC factors. Here, the pioneer factor SOX2 preselects neural 

genes in the state of ES cells and accomplishes along with other joining SOXB1 

proteins their conversion to NPCs. Besides, NPC-specific genes get activated. At this 

stage, SOX3 additionally primes neuronal genes and thus promotes their active 

transcription by the SOXC proteins SOX4 and SOX11 during differentiation into 

neurons (illustrated in figure 6) (Bergsland et al., 2011).  

 

 
Figure 6:Sequential action of SOX transcription factors during neurogenesis 
SOX2 binds to ES enhancers in ES cells marked with H3K4me3 and activates gene transcription and 
binds to neural enhancers with both H3K4me3 and H3K27me3, which remain silent. Upon 
differentiation to NPCs, SOX2 gets joined by SOX3 to activate NPC enhancers with the active histone 
mark H3K4me3 and to bind the silent neuronal enhancers, carrying both marks. During maturation to 
early neurons, SOX11 activates neuronal gene transcription by occupying neuronal enhancers with 
active histone marks and binds to NPC enhancers marked with the repressive H3K27me3. 
(Modified from Wegner et al. 2011, reprinted with permission of Genes & Development) 
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1.3.2.2.2. The role of SOXB1 in adult neurogenesis 
 

The regulation of neurogenesis within the adult brain requires to some extent the 

same SOX transcription factors that are already involved in the neuronal 

development of the embryonic brain. The multipotency regulator SOX2 is found to be 

expressed in the neurogenic niches of the adult mouse brain. Within the SGZ of the 

hippocampal dentate gyrus it is expressed in quiescent radial glia-like type-1 stem 

cells and rapidly proliferating type-2 precursor cells and astrocytes (see figure 4). 

Upon neural fate commitment, SOX2 becomes down-regulated, coinciding with the 

expression of early neuronal markers (Steiner et al., 2006). In adult neural stem cells, 

it is a key regulator for the maintenance of multipotency and self-renewal capacities 

of the proliferating progenitor pool. In vitro, precursor cells isolated from the adult 

hippocampal dentate gyrus exhibited self-renewing properties. In addition, they 

showed the ability to differentiate into cells of the neuronal lineage in an in vitro GFP 

reporter assay using a SOX2 promoter (Suh et al., 2007). Deletion of SOX2 in adult 

mice results in NPC loss and deprivation of hippocampal neurogenesis (Ferri et al., 

2004). Furthermore, the transcription factor seems to modulate Shh signalling, which 

is critically required for the NPC maintenance through activation of the Shh promoter 

(Favaro et al., 2009). The Notch/RBPJK signalling pathway was identified to regulate 

SOX2 expression through binding of both Notch and RBPJK to the SOX2 promoter 

(Ehm et al., 2010). Moreover, SOX2 is implicated in the regulation of TLX, a factor 

expressed in many parts of the adult brain, which plays a crucial role in the 

maintenance of NSC properties (Shi et al., 2004, Shimozaki et al., 2011). Notably, 

SOX2 also actively counteracts neuronal differentiation through inhibition of Wnt 

signalling-dependent activation of the proneural bHLH factor NEUROD1 (Kuwabara 

et al., 2009, Lie et al., 2005).  

Also the SOXB1 member SOX3 is found to be expressed in the SVZ of the lateral 

ventricle and the SGZ of the dentate gyrus in the adult brain. Proliferating progenitor 

cells display high expression levels of the transcription factor, which decline in the 

course of neuronal differentiation. This points to a similar role to that in embryonic 

brain development, where SOX3 joins SOX2 to maintain the pool of proliferating 

precursors and occupy silent neuronal genes to prime them for later activation (Wang 

et al., 2006).  
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1.3.2.2.3. The role of SOX11 in adult neurogenesis 
 
The SOXC factor SOX11 plays a major role in the regulation of both embryonic and 

adult neurogenesis. Its significance for an accurately controlled CNS development is 

demonstrated by the recently discovered fact that SOX11 deletion and mutations are 

linked to CNS malformation. This includes severe mental retardation and Coffin-Siris 

syndrome, a congenital disorder which is associated with intellectual disability and 

microcephaly (Lo-Castro et al., 2009; Tsurusaki et al., 2014). A genome-wide binding 

profile of the postnatal and adult mammalian brain revealed association of SOX4 and 

SOX11 with stem cell differentiation and neurogenesis (Miller et al., 2013). 

Additionally, a large number of neuronal lineage specific genes were identified as 

SOX11 targets in ES cell derived immature neurons (Bergsland et al., 2011). The 

SOX4 and SOX11 loci are modified by crucial epigenetic regulators, implicated in 

neural stem cell differentiation adult neurogenesis (Feng et al., 2013, Ninkovic et al., 

2013). 

In the adult mouse brain, SOX11 is prominently expressed in the two neurogenic 

niches subgranular zone of the dentate gyrus and the subventricular zone of the 

lateral ventricle as well as in the rostral migratory stream, which directs neuroblasts 

to the olfactory bulb. Furthermore, it is transiently present in neuronally committed 

progenitors and immature new-born neurons, but not in SOX2-expressing NPCs 

(Haslinger et al., 2009). 

Moreover, SOX11 was shown to promote neuron-specific gene programs in both 

embryonic and adult neurogenesis. In the developing brain, SOX11 as well as SOX4 

were discovered to promote late neural fate commitment and neuronal differentiation, 

by activating the expression of a subset of early neuronal markers like β-tubulin III 

and MAP2 (Bergsland et al., 2006), as well as the F-actin binding protein Drebrin 

(Song et al., 2008, Wang et al., 2010). Notably, the SOX11 expression in the adult 

brain overlaps with DCX expression, another early neuronal marker protein.  

In neural stem cells isolated from the SVZ, SOX11 overexpression was capable of 

inducing neuronal differentiation, which was monitored by the neuronal proteins DCX 

and MAP2 (Haslinger et al., 2009). These findings suggest a stage-specific role for 

SOX11 in the regulation of adult neurogenesis. More recently, it was found that 

SOX4 and SOX11 display overlapping expression patterns in the hippocampal 

neurogenic lineage and that not only SOX11, but also SOX4 over-expression induces 

neurogenesis from NSCs in vitro. Additionally, the depletion of both SOXC factors 
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inhibits in vitro and in vivo neuronal differentiation from adult neuronal precursors. 

Conditional removal of Sox11 from embryonic and adult neural stem cells blocks 

precursor cell proliferation (Wang, Lin, Lai, Parada, & Lei, 2013).  

Furthermore, SOX4 and SOX11 were found to activate the immature neuronal 

marker DCX in reporter assays using NPCs (Mu et al., 2012). DCX expression is also 

modulated by the proneural proteins NEUROD1 and PROX1 (Lavado et al., 2010, 

Seo et al., 2007), which are under the control of the Wnt-signalling pathway (Karalay 

et al., 2011, Kuwabara et al., 2009). Regarding the fact that SOXC proteins are 

involved in the modulation of Wnt-signalling (Lee et al., 2011, Sinner et al., 2007), a 

cooperation of SOXC pathways and Wnt-signalling combined with the downstream 

operators NEUROD1 and PROX1 in the organisation of neural fate commitment, 

neuronal differentiation and maturation to new-born granule neurons is easily 

conceivable.  

The regulation of adult neurogenesis underlies the temporal expression and 

sequential action of transcriptional modulators. Furthermore it is based on the 

cooperation of a variety transcription factors that are connected in transcriptional 

networks. For other SOX proteins, like SOX2, several interaction partners are 

identified so far, exemplified by the collaborating transcription factors OCT3/4 and 

Nanog (Boyer et al., 2005, Chen et al., 2008). Despite this fact, to date, the 

information about proteins that act together with SOX11 on gene activation is very 

rare. Previously, Sox11 was found to cooperate with POU3f3 and POU3f2, two 

members of the neurogenesis related POU-III class of transcription factors in reporter 

assays (Kuhlbrodt et al., 1998). Additionally, the differentiation efficiency of neural 

stem cells induced by SOXC proteins was found to be significantly enhanced by the 

over-expression of POU transcription factors. Furthermore, a motif composed of a 

combination of pro-neurogenic transcription factor and SOXC binding sites was 

identified to be enriched in regulatory regions of neuronal fate determination genes 

(Ninkovic et al., 2013). Somatic cells can be converted into neurons by these pro-

neurogenic factors, whereby efficiency is increased by expression of SOXC proteins 

(Liu et al., 2013, Mu et al., 2012, Ninkovic et al., 2013). Nonetheless, the 

identification of SOX11 interaction partners that cooperate on the induction of 

neuronal gene programs would provide crucial insights into the regulation of 

neurogenesis and remains to be further elucidated. 
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1.3.3. Involvement of SOX proteins in reprogramming assays  
 

The reprogramming of somatic cells into neurons provides a powerful tool for 

regenerative medicine, enabling the exploration of diseases and generating new 

targets, which can be used for therapy development, like drug screening. 

Furthermore, potential cell-based therapies for disease intervention are of special 

importance, aiming at the substitution of neurons lost in neurodegenerative disorders 

like Alzheimer’s disease or Parkinson’s disease. Initial studies demonstrated that the 

trans-differentiation of somatic cells into other lineages is dependent on epigenetic 

mechanisms (Taylor and Jones, 1979). They revealed moreover, transcription factors 

as the underlying intrinsic determinants for the cell conversion (Davis et al., 1987, 

Lassar et al., 1986). The cell fate switch between closely related cell types was 

obtained easier than among unrelated lineages, probably due to similar epigenetic 

marks (Nerlov and Graf, 1998, Xie et al., 2004). The discovery that proteins, 

commonly used to identify ES cells are responsible for the maintenance of the cell’s 

properties, led to a large screen using multiple ES cell-specific markers for the 

reprogramming of mouse fibroblasts into pluripotent cells. A reduction to the minimal 

number of indispensable factors for pluripotency induction, enabled the generation of 

the newly discovered induced pluripotent stem cells (iPS cells). The four defined 

factors necessary for reconversion of fibroblasts into iPS cells were OCT3/4, SOX2, 

KLF4 and c-MYC (Takahashi and Yamanaka, 2006). By a procedure called directed 

differentiation, the iPS cells can subsequently be differentiated into cell types of all 

three germ layers by defined factors. The generation of neuronal cells from iPS cells 

can be directed by several mechanisms like treatment with the BMP inhibitor Noggin 

(Chambers et al., 2009, Smith and Harland, 1992), co-cultures with murine PA6 

stromal cells (Pomp et al., 2008) or neural induction by different factor combinations 

like FGF8A, WNT1, retinoic acid and SHH (Cooper et al., 2010). Although the iPS 

cell technology provides several advantages for the progress of stem cell biology, the 

application of iPS cell-derived neurons in practical clinical trials is difficult, due to the 

low efficiencies, the time consuming procedure and obstacles concerning potential 

tumour induction from the pluripotent cells. To overcome this, an alternative method 

was introduced, based on the generation of neuronal cells directly from adult somatic 

cells. The first successful direct reprogramming of fibroblasts into induced neuronal 

cells was achieved in 2010. The combination of the defined factors ASCL1, BRN2 
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(also called POU3F2) and MYT1L was sufficient to convert mouse fibroblasts into 

functional neurons without the pluripotent state in between (Vierbuchen et al., 2010). 

This exemplifies the possibility of trans-conversion even between cells of different 

germ layers. Of special interest is the practicability of this direct trans-differentiation 

method in regenerative medicine, which is based on the faster procedure without the 

necessity of the pluripotent step. Additionally, the process may enable direct in situ 

conversion in patients in the future. The applied somatic fibroblasts are, furthermore, 

ubiquitously available and can be used in an autologous fashion. Until now, several 

combinations of transcription factors have successfully been applied for the direct 

reprogramming of both fibroblasts and astrocytes into different types of induced 

neurons. Mouse fibroblasts were trans-differentiated to dopaminergic neurons 

(Caiazzo et al., 2011), to motor neurons (Son et al., 2011) and to neuronal precursor 

cells (Lujan et al., 2012) by different combinations of factors. Also striatal astrocytes 

were converted into neurons in vivo (Torper et al., 2013). Interestingly, after brain 

injury within the cerebral cortex, NEUROD induced the in vivo generation of reactive 

glial cells into neurons (Guo et al., 2014). Also human fibroblasts were 

reprogrammed into glutamatergic neurons by different combinations of transcription 

factors and microRNAs (Ambasudhan et al., 2011, Pang et al., 2011, Yoo et al., 

2011). Dopaminergic neurons were differentiated from human fibroblasts (Caiazzo et 

al., 2011, Pfisterer et al., 2011). Moreover, another combination of transcription 

factors was sufficient to induce conversion of human fibroblasts into motor neurons 

(Son et al., 2011).  

NGN2 is one of the bHLH transcription factors that initiate the progression of 

neurogenesis (Bertrand et al., 2002). Moreover, it was found to act upstream of 

SOXC proteins and is involved in the activation of SOXC factor expression 

(Bergsland et al., 2006). The bHLH factor is sufficient for the direct conversion of 

human fibroblasts into neurons, but forced expression of SOX11 is required to 

enhance the efficiency (Liu et al., 2013). Also astrocytes can be reprogrammed into 

glutamatergic neurons by NGN2 (Berninger et al., 2007, Heinrich et al., 2010). 

However, the efficiency is heavily enhanced upon addition of SOXC factors, whereas 

depletion of the proteins from astrocytes strongly impairs the ability of the cells to 

convert into neurons (Mu et al., 2012). Additionally, SOX11 was applied together with 

NFIB and POU3F4 to successfully trans-differentiate glial cells into neurons (Ninkovic 

et al., 2013). Taken together, these findings underline the essential role of SOX 
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transcription factors, especially SOX2 and SOXC proteins in the reprogramming of 

somatic cells into iPS cells as well as in the direct conversion into neuronal precursor 

cells and neurons, respectively. 
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2. Aim of the study 
 
The family of SOX transcription factors plays a pivotal role during embryonic and 

adult neurogenesis in both maintenance of the proliferating multipotent neural stem 

cell pool and commitment of the precursor cells to a neuronal fate as well as in the 

progression of differentiation into functional neurons. Recently, SOX11 was identified 

as a crucial regulator during neural fate commitment and the induction of a neuron-

specific gene expression program. The importance of SOX11 for a coordinated CNS 

development is illustrated by the discovery that SOX11 deletion and mutations are 

associated with CNS malformation and Coffin-Siris syndrome, a congenital disorder 

characterised by intellectual disability and microcephaly (Lo-Castro et al., 2009, 

Tsurusaki et al., 2014). Current models indicate that stem cell maintenance and 

differentiation are coordinated by core transcriptional networks, which are composed 

of various transcription factors that physically interact, thereby maintaining and 

inducing developmental gene expression programs in a synergistic fashion (Chen et 

al., 2008, Hobert, 2011).  

According to this previous knowledge, the present study aimed to determine the 

regulatory transcriptional core program of late neuronal differentiation and maturation 

that defines early neuronal identity. Due to its relevance in neuronal differentiation 

and induction of immature neuronal gene programs, SOX11 was chosen as bait for 

the identification of the underlying transcriptional network. To this end, several 

objectives were addressed within this study. 

 

I. Generation of SOX11-specific monoclonal antibodies 

At the beginning of the study, only few antibodies recognising SOX11 in 

Western Blotting and Immunoprecipitation were commercially available. They 

were polyclonal and differed batch-to-batch in specificity and signal intensity. 

The establishment of monoclonal anti-SOX11 antibodies enables the specific 

and robust detection of the murine SOX11 protein, which is essential for the 

further analysis of the transcription factor. 

To that end, protein-specific monoclonal antibodies were produced. Their 

suitability on western blot level and immunoprecipitation was tested and 

protocols were optimised. 
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II. Determination of a SOX11-centered transcriptional network 

The interaction partners of the transcription factor SOX11 serve as potential co-

regulators in the modulation of targets on the transcriptional level. Their 

identification could provide insights into assembled transcription factor 

complexes and networks orchestrating the regulation of neurogenesis and 

determining early neuronal identity. The set-up of a protein-protein interaction 

network can further illustrate the relationship between the identified proteins and 

integrate the dataset into a biological context by evaluation of literature-based 

knowledge. 

The establishment of a proteomic SOX11-centered transcriptional interaction 

dataset was realised by the determination of the SOX11 interactome in the 

mouse neuroblastoma cell line Neuro2a using SILAC labelling in affinity based 

purifications and quantitative proteomic approaches. The SOX11-centered 

protein-protein interaction network was assembled by matching the obtained 

interaction data with prevalidated protein interaction data from public databases. 

 
III. Functional promoter studies of interacting candidate proteins 

The functional evaluation of identified SOX11 interaction partners on different 

promoters reveals their relevance in the regulation of particular cellular 

processes like neurogenesis. Furthermore potential cooperation of transcription 

factors on the modulation of transcriptional programs can be uncovered. 

The promoter studies were carried out by the use of interacting proteins in 

reporter assays on SOX11-regulated immature neuronal markers DCX and 

Stathmin1, combined with co-expression of SOX11 and knockdown of selected 

candidates.  

 
IV. In silico modelling of selected candidate proteins 

A powerful tool for the determination of binding sites on regulatory regions of the 

DNA is represented by in silico promoter analysis. Genome-wide as well as 

promoter-specific binding profiles of selected interactors and models including 

SOX11 and other transcription factors from the SOX11 interactome can provide 

useful information about possible binding to transcriptional target sequences 

and cooperative action on promoters.  

In silico promoter modelling was accomplished by the use of the Genomatix 

software. The analysis included determination of binding profiles of single 
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transcription factors, the construction of models and their overrepresentation in 

selected and genome-wide promoter regions. 
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3. Material and Methods 
 

3.1. Material 
 

3.1.1. Equipment 
 
Analytical balance ABJ 120-4M Kern, Balingen,Germany 

Autoclave DX-150 Systec, Wettenberg, Germany 

Berthold Mitras LB 940 Microplate Reader Berthold, Bad Wildbad, Germany 

CO2-Incubator HeraCell 150i Heraeus, Hanau, Germany 

Compartment dryer T20 Heraeus, Hanau, Germany 

Developer Curix 60 Agfa, Mortsel, Belgium 

Freezer (-80°C) Forma 900 Series Thermo Fisher Scientific, Waltham, MA, USA 

Freezer Liebherr Comfort Liebherr, Bulle, Switzerland 

Geldocumentation device Easy RH Herolab, Wiesloch, Germany 

Ice machine AF200 Scotsman, Vernon hills, IL, USA 

Incubator INB 300 for bacteria Memmert, Schwabach, Germany 

Infrared lamp model 2580 Kindermann, Eibelstadt, Germany 

IntelliMixer NeoLab, Heidelberg, Germany 

Laboratory balance S72 Kern, Balingen,Germany 

Laboratory hood model 854006.1 Wesemann, Syke, Germany 

Laminar flow HeraSafe HS 12 Heraeus, Hanau, Germany 

Laminar flow MSC 12 Thermo Fisher Scientific, Waltham, MA, USA 

Light table Prolite 5000 Kaiser, Buchen, Germany  

Lightcycler® 480 Roche, Penzberg, Germany 

Magnetic stirrer and heater MR Hei-Standard Heidolph, Schwabach, Germany 

Megafuge 16 Heraeus, Hanau, Germany 

Microscope PrimoVert Zeiss, Göttingen, Germany 

Microwave Siemens, München, Germany 

Multifuge X3R  Heraeus, Hanau, Germany 

Neubauer counting chamber Marienfeld, Lauda-Königshofen, Germany 

pH meter PB-11 Sartorius, Göttingen, Germany 

Platform shaker Duomax 1030 Heidolph, Schwabach, Germany 

Power Supply Consort Consort, turnhout, Belgium 

Power Supply PowerPak Basic  Bio-Rad, Hercules, CA, USA 

Refrigerator Liebherr, Bulle, Switzerland 

Refrigerator Vapor Trap RVT400-230 Thermo Fisher Scientific, Waltham, MA, USA 

Roller mixer RM5 Assistent, Sondheim, Germany 

Rotating incubator Infors HAT Ecotron, Bruckmühl, Germany 

Sonificator Sonopuls HD70 Bandelin, Berlin, Germany 

Speedvac Concentrator SPD111V-230 Thermo Fisher Scientific, Waltham, MA, USA 

Table top centrifuge 5415D Eppendorf, Hamburg, Germany 

Table top centrifuge Fresco17, refrigerated Heraeus, Hanau, Germany 

Table top centrifuge Pico21 Heraeus, Hanau, Germany 

Thermoblock MBT 250 ETG, Ilmenau, Germany 
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Thermocycler Primus MWG-Biotech, Ebersberg, Germany 

Thermocycler Primus 96 Plus MWG-Biotech, Ebersberg, Germany 

Thermomixer Comfort Eppendorf, Hamburg, Germany 

Thermomixer Univortemp Universal Labortechnik, Leipzig, Germany 

Transluminator Fluo Link (312 nm) 
Bachofer Laboratoriumsgeräte, Reutlingen, 
Germany 

Ultrapure water purification system Nanopure Thermo Fisher Scientific, Waltham, MA, USA 
Ultrasonic bath Sonorex Digitec Bandelin, Berlin, Germany 

UV/VIS Spectrometer T70 
PG Instruments Limited, Lutterworth, United 
Kingdom 

Vacuum pump 2522Z-02 Welch, Niles, IL, USA 

Vortex Mixer NeoLab, Heidelberg, Germany 

Waterbath WNB 14 and shaker SV1422 Memmert, Schwabach, Germany 
 
 
3.1.2. Consumables and Labware 

 
96 well plate, white, flat bottom, non-binding Greiner bio-one, Kremsmünster, Austria 

Accu-jet® pro pipetting aid Brand, Wertheim, Germany 

Amersham Hyperfilm ECL  GE Healthcare, Waukesha, WI, USA 

ARTTM Barrier pipette tips  1000µl Thermo Fisher Scientific, Waltham, MA, USA 

ARTTM Barrier pipette tips 10µl Thermo Fisher Scientific, Waltham, MA, USA 

ARTTM Barrier pipette tips 20µl Thermo Fisher Scientific, Waltham, MA, USA 

ARTTM Barrier pipette tips 200µl Thermo Fisher Scientific, Waltham, MA, USA 

Baffled flask 250ml Neolab, Heidelberg, Germany 

Baffled flask 500ml Neolab, Heidelberg, Germany 

Blue Rack für 6xTubes GLW Storing Systems, Würzburg, Germany 

Blue Rack für 6xTubes GLW Storing Systems, Würzburg, Germany 

Box for 15 ml Centr. Tube  Neolab, Heidelberg, Germany 

Box for 50 ml Centr. Tube Neolab, Heidelberg, Germany 

Box for Pipette Tips (Gilson) Gilson, Middleton, WI, USA 

Canula Neolab, Heidelberg, Germany 

Cell scraper Sarstedt, Nümbrecht, Germany 

Centrifugation tubes 15ml Greiner bio-one, Kremsmünster, Austria 

Centrifugation tubes 50ml Greiner bio-one, Kremsmünster, Austria 

Comb 10 well for 0.75 mm gels Bio-Rad, Hercules, CA, USA 

Cryo Tube Rack  Nunc, Rochester, NY, USA 

Cryobox 0.5 ml tubes Carl-Roth, Karlsruhe, Germany 

Cryobox 1.5 / 2.0 ml tubes Carl-Roth, Karlsruhe, Germany 

Cryotubes, 1.8 ml  Innengewinde Nunc, Rochester, NY, USA 

Culture tube 14ml BD Biosciences, Franklin Lakes, NJ, USA 

Cuvette 1,5ml Sarstedt, Nümbrecht, Germany 

Drigalski spatula Carl-Roth, Karlsruhe, Germany 

Filtersystem 0.22 µm  Corning, Corning, NY, USA 

Flea, 1 to 8 cm  Neolab, Heidelberg, Germany 

Gel loading tips Carl-Roth, Karlsruhe, Germany 

Glas plate with 0.75mm spacer Bio-Rad, Hercules, CA, USA 
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Gloves purple nitrile  Kimberly-Clark, Irving, TX, USA 

Gloves soft nitrile Paul Hartmann, Heidenheim, Germany 

Graduated measuring glass Duran Group, Wertheim, Germany 

Hybond-P PVDF Transfer membrane GE Healthcare, Waukesha, WI, USA 

Hypercassette GE Healthcare, Waukesha, WI, USA 

Hyperscreen GE Healthcare, Waukesha, WI, USA 

Icebath Neolab, Heidelberg, Germany 

Inlays for Cryobox 0.5 ml tubes Carl-Roth, Karlsruhe, Germany 

Inlays for Cryobox 1.5 / 2ml tubes Carl-Roth, Karlsruhe, Germany 

Inoculation loop Carl-Roth, Karlsruhe, Germany 

Kimwipes Lite  Kimberly-Clark, Irving, TX, USA 

Laboratory bottle, 50-2000ml Neolab, Heidelberg, Germany 

MicroSpin Columns GE Healthcare, Waukesha, WI, USA 

Multiwell plates, 96 wells Greiner bio-one, Kremsmünster, Austria 

Parafilm sealing foil Brand, Wertheim, Germany 

Pasteur capillary pipette VWR International, West Chester, PA, USA 

Pasteur-Pipette PP VWR International, West Chester, PA, USA 

PCR rack Carl-Roth, Karlsruhe, Germany 

Petridish 90x14.2 mm VWR International, West Chester, PA, USA 

pH Indicator sticks Carl-Roth, Karlsruhe, Germany 

Pipette 10µl Gilson, Middleton, WI, USA 

Pipette 100µl Gilson, Middleton, WI, USA 

Pipette 1000µl Gilson, Middleton, WI, USA 

Pipette 2µl Gilson, Middleton, WI, USA 

Pipette 20µl Gilson, Middleton, WI, USA 

Pipette 200µl Gilson, Middleton, WI, USA 

Pipette tips 101-1000µl  Sarstedt, Nümbrecht, Germany 

Pipette tips 1-10µl  Sarstedt, Nümbrecht, Germany 

Pipette tips 1-200µl  Sarstedt, Nümbrecht, Germany 

Pipette tips; D1000 Gilson, Middleton, WI, USA 

Pipette tips; D200 Gilson, Middleton, WI, USA 

Pipette tips; DL10 Gilson, Middleton, WI, USA 

Pipettes, serological, 10ml, sterile BD Biosciences, Franklin Lakes, NJ, USA 

Pipettes, serological, 25ml, sterile BD Biosciences, Franklin Lakes, NJ, USA 

Pipettes, serological, 2ml, sterile BD Biosciences, Franklin Lakes, NJ, USA 

Pipettes, serological, 50ml, sterile BD Biosciences, Franklin Lakes, NJ, USA 

Pipettes, serological, 5ml, sterile BD Biosciences, Franklin Lakes, NJ, USA 

Polypropylen insert with bottom spring Sigma-Aldrich,  St. Louis, MO, USA 

Reaction tube 0.2ml  Sarstedt, Nümbrecht, Germany 

Reaction tube 0.5ml, safe-lock  Eppendorf, Hamburg, Germany 

Reaction tube 1.5ml, safe-lock  Eppendorf, Hamburg, Germany 

Reaction tube 15ml Sarstedt, Nümbrecht, Germany 

Reaction tube 2ml, safe-lock  Eppendorf, Hamburg, Germany 

Reaction tube 50ml BD Biosciences, Franklin Lakes, NJ, USA 

Scalpell VWR International, West Chester, PA, USA 
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Short plate Bio-Rad, Hercules, CA, USA 

Slide-A-Lyzer Dialysis cassette, 10MWCO, 3ml Thermo Fisher Scientific, Waltham, MA, USA 

Spin Columns, 5MWCO Neolab, Heidelberg, Germany 

Stage Tips C-18, 200 µl Thermo Fisher Scientific, Waltham, MA, USA 

Sterilfilter Millex 0,22 µm (Millex) Merck, Darmstadt, Germany 

Syringes BD Biosciences, Franklin Lakes, NJ, USA 

Tissue Dishes, 10cm, Nunclon Surface Nunc, Rochester, NY, USA 

Tissue Dishes, 14cm, Nunclon Surface  Nunc, Rochester, NY, USA 

Water bath stabiliser, AKASOLV Aqua Care Carl-Roth, Karlsruhe, Germany 

Whatman chromatohrapy paper GE Healthcare, Waukesha, WI, USA 
 

3.1.3. Chemicals 
 
1,4-Dithiothreitol (DTT) Merck, Darmstadt, Germany 

2-Iodacetamide (IAA) Merck, Darmstadt, Germany 

2-Mercaptoethanol Sigma-Aldrich,  St. Louis, MO, USA 

2-Propanol p.a. Merck, Darmstadt, Germany 

Acetonitrile LC-MS CHROMASOLV®, ≥99.9% Sigma-Aldrich,  St. Louis, MO, USA 

Agar-Agar Carl-Roth, Karlsruhe, Germany 

Agarose Lonza, Basel, Switzlerland 

Ammonium Bicarbonate  Sigma-Aldrich,  St. Louis, MO, USA 

Ammonium Hydroxide p.a. Sigma-Aldrich,  St. Louis, MO, USA 

Ammonium Persulfate Sigma-Aldrich,  St. Louis, MO, USA 

Ampicillin Sodium Chrystalline Carl-Roth, Karlsruhe, Germany 

Bis-Acrylamid/Acrylamid; 37,5:1; 30% Serva Elektrophoresis, Heidelberg, Germany  

Bromophenolblue Sigma-Aldrich,  St. Louis, MO, USA 

Chloramphenicol Carl-Roth, Karlsruhe, Germany 

Chloroform p.a. Merck, Darmstadt, Germany 

Dimethyl Sulfoxide Applichem, Darmstadt, Germany 

EDTA Disodium Salt Dihydrate Applichem, Darmstadt, Germany 

EGTA Sigma-Aldrich,  St. Louis, MO, USA 

Ethanol 99%, denatured MEK/BIT SAV liquid production, Flintsbach, Germany 

Ethanol p.a. Merck, Darmstadt, Germany 

Ethidiumbromide Applichem, Darmstadt, Germany 

Ficoll 400 Sigma-Aldrich,  St. Louis, MO, USA 

G418 Merck, Darmstadt, Germany 

Glacial Acetic Acid p.a. Merck, Darmstadt, Germany 

Glycerin  Carl-Roth, Karlsruhe, Germany 

Glycin Carl-Roth, Karlsruhe, Germany 

HEPES Sigma-Aldrich,  St. Louis, MO, USA 

Hydrochloric Acid p.a. Merck, Darmstadt, Germany 

Imidazole Sigma-Aldrich,  St. Louis, MO, USA 
IPTG Fermentas, Burlington, Canada 

Isopropanol LC grade  Merck, Darmstadt, Germany 

Kanamycin Sulfate Carl-Roth, Karlsruhe, Germany 
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Lysozyme Sigma-Aldrich,  St. Louis, MO, USA 

Magnesiumchloride Sigma-Aldrich,  St. Louis, MO, USA 

Methanol LC-MS grade Merck, Darmstadt, Germany 

Methanol LC-MS grade VWR International, West Chester, PA, USA 

Methanol p.a. Merck, Darmstadt, Germany 

Monopotassium Phosphate p.a. Carl-Roth, Karlsruhe, Germany 

Na2-EGTA Sigma-Aldrich,  St. Louis, MO, USA 

Nonident P40 Roche, Penzberg, Germany 

OrangeG Sigma-Aldrich,  St. Louis, MO, USA 
Phenylmethanesulfonyl fluoride (PMSF) Sigma-Aldrich,  St. Louis, MO, USA 

Polyethylenimine, Linear (MW 25,000) Polysciences, Warrington, PA, USA 

Ponceau S Sigma-Aldrich,  St. Louis, MO, USA 

Potassium Chloride p.a. Carl-Roth, Karlsruhe, Germany 

RapiGest SF Surfactant Waters, Milford, MA, USA 

Sodium Chloride p.a. Merck, Darmstadt, Germany 

Sodium Hydroxide pellet p.a. Carl-Roth, Karlsruhe, Germany 

Sodium phosphate dibasic  (Na2HPO4) Sigma-Aldrich,  St. Louis, MO, USA 

Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich,  St. Louis, MO, USA 

Spectinomycin dihydrochloride pentahydrate Sigma-Aldrich,  St. Louis, MO, USA 

TEMED p.a.; 100 ml (Merck, Darmstadt, Germany) Merck, Darmstadt, Germany 

Trifluoracetic Acid, for protein seq. Merck, Darmstadt, Germany 

Tris(hydroxymethyl) Aminomethane (Tris ultrapure) Sigma-Aldrich,  St. Louis, MO, USA 

Trypsin from porcine pancreas; proteomics grade Sigma-Aldrich,  St. Louis, MO, USA 

Tryptone/Peptone from Casein Carl-Roth, Karlsruhe, Germany 

Tween® 20 Sigma-Aldrich,  St. Louis, MO, USA 

Urea Carl-Roth, Karlsruhe, Germany 

Water, HPLC grade VWR International, West Chester, PA, USA 

Water, HPLC grade Merck, Darmstadt, Germany 

Yeast Extract Carl-Roth, Karlsruhe, Germany 
 

3.1.4. Special reagents 
 
12C6, 

14N2 lysine Silantes, München, Germany 
12C6,

14N4 arginine  Silantes, München, Germany 
13C6,

14N4-L-arginine  Silantes, München, Germany 

4.4.5.5-D4-L-lysine Silantes, München, Germany 

Adenosin 5'-Diphosphate (ADP) Sigma-Aldrich,  St. Louis, MO, USA 

AGFA Developer G153  Röntgen Bender, Baden-Baden, Germany 

AGFA Fixer G354  Röntgen Bender, Baden-Baden, Germany 

Anti-FLAG-M2-agarose Sigma-Aldrich,  St. Louis, MO, USA 

Blotting Grade Blocker, nonfat dry Bio-Rad, Hercules, CA, USA 

BSA PAA, Pasching, Austria 

Coomassie Brilliant Blue  Merck, Darmstadt, Germany 

Dialysed FBS Sigma-Aldrich,  St. Louis, MO, USA 

Didesoxyadenosine 5′-triphosphate (ATP) Sigma-Aldrich,  St. Louis, MO, USA 
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dNTP Mix; 40µM (10 mM each nt) New England Biolabs, Ipswich, MA, USA 

Dulbecco's Modified Eagle Medium Sigma-Aldrich,  St. Louis, MO, USA 

Dulbecco's PBS Sigma-Aldrich,  St. Louis, MO, USA 

ECL plus Western Blotting Substrate Thermo Fisher Scientific, Waltham, MA, USA 

ECL Western Blotting Substrate Thermo Fisher Scientific, Waltham, MA, USA 

Effectene transfection reagent Qiagen, Hilden, Germany 

Fetal bovine serum (FBS) Sigma-Aldrich,  St. Louis, MO, USA 

Flag peptide Sigma-Aldrich,  St. Louis, MO, USA 

GeneRulerTM 1kb Plus DNA ladder Thermo Fisher Scientific, Waltham, MA, USA 

L-Glutamine, 200mM Life Technologies, Carlsbad, CA, USA 

Magnesiumchloride (50mM) Thermo Fisher Scientific, Waltham, MA, USA 

Ni-NTA Superflow (50% suspension) Qiagen, Hilden, Germany 

PageRuler Plus; 250kDa; prestained  Fermentas, Burlington, Canada 

PageRuler; 170kDa; prestained  Fermentas, Burlington, Canada 

Penicillin/Streptomycin Life Technologies, Carlsbad, CA, USA 

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich,  St. Louis, MO, USA 

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich,  St. Louis, MO, USA 

Phusion HF Reaction buffer Thermo Fisher Scientific, Waltham, MA, USA 

Phusion High-Fidelity DNA Polymerase Fermentas, Burlington, Canada 

Proline Silantes, München, Germany 

Protease Inhibitor Cocktail Complete Roche, Penzberg, Germany 

Protein Assay Dye Reagent Bio-Rad, Hercules, CA, USA 

Protein G PLUS-Agarose Santa Cruz, Santa Cruz, CA, USA 

SILAC DMEM Thermo Fisher Scientific 

Strep Tactin Superflow (50% suspension) IBA, Göttingen, Germany 

Strep-Tag Elution Buffer with D-Desthiobiotin IBA, Göttingen, Germany 

Trypsin EDTA Life Technologies, Carlsbad, CA, USA 
 

3.1.5. Buffers, Solutions and Media 
 
In this study dH20 describes deionised water and ddH20 is referred to ultra-pure 

water (Thermo Fisher Scientific, Waltham, MA, USA).  

 

3.1.5.1. Cell culture 
 
Growth Medium Dulbecco's Modified Eagle Medium 

10% FBS 

0.5% Penicillin/Streptomycin 

SILAC Medium Light SILAC DMEM 

10% dialysed FBS 

2% L-Glutamine 
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0.5% Penicillin/Streptomycin 

2mM Proline 

0.55mM 12C6, 
14N2 Lysine 

0.4mM 12C6,
14N4 Arginine  

SILAC Medium Heavy SILAC DMEM 

10% dialysed FBS 

2% L-Glutamine 

0.5% Penicillin/Streptomycin 

2mM Proline 

0.55mM 4.4.5.5-D4-L-lysine 

0.4mM 13C6,
14N4-L-arginine  

Cryo Medium 90% FBS 

10% DMSO 

PEI Transfection Reagent 1mg/ml Polyethylenimine (PEI) 

dH20 

dissolve with stirring at 80°C,  

cool down to RT 

adjust pH to 7.8 using HCL 

 
3.1.5.2. E.coli culture 
 
LB- Medium 1% (w/v) Tryptone/Peptone from Casein 

0.5% (w/v) Yeast Extract  

1% (w/v) NaCl 

adjust pH to 7.0 using NaOH 

dH20 

LB-Agar 1% (w/v) Tryptone/Peptone from Casein 

0.5% (w/v) Yeast Extract  

1% (w/v) NaCl 

1% (w/v) Agar agar 

dH20 

 



MATERIAL AND METHODS 

 

47 

 

3.1.5.3. Nickel-NTA Purification 
 
Na-phosphate buffer 1 50mM Na2HPO4  

300mM NaCl 

10 mM Imidazole 

Na-phosphate buffer 2 50mM NaH2PO4  

300mM NaCl 

10 mM Imidazole 

Na-phosphate buffer Titrate Na-phosphate buffer 1 and 2 to pH 8.0 

Lysis buffer Na-phosphate buffer 

1mM DTT 

0.5 mg/ml Lysozyme 

Urea buffer Na-phosphate buffer 

8M Urea 

Wash buffer Na-phosphate buffer 

20mM Imidazole 

Elution buffer 1-4 Na-phosphate buffer 

50mM, 100mM, 150mM, 250mM Imidazole 

 
3.1.5.4. Agarose Gels 
 
TAE-buffer (50x) 2M Tris 

50mM EDTA 

1M Acetic Acid 

dH20 

OrangeG loading buffer (6x) 250mg/ml Ficoll 400 

0.5% (w/v) SDS 

50mM EDTA 

1 spatula tip OrangeG 

ddH20 

 



MATERIAL AND METHODS 

 
 

48 

 

3.1.5.5. Nuclear extraction and affinity purification 
 
Nuclear extraction buffer A 10mM HEPES 

1mM EDTA 

0.1mM EGTA 

10mM KC 

1mM PMSF 

1µg/ml phosphatase inhibitor cocktail 2 and 3 

1mM DTT 

 1µg/ml complete protease inhibitor 

Nuclear extraction buffer C 20mM HEPES 

0.2 mM EDTA 

0.1mM EGTA 

25% glycerol 

420mM NaCl 

1.5mM MgCl2 

1mM PMSF 

1µg/ml phosphatase inhibitor cocktail 2 and 3 

1mM DTT 

1µg/ml complete protease inhibitor 

TBS (10x) 300mM Tris 

1.5M NaCl 

dH20 

adjust pH to 7.4 using HCL 

Washing buffer 0.1% NP40 

1µg/ml phosphatase inhibitor cocktail 2 and 3 

1µg/ml complete protease inhibitor 

TBS (1x) 
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3.1.5.6. SDS-PAGE, Coomassie staining and Western blot analysis 
 
Laemmli buffer (5x) 250mM Tris-HCl pH 6.8 

5% SDS 

50% Glycerol 

500mM 2-Mercaptoethanol 

0.05% (w/v) Bromophenol Blue 

Running buffer (10x) 20M Glycin 

2.47M Tris 

1% (w/v) SDS 

dH20 

Western buffer (10x) 1.92M Glycin 

250mM Tris 

dH20 

Western buffer (1x) 

Dilute Westernbuffer (10x) 1:10 with dH20 

and apply 20% MeOH 

TBS-T (10x) 300mM Tris 

1.5M NaCl 

1% Tween® 20 

dH20 

adjust pH to 7.4 using HCL 

Blocking Solution 5% Blotting Grade Blocker 

TBS-T (1x) 

Coomassie Staining Solution 0.4% (w/v) Coomassie brilliant blue 

dH20 

Fixer Solution 50% MeOH 

12% Acetic Acid 

dH20 
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3.1.6. Kits 
 
Dual-Luciferase® Reporter Assay System Kit Promega, Fitchburg, WI, USA 

EndoFree Plasmid Maxi Kit Qiagen, Hilden, Germany 

Gel Extraction Kit Fermentas, Burlington, Canada 

GeneJET™ Plasmid Miniprep Kit Fermentas, Burlington, Canada 

Omniscript® Reverse Transcription Kit Qiagen, Hilden, Germany 

PCR Purification Kit Fermentas, Burlington, Canada 

peqGOLD Total RNA Kit  Peqlab Biotechnologie, Erlangen, Germany 

PureYield Plasmid Midiprep Kit  Promega, Fitchburg, WI, USA 

SsoAdvancedTM Universal SYBR® Green Supermix Bio-Rad, Hercules, CA, USA 

TOPO TA Cloning Kit  Invitrogen, Carlsbad, CA, USA 
 
 
3.1.7. Enzymes 
 
BamHI-HF New England Biolabs, Ipswich, MA, USA 

Benzonase nuclease Merck, Darmstadt, Germany 

BglII New England Biolabs, Ipswich, MA, USA 

BP Clonase II Enzyme Mix, with proteinase K Invitrogen, Carlsbad, CA, USA 

ClaI New England Biolabs, Ipswich, MA, USA 

HindIII New England Biolabs, Ipswich, MA, USA 

Hpa I New England Biolabs, Ipswich, MA, USA 

LR Clonase II Enzyme Mix, with proteinase K Invitrogen, Carlsbad, CA, USA 

Phusion High-Fidelity DNA Polymerase, HF 
Reaction buffer (5x) and MgCl2 (50mM) Thermo Fisher Scientific, Waltham, MA, USA

PmeI New England Biolabs, Ipswich, MA, USA 

SfiI New England Biolabs, Ipswich, MA, USA 

T4 DNA Ligase and Reaction buffer (10x) Roche, Penzberg, Germany 

T4 Polynucleotide Kinase and Reaction buffer (10x) Roche, Penzberg, Germany 

Taq DNA Polymerase and Reaction buffer (10x) Fermentas, Burlington, Canada 
 
 
3.1.8. Oligonucleotides 
. 
Table 1:  Oligonucleotides for shRNA-mediated knockdown 
The shRNA target sequences are depicted in normal capital letters. Bold capital letters indicate 
flanking regions including italicised pseudo-ClaI sites at the 5’ end of reverse oligonucleotides. The 
loop sequence is denoted as lower case letters.shRNA sequences are from Mission® shRNA Sigma-
Aldrich. 
Oligo name Sequence 5'-3' 

Tcf4_f_1 CCGGGCTGAGTGATTTACTGGATTTctcgagAAATCCAGTAAATCACTCAGCTTTTT 

Tcf4_r_1 CGAAAAAGCTGAGTGATTTACTGGATTTctcgagAAATCCAGTAAATCACTCAGCCCGG

Tcf4_f_2 CCGGCCCAGTACTATCAGTATTCAActcgagTTGAATACTGATAGTACTGGGTTTTT 

Tcf4_r_2 CGAAAAACCCAGTACTATCAGTATTCAActcgagTTGAATACTGATAGTACTGGGCCGG 

Znf24_f_1 CCGGTCCTACAGTCAGAGCTCAAACctcgagGTTTGAGCTCTGACTGTAGGATTTTTG 

Znf24_r_1 CGCAAAAATCCTACAGTCAGAGCTCAAACctcgagGTTTGAGCTCTGACTGTAGGACCGG 
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Znf24_f_2 CCGGGTTCTGTGGTTCTACTATTTActcgagTAAATAGTAGAACCACAGAACTTTTTG 

Znf24_r_2 CGCAAAAAGTTCTGTGGTTCTACTATTTActcgagTAAATAGTAGAACCACAGAACCCGG 

Yy1_f_1 CCGGACATCTTAACACACGCTAAAGctcgagCTTTAGCGTGTGTTAAGATGTTTTTTG 

Yy1_r_1 CGCAAAAAACATCTTAACACACGCTAAAGctcgagCTTTAGCGTGTGTTAAGATGTCCGG 

Yy1_f_2 CCGGCCCTAAGCAACTGGCAGAATTctcgagAATTCTGCCAGTTGCTTAGGGTTTTTG 

Yy1_r_2 CGCAAAAACCCTAAGCAACTGGCAGAATTctcgagAATTCTGCCAGTTGCTTAGGGCCGG 

Myt1_f_1 CCGGAGGAGGAAGATGAAGAGGAAGctcgagCTTCCTCTTCATCTTCCTCCTTTTTTTG 

Myt1_r_1 CGCAAAAAAAGGAGGAAGATGAAGAGGAAGctcgagCTTCCTCTTCATCTTCCTCCTCCGG 

Myt1_f_2 CCGGAGGAGAAGAAGAAGAGGAGGActcgagTCCTCCTCTTCTTCTTCTCCTTTTTTTG 

Myt1_r_2 CGCAAAAAAAGGAGAAGAAGAAGAGGAGGActcgagTCCTCCTCTTCTTCTTCTCCTCCGG 

Myt1_f_3 CCGGGAAGAAGAAGAGGATGAGGAGctcgagCTCCTCATCCTCTTCTTCTTCTTTTTTG 

Myt1_r_3 CGCAAAAAAGAAGAAGAAGAGGATGAGGAGctcgagCTCCTCATCCTCTTCTTCTTCCCGG 

Myt1_f_4 CCGGAGGAGGAGGAAGAAGATGAAGctcgagCTTCATCTTCTTCCTCCTCCTTTTTTTG 

Myt1_r_4 CGCAAAAAAAGGAGGAGGAAGAAGATGAAGctcgagCTTCATCTTCTTCCTCCTCCTCCGG 

Myt1_f_5 CCGGAGGAAGAAGAGGAGGAGGAAGctcgagCTTCCTCCTCCTCTTCTTCCTTTTTTTG 

Myt1_r_5 CGCAAAAAAAGGAAGAAGAGGAGGAGGAAGctcgagCTTCCTCCTCCTCTTCTTCCTCCGG 

neg.ctrl_f CCGGCAACAAGATGAAGAGCACCAActcgagTTGGTGCTCTTCATCTTGTTGTTTTT 

neg.ctrl_r CGAAAAACAACAAGATGAAGAGCACCAActcgagTTGGTGCTCTTCATCTTGTTGCCGG 

 

Table 2: Primer 

Primer name Sequence 5'-3' Application 

Oligo-d(T) ttttttttttttttt cDNA synthesis 

C-SF_f_Sfi aataggcctcctaggccgctcggatccactagtaa Direct cloning 

C-SF_r_PmeI tattgtttaaactgatcagcgagctctagcat Direct cloning 

U6_for aatagatatcgatccgacgccgccatctc Direct cloning 

U6_rev aataaagcttgttaacaaacaaggcttttctccaagg Direct cloning 

H1_for aatagatatcgaacgctgacgtcatcaacc Direct cloning 

H1_rev aataaagcttgttaacgtggtctcatacagaactta Direct cloning 

attB1 ggggacaagtttgtacaaaaaagcaggct Gateway cloning 

attB2 ggggaccactttgtacaagaaagctgggt Gateway cloning 

Sox11_NGW_f aaaagcaggcttcgtgcagcaggccgagagc Gateway cloning 

Sox11_NGW_nterm_r aagaaagctgggtgctcgaggctgtccttcagcatcttcc Gateway cloning 

Yy1_qRT_f gatgatgctccaagaacaatagc qRT-PCR 

Yy1_qRT_r ctttgccacactctgcacag qRT-PCR 

Myt1_qRT_f4 ttcatcacccacagacagct qRT-PCR 

Myt1_qRT_r4 gggaagttgcaatgatcccc qRT-PCR 

Tcf4_qRT_f3 cagggatcttgggtcacatg qRT-PCR 

Tcf4_qRT_r3 gtggcaaccctgaacgtt qRT-PCR 

Znf24_qRT_f2 acttgggttcgagagcatca qRT-PCR 

Znf24_qRT_r2 acaagcacttcccgtttctg qRT-PCR 

Pdhb_qRT_f gtagaggacacgggcaagat qRT-PCR 

Pdhb_qRT_r tgaaaacgcctcttcagca qRT-PCR 

CAG_IRES_GFP_rev gacaaacgcacaccggcctt Sequencing 

C-SF_IRES_GFP_for atggtaatcgtgcgagag Sequencing 
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(TOPO)M13 for caggaaacagctatgacc    Sequencing 

(TOPO)M13 rev tgtaaaacgacggccagt    Sequencing 

PWX1_f tgttaccactcccttaag Sequencing 

PWX1_r ttaaaggtgccgtctcgc Sequencing 

pENTattL1for  tcgcgttaacgctagcatggatctc    Sequencing 

pENTattL2rev  acatcagagattttgagacacgggc    Sequencing 

 

3.1.9. Plasmids 
 

Table 3: Vectors 

Vector name Vector type Tag Resistance 

(C)SF-TAP pDEST Destination Vector (C)-SF-TAP
Ampicillin, Chloramphenicol, 
Neomycin 

(N)SF-TAP pDEST Destination Vector (N)-SF-TAP
Ampicillin, Chloramphenicol, 
Neomycin 

CAG-(C)SF-IRES-GFP Destination Vector (C)-SF-TAP Ampicillin 

CAG-IRES-GFP Expression Vector   Ampicillin 

Gateway® pDONR™221 Donor Vector   Kanamycin 

Gateway® pENTR223 Entry Vector   Spectinomycin 

pCR™4-TOPO® TA 
TOPO Cloning 
Vector 

  Kanamycin, Ampicillin 

pETM30 Expression Vector 6xHIS-GST Kanamycin 

PWX1_H1 (human promoter) Knockdown Vector   Ampicillin 

PWX1_U6 (mouse promoter) Knockdown Vector   Ampicillin 

 

Table 4: Constructs 

Construct name cDNA Vector 
Clone number 
(PlasmID) 

(C)-SF-TAP pDEST-CBX6 CBX6 (C)-SF-TAP pDEST   

(C)-SF-TAP pDEST-MYT1 MYT1 (C)-SF-TAP pDEST   

(C)-SF-TAP pDEST-TCF4 TCF4 (C)-SF-TAP pDEST   

(C)-SF-TAP pDEST-TIF1b TIF1b (C)-SF-TAP pDEST   

(C)-SF-TAP pDEST-YY1 YY1 (C)-SF-TAP pDEST   

(C)-SF-TAP pDEST-ZNF24 ZNF24 (C)-SF-TAP pDEST   

(N)-SF-TAP pDEST-Sox11 Sox11 (N)-SF-TAP pDEST   

CAG-(C)-SF-IRES-GFP-CBX6 CBX6 CAG-(C)-SF-IRES-GFP   

CAG-(C)-SF-IRES-GFP-MYT1 MYT1 CAG-(C)-SF-IRES-GFP   

CAG-(C)-SF-IRES-GFP-TCF4 TCF4 CAG-(C)-SF-IRES-GFP   

CAG-(C)-SF-IRES-GFP-TIF1b TIF1b CAG-(C)-SF-IRES-GFP   

CAG-(C)-SF-IRES-GFP-YY1 YY1 CAG-(C)-SF-IRES-GFP   

CAG-(C)-SF-IRES-GFP-ZNF24 ZNF24 CAG-(C)-SF-IRES-GFP   

CAG-IRES-GFP-Sox11 Sox11 CAG-IRES-GFP   

pDONR221-Sox11 Sox11 pDONR221   

pDONR221-YY1 YY1 pDONR221 HsCD00076053 

pENTR223-CBX6 CBX6 pENTR223 HsCD00372584 

pENTR223-MYT1 MYT1 pENTR223 HsCD00370176 

pENTR223-TCF4 TCF4 pENTR223 HsCD00365172 
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pENTR223-TIF1b TIF1b pENTR223 HsCD00378889 

pENTR223-ZNF24 ZNF24 pENTR223 HsCD00399501 

pETM30-Sox11 Sox11 pETM30   

PWX1_H1-Myt1_1 Myt1 PWX1_H1   

PWX1_H1-Myt1_2 Myt1 PWX1_H1   

PWX1_H1-Myt1_3 Myt1 PWX1_H1   

PWX1_H1-Myt1_4 Myt1 PWX1_H1   

PWX1_H1-Myt1_5 Myt1 PWX1_H1   

PWX1_H1-Tcf4_1 Tcf4 PWX1_H1   

PWX1_H1-Tcf4_2 Tcf4 PWX1_H1   

PWX1_H1-Yy1_1 Yy1 PWX1_H1   

PWX1_H1-Yy1_2 Yy1 PWX1_H1   

PWX1_H1-Znf24_1 Znf24 PWX1_H1   

PWX1_H1-Znf24_2 Znf24 PWX1_H1   

PWX1_U6-Myt1_1 Myt1 PWX1_U6   

PWX1_U6-Myt1_2 Myt1 PWX1_U6   

PWX1_U6-Myt1_3 Myt1 PWX1_U6   

PWX1_U6-Myt1_4 Myt1 PWX1_U6   

PWX1_U6-Myt1_5 Myt1 PWX1_U6   

PWX1_U6-Tcf4_1 Tcf4 PWX1_U6   

PWX1_U6-Tcf4_2 Tcf4 PWX1_U6   

PWX1_U6-Yy1_1 Yy1 PWX1_U6   

PWX1_U6-Yy1_2 Yy1 PWX1_U6   

PWX1_U6-Znf24_1 Znf24 PWX1_U6   

PWX1_U6-Znf24_2 Znf24 PWX1_U6   
 

3.1.10. E.coli strains 
 
Library Efficiency® DH5a Invitrogen, Carlsbad, CA, USA 

One Shot® BL21(DE3) Invitrogen, Carlsbad, CA, USA 

One Shot® ccdB Survival™ 2 T1R Invitrogen, Carlsbad, CA, USA 
 

3.1.11. Antibodies 
 
Table 5: Commercial antibodies for Western blot analysis 

Antibody Species Dilution Company 

Anti-Actb 
mouse 
monoclonal 

 1:10000 Sigma-Aldrich,  St. Louis, MO, USA 

Anti-FLAG® M2-Peroxidase 
(HRP) 

mouse 
monoclonal 

 1:1000 Sigma-Aldrich,  St. Louis, MO, USA 

Anti-Gapdh 
mouse 
monoclonal 

 1:10000 Merck, Darmstadt, Germany 

Anti-GFP 
rabbit 
polyclonal 

 1:5000 Invitrogen, Carlsbad, CA, USA 

Anti-Myt1 
rabbit 
polyclonal 

 1:1000 LifeSpan Biosciences, Seattle, WA, USA 

Anti-Phox2b 
rabbit 
polyclonal 

 1:1000 Acris Antibodies, Herford, Germany 
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Anti-Sox11 
rabbit 
polyclonal 

 1:1000 Sigma-Aldrich,  St. Louis, MO, USA 

Anti-Tcf4 
rabbit 
polyclonal 

 1:1000 Abcam, Cambridge, UK 

Anti-Tif1b 
rabbit 
polyclonal 

 1:1000 Cell Signaling, Danvers, MA, USA 

Anti-Yy1 
rabbit 
polyclonal 

 1:1000 Cell Signaling, Danvers, MA, USA 

Anti-Znf24 
rabbit 
polyclonal 

 1:5000 Novus Biological, Littleton, CO, USA 

 

Table 6: In house produced anti-SOX11 protein specific monoclonal antibodies 

Clone number Species IgG subtype Clone number Species IgG subtype 

7E2 rat G1+2a 12D3 rat 2b 

19B2 rat 2a 12D9 rat 2a 

24F8 rat G1+2a+2b 12D10 rat 2a 

20A4 rat G1 12G3 rat 2b 

10D10 rat G1 12G8 rat 2a 

18C12 rat 2a+2b 13C6 rat 2a 

20E12 rat G1 13C11 rat G1 

18F10 rat 2b 14D9 rat 2a 

10F12 rat G1 14D11 rat 2a 

12B11 rat G1 14G8 rat 2c 

12B3 rat 2b 14G9 rat G1+2a 

13G2 rat G1+2a+2b+2c 14H1 rat 2b 

17E1 rat G1 15B12 rat 2a 

17E6 rat 2a 15D12 rat 2a 

13F2 rat G1+2a 15 E3 rat 2a+2b 

1D5 rat G1 15 E8 rat 2a 

5B7 rat G1+2a+2b+2c 15G6 rat 2c 

8G10 rat G1 15G11 rat 2a 

8H10 rat G1 17B5 rat G1 

4H7 rat 2a 17C1 rat G1 

11F8 rat 2b 17 E2 rat 2b 

4A4 rat G1 17 E3 rat 2a 

4H9 rat G1 17 G1 rat 2a 

2A12 rat 2b 18B1 rat G1 

8F4 rat G1+2a+2b 18F11 rat G1 

1C9 rat 2c 19C3 rat 2a 

1 E10 rat 2b 19G8 rat 2a 

1H2 rat 2a 20B5 rat 2b 

2 E7 rat 2a 20C5 rat 2a 

2 E8 rat 2a 20 E7 rat G1 

2H6 rat 2a 21D9 rat 2a 

3G9 rat 2b 21C1 rat G1 

3H7 rat G1 21F5 rat 2a+2b 

4H6 rat G1 22A4 rat G1 
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5F11 rat 2b 22B7 rat 2a 

5G5 rat 2a 23A6 rat 2a 

6A8 rat 2b 23D1 rat 2b 

6B6 rat 2b 23D5 rat 2a 

6D6 rat 2a 23F8 rat 2a 

6H7 rat 2a 24A5 rat G1 

7H3 rat G1+2a 24B2 rat 2a 

8F1 rat 2b 24D11 rat 2a 

8G7 rat 2b 6E4 mouse 2a 

8F4 rat G1 7C10 mouse 2a+2b 

9 E12 rat 2a 6E2 mouse 2a 

9H4 rat G1 5E12 mouse 2a 

10C5 rat 2a 1C3 mouse 2a+2b 

10D6 rat 2a 4A11 mouse 2b 

10 E10 rat 2a+2b 4E8 mouse 2a 

10G2 rat 2b 4E7 mouse 2a 

10G4 rat 2a+2b 6C2 mouse 2a 

11A3 rat 2a 5B11 mouse 2b 

11C1 rat 2a 2H5 mouse 2a 

11C9 rat 2a 2A8 mouse 2b 

11G11 rat 2a 5E3 mouse 2b 
 

Table 7: Secondary antibodies, HRP-conjugated 

Antibody Species Dilution Distributor 

anti-mouse IgG  goat polyclonal 1:15000 Jackson Immunoresearch, West Grove, PA, USA 

ranti-rabbit IgG  goat polyclonal 1:15000 Jackson Immunoresearch, West Grove, PA, USA 

anti-rat IgG  goat polyclonal 1:15000 Jackson Immunoresearch, West Grove, PA, USA 

anti-rat IgG2a  mouse  1:8000 E. Kremmer 

anti-rat IgG2b  mouse  1:4000 E. Kremmer 

anti-rat IgG2c  mouse  1:4000 E. Kremmer 

anti-rat IgG1  mouse  1:8000 E. Kremmer 

anti-mouse IgG2a  rat  1:1000 E. Kremmer 

anti-mouse IgG2b  rat  1:1000 E. Kremmer 
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3.1.12. Mass spectrometry 
 
LTQ Orbitrap Velos Thermo Fisher Scientific, Waltham, MA, USA 

Q Exactive plus  Thermo Fisher Scientific, Waltham, MA, USA 

Ultimate 3000 Nano-LC Thermo Fisher Scientific, Waltham, MA, USA 
 

3.1.13. Software and databases 
 

3.1.13.1. Software 
 
Corel Draw V.11.633 Corel Corporation, Ottawa, Canada 

Cytoscape V.2.8.3 Cytoscape Consortium (http://www.cytoscape.org/index.html) 

EndNote 9 Thomson Reuters, New York, NY, USA 

Genomatix Software Suite V.3.2 Genomatix Software GmbH, München, Germany 

ImageJ 1.41 
W. Rasband, National Institutes of Health (NIH), Bethesda, 
MA, USA (http://www.hhs.gov) 

Lightcycler® 480 software release 
1.5.0 SP1 V.1.5.0.39 

Roche, Penzberg, Germany 

Mascot V.2.4.0 Matrix Science, Boston, MA, USA 

MaxQuant V.1.5.0.30 
J. Cox, M. Mann, Max-Planck Institute for Biochemistry, 
Martinsried, Germany (http://www.maxquant.org) 

MS Office 2010 (Word, Excel, 
PowerPoint) 

Microsoft, Redmond, WA, USA 

Scaffold V.4.3.4 
Proteome Software Inc., Portland, OR, USA 
(http://www.proteomesoftware.com/products/scaffold/) 

Vector NTI Suite 9.0 Invitrogen, Carlsbad, CA, USA 

XCalibur V. 2.07 Thermo Fisher Scientific, Waltham, MA, USA 

 

3.1.13.2. Databases 
 
Biogrid  http://www.thebiogrid.org/ 

Ensembl Genome Browser http://www.ensembl.org/ 

GEO http://www.ncbi.nlm.nih.gov/geo/ 

I2D http://ophid.utoronto.ca/ophidv2.204/ 

NCBI http://www.ncbi.nlm.nih.gov/ 

NCBI Blast http://blast.ncbi.nlm.nih.gov/Blast.cgi 

NCBI Nucleotide http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore 

NCBI Protein http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein 

NCBI PubMed http://www.ncbi.nlm.nih.gov/sites/entrez 

Pathway Commons www.pathwaycommons.org/ 

Primer 3 http://primer3.ut.ee/ 

Swiss-Prot http://www.expasy.ch/sprot/ 

ToppGene Suite 
Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA  
(https://toppgene.cchmc.org/) 

UniProt http://www.uniprot.org/ 
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3.2. Methods 
 
3.2.1. Cell culture 
 
3.2.1.1. Maintenance and growth of cells 
 
Neuro2a cells and HEK-T cells were grown at 37°C in a humidified atmosphere 

containing 5% CO2 in Dulbecco’s Eagle Medium supplemented with 0.5% 

Penicillin/Streptomycin and 10% FBS (see 3.1.5.1.) until they reached confluency (3-

4 days). At that time, the cells were washed with 5ml prewarmed dPBS, detached by 

incubation with 1ml Trypsin/EDTA for 3 minutes at 37°C, resuspended in fresh 

prewarmed growth medium and plated on new medium filled dishes in a ratio of 1:10 

and 1:20 for HEK-T cells and Neuro2a cells, respectively. 

 

3.2.1.2. Cryopreservation and thawing of cells 
 
For the generation of cryoconservation stocks, cells of one 10cm plate were washed 

with dPBS, detached using Trypsin/EDTA and resuspended in growth medium, 

followed by centrifugation for 3min at 500xg. Subsequently the cell pellet was 

dissolved in cryo medium (see 3.1.5.1.) and distributed into five cryopreservation 

tubes. To avoid intracellular ice formation, a slow freezing procedure was applied. 

Therefore the aliquots were incubated for 20min at 4°, 1h at -20°C and overnight at -

80°C before they were transferred to liquid nitrogen for long term storage. When 

thawing the cells again, they were defreezed quickly in a waterbath at 37°C to 

prevent them from DMSO-mediated cytotoxicity and resuspended in prewarmed 

growth medium. The next day, when cells had already adhered to the dish, the 

medium was exchanged to remove residual cryo medium and cell debris. 

 

3.2.1.3. Transient transfection 
 
Cells were seeded one day before transfection, enabling implementation of transient 

transfection at 50-60% confluency. 

 
3.2.1.3.1. Effectene 
 
Transient transfection using Effectene transfection reagent was performed in 6-well 

plates using 400ng DNA according to the manufacturer’s manual. 
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3.2.1.3.2. PEI 
 

PEI transfection reagent (1mg/ml) (see 3.1.5.1.) was added drop wise to the DNA in 

a ratio of 1:4 (1µg DNA corresponds to 4 µl PEI solution), mixed carefully and 

incubated for 15min at room temperature in order to allow complex formation. 

Meanwhile, the growth medium of the cells was exchanged with fresh prewarmed 

medium. 500µl medium (for 6 wells) was added to the PEI-DNA complexes and 

incubated for additional 10min. After that, the mixture was added drop wise onto the 

cells that were subsequently cultured for further 2 days post transfection. 

 

3.2.1.4. Stable isotope labelling of amino acids in cell culture (SILAC) 
 
Stable isotope labelling of amino acids in cell culture (SILAC) is a common approach 

used for quantitative mass spectrometry (Ong et al., 2002). It is based on the 

integration of heavy or light isotope-labelled amino acids into the proteome of cells. In 

this way, two conditions can be combined in one sample for proteomic analysis, 

enabling quantification by the formation of ratios. As the heavy labelling results in a 

specific peptide mass shift, specific binders can be distinguished from unspecific 

ones after tandem mass spectrometry, as it is shown in figure 7. Lysine and arginine 

are the most common selected amino acids for labelling, which ensures the presence 

of at least one labelled amino acid for tryptic peptides after LC-MS/MS analysis. 

Essential amino acids are chosen and dialysed serum is used to guarantee proper 

integration of the correct amino acids. The selected heavy arginine results in a mass 

shift of 6Da compared to the light form, whereas peptides comprising the heavy 

labelled lysine are 4Da heavier than the ones with the light lysine incorporated. 

As described earlier (Boldt et al., 2014), for SILAC labelling cells were cultured in 

SILAC DMEM lacking L-lysine and L-arginine, complemented with 0.5% 

Penicillin/Streptomycin, 10% dialysed FBS, 2% L-glutamine, 2mM proline 0.55mM 

lysine and 0.4mM arginine (see 3.1.5.1.). Proline was added in order to prevent 

arginine to proline conversion (Bendall et al., 2008). Light labelled medium was 

supplemented with the amino acids 12C6, 
14N2 -L-lysine and 12C6, 

14N4 -L-arginine 

whereas heavy labelled medium was supplemented with 4.4.5.5-D4-L-lysine and 
13C6, 

14N4-L-arginine. After approximately 4 cell doublings, meaning about 2 weeks, 

the labelled aminoacids were integrated into the proteins and experiments could be 

performed. 
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Figure 7:SILAC quantification after LC-MS/MS 
SILAC labelling of cells results in a mass shift in the peaks after tandem mass spectrometry analysis. 
This allows the discrimination of specific or unspecific binders and the quantification by generation of 
ratios. 
 

3.2.1.5. Generation and maintenance of stable expression cell lines 
 

Neuro2a cells were transfected in 10cm dishes using 3.2 µg DNA of either (N)-SF-

TAP pDEST-Sox11 or empty vector control by application of PEI transfection 

reagent. After two days, they were splitted in a ratio of 1:100 on 10cm plates. From 

that step on, the growth medium was supplemented with 500µl/ml G418, which 

selects the plasmid carrying cells from the others due to the neomycin resistance of 

the vector. Every other day the medium was exchanged. After 19 days, clones 

formed by the surviving cells were picked under microscope control into 24-well 

plates, one clone per well with each well containing 1ml growth medium 

complemented with 750µg/ml G418. When the cells were confluent, they were 

expanded stepwise to 6-wells and 10cm dishes. The stable expression level was 

determined by western blot analysis of nuclear extracts and Strep affinity purification 

followed by mass spectrometry. 

 

3.2.2. Molecular biology 
 

3.2.2.1. Enzymatic DNA treatments 
 
3.2.2.1.1. DNA restriction 
 
Restriction enzymes cut double stranded DNA at or next to specific recognition sites, 

resulting in blunt or sticky ends, depending on the type of enzyme.  

DNA was digested via restriction enzymes using the corresponding buffers and 

reaction conditions provided by NEB on the website (http://www.neb.com). 2000 units 

of restriction enzyme were applied for the digestion of 1µg DNA. Usually 5µg of target 
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cDNA containing plasmid and 5µg of the destination vector were incubated with the 

same restriction endonucleases for 2h. When double digestion was performed, the 

reaction buffer with the best reactivity for both enzymes was selected. In some cases 

this was not possible, that’s why a sequential restriction procedure was applied with a 

purification step after the first step using PCR purification kit according to the 

manufacturer’s instructions. The reaction was stopped by incubation on ice and the 

cut fragments were purified from agarose gels using the gel extraction kit according 

to the manufacturer’s instructions. 

 

3.2.2.1.2. A-tailing of DNA fragments 
 
A-tailing implies the addition of a dATP to the 3’ end of blunt ending dsDNA which 

results in A overhangs. DNA fragments carrying this modifcation can be used for TA 

cloning, where T and A overhangs anneal without the further need of restriction 

enzymes. For the A-tailing 20µl of a blunt end PCR product, obtained with the 

Phusion polymerase was incubated with 0.1µl Taq polymerase, 5µl Taq reaction 

buffer (10x), 5µl dATP (2mM) and 1.25µl MgCl2 (50mM) in a total reaction volume of 

50µl for 15min at 72°C. After termination of the reaction on ice, the product was 

purified via PCR purification kit. 

 

3.2.2.1.3. Annealing of DNA fragments 
 
Single stranded DNA molecules anneal through the formation of hydrogen bonds 

between the complementary nucleobases A/T and G/C which results in basepairs, 

leading to the generation of double stranded DNA sequences.  

Oligonucleotides were annealed using 2µl of each of the complementary fragments in 

a total reaction volume of 20µl obtained by addition of 16µl nuclease free water. The 

reaction was incubated in a Thermocycler for 4min at  94° to linearize the ssDNA and 

subsequently the fragments were annealed at 70°C for 10min, followed by slow cool 

down to prevent the Oligos from denaturing. 
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3.2.2.1.4. Phosphorylation of DNA fragments 
 
Blunt ended double stranded DNA fragments have to be phosphorylated at the 5’ OH 

group to enable ligation with restricted plasmid vectors.  

Therefore, 5µl of annealed Oligonucleotides were incubated with 1µl polynucleotide 

kinase (PNK), 0.1µl ATP (10mM) and 1µl PNK reaction buffer (10x) in a total volume 

of 10µl with nuclease free water for 90min at 37°C. Subsequently the reaction was 

terminated by cool down on ice. 

 

3.2.2.1.5. Ligation 
 
DNA fragments that were cut by restriction endonucleases can be joined by the 

formation of phosphodiester bonds between the 3’OH group and the phosphorylated 

5’ OH group of both molecules, enzymatically catalysed by T4 DNA Ligase.  

For the ligation of a DNA fragment with the vector backbone, a three times greater 

amount of the insert in terms of molarities compared to the vector was incubated 

together with the backbone, complemented with 1µl of T4 DNA Ligase and 1µl T4 

DNA Ligase reaction buffer (10x) in a total reaction volume of 10µl at 15°C overnight. 

 

3.2.2.2. E.coli culture and plating 
 
Bacteria were grown in LB-medium (see 3.1.5.2) supplemented with special 

antibiotics as selection markers. Depending on the plasmid coded antibiotica 

resistance, Ampicillin (100µg/ml), Kanamycin (50µg/ml), Chloramphenicol (30µg/ml) 

and Spectinomycin (100µg/ml) were applied. The E.coli were cultured in volumes of 

5ml or 100ml according to the following experiments. Following bacterial 

transformation, E.coli were spread out on LB-agar plates (see 3.1.5.2), also 

complemented with selection antibiotics in the above-mentioned concentrations. 

 

3.2.2.3. Transformation and cryoconservation of E.coli 
 
Transformation is referred to the uptake of pure DNA into the bacterium. Plasmid 

DNA constructs were transformed into E.coli by application of the heat shock 

method. In this technique chemically competent bacteria are heated to 42°C to make 

the cell wall permeable by the induction of pore formation, that enable the uptake of 

supercoiled plasmid DNA into the cells.  
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To transform vectors into the competent cells, 50µl of library efficient DH5α, one 

aliquot of one shot BL21 or one shot ccdB survival strain respectively were incubated 

with 1µl (100ng/µl) plasmid DNA or 5µl of a ligation reaction for 1h on ice, followed by 

heat shock at 42°C for 30s, 2min cool down on ice and incubation with 250µl SOC 

medium for 1h at 37°C in the shaking bacteria incubator to initiate bacterial growth. 

After that, 30-200µl were spread out on LB-agar plates containing selection 

antibiotics specific for the transformed vector, in order to prevent unspecific bacteria 

contamination and the plates were incubated at 37°C overnight. Formed colonies 

were transferred into 5ml of LB-medium supplemented with the corresponding 

selection antibiotics and cultured overnight. The day after, cryoconservation stocks 

could be prepared. Therefore 500µl of the bacterial culture was mixed thoroughly 

with 500µl sterile 80% glycerol and was thereafter stored at -80°C. DNA could be 

purified from the remaining culture. When the E.coli were thawed again, a small 

amount of the frozen cryo stock was transferred into 5ml LB-medium containing the 

corresponding antibiotics using an inoculation loop and the bacteria were grown at 

37°C overnight. 

 

3.2.2.4. DNA isolation from E.coli 
 
DNA was purified from bacterial cultures using the GeneJET™ Plasmid Miniprep Kit 

for 5ml cultures and PureYield Plasmid Midiprep Kit or EndoFree Plasmid Maxi Kit for 

100ml cultures according to the manufacturer’s instructions. 

The yield was determined in 1:100 dilutions by photometric measurement of the 

absorbance at 260nm and 280nm and subsequent automatic calculation of the DNA 

concentration according to the following formula: 

 

DNA concentration [ng/µl] = OD260 x 50 x dilution factor 

 

Additionally, the ratio of OD260/OD280 was determined, indicating the purity of DNA, 

which is best at a ratio of 1.8. 
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3.2.2.5. Polymerase chain reactions 
 
Polymerase chain reactions enable the fast and effective amplification of DNA 

fragments. At the first step, the dsDNA is denatured to single strands at 98°C for 

5min (Initial denaturation), before several cycles (30-35) of the following three steps 

are performed to ensure a great yield of PCR product. At the beginning of every 

cycle, the DNA is denatured at 98°C for 1min (Denaturation), then forward and 

reverse primers bind to their complementary sequences each on one strand at a 

specific temperature (Annealing), before the amplification of both strands takes place 

at 72°C, catalysed through Phusion High-Fidelity DNA Polymerase (see 3.1.7) 

(Elongation). Thereafter, a final extension step is performed at 72°C for 10min, 

before the reaction is terminated by cool down to 4°C. The following PCR program is 

adjusted for every PCR, as the template length differs, which results in the variation 

of elongation time. Also the annealing temperature has to be calculated freshly for 

each primer pair according to the melting temperatures (Tm) of the primers. 

 

Initial denaturation 98°C 5min  

Denaturation 98°C 1min  

Annealing 55°C (55°C-71°C) 1min    35x 

Elongation 72°C 30s (1min per 1kb)  

Final extension 72°C 10min  

Cool down 4°C ∞  

 

Usually, 60ng of genomic DNA and 1ng of plasmid DNA respectively were utilised as 

template. 1µl dNTP mix (10mM of each nucleotide), 10µl Phusion HF reaction buffer 

(5x), 1.5µl MgCl2 (50mM), 2.5µl of each primer (10µM), 0.5µl Phusion Polymerase 

(2U/µl) and nuclease free water were added to the DNA in a final reaction volume of 

50µl. 
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3.2.2.6. Cloning of plasmid expression vectors 
 
3.2.2.6.1. Classical cloning 
 
Classical cloning is referred to the insertion of a target DNA fragment into a vector 

backbone by the use of corresponding restriction endonucleases that create 

matching overhangs, which can be ligated together. For the generation of expression 

vectors using classical cloning, two procedures were applied. In the first approach 

the target sequence was cut out of an existing plasmid vector (5µg) with the same 

restriction enzymes the destination vector (5µg) was cut, both digestions were 

purified from an agarose gel using a gel extraction kit (see 3.1.6) and then the 

fragments were ligated using T4 DNA ligase at 15°C overnight (see 3.2.2.1.5). The 

other method includes the amplification of the fragment using PCR primers carrying 

the corresponding restriction sites at the ends. The PCR product was digested with 

the required restriction enzymes, purified from an agarose gel and ligated with the 

vector backbone. The success of the cloning was determined via transformation, 

DNA isolation followed by restriction digestion or sequencing. 

 

3.2.2.6.2. TOPO cloning 
 
If there was no successful ligation of the PCR product with the plasmid, TOPO 

cloning using the TOPO TA Cloning Kit (see 3.1.6) was applied. Therefore 3’ adenine 

overhangs were added to the undigested PCR fragment via A-tailing (see 3.2.2.1.3), 

allowing the integration of the product into the TOPO vector via TA cloning 

(annealing of A and T overhangs of the insert and vector) according to the 

manufacturer’s instructions. Once the TOPO reaction was transformed into E.coli and 

DNA was isolated, the vector was cut with the pair of restriction enzymes that had 

been incorporated into the PCR primers and the fragment could be ligated with the 

appropriate digested destination vector. 

 

3.2.2.6.3. Gateway cloning 
 
Gateway cloning is a highly efficient and universal cloning method from Invitrogen, 

that is based on site specific recombination of attachment (att) sites of bacteriophage 

lambda into E.coli (Landy, 1989). It enables cloning where no suitable restriction sites 

are available and simplifies the transfer of cDNA between different destination 

vectors. The first reaction (BP-reaction) is mediated by the lysogenic pathway, where 
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recombination of an attB-flanked PCR product with an attP-donor vector creates an 

attL-comprising entry clone and an attR-containing by-product. This is catalysed by 

the bacteriophage λ Integrase (Int) and E.coli Integration Host Factor (IHF) proteins 

(BP Clonase™ enzyme mix) (see figure 8). The reaction is transformed into E.coli 

under kanamycine selection as the entry clone carries the resistance. Both by-

product and pDONR vector comprising bacteria die because of the cytotoxic ccdB 

gene they carry. The LR-reaction is part of the lytic pathway, where the attL sites of 

the entry vector recombinate with attR sites of the destination vector, which results in 

an attB site carrying expression clone and a by-product comprised of attP1 sites. The 

reaction is mediated by the bacteriophage λ Int and Excisionase (Xis) proteins and 

the E. coli Integration Host Factor (IHF) protein (LR Clonase™ enzyme mix). The 

selection of the expression clone with ampicillin results in the loss of all bacteria 

carrying the ccdB gene (destination vector and by product) and the entry vector (no 

ampicillin resistance). 

At the beginning of the gateway cloning procedure, the PCR product of the gene of 

interest was generated (see 3.2.2.5). Thereafter, the attB sites were linked to the 

PCR fragment during another PCR, using the attB Primers (see table 2). 

Subsequently the BP-reaction was performed by incubating 3µl of the attB carrying 

PCR product with 1µl pDONR vector (90ng/µl) and 1µl BP-clonase II mix (see 3.1.7) 

for 4h at 25°C. The reaction was terminated by incubation with 0.5µl proteinase K for 

10min at 37°C. After transformation and selection via kanamycin, DNA was isolated, 

followed by LR-reaction. Therefore, 1µl of the DNA (100ng/µl) were incubated with 

1µl pDEST vector (100ng/µl), 2µl Miniprep elution buffer and 1µl LR clonase II mix 

(see 3.1.7) for additional 4h at 25°C. Thereafter, 0.5µl proteinase K was added and 

the reaction was incubated at 37°C for 10min. Subsequently the complete LR-

reaction was transformed into E.coli. 
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Figure 8:Gateway BP- and LR-Reaction 
The BP clonase II enzyme mix mediates the recombination of the attB sites of the PCR product with 
the attP sites of the pDONR vector, which results in an attL site containing entry clone and an attR site 
carrying by-product. The attL sites of entry vector recombinate with the attR sites of the destination 
vector, catalysed by the LR clonase II enzyme mix which results in the attB site comprising expression 
clone and an attP1 containing by-product. 
 

3.2.2.7. Induction of protein expression in BL-21 cells 
 
The induction of protein expression in the E.coli strain BL21 is possible through the 

use of expression vectors comprising the gene of interest under the control of a T7 

promoter, which itself gets activated by T7 RNA polymerase, which is produced by 

the BL21 cells under the control of the lacUV5 promoter. This promoter can be 

induced by IPTG, resulting in expression of the protein of interest. 

For this purpose, the gene of interest carrying pETM30 vector was transformed into 

competent BL21 cells and an overnight grown culture was divided 1:100 into 2 100ml 

cultures that were cultured until OD600 reached values between 0.5 and 0.7. 

Subsequently the expression was induced by incubation with 0.5mM IPTG for 4h at 

22°C under shaking. Thereafter, the cells were pelleted at 5000xg for 10 min and 

stored at -20°C. 
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3.2.2.8. Nickel-NTA purification 
 
Recombinant proteins carrying a His tag can be easily purified using nickel chelate 

affinity chromatography. Nickel-NTA agarose filled columns bind the His tag via 

Nickel ions while other proteins pass through leading to purification of the tagged 

proteins. After washing, the elution is performed stepwise using increasing Imidazole 

concentrations. 

Protein expression was induced in BL21 cells. The pelleted cells of 200ml culture 

volume were resuspended in 4ml lysis buffer (see 3.1.5.3) and lysed by application of 

8 ultrasonic intervals of 15s duration and 15s breaks in between. After the 

subsequent centrifugation at 14000xg at 4°C for 30min, the supernatant was 

transferred to a Ni-NTA matrix filled column (500ml 50% suspension), that had been 

washed with 5ml HPLC water and equilibrated with 2.5ml lysis buffer beforehand. 

The column was rotated for 1h at 4°C, followed by collection of the flowthrough and 3 

proximate 5min washing steps with 5ml wash buffer (see 3.1.5.3). Finally, the 

recombinant protein was eluted in 5 steps with increasing imidazole concentrations, 

using 0.5ml elution buffers 1 (50mM), 2 (100mM), 3 (150mM) and twice 4 (250mM) 

(see 3.1.5.3). The matrix was regenerated by incubation with 5ml 0.5M NaOH for 

30min and washed with 1ml 30% EtOH, before it was stored at 4°C in a 50%-slurry 

with 30% EtOH. 

 
3.2.2.9. Dialysis 
 
Dialysis provides a possibility to remove toxic reagents by the exchange of buffers. 

Here, purified proteins were dialysed against PBS using the slide-a-lyser system. The 

chamber was hydrated in PBS, loaded with the protein suspension and dialysis was 

performed in a PBS filled beaker on a magnetic stirrer for 2 times 90min and finally 

overnight at 4°C. In between the incubation steps the buffer was exchanged with 

fresh PBS. The dialysed suspension was subsequently removed from the chamber. 
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3.2.3. Gene expression analysis 
 

3.2.3.1. Isolation of total RNA 
 
Total RNA was purified from Neuro2a cells using the peqGOLD Total RNA Kit 

according to the manufacturer’s instructions applying biopure reaction tubes and 

barrier tips. The RNA was kept on ice until concentration was determined, thereafter 

stored at -80°C. 

 

3.2.3.2. Qualitative and quantitative evaluation of RNA 
 
Quantification and qualitative analysis of isolated RNA was performed by photometric 

measurement at 260nm and 280nm. The purity and quality was assessed by the ratio 

of OD260/OD280 which has his optimum for RNA at a value of 2. A higher ratio 

indicates degradation, whereas a lower ratio points to contamination with DNA. The 

concentration of purified RNA was calculated according to the following formula. 

 

RNA concentration [ng/µl] = OD260 x 40 x dilution factor 

 

3.2.3.3. cDNA synthesis 
 

Reverse transcription of mRNA into cDNA was performed by application of the 

Omniscript Reverse Transcription Kit (see 3.1.6) using Oligo-d(T) primer (see table 2) 

according to the manufacturer’s instructions in RNAse free reaction tubes. A RT- 

control, a mixture of RNA samples to that no reverse transcriptase was added, was 

also implemented. 

 

3.2.3.4. Quantitative Real-Time PCR 
 
Real-time PCR provides a powerful tool for the relative quantification of gene 

expression levels. The fluorescent dye SYBR green incorporates into double 

stranded DNA, which allows the monitoring of DNA amplification in real-time starting 

from the beginning of the elongation phase. The lower the initial amount of DNA 

present in the reaction, the more cycles it takes until fluorescence is detectable. As 

the amount of fluorescence is proportional to the quantity of PCR product, the cycle 

number when the signal rises above the background fluorescence and becomes 

detectable at the early exponential phase can be calculated. This time point is named 
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the crossing point (Cp) and is used for the quantification of the original DNA level. 

The CP values are compared to the crossing points of reference genes that have to 

be ubiquitously expressed in stable levels, to enable relative quantification. The 

theoretical efficiency of each amplification step has a value of 2, as the amount of 

PCR product doubles in every cycle, but in reality it is mostly lower, leading to the 

need of efficiency calculation for each PCR product. To this end a standard curve 

using serial dilution of a cDNA-mix (1:10, 1:50, 1:250, 1:1250) was integrated in 

every run, as the efficiency (E) can be calculated according to the slope of the 

standard’s regression line, exemplified by the following formula.  

 

ܧ ൌ 10
ቀ

ିଵ
ି௦௟௢௣௘ቁ 

 

The relative expression (R) was calculated considering the ∆∆CP method introduced 

by Pfaffl in 2001 (Pfaffl, 2001), integrating the efficiency of target and reference gene, 

as well as ∆CP values of control and sample, as illustrated by the following formula. 

 

ܴ ൌ 	
௧௔௥௚௘௧ܧ

∆஼ು	೟ೌೝ೒೐೟
ሺ೎೚೙೟ೝ೚೗షೞೌ೘೛೗೐ሻ

௥௘௙௘௥௘௡௖௘ܧ
∆஼ು	ೝ೐೑೐ೝ೐೙೎೐

ሺ೎೚೙೟ೝ೚೗షೞೌ೘೛೗೐ሻ 

 

The quantitative real-time PCR was performed on a Lightcycler480 (Roche) in 

biological triplicates of sample and controls whereas standards were measured in 

duplicates. Data were normalised to pyruvate dehydrogenase beta (Pdhb) as 

reference gene. Melting curve analysis was applied to ensure specific amplification of 

the desired PCR product. 
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3.2.4. Protein chemistry 
 

3.2.4.1. Extraction of nuclear lysates 
 

Nuclear extraction provides an efficient method for the enrichment of nuclear proteins 

such as transcription factors and transcriptional modulators. 

To this end, confluent cells were washed with 10ml dPBS and harvested in 2.5ml 

dPBS per 14cm plate using cellscrapers. Thereafter, cells were pelleted at 500xg for 

5min, resuspended in 1ml dPBS and pelleted again at 500xg for 5min at 4°C. 

Subsequently the cytoplasmic fraction was collected by resuspending the cells in 3 

times volume according to pellet size in buffer A (see 3.1.5.5). After 15 min of 

incubation 0.1% NP40 was added for 2min in order to break the cell membrane. 

Following centrifugation at 10000xg for 5min at 4°C the supernatant was removed 

(cytoplasmic fraction) and the nuclei were harshly resuspended in 2 times volume 

according to pellet size buffer C (see 3.1.5.5) and rotated on an intellimixer for 20 min 

at 4°C. After centrifugation at 10000xg for 5min at 4°C the supernatant containing 

nuclear proteins was collected. 

 

3.2.4.2. Quantification of protein concentration 
 
Protein concentration was determined using the Bradford assay. It is based on the 

complex formation of the dye Coomassie brilliant blue with proteins under acid 

conditions. The maximum of absorption of the dye which is at 465nm without proteins 

is shifted to 595nm in the presence of protein-dye complexes. The concentration can 

be calculated by applying a standard curve using BSA as standard protein (Bradford, 

1976). The determination of protein concentration was performed in triplicates. 

Therefore, standards with BSA concentrations of 0, 0.2, 0.4, 0.6, 0.8 and 1mg/ml 

were prepared, 20µl of the standards or 1µl of each sample were mixed with 1ml of 

Bradford protein assay dye reagent (1x) and subsequently the absorbance was 

assessed by photometric measurement at 595nm. 
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3.2.4.3. SDS-polyacrylamide electrophoresis (SDS-PAGE) 
 
The SDS-PAGE enables the separation of proteins according to their molecular 

weight. SDS forms complexes with the proteins, prevents in this way protein 

interactions, masks their intrinsic charge and creates anions. The presence of β-

Mercaptoethanol in the loading buffer impedes formation of secondary structures as 

it destroys disulphide bonds. Additionally the samples can be further denatured by 

incubation at 96°C for 3min. These steps allow the fractionation of proteins only by 

their size. While proteins pass the stacking gel (pH 6.8, 4% acrylamide) chloride ions 

move in front of them. Uncharged Glycin ions follow the protein-SDS complexes and 

overtake them as the ions get negatively charged due to the pH change at the border 

to the separation gel (pH 8.8, 10% acrylamide) and concentrate the proteins to a 

sharp line, allowing the start of separation, with smaller proteins faster migrating than 

bigger ones (Schagger and von Jagow, 1987).  

Gels were casted using the Mini-Protean 3 system chambers and 0.75mm spacers. 

The separation gel was prepared (see table 9), filled between the glass plates and 

was covered with isopropanol. After polymerisation of the acrylamide/bisacrylamide 

matrix, that was started by ammonium peroxodisulfate (APS) and catalysed by 

N,N,N’,N’-tetramethylethylenediamine (TEMED), isopropanol was removed and the 

stacking gel (see table 8) was added. Finally, combs with the desired well number 

were inserted. The gels were placed into the gel chambers which were filled with 

running buffer exactly like the buffer chambers. The combs were removed and the 

wells rinsed with running buffer to remove residual gel pieces.  

The nuclear lysates were mixed with 5x Laemmli buffer at defined protein amounts 

(10-60µg) in a total volume of 15-20µl, denatured for 3min at 96°C, cooled down and 

loaded onto the stacking gel. 6µl of PageRuler (170kDa) was used as size standard. 

The gels were run at 80V until the proteins entered the separation gel, then 120V 

were applied until the bromophenol blue line reached the bottom of the separation 

gel. 
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Table 8: Stacking gel solution 

Reagent Volume [ml] 

1.5M Tris-HCl pH 6.8 0.7 

 30% (w/v) Bis-Acrylamid/Acrylamid (37,5:1) 0.7 

ddH2O 3.5 

10% (w/v) SDS 0.05 

Bromophenol blue 0.005 

TEMED 0.02 

10% (w/v) APS 0.05 
 

Table 9: Separation gel solution 

Reagent Volume [ml] 

1.5M Tris-HCl pH 8.8 2.5 

 30% (w/v) Bis-Acrylamid/Acrylamid (37,5:1) 3.3 

ddH2O 4 

10% (w/v) SDS 0.1 

TEMED 0.02 

10% (w/v) APS 0.05 
 

3.2.4.4. Coomassie Staining of SDS-gels 
 
Polyacrylamid gels were first stained with Coomassie brilliant blue in 1965 (Meyer 

and Lamberts, 1965). The dye forms stable non-covalent complexes with proteins, on 

the basis of Van der Waals forces and electrostatic interactions. 

Gels were subjected to Coomassie staining in order to estimate protein concentration 

after affinity purification or to determine purity of proteins after purification of proteins.  

To this end, the proteins run on the polyacrylamide gels were fixed by incubation for 

3 times 10min in fixer solution (see 3.1.5.6) and subsequently stained with 

Coomassie staining solution (see 3.1.5.6) for 30s-2min. Thereafter, the gels were 

destained by 3 times incubation for 10min in fixer solution, until only the protein 

bands were visible. 

 

3.2.4.5. Western blot analysis and detection 
 
Proteins can be easily immobilised, as they are transferred from SDS-polyacrylamid 

gels to nitrocellulose or PVDF membranes without loss of resolution. Antibodies can 

be bound and the signals are detectable via autoradiography (Towbin et al., 1979). 

Here, proteins were transferred to polyvinylidene difluoride membranes (PVDF) using 

the tank blotting system Mini Trans-Blot® Cell from Biorad. Foam pad and whatman 
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papers were equilibrated in Western buffer (see 3.1.5.6) The black side of the gel 

holder cassette was covered with a wetted foam pad and 2 whatman papers. Then 

the gel was placed on the paper, followed by the PVDF membrane that was activated 

in methanol for 1min before. 2 more whatman papers and one foam pad were placed 

on top of the membrane. Between each step air bubbles were removed using a blot 

roller. The cassette was closed and placed into the blotting module in the tank with 

the black sides facing each other, which was filled with western buffer and one ice 

pack. The blotting was performed in a cold room at 90V for 90min. Thereafter, the 

membrane was incubated for 1h in blocking solution (see 3.1.5.6) in a falcon under 

rolling, followed by overnight incubation with a protein specific primary antibody (see 

3.1.11). After three 10min washing steps with TBS-T the secondary HRP-coupled 

antibody (see 3.1.11) which recognised the species of the primary antibody was 

applied for 1h, before the membrane was washed additionally three times for 10min. 

Thereafter, the detection was carried out using the ECL or ECLplus system 

according to the manufacturer’s instructions. Subsequently, the chemiluminescence 

signals that were generated through the reaction of the horseradish peroxidase from 

the secondary antibody with the luminol of the ECL reagent were detected on 

hyperfilms in a developer machine. 

 

3.2.5. Analysis of protein-protein interactions 
 

3.2.5.1. Co-Immunoprecipitation 
 
Co-Immunoprecipitation (Co-IP) is a suitable method for the analysis of protein 

interactome analysis. Specific antibodys for a chosen bait protein are bound to a 

matrix which is coupled to an immunoglobulin binding protein, in most cases one of 

the Streptococcal proteins G or A, which are capable of binding to antibodys with 

different specificities to various species and immunoglobulin subtypes. By addition of 

cell lysate, the bait protein is captured by the coupled bait-specific antibody and can 

be pulled down upon elution. Contemporarily, interaction partners that are bound to 

the bait protein at that time, also referred to as preys, are co-precipitated. The 

interaction partners can subsequently be determined by mass spectrometric or 

western blot analysis. 

In this study, 500µg nuclear lysate was incubated with 1ml of antibody from 

hybridoma supernatant (0.02µg/µl) with addition of 1ml nuclear extraction buffer C 
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(see3.1.5.5) or 1µg of commercial antibody in a minimal reaction volume of 500µl, 

filled up with nuclear extraction buffer C on an intellimixer at 4°C overnight in order to 

enable antibody-bait binding. The day after, 10µl of the packed Protein G PLUS-

Agarose beads (see 3.1.4) were washed three times with PBS and pelleted at 

1000xg for 1min and were directly added to the antibody-nuclear lysate suspension 

and incubated for additional 3 hours at 4°C on the end-over-end shaker to couple the 

antibody to the matrix. Thereafter, the solution was transferred to microspin columns 

and the beads were washed three times using nuclear extraction buffer C and 

pelleted at 100xg for 5s. Subsequently, the proteins were eluted by addition of 20µl 

2x Laemmli buffer and incubation for 30min at 37°C under shaking or by a 2 step 

elution with incubation of 2 times 200µl 100mM glycine, pH 2.5 for 5min at room 

temperature, followed by neutralisation with 2M Tris. 

 

3.2.5.2. Strep affinity purification 
 
The Strep affinity purification is an efficient tool for the co-immunoprecipitation of 

proteins coupled to a tandem Strep-tag II allowing protein complex analysis. This 

one-step purification method is part of the Strep FLAG tandem affinity purification 

strategy (SF-TAP) published before (Gloeckner et al., 2007). To that end, over-

expressed proteins are linked to a SF-TAP tag, comprised of a tandem Strep-tag II 

and a FLAG-tag with a molecular weight of 4.6kDa in total (see figure 9). The Strep 

tag is able to bind to a Strep Tactin matrix and can be eluted via D-Desthiobiotin. 

 

 
Figure 9:Strep FLAG tandem affinity purification tag (SF-TAP) 
The structure of (N) SF-TAP starts with the FLAG tag at the N-terminus, followed by a tandem Strep-
tagII, whereas the (C) SF TAP begins with the tandem Strep-tagII at the N-terminal end and 
possesses the FLAG tag at the C-terminus. 
 
Nuclear lysates were incubated with 25µl packed Strep Tactin Superflow (see 3.1.4) 

beads per 14 cm dish for 1h with addition of 300U benzonase nuclease per mg 

nuclear extract to exclude DNA-mediated interactions between proteins. Thereafter, 



MATERIAL AND METHODS 

 

75 

 

the suspension was transferred into spin columns and washed three times with 

washing buffer (see 3.1.5.5), centrifuged at 100xg for 5s and eluted with 400µl Strep 

elution buffer (1x) containing D-Desthiobiotin for 10min on an end-over-end shaker at 

4°C, followed by centrifugation at 1000xg for 1min at 4°C. 

 

3.2.5.3. FLAG affinity purification 
 
The one-step FLAG affinity purification is a suitable method for the analysis of 

protein-protein interactions. It is based on the pulldown of proteins linked to a FLAG 

tag via the affinity of the tag to anti-FLAG-M2-agarose. The protein complexes are 

eluted by replacement using FLAG octapeptide. The affinity of the FLAG system is 

higher than the Strep affinity purification method. This tool is the second part of the 

Strep FLAG tandem affinity purification strategy (SF-TAP) (Gloeckner et al., 2007) 

but can also be performed as one-step purification. The same SF-TAP tag (see figure 

9) as for Strep affinity purification is used.  

Nuclear extracts were incubated in micro spin columns with 12.5µl packed anti-

FLAG-M2-agarose beads per 14cm dish for 1h on a rotating intellimixer at 4°C, with 

the beads washed before 3 times in nuclear extraction buffer C at 5000xg for 1min. 

300U benzonase nuclease was added per mg lysate in order to eliminate DNA-

dependent interactions of the bait protein with other proteins. Thereafter, the matrix 

was washed 3 times using washing buffer (see 3.1.5.5) by gentle centrifugation at 

100xg for 5s to prevent the beads from running dry. Subsequently, 200µl FLAG 

peptide (0.2µg/µl in 1x TBS) elution buffer was added to the agarose and rotated for 

10min at 4°C, followed by centrifugation at 1000xg for 1min at 4°C. 

 

3.2.5.4. Methanol-Chloroform precipitation 
 
The precipitation of proteins in solution is possible through methanol-chloroform 

precipitation according to the protocol published by Wessel and Flügge in 1984, 

which allows the efficient precipitation of proteins even in the presence of salt, 

detergents or ß-mercaptoethanol (Wessel and Flugge, 1984). To one part of sample, 

4 parts methanol and one part chloroform is added. The addition of 3 parts water 

results in phase separation, leading to the precipitation of proteins in the interphase 

of methanol-chloroform-water. The removal of the upper phase and further addition 

of methanol results in pelleted proteins after centrifugation. 
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To that end, to 200µl aliquots of protein solutions 800µl methanol was added, mixed 

by vortexing and centrifuged at 9000xg for 30s. Thereafter, 200µl chloroform was 

added, mixed again by vortexing and centrifuged at 9000xg for 30s. Following the 

addition of 600µl HPLC water, vortexing and centrifugation at 9000xg for 2min, two 

phases were visible, with the precipitated proteins present in the interphase. The 

upper aqueous phase was removed carefully and discarded, additional 600µl 

methanol were applied to the sample and mixed briefly. Subsequent centrifugation at 

16000xg for 2min revealed a protein pellet that was dried under air flow after removal 

of the supernatant. 

 

3.2.5.5. In-solution tryptic proteolysis 
 
The tryptic cleavage of proteins in-solution was carried out according to a protocol 

published before (Gloeckner et al., 2009). Trypsin is a serine protease from the 

pancreas that hydrolises peptide bonds at the carboxyl end of the amino acids 

arginine and lysine, when the next following amino acid is no proline. This tryptic 

digestion of peptide chains leads to small peptide fragments that are suitable for 

mass spectrometry analysis. The surfactant RapiGest is added to the reaction in 

order to facilitate the solubilisation of the precipitated proteins (Yu et al., 2003). The 

addition of Dithiothreitol (DTT) prevents cysteine-rich peptides from random oxidation 

and reduces disulfide bonds, whereas 2-iodoacetamide (IAA) is used for the 

alkylation of the cysteine residues. 

The precipitated proteins (10-20µg) were dissolved in 30µl ammonium bicarbonate 

(50mM) with the addition of 4µl RapiGest surfactant (2%) by vortexing strongly. After 

that, 1µl DTT (100mM) was added, mixed and incubated at 60°C for 10min. 

Subsequently, the samples were cooled down to room temperature and incubated 

with 1µl IAA (300mM) for 30min at room temperature in darkness, as IAA is heat- and 

light-sensitive. The peptides were digested using 2µl trypsin solution (1µg/µl trypsin 

in 1mM HCl) overnight. The next day, 1.9µl trifluoroactetic acid (TFA) (100%) was 

added to a final concentration of 5% to quench the enzymatic digestion. The reaction 

was transferred to polypropylene inserts in reaction tubes, was incubated for 10min 

at room temperature, followed by centrifugation at 16000xg for 10min and finally the 

peptide solution between the pellet and the upper oleic phase was regained. 
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3.2.5.6. In-gel pre-fractionation 
 

The in-gel pre-fractionation and tryptic cleavage of samples prior to LC-MS/MS 

analysis was performed according to a protocol published before (Gloeckner et al., 

2009). The protein lysate was subjected to SDS-PAGE, but the electrophoresis was 

stopped when the sample had run approximately 1cm in the separation gel. 

Thereafter, the gel was stained by Coomassie brilliant blue (see 3.2.4.4) and 

incubated in ddH20 for 1min. Subsequently, the sample was cut into 6 slices on a 

glass plate that were again sliced in 4 pieces, before they were transferred into 6 

HPLC H20-filled wells of a 96 well plate on a rocking plate shaker. The gel pieces 

were destained by washing twice for 5min with 100µl 40% acetonitrile after the water 

was removed. Then they were incubated for 2min in 100µl 100% acetonitrile for 

dehydratation. After removal of the supernatant, the pieces were dried for 10min. 

Subsequently, 100µl DTT (5mM) solution was applied and incubated for 10min at 

60°C. Alkylation with 100µl IAA (25mM) for 45min in darkness followed after 

discarding the supernatant. Subsequently the liquid was removed and the slices were   

washed again twice for 10min in 100µl 40% acetonitrile and for 2min in 100µl 100% 

acetonitrile, before they were dried once more. Thereafter, 40µl trypsin solution 

(10ng/µl) was applied and incubated overnight at 37°C. The next day, the reaction 

was stopped by 10µl 2.5% TFA solution for 15min. The supernatant of each well was 

transferred into a reaction tube, to which the supernatants of the next steps were 

added. The gel pieces were incubated in 80µl 50/0.5 solution (50% acetonitrile in 

0.5% TFA) for 15min, supernatant was pooled to the solution of the step before and 

80 µl 100/0.5 solution (100% acetonitrile in 0.5% TFA) was applied for another 

15min. Thereafter the supernatant was added to the pooled fractions and the volume 

of thecomplete sample was reduced in a SpeedVac to 2-5µl. Following resuspension 

in 0.5% TFA to a volume of 10-20µl, the samples could directly be measured by LC-

MS/MS. 

 

3.2.5.7. Desalting via stop and go extraction tips 
 
Digested peptide mixtures that have been prepared for mass spectrometry analysis 

have to be desalted prior to the measurement, in order to remove interfering agents 

like detergents, salts or other contaminants that may affect the analysis. 

Furthermore, proteins are concentrated by this step. In this study, stop and go 

extraction tips (StageTips), pipette tips that are filled with a C18 matrix and possess a 
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binding capacity of 10µg, were used (Rappsilber et al., 2003). Peptides bind to the 

C18 material, while salt and other contaminants pass through. After washing, the 

peptides can be eluted using organic solvents. 

The StageTips had to be equilibrated with 20µl 80/5 solution (80% acetonitrile in 5% 

TFA) and washed once with 20µl 0/5 solution (5% TFA) prior to loading of the 

acidified peptide mixture (see 3.2.5.5). Thereafter, the matrix was washed again 

using 20µl 0/5 solution, followed by a two-step elution by application of an acetonitrile 

gradient with the first elution step using 20µl 50/5 solution (50% acetonitrile in 5% 

TFA) and the final elution with 20µl 80/5 solution, thus enabling also the recovery of 

the more hydrophobic peptides. The volume of the concentrated and purified peptide 

solution was subsequently reduced in a SpeedVac to 2-5µl. Following resuspension 

in 0.5% TFA to a volume of 10-20µl, the samples could directly be measured by LC-

MS/MS. 

 

3.2.5.8. LC-MS/MS analysis 
 
LC-MS/MS analysis is an efficient and sensitive method for the identification of 

peptides and finally proteins by database alignment. In principle, the enzymatically 

cleaved and desalted peptide mixtures are separated using reversed-phase liquid 

chromatography (LC) before they are directed to mass spectrometry analysis. The 

first step is the transfer of the polar, non-volatile and thermally unstable peptides into 

the gas phase without degradation (Mann et al., 2001). To that end, soft ionisation 

techniques are used. The electrospray ionisation (ESI) was developed by Fenn in 

1989 (Fenn et al., 1989). A high voltage is applied to the analytes that are in solution, 

resulting in an electrospray of small droplets that transfer their charge onto the 

analyte molecules. The spray, which leads to the generation of multiply charged ions 

can be stabilised by the use of nebulizer gases. Each mass spectrometer usually 

comprises the following parts: the ion source and optics, a mass analyser and a 

detector. There are many different types of mass analysers available. Basically, the 

mass to charge ratio (m/z) of analytes is measured, allowing the identification and 

quantification by the comparison of known masses with experimentally identified 

masses and fragmentation patterns. (Mann et al., 2001, Yates et al., 2009). For the 

structural analysis of peptides, like peptide sequencing, tandem mass spectrometry 

has to be applied. Thereto, mass to charge ratios are measured in the first mass 

analyser, then precursor ions are selected for fragmentation, resulting in the fragment 
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ions that are detected in the second mass analyser (Gstaiger and Aebersold, 2009). 

The orbitrap mass analyser has a high mass accuracy and resolution. It is an ion 

trap, where ions are trapped in an electrostatic field. The electrostatic attraction of the 

ions towards a central electrode is counteracted by a centrifugal force based on the 

tangential velocity of the ions. This results in spiral movements of the ions around the 

electrode and an image current that can be detected by an outer electrode. After a 

Fourier transform m/z ratios can be determined from oscillation frequencies of ions 

(Scigelova and Makarov, 2006). This technique achieves a mass accuracy of less 

than 2 ppm in peptide mixtures with high complexity (Yates et al., 2006). The 

resolving power has its maximum at 100000 at m/z 400, decreasing with an 

increasing m/z ratio of the ion. In the LTQ-Orbitrap system, the orbitrap is linked to a 

linear ion trap for the determination of m/z values from peptide fragments, which is 

characterised by a high sensitivity, but low mass accuracy and resolution. The 

trapped ions are directed to the C-trap, where they are fragmented by collision 

induced dissociation (CID) or higher-energy collisional dissociation (HCD) when a 

HCD-cell is added, and stored until they are transferred to the orbitrap. The LTQ-

Orbitrap displays sensitivity in the femtomole region, a dynamic range of 1e4 

combined with a moderate scan rate (Olsen et al., 2009, Yates et al., 2009). In the Q 

Exactive system, a quadrupole mass filter and a HCD-cell are coupled to the 

Orbitrap. A quadrupole comprises four rods that are able to select for certain masses 

by the application of an oscillating electric field. This enables the implementation of 

quantification by targeted mass spectrometry. By using the selected ion monitoring 

(SIM) method one can select for a specific precursor ion mass in a known retention 

time window that is subsequently fragmented. This leads to more specific results 

than with a full scan method, where only the most abundant peaks are detected. In 

selected reaction monitoring (SRM), also referred to as multiple reaction monitoring 

(MRM) one single fragment ion can be selected and monitored, resulting in only one 

peak for quantification. The Q Exactive displays a resolution of 140000 at m/z 200 

combined with less than 1 ppm mass accuracy (Michalski et al., 2011, Yocum and 

Chinnaiyan, 2009).  

Quantitative mass spectrometry for SILAC experiments was carried out using an 

Ultimate 3000 Nano-RSLC liquid chromatography system combined with a LTQ-

OrbiTrap Velos mass spectrometer by a nano spray ion source. The tryptic peptides 

were resuspended in 10-20µl 0.5% TFA and automatically injected and eluted after 
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5min from the Nano trap column (75μm i.d. × 2cm, packed with Acclaim PepMap100 

(C18, 3μm, 100Å) onto the analytical column (75μm i.d. × 25cm, Acclaim PepMap 

RSLC) and separated using an acetonitrile gradient from 2 to 35% of buffer B (80% 

ACN and 0.08% formic acid in HPLC-grade water) in buffer A (2% ACN and 0.1% 

formic acid in HPLC-grade water) at a flow rate of 300nl/min over 145min followed by 

a short washing step of 5min from 35% B to 95% B in buffer A and equilibration for 

5min with 2% buffer B in buffer A. The eluted peptides were analysed by a LTQ-

Orbitrap Velos mass spectrometer. From a high-resolution mass spectrometry pre 

scan with a masse range of 300-1500, the 10 most intense peptide peaks were 

selected for collision induced dissociation (CID) fragmentation in the linear ion trap if 

they exceeded an intensity of at minimum 200 counts and if they were at least doubly 

charged. The fragmentation was performed with normalised collision energy of 35 

and the fragments were detected in the linear ion trap with normal resolution. Every 

fragmented ion was excluded for 20s by dynamic exclusion. The lock mass with a 

value of value of 445.12002 was activated (Olsen et al., 2005). 

The targeted approaches were also pre-fractionated on an Ultimate 3000 Nano-

RSLC liquid chromatography system coupled to a Q Exactive plus mass 

spectrometer for analysis by a nano spray ion source. The tryptic peptides were 

automatically injected and eluted after 5min from the Nano trap column (75μm i.d. × 

2cm, packed with Acclaim PepMap100 (C18, 3μm, 100Å) onto the analytical column 

(75μm i.d. × 25cm, Acclaim PepMap RSLC) and separated using an acetonitrile 

gradient from 2 to 35% of buffer B (80% ACN and 0.08% formic acid in HPLC-grade 

water) in buffer A (2% ACN and 0.1% formic acid in HPLC-grade water) at a flow rate 

of 300nl/min over 80min followed by a short washing step of 5min from 35% B to 

95% B in buffer A and equilibration for 5min with 2% buffer B in buffer A. The emitted 

peptides were analysed using single reaction monitoring (SIM) on a Q Exactive plus 

mass spectrometer. Inclusion lists containing precursor ion masses (m/z), charge (z) 

and retention time windows of 10min were applied. The resolution for SIM scans was 

set to 70000 and maximum fill time was defined to 100ms (AGC target value 5x104), 

resolution for HCD spectra was set to 7500 and a maximum fill time of 500ms was 

determined (AGC target value 1x105). Normalised collision energy was set to 26 and 

the underfill ratio was fixed to 10%. 
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3.2.5.9. Data analysis 
 
For SILAC labelling all raw data acquired by tandem mass spectrometry on the LTQ-

Orbitrap Velos were analysed by MaxQuant Software version 1.5.0.30 (Cox and 

Mann, 2008) using the SwissProt/UniProt mouse database (2014_04, 16,669 entries) 

as described (Tyanova et al., 2014) and in house R-scripts for filtering. For 

MaxQuant analysis, multiplicity was set to 2, carbamylation was set as fixed 

modification, glutamine/asparagine deamination, methionine oxidation and protein N-

terminal acetylation were included as variable modifications. Trypsin was selected as 

enzyme in specific digestion mode, 2 missed cleavages were allowed at maximum. 

Min ratio count was set to 1. Only protein IDs found in a minimum of one forward and 

one reverse experiment with a minimum of 1 unique peptide were considered for the 

final dataset. Significance A and B were calculated according to Cox and Mann (Cox 

and Mann, 2008) by application of in house R-scripts. Contaminants were excluded 

and proteins were considered as significant with a H/L ratio of at least a value of 2. 

SIM scan data from the Q Exactive were analysed with Skyline version 2.5.0.6157. 

The software was used to detect and select fragment ions for the quantification. Raw 

data were quantified by building ratios of the peak areas intensities from specific 

fragment ions of the corresponding samples. 

 

3.2.5.10. Protein-protein interaction network and GO term analysis 
 
Network visualisation was achieved by matching data from FLAG affinity purifications 

with interaction databases. Besides Sox11 TCF4, MYT1, TRIM28, ZNF24, YY1 and 

CBX6 served as baits. To create the network, Cytoscape version 2.8.3 (Shannon et 

al., 2003) was applied. Already described interactions were integrated into the 

experimental dataset using the GeneMANIA plugin (Montojo et al., 2010) that 

acquires data from the interaction databases Biogrid, GEO, I2D and Pathway 

Commons. We included physical interactions, with at least one experimental 

validation (in vivo, in vitro or yeast two-hybrid) generated by pull-down, affinity 

purifications or affinity chromatography. 

The term gene ontology (GO term) was introduced by the Gene Ontology Consortium 

that aims to support biological relevant annotation of genes and gene products in 

many organisms. It supplies a systematic language for the assignment of gene’s and 

gene product’s attributes into three key biological domains all organisms have in 
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common, namely molecular function, biological process an cellular component (Gene 

Ontology, 2008). 

GO term analysis was carried out using the dataset of significant Sox11 interacting 

proteins that were identified by R-script from MaxQuant analysis, by application of 

the ToppGene suite tool ToppFun (Chen et al., 2009). Bonferroni correction and a 

cut-off of 0.05 were adapted to the data. 

 

3.2.6. Functional characterisation 
 

3.2.6.1. Reporter assay 
 

Reporter gene assays are used to characterise regulatory elements, like promoters. 

They are linked to a reporter gene that is transcribed once the promoter gets 

activated, and finally translated into the reporter protein. As they serve as markers for 

the regulation of the promoter activity, usually reporter proteins possess 

chemiluminescent or bioluminescent activity, to generate an easy detection system 

(see figure 10). In this study a dual luciferase assay was applied using firefly 

luciferase from the firefly as a reporter gene and renilla luciferase from the sea pansy 

(Renilla reniformis) under the control of a constitutively active promoter as a 

normalisation control to level out variations in transfection efficiency. The firefly 

luciferase catalyses in the presence of Mg2+ ions the reaction of ATP, firefly luciferin 

and O2 to oxyluciferin, AMP, CO2, diphosphate and light (560nm). The Renilla 

luciferase catalyses the reaction of coelenterazine and O2 to coelenteramide, CO2 

and light (482nm) (Bronstein et al., 1994). The bioluminescence is detected in a 

luminometer and firefly signals are subsequently normalised to renilla signals.  
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Figure 10:Scheme of a luciferase reporter assay 
A promoter of interes is coupled to a luciferase, which serves as reporter gene. Upon promoter 
activation the gene is transcribed and translated into the luciferase enzyme, the reporter protein. The 
addition of the luciferase specific substrate results in bioluminescence that can be measured and 
confirms promoter activity. 
 

For the assay, cells were seeded on 6 well plates in a density of 23x104 cells per well 

for HEK-T and 15x104 cells for Neuro2a cells. The plasmids Sox11 (N)SF-TAP 

pDEST (190ng) , MYT1 (C)SF-TAP pDEST (1500ng), TCF4 (C)SF-TAP pDEST 

(740ng), YY1 (C)SF-TAP pDEST (740ng), ZNF24 (C)SF-TAP pDEST (1500ng) and 

shRNA knockdown constructs Myt1 PWX1-H1, Tcf4 PWX1-H1, Yy1 PWX1-H1, Znf24 

PWX1-H1 (1500ng) were co-transfected after 24h of cellular growth using PEI (see 

3.2.1.3.2) with a human DCX-promoter luciferase reporter construct (740ng) (Karl et 

al., 2005) and a human Stmn1-promoter luciferase reporter construct (740ng) 

(Benlhabib and Herrera, 2006), respectively together with Renilla–luciferase under 

the control of the human elongation factor 1 promoter (74ng) for  normalisation (Lie et 

al., 2005). Harvest and reporter luciferase assay was performed 48h post 

transfection using the Promega dual luciferase assay kit according to the 

manufacturer’s manual and a Mithras LB 940 Multimode Microplate Reader. Each 

measurement was accomplished at least three times in 3 biological replicates. 
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3.2.6.2.  In silico promoter analysis 
 

In silico promoter analysis provides a tool for the theoretical alignment of transcription 

factor binding sites and promoter sequence information. The potential binding of 

single or multiple transcription factors on neighbouring consensus sequences can be 

determined as well as the distribution of binding sites on selected promoters. 

Specific binding sites on DNA that are recognised by common transcription factors 

were determined using the Genomatix Software Suite Version 3.2. The analysis was 

performed for Sox11, Myt1 and Yy1. Genomatix graphically generated consensus 

sequence logos using a previously described algorithm (Crooks et al., 2004, 

Schneider and Stephens, 1990). Nucleotides in capital letters depict the core 

sequence, which is defined as highest conserved, consecutive positions of the 

consensus, nucleotides in bold exhibit a degree of conservation above 60%. Models 

including Sox11 and Myt1 respectively Sox11 and Yy1 were generated by applying 

the Fast M tool from Genomatix. The Model Inspector tool was used for the detection 

of adjacent binding sites of the previously defined models in the promoter sequences 

within a set distance from 5 to 700 basepairs. 
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4. Results 
 

4.1. Experimental workflow 
 
The need for new candidates in reprogramming strategies of somatic cells into 

functional neurons and the involvement of Sox11 in the neural fate determination and 

induction of neuronal expression programs gave rise to the question of early 

neuronal identity and the underlying transcriptional modulation, which led to the 

determination of a Sox11-centred transcriptional core network by proteomic analysis. 

 
Figure 11:Experimental workflow 
Basic prerequisites were established, before the Sox11 interactome analysis was performed. The 
Sox11 interactome was determined by affinity purification combined with SILAC and quantitative mass 
spectrometry. Thereafter, a protein-protein interaction network was build and the list of interacting 
proteins was subjected to GO-term analysis. The interactions were validated using western blot 
analysis and targeted mass spectrometry approaches, before selected interactors were characterised 
functionally. Therefore, reporter assays combined with shRNA-mediated knockdown of candidates, as 
well as in silico promoter analysis was applied.  
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4.2. Set up of prerequisites for the analysis of Sox11 
 

4.2.1. Generation of stable Sox11 expression cell lines 
 

Stable Sox11 expressing cell lines were established for the analysis of the Sox11 

interactome on a relatively low expression level compared to transient transfection, 

resembling more the physiological conditions within cells. Furthermore, they should 

serve as a test system for the specificity and sensitivity of newly generated 

monoclonal antibodies recognising Sox11. To that end, Neuro2a cells, a mouse 

neuroblastoma cell line, that possesses minimal endogenous Sox11 expression and 

features good transfection efficiencies, were stably transfected with the (N)SF-TAP 

pDEST-Sox11 gateway expression vector. The selection of plasmid containing cells 

was carried out by the use of G418, taking advantage of the neomycin resistance of 

the pDEST vector, followed by monoclonal colony selection and expansion (see 

3.2.1.5). 12 monoclonal cell lines were tested for stable Sox11 expression 4 ½ weeks 

post transfection (see figure 12). Therefore, nuclear extracts were prepared and 20µg 

lysate was subjected to SDS-PAGE combined with western blot analysis. A transient 

Sox11 transfected nuclear lysate was included as positive control. Sox11 expression 

was detected using a commercial monoclonal anti-Sox11 antibody (see table 5) 

whereas Gapdh western blot signals served as a loading control. All of the 12 tested 

clonal cell lines displayed clearly Sox11 expression at a size of 72kDa, with obtained 

signals significantly lower than the transient transfection control and a different bands 

pattern. Normalisation to the loading control Gapdh and quantification of the Sox11 

signals revealed the highest expression combined with high signal purity for cell line 

number 2, which was continuingly cultured and applied for further experiments where 

stable Sox11 expression cell lines were used.  
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Figure 12:Monoclonal Sox11 stable expression Neuro2a cell lines 
Western blot analysis was performed using 20µg nuclear extract for SDS-PAGE. Detection with 
commercial anti-Sox11 antibody revealed specific Sox11 signals with different intensities at 72kDa in 
12 Sox11 stably expressing Neuro2a cell lines (see arrows). Transient Sox11 transfection served as 
positive control and anti-Gapdh immunoblotting (36kDa) was used as loading control for quantification. 
 

4.2.2. Evaluation of monoclonal Sox11 antibodies 
 

4.2.2.1. Establishment of monoclonal Sox11 antibodies 
 
Sox11-recognising monoclonal antibodies were generated in house, as only 

polyclonal anti-Sox11 antibodies were commercially available. As a consequence, 

they differ in specificity and efficiency depending on the charge and display a couple 

of unspecific bands at high Sox11 expression levels upon transient transfection (see 

first lane in figure 12). 

The monoclonal antibody production was carried out in house in the laboratory of 

Elisabeth Kremmer in the institute of laboratory immunology at the Helmholtz 

Zentrum München. The workflow for the generation of monoclonal antibodies was 

based on the achievements of Köhler and Milstein (Kohler et al., 1976, Kohler and 

Milstein, 1975). In principle, mice or rats were immunised with the antigen, followed 

by the extraction of antibody producing spleen B lymphocytes that were subsequently 

fused with myeloma cells. Each of the resulting hybridoma cells produced a single 

type of antibody, recognising a specific epitope that was present in the cell’s 

supernatant. Two different strategies were applied, including peptide specific and 

protein specific antibody production in mice and rats. For the latter, a protein epitope 

signature tag of Sox11, short PrEST, was used as an antigen for immunisation. This 
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denotes a highly protein specific fragment, designed, that encompasses typically 50-

150 amino acids, which is not part of transmembrane regions or signal peptides 

(Uhlen et al., 2010). The applied murine Sox11 PrEST had a defined length of 117 

amino acids identical to the positions 189-301 of the Sox11 protein and was 

designed as mouse homologue to the human sequence according to the human 

protein atlas (http://www.proteinatlas.org) (see figure 14). It was cloned into a 

pETM30 vector and expressed in BL-21 E.coli using IPTG induction. Thereafter, cells 

were lysed and purified on a Ni-NTA column using the 6xHis tag (see 3.2.2.7 and 

3.2.2.8). The applied IPTG concentrations as well as the induction time and lysis 

conditions were the parameters that had to be established (see figure 13).  

 

 
Figure 13:Establishment of induced Sox11 PrEST expression in BL-21 cells 
Sox11 PrEST expression efficiency in BL-21 E.coli was assessed using SDS-PAGE of 10µg 
supernatant (S) or pellet (P) fraction combined with Coomassie staining. Different IPTG concentrations 
(0, 0.5 and 1mM) and induction times (0, 2, 4, 6 and 22h) were applied. The specific Sox11 PrEST 
band with a predicted size of 42kDa, indicating induced expression, is denoted with arrows at time 
points 2, 4, 6 and 22h. 
 

The supernatant (S) contained soluble proteins, that were gained after lysis using 

lysis buffer without urea, followed by centrifugation. The pellet (P) was resuspended 

in lysis buffer containing 8M urea in order to solubilize the remaining proteins. The 
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expressed Sox11 PrEST (14kDa) linked to the His-GST tag (28kDa) was present at a 

molecular weight of about 42kDa on Coomassie stained SDS-gels run with 10µg 

lysate, in both IPTG induced samples but not in the control from 2h until 22h of 

induction time. The specific band was present more clearly in the pellet fraction (P) 

than in the supernatant (S), however the different IPTG concentrations didn’t result in 

obvious expression changes. The estimated band representing the Sox11 PrEST 

was sliced out of the gel and subsequently digested using trypsin. The ensuing LC-

MS/MS and Mascot/Scaffold analysis confirmed the presence of the desired protein 

fragment with a sequence coverage of 48% (see figure 14). Based on the outcome of 

the establishment of expression parameters, 0.5mM IPTG and 4h induction time 

were selected for further purifications, as the expression was best under these 

conditions. Moreover, the bacteria were lysed in lysis buffer comprising 8M urea to 

completely bring the Sox11 PrEST into solution. 

 

 
Figure 14:Sequence coverage of Sox11 PrEST 
The LC-MS/MS analysis of the sliced and tryptically digested protein band of the Sox11 PrEST 
revealed a sequence coverage of 48% by Mascot/Scaffold evaluation with the protein threshold set to 
99%, the peptide threshold set to 80% and a selected minimum of 2 identified peptides. 
 

The success of the subsequent Ni-NTA purification (see 3.2.2.8 and 3.2.2.9) was 

assessed on a Coomassie stained SDS-gel (see figure 15). The lysate input, 

flowthrough of the matrix and wash fraction 1 showed un-purified protein lysate, 

indicated by the presence of many non-specific protein bands. In contrast, elution 

steps 2-5, characterised by increasing Imidazole concentrations display elevated 

Sox11 PrEST concentrations with relatively high purity, certifying the successful 

clean-up of the expressed fragment via His-tag-mediated Ni-NTA purification. The 

elution steps 2-5 were pooled, dialysed against PBS to remove the toxic Imidazole 

and sent to E. Kremmer for immunisation and subsequent antibody production. 
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Figure 15:Ni-NTA purification of Sox11 PrEST 
Purity of Sox11 PrEST was determined after Ni-NTA purification over His-tag by Coomassie stained 
SDS-gel of the different fractions input (lysate, 1µl)), flowthrough (FT, 1µl)), wash fraction 1 and 3 (W1 
and W3, 15µl) and elution steps 1-5 (E1-E5, 2µl) from the step-wise elution with increasing imidazole 
concentrations (50-250mM). The appropriate Sox11 PrEST band is indicated with an arrow at 
approximately 42kDa. 
 

4.2.2.2. Protein-specific monoclonal antibodies detect Sox11 efficiently in 
western blot analysis 

 
The evaluation of monoclonal peptide-specific Sox11-recognising antibodies was 

performed using nuclear lysates of with (N)SF-TAP pDEST-Sox11 or empty vector 

control transiently transfected HEK-T cells and Neuro2a cells. SDS-PAGE and 

subsequent western blot analysis with peptide-derived anti-Sox11 antibodies from 

hybridoma supernatants at a dilution of 1:25 revealed Sox11-specific bands at 

approximately 75kDa (Sox11+SF-TAP tag) in HEK-T cells with over-expressed 

Sox11 (see figure 16). In the control conditions of both cell lines, as well as in the 

Sox11 over-expressing Neuro2a cells however, no bands were present. The two 

evaluated clones 1B9 and 2B9, shown in figure 16 are exemplified for all the tested 

hybridoma supernatants. Western blot analysis using an anti-FLAG antibody, 

recognising the SF-TAP tag though, displayed Sox11 over-expression in both cell 

lines. The Sox11 expression in the neuroblastoma cells was not as high as in HEK-T 

cells, due to the lower transfection ability of the cell line. Nevertheless, the Sox11 

expression could not be reliably detected by the peptide specific anti-Sox11 

antibodies and thus they all were classified as not suitable for the recognition of 

Sox11 in any further experiment.   
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Figure 16:Peptide-specific monoclonal anti-Sox11 antibody evaluation 
Peptide-specific Sox11-recognising antibodies were established on nuclear lysates of Sox11 over-
expressing or empty vector transfected nuclear extracts of HEK-T and Neuro2a cells. 10µg lysate was 
analysed via SDS-PAGE combined with western blot analysis. Anti-Sox11 hybridoma supernatants 
clones 1B9 and 2B9 (1:25 in blocking buffer) displayed a Sox11-specific signal only in HEK-T cells. 
The control western blot with anti-FLAG antibody detecting the SF-TAP tag however confirmed Sox11 
expression in both cell lines. 
 

To overcome the existing lack of suitable Sox11-specific antibodies, the protein-

specific monoclonal anti-Sox11 antibodies using the Sox11 PrEST as immunogen 

were generated and tested for Sox11 recognition and specificity. In a first screening 

they were applied in 1:10 dilutions in multiwell chambers on transiently Sox11 over-

expressing nuclear lysate of HEK-T cells after performance of SDS-PAGE and 

subsequent western blotting (see exemplarily displayed clones in figure 17). 

Thereafter, subtype-specific HRP-coupled secondary antibodies were incubated on 

the membrane. A commercial anti-Sox11 antibody was used as positive control. 

Many of the hybridoma supernatants produced in rat detected Sox11 specifically at 

approximately 75kDa (see figure 17). The next step in the establishment procedure 

was the application of the antibody clones on stably Sox11 expressing Neuro2a cells, 

to check if they were also capable of detecting the markedly lower expression level of 

the transcription factor. This was also a test if the obstacles that the peptide-specific 

antibodies exhibited with the overexpression in the neuroblastoma cell line could be 

overcome with the new approach. The obtained Sox11 signal intensities were 

decreased compared to the transient over-expression of Sox11, nevertheless a lot of 

hybridoma supernatants displayed specific Sox11 bands at about 75kDa after they 
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were incubated on the membrane in a dilution of 1:10 (see exemplarily illustrated 

clones in figure 18).  

 

 
Figure 17:Screening of protein-specific antibodies in western blot analysis on Sox11 over-
expression in HEK-T cells 
The performance of hybridoma supernatants on western blot analysis was assessed using 150µg 
nuclear lysate of transiently Sox11 over-expressing HEK-T cells on SDS-PAGE with one-well gels. 
The antibodies were incubated on the membrane in a dilution of 1:10 in blocking solution. Subtype-
specific secondary antibodies were applied and commercial anti-Sox11 antibody was used as positive 
control. 
 
 

 
Figure 18:Screening of protein-specific antibodies in western blot analysis in stably Sox11 
expressing Neuro2a cells 
The performance of hybridoma supernatants on western blot analysis was assessed using 200µg 
nuclear lysate of stably Sox11 over-expressing Neuro2a cells on SDS-PAGE with one-well gels. The 
antibodies were incubated on the membrane in a dilution of 1:10 in blocking solution. Subtype-specific 
secondary antibodies were applied and commercial anti-Sox11 antibody was used as positive control. 
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As a third step, the recognition of the protein-specific antibodies of endogenously 

expressed Sox11 in Neuro2a cells was examined. Therefore, stable Sox11 

transfected nuclear lysate was used as a positive control in addition to the non-

transfected Neuro2a nuclear extracts. The application of most of the hybridoma 

supernatants in 1:10 dilutions resulted in specific signals for Sox11 in the stable 

expression lines, however none of the clones was able to detect the transcription 

factor on the very low endogenous expression level (see exemplarily illustrated 

clones in figure 19). In general, rat-derived hybridoma supernatants performed better 

than mouse antibodies. 

 

 
Figure 19:Screening of protein-specific antibodies in western blot analysis on endogenous 
level  and in stably Sox11 expressing Neuro2a cells  
The performance of hybridoma supernatants on western blot analysis was assessed using 200µg 
nuclear lysate of stably Sox11 over-expressing and non-transfected Neuro2a cells on SDS-PAGE with 
15-well gels. The antibodies were incubated on the membrane in a dilution of 1:10 in blocking solution. 
Subtype-specific secondary antibodies were applied for detection. 
 

The last check the generated protein-specific Sox11-recognising antibodies had to 

pass through was their capability of pulling down Sox11 in stable expression cell 

lines. To that end, co-immunoprecipitation was performed (see 3.2.5.1) with the 

hybridoma supernatants on nuclear extracts. This revealed the successful pull down 

of Sox11 when the complete eluate was subjected to SDS-PAGE and western blot 

analysis (see figure 20). Nevertheless, the enrichment of the bait protein was not 

very efficient, compared to the input of 10µg crude nuclear lysate. The detection was 

performed using the two isotype different hybridoma clones 13G2 and 19B2 that 

were identified as suitable for western blot analysis in the previous tests, as the 

specificity of the commercial antibody was not optimal. The beads alone served as a 

negative control and the immunoprecipitation was performed using the commercial 
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anti-Sox11 antibody as positive control. Furthermore, the tryptic proteolysis followed 

by LC-MS/MS analysis of the pull down assays could not detect any Sox11-specific 

peptides, due to the inefficient enrichment of the bait protein. In summary, many of 

the protein-specific anti-Sox11 antibodies are suitable for western blot analysis of 

moderate Sox11 levels (see table 10), but are not recommended for the application 

in co-immunoprecipitation assays. 

 

 
Figure 20:Screening of protein-specific antibodies in co- immunoprecipitation assays on 
endogenous level  and in stably Sox11 expressing Neuro2a cells  
The performance of hybridoma supernatants in pull down assays was assessed by incubation of 
500µg nuclear lysate of stably Sox11 over-expressing and non-transfected Neuro2a cells with 1ml of 
hybridoma supernatant coupled to protein-G agarose. The complete eluate was applied to SDS-PAGE 
using 10-well gels. Commercial anti-Sox11antibody was used as positive control, beads alone served 
as negative control. The input consists of 10µg nuclear lysate. The detecting antibodies were 
incubated on the membrane in a dilution of 1:10 in blocking solution. Subtype-specific secondary 
antibodies were applied for detection. 
 

Table 10: Protein-specific anti-Sox11 antibodies suitable for western blot analysis 
antibody  IgG subtype species 
19B2 2a rat
20A4 G1 rat 
18C12 2a + 2b rat 
10F12 G1 rat 
12B11 G1 rat 
13G2 G1 + 2a + 2b + 2c rat 
17E1 G1 rat 
17E6 2a rat 
13F2 G1 + 2a rat 
1D5 G1 rat 
8H10 G1 rat 
4H7 2a rat 
8F4 G1 + 2a + 2b rat 
1C9 2c rat 
4H6 G1 rat 
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4.3. Implementation of the Sox11 interactome 
 

4.3.1. FLAG affinity purification efficiently precipitates transiently transfected 
Sox11 and its interactors 

 

For a successful analysis of the Sox11 interactome in Neuro2a cells, nuclear 

extraction conditions as well as the method of choice for the affinity purification had 

to be established. The possibility of a co-immunoprecipitation assay on endogenous 

Sox11 level had already been excluded due to the lack of suitable antibodies for pull 

down assays even in the newly generated monoclonal antibodies. The affinity 

purification of stable Sox11 expression cell lines revealed only 5 identified peptides 

for the bait protein Sox11 after tandem mass spectrometric and Mascot/Scaffold 

analysis. With such a small number of bait peptides, the determination of the much 

less endogenously expressed interaction partners was not possible. On these 

grounds, the interactome analysis had to be established using transient over-

expression of Sox11. Initially, the Strep affinity purification strategy was applied. The 

analysis of the pull downs by LC-MS/MS and western blot revealed an inhibitory 

effect of the high salt conditions of the nuclear extraction buffer C on the Strep affinity 

purification buffer system, resulting in a blocked SF-TAP tagged Sox11 binding to the 

Strep-Tactin matrix. The adjustment of the nuclear extraction conditions to half of the 

NaCl concentration in extraction buffer C resulted in a successful pull down of Sox11 

(see figure 21).  

 

 
Figure 21:Strep affinity purification of transiently over-expressed Sox11 in Neuro2a 
Strep affinity purification was performed on nuclear extracts of Sox11 over-expressing Neuro2a cells 
and empty vector control with different salt conditions (420mM and 210mM NaCl). The whole eluate 
and 10µg nuclear lysate (input) respectively was used for SDS-PAGE and western blot analysis. 
Detection was carried out by commercial Sox11 antibody. 
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Nonetheless, the search for specific interaction partners via quantitative mass 

spectrometry was not satisfying. Probably the release of proteins from the nucleus 

was not as efficient as with the double salt concentration. Furthermore, the Strep 

affinity purification may be not as suitable as FLAG affinity purification for the 

interactome analysis of moderately expressed interacting proteins. The binding of the 

FLAG tag causes less non-specific contaminants, which could cover the less 

abundant specific interactors in the analysis. As a consequence, FLAG affinity 

purification was performed on transiently Sox11 over-expressing nuclear lysates of 

Neuro2a cells. Mass spectrometry analysis revealed the best peptide identification 

rates and interaction partner list for the original extraction conditions including 

420mM NaCl in nuclear extraction buffer C. This was confirmed by western blot 

analysis (see figure 22) as well as by quantitative mass spectrometry (see table 11). 

 

 
Figure 22:FLAG affinity purification of transiently over-expressed Sox11 in Neuro2a 
FLAG affinity purification was performed on nuclear extracts of Sox11 over-expressing Neuro2a cells 
and empty vector control. 10µg nuclear lysate (input) and 2% of the AP eluate respectively was 
applied to SDS-PAGE and western blot analysis. Detection was carried out by the protein-specific 
stabilised antibody clone 19B2 in a dilution of 1:100. 
 

The interactome analysis was implemented by 6 independent experiments using 

SILAC labelling, FLAG affinity purification of 5mg nuclear lysate under addition of 

benzonase, followed by precipitation of peptides, tryptic in-solution digestion 

combined with quantitative mass spectrometry. In 3 of the 6 performed experiments 

SILAC labelling was reversed to exclude label-dependent alterations of fold change. 

Data analysis using MaxQuant and R revealed a dataset of 1642 identified proteins, 
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of these 1609 were quantified and 66 proteins were determined to be significantly 

enriched (p≤0.05) in the Sox11 over-expressed fraction, detected by a minimum of 1 

unique peptides per protein and present in at least one forward and one reverse 

experiment. The occurrence of comparatively few unspecific binding proteins 

presents a challenge to the statistical analysis, as the resulting distribution is not 

perfectly Gaussian. This is graphically elucidated by figure 23A and B, displaying the 

unspecific proteins as brown crosses and proteins specifically enriched in the Sox11 

over-expressing fraction as green dots with a significance B of 0.05 (Cox and Mann, 

2008). To overcome these limitations, a threshold which was set to a value of 2 was 

manually applied (see dotted lines in figure 23A). Quantified proteins above this level 

were referred to as significant, giving rise to an extended dataset of 164 interacting 

proteins, denoted as significant interactors of Sox11. The good correlation of 

significant hits in forward and reverse labelling experiments is displayed in figure 

23B.  

 

 
Figure 23:Scatter plot of the Sox11 interactome 
Scatterplot of Sox11 interactome data after MaxQuant/R analysis from 6 independent experiments, 
including 3 reverse labellings. Brown crosses denote unspecific interacting proteins, green dots 
display proteins significantly enriched (p≤0.05) in the Sox11 over-expressing affinity purifications. 
Sox11 is highlighted as a red dot. Dotted lines depict manually set significance threshold value of 2. A)  
Log2 protein ratio HL (H: Sox11, L: control) is plotted against log2 intensity. B) Log2 ratio HL reverse 
(L: Sox11, H: control) is plotted against log2 ratio HL forward (H: Sox11, L: control). 
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The complete Sox11 interactome, comprised of 164 significant interaction partners, is 

illustrated graphically in a Sox11-centered network (see figure 24). The red 

connections also referred to as edges denote the experimentally identified 

interactions. The observed interactions between a subset of proteins are also 

complemented with previously identified interactions from protein interaction 

databases used by the Cytoscape plugin GeneMania, depicted by green edges (see 

the top of figure 24). This sub-network is displayed enlarged and more precisely 

described in figure 27. The entire list of Sox11 interacting proteins is listed in table 

20, attached in the annex. 
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Figure 24:Sox11 interactome network 
The complete Sox11 interactome network was built by combining the interactome dataset with 
information of mouse interaction databases used by the Cytoscape plugin GeneMania. Data were 
assessed from FLAG affinity purifications of Sox11 combined with pull downs of YY1, ZNF24, 
TRIM28, MYT1, TCF4 and CBX6 (dark and brilliant green nodes). Red edges connect newly identified 
interactions (bright green nodes) while connections that are previously described are linked by green 
edges. Grey nodes are included to connect identified proteins. 
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4.3.2. The Sox11 interactome is abundant in transcription factors and 
transcriptional modulators 

 

The analysis of the Sox11 interactome revealed an enrichment of transcription 

factors and other proteins involved in regulation of transcriptional control. A subset of 

selected interaction partners, implicated in the regulation of gene expression is 

highlighted in the Sox11 interactome scatterplot in figure 25 (see also table 20). The 

transcriptional modulators include Transcription intermediary factor b (Tif1b, Trim28) 

which was detected by 27 unique peptides and a H/L ratio (Sox11/control) of 5.66 

(see table 20). It belongs to the chromatin relaxation factors and controls the 

maintenance of pluripotency in mouse embryonic stem cells in a phosphorylation-

dependent fashion (Seki et al., 2010). Likewise, Zinc finger protein 24 (Znf24, 

Zfp191) identified by 2 unique peptides and a H/L ratio of 3.16 is involved in the 

maintenance of neural cells during the multipotent progenitor stage as it prevents 

them from cell cycle exit and differentiation (Khalfallah et al., 2009). Furthermore, the 

multifunctional and ubiquitously expressed Yy1 transcription factor (Yy1), identified 

by 8 unique peptides and a H/L ratio of 5.91 which acts both as transcriptional 

activator and repressor (Shi et al., 1991), is part of the specific Sox11 interactome. 

Myelin transcription factor 1 (Myt1), which was detected by 7 unique peptides and a 

H/L ratio of 2.59 was recently found to be expressed in early developing mouse 

nervous tissues (Matsushita et al., 2014) and was previously shown to play a role in 

neuronal fate commitment in Xenopus laevis (Bellefroid et al., 1996). 

Haploinsufficiency of Transcription factor 4 (Tcf4), identified as specific interactor by 

3 unique peptides and a H/L ratio of 3.75 is the major genetic cause of the Pitt-

Hopkins Syndrome (Amiel et al., 2007, Zweier et al., 2007), which is characterised by 

intellectual disability, typical facial gestalt and hyperventilation (Pitt and Hopkins, 

1978). A transcription factor belonging to the paired family of homeobox proteins 

Paired-like homeobox 2b (Phox2b), identified by 4 unique peptides and a H/L ratio of 

3.46  as well as heart and Neural crest derivatives expressed 2 (Hand2), which is 

part of the basic helix-loop-helix family of transcription factors, identified by 2 unique 

peptides and a H/L ratio of 3.99 are found to play a role in the transcriptional 

regulation of specification and neurogenesis in in the autonomic nervous system 

(Rohrer, 2011). Also five chromobox proteins were identified with Cbx2 (detected by 

2 unique peptides and a H/L ratio of 2.64) , Cbx3 (detected by 5 unique peptides and 



RESULTS 

 

101 

 

a H/L ratio of 2.11), Cbx4 (detected by 8 unique peptides and a H/L ratio of 2.89), 

Cbx6 (detected by 2 unique peptides and a H/L ratio of 9.82), and Cbx8 (detected by 

2 unique peptides and a H/L ratio of 3.27), that are part of the polycomb group of 

proteins (PcG) and modulate transcription epigenetically by the regulation of 

heterochromatin (Ma et al., 2014, Morey and Helin, 2010, Wotton and Merrill, 2007). 

Additionally, the chromodomain helicase DNA binding protein 8 (Chd8), identified by 

7 unique peptides and a H/L ratio of 3.52 is part of the SNF2 family of proteins and is 

involved in transcriptional control as it plays a role in ATP-dependent chromatin 

remodelling (Marfella and Imbalzano, 2007). 

 

 
Figure 25:Scatterplot of the Sox11 interactome rich in transcriptional modulators 
Scatterplot of Sox11 interactome data after MaxQuant/R analysis from 6 independent experiments, 
including 3 reverse labellings. Brown crosses denote unspecific interacting proteins, green dots 
display proteins significantly enriched (p≤0.05) in the Sox11 over-expressing affinity purifications. 
Sox11 and significant interacting proteins Trim28, Phox2b, Yy1, Myt1, Tcf4, Znf24, Cbx6, Cbx8, 
Phox2b and Chd8 are highlighted as red dots. Dotted lines depict manually set significance threshold 
value of 2. A)  Log2 protein ratio HL (H: Sox11, L: control) is plotted against log2 intensity. B) Log2 
ratio HL reverse (L: Sox11, H: control) is plotted against log2 ratio HL forward (H: Sox11, L: control). 
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Table 11: Subset of Sox11 interactors involved in transcriptional regulation 
Accession 
number 

Gene 
names 

Unique 
peptides 

Ratio 
H/L 

Ratio 
forward

Ratio 
reverse 

Significance A Significance B 

Q7M6Y2 Sox11 14 21.30 35.56 0.14 3.97E-07 2.86E-07 

Q00899 Yy1 8 5.91 6.97 0.21 0.0026 0.0026 

Q62318 Trim28 27 5.66 5.95 0.19 0.0033 0.0026 

Q60722 Tcf4 3 3.75 4.30 0.31 0.0212 0.0212 

O35690 Phox2b 4 3.46 5.03 0.43 0.0292 0.0240 

Q91VN1 Znf24 2 3.16 3.00 0.30 0.0409 0.0420 

Q8CFC2 Myt1 7 2.59 4.46 0.41 0.0795 0.0808 

Q61039 Hand2 2 3.99 3.99 0.39 0.0166 0.0167 

Q09XV5 Chd8 7 3.52 3.68 0.42 0.0274 0.0275 

P30658 Cbx2 2 2.64 1.39 0.26 0.0755 0.0783 

P23198 Cbx3 5 2.11 2.52 0.57 0.1437 0.1238 

O55187 Cbx4 8 2.89 4.61 0.41 0.0559 0.0566 

Q9DBY5 Cbx6 2 9.82 13.68 0.17 0.0001 0.0001 

Q9QXV1 Cbx8 2 3.27 3.39 0.65 0.0361 0.0370 
 

4.4. Validation of Sox11 interaction partners 
 

4.4.1. Sox11 interacting proteins are efficiently confirmed by western blot 
analysis 

 

Although the determination of the Sox11 interactome by quantitative mass 

spectrometry revealed a convincing list of specific interacting proteins, the results 

had to be validated by another method in order to confirm newly discovered 

interactions and increase the reliability of the interactome screen dataset. 

Consequently, eluates of FLAG affinity purifications as well as Sox11 or empty vector 

transfected nuclear lysates from Neuro2a cells were subjected to SDS-PAGE and 

subsequent western blot analysis. A subset of selected interactors, namely Trim28, 

Znf24, Yy1, Tcf4 and Phox2b was used for validation of the specific interaction with 

Sox11 (see figure 26). The signals obtained on nuclear extracts (input) of the Sox11 

and the control condition revealed a stable expression of the five interacting proteins 

that was not altered upon Sox11 over-expression. Moreover, all of the interactors 

display a specific band in the Sox11 affinity purification, which is not present in the 

control fraction, thus confirming the efficient precipitation of Trim28, Znf24, Yy1, Tcf4 

and Phox2b by Sox11, in addition to the mass spectrometry analysis on western blot 

level. 
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Figure 26: Western blot analysis of Sox11 interactors obtained by FLAG affinity purification 
Western blotting of the Sox11 interactors Trim28, Znf24, Yy1, Tcf4 and Phox2b was performed using 
10µg nuclear lysate of Sox11 over-expressing and empty vector control transfected cells as input and 
2% (for Sox11 detection) or 10% (for interactor detection) of the FLAG affinity purification eluate, 
which was carried out using 5.5mg nuclear lysate. Sox11 was detected by stable clone 19B2, the 
interacting proteins by suitable commercial primary antibodies. 
 

4.4.2. Sox11 interactors Myt1 and Yy1 are verified by targeted mass 
spectrometry 

 

The neurogenesis-related Sox11 interactor Myt1 could not be validated by western 

blotting due to the lack of suitable antibodies for the transcription factor. Accordingly, 

a targeted mass spectrometry approach was established for Myt1 to confirm the 

identified interaction with Sox11. Yy1 was also included in the analysis in order to 

create an overlay with the western blot validation. For both proteins FLAG affinity 

purification eluates were measured using SIM scan methods on the Q Exactive mass 

spectrometer, integrating inclusion lists comprised of peptide-specific precursor 

masses and retention time windows. Data analysis via Skyline revealed peaks for 

every fragment ion displaying intensity over retention time. The automatically 

calculated peak area of the Sox11 affinity purification was divided by the control 

condition, resulting in Sox11 versus control ratios. For each protein 4 independent 

experiments were performed and subsequently one fragment ion per protein was 
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selected for quantification, which is depicted in table 12. The b7 ion KLEDATELVSK 

was used to evaluate Myt1 peak areas. The obtained ratios (6.11, 1.72 and 1.33) 

confirmed an enrichment of Myt1 in the Sox11 over-expressing affinity purification, in 

one experiment there was actually no fragment ion peak present in the control 

fraction, rendering quantification impossible. The assessment of Yy1 data revealed 

for the y5 ion FSLDFNLR even higher Sox11/control ratios (2942, 16.2, 14291.08), 

however there was also no peak detected in the control condition in 1 of 4 

experiments, that’s why it was excluded for quantification. Taken together, the 

specific interaction of Myt1 and Sox11 as well as Yy1 and Sox11 could be 

successfully verified by the application of a targeted mass spectrometric approach. 

 

Table 12: Quantification of Myt1 and Yy1 by targeted mass spectrometry  
Myt1 KLEDATELVSK b7 

Experiment   1 2 3 4 
Mean 
ratio 

SEM 

Peak area 
Sox11 165637 64834 86411144 5588524544     

Control 27099 0 50309104 4190584320     

Ratio 
Sox11 vs. 
Control 

6.11   1.72 1.33 3.05 1.53 

Yy1 FSLDFNLR y5 

Experiment   1 2 3 4 
Mean 
ratio 

SEM 

Peak area 
Sox11 7156138 7306518 15591569 8287518     

Control 2432 434295 1091 0     

Ratio 
Sox11 vs. 
Control 

2942.49 16.82 14291.08   5750.13 4353.19

 

4.5. Evaluation of the Sox11 interactome 
 

4.5.1. The Sox11 protein-protein interaction network 
 

To evaluate the functional relationships between the observed interacting proteins 

and Sox11, a Sox11-centred protein-protein interaction network based on the dataset 

was established. Besides Sox11 TCF4, MYT1, TRIM28, ZNF24, YY1 and CBX6 

(human cDNAs in (C)-SF-TAP pDEST Vector) served as baits for FLAG affinity 

purification to extend the network (see figure 27, nodes highlighted in brilliant green). 

The human constructs were used due to a better availability and high sequence 

homology to the murine cDNA. To establish the network end, we utilised Cytoscape 
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(Shannon et al., 2003) and acquired data to integrate previously described 

interactions from mouse databases applying the GeneMANIA plugin (Montojo et al., 

2010). The mapping of our data revealed a dense merged network consisting of 29 

nodes linked by 62 undirected interactions, referred to as edges (see figure 27). 

Closeness centrality analysis resulted in an average of 4.3 neighbours for each 

protein and revealed, as expected, Sox11 as the central protein of the network with 

the shortest distance to all other nodes, followed by Trim28, Yy1 and Tcf4. Sox11 

also revealed the highest degree of connectivity as was uncovered by node degree 

distribution. Additionally, Trim28, Yy1 and Tcf4 as well as the polycomb repressive 

complex 1 (PRC1) components Rnf2, Phc2, Cbx2, Bmi1 and Ring1 were found to be 

highly connected. Green edges depict previously described interactions. Here, the 

wider the edges are, the stronger is the connection. Red edges represent the newly 

experimentally identified physical interactions in this study, while grey nodes act as 

link between co-precipitated proteins (bright green). 

 

 
Figure 27:Sox11 protein-protein interaction network 
The network was built by combining the interactome dataset with information of mouse interaction 
databases used by the Cytoscape plugin GeneMania allowing links by co-expression, shared protein 
domains, pathway and physical interactions, with at the minimum one experimental validation. Data 
were assessed from FLAG affinity purifications of Sox11, YY1, ZNF24, TRIM28, MYT1, TCF4 and 
CBX6 (dark and brilliant green nodes). Red edges connect newly identified interactions (bright green 
nodes) while connections that are previously described are linked by green edges. Grey nodes are 
included to connect identified proteins. 
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4.5.2. GO term analysis reveals enrichment of transcription regulatory activity 
 

The list of the 164 significant Sox11 interacting proteins was subjected to GO term 

analysis using the ToppFun tool from the ToppGene software. The obtained proteins 

are enriched in molecular functions that are characteristic for transcription factors 

(see figure 28 3.-7. and 9.-13.) as well as for transcriptional modulators (see 3., 4., 8. 

and 16.) and regulation on translational level (see 1. and 2.). 

 

Figure 28:GO term analysis of enriched molecular functions 
Molecular functions obtained by GO term analysis using ToppFun by ToppGene. The gene count 
displays the number of involved interacting proteins for each GO term. Significance was set to a value 
of 0.05 and data were corrected with Bonferroni for multiple testing.  
 

The enriched biological processes identified in our dataset, revealed the role of the 

interactors in chromatin and chromosome organisation (see figure 29, 1. and 2.) and 

other processes linked to chromatin, histone and DNA modifications (13., 20., 22., 

23., 33., 34.). Additionally, positive (17., 27) as well as negative (7., 8., 26) 

transcriptional regulation is overrepresented in our data analysis.  
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Figure 29:GO term analysis of enriched biological processes 
Biological processes obtained by GO term analysis using ToppFun by ToppGene. The gene count 
displays the number of involved interacting proteins for each GO term. Significance was set to a value 
of 0.05 and data were corrected with Bonferroni for multiple testing. 
 

The GO analysis cellular components generated 36 overrepresented terms in the 

interaction dataset (see figure 30). Herein, nuclear components related to 

chromosome, histone and chromatin modification and regulation complexes as well 

as transcription factor complexes are preponderant in the interactors list. 

Altogether, our data reveals that the GO term analysis including molecular functions, 

biological processes and cellular components exhibits an accumulation of 
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transcription factors and proteins involved in the modulation of gene transcription in 

the specific Sox11 interactome dataset. 

 

Figure 30:GO term analysis of enriched cellular components 
Cellular components obtained by GO term analysis using ToppFun by ToppGene. The gene count 
displays the number of involved interacting proteins for each GO term. Significance was set to a value 
of 0.05 and data were corrected with Bonferroni for multiple testing. 
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4.6. Efficient shRNA-mediated knockdown of Sox11 interactors 
 

Four transcription factors of the Sox11 interaction dataset were selected for a 

shRNA-dependent knockdown to allow their functional characterisation. Suitable 

oligonucleotides for shRNA constructs were purchased for the murine Myt1, Tcf4, 

Yy1 and Znf24. The sequences were adapted from the mission shRNA information 

provided by Sigma Aldrich. The annealed and phosphorylated Oligonucleotides were 

cloned into the PWX1 Vector. The shRNA coding sequences were under the control 

of a murine U6 or human H1 promoter peculiarly adapted for shRNA-mediated 

knockdown, which was applied to the endogenous expressed proteins in Neuro2a 

cells. 

 
4.6.1. Verification of knockdown efficiency on mRNA level 
 

The efficiency of the shRNA-dependent knockdown had to be evaluated on mRNA 

level to check if the mRNA had been successfully degraded. This was achieved by 

quantitative Real-time PCR of cDNA generated from mRNA, isolated from Neuro2a 

cells that had been transfected with a knockdown plasmid. The analysis was carried 

out in 3 technical replicates of each sample. The normalisation to the reference gene 

pyruvate dehydrogenase beta (Pdhb) enabled relative quantification of the gene 

expression, and thus monitoring of the knockdown efficiency. The normalised relative 

expression compared to the empty vector transfected control condition was 34% for 

Myt1, 40% for Tcf4, 46% for Yy1 and 58% for Znf24 (see figure 31). This resulted in 

the best knockdown efficiency of 66% for Myt1, followed by 60% for Tcf4, 54% for 

Yy1 and the lowest knockdown level was determined for Znf24 with 42% efficiency 

compared to the control. Taken together, the shRNA-mediated knockdown 

decreased gene expression in all of the four transcription factors, with obtained 

knockdown efficiencies between 42 and 66%. 
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Figure 31:Relative expression on mRNA level following shRNA-mediated knockdown 
ShRNA-mediated knockdown of Myt1, Tcf4, Yy1 and Znf24 was applied in Neuro2a cells. CDNA was 
synthesised from total RNA, isolated 48h after transfection. Relative expression on mRNA level was 
measured by quantitative RT-PCR using three technical replicates. Data were normalised to the 
expression of Pdhb as reference gene. Error bars depict the standard error of the mean. 
 

4.6.2. Verification of knockdown efficiency on protein level 
 

Additional to the evaluation on mRNA level, the knockdown level had to be assessed 

also on protein expression in order to validate the success of the shRNA-dependent 

knockdown of the four selected Sox11 interacting proteins on protein level. Therefore 

2 different shRNA sequences under the control of the H1 or U6 promoter were tested 

for knockdown efficiency in Neuro2a cells for each of the candidate transcription 

factors. The transfected nuclear lysates were normalised to the expression of beta-

Actin (Actb) on western blot as a loading control. Subsequent quantification 

compared to the empty vector control revealed knockdown efficiencies. Anti-GFP 

antibody was applied to monitor transfection rates of the individual plasmids (see 

figure 32). The best performing knockdown constructs were all under the control of 

the H1 promoter and are highlighted in bold in figure 32. The remaining relative 

expression after knockdown by the most efficient shRNAs is illustrated in figure 33. 

Myt1 displays a relative expression of 14% compared to the control condition, thus 

the knockdown is highly efficient with 86%. Tcf4 knockdown was even more 

successful exhibiting a relative expression level of 9%, hence a knockdown efficiency 

of 91%. The highest remaining relative expression was detected for Yy1 with 44% 

and a knockdown efficiency of 56%. Znf24 however, revealed 28% relative 
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expression compare to the control shRNA, according to a 72% efficient knockdown of 

the protein expression. 

 

 
Figure 32:Western blot analysis of shRNA knockdown constructs 
Western blot analysis was carried out for each protein using 10µg of cells nuclear lysates transfected 
with different shRNA constructs, isolated 48h post transfection for SDS-PAGE and compared to a 
unspecific shRNA control. Detection was achieved by using commercial antibodies. Anti-Actb antibody 
was used as a loading control and anti-GFP antibody was applied to monitor the efficiency of 
transfection. 
 

 
Figure 33: Relative expression on protein level following shRNA-mediated knockdown 
ShRNA-mediated knockdown of Myt1, Tcf4, Yy1 and Znf24 was applied to Neuro2a cells. Nuclear 
lysates were isolated 48h after transfection. Relative expression on protein level was measured using 
SDS-PAGE coupled to western blot analysis. Data were normalised to the expression of Actb as 
reference protein. Displayed are the relative expressions of the best performing shRNA constructs. 
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4.7. Functional characterisation of candidate transcription factors and 
modulators 

 

4.7.1. Reporter assays on Sox11 downstream promoters 
 

For the functional evaluation, a selection of candidate transcription factors and 

transcriptional modulators of the Sox11 interactome dataset was chosen, that 

presumably play a role in the modulation of neurogenesis, neuronal differentiation 

and maturation as well as in the maintenance of the neural precursor cell properties. 

As Sox11 is involved in the promotion of neurogenesis and neuronal maturation, the 

candidate-dependent regulation of Sox11 downstream promoters was established to 

investigate their influence on these neuronal processes. To that end the effects of 

MYT1, TCF4, TIF1b, YY1, CBX6 and ZNF24 on the Sox11-regulated promoters of 

Doublecortin and Stathmin1 were determined. 

 
4.7.1.1. Dual luciferase assay on the human DCX promoter 
 
The microtubule-associated protein Doublecortin (DCX) is considered as one of the 

earliest markers for immature neurons that are generated in neurogenic niches 

during adult neurogenesis (Brown et al., 2003). Recently, the DCX promoter has 

been shown to be activated by the SoxC proteins Sox11 and Sox4 in reporter assays 

using a DCX regulatory element coupled to luciferase (Mu et al., 2012). This 

previously identified 3.5 kb genomic region upstream of the human DCX ATG start 

codon which reliably induces expression of reporter genes and its activity overlaps 

with the endogenous expression of Doublecortin in neuronal precursors (Karl et al., 

2005) we applied for dual luciferase assay. Herein, firefly luciferase serves as 

reporter gene and renilla luciferase as transfection control, enabling normalisation of 

changes in transfection efficiency. The assay was carried out by co-transfection of 

the transcription-regulating proteins MYT1, TCF4, TRIM28, YY1, CBX6 and ZNF24 

together with the DCX-promoter/luciferase and the renilla luciferase constructs. 

Sox11 was applied as a positive control. The subsequently performed dual luciferase 

assay revealed a slight activation of the DCX-promoter by MYT1, CBX6 and ZNF24 

with fold changes of 4.8, 4.1 and 2.1 over control (empty vector plus luciferase 

plasmids) compared to the strong 93.6 fold activation of Sox11 (see figure 34A) with 

a significance p≤0.001. This led to the assumption that there might be some 
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cooperative effect of Sox11 and its interacting proteins greater than the regulation of 

the factors alone. Consequently, the experiments were implemented under co-

expression of each protein with Sox11 and the reporter constructs (see figure 34B), 

which resulted in the distinct 2.3 fold enhancement of DCX promoter activation by 

Myt1/Sox11 compared to Sox11 alone. Additionally, co-expression of Sox11 with 

TRIM28 and ZNF24 increased the ability of activating DCX with fold changes of 1.4 

and 1.7 over Sox11. On the contrary, TCF4/Sox11 and YY1/Sox11 led to 

respectively a 1.4 and 1.2 fold decreased promoter activity. To validate these 

observations, a shRNA-mediated knockdown of Myt1, Tcf4, Yy1 and Znf24 was 

implemented in Neuro2a cells and the reporter assays were repeated applying co-

expression of Sox11 with the knockdown constructs. A marked 1.66 fold decrease in 

the ability of promoter activation was detected for Myt1-KD/Sox11, as well as for 

Tcf4-KD/Sox11 (see figure 34C) compared to Sox11-dependent activation alone. In 

the case of Myt1 knockdown this decrease correlates with the elevated activation 

observed under over-expression suggesting a role for Myt1 in association with Sox11 

during the progress of early neuronal differentiation. The decrease in activation 

observed by TCF4 knockdown didn’t correlate with the increased activity under TCF4 

over-expression. In contrast, Yy1-KD/Sox11 increased the expression of the reporter 

protein firefly luciferase 1.3 fold compared to Sox11 alone, thus confirming the 

inhibitory effect monitored by over-expressing YY1/Sox11. 
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Figure 34:Dual luciferase assay on DCX promoter 
Reporter assay on DCX regulatory element was performed using firefly luciferase as reporter protein 
and renilla luciferase as normalisation control to level out different transfection efficiencies. Sox11 
over-expression served as positive control and empty vector plus luciferase plasmids as negative 
control (Ctrl). (A) MYT1, TCF4, TIF1b, YY1, CBX6, ZNF24 and empty vector control were over-
expressed alone or (B) co-expressed with Sox11, promoter activity is shown by fold change of firefly 
versus renilla luciferase over control (A) and Sox11, respectively (B). Effects of shRNA-mediated 
knockdown of Myt1, Tcf4, Yy1 and Znf24 combined with over-expression of Sox11 on the promoters 
are illustrated as fold change over Sox11 (C). Significance value of the 3x3 biological replicates is 
indicated by stars ( = p≤0.05,  = p≤0.01,  = p≤0.001). Error bars denote the standard error 
of the mean. 
 

4.7.1.2. Dual luciferase assay on the human STMN1  promoter 
 
Next, we explored if cooperation of Sox11 with these transcription factors also 

modulates the expression of other Sox11 downstream targets. Thus the same 

experimental workflow was applied to the regulatory element of the human Stathmin1 

(STMN1) gene which was recently identified as a putative direct transcriptional target 

of Sox11 (K. Doberauer, J. v. Wittgenstein, D.C. Lie, unpublished data). To this end, 

the human STMN1 promoter was coupled to firefly luciferase as reporter gene. The 

over-expression of the interactors alone showed a decrease of activation for TCF4, 

TRIM28, YY1 and ZNF24 normalised to the control, pointing out a basal activity of 

the STMN1 promoter construct, whereas Sox11 was found to regulate the promoter 

in a positive manner with a fold change of 2.8 compared to the control condition (see 

figure 35A). After the subsequent assay performing co-over-expression of each 

protein together with Sox11, a diminished promoter activity was observed for 

TCF4/Sox11, TRIM28/Sox11 and YY1/Sox11 by 1.3, 1.1 and 1.7 fold normalised to 
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Sox11-dependent regulation (see figure 35B). Here, MYT1/Sox11 showed only a 

slight shift of 1.1 fold towards activation. After knockdown of the proteins, this 

resulted in 2.3 fold decrease of Sox11-dependent promoter activity for Myt1 and in 

1.4 fold increase of the STMN1 promoter activation level for Yy1 (see figure 35C). 

These results were in line with the findings for the DCX regulatory element. 
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Figure 35:Dual luciferase assay on STMN1 promoter 
Reporter assay on STMN1 regulatory element was performed using firefly luciferase as reporter 
protein and renilla luciferase as normalisation control to level out different transfection efficiencies. 
Sox11 over-expression served as positive control and empty vector plus luciferase plasmids as 
negative control (Ctrl). (A) MYT1, TCF4, TIF1b, YY1, CBX6, ZNF24 and empty vector control were 
over-expressed alone or (B) co-expressed with Sox11, promoter activity is shown by fold change of 
firefly versus renilla luciferase over control (A) and Sox11, respectively (B). Effects of shRNA-
mediated knockdown of Myt1, Tcf4, Yy1 and Znf24 combined with over-expression of Sox11 on the 
promoters are illustrated as fold change over Sox11 (C). Significance value of the 3x3 biological 
replicates is indicated by stars ( = p≤0.05,  = p≤0.01,  = p≤0.001). Error bars denote the 
standard error of the mean. 
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4.7.2. In silico promoter analysis 
 

4.7.2.1. Consensus sequences of transcription factors 
 
The specific binding sites, where common transcription factors bind to DNA 

sequences were evaluated using the transcription factor database Matbase being 

part of the Genomatix Software. This analysis was performed for SOX11, MYT1 and 

YY1 and revealed specific consensus sequences for each transcription factor. 

According to the IUPAC nomenclature, the core sequence is illustrated in capital 

letters. Additionally, nucleotides with a conservation degree above 60% are depicted 

in bold. One binding site was available for SOX11, two were present for MYT1 and 

even three are recognised by YY1 (see figure 36). The transcription factor binds to 

the consensus sequence YY1.01 when it acts as activator, whereas it recognizes 

YY1.02 while exercising its repressive function. 

 

 
Figure 36:Consensus sequence logos of SOX11, MYT1 and YY1 
Sequence logos for SOX11, MYT1 and YY1 were designed from Matbase by Genomatix showing the 
probable composition of nucleotides in specific transcription factor binding sites. Capital letters denote 
the core sequence (usually 4 nucleotides), depicted in bold are nucleotides with a degree of 
conservation above 60%. For SOX11 one consensus was identified, whereas MYT1 recognises two 
specific binding sites on the DNA and YY1 even three consensus sequences. Binding to V$YY1.01 
allows YY1 to carry out its transcription activating function, while binding to V$YY1.02 is involved in 
YY1-dependent repression of promoter activity. 
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4.7.2.2. Transcription factor families with binding sites in DCX and Stmn1 
promoters 

 
The fragments of the human DCX and the STMN1 promoter, which were used in the 

reporter assays as well as their mouse corresponding sequences, were analysed by 

means of the CommonTF tool coupled with the MatInspector tool from the Genomatix 

software. This aimed to the identification of consensus sequences for selected 

transcription factor families in the promoters regions. Both regulatory regions of DCX 

(see figure 37A) and STMN1 (see figure 37B) in the organisms human and mouse 

were found to comprise a number of binding sites for the family of SOX (V$SORY) 

transcription factors, the MYT1 family (V$MYT1) as well as the YY1 (V$YY1F) family. 

The human DCX regulatory sequence includes several binding sites for members of 

the three families, whereas the mouse sequence only displays few binding regions. 

Within the human STMN1 promoter sequence a small number of binding sites for the 

analysed families is present. In contrast to that, the mouse region reveals only 

binding potential for transcription factors of the SOX family. The availability of binding 

sites for the three transcription factor families serves as a starting point for the 

deeper analysis of specific consensus sites recognised by the individual family 

members SOX11, MYT1 and YY1. 
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Figure 37:SORY, MYT1 and YY1 family  binding sites in DCX and STMN1 promoter  
The promoter sequences of human and mouse DCX (A) and Stathmin1 (B) were analysed via the 
Common TF and MatInspector tool from Genomatix Software for the assessment of consensus 
sequences of transcription factor families. Both regulatory regions exhibit binding sites for the matrix 
families of the SOX proteins (V$SORY), the MYT1 family (V$MYT1) as well as the YY1 family of 
proteins (V$YY1). 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 
 

4.7.2.3. Binding sites for SOX11, MYT1 and YY1 in DCX and STMN1 promoter 
 
The assessment of specific binding sites for the transcription factors SOX11, MYT1 

and YY1 in the regulatory regions of both DCX and STMN1 was performed by means 

of the Common TFs and MatInspector tools from the Genomatix software. For 

SOX11 (see table 13) the analysis revealed 10 binding sites in the human DCX 

promoter and 2 in the corresponding murine region. In the STMN1 promoter 4 

SOX11 consensus sequences were present in the human and 2 sites in the murine 

promoter. 

The search for specific binding sites resulted in 9 consensus sequences in the 

human and 7 in the murine DCX regulatory region for MYT1 (see table 13). The 



RESULTS 

 

121 

 

STMN1 promoter however, exhibited only one binding site in the human and no 

MYT1-specific site in the murine sequence. 

For YY1, The binding site analysis on the two promoter sequences resulted in one 

specific site in the human and 2 in the murine DCX promoter sequence (see table 

13). Additionally, one binding site was detected for the transcription factor in the 

human STMN1 promoter whereas no YY1-specific consensus sequence was present 

in the murine regulatory region of Stmn1. 

Additional analysis of transcription factor modules present with SOX11 in the 

regulatory sequences of the two immature neuron markers revealed an over-

representation of adjacent MYT1/SOX11 binding sites in the DCX and the STMN1 

promoter region (see table 14). Moreover, the transcription factor PHOX2B, that is 

part of the SOX11 interactome dataset, was found to be over-represented in the DCX 

promoter combined in a module with SOX11. Results are presented by calculated Z-

score values (Kreyszig, 1979). 

 

Table 13: SOX11, MYT1 and YY1 binding sites in DCX and STMN1 promoters 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

  Matrix human mouse 

D
C

X
 

V$MYT1.01 4 5

V$MYT1.02 5 2

V$SOX11.01 10 2

V$YY1.01 1 0

V$YY1.02 0 2

V$YY1.03 0 0

S
T

M
N

1 V$MYT1.02 1 0

V$SOX11.01 4 2

V$YY1.02 1 0
 

Table 14: Selected over-represented modules in human DCX and STMN1 promoters 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

Promoter Modules with V$SOX11.01 Matches Z-Score 

DCX 
V$PHOX2B.01 V$SOX11.01 9 12.46

V$MYT1.02 V$SOX11.01 2 2.32

STMN1 V$MYT1.02 V$SOX11.01 1 1.25
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4.7.2.4. Definition of models for the matrix families SORY/MYT1 and SORY/YY1 
 
By means of the Frameworker tool from the Genomatrix software, models for the 

combinations of transcription factor families SORY/MYT1 and SORY/YY1 were 

defined. For the analysis of the DCX promoter, the human and the mouse regulatory 

regions were used as input, due the conservation between the two species and the 

availability of consensus sequences for all three matrix families. The STMN1 

promoter, however, revealed only few binding sites for the evaluated transcription 

factors. Due to this fact, the STMN1 analysis was carried out by the combination of 

human STMN1 and DCX promoter sequences. This is enabled under the hypothesis 

of an estimated cooperative regulation of the two genes. Models, generated by 

Frameworker were defined and ranked according to several criteria, including the 

gap between the transcription factor binding sites, distance to the transcription start 

and matrix similarity. By using these standards, 11 models were found for 

SORY/MYT1 and 2 models for SORY/YY1 using the DCX promoter sequence (see 

table 15). For the combination of human DCX and STMN1 promoter 2 models were 

generated for SORY/MYT1 (see table 16).  

 
Table 15: Frameworker models of the human and mouse DCX promoter 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

Model  Element  Strand 
Matrix 

similarity 
Distance  Common to 

D_SORY/MYT1‐1 
V$MYT1   ‐  min. 0.76  25 ‐ 29 bp  3 matches in 2 seq. (100%), 

3 non‐overlapping V$SORY   +  min. 0.92    

D_SORY/MYT1‐2 
V$MYT1   ‐  min. 0.93  50 ‐ 59 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   +  min. 0.88    

D_SORY/MYT1‐3 
V$MYT1   ‐  min. 0.94  171 ‐ 179 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   +  min. 0.92 

D_SORY/MYT1‐4 
V$MYT1   ‐  min. 0.93  46 ‐ 54 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   +  min. 0.94    

D_SORY/MYT1‐5 
V$MYT1   ‐  min. 0.96  149 ‐ 152 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   ‐  min. 0.82 

D_SORY/MYT1‐6 
V$MYT1   ‐  min. 0.96  152 ‐ 161 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   ‐  min. 0.82    

D_SORY/MYT1‐7 
V$MYT1   +  min. 0.76  69 ‐ 77 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   +  min. 0.92 

D_SORY/MYT1‐8 
V$MYT1   +  min. 0.76  77 ‐ 82 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   +  min. 0.88    

D_SORY/MYT1‐9 
V$MYT1   +  min. 0.80  135 ‐ 140 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   +  min. 0.94 
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D_SORY/MYT1‐10 
V$MYT1   +  min. 0.88  140‐ 141 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   ‐  min. 0.83    

D_SORY/MYT1‐11 
V$MYT1   +  min. 0.76  99‐ 100 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   ‐  min. 0.82 

D_SORY/YY1‐1 
V$SORY   ‐  min. 0.88  106‐ 106 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$YY1F   ‐  min. 0.86    

D_SORY/YY1‐2 
V$SORY   ‐  min. 0.97  21‐ 25 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$YY1F   +  min. 0.96    

 

Table 16: Frameworker models of the human DCX and STMN1 promoter 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

Model  Element  Strand 
Matrix 

similarity 
Distance  Common to 

DS_SORY/MYT1‐1 
V$MYT1   +  min. 0.93  40 ‐ 48 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   ‐  min. 0.95    

DS_SORY/MYT1‐2 
V$MYT1   +  min. 0.88  141 ‐ 144 bp  2 matches in 2 seq. (100%), 

2 non‐overlapping V$SORY   ‐  min. 0.94    

 

4.7.2.5. Adjacent binding sites present in the DCX and STMN1 promoter 
sequence 

 
Although the generated models for the combinations of SORY/MYT1 and SORY/YY1 

comprise different members from the selected transcription factor families, they 

exhibit a high similarity of recognised consensus sequences to the selected 

candidates, which could also enable their binding. Thus, these models are 

appropriate for the identification of SOX11-, MYT1- and YY1-specific binding sites on 

the two promoter sequences. By means of the Common TF and MatInspector tools 

from Genomatix adjacent binding sites were detected according to the defined 

models.  

The human DCX promoter revealed two neighbouring binding sites for MYT1 and 

SOX11, according to the models D_SORY/MYT1-1, D_SORY/MYT1-11 and 

D_SORY/MYT1-4 (see table 17). In addition, adjacent binding sequences for YY1 

and SOX11 were present in the murine Dcx promoter, corresponding to the model 

D_SORY/YY1-1. Within these 4 models that are illustrated in figure 38, the binding 

regions are highlighted (see figure 38A).  

The search for binding sites in the human STMN1 promoter resulted in one pair of 

adjacent consensus sequences that are recognized by MYT1 and SOX11, 

corresponding to the model DS_SORY/MYT1-1 (see table 18). The binding region is 
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illustrated in figure 38B. Interestingly, the DCX-based model D_SORY/MYT1-4 was 

also found in the STMN1 sequence. 

 

Table 17: Binding sites in DCX according to defined models 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

Model Element Position Strand 
Matrix 
similarity 

Sequence 
SORY in the 
model 

human 

D_SORY/MYT1-11 
V$SOX11.01 330-354 - 0.94 atacaACAAtggatgggataataaa 

V$SOX30.01 
V$MYT1.02 436-448 + 0.90 aagAAGTtttaag 

D_SORY/MYT1-1 
V$MYT1.01 1361-1373 - 0.76 acaAAGTagacta 

V$SOX4.01 
V$SOX11.01 1384-1408 + 0.91 aaaaaACAAaaaaccagttgttgga 

D_SORY/MYT1-4 
V$MYT1.02 2607-2619 + 0.88 tacAAGTttgggg 

V$SOX12.01 
V$SOX11.01 2668-2692 + 0.93 ccagaACAAtgaaaggtgtgcttcc 

murine 

D_SORY/YY1-1 
V$YY1.02 1365-1387 - 0.95 cctggtCCATgtgctgagaatga 

V$HBP1.01 
V$SOX11.01 1383-1407 - 0.94 agttaACAAagagactcatacctgg 

 

Table 18: Binding sites in STMN1 according to defined models 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

Model Element Position Strand 
Matrix 
similarity Sequence 

SORY in 
the model 

DS_SORY/MYT1-1 
V$MYT1.02 618-630 + 0.98 ccaAAGTttggaa V$SOX9.02 

V$SOX11.01 660-684 - 0.91 cgagaACAAgggcagggcggagcag V$SOX9.02 

 

For the generated models, detected in the DCX or STMN1 promoters, Z-scores were 

calculated. Models were referred to as significant with Z-scores ≥ 1.96. According to 

that, the models D_SORY/MYT1-1, D_SORY/MYT1-11 and D_SORY/YY1-1, present 

in DCX as well as D_SORY/MYT1-4 and DS_SORY/MYT1-1, present in DCX and 

STMN1 were significantly enriched in the corresponding promoter sequence (see 

table 19). 

 
Table 19: Z-scores for detected models 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 

Model Promoter sequence  Hit Z‐score 

D_SORY/MYT1‐1  DCX  2 3.63

D_SORY/MYT1‐4  DCX  1 0.54

D_SORY/MYT1‐4  DCX+STMN1  2 2.23

D_SORY/MYT1‐11  DCX  1 2.01

D_SORY/YY1‐1  DCX  1 4.46

DS_SORY/MYT1‐1  STMN1  1 1.42

DS_SORY/MYT1‐1  DCX+STMN1  2 3.22
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Figure 38:Models detected in DCX and STMN1 promoters 
The four models for DCX (A) and one model for DCX/STMN1 (B), generated for the matrix families 
SORY/MYT1 and SORY/YY1 by Frameworker displayed adjacent binding sites within the human DCX 
(A) and STMN1 (B) promoter. Corresponding binding regions are highlighted in red. 
Data were generated by Dr. Dietrich Trümbach, Institute for Developmental Genetics, Helmholtz 
Zentrum München. 
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4.7.2.6. Genome-wide binding of defined models 
 
The models for the transcription factor families SORY/MYT1 and SORY/YY1 that 

displayed binding sites in the DCX and STMN1 promoter, respectively, were further 

analysed concerning their presence in all human promoters. The genome-wide 

binding was assayed by the ModelInspector tool from Genomatix. The obtained 

human promoters were subjected to Gene Ontology (GO) analysis. In particular, the 

models for the combined families SORY and MYT1 D_SORY/MYT1-1, 

D_SORY/MYT1-4 and DS_SORY/MYT1-1 displayed among others an enrichment of 

binding sites on promoters related to neuronal development (see figure 39). Within 

the model D_SORY/MYT1-1 15 biological processes, linked to brain, CNS and 

neuron development, generation and differentiation of neurons as well as ventricular 

zone neuroblast division (see figure 39A). NEUROD1, an important modulator of late 

neurogenesis downstream of SOX11 (Gao et al., 2009) is also enriched in this 

analysis. The model D_SORY/MYT1-4 was also found in 6 biological processes, 

related to neurogenesis, neuronal differentiation and development (see figure 39B). 

In this GO analysis, the STMN1 gene was enriched in the genome-wide screening. In 

addition to neuronal development and differentiation, the model DS_SORY/MYT1-1 

revealed different over-represented processes involved in neuroblast division and 

proliferation as well as neuron migration (see figure 39C). 
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Figure 39:Enriched biological processes in genome-wide analysis of SORY/MYT1 models 
Enriched biological processes and corresponding gene count of genes linked to neuron development 
from GO analysis in all human promoters of the models D_SORY/MYT1-1, D_SORY/MYT1-4 and 
DS_SORY/MYT1-1 with p≤0.01. 
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4.7.3. Expression pattern in the brain 
 

4.7.3.1. Allen Brain Atlas  expression data 
 
The expression patterns of selected Sox11 interactors in the murine brain were 

assessed using data from the mouse brain of Allen Brain Atlas (http://mouse.brain-

map.org/). For Myt1, Tcf4 and Cbx6 in situ hybridisations of sagittal mouse brain 

sections revealed expression in different brain regions, including the dentate gyrus of 

the hippocampal formation (see figure 40), where adult neurogenesis proceeds. The 

hybridisations for Trim28, Yy1 and Znf24 were very weak and thus didn’t enable 

reliable expression analysis. 

 

 
Figure 40:Expression in the mouse brain 
Expression data for Myt1, Tcf4, Trim28, Yy1, Znf24 and Cbx6 were acquired from the mouse brain 
data of Allen Brain Atlas (http://mouse.brain-map.org/). In situ hybridisation was performed on sagittal 
sections of the mouse brain. Myt1, Tcf4 and Cbx6 display distinct expression in the hippocampal 
formation. 
 

 

 

 

 

 

 

 

 



RESULTS 

 

129 

 

4.7.3.2. Expression in murine neuronal precursor cells 
 

To evaluate the possibility of Sox11 interaction with the identified candidate 

transcription factors and regulators under native conditions, the protein expression 

level in murine brain cells was determined. Therefore, neuronal precursor cells (NPC) 

isolated from the dentate gyrus of the adult mouse brain, one of the niches where 

adult neurogenesis takes place, were examined. Western blot analysis of nuclear 

lysates from NPCs compared to Neuro2a cells (N2A) revealed endogenous 

expression of Sox11, Myt1, Yy1 and Znf24 in the murine brain cells (see figure 41). 

For Tcf4, several isoforms were described previously (Sepp et al., 2011). In Neuro2a 

cells, 2 isoforms were expressed, whereas exclusively the smaller isoform was 

detected in the neuronal precursor cells. 

 

 
Figure 41:Protein expression in murine neuronal precursor cells and Neuro2a cells 
Western blot analysis was carried out using 30µg nuclear extracts of murine neuronal precursor cells 
(NPC) and Neuro2a cells (N2A) for SDS-PAGE. Sox11 as well as Myt1, Tcf4, Yy1 and Znf24 were 
detected by commercial antibodies. 
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5. Discussion 
 

5.1. Aptitude of different affinity purification strategies for Sox11 
interactome analysis 

 

The evaluation of different lysis conditions as well as the assessment of various 

immunoprecipitation and affinity purification methods followed by the final decision for 

the most promising strategy represents one of the most crucial parts in interactome 

analyses. From mass spectrometry based assays emerge analytical challenges 

relative to critical assessment of potentially identified interactors in furtherance of 

optimizing experimental conditions, while achieving an unbiased screening method 

revealing a reliable dataset. To that end, several parameters have to be considered 

for the unbiased evaluation. The first and probably most important issue one has to 

overcome is a sufficient enrichment level of the bait protein. The presence of an 

appropriate number of peptide identifications is crucial for the successful 

identification of interaction partners, as a considerable number of pulled down bait 

protein increases the probability of detecting endogenously low expressed interacting 

proteins. Furthermore, an appropriate dataset of identified co-purified proteins; and in 

case of quantitative approaches, the number of quantified proteins; are essential for 

the evaluation of different experimental and analytical parameters. Therefore, careful 

planning provides the possibility to unravel suboptimal experimental conditions that 

inhibit binding capacities, likewise inappropriate buffer conditions interfering with the 

purification system. Another important step in the assessment procedure of 

interactome analysis is the reproducibility of generated interaction data. There has to 

be an obvious overlap in interacting proteins when performing multiple biological and 

technical replicates. This is not only a matter of suitable purification methods or exact 

implementation of the workflow for each experiment, but can also be induced by the 

susceptibility of the highly sensitive mass spectrometers towards environmental 

contaminants and/or carryover of residual contaminations from previous runs. For 

interactome analysis, the expression level of the protein of interest could vary 

dramatically with transient transfection efficiency. Whereas, the endogenous 

expression is closer to the cell physiological conditions, this approach raises several 

challenges. First, one has to find a suitable cell line that expresses the protein on a 

certain level and second, co-immunoprecipitation of endogenous proteins requires 
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the availability of applicable antibodies. For the transcription factor SOX11, which we 

chose as bait for the interactome study, the selected neuroblastoma cell line Neuro2a 

exhibited a basal protein expression. Other, probably more beneficial cell lines for the 

investigation of neurogenesis-related regulatory processes like neuronal precursor 

cells isolated from neurogenic niches of adult mouse brains were excluded due to the 

dramatic loss of SOX11 expression after several passages in culture. Additionally, 

these cells present limitation with sufficient expansion to gain a suitable amount of 

nuclear lysates, which was required for an efficient immunoprecipitation assay. 

Commercially available anti-SOX11 antibodies were classified as not suitable for the 

pull down experiments due to inefficient enrichment of SOX11 combined with 

changing performance of polyclonal antibodies from different charges and high costs 

for the application in multiple experiments. However, one group performed in 2012 

co-immunoprecipitations using a commercial anti-Sox11 purchased from Santa Cruz 

for pull down assays in mouse embryonic kidney cells on endogenous level. Hence, 

they were able to validate the interaction of SOX11 with WT1 (Wilm’s tumor 

suppressor gene 1), a factor that regulates the WNT4 gene, which is involved in 

nephrogenesis together with SOX11 in a synergistic fashion (Murugan et al., 2012). 

This could result from higher SOX11 expression levels in the applied cell system 

compared to the Neuro2a cells. Moreover, they only investigated the co-precipitation 

of one protein, therefore no complete interactome was determined. In this present 

study, the applied strategy to overcome the lack of appropriate anti-SOX11 

antibodies was the production of peptide- as well as protein-based monoclonal 

antibodies in house using a SOX11-specific protein recombinant epitope signature 

tag (PrEST) for immunisation. It represents a unique SOX11 specific fragment 

comprised of 117 amino acids, designed by an antigen design software, which is not 

part of transmembrane regions or signal peptides (Uhlen et al., 2010). Extensive 

screenings revealed several antibodies suitable for western blot analysis, as 

illustrated in figures 17-19. However, they were not applicable in co-

immunoprecipitation assays, displayed in figure 20. This effect could be caused by 

an impaired binding capacity of the antibodies to the natively folded protein 

compared to the denatured transcription factor in western blotting. Additionally, the 

basal endogenous expression level of SOX11 may not provide sufficient material for 

an efficient precipitation. Finally, the endogenous co-immunoprecipitation of SOX11 

was not realisable given the circumstances. On that account, affinity purifications 
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were selected as the method of choice for the interactome screen. This strategy 

enables the use of tagged SOX11 constructs and thus circumvents the need for 

specific antibodies. A combined  Strep FLAG  tag (SF-TAP tag), comprised of a 

tandem Strep II and one single FLAG tag, suitable for highly efficient Strep FLAG 

tandem affinity purification (SF-TAP) as published before (Gloeckner et al., 2007) 

was fused to the N-terminus of the recombinant SOX11 expression construct via 

Gateway Cloning. Both parts of the two-step affinity purification strategy are also 

suitable for the performance as one-step purifications. The quantitative mass 

spectrometric approach applied for SOX11 interactome analysis using SILAC 

labelling was based on ratios quantification by comparing identified peptides of the 

experimental versus the control condition, leading to the discrimination of specific or 

unspecific identified binding partners. Consequently, a certain number of unspecific 

signals was required for a reliable interpretation of performed affinity purifications. As 

for the single-step Strep purification method in general, a relative high number of 

unspecific binding partners compared to the more pure FLAG affinity purifications 

was observed, this strategy was initially applied for the implementation of the SOX11 

interactome. However, the presence of high salt concentrations in the nuclear 

extraction buffer C, which is needed to extract proteins efficiently from the nucleus, 

appeared to interfere with the buffer system of the Strep purification and inhibited 

binding of SOX11 to the Strep-Tactin matrix, as illustrated in figure 21. Reducing the 

NaCl concentration from 420mM to 210mM in the nuclear lysate preparation 

workflow led to a recovered binding capacity of the Strep II tag to the beads, but at 

the same time the quality of the obtained interaction partner list was not satisfying. 

This brought up the assumption of an incomplete extraction of nuclear proteins 

caused by the decreased salt concentration. The Strep purification method is suitable 

for the pull down of proteins from bacteria lysates as well as eukaryotic cytoplasmic 

proteins (Schmidt and Skerra, 2007), but it was not applied in many studies working 

with nuclear lysates, although one group claimed the robustness of Strep II–mediated 

purifications up to a NaCl concentration of 400mM in the reaction buffer concerning 

the efficiency of bait protein precipitation (Junttila et al., 2005). However, they did not 

mention the yield of interaction partner pull down, that were for sure much less 

expressed in relation to the protein of interest and were potentially not extracted to 

the same extend as usual under the high salt conditions. Another study implicating 
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the determination of the SOX2 interactome in embryonic stem cells reported the 

application of Strep pull down assays for the validation of interactors identified by 

FLAG affinity purification on western blot analysis (Gao et al., 2012). Here, the 

nuclear extraction was carried out using a kit where the salt concentration was not 

indicated. Furthermore, the Strep purification was performed in reaction buffers 

comprising solely 150mM NaCl. More frequently, FLAG affinity purifications were 

used for the analysis of nuclear protein complexes, like in an interactor screen of 

SOX2 in murine neural stem cells stably expressing SOX2 (Engelen et al., 2011). 

Consequently the FLAG one-step purification was applied for the Sox11 interactome 

analysis, where best performance was observed with the original nuclear extraction 

buffer conditions, comprising 420mM NaCl, as displayed in figure 22. In order to be 

closer to the physiological SOX11 level, stable SOX11 expression cell lines were 

included in the purification procedure, however the small number of detected 

peptides specific for SOX11 due to the low expression state rendered an interactome 

screen impossible. On that account, the FLAG pull down assays were conducted 

using transiently over-expressed SF-TAP tagged SOX11. The subsequent 

Methanol/Chloroform precipitation followed by in-solution tryptic digestion turned out 

to be the optimal sample preparation, as by the use of in-gel pre-fractionation peptide 

identification rates for the bait as well as for the interacting proteins decreased. This 

illustrated that the sample was rather pure than complex, which rendered a pre-

separation unnecessary, as every redundant step results in sample loss. The 

implementation of 6 independent experiments, thereof 3 including reverse labelling 

and subsequent data analysis revealed a list of interactors either considered as 

specific or non-specific. The obtained high purity of the performed FLAG affinity 

purifications due to the high affinity of the FLAG tag to the matrix compared to the 

Strep tag (Gloeckner et al., 2007) led to a not exactly Gaussian distribution of the 

data, which were shifted towards the SOX11 condition, as illustrated in figure 22. 

That implies that the low abundance of unspecific binders which were needed to a 

certain extend for the quantification of specific signals and ratios calculations led to 

the assignment of genuine SOX11 interaction partners as not significantly enriched. 

To overcome this problem of data evaluation, a threshold was set manually, defining 

all proteins as significant interaction partners of SOX11 that revealed SOX11/control 

ratios above a value of 2. 
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5.2. Sox11 interactors are involved in transcriptional regulation and 
modulation of neurogenesis 

 

The development-regulating transcription factor SOX11 is heavily involved in the 

regulation embryonic and adult neurogenesis. During this process, it plays a pivotal 

role in neural fate commitment of neuronal precursor cells. This is underlined by the 

distinct expression of SOX11 in neurogenic niches of the adult brain, limited to the 

early stage of immature neurons (Haslinger et al., 2009) and the absolute necessity 

of SOXC proteins for the efficient differentiation of murine neuronal precursor cells 

into neurons (Mu et al., 2012). In addition, it initiates the expression of neuron-

specific proteins, like the cytoskeleton-associated early neuronal markers DCX 

(Haslinger et al., 2009, Mu et al., 2012), β-tubulin III (Bergsland et al., 2011, 

Bergsland et al., 2006), MAP2 (Hoser et al., 2008) and Drebrin (Song et al., 2008, 

Wang et al., 2010). The importance of SOX11 for a directed development and proper 

formation of the central nervous system is illustrated by the recent discovery of 

Sox11 deletions and mutations being associated with Coffin-Siris syndrome, a 

congenital disorder characterised by intellectual disability, growth deficiency, 

microcephaly, characteristic facial features and hypoplastic nails of the fifth fingers or 

toes (Lo-Castro et al., 2009, Tsurusaki et al., 2014). Furthermore, in the same study 

knockdown of SOX11 in zebrafish revealed brain malformations. Altogether these 

results point to SOX11 deletion and mutations being linked to the symptom of 

intellectual disability. Previous models for stem cell maintenance and neuronal 

differentiation laid the focus on the investigation of transcriptional core regulatory 

networks, determining the cellular expression profiles and identities by physical 

interactions and promotion of expression programs (Chen et al., 2008, Hobert, 2011). 

Thus, they were able to gain further insight into the integration of signalling pathways 

and identified targeted chromosomal regions by the determination of underlying 

regulatory networks. This present study aims to identify a core regulatory 

transcriptional network that contributes to the determination of early neuronal identity 

and provides further knowledge about the SOX11-dependent progress of neuronal 

fate commitment, differentiation and maturation during adult neurogenesis. The 

obtained SOX11-associated biochemical interactions serve as basis for the 

cooperation of different transcriptional modulators and transcription factors on the 

activation of neuronal gene programs. The current state of knowledge about the 
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interaction of SOX11 with other proteins is very sparse. Previously, SOX11 was 

found to cooperate with POU3f3 and POU3f2, two members of the neurogenesis-

related POU-III class of transcription factors in reporter assays (Kuhlbrodt et al., 

1998). Additionally, a transcriptional regulatory network, consisting of SOX11, the 

transcription factor Nuclear factor 1b (NFIB) and POU3F4, another member of the 

POU-III family was found to promote neurogenesis, underlining the relevance of 

SOX11 interaction with this family of transcription factors in vivo (Ninkovic et al., 

2013). The present dataset of SOX11 interactors, which was acquired by FLAG 

affinity purifications combined with SILAC labelling and quantitative mass 

spectrometry is listed in table 20 and comprises mainly nuclear proteins. This 

confirms the efficiency of the nuclear extraction procedure and the low rate of 

cytoplasmic contaminations. The identified proteins can be divided into different 

subgroups according to their functions.  

Among them, few proteins are involved in cytoskeleton organisation, ribosome 

biogenesis and vesicular trafficking. Both the nuclear transport and export of vesicles 

as well as ribosome formation are central nuclear processes. The proper synthesis of 

the ribosome enables in later steps the translation of mRNA in the cytoplasm. The 

enrichment of ribosome-associated proteins is underlined by the three hits rRNA 

processing, rRNA metabolic process and ribosome biogenesis in the GO analysis of 

biological processes for the interacting proteins in figure 29. The nucleus possesses 

its own filamental network, the so called nucleoskeleton that is located at the inner 

nuclear membrane and is involved in cellular signalling, but is also responsible for the 

maintanance of nuclear structure, the positioning  and migration as well as 

preventing it from rupture (Wang et al., 2009, Wilson and Berk, 2010). Moreover the 

linkage of components of the cytoskeleton like microtubules, centrosomes, actin 

filaments, or intermediate filaments is mediated by the nuclear envelope bridging 

proteins KASH and SUN (Starr and Fridolfsson, 2010). Notably, nuclear migration is 

also an important step in neuronal migration and neurogenesis in both proliferative 

and post-mitotic phases. Interestingly, the cellular motility in neuronal precursor cells 

is dependent on the nuclear migration (Baye and Link, 2008). Furthermore, SOX11 is 

linked to the cytoskeleton, as it induces the expression of the cytoskeleton-

associated proteins DCX (Haslinger et al., 2009, Mu et al., 2012), β-tubulin III 

(Bergsland et al., 2011, Bergsland et al., 2006), MAP2 (Hoser et al., 2008) and 

Drebrin (Song et al., 2008, Wang et al., 2010). These SOX11-regulated proteins are 
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involved in the process of neurogenesis, as exemplarily shown for DCX, which 

represents a microtubule stabilising protein, that is involved in early neuronal 

migration (des Portes et al., 1998, Francis et al., 1999). Although SOX11 is known to 

activate promoters of cytoskeletal proteins, no evidence was present from previous 

studies that point to the direct interaction of the transcription factor with members of 

this group of proteins.  

However, the majority of SOX11 interacting proteins are referred to as RNA-binding. 

Both RNA- and poly(A)RNA-binding are the first two hits comprising the highest gene 

counts in the gene ontology for molecular function enrichment analysis in figure 28. 

RNA-binding proteins are considered as important regulatory factors in the cell as 

they are implicated in a variety of functions. There are proteins involved in the 

process of splicing, like the identified splicing regulator RBM4 (Lai et al., 2003), or 

RBM28, which is part of the spliceosomal snRNPs, forming the spliceosome together 

with pre-mRNA (Damianov et al., 2006). ZNF326 was identified to be part of the 

DBIRD complex, regulating alternative splicing events and transcript elongation 

through binding of RNA polymerase II (Close et al., 2012). Additionally, snRNA-

stabilising proteins, playing a role in the splicing machinery, like MEPCE were 

identified (Jeronimo et al., 2007). With YTHDYF2 and ZC3H18 also RNA-binders 

responsible for mRNA stability and nuclear export after intron removal are present in 

the dataset (Chi et al., 2014, Wang et al., 2014). These proteins can also act as 

cofactors for the activation or repression of transcription. The determined SOX11 

interactors RBM4, a corepressor and CoAA (RBM14), a coactivator are regulators of 

both alternative splicing and transcription, that are involved in the differentiation of 

neural stem cells and precursor cells (Auboeuf et al., 2004, Kar et al., 2006). The 

trans splicing of the two neighbouring genes during neural stem cell differentiation 

results in alternative variants that regulate the expression of the microtubule-

associated protein Tau together with CoAA and RBM4 by balancing their splicing 

activities (Brooks et al., 2009). An interaction with SOX11 may lead to a recruitment 

of the two coregulators to SOX11 target genes in order to cooperately influence their 

expression and induce alternative splicing to produce the needed variants for the 

differentiation stages. Notably, transcription cofactor and corepressor activity include 

many SOX11 interactors in the overrepresented GO molecular functions. MSI1, 

another neuron-specific RNA-binding protein was identified. Due to its expression 
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restricted to neuronal precursor cells in both the embryonic and adult central nervous 

system, it exhibits a putative role in the self-renewal of neural stem cells or the 

progress of neuronal differentiation. (Sakakibara et al., 1996, Sakakibara and Okano, 

1997). This resembles the expression pattern of SOX11 in neurogenic niches of the 

adult brain (Haslinger et al., 2009).  

Furthermore, the interactome comprises a variety of modulators that influence 

transcription in an epigenetic manner. Amongst them are the DNA helicases CHD8 

and SMARCAD, as illustrated by the SOX11 protein-protein interaction network inf 

figure 27. The DNA-binding and unwinding protein CHD8 is involved in neural 

development of neuronal precursor cells and is considered to be a strong risk factor 

for Autism Spectrum Disorder (ASD) (Sugathan et al., 2014). Interestingly, it interacts 

with another DNA helicase of the same family, CHD7 (Batsukh et al., 2010), which is 

a susceptibility gene for CHARGE syndrome, a congenital disorder characterised by 

choanal atresia and malformations of the heart, inner ear and retina, when it is 

mutated (Pagon et al., 1981, Vissers et al., 2004). Recently, CHD7 was found to 

physically interact with SOX2 in neural stem cells and was in addition identified as 

cofactor for SOX2. The two proteins regulate synergistically a set of common target 

genes associated with CHARGE syndrome or SOX2-dependent anophthalmia 

syndrome, a severe structural eye malformation (Engelen et al., 2011, Fantes et al., 

2003). Recently, CHD7 was identified as an important driver of neurogenesis as it 

was able to activate the expression of SOX4 and SOX11 by chromatin remodelling of 

their promoters (Feng et al., 2013). The DNA helicase SMARCAD1 is involved in the 

formation of heterochromatin, by induction of histone methylation that is formed for 

proper DNA replication (Rowbotham et al., 2011). The terms helicase activity as well 

as chromatin binding are enriched in the GO molecular functions analysis for the 

SOX11 interactome dataset. Additionally, chromatin and chromosome organisation, 

chromatin modification and assembly are part of the enriched biological processes, 

pointing to the large group of epigenetic modulators in the Sox11 interacting proteins. 

Several histones were identified together with methyltransferases that act as 

coactivators like KMT2A (Nakamura et al., 2002) or corepressors of gene expression 

like WHSC1 (Garlisi et al., 2001) and EHMT1 (Ogawa et al., 2002) by histone 

methylation. Notably, mutations in EHMT1 are linked to intellectual disability, similar 

to SOX11 (Kleefstra et al., 2012). The regulator KMT2A was recently found to 

modulate neural progenitor cell proliferation as well as neural and glial differentiation 
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(Huang et al., 2014). We identified as well FRG1, a regulator of methytransferases 

and the zinc finger protein WIZ, a linker between two methyltransferases that enables 

binding of a corepressor (Neguembor et al., 2013, Ueda et al., 2006). Another group 

of epigenetic chromatin remodellers are the acetyltransferases, which are 

represented by NAT10 and TRRAP leading to transcriptional activation (DeRan et al., 

2008, Lv et al., 2003).  

An additional important group of regulatory proteins are components of the polycomb 

group (PcG) complexes. These chromatin-modifying proteins are involved in the 

epigenetically controlled repression of gene expression programs. They play a crucial 

role in the regulation of many biological processes like cell cycle control, X-

inactivation, cell fate commitment, maintenance of pluripotency in embryonic stem 

cells, cancer and other critical developmental mechanisms (Aloia et al., 2013, Muller 

and Verrijzer, 2009, Richly et al., 2011). The deletion of polycomb protein encoding 

genes led in mice to an impairment of ES cell formation (O'Carroll et al., 2001). 

Epigenetically regulatory proteins assemble to diverse protein complexes, however 

the two best characterised are the polycomb repressive complexes 1 (PRC1) and 2 

(PRC2). PCR2 mediates trimethylation of lysine-27 (K27) of histone H3 via 

methyltransferase activity, catalysed by the component EZH2 (Margueron et al., 

2008). The other mammalian complex-building proteins SUZ12 and EED support 

complex stability and ensure EZH2-mediated enzymatic activity (Margueron et al., 

2009, Pasini et al., 2004). The active catalytic PRC2 compound EZH2 was identified 

in several runs of SOX11 FLAG affinity purifications, but was not considered as 

significant interactor, due to a weak or unstable binding to the bait during the 

purification step. Nevertheless, the association of SOX1 to the polycomb group of 

proteins is illustrated by the determined interaction of the transcription factor with 

components of the PRC1 complex. It is composed of the 5 polycomb proteins (Pc) 

CBX2, CBX4, CBX6, CBX7 and CBX8, the 3 polyhomeotics (PH) PHC1, PHC2 and 

PHC3, the 2 sex combs extra (SCE) RING1/RING1A and RING2/RING1B that are 

also known as RING and six posterior sex combs (PSC), which are termed as 

polycomb group ring fingers (PCGF) (Morey and Helin, 2010). The complex achieves 

its transcription repressive activity through CBX-mediated binding of K27 on histone 

H3 already trimethylated by PCR2 (Cao et al., 2002). Sox11 was found to interact 

with the CBX proteins CBX2, CBX4, CBX6 and CBX8, representing 4 of the 5 
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polycomb proteins of PRC1 essential for the recruitment and binding of the complex 

to the histone H3. They are displayed and connected in the SOX11 protein-protein 

interaction network in figure 27. The different domains of the polycomb proteins 

enable specific functions. The chromodomains mediate interaction with the histone 

H3 and thus promote stability of the complex and helps its recruitment to particular 

chromatin regions, whereas it was observed that the 5 CBX proteins enable binding 

to different methylated histone tails (Bernstein et al., 2006). Furthermore, they 

possess a C-terminal polycomb repressor box that mediates binding to other 

complex compounds like RING1B and is involved in transcriptional silencing 

(Bezsonova et al., 2009, Muller et al., 1995) as well as a DNA-binding domain 

(Senthilkumar and Mishra, 2009). Moreover the SCE protein RING1B (also known as 

RNF2), a gene regulating E3 ubiquitin ligase responsible for histone H2A 

monoubiquitination (Wang et al., 2004) and interacting with CBX proteins was 

identified. The polyhomeotic PHC2, that is involved in the transcriptional repression 

of Hox genes in embryonic development in cooperation with PHC1 (Isono et al., 

2005) was also co-precipitated with SOX11. The absence of the remaining PRC1 

components in the obtained interactome dataset could be based on obstacles with 

the experimental procedure or inefficient identification rates of low abundant peptides 

by mass spectrometry that are overlayed by high abundant peptides or contaminants 

from previous runs, resulting in impaired recognition of residual polycomb proteins. 

There is a link of the polycomb complex to neuronal differentiation, as the CBX 

proteins were co-precipitated with REST in embryonic stem cells and differentiating 

neurons and found to cooperatively act on the regulation of neuron-specific genes. 

(Ren and Kerppola, 2011). REST was initially characterised as repressor of neural 

genes in non-neural cells (Chong et al., 1995), but growing evidence suggests a role 

in silencing of neural genes and regulation of neural fate decisions during neuronal 

development (Ballas et al., 2005, Kuwabara et al., 2004) through interaction with Co-

REST (Qureshi et al., 2010). The close homologue of Co-REST RCOR2 was part of 

the SOX11 interactome, as illustrated in figure 27. It plays a role in the maintenance 

of pluripotency in embryonic stem cells being a part of the LSD1 complex and 

substitutes for SOX2 in the reprogramming of somatic cells into iPS cells (Yang et al., 

2011). The identified SOX11 interactor and transcriptional corepressor CTBP1 is also 

associated with the LSD1 complex (Shi et al., 2003). On the basis of these findings 

and the overrepresentation of chromatin modifying proteins, an interaction of SOX11 
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with chromatin remodellers like during neural fate commitment is a conceivable 

hypothesis. The abnormal spindle homolog, microcephaly associated protein (ASPM) 

that was found to interact with SOX11 is expressed in proliferating tissues and is 

responsible for the proper formation of the spindles during mitosis (Kouprina et al., 

2005). Moreover, homozygous mutations of ASPM are the major cause of an 

autosomal recessive primary microcephaly (MCPH) through an incorrect regulation of 

mitotic spindle activity in neuronal precursor cells of the developing brain (Bond et al., 

2002). Besides, proliferating progenitors of the adult brain express ASPM that 

ensures self-renewal properties and multipotency of the cells, prior commitment to 

neuronal fate and differentiation into neurons (Marinaro et al., 2011). Of special 

interest, we identified the interaction of SOX11 with tripartite motif containing 28 

(TRIM28), also referred to as transcription intermediary factor β (TIF1b). TRIM28 acts 

as a gene control expression cofactor that binds to chromatin-modifying proteins and 

transcriptional repressors like KRAB domain containing zinc finger transcription 

factors. Furthermore, It is known to act as a scaffold for heterochromatin formation 

and the consequent repression of transcription by recruiting heterochromatin protein 

1 (HP1), the histone methyltransferase SETDB1 and the histone deacetylase–

containing complex NuRD (Sripathy et al., 2006, Urrutia, 2003). Additionally, the 

interaction of TRIM28 with HP1 was found to be essential for the course of 

differentiation in a modified embryonic carcinoma F9 cell line (Cammas et al., 2004). 

Another group identified TRIM28 as an important regulator in the maintenance of 

pluripotency in embryonic stem cells in a phosphorylation-dependent fashion (Seki et 

al., 2010). In these cells, the scaffold protein is phosphorylated at the C-terminal 

serine 824 (S824), which is known to activate chromatin relaxation (Ziv et al., 2006). 

The modification was found to be critical for the maintenance of pluripotency in 

mouse ES-cells, as the phosphorylation was present in the majority of pluripotent 

cells but not in most of the cells undergoing differentiation and absent in other 

somatic cell lines. Furthermore, the phosphorylation of S824 promotes the induction 

of iPS-cells from somatic cells, which implicated a shortened induction time in the 

generation of iPS cells. Moreover, the expression of pluripotency markers was 

increased compared to iPS cells comprising the non-phospholylated state of TRIM28. 

Notably, overexpression of TRIM28 in ES-cells resulted in a prolonged expression of 

pluripotency-specific transcription factor OCT3/4 and SSEA1, an embryonic stem cell 
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specific marker, pointing to an extension of the multipotent phase. In contrast, 

knockdown of the cofactor resulted in a reduced Nanog and SSEA1 expression, 

leading to the loss of pluripotency. When S824 is modified, TRIM28 localises to 

transcriptional active euchromatin, which suggests a phosphorylation-dependent 

contribution for TRIM28 in the activation of pluripotency markers. Additionally, it 

assembles to a complex with OCT3/4 and the components SMARCAD1, BRG-1 and 

BAF155 of the chromatin remodelling complex eBAF that is specific for ES-cells 

(Seki et al., 2010). These findings indicate that TRIM28 acts as a switch between the 

pluripotent stage of cells and induction of differentiation. According to the knowledge 

from these previous publications, an interaction of TRIM28 with SOX11 would be 

possible during the progression of neurogenesis at the step of neural fate 

determination. Potentially, C-terminally non-phosphorylated TRIM28 could serve as 

cofactor for SOX11-mediated regulation of early neuronal genes. 

Another particularly interesting and important group of SOX11 interactors are the 

transcription factors, as reporter assays and in silico promoter analyses for adjacent 

binding sites can reveal synergetic cooperation with SOX11 on gene expression 

programs involved in neurogenesis. The Krüppel-like zinc finger transcription factor 

ZFP281 plays a role in the control of stemness in embryonic stem cells, as it is 

capable of activating and silencing several genes. It was shown to interact with 

OCT3/4, SOX2 and Nanog, three key regulators of pluripotency. Furthermore it 

exhibits binding sites in the promoters of the three transcription factors and was 

detected to activate Nanog expression (Wang et al., 2008). Furthermore the 

promoter of the zinc finger protein was identified as target of SOX4 in a chromatin 

immunoprecipitation screen in prostate cancer cells (Scharer et al., 2009). The 

SOX11 interactor NACC1, a BTB domain containing protein (Mackler et al., 2000) 

that acts as transcriptional corepressor also interacts with Nanog in an embryonic 

stem cell interaction screen, pointing to a role for the cofactor in the regulation of 

pluripotency (Wang et al., 2006). The transcription factor SP1, which was obtained in 

the SOX11 interactome study is capable of influencing transcription in a variety of 

cellular processes in both activating and repressing manner, also in combination with 

other transcription factors (Han et al., 2001, Infantino et al., 2011). Its activity is 

dependent on stimuli and can be altered by posttranslational modifications (Yang et 

al., 2001). Additionally, it is involved in the process of chromatin remodelling (Vicart 

et al., 2006, Zhang et al., 2006). The multifunctional transcription factor possesses 
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binding sites in the regulatory regions of SOX3, SOX14 and SOX18 and data point to 

an implication of SP1 in the basal activation of the SOX3 gene (Kovacevic-Grujicic et 

al., 2008, Kovacevic Grujicic N. et al., 2005). SOXB1 proteins like SOX3 are 

expressed in the neuronal precursor state during neurogenesis and join SOX2, which 

is implicated in the maintenance of pluripotency. As 95% of their target sites overlap, 

their functions seem to be at least in part redundant. Notably, the genome-wide 

binding profile of SOX3 in NPCs shows also a large overlap with the SOX11 binding 

sites in immature neurons (Bergsland et al., 2011), thus increasing the probability of 

a SOXB1 factor reactivation in later stages of neural fate commitment and mature 

neurons, where they exert other functions than in neuronal precursors. These 

observations were reported by other groups (Ferri et al., 2004, Malas et al., 2003). 

The assumption of a reappearance of SOX3 in later developmental stages would 

enable an implication of SOX11 as a cofactor in the activation of SOX3 downstream 

gene expression. In this way, the interacting transcription factors SOX11 and SP1 

could cooperatively bind to the identified SP1 binding sites and activate the SOX3 

promoter.  

The identified SOX11 interacting protein ZNF423 belongs to the kruppel-like zinc 

finger family of transcription factors and was previously shown to be involved in the 

regulation of olfactory-receptor neuron differentiation by inhibition of the 

differentiation-promoting OLF-1/EBF transcription factors (Wang and Reed, 1993, 

Wang et al., 1997). It represses their activity by binding and preventing them from 

accessing specific promoter sites.(Tsai and Reed, 1997). Overexpression of ZNF423 

in mature olfactory-receptor neurons resulted in reappearance of immature neuron 

markers, indicating a role for the transcription factor in the switch from differentiation 

to maturation (Cheng and Reed, 2007). The implication of SOX11 in neural fate 

decisions and neuronal maturation promotes the formation of new neurons in the 

dentate gyrus as well as in the olfactory bulb (Zhao et al., 2008). This functional and 

expression region overlap gives rise to a possible cooperation of SOX11 with the 

olfactory neuron development influencing zinc finger ZNF423. The paired-like 

homeobox 2b (PHOX2B), a transcription factor which is a member of the paired 

family of homeobox proteins was identified in the Sox11 interactome as well as heart 

and Neural crest derivatives expressed 2 (HAND2), which is part of the basic helix-

loop-helix family of transcription factors. Peripheral ganglia of the autonomous 
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nervous system derive from neural crest cells. The transcription factor network of 

PHOX2B, HAND2 and GATA3 was initially identified as key regulators of early 

specification and differentiation of sympathetic neurons, but it was also found to be 

involved in later developmental stages of the peripheral nervous system like 

neurogenesis and maintaining subtype-dependent markers and features (Howard, 

2005, Rohrer, 2011). The neural crest differentiation process into sympathetic  

ganglia is bone morphogenic protein (BMP)–dependent, thereby, a variety of 

transcription factors, namely PHOX2A, PHOX2B, ASCL1, INSM1, HAND2, GATA2⁄3, 

SOX4 and SOX11 are implicated (Howard et al., 2000, Tsarovina et al., 2008, 

Wildner et al., 2008). Knockdown of HAND2 and SOX11 led to a decreased number 

of precursor cells and immature sympathetic neurons (Hendershot et al., 2008, 

Potzner et al., 2010). PHOX2B was additionally found to be enriched in a module 

with SOX11 on the human DCX promoter, displayed in table 14, but the function of 

the transcription factor was not further assessed, as we concentrated on CNS-related 

neurogenesis in this study. 

Notably, SOX11 interacts with TCF4, a transcription factor belonging to the class I 

basic helix-loop-helix (bHLH) family of proteins recognising Ephrussi-box (E-box) 

binding sites with the core consensus sequence CANNTG on DNA strands (Henthorn 

et al., 1990). Members of this group of transcriptional regulators form homodimers or 

heterodimers with class II bHLH transcription factors to enable binding to common 

DNA sequences and induce activation of gene expression (Murre et al., 1989). The 

ubiquitously expressed TCF4 is involved in many biological processes; in particular it 

plays an important role in neuron development. In the brain it is expressed in neurons 

whereas in the spinal cord it is restricted to oligodendrocytes, where it is implicated in 

their maturation process (Fu et al., 2009). The functional relation to CNS 

development is underlined by interactions of TCF4 with important regulators, like 

NEUROD2, a neurogenic bHLH protein among others involved in the activation of 

neurogenesis and survival of neurons (Farah et al., 2000, Olson et al., 2001). When 

assembling to a complex, TCF4 and NEUROD2 are able to induce neurogenesis 

(Ravanpay and Olson, 2008). The TCF4 gene encodes for two main isoforms, A and 

B, with B acting as a transcriptional repressor that silences for example the brain 

specific growth factor FGF1 (Liu et al., 1998), and with isoform A not displaying 

repressive functions (Skerjanc et al., 1996). Interestingly, heterozygous mutations or 

deletions of the TCF4 gene have been identified as the main genetic cause for Pitt-
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Hopkins Syndrome (Amiel et al., 2007, Brockschmidt et al., 2007, Zweier et al., 

2007). This is a rare syndromic disease, first described in 1978 by Pitt and Hopkins, 

that is characterised by serious intellectual disability, developmental delay, absence 

of speech, distinct facial gestalt and hyperventilation coupled to apnoea (Marangi et 

al., 2011, Pitt and Hopkins, 1978, Takano et al., 2011). Additionally, genetic 

variations in the TCF4 gene are associated with schizophrenia by genome wide 

association studies (Stefansson et al., 2009, Steinberg et al., 2011). Moreover, single 

nucleotide polymorphisms in TCF4 are linked to Fuch’s Corneal Dystrophy (Baratz et 

al., 2010, Li et al., 2011), a common eye disorder, hallmarked by the development of 

collagen-free regions in the cornea, potentially caused by cell death (Meek et al., 

2003). The crucial role for TCF4 in brain development as well as the association of 

Transcription factor 4 with disorders characterised by intellectual disability could point 

to a cooperative interaction with Sox11 on neural target genes, as SOX11 was also 

recently linked to an intellectual disability disorder, the Coffin-Siris Syndrome 

(Tsurusaki et al., 2014). 

 

5.3. Cooperation of SOX11 with other transcription factors on the 
regulation of neural genes 

  

The potential cooperation of SOX11 with identified interactors from the interactome 

screening was examined in reporter assays. Therefore, the human promoter 

sequence of the well-established SOX11-activated early neuronal marker 

Doublecortin was used for the determination of regulating effects on the activity of the 

regulatory sequence. Furthermore, the human promoter of the putative SOX11 

downstream target Stathmin1 was applied for the validation of observed activation or 

repressions on the DCX promoter and the transfer of the cooperation with SOX11 on 

other SOX11-regulated promoter regions was checked. Chosen for the reporter 

assays according to their functions related to neurogenesis were MYT1, TCF4, 

TRIM28, YY1, ZNF24 and CBX6. Only three of the selected transcription factors, 

MYT1, YY1 and ZNF24 displayed activity on the two SOX11-targeted promoters. As 

a consequence, their biological functions and relevance, as well as their synergetic 

effects with SOX11 are discussed in the next paragraph. The other three interactors 

TCF4, TRIM28 and CBX6 didn’t show reliable effects on the two promoter 

sequences, as shown in figure 34 and 35. This observation might be the result of by 
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dose-dependent activities that were not levelled out as we used a standard DNA 

amount for each candidate. Otherwise, they might not affect one of these selected 

genes as these promoters are not the physiological targets. There is a variety of 

other possible genes they may cooperate with SOX11. Furthermore, a combination 

of potentially not yet known factors is required for the formation of a bigger complex 

that regulates gene expression. Nevertheless, significant effects on the regulation of 

the chosen SOX11-activated promoters DCX and Stathmin1 were observed for the 

three in the following described transcription factors MYT1, YY1 and ZNF24.  

Of special interest is the identified interaction of SOX11 with Myelin transcription 

factor 1 (MYT1), as it was shown before to induce ectopic neurogenesis in Xenopus 

laevis. Under X-MYT1 inhibition, even normal neurogenesis was found to be 

impaired (Bellefroid et al., 1996). Deletion of the chromosomal region encompassing 

the MYT1 gene locus was linked to intellectual disability (Kroepfl et al., 2008). 

Furthermore, the members of the NZF/MYT family are transiently expressed during 

the embryonic development of the mouse brain, pointing to an implication of the 

transcription factors in the control of neuron differentiation (Matsushita et al., 2014). 

Notably, MYT1L, a paralog of MYT1, was already successfully applied in several 

approaches to directly reprogram fibroblasts into functional neurons in different 

combinations with other transcription factors and microRNAs (Ambasudhan et al., 

2011, Vierbuchen et al., 2010, Yoo et al., 2011). Another evidence to the relevance 

of MYT1 in the regulation of neuronal differentiation is proposed by the structural 

analysis of MYT1 double zinc finger-mediated DNA recognition, revealing potential 

binding sites in the regulatory sequences of proteins involved in neuron development 

including the basic helix-loop-helix (bHLH) transcription factors NEUROD and 

Neurogenin1 which are potent inducers of neuronal fate and SLC1A3, a glial high-

affinity glutamate transporter that is involved in brain development and is associated 

with schizophrenia (Bertrand et al., 2002, Gamsjaeger et al., 2013, Gao et al., 2009, 

Hagiwara et al., 1996, Ma et al., 1996, Wilmsdorff et al., 2013, Yoo et al., 2011). 

These findings are consistent with our results, revealing the impact of MYT1 together 

with SOX11 on the activation of the immature neuron markers DCX and STMN1 in a 

synergetic fashion, illustrated in figure 34 and 35. This confirms their positive effect 

on neuronal differentiation. MYT1 is acting as a cofactor for SOX11, as the Myelin 

transcription factor 1 is not able to induce DCX and STMN1 expression on a high 

level by itself, however the SOX11-mediated activation is heavily enhanced by the 
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interaction with MYT1. The observation of their cooperative activation is supported by 

our results of the in silico promoter analysis for MYT1 and SOX11. The combination 

of both transcription factors is part of over-represented modules in both human DCX 

and STMN1 promoters, illustrated in table 14. Moreover, 4 of 11 generated models 

for the MYT1 and SOX transcription factor families revealed adjacent binding sites 

within the DCX regulatory region and 1 of 2 models uncovered the presence of 

neighbouring binding sites in the STMN1 promoter, as displayed in tables 15-18. In 

addition, the genome-wide distribution of the generated models in figure 39 displayed 

an enrichment of neurogenesis-related processes in the potential target genes, of the 

combination of the two transcription factors, like NEUROD1. This is further evidence 

for a synergistic action of MYT1 and SOX11 in the regulation of neuronal 

differentiation. 

Another important specific interactor of SOX11 identified in the dataset is Yin Yang 1 

(YY1), a transcription factor belonging to the GLI-kruppel class of zinc finger proteins. 

It was first discovered in 1991 and named after the Chinese words “Yin” and “Yang” 

for repression and activation transcriptional activities on the viral P5 promoter, that is 

repressed by the transcription factor in absence of the oncoprotein E1A and activated 

in the presence of E1A, determining the protein as a coactivator of YY1 (Shi et al., 

1991). The ubiquitously expressed multifunctional protein is highly conserved 

between species and it is also known to interact with corepressors. Moreover, 

knockout studies showed that YY1 is indispensable for mouse embryogenesis, 

indicating a pivotal role for the transcription factor in development (Donohoe et al., 

1999, Pisaneschi et al., 1994, Shi et al., 1997, Yang et al., 1996). Furthermore, YY1 

is supposed to play an important role in the nervous system, as it is involved in the 

regulation of many genes implicated in neuronal development by both activation and 

repression (He et al., 2007, Kwon and Chung, 2003, Morgan et al., 2004, Yoo et al., 

2001). In SH-SY5Y cells YY1 was found to activate transcription of the repressor 

element 1-silencing transcription factor (REST) (Jiang et al., 2008), which is involved 

in epigenetic silencing of neural genes during the switch from stem cells to neural 

progenitor cells. REST is an important repressor of genes responsible for neuronal 

differentiation and it is released together with its cofactors during neurogenesis in the 

step from the progenitor stage to immature neurons, leading to activation of neural 

genes (Ballas et al., 2005). A cofactor of REST,  RCOR2 was actually present in our 
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SOX11 interactor screen, as well as several proteins belonging to the CBX-family of 

polycomb proteins, epigenetic regulatory factors, that are also found to interact with 

REST (Ren and Kerppola, 2011). In our promoter studies, we observed a massive 

decrease of SOX11-mediated activation of both early neuronal proteins DCX and 

STMN1 regulatory regions under the influence of YY1. In contrast, the depletion of 

endogenous expressed YY1 increased the ability of SOX11 to activate both 

promoters. This cooperation between the two transcription factors is enabled by the 

presence of adjacent binding sites in the murine DCX promoter sequence, which was 

confirmed by 1 of the 2 generated models for the SOX11 and YY1 transcription 

families by in silico modelling, as displayed in tables 15 and 17. For the STMN1 

promoter, the analysis didn’t reveal models for the detection of neighbouring binding 

regions. The previously reported repressive influence of YY1 on neurogenesis is in 

line with our hypothesis that includes YY1-dependent active repression of immature 

neuron markers like DCX and STMN1 as a switch between the maintenance of 

neural cells as cycling progenitors and neuronal differentiation. A currently unknown 

stimulus towards neuronal maturation could induce a relief of repression by inhibition 

of YY1 binding to SOX11 and potentially induce interaction with a coactivator, which 

would enable SOX11 to push neuronal differentiation through positive regulation of 

neural promoters. The phenomenon of relief of repression was previously detected 

during the course of neuronal induction. In a reprogramming strategy from fibroblasts 

to neurons it was observed that the repression of a single microRNA regulating 

protein named PTB enables conversion of the cells into the neuronal lineage. The 

depletion of PTB reliefs the blocking of microRNA-dependent activity on different 

components of the REST complex, leading to a de-repression of multiple neuronal 

transcription factors and microRNAs (Xue et al., 2013). Furthermore, in Notch 

signalling, which is involved in various biological processes including progenitor 

proliferation, fate commitments and cell death (Gazave et al., 2009, Richards and 

Degnan, 2009) as well as adult neurogenesis (Imayoshi et al., 2010, Pierfelice et al., 

2011) corepressor complexes block the transcription factor CSL which results in the 

inhibition of gene activation and an inactive Notch pathway. The exchange of 

corepressing proteins with coactivators induces CSL-mediated gene transcription 

and results in the activation of the Notch signalling pathway (Kopan and Ilagan, 

2009). 
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Zink finger protein 24 (ZNF24 also referred to as ZFP191) was additionally identified 

as specific interactor in the SOX11 FLAG affinity purification dataset. It was first 

described in hematopoietic cells in the course of a screening for kruppel like zinc 

fingers and repressive activity on transcription was observed in yeast (Han et al., 

1999). Later it was shown to bind the TCAT repeat motif in vitro, which is a 

microsatellite region in the tyrosine hydroxilase gene, implicating a role for ZNF24 in 

the central nervous system (Albanese et al., 2001). In mouse embryonic 

development ZNF24 was, among others, found to be expressed in the subventricular 

zone of the lateral ventricle and other proliferating regions of the brain (Khalfallah et 

al., 2008). The same group confirmed that neuronal precursor cells express ZNF24 

and revealed that miss-expression of the transcription factor maintains neural cells as 

cycling progenitors whereas loss of function leads to exit of the cell cycle (Khalfallah 

et al., 2009). We detected a slight activation of the immature neuron marker DCX by 

ZNF24 in cooperation with SOX11, as illustrated in figure 34, which contradicts the 

previous data of analysing ZNF24 function. We found both transcription factors to be 

expressed in neuronal precursors in figure 41, allowing a possible interaction of 

ZNF24 and SOX11. As there is not much known about ZNF24’s function, a further 

investigation of whether ZNF24 could exert a transcriptional activation to drive 

differentiation, as shown for DCX, in addition to its repressive function, dependent on 

its interaction partners. 

Mutations in SOX11 have recently been causally associated with Coffin-Siris 

Syndrome, a congenital disorder characterised by intellectual disability (Tsurusaki et 

al., 2014). There is rising evidence from experimental studies and biochemical 

analyses that proteins encoded by genes linked to intellectual disability are 

connected in transcriptional networks controlling cellular processes and pathways, 

which are crucial for neuronal development and plasticity (Chelly et al., 2006, Inlow 

and Restifo, 2004). The fact that deletions or mutations in the genes encoding MYT1, 

TCF4, YY1 and ZNF24 have been linked to CNS malformation or intellectual 

disability syndromes (Amiel et al., 2007, Khalfallah et al., 2008, Kroepfl et al., 2008, 

Kwon and Chung, 2003), suggests that interference in the SOX11-centered 

transcriptional network possibly contributes to several cases of intellectual disability. 
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5.4. Perspectives 
 

The determination of a variety of SOX11 interaction partners by the interactome 

screen and the subsequent functional characterisation of selected candidates provide 

new insight into the SOX11-centered transcriptional network implicated in the 

complex process of neuronal fate commitment and differentiation. The interactome 

comprises transcription factors and transcriptional modulators, which potentially 

contribute to the neuronal transcriptional core identity. However, a gain of information 

of this range raises new questions that have to be investigated with different 

functional approaches. Despite our effort to bring new knowledge about six selected 

candidates namely MYT1, TCF4, TRIM28, YY1, CBX6 and ZNF24, further 

characterization need to be carried out using different techniques. To this end, both 

gain and loss of function studies are in progress using neuronal precursor cells, 

isolated from the hippocampal dentate gyrus of the mouse brain. The impact of the 

over-expression and depletion respectively on the success of differentiation into 

neurons will be determined by the use of neuronal markers like DCX or βIII-tubulin. 

The co-expression with SOX11 could reveal new or validate already known 

cooperative effects. A similar approach led to the observation that virus-mediated 

over-expression of SOX11 promotes neurogenesis, as it increases the number of 

immature neurons in vitro, by monitoring the DCX expression as a marker for new-

born neuronal cells, compared to control vector in murine neuronal precursors (Mu et 

al., 2012). For the three transcription factors MYT1, YY1 and ZNF24 this assay could 

confirm the identified activation or repression of the early neuronal markers DCX and 

STMN1 in a cellular model associated with neuronal differentiation. With reference 

the other transcriptional modulators, TCF4, TRIM28 and CBX6 that didn’t show 

regulation of the two investigated promoters, the approach could unravel whether the 

gain or loss of function of the proteins influences generally neuronal differentiation in 

this model system. If they affect the process of differentiation, the effect of the 

regulating proteins on other genes implicated in neurogenesis should be further 

investigated with different promoters, which is also recommended for MYT1, YY1 and 

ZNF24. Therefore, the Genomatix software provides information about potential 

binding sites of single transcription factors or modelling with combinations. For MYT1 

and SOX11, another interesting promoter revealed adjacent binding sites for the two 

transcription factors, namely TCF3, a bHLH transcription factor related to TCF4 and 
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known to be involved in the initiation of neurogenesis (Ravanpay and Olson, 2008). 

Also another bHLH protein implicated in late neuronal differentiation, NEUROD1 

(Gao et al., 2009) is part of the potential target list for SOX11 and MYT1. Thus, 

promoter studies on NEUROD1 could also reveal cooperation of the two transcription 

factors. For further investigation of the influence of MYT1, YY1 and ZNF24 on the 

DCX and STMN1 regulation, chromatin immunoprecipitations would be the method of 

choice in order to obtain the specific binding sites in the regulatory sequence of the 

two early neuronal markers. Another possibility to assess the binding of a 

transcription factor to a specific DNA fragment would be an electrophoretic mobility 

shift assay. This not only reveals the binding activities, but also provides information 

about molecular stoichiometry and if recognition of the consensus sequence is 

mediated by monomers or multimers. Moreover, co-expression of the factors with 

SOX11 in the neurogenesis-active brain niches subgranular zone of the hippocampal 

dentate gyrus as well as the subventricular zone of the lateral ventricle and especially 

in neuronal precursor cells could be determined by immunohistochemical staining. 

This would confirm the observed expression in neuronal progenitors and their 

occurrence in the adult neurogenesis-specific brain regions at the same 

developmental stages. Eventually, an important step for future application of the 

candidate transcription factors in regenerative medicine would be the implementation 

of the transcriptional modulators in reprogramming assays of somatic cells into 

neurons as the current strategies and candidates need to be improved. SOX11 and 

MYT1L, paralog of MYT1 already successfully contributed to reprogramming studies 

(Ambasudhan et al., 2011, Liu et al., 2013). Based on the results of our study, the 

SOX11-centered transcriptional network provides a variety of potential candidates for 

the advance of reprogramming efforts of adult somatic cells into functional neurons in 

the future. 
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7. Annex 
 
Table 20: Significant SOX11 interactors 

Accession 
number 

Gene names 
Unique 

peptides
Ratio 
H/L 

Ratio 
forward

Ratio 
reverse 

Significance 
A 

Significance 
B 

Q7M6Y2 Sox11 14 21.30 35.56 0.14 3.97E-07 2.86E-07

Q64364 Cdkn2a 4 18.53 15.17 0.03 1.28E-06 1.07E-06

Q8CDM1 Atad2 33 11.37 11.46 0.16 5.12E-05 3.81E-05

Q9DBY5 Cbx6 2 9.82 13.68 0.17 0.0001 0.0001

Q8BU00 Ikzf5 2 8.43 15.23 0.61 0.0004 0.0003

A2BE28 Las1l 16 8.23 6.80 0.10 0.0004 0.0003

Q9EP97 Senp3 13 6.56 5.60 0.13 0.0015 0.0012

Q8BP92 Rcn2 12 6.54 5.41 0.13 0.0015 0.0012

Q9DBD5 Pelp1 16 6.41 5.38 0.13 0.0017 0.0013

Q8BGS3 Zkscan1 3 6.33 11.64 0.38 0.0018 0.0018

Q99J95 Cdk9 11 6.05 3.89 0.14 0.0023 0.0018

Q00899 Yy1 8 5.91 6.97 0.21 0.0026 0.0026

Q62318 Trim28 27 5.66 5.95 0.19 0.0033 0.0026

Q8R409 Hexim1 6 5.58 5.58 0.64 0.0035 0.0035

Q4VBE8 Wdr18 11 5.37 5.89 0.21 0.0043 0.0034

E9Q414 Apob 2 5.17 0.51 0.12 0.0052 0.0051

Q8BGS1 Epb41l5 13 5.13 5.91 0.23 0.0054 0.0043

Q3TZX8 Nol9 10 5.03 6.06 0.24 0.0059 0.0046

Q8BIE6 Frmd4a 11 5.03 7.47 0.20 0.0059 0.0047

Q7TSY8 Sgol2 25 4.83 6.54 0.21 0.0071 0.0057

Q9QWV9 Ccnt1 18 4.75 4.23 0.19 0.0077 0.0061

Q62511 Zfp91 10 4.73 4.73 0.25 0.0078 0.0062

Q69Z99 Znf512 13 4.68 5.94 0.29 0.0083 0.0066

Q9DBR0 Akap8 14 4.60 5.09 0.24 0.0089 0.0071

Q8VE92 Rbm4b;Rbm4 4 4.59 3.90 0.22 0.0090 0.0089

P55200 Kmt2a 5 4.51 4.76 0.37 0.0098 0.0097

Q3URQ0 Tex10 14 4.51 5.18 0.30 0.0098 0.0078

P52651 Rhox5 5 4.40 3.56 0.23 0.0109 0.0108

Q0P678 Zc3h18 10 4.29 4.53 0.25 0.0122 0.0098

Q99LI5 Znf281 9 4.21 5.36 0.26 0.0131 0.0130

Q9D0E1 Hnrnpm 34 4.17 3.15 0.19 0.0137 0.0110

Q61039 Hand2 2 3.99 3.99 0.39 0.0166 0.0167

Q8K3A9 Mepce 8 3.96 4.39 0.34 0.0171 0.0170

Q9DB96 Ngdn 3 3.91 4.21 0.31 0.0180 0.0180

Q9JKX4 Aatf 7 3.88 3.19 0.22 0.0185 0.0185

Q7TSZ8 Nacc1 2 3.86 4.13 0.26 0.0189 0.0191

Q811S7 Ubp1 4 3.84 3.87 0.27 0.0193 0.0195

Q99K28 Arfgap2 7 3.76 5.36 0.31 0.0212 0.0212

Q60722 Tcf4 3 3.75 4.30 0.31 0.0212 0.0212



ANNEX 

 
 

180 

 

Q9Z148 Ehmt2 12 3.72 4.25 0.31 0.0219 0.0178

Q9D8S3 Arfgap3 9 3.70 4.84 0.29 0.0226 0.0226

Q8CJ27 Aspm 34 3.64 3.36 0.18 0.0239 0.0195

Q5DW34 Ehmt1 15 3.60 4.02 0.32 0.0252 0.0206

Q8C2Q3 Rbm14 12 3.59 3.80 0.29 0.0253 0.0206

Q9R0L7 Akap8l 2 3.53 3.53 1.11 0.0271 0.0276

Q09XV5 Chd8 7 3.52 3.68 0.42 0.0274 0.0275

Q9QWH1 Phc2 2 3.51 3.51 0.34 0.0276 0.0281

Q9CQJ4 Rnf2 10 3.49 4.04 0.34 0.0284 0.0233

Q9CXS4 Cenpv 4 3.48 3.56 0.75 0.0286 0.0292

Q9QX47 Son 7 3.46 3.46 0.27 0.0291 0.0292

O35690 Phox2b 4 3.46 5.03 0.43 0.0292 0.0240

Q5SS00 Zdbf2 7 3.45 4.83 0.48 0.0295 0.0301

Q99JY0 Hadhb 4 3.44 3.87 0.54 0.0299 0.0300

Q8BP71 Rbfox2;Rbfox1 4 3.36 3.92 0.36 0.0327 0.0329

Q8C966 Phf21b 3 3.35 3.64 0.33 0.0330 0.0337

P61290 Psme3 8 3.32 3.49 0.31 0.0343 0.0345

Q9DCA5 Brix1 2 3.27 3.89 0.38 0.0359 0.0368

Q9QXV1 Cbx8 2 3.27 3.39 0.65 0.0361 0.0370

O70503 Hsd17b12 5 3.23 3.37 0.46 0.0378 0.0381

O08967 Cyth3 3 3.22 2.89 0.28 0.0381 0.0391

Q7TN98 Cpeb4 2 3.19 3.19 0.39 0.0395 0.0398

O08750 Nfil3 3 3.19 5.05 0.71 0.0396 0.0407

Q91VN1 Znf24 2 3.16 3.00 0.30 0.0409 0.0420

Q9ESV0 Ddx24 6 3.15 3.15 0.39 0.0412 0.0416

Q91YN9 Bag2 6 3.15 3.15 0.63 0.0416 0.0420

O35615 Zfpm1 11 3.10 4.13 1.37 0.0436 0.0440

Q80TP3 Ubr5 7 3.05 4.57 0.43 0.0463 0.0476

Q04692 Smarcad1 7 2.99 2.99 0.34 0.0495 0.0500

Q05CL8 Larp7 13 2.99 2.33 0.28 0.0499 0.0415

Q80YV3 Trrap 13 2.97 3.28 0.44 0.0510 0.0515

Q9R0G7 Zeb2 11 2.93 2.93 0.29 0.0531 0.0538

Q99KN9 Clint1 5 2.92 3.20 0.52 0.0542 0.0549

O55187 Cbx4 8 2.89 4.61 0.41 0.0559 0.0566

Q3URU2 Peg3 15 2.88 4.02 0.37 0.0563 0.0569

O89090 Sp1 2 2.87 2.92 0.38 0.0574 0.0581

Q99KX1 Mlf2 2 2.86 3.10 0.43 0.0577 0.0596

Q9DBC7 Prkar1a 6 2.81 2.31 0.34 0.0611 0.0619

Q8K4L0 Ddx54 10 2.80 2.87 0.37 0.0621 0.0630

Q99L90 Mcrs1 2 2.78 1.14 0.23 0.0636 0.0658

Q9D6Z1 Nop56 21 2.77 2.62 0.34 0.0643 0.0539

P48377 Rfx1 2 2.77 4.45 0.46 0.0644 0.0667

Q08369 Gata4 2 2.75 2.75 0.36 0.0657 0.0680

P10922 H1f0 3 2.72 2.72 0.35 0.0679 0.0703
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Q5DTW2 Sfmbt2 6 2.71 3.34 0.38 0.0689 0.0699

Q9QYH6 Maged1 2 2.71 3.47 0.37 0.0689 0.0714

Q9EST3 Eif4enif1 5 2.71 5.33 0.56 0.0691 0.0716

Q9DBE9 Ftsj3 3 2.70 3.51 0.50 0.0700 0.0726

Q6DFW4 Nop58 15 2.68 2.58 0.36 0.0716 0.0602

P30658 Cbx2 2 2.64 1.39 0.26 0.0755 0.0783

Q8VBW5 Bbx 5 2.63 4.35 0.42 0.0756 0.0767

Q922K7 Nop2 7 2.63 3.42 0.38 0.0759 0.0771

O35387 Hax1 2 2.63 2.16 0.38 0.0762 0.0790

O88286 Wiz 15 2.61 2.84 0.42 0.0774 0.0653

Q8CFC2 Myt1 7 2.59 4.46 0.41 0.0795 0.0808

Q9CXK8 Nip7 2 2.58 3.04 0.44 0.0805 0.0835

Q9Z2X1 Hnrnpf 13 2.56 3.01 0.53 0.0826 0.0698

O35887 Calu 11 2.55 2.91 0.46 0.0832 0.0703

P97376 Frg1 8 2.54 2.30 0.38 0.0850 0.0864

Q05186 Rcn1 2 2.54 2.54 0.41 0.0851 0.0884

Q61624 Znf148 6 2.53 2.19 0.35 0.0852 0.0866

Q80TE4 Sipa1l2 14 2.53 2.57 0.40 0.0856 0.0724

Q9CYH6 Rrs1 2 2.50 2.55 0.45 0.0884 0.0919

Q8CGC6 Rbm28 3 2.50 3.27 0.51 0.0884 0.0919

Q9WV92 Epb41l3 2 2.47 1.69 0.31 0.0917 0.0953

A2AJI0 Map7d1 7 2.47 2.47 0.41 0.0926 0.0942

Q5U4C1 Gprasp1 4 2.45 2.45 0.49 0.0944 0.0983

O88291 Znf326 6 2.45 2.26 0.41 0.0949 0.0966

Q6A065 Cep170 17 2.44 2.56 0.43 0.0958 0.0814

Q8C8U0 Ppfibp1 3 2.41 2.83 0.50 0.0991 0.1032

G5E8K5 Ank3 4 2.38 2.95 0.76 0.1033 0.1076

Q99NH0 Ankrd17 8 2.35 2.35 0.54 0.1061 0.1081

Q8BJ90 Znf771 2 2.35 2.82 0.53 0.1067 0.1112

P99024 Tubb5 3 2.35 3.11 0.47 0.1070 0.0912

P68372 Tubb4b;Tubb4a 4 2.35 3.03 0.52 0.1071 0.0913

Q07646 Mest 2 2.34 2.89 0.52 0.1079 0.1125

P30999 Ctnnd1 10 2.34 2.26 0.41 0.1083 0.1103

Q8CHI8 Ep400 3 2.33 1.80 0.37 0.1092 0.1139

Q91YT7 Ythdf2 8 2.33 1.76 0.39 0.1095 0.0934

Q61464 Znf638 7 2.32 2.51 0.61 0.1108 0.1129

Q61474 Msi1 5 2.32 2.39 0.47 0.1111 0.1132

Q80TS5 Znf423 4 2.31 2.53 0.69 0.1116 0.1164

Q8K363 Ddx18 12 2.31 2.37 0.44 0.1120 0.0957

Q8C854 Myef2 10 2.31 2.23 0.42 0.1121 0.0957

P43275 Hist1h1a 5 2.30 2.65 0.47 0.1129 0.0965

Q8K310 Matr3 27 2.30 2.58 0.54 0.1141 0.0975

Q80X50 Ubap2l 14 2.28 2.19 0.42 0.1170 0.1001

P48381 Rfx3 3 2.27 2.98 0.64 0.1184 0.1235

Q99MY8 Ash1l 3 2.26 2.17 0.43 0.1195 0.1247
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Q3TFK5 Gpatch4 3 2.25 2.25 0.55 0.1202 0.1254

Q80Y44 Ddx10 2 2.24 3.85 1.00 0.1224 0.1278

Q3TEA8 Hp1bp3 8 2.24 2.70 0.47 0.1224 0.1248

A2RSY1 Kansl3 2 2.24 1.68 0.44 0.1227 0.1280

Q80WJ7 Mtdh 8 2.23 2.42 0.49 0.1243 0.1268

P63037 Dnaja1 10 2.22 2.12 0.43 0.1248 0.1070

Q9WTQ5 Akap12 12 2.22 2.31 0.47 0.1250 0.1275

Q99LH1 Gnl2 4 2.20 2.39 0.65 0.1280 0.1336

P35550 Fbl 9 2.20 2.19 0.45 0.1292 0.1109

Q8BHX1 Haus1 2 2.19 1.45 0.34 0.1296 0.1353

Q8BMS1 Hadha 6 2.19 4.17 0.60 0.1306 0.1332

O88712 Ctbp1 5 2.18 2.35 0.50 0.1312 0.1127

Q99M87 Dnaja3 7 2.18 3.21 0.60 0.1312 0.1339

Q91YK2 Rrp1b 4 2.15 2.15 0.75 0.1367 0.1429

Q5U4E2 Repin1 3 2.14 2.24 0.53 0.1377 0.1439

Q6PG16 Hjurp 2 2.14 3.15 0.81 0.1380 0.1442

O88700 Blm 3 2.14 1.80 0.45 0.1387 0.1449

Q8C796 Rcor2 5 2.14 2.14 0.48 0.1392 0.1420

Q5RJG1 Nol10 6 2.13 2.85 0.54 0.1406 0.1469

Q8BVE8 Whsc1 4 2.12 2.84 0.71 0.1414 0.1443

Q9QYJ0 Dnaja2 11 2.11 2.20 0.49 0.1429 0.1232

P23198 Cbx3 5 2.11 2.52 0.57 0.1437 0.1238

Q00PI9 Hnrnpul2 11 2.11 2.11 0.43 0.1444 0.1245

P25976 Ubtf 5 2.10 2.46 0.58 0.1454 0.1485

Q9JMC3 Dnaja4 2 2.10 1.80 0.42 0.1458 0.1524

P43276 Hist1h1b 10 2.10 2.33 0.57 0.1459 0.1259

Q8K224 Nat10 8 2.09 2.04 0.47 0.1465 0.1496

Q9CYA6 Zcchc8 2 2.07 1.82 0.45 0.1514 0.1584

P26645 Marcks 2 2.06 2.06 0.50 0.1525 0.1594

O54946 Dnajb6 5 2.06 2.06 0.53 0.1529 0.1561

P15864 Hist1h1c 4 2.05 2.51 0.57 0.1548 0.1339

Q9WTX8 Mad1l1 6 2.05 2.46 0.61 0.1552 0.1586

Q6NS46 Pdcd11 4 2.05 2.67 0.58 0.1553 0.1624

Q8BW10 Nob1 6 2.05 2.05 0.52 0.1556 0.1589

P60122 Ruvbl1 16 2.03 2.06 0.50 0.1583 0.1370

P29391 Ftl1;Ftl2 6 2.02 1.94 0.46 0.1610 0.1645

Q91VR2 Atp5c1 6 2.00 2.27 0.58 0.1647 0.1683
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7.1. Abbreviations 
 
aa amino acid(s) N2A Neuro2a 

ADP adenosine 5’-diphosphate NP-40 nonident P-40 

AP affinity purification NPC neural precursor cell 

APS ammonium peroxodisulfate NSC neural stem cell 

ATP  adenosine 5’-triphosphate nt nucleotide(s) 

B group B homology domain OB olfactory bulb 

bHLH basic helix-loop-helix OD optical density 

bp base pair ORF open reading frame 

BSA bovine serum albumin 

P pellet 

cc coil-coil domain p.a. pro analysis (reagent-grade) 

cDNA complementary DNA PBS phosphate-buffered saline 

CHIP chromatin immunoprecipitation PcG polycomb 

CID collision induced dissociation PCR polymerase chain reaction 

CNS central nervous system PEI polyethylenimine 
co-IP co-immunoprecipitation PNK T4 polynucleotide kinase 

Cp crossing point PNS peripheral nervous system 

Pol II RNA polymerase II 

Da dalton (molecular mass) Pol III RNA polymerase III 

D dimerisation domain PPI protein-protein interaction 

dATP 2'-deoxyadenosine 5'-triphosphate PRC1 polycomb repressive complex 1 

ddH2O ultra-pure water PRC2 polycomb repressive complex 1 

DG dentate gyrus PrEST 
protein recombinant epitope signature 
tag 

dH2O deionised water PVDF polyvinylidene difluoride  

DMEM Dulbecco's modified Eagle medium 

DMSO dimethylsulfoxid R relative expression 

DNA deoxyribonucleic acid RMS rostral migratory stream 

dNTP 2’-deoxynucleotide 5’-triphosphate RNA ribonucleic acid 

dsDNA double-stranded DNA rRNA ribosomal RNA 

DTT dithiothreitol RT room temperature 

ECL enhanced chemiluminescence S supernatant 

ER endoplasmic reticulum SDS sodium dodecyl sulfate 

ES cell embryonic stem cell 
SDS-
PAGE 

SDS-polyacrylamide electrophoresis 

ESI electrospray ionisation  SF-TAP Strep/Flag tandem affinity purification 

SGZ subgranular zone 

FBS fetal bovine serum Shh sonic hedgehog 

FT flowthrough shRNA short hairpin RNA 

  
SILAC 

stable isotope labelling of amino acids 
in cell culture 

GFP green fluorescent protein SIM selected ion monitoring  
GO gene ontology SNP single nucleotide polymorphism 
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SOX SRY-related HMG box 

H3K27me3 H3 lysine 27 tri-methylation SRM selected reaction monitoring  

H3K4me3  H3 lysine 4 tri-methylation ssDNA single stranded DNA 

HCD higher-energy collisional dissociation  StageTips stop and go extraction tips 

HF high fidelity SVZ subventricular zone 

HMG box high mobility group box  

HP hippocampal formation TA trans-activation domain 

HPLC 
high performance liquid 
chromatography 

Taq Thermus aquaticus 

HRP horseradish peroxidase TBS tris-buffered saline 

TBS-T TBS-Tween 

ICM inner cell mass TE trophoectoderm 

IgG immunoglobulin G TEMED N,N,N’,N’-tetramethylethylene-diamine 

IP immunoprecipitation TF transcription factor 

iPS cell induced pluripotent stem cell TFA trifluoroacetic acid 

TH tyrosine hydroxylase 

K2 protein-protein interaction domain TLR toll-like receptor 

kb kilo base Tm melting temperature 

kDa kilo Dalton TR trans-repression domain 

LC-MS/MS 
liquid chromatography-tandem mass 
spectrometry 

TrxG trithorax 

LTQ linear quadrupole ion trap 

U unit (enzymatic activity) 

m/z mass to charge ratio UV ultraviolet 

mAb monoclonal antibody 

miRNA microRNA v/v volume per volume 

MRM multiple reaction monitoring  

mRNA messenger RNA w/v weight per volume 

MS mass spectrometry 

MS/MS tandem MS 

 

Amino acids: 

Alanine A Leucine L 

Arginine R Lysine K 

Asparagine N Methionine M 

Aspartic acid  D Phenylalanine F 

Cysteine C Proline P 

Glutamic acid E Serine S 

Glutamine Q Threonine T 

Glycine G Tryptophan W 

Histidine H Tyrosine Y 

Isoleucine I Valine V 

 
 
 
 



ANNEX 

 

185 

 

Purine and pyrimidine bases: 

A adenine 

C cytosine 

G guanine 

T thymine 

U uracil 
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