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Zusammenfassung

Forschungsergebnisse vergangener Jahre konnten zeigen wie komplex die Struktur
und Regulation selbst bakterieller Transkriptome sein kann. Auch die wichtige Rolle
nicht-kodierender RNAs (ncRNA), die nicht in Proteine translatiert werden, wird
dabei immer deutlicher. Diese Molekiile erfiillen in der Zelle verschiedenste Aufgaben
wie zum Beispiel die Regulation von Stoffwechselprozessen. Daher ist die Charakter-
isierung der ncRNA-Gene eines Organismus immer mehr zu einem unverzichtbaren
Teil von Systembiologie-Projekten geworden. Hierbei erlauben moderne Hochdurch-
satzverfahren im Bereich der DNA- und RNA-Sequenzierung das im hohen Mafle
detaillierte Studium von Genomen und Transkriptomen. Die daraus resultierenden
Daten miissen einer vergleichenden Analyse unterzogen werden, um Variationen
des Transkriptoms zwischen verschiedenen Organismen und Umweltbedingungen
untersuchen zu koénnen. Hierfiir werden effiziente Computerprogramme benétigt,
die in der Lage sind genomische und transkriptomische Daten zu kombinieren
und entsprechende Analysen automatisiert und reproduzierbar durchzufiihren. Zu-
dem miissen diese Ansétze nicht-kodierende Elemente im genomischen Kontext
lokalisieren und annotieren kénnen.

In dieser Dissertation prasentiere ich Computerprogramme zur Losung dieser
Aufgaben. So wurde das Programm NOCORNAC entwickelt, welches ncRNAs in
bakteriellen Genomen detektiert und diese beziiglich verschiedener Eigenschaften
charakterisiert. Dazu gehoren zum Beispiel Berechnung von Transkriptionsstart-
und endpunkten, Sekundarstruktur und moglicher Interaktionspartner. NOCORNAC
wurde im Rahmen einer umfangreichen Transkriptomstudie tiber das antibiotikapro-
duzierende Bakterium Streptomyces coelicolor verwendet, wodurch die Relevanz von
ncRNAs als mogliche Regulatoren gezeigt werden konnte.

Fiir die komparative Analyse hoch aufgeloster Genom- und Transkriptomdaten
multipler Organismen wurde in dieser Dissertation das SuperGenom-Konzept en-
twickelt, welches bei der vergleichenden Visualisierung multipler Genome Anwen-
dung fand. Zudem diente es als Grundlage fiir eine neue Methode zur Bestimmung
von Transkriptionsstartpunkten in bakteriellen Genomen. Bei der Anwendung auf
das fiir Menschen pathogene Bakterium Campylobacter jejuni konnte das Transkrip-
tom dieses Organismus auf globaler Ebene charakterisiert werden. Zudem wurden
mehrere bislang unbekannte ncRNAs identifiziert, darunter ein zuvor noch uncharak-
terisierter CRISPR~Lokus. Hierbei handelt es sich um ein adaptives bakterielles Im-
munsystem.

Das Studium von Pathogenen kann auch von historischem Interesse sein. Das auf-
strebende Feld der Paldogenetik befasst sich mit der Rekonstruktion und Analyse
von Genomen alter, mitunter langst ausgestorbener Organismen. In dieser Disser-
tation werden neue Methoden zur automatischen Rekonstruktion und Charakter-
isierung alter bakterieller Genome eingefiihrt, welche zur Erforschung der Evolution
von Mycobacterium leprae verwendet wurden, dem Verursacher von Lepra.



Die Algorithmen und Werkzeuge, welche in dieser Dissertation entwickelt wurden,
sowie die Erkenntnisse, die damit gewonnen werden konnten, stellen einen wertvollen
Beitrag zum Verstédndnis bakterieller Genome und Transkriptome dar und werden
weiterhin dazu beitragen deren grundlegende evolutiondre Mechanismen zu verste-
hen.
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Abstract

In recent years the complexity even of bacterial transcriptomes became more and
more evident. The important role of so-called non-coding RNAs (ncRNA), which do
not encode proteins, is increasingly recognized as they fulfill a variety of functions,
such as the regulation of cellular processes or catalysis of other molecules. Therefore,
the characterization of an organism’s ncRNA repertoire has become an essential
part of systems biology studies. In this context novel high-throughput technologies
in the field of DNA and RNA sequencing allow for the investigation of genomes and
transcriptomes in unprecedented detail. These methodologies produce vast amounts
of data that have to be analysed comparatively in order to elucidate variations
between different organisms or environmental conditions. For these tasks efficient
computational methods are needed that integrate genomic and transcriptomic data
from multiple data sets in an automated and reproducible manner. In addition, these
approaches have to facilitate the genomic localization of ncRNA elements and their
detailed annotation e.g., with respect to promoter regions or transcription start sites
as well as their functional characterization such as the prediction of their targets of
regulation.

In this dissertation I have made a number of contributions that address these chal-
lenges. The computer program NOCORNAC was developed, which predicts ncRNAs
in bacterial genomes and characterizes them with respect to multiple properties such
as transcription start and end points, secondary structure and potential interaction
partners. NOCORNAC has been applied in the context of a comprehensive time se-
ries expression study of the antibiotics producing bacterium Streptomyces coelicolor,
which was cultivated under different environmental conditions. During this study
the importance of ncRNAs as potential regulators became evident.

For the analysis of high-resolution genomic and transcriptomic data from multi-
ple organisms the SuperGenome concept was developed. The approach was applied
in the context of whole-genome alignment visualization and served as the basis for
an algorithm for the comparative detection of transcription start sites in bacterial
genomes utilizing RNA-seq data. The application to multiple strains of the human
pathogen Campylobacter jejuni allowed for the global characterization of this organ-
ism’s transcriptome and led to the detection of several novel ncRNAs, among them
a previously uncharacterized CRISPR locus, which represents an adaptive bacterial
immune system.

Studying pathogens can also be of historic relevance. The emerging field of paleo-
genetics focuses on the reconstruction and analysis of genomes of ancient organisms,
whose DNA has been extracted from archaeological samples, such as bones. In this
dissertation I present computational methods for the reconstruction and characteri-
zation of ancient bacterial genomes, which have been applied to study the evolution
of Mycobacterium leprae, the bacterium causing leprosy.

Overall, the algorithms and tools developed in this dissertation and the insights
that have been gained by their application contribute to the understanding of the
structure and organization of bacterial genomes and transcriptomes and will help to
elucidate the basic mechanisms that drive their evolution.
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1. Introduction

The complex structure of an organism’s transcriptome is increasingly recognized as
it not only consists of protein-coding transcripts but also of transcripts that are not
translated into proteins. For their lacking coding function they are called non-coding
RNAs (ncRNAs). Some classes of non-coding RNAs have been known for quite a long
time. For example, ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) are well-
known housekeeping RNAs. Until today a plethora of further non-coding RNAs have
been identified encoded in the genomes of prokaryotes and eukaryotes, which fulfill
various functions (see [169, 31] for reviews), such as the regulation of transcription
or translation by binding to a target RNA or protein. In addition, they are often
involved in catalytic functions, for example in the context of RNA processing.

Considering the wide range of biological mechanisms in which ncRNAs are in-
volved they cannot be neglected in systems biology studies. However, for different
reasons they are much harder to identify in genomic sequences than protein-coding
genes. As they are not encoding protein sequences they lack an open reading frame.
Furthermore, their sequence conservation among species is often significantly lower
than it is the case for protein-coding genes. For this reason, computational methods
that have been developed for the detection of ncRNAs in genomic sequences usu-
ally make use of comparative approaches that — in addition to the sequence — take
secondary structure information into account. These approaches are based on the
assumption that the secondary structure of ncRNAs is relevant for their function.
This makes sense in the context of many possible mechanisms that are employed by
RNAs. For catalytic functions it is clear that a specific structure is necessary and
regulatory functions that are performed by RNA-RNA interactions potentially also
require a certain structure as the interaction site has to be accessible and must not
be involved in strong intramolecular interactions. Thus, the detection of conserved
secondary structures is a valuable method for the prediction of ncRNAs.

However, not only ncRNA transcripts but also many cis-regulatory elements, such
as riboswitches, exhibit a conserved secondary structure. Therefore, a conserved sec-
ondary structure alone is not a sufficient criterion for the identification of ncRNAs
that are transcribed independently of protein-coding messenger RNAs (mRNAs).
For this the additional consideration of other criteria is necessary, i.e., the detec-
tion of transcriptional signals. Any transcript has a transcription start site or pro-
moter region in general and a transcription terminator signal. Therefore, tools for
ncRNA transcript prediction have to include methods for the detection of these fea-
tures. This dissertation focuses on the characterization of ncRNAs in prokaryotes,
where the 3’ end of the transcript is often determined by the identification of Rho-
independent transcription terminator signals, which are characterized as sequence
motifs that lead to the formation of a small stem-loop structure that causes the RNA
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polymerase to stop transcription. The detection of the ncRNA transcript’s 5’ start is
more challenging. Many approaches are based on the sequence-based identification
of sigma factor binding sites such as the program SIPHT, for example [93]. However,
these sequence motifs are often short and highly degenerated. Furthermore, for many
transcription factors the binding site is still uncharacterized. Thus, a more general
approach for the detection of the transcription start is desirable.

In this dissertation the computer program NOCORNAC is presented, which pre-
dicts and characterizes ncRNA transcripts in bacterial genomes. For the prediction
it incorporates methods for the detection of transcriptional signals and the iden-
tification of conserved secondary structures. In order to detect promoter regions
NOCORNAC does not have to rely on defined transcription factor binding site mo-
tifs, but it utilizes an approach for the localization of regions in the genome were
the separation and unwinding of the DNA double helix is favorable. This approach
is generally applicable to bacterial genomes as it is independent of any information
about transcription factors. The 3’ end of potential ncRNA transcripts is deter-
mined by TransTermHP [82], a very fast and accurate method for the detection of
Rho-independent transcription terminators. In order to identify conserved secondary
structures a pipeline is integrated in NOCORNAC that automatically retrieves ho-
mologous sequences for ncRNAs candidates from a sequence database and selects
sequences with an optimal evolutionary distance. The candidate ncRNA and the se-
lected sequences are aligned and examined for conserved secondary structures using
RNAz [61].

A further characterization of predicted ncRNA transcripts is necessary in order
to increase the reliability of the prediction and to generate hypotheses about their
potential function. For this NOCORNAC incorporates methods for the identification
of members of characterized ncRNA families among the predicted elements and for
the prediction of RNA-RNA interactions with protein-coding genes.

NOCORNAC has been applied to the prediction of ncRNA transcripts in the
genome of the antibiotics producing soil bacterium Streptomyces coelicolor. In the
SysMO STREAM project this model organism was subject to a comprehensive sys-
tems biology study, which assessed the dynamics of the transcriptome, proteome
and metabolome of S. coelicolor undergoing the metabolic switch from primary to
secondary metabolism. For this the wild type and various mutant strains were grown
under several nutrient limited conditions. For the transcriptomic studies time series
data of unprecedented detail have been produced using a custom design microar-
ray that in addition to protein-coding genes allowed for the expression profiling of
ncRNA transcripts predicted by NOCORNAC.

These transcriptome data were not only used to evaluate the predictions but
also to comparatively analyse the expression patterns of protein-coding genes and
their predicted asRNAs. In addition, putative novel ncRNAs showing a reaction to
nutrient depletion were identified. Until then no transcriptome study in S. coelicolor
had addressed the expression of ncRNAs in such a systematic manner.

Furthermore, RNA-RNA interaction predictions between the predicted ncRNAs
and coding genes resulted in a complex network of potential interactions that could
be further characterized using NOCORNAC’s functionalities for the statistical assess-



ment of RNA-RNA interaction predictions. With this it was possible to identify two
predicted ncRNA transcripts that are potentially involved in the global regulation of
antibiotics production. These results emphasize the importance of the consideration
of non-protein-coding elements in the context of any systems biology study.

Nowadays, deep sequencing technologies (RNA-seq) allow for a much more pre-
cise characterization of an organism’s transcriptome including the identification of
novel protein-coding or non-coding transcripts. The increasing number of available
datasets requires novel methods for their comparative analyses. As the data are
in single-nucleotide resolution, these methods also have to operate at this level. In
addition, comparative analyses have to be conducted for different datasets relat-
ing to the same organism, but also between datasets from different organisms. This
comparison, however, is challenging as genomes of different organisms usually dif-
fer significantly due to insertions, deletions or genomic rearrangements. Thus, the
datasets that are subject to the comparative analysis relate to different coordinate
systems.

As a solution to this problem the SuperGenome concept is presented in this dis-
sertation. The data structure of the SuperGenome is constructed on the basis of
a multiple whole-genome alignment and provides a common coordinate system for
multiple genomes, which allows for comparative analyses of genomic or transcrip-
tomic data that relate to different genomic coordinate systems.

The SuperGenome can serve as the basis for various applications. As the under-
lying data structure not only allows for the representation of insertions and dele-
tions but also models genomic rearrangements, the SuperGenome can be applied
to the comparative analysis of genomic architectures. In this context GenomeRing
is described in this dissertation. GenomeRing is a circular visualization method
for the identification of architectural differences and similarities between genomes.
The SuperGenome forms the algorithmic foundation of GenomeRing, thus allowing
for the projection of genomic annotations into the SuperGenome coordinate sys-
tem, which can also be visualized in GenomeRing. Furthermore, the integration of
GenomeRing with the transcriptome analysis software MAYDAY [14] makes detailed
analyses of single loci within one framework possible that can also integrate experi-
mental data from various sources.

The coordinate mapping that is produced by the SuperGenome approach has
single-nucleotide resolution. Therefore, any comparative data analysis that is per-
formed on the basis of the SuperGenome can be conducted in single-nucleotide
resolution. Thus, the SuperGenome approach is ideal for the analysis of RNA-seq
data. The assessment of RNA-seq data leads to a detailed characterization of an
organism’s transcriptome as transcript boundaries can be precisely defined.

One important information that can be gained from RNA-seq data is the exact
location of transcription start sites (TSS) of protein-coding or non-protein-coding
genes. In addition, it is possible to identify novel transcripts. Previously the anno-
tation of transcription start sites on the basis of RNA-seq data has been performed
manually in most cases [142]. This approach, however, is extremely time consum-
ing and has a low reproducibility. Furthermore, it becomes almost infeasible for the
comparative analysis of multiple data sets involving different organisms.
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Thus, computational methods are required that allow for an automated repro-
ducible and comparative annotation of T'SS across multiple data sets from different
organisms. In this thesis an algorithm for the computational detection of TSS was
developed, which has been combined with the SuperGenome approach to allow for
its application to data that is related to different genomes. By the integration of
the SuperGenome, TSS annotated to different genomes can be associated to each
other even if the genomes differ in terms of insertions, deletions or genomic rear-
rangements.

The TSS detection algorithm together with the SuperGenome approach have been
combined with a user-friendly graphical user interface (GUI). This software tool,
called TSSPREDATOR, allows the user to set all relevant parameters, which makes
the procedure accessible for scientists without large expertise in computer science.

TSSPREDATOR has been applied to the comparative detection and analysis of T'SS
in four Campylobacter jejuni strains. The genomes of these strains differ significantly
by large insertions. The SuperGenome approach, however, allows for the consistent
assignment of coordinates within the SuperGenome coordinate system, thus making
a comparative analysis of the T'SS possible despite the variation of the genomic
architectures.

The analysis of the global TSS maps of the four strains allowed for a global char-
acterization of promoter regions and the identification of SNP-dependent promoter
usage that differs between the strains. Furthermore, several candidates for novel
non-coding RNAs were discovered including a new CRISPR locus.

This shows how comparative analyses can integrate genomic information with
transcriptomic data to provide new insights into regulatory mechanisms that po-
tentially differ between different bacterial strains and that might even influence
phenotypic variations e.g., in the context of pathogenicity.

Transcriptomic information, however, is not available in all fields of research. For
example, in the emerging field of paleogenetics, which deals with the analysis of
ancient DNA [171], studies are limited to the investigation of genomes as RNA is
usually not preserved. Thus, comparative methods have to rely on genomic infor-
mation alone to generate hypotheses about phenotypic differences between ancient
and modern organisms and about the evolution of the investigated species.

The analysis of DNA that has been isolated from old samples is significantly
more challenging than for modern isolates as ancient DNA (aDNA) is degenerated,
which means that the DNA fragments are very short and the molecules are damaged
in a way that leads to wrong base calls during sequencing. Furthermore, ancient
samples have to be regarded as metagenomic samples in almost all cases, because
the DNA of various modern organisms but potentially also ancient organisms is
contained in the sample in addition to the DNA of the target organism. Though
DNA capture techniques are applied for the enrichment of the target organism’s
DNA, the DNA of other organisms is still contained, which has to be considered
during the computational analysis of the data.

Tools for the specific preprocessing of aDNA sequencing data have been published
earlier [83]. In addition, software has been developed that considers the properties
of aDNA sequencing reads during mapping [58]. However, these methods only cover



parts of the required analysis steps and are in many cases not efficient enough for
the application to full bacterial genomes.

Therefore, a computational pipeline for the efficient comparative genomic analysis
of ancient and modern bacterial strains was developed in this dissertation. The steps
covered by this pipeline include preprocessing of the DNA sequencing reads, mapping
to a reference genome, SNP calling based on the mapping, filtering of called SNPs
and a SNP effect analysis to estimate the influence on protein-coding genes. This can
lead to hypotheses about phenotypic differences in comparison to modern strains of
the same species. Furthermore, draft genome sequences are generated on the basis of
the detected SNPs and the draft genomes of sequenced ancient and modern strains
are aligned with published reference strains to allow for a comparative SNP analysis.
This information can then be used for phylogenetic and dating analyses.

This dissertation describes the application of this pipeline to the comparative
genomic analysis of ancient and modern strains of Mycobacterium leprae, the bac-
terial pathogen causing leprosy. In this study the genomes of medieval and modern
M. leprae strains were sequenced and comparatively analysed in order to investigate
evolutionary relationships between the strains and to elucidate the origin and his-
tory of this bacterium in the context of its role as a human pathogen. By using the
pipeline which is introduced here these analyses could be conducted in an efficient
and reproducible manner.

Overall, this thesis presents multiple algorithms and tools for the characterization
of non-coding as well as protein-coding transcripts in bacterial organisms. These
methods together with the knowledge that could be gained by their application
form a valuable contribution to the fields of genomics as well as transcriptomics and
will assist researchers in elucidating the architectures of genomes and transcriptomes
of bacteria while at the same time forming the basis for future development.

This dissertation is structured as follows: A biological background as well as an
overview of the computational methods relevant for this thesis are presented in
chapter two. Chapter three describes the non-coding RNA prediction and charac-
terization software NOCORNAC, which was published in 2011 [65]. NOCORNAC has
been applied to the identification of non-coding RNAs in the genome of Strepto-
myces coelicolor, which have been verified and further characterized by a compre-
hensive time series transcriptomic study (chapter four), that is presented in multiple
publications [109, 13, 65, 164]. The SuperGenome approach and its application to
the visualization of genomic architectural variation is described in chapter five. It
won the Most Creative Algorithm Award of the Illumina iDEA Challenge 2011 and
was presented at the ISMB 2012 [64]. Chapter six describes a novel algorithm for
transcription start site prediction on RNA sequencing data, which integrates the
SuperGenome approach for a comparative analysis of multiple genomes. This algo-
rithm was published in 2013 together with its application to the comparative de-
tection and characterization of transcription start sites in four Campylobacter jejuni
strains [45] (chapter seven). Chapter eight describes a computational paleogenetics
pipeline which was applied to the analysis of medieval and modern strains of My-
cobacterium leprae [141]. Chapter nine provides a discussion of the work presented
in this dissertation.






2. Background

2.1. Non-coding RNAs and their regulatory function in
bacteria

In bacteria non-coding RNAs (ncRNA) fulfill a plethora of functions by various
mechanisms [169, 31].

The most well known ncRNAs are the housekeeping RNAs. These are, for exam-
ple, the transfer RNAs (tRNA), which guide single amino acids to the translational
machinery and represent the link between the codons and the respective amino
acids. They are, therefore, an essential part of the genetic code itself. Another class
of housekeeping RNAs is part of the aforementioned translational machinery. These
are the ribosomal RNAs (rRNA), which form the ribosome together with riboso-
mal proteins. One further example of a housekeeping RNA is the transfer-messenger
RNA (tmRNA). The function of this ncRNA is to release stalled ribosomes from
messenger RNA (mRNA) molecules that became non-functional due to degrada-
tion, for example. Other housekeeping RNAs are the RNA component of the signal
recognition particle or RNase P, which is involved in tRNA processing.

These housekeeping RNAs can be found in all bacteria. Another diverse group
of ncRNAs, which are very often not conserved over a wide range of species, is the
group of regulatory RNAs. In most cases they regulate the expression of their target
genes by base-pairing interactions between the ncRNA transcript and the mRNA
of the target gene. This interaction can influence the translation of the mRNA or
the stability of the target transcript. However, there are also ncRNAs that bind to
proteins and directly regulate their activity.

Regulatory RNAs can be encoded at the same locus as their target mRNA over-
lapping the coding region or at least the untranslated region of the target transcript.
Therefore, large parts of the two transcripts have a complementary sequence. These
ncRNAs are called cis-antisense RNAs (asRNAs). In contrast, trans-antisense RNAs
are encoded at a different locus, but their sequences are still partially complementary
to the respective sequences of their target transcripts.

In addition to these regulatory ncRNA transcripts there is another group of cis-
regulatory elements, which are not transcribed on their own, but which are part
of mRNAs. They can act as signals but also as sensors influencing the secondary
structure of the mRNA molecule they are part of. These so-called riboswitches can
thereby activate or inactivate the translation of the respective gene.

The different groups of regulatory RNAs and their mechanisms of regulation are
described in more detail in the following sections.
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2.1.1. Riboswitches

Riboswitches and other cis-regulatory elements are part of the 5’ untranslated region
(UTR) of mRNAs regulating their transcription or translation [169, 63]. Thus, they
are not transcribed on their own but as part of another transcript. They are still
considered as functional RNAs, because they have a specific secondary structure,
which is essential for their regulatory function. As these elements are located in the
5 UTR, they are also called ‘leaders’. One example is the ‘T-box leader’, which is
part of the mRNA of tRNA synthetases. This element binds the respective uncharged
tRNA, which leads to a repression of the gene and thereby to a downregulation of
tRNA production. Another type of leader elements are the ‘RNA thermometers’,
which regulate the expression of the downstream gene according to the temperature.

A group of leader sequences that is able to bind metabolites and perform the
regulation of genes involved in the uptake and processing of these molecules are
called ‘riboswitches’. A riboswitch consists of an ‘aptamer’, where the ligand is
bound, and the ‘expression platform’, which changes its structural conformation in
the presence of the ligand and thereby regulates the expression of the gene which
is located downstream of the riboswitch. This usually involves the formation of
hairpin structures that either act as transcription terminators or antiterminators, or
they lead to the occlusion of the ribosome binding site or make it accessible. Thus,
riboswitches can regulate transcription and translation as activators or repressors.
However, the inactivation of gene expression is found much more often.

Interestingly, it is even possible that the same type of riboswitch has different reg-
ulatory mechanisms depending on the species [169, 111]. For example, the cobalamin
riboswitch binding coenzyme Bis acts as a transcription terminator in Gram-positive
bacteria while regulating translation in Gram-negative bacteria.

It is also possible that transcripts carry multiple riboswitches. In general it turned
out that regulation by cis-regulatory elements occurs more often in Gram-positive
bacteria. In Bacillus subtilis, for example, about 2% of the genes are regulated by
riboswitches.

2.1.2. cis-encoded antisense RNAs

Regulatory ncRNAs acting by base-pairing with their target transcript are either
cis-encoded or trans-encoded. In the case of cis-encoded antisense RNAs (asRNA)
the asRNA is encoded on the opposite strand of the regulated gene, but at the same
locus, so that the two transcripts are overlapping and their sequences in the overlap
region are complementary to each other [169, 26]. The size of the overlap, which is
complementary, can be quite large, often more than 75 nucleotides. Although the
two transcripts are cis-encoded, they are trans-acting in the bacterial cell, i.e., they
are transcribed independently from each other and get in contact by diffusion. Due
to their complementary sequence they form a stable duplex. In most cases this leads
to the occlusion of the ribosome biding site of the target mRNA. There are also
mechanisms known where the duplex formation with the asRNA leads to a faster
degradation of the mRNA [169].
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The asRNA can, however, also influence the transcription of the target gene.
The continuous transcription of the asRNA can lead to a downregulation of the
transcription of the target mRNA on the opposite strand [54]. In an operon, where
the asRNA is encoded around the 3’ end of an open reading frame (ORF), the asRNA
can bind to the transcript of the operon before transcription is finished, which leads
to a pre-mature transcription termination and, therefore, the downregulation of the
genes that are encoded downstream of the asRNA’s binding site.

A specific group of genes regulated by asRNAs are type I toxin-antitoxin sys-
tems [169, 161]. These systems consist of a protein-coding transcript that encodes a
toxic protein and an asRNA inhibiting the translation and promoting the degrada-
tion of the toxin-encoding mRNA. Thus, the asRNA is the antitoxin of that system.
These systems are usually found on plasmids and ensure that the plasmid is pre-
served in the population. If a daughter cell of the bacterium does not contain the
plasmid the less stable antitoxin asRNA will be degraded and no further transcripts
can be produced since the plasmid was lost. The more stable mRNA of the toxin,
however, is no longer inhibited. Thus the toxic protein is produced, which kills the
bacterial cell that has lost the plasmid. Interestingly, toxin-antitoxin systems have
also been found on bacterial chromosomes. The role of these chromosomally encoded
systems is still unclear, but it has been shown that many toxins might have regu-
latory functions when they are present in lower concentrations, e.g., by causing a
slower cell growth [80, 159].

2.1.3. trans-encoded ncRNAs

If the regulatory ncRNA is transcribed from a different locus than the mRNA of
its target, it is called a trans-encoded regulatory RNA. The complementary region
between these ncRNAs and their target transcripts is often significantly shorter
than for cis-asRNAs and involves only 10 to 25 nucleotides [169]. The regulatory
mechanisms, however, are similar. Like the cis-asRNAs the trans-ncRNAs bind to
their target and occlude the ribosome binding site, which inhibits translation. In
addition, the degradation of the mRNA is promoted in most cases. Nevertheless, in
some cases the binding of the ncRNA stabilizes the mRNA or it can even activate its
translation. This happens if the native structure of the mRNA prevents the ribosome
from attaching and the binding of the ncRNA changes the structural conformation
and makes the ribosome binding site accessible. These ncRNAs are also known as
‘anti-antisense RNAs’.

Unlike cis-asRNAs trans-encoded regulatory ncRNAs often have multiple targets.
Thus, they act like transcription factors regulating a whole group of genes but doing
this on a post-transcriptional level. In addition, they are often expressed at very
specific growth conditions whereas many cis-asRNAs are transcribed constitutively.

For the RNA-RNA interaction between the ncRNA and the mRNA the RNA
chaperone Hfq is required in many cases. It binds the ncRNA stabilizing it and also
catalyzes the RNA-RNA interaction by changing the conformation of the RNAs to
make the binding sites accessible. Hfq might also be involved in promoting the degra-
dation of the mRNA once the ncRNA is bound. It has been shown, however, that
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trans-encoded ncRNAs do not necessarily become ineffective in Hfq mutant strains.
Furthermore, there are bacteria without a Hfq homolog that express functional reg-
ulatory ncRNAs.

2.1.4. ncRNAs regulating protein activity

In addition to regulation via RNA-RNA interaction there are ncRNAs that bind to
proteins and thereby regulate the protein activity. CsrB and CsrC, for example, are
two ncRNAs that modulate the activity of the protein CsrA in E. coli. CsrA binds
to mRNAs that contain a GGA motif in their 5 UTR, which influences the stability
and translation of these mRNAs. The CsrB and CsrC ncRNA transcripts contain
multiple instances of the same motif, by which they are able to bind CsrA proteins.
Thereby, the CsrA proteins are blocked and are not able to bind to their target
mRNAs. Thus, the expression of CsrB and CsrC leads to a global downregulation
of CsrA activity. The two ncRNAs are in turn regulated by the CsrD protein, which
binds to them and promotes their degradation by RNase E.

Another example for a regulation of protein activity by an ncRNA is the 65 RNA
in E. coli. The 65 RNA mimics an open promoter and binds and thereby sequesters
RNA polymerases that are in complex with the o7 transcription factor. However,
it does not bind RNA polymerases which are in complex with the ¢° transcrip-
tion factor. By this mechanism the expression of some genes with ¢’ promoters is
downregulated while the expression of some genes with ¢° promoters is upregulated
during stationary phase when 6S RNA is highly abundant.

2.1.5. CRISPR RNAs

A very specialized type of RNAs are CRISPR RNAs. The CRISPR (clustered reg-
ularly interspaced short palindromic repeats) system can be regarded as a kind of
immune system found in bacteria and archaea [169, 79, 152]. It is able to silence for-
eign DNA that has entered into the cell such as from phages or plasmids. CRISPR
loci are highly dynamic and can adapt to phages the bacterium has been infected
with and incorporate elements to gain immunity against these invaders.

A CRISPR locus consists of several short repeat units, which are interspersed
with short spacer units. The length of the repeats is 21 to 47 nucleotides while
the spacers are between 20 and 72 nucleotides in size. The number of repeat-spacer
units is usually between 20 and 30 but can be greater than 200 in some cases. While
the sequence of the repeats is highly conserved, the spacer sequences are extremely
diverse. The array of repeat-spacer units is preceded by a so-called ‘leader sequence’,
which is conserved and relevant for the functionality of the system. Furthermore,
the locus is surrounded by CAS genes, which encode the protein components of the
CRISPR system. The spacers, which are complementary to parts of foreign DNA,
are actually the carriers of immunity information.

When foreign DNA enters the cell, e.g., in the form of a plasmid or during a phage
infection, CAS proteins incorporate small pieces of this DNA (protospacer) into the
CRISPR locus, where they form a new spacer. The incorporation takes place between
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the leader sequence and the first repeat-spacer unit. Thus, the CRISPR array grows
at only one side whereas elements on the other side originate from older infections.

The whole CRISPR array is constitutively transcribed. One long transcript is
produced, that contains all repeat-spacer units. A complex of CAS proteins, however,
processes this transcript and cleaves it into smaller RNAs, where each contains one
single repeat-spacer unit. These are the CRISPR RNAs (crRNA). The crRNAs are
bound by a complex of CAS proteins. When foreign DNA enters the cell, crRNAs
that show complementarity to the DNA bind to it and the CAS proteins, which
build a complex with the crRNA, promote the degradation of the invading DNA.

2.1.6. Multifunctional RNAs

Although most RNAs probably fulfill a single specific function such as either protein-
coding or as a non-coding regulator, there are several examples of RNAs known that
facilitate multiple functions. RNA III in S. aureus, for example, regulates virulence
factors by RNA-RNA interaction with their mRNAs but at the same time encodes
a small protein of 26 amino acids length. Another example is the SgrS RNA in
E. coli, which downregulates the expression of PtsG by RNA-RNA interaction with
its mRNA. PtsG is a sugar-phosphate transporter. In addition, SgrS encodes the
43 amino acid protein SgrT, which also inhibits the PtsG transporter. Thus, the
SgrS RNA acts as a downregulator of glucose uptake by two different regulatory
mechanisms targeting the same gene.

2.2. Computational prediction and characterization of
ncRNAs

2.2.1. Overview

Computational approaches to the detection of ncRNAs can be divided in three dif-
ferent groups depending on the type of elements that are to be detected [67, 110,
10, 102, 146]. An overview of the most important approaches is given in figure 2.1.

The first group deals with the de novo detection of ncRNAs, which aims at the
prediction of ncRNA elements in general without any knowledge about certain se-
quential or structural features of the elements. This makes the de novo prediction
of ncRNAs the most challenging problem in the field of ncRNA detection. Most
algorithms applied to this problem make use of methods for comparative sequence
analysis for the detection of sequence motifs or the detection of conserved secondary
structures. For the detection of ncRNA transcripts these approaches are comple-
mented by methods for the detection of transcriptional features such as promoter
regions and transcription terminators.

The second group of algorithms deals with the detection of elements that belong to
a certain RNA family. If the family is already defined by a group of sequences, other
members of the same family can be detected by sequence similarity, for example.
If, however, the pairwise sequence similarity within the family is too low, secondary
structure information that is available for the members of the RNA family can be
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Methods for ncRNA Gene Finding

de novo prediction known families known classes
o e, o tRNAs
EvoFold Infernal
RNAz Erpin tRNAscan-SE
CMfinder
SIPHT* snoScan
nocoRNAc* snoGPS
snoReport
snoSeeker

Figure 2.1.: Overview of the three approaches to ncRNA prediction and examples
of relevant programs. 1. De movo prediction, for which a subgroup of
programs (*) is available that specifically predict ncRNA transcripts.
2. Searching for members of a specific family. 3. Searching for members of
a specific class. These programs are usually specialized for single classes
of ncRNAs.

used to train a probabilistic model which integrates sequence and structure informa-
tion. This model can then be applied to a set of target sequences or whole genomes
to detect further members of the same RNA family.

The third group of algorithms were developed for the detection of ncRNAs that
belong to a specific RNA class. Members of an ncRNA class show very low sequence
conservation while sharing similar structural elements and facilitating a similar func-
tion. Because these structural patterns are very specific for an individual RNA class,
many algorithms are designed for the detection of only one specific class. An exam-
ple for an RNA class are microRNAs (miRNAs). The sequence conservation among
different miRNAs is very low, but due to their distinct structural features several
programs could be developed that specifically detect miRNAs.

Most of the methods in the field of ncRNA detection can be applied to long
target sequences, e.g., complete genomes, to detect ncRNAs de novo or as members
of known families or classes. However, these methods can also be used for RNA
classification. Here, several methods are applied to a set of RNA sequences to decide
if they belong to a certain family or class or if they might represent a novel class of

RNAs.
2.2.2. De novo prediction of non-coding RNAs
Methods based on comparative sequence analysis

For the de novo detection of ncRNAs, which is not limited to a specific family or class
of RNAs, approaches have been developed that are based on comparative sequence
analysis. These methods search for conserved secondary structures and sequence
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patterns in a set of homologous sequences. Depending on the applied program these
sequences are either aligned as part of the prediction process or they have to be
aligned prior to the application of the program. This can be accomplished by us-
ing ClustalW [154], for example. However, as a first step the set of homologous
sequences has to be defined. If the detection of ncRNAs is applied to a complete
genome, a multiple whole-genome alignment using the genomes of organisms closely
related to the target organism can be generated by using whole-genome aligners
such as Mauve [38]. If the search is restricted to specific regions or elements, such
as intergenic regions or experimentally detected transcripts, homologous sequences
are gathered from large sequence databases, e.g., by using the basic local alignment
search tool (BLAST [6]).

The program RNAz makes use of such a comparative approach for the de novo
detection of ncRNAs [61]. It takes a multiple alignment of homologous sequences as
input and predicts if the aligned sequences contain a structurally conserved ncRNA.
For long sequences, like a whole-genome alignment, for example, RNAz is applied us-
ing a sliding window approach. The program makes use of a support vector machine
(SVM) to classify the input. The SVM considers various properties of the input
sequences. The two most important are the z-score and the structure conservation
index (SCI). The z-score is defined as follows:

z = , (2.1)

where m is the average minimum free energy (MFE) of the secondary structures
predicted for the sequences in the alignment and p and o are mean and standard
deviation of the MFE values of the structures of random sequences, which have a
similar length and dinucleotide composition as the input sequences.

The z-score is a measure of the stability of the input sequences when compared to
the expected stability of random sequences with similar properties. The assumption
here is that the secondary structure of a functional RNA is significantly more stable
than the structure of sequences that do not contain a functional structure. Thus,
large negative z-scores indicate that the input sequences are significantly more stable
than expected by chance.

The second assumption is that the secondary structure of functional RNAs is not
only more stable but also significantly more conserved than that of other sequences.
The degree of structure conservation among the aligned input sequences is measured
by the structure conservation index (SCI):
Ea
- )

Sor =24 (2.2)
E

where F 4 is the MFE of the consensus structure of the aligned sequences, which is
calculated by RNAalifold [19], and F is the average MFE of the predicted secondary
structures of the single sequences.

If the secondary structures of the single sequences are quite similar, their MFE
values will be similar to the MFE of the consensus structure and thus, the SCI will
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be close to 1. If, however, the individual structures are very dissimilar, their MFEs
will be significantly lower than the MFE of the consensus structure, which leads to
a SCI close to 0.

The z-score, the SCI and other properties of the alignment, such as the length and
the mean pairwise sequence identity, are used as input for the SVM classifier. As
a result RNAz provides for each input alignment the probability that this alignment
contains a structured RNA.

A different comparative approach is implemented in the program EvoFold [119].
It utilizes phylogenetic stochastic context-free grammars (phylo-SCFG) to detect
functional RNAs. Like RNAz EvoFold takes aligned sequences as input. It applies
two different models to the input, where one model represents functional RNAs and
the other one is a background model. Both models are implemented as phylo-SCFGs.
With SCFGs, it is not only possible to model sequence patterns as it is done with
hidden Markov models (HMMs), but it is also possible to model secondary struc-
ture information. Additionally, a phylogenetic tree modelling the divergence among
the input sequences is taken as input, which is used for an individual weighting of
nucleotide substitutions of single sequences within the alignment.

Another program that utilizes SCFGs is QRNA [129], but it does not make use of
any phylogenetic information. In addition, only the model for functional RNAs is
based on SCFGs while protein-coding sequence and background are modelled with
HMMs. The input for QRNA are two aligned sequences, which are assigned to one of
the three classes as defined by the three models: ‘functional RNA’, ‘protein-coding’
and ‘other’.

There are also programs, which take unaligned sequences as input and perform
simultaneous sequence and structure alignment of the input data. One of these
programs is LocaRNA [170]. LocaRNA calculates conservation profiles for sequence
and structure in single-nucleotide resolution. With LocaRNA it is therefore possible
to determine the exact boundaries of conserved RNA structures within the input
sequences.

CMfinder is another program that takes unaligned sequences as input [178]. It
can be seen as a motif finder for secondary structure motifs. It employs covariance
models (CMs), which are based on SCFGs, to describe the structural motifs that
have been identified in the input sequences. These CMs can be used to search for
the respective motifs in genomic sequences or other sequence data.

Another program that assesses structural conservation and that can be used for
ncRNA prediction is Dynalign [160].

Methods based on transcriptional feature detection

Methods based on comparative sequence analysis that detect functional RNAs do
not distinguish between structural elements, which are part of messenger RNAs, and
ncRNAs that are transcribed on their own. Cis-regulatory elements, for example, are
part of mRNAs, but also Rho-independent transcription terminator signals. To be
able to identify mRNA-independent ncRNA transcripts, the prediction of transcrip-
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tional features, such as promoter regions and transcription terminators, is combined
with the detection of conserved secondary structures.

One program following this approach is SIPHT [93]. It provides a web-based inter-
face for its application to various bacterial genomes. SIPHT predicts ncRNA tran-
scripts only in intergenic regions. Homologous sequences are identified by comparing
the intergenic regions of the target organism with other bacteria using BLAST [6].
For candidate regions transcription factor binding sites (TFBS) are detected with
position-specific weight matrices (PSWM) and Rho-independent terminator signals
are predicted by utilizing the program TransTermHP [82]. For the detection of con-
served secondary structures QRNA is integrated in the SIPHT pipeline.

NOCORNAC [65], another program for the detection of ncRNA transcripts, is pre-
sented in this thesis (section 3). NOCORNAC is not restricted to intergenic regions,
but also able to detect antisense RNAs. For the prediction of promoter regions it
makes use of a thermodynamic model for the calculation of DNA duplex stability,
which does not have to rely on known TFBS motifs. Furthermore, NOCORNAC in-
tegrates TransTermHP [82] for terminator prediction, RNAz [61] for the detection of
secondary structure conservation and IntaRNA [30] for the prediction of RNA-RNA
interactions.

Other programs taking heterogeneous data such as transcription signals into ac-
count are sRNAfinder [155], sRNApredict [92] or sRNAscanner [147].

Further approaches for the de novo detection of ncRNAs are based on sequence
clustering [157], graph processing [32] or different machine learning approaches [156,
132, 175, 133].

2.2.3. Searching for members of an RNA family

For the detection of RNAs that belong to an individual RNA family a specific model
can be trained for that family that can then be employed for searching other family
members. A database where models of RNA families are stored is Rfam [29]. Part of
Rfam is the Infernal software package, which contains programs for building family
models from multiple sequence alignments (CMbuild) or for searching members of
a given family (CMsearch). For each family an alignment of family members, a
consensus secondary structure and the respective covariance model can be found
on Rfam. CMsearch takes a CM and a target sequence as input and searches for
instances of the respective RNA family in the target sequence. It lists all matches
including coordinates, bit score and an e-value. CMsearch can apply various filtering
steps prior to the application of the CM, which reduces the time-consumption. An
alignment HMM (HMMer), which models the multiple alignment of known family
members, can be used to identify regions in the target sequence that show sufficient
sequence similarity, so that only for these candidate regions the full CM is applied.
Alternatively, BLAST can be used to identify candidate regions.

A program for RNA family search that is not based on CMs is Erpin [51]. For
a given alignment and consensus structure of members of an RNA family as it can
be retrieved from Rfam, Erpin constructs position-specific weight matrices (PSWM)
for structural elements like stems and loops. The PSWMs are then used to scan a
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target sequence (e.g., a genome) for instances of this RNA family. Erpin needs a
descriptor file of the query RNA family as input, which can, however, be automat-
ically generated from Rfam entries. A manual modification of the descriptor file is
also possible, for example to remove structural elements from the descriptor that
are not well conserved.

2.2.4. Searching for members of an RNA class

Most programs for the detection of ncRNAs that belong to a certain class are re-
stricted to only one specific class or a few related classes. One class of RNAs that is
also regarded as an RNA family is the class of tRNAs. A program for the detection
of tRNAs in genomic sequences is tRNAscan-SE [94, 135]. It uses different models
for the prediction depending on the target organism (bacteria, eukaryotes, etc.).

Another class of RNAs for whose detection specific methods have been developed
is the class of small nucleolar RNAs (snoRNAs), which are involved in the process-
ing of small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNAs). Programs for
their prediction rely on the detection of the specific sequence motifs in C/D box
snoRNAs and H/ACA box snoRNAs and on the localization of certain structurally
conserved elements. Parts of their sequence are complementary to their target RNAs
(snRNAs, rRNAs) and the detection of these complementary regions is also part of
some programs for snoRNA detection.

The program snoscan [95, 135], for example, considers such target information for
the detection of C/D box snoRNAs. A specific prediction of H/ACA box snoRNAs
is accomplished by snoGPS [136, 135]. The program SnoReport [68] predicts both,
C/D box and H/ACA box snoRNAs, and does not need any target information. A
combination of two approaches is snoSeeker [177], which integrates CDseeker for
the detection of C/D box snoRNAs and ACAseeker for the prediction of H/ACA box
snoRNAs. The program can be applied to genome alignments but also to sequencing
data.
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3. nocoRNAc: Prediction and
characterization of non-coding RNAs

Bacterial non-coding RNAs (ncRNAs) are increasingly recognized as key regulators
that are involved in various biological processes (see section 2.1). Therefore, several
methods for the computational prediction and characterization of ncRNAs have
been developed. An overview is provided in section 2.2. Most of these methods
focus either on the detection of ncRNAs that are similar to known RNA families or
classes, or they are based on the detection of conserved secondary structures. Few
methods incorporate the detection of transcriptional features for the prediction of
ncRNA transcripts, which is based on the identification of known transcription factor
binding site (TFBS) motifs and Rho-independent terminator signals. In addition,
most approaches are limited to intergenic regions and ignore cis-antisense RNAs.

In this chapter the program NOCORNAC is presented, which is designed for the
genome-wide prediction and characterization of ncRNA transcripts in bacteria. It
integrates methods for the detection of conserved secondary structures with the
identification of transcriptional features. However, NOCORNAC does not rely on
described TFBS but utilizes a more general model (SIDD) for the localization of
promoter regions, which is described in section 3.1.2. A first version of NOCORNAC
is described in my diploma thesis [66]. It consisted of basic methods for the classi-
fication of ncRNA candidates including a first implementation of the SIDD model.
In this dissertation the SIDD approach was partially reimplemented for higher ef-
ficiency. In addition, methods for the genome-wide detection of structured ncRNA
transcripts including an automated structure conservation pipeline were developed.
Furthermore, NOCORNAC now provides functionalities for the more detailed char-
acterization of ncRNA candidates such as the prediction of RNA-RNA interactions
(section 3.4). All results of an application of NOCORNAC can be assessed in its
interactive R environment (section 3.5). An overview of NOCORNAC’s workflow is
depicted in figure 3.1.

In general NOCORNAC employs three different strategies for the prediction of
ncRNA transcripts.

The first strategy is to take regions as input that potentially contain conserved
RNA secondary structures, which have been identified with RNAz [61] by the user.
For this RNAz is applied to a whole-genome alignment of the target organism’s
genome with one or more other genomes of related organisms. The resulting re-
gions are further processed by NOCORNAC. Rho-independent terminator signals
and SIDD sites that have been predicted by NOCORNAC are assigned to the regions
identified by RNAz and combined to predict ncRNA transcripts in the context of
these regions (section 3.2). In general NOCORNAC is not limited to process regions
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Figure 3.1.: Overview of NOCORNAC’s workflow for the prediction and characteriza-

tion of ncRNA transcripts. The target genome, genome annotations and
predefined ncRNA loci (optional) are taken as input. Transcriptional fea-
tures: A SIDD profile is calculated for the target genome and processed
in order to detect SIDD sites, which are used to determine the 5’ start of
ncRNA transcripts. Rho-independent terminator signals are detected in
order to define the 3’ end of the transcripts. The detected signals are used
to predict ncRNA transcripts and to classify ncRNA loci as transcripts
or cis-regulatory elements. Characterization: The predicted ncRNA tran-
scripts and ncRNA loci are further characterized, with respect to con-
served secondary structures, potential RNA-RNA interactions and their
assignment to known RNA families. Output: The results can be further
assessed in NOCORNAC’s interactive R environment. In addition, a GFF
file comprising all results is generated. RNA-RNA interaction networks
can be saved as GML files.



3.1. Integrated Methods

identified by RNAz. Any other method that is applicable for the detection of sec-
ondary structure conservation can be applied as well.

A second strategy is to omit the structure conservation analysis completely. In
this case NOCORNAC combines SIDD sites and Rho-independent terminators to
predict ncRNA transcripts in a genome-wide manner without considering regions of
structural conservation (section 3.2.1). The combination of SIDD sites and termina-
tor signals is restricted in this case. Features can only be combined if the resulting
ncRNA transcript is not shorter than 30 bp and not longer than 600 bp. These
thresholds can be customized.

The third and most sophisticated strategy starts with the genome-wide prediction
of ncRNA transcripts and searches for conserved secondary structures for each can-
didate individually. This procedure is performed in several steps, which are combined
in NOCORNAC’s structure conservation pipeline (section 3.3).

3.1. Integrated Methods

3.1.1. Prediction of Rho-independent terminators

In most bacteria the transcription process of a large fraction of all transcripts is
terminated by a so-called Rho-independent terminator [172]. These signals consist
of a stem-loop structure followed by an A/T-rich region. The stem is usually built
by a palindromic G/C-rich sequence, and thus it is quite stable. The size of the stem
can vary but it is rarely longer than 20 bp. When the RNA polymerase reaches the
terminator signal it interacts with the stem-loop structure which causes it to pause
transcription. The A /T-rich region that follows the stem-loop allows the synthesized
transcript to dissociate from the template, which also frees the polymerase and thus
terminates transcription.

A second termination mechanism is facilitated by the Rho protein and is therefore
called Rho-dependent transcription termination [127]. In this case the Rho protein
binds to the so-called Rho utilization site on the synthesized RNA transcript. It
then translocates along the transcript and reaches the polymerase, which is paused
by a terminator signal at the end of the transcript that is usually quite similar to
a Rho-independent terminator. There it acts as a helicase, which causes the RNA
transcript to dissociate and the transcription process to be terminated. However,
the Rho utilization site is often highly degenerated and hard to detect. Therefore,
NOCORNAC focuses on the detection of Rho-independent terminator signals.

For this the program TransTermHP [82] is integrated in NOCORNAC. TransTermHP
localizes the characteristic stem-loop motifs in bacterial genomes and assigns a score
to each candidate which relates to the probability of the element to act as a Rho-
independent transcription terminator. The scoring considers three different parts
of the candidate, which are the stem, the loop and the tail. The tail is the single-
stranded region downstream of the stem-loop. The scoring of the stem considers
its size and the GC-content. The score of the loop is solely based on the size and
the scoring of the tail considers the abundance of A/T nucleotides in its sequence
as an A/T-rich tail leads to a less stable duplex between the transcript and the
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template leading to the dissociation of the transcript and thereby the termination
of transcription. The combination of the three scores result in a single confidence
value for each candidate.

3.1.2. Prediction of promoter regions: SIDD Sites

The computational detection of promoter regions or transcription start sites solely
based on the genomic sequence is extremely challenging as there is a large number of
sigma factors and other transcription factors that bind to certain signals in promoter
regions and interact with the RNA polymerase to facilitate the initiation of the tran-
scription process. The sequence motif of the transcription factor binding site varies
significantly for the different transcription factors and in many cases the binding
sites are short and can be highly degenerated or the sequence of the binding site is
not known at all. Even when focusing on a specific organism the number of transcrip-
tion factors that have to be considered can be very high. In Streptomyces coelicolor,
for example, there are more than 60 known sigma factors [17].

Therefore, the prediction of ncRNA transcripts in a wide spectrum of bacterial
genomes requires more general properties of promoter regions to be taken into ac-
count. A mechanism that is necessary for all sites of transcription initiation is the
separation and partial unwinding of the DNA double helix at the respective locus to
allow for the binding of transcription factors and the RNA polymerase. Thus, it can
be assumed that the base composition in the context of a transcription initiation
site potentially promotes this event.

A model that takes these features of promoter regions into account is the so-called
SIDD model (Stress Induced Duplex Destabilization) [15]. This approach considers
the thermodynamic stability of the base pairings on the dinucleotide level, the tor-
sional energy that is needed for unwinding the helix and, in addition, the influence
of superhelical stress.

The model was implemented as described in [15] and integrated in NOCORNAC to
calculate a SIDD profile for a DNA sequence. The profile contains for each position
the expected amount of free energy that has to be added to the system to establish
a state in which the base pair at the respective position is separated. Each SIDD
value of the profile is calculated on the basis of a partition function normalizing the
free energy of all states in which the respective base pair is separated by the free
energy of the whole system. For a region of length n there are 2" possible different
separation states and in theory the model would have to consider all of them to
calculate the profile. This would result in an exponential time complexity and thus,
only biologically plausible states are taken into account, which reduces the time
complexity to O(n?). Biologically plausible states are characterized as states that
contain no more than three continuous regions of separated base pairs.

For the calculation of a SIDD profile for a whole genome, a sliding window ap-
proach as suggested in [15] with a default window size of 5000 nt and a step size
of 500 nt is used. With these settings each position is covered by ten windows and
ten values are calculated, for which a weighted average is calculated. Here, a higher
weight is assigned to values calculated for windows in which the position was located
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in the middle of the window whereas values near the border of a window receive a
lower weight.

For maximal efficiency of the SIDD profile calculation only native Java arrays
(int, double) have been used for its implementation. The calculation for a complete
bacterial genome takes depending on the genome size a couple of hours and needs
less than 512 MB memory (Tested on a Intel® Core"2 Quad Q9300 (2.5GHz)).

Parallelization To speed up the calculation process of the SIDD profile the proce-
dure has been parallelized in this dissertation. For this, parts of the algorithm have
been reimplemented to allow for a separate storing of the energy values of single
states and the respective partition function which is used to calculate the Boltz-
mann factor for each state. Thus, the normalization using the partition function can
be postponed to a later step and the windows can be calculated independently of
each other. Then, after all windows have been calculated in parallel, the normal-
ization is performed at once for the whole profile. The user can set the number of
different cores/processors that are to be used for the calculation and the program
splits up the windows in the respective number of different sets. The sets are then
processed by independent threads, which, however, store there results in two global
arrays. In one array for each genomic position the free energy values of all separa-
tions states are summed up that indicate a separation at that position. In the other
array for each genomic position the energy values of all states are summed up that
are covering the respective position. When the threads have finished the calculation
the complete profile is finalized by normalizing the first array with the second one.

3.1.3. Conserved secondary structures: RNAz

Two of the three strategies of NOCORNAC to predict novel ncRNA transcripts are
based on the detection of conserved secondary structures. One approach uses pre-
dicted regions of conserved secondary structure as a basis for the transcript predic-
tion, the other approach, the structure conservation pipeline, applies this step after
the prediction of a set of candidate loci.

For the task of predicting conserved secondary structures the program RNAz [61]
is integrated in NOCORNAC. It was chosen because of its speed, robustness and good
integratability. The RNAz program consists of the main method and supplementary
scripts that are used for data preprocessing and postprocessing. However, only the
core method is integrated as NOCORNAC is performing all data processing steps
that are necessary. RNAz takes as input a set of aligned sequences.

Two properties are considered to predict if a given sequence alignment contains
a functional structured RNA. The first property is based on the minimum free
energy (MFE) of the RNA structure that is predicted for the given sequences. For
this the program RNAfold is used [71]. The assumption is that a functional RNA
with a structure on which its functionality depends has a significantly lower MFE,
i.e., a more stable structure, than a random sequence. As a measure for how much the
structure is more stable than one would expect by chance the z-score is used, i.e., the
mean MFE as expected for a sequence of the same length and nucleotide composition
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is subtracted from the actual MFE of the query sequence and this is normalized
by the respective standard deviation. The expected mean MFE and the standard
deviation could be calculated by repeated shuffling and computational folding of the
query sequence. However, RNAz uses a regression support vector machine (SVM)
to estimate these values. The SVM was trained on different sets of sequences with
varying lengths as well as mononucleotide and dinucleotide frequencies. Thus, for
a given query sequence the regression SVM takes these properties as input and
calculates the expected mean and standard deviation of the MFE, which is much
faster as it could be accomplished by the shuffling approach. For each sequence in
the alignment a z-score is calculated.

The second measure, which directly refers to structure conservation is the so-called
structure conservation index (SCI). To determine the SCI the MFE structure
is calculated for each sequence in the alignment using RNAfold [71]. In addition
the MFE consensus structure for the complete alignment is calculated using RNAal-
ifold [19]. The SCI is then determined by normalizing the MFE value of the consensus
structure by the mean MFE value of the single structures. A SCI value close to 1
means that the MFE values of the single structures are very similar to the MFE of
the consensus structure and this therefore indicates that the structure is well con-
served. A low SCI indicates a low conservation of secondary structure. As a measure
for secondary structure conservation the SCI has been shown to perform very well
in comparison to other methods [60].

In the final classification step the mean z-score of all aligned sequences, the SCI
as well as the mean pairwise identity (MPI) of the sequences are used as input for
a classification SVM. This SVM was trained on Rfam alignments [29] as a positive
set and on dinucleotide shuffled Rfam alignments as a negative set. The MPI has to
be considered during the classification as very similar sequences are more likely to
have a high SCI than more dissimilar sequences. The application of the classification
SVM results in a P-value indicating the probability that the alignment contains a
structured functional RNA. By default RNAz considers an alignment to be classified
as an ncRNA if the P-value is equal to or greater than 0.5.

3.1.4. Identification of RNA families: Infernal

One relevant information about predicted ncRNAs is if they belong to an already
known RNA family. Information about RNA families can be found in the Rfam
database [29] and RNA family membership can be determined using tools such as
CMsearch as described in section 2.2.3.

NOCORNAC integrates CMsearch, which is part of the Infernal package, to iden-
tify predicted ncRNAs that belong to annotated RNA families. For this, the Rfam
database has to be provided to NOCORNAC in the form of an Rfam seed file, which
can be downloaded from the Rfam FTP server. This file contains for each RNA fam-
ily an alignment and a consensus secondary structure of family members in addition
to supplementary information such as a description of the RNA family or suggested
score cutoffs for the identification of new family members with CMsearch.
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NOCORNAC uses the entries in the Rfam seed file to build covariance models
for each RNA family by utilizing the tool CMbuild. Then CMsearch is applied to
the target genome of NOCORNAC using these covariance models. The score cutoffs
for the prediction are individually chosen for each RNA family as suggested in the
respective Rfam seed entry. The results are collected to annotate predicted ncRNAs
as members of known RNA families if possible.

The user can decide to search for all RNA families that are contained in the Rfam
seed file or only a subset can be used by passing a list of the respective Rfam IDs
to NOoCORNACcC. However, it is also possible to select certain categories of entries
by passing the respective keywords (e.g., ‘cis-reg’ to only include cis-regulatory
elements).

If a search is performed using the complete database, the procedure is very time-
consuming and can take several days. For this reason the search process is parallelized
in NOCORNAC and multiple queries can be processed at the same time.

3.1.5. RNA-RNA interactions: IntaRNA

Most known regulatory RN As perform their function by base pairing with the mRNA
of their target gene. Thus, the identification of potential target mRNAs of putative
ncRNAs is a crucial step to predict regulatory function. Therefore, the program
IntaRNA [30] is integrated in NOCORNAC to predict RNA-RNA interactions between
putative ncRNAs and mRNAs of the bacterial organism to which NOCORNAC is
applied. The advantage of IntaRNA is that it combines the energy of the duplex
formation between the interacting RNAs but also the energy that is needed to unfold
the RNAs such that the interaction site becomes accessible in both molecules. In
addition, IntaRNA considers the existence of a seed region for the interaction of two
RNA molecules. A seed region is a short stretch of nucleotides in both molecules
that are complementary to each other and that are likely unpaired within the single
molecules. Thus, the start of the duplex formation is favorable at these regions.

Most other programs for RNA-RNA interaction prediction are based on different
approaches as summarized in [30]. One strategy is to concatenate the two candidate
RNA sequences and predict the secondary structure of this merged sequence with a
standard secondary structure prediction algorithm. Here, only small modifications of
the algorithm are necessary to handle the part of the sequence where the two RNAs
were joined. The disadvantage of these approaches is that they usually can only
predict interactions, if the resulting joint structure is free of pseudoknots. However,
many RNA-RNA interactions involve the loops of hairpin structures in the two
RNAs, which would result in a joint structure with a pseudoknot. Another strategy
is solely based on the free energy of the duplex formation. It could be shown that
the additional consideration of the accessibility of the interaction site leads to a
significant improvement of the prediction performance [30].

In IntaRNA the calculation of the hybridization energy of the duplex is based on
the energy model used in RNAhybrid [126]. In order to consider the accessibility of the
interaction site in both RNAs a partition function is used to calculate the difference
between the energy of the ensemble of all secondary structures of the molecule
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and the energy of the ensemble of only those structures where the nucleotides of
the interaction site are unpaired. The final energy of the predicted interaction is
then defined as the sum of the hybridization energy of the duplex and the energy
that is needed to make the interaction site accessible as calculated by the partition
functions. An interaction between two RNAs is considered to be possible if this
combined interaction energy is negative.

NOCORNAC provides two different approaches for RNA-RNA interaction predic-
tion, for which IntaRNA is utilized. The first approach is aimed at the prediction
of genome-wide networks of RNA-RNA interaction candidates. This strategy is de-
scribed in section 3.4. The second approach is integrated in NOCORNAC’s interactive
R environment. It aims more at the target prediction for single pre-chosen elements
and offers possibilities for the estimation of the significance of predicted interactions
such as z-score and p-value calculation. This strategy is described in section 3.4.3.

3.2. Prediction of ncRNA transcripts

The first strategy that NOCORNAC can employ for the detection of ncRNA tran-
scripts is based on ncRNA candidate loci, which, for example, result from a genome-
wide application of a program such as RNAz [61], that identifies regions with con-
served secondary structures. As a first step NOCORNAC annotates these loci with
all transcriptional features that have been predicted in the respective region. For the
transcript prediction SIDD sites and terminator signals are combined, which allows
for a determination of the strand of the transcript and a localization of transcript
boundaries that is more precise as by the RNAz prediction alone.

The prediction algorithm takes each SIDD site into consideration that has been
predicted within an ncRNA candidate locus or not further than 25 bp apart. For
each site a matching terminator is searched in both directions as SIDD sites are
not strand-specific. The start of the candidate transcript is set to the coordinates
of the SIDD site and as the end the first high-confidence terminator downstream or
upstream of the SIDD site is selected. A predicted high-confidence terminator has a
confidence of 75 or greater [82]. If no high-confidence terminator can be found, the
predicted transcript is extended to the terminator with the highest confidence value.
If there were no terminator signals predicted for the respective candidate region,
the boundaries of the region itself are used to terminate the predicted transcript.
However, transcripts without a predicted terminator are only kept, if their SIDD
site is not located in the upstream region of a protein-coding gene, as in this case
the site is potentially associated to the transcription start of that gene.

After the prediction of candidate ncRNA transcripts overlapping predictions are
merged, if they are located on the same strand. For overlapping transcripts on differ-
ent strands only the candidate with the higher terminator confidence is kept while
the other candidate is shortened by selecting an alternative terminator signal that
is closer to the respective SIDD site. If no alternative terminator can be found, the
candidate transcript is completely removed from the predictions.
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Figure 3.2.: NOCORNAC’s ncRNA prediction concept. SIDD sites, which are drops in
the genomic SIDD profile, indicate regions where an opening of the DNA
duplex is favorable. Predicted ncRNA transcripts start at a SIDD site
and are extended to the best Rho-independent terminator signal or the
first high-confidence terminator signal which is found downstream of the
SIDD site.

3.2.1. Genome-wide transcript prediction

NOCORNAC also allows for a prediction of ncRNA transcripts independently of
predefined ncRNA regions. This is useful if there is no multiple genome alignment
available to apply RNAz or similar methods for the detection of ncRNA regions or if
the user wants to detect transcripts without any predefined constraints with respect
to certain loci. The genome-wide transcript prediction uses the same approach as
in the context of ncRNA regions (see above), but here is is applied to the complete
chromosome. This has certain implications. First, the prediction of transcripts with-
out terminator is not possible anymore. In the context of a predefined region the end
of that region can be set as the transcript end if no terminator signal can be found.
In the context of the whole genome this is not possible. In addition, the prediction
procedure potentially considers all terminator signals downstream or upstream of
a SIDD site as a possible 3’ end of the transcript. This is also not feasible in a
whole-genome context. Therefore, only terminators with a maximal distance of 600
bp downstream of the T'SS are considered by default.

A schematic representation of the prediction concept is depicted in figure 3.2.

If predefined ncRNA regions are used as input, this usually means that there is
already a certain indication that these loci contain ncRNAs, e.g., if they have been
determined by RNAz. However, in the genome-wide approach only transcriptional
signals are considered for the transcript prediction and thus, the predictions might
also contain small proteins, which have not been annotated. In order to collect ad-
ditional evidence that the predicted loci contained structured RNAs, NOCORNAC’s
structure conservation pipeline is applied (see section 3.3).
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3.2.2. Integration of nocoRNAc with TSS prediction

Instead of using predicted SIDD sites to determine the start positions of puta-
tive ncRNA transcripts NOCORNAC is able to utilize the results of a comparative
TSS prediction on RNA-seq data (see chapter 6). For this the TSS prediction al-
gorithm can optionally provide the results in a format that can be directly read by
NOCORNAC. However, the 3" end of the transcript is still determined by the predic-
tion of Rho-independent terminator signals. In contrast to the standard prediction
of ncRNA transcripts each transcript start is considered to be real even if a match-
ing terminator signal cannot be found. In such a case the end of the transcript is
assumed to be located 150 bp downstream of the TSS. This is a default value that
was chosen according to the properties of typical sSRNAs. Depending on the target
organism or the type of ncRNA that shall be identified this value can be adapted.
It should be noted that the TSS, which are used as input for NOCORNAC do not
have to be filtered according to their classification (Primary, Secondary, Internal or
Antisense; see section 6.1.4) as NOCORNAC automatically classifies the transcripts
according to their location relative to protein-coding genes and also prevents sense-
overlapping transcripts from being predicted. Thus, the classification parameters,
e.g., the assumed UTR length, are not relevant for NOCORNAC.

3.3. nocoRNAC’s structure conservation pipeline

A conserved RNA secondary structure is one of the most important criteria of
ncRNA prediction. For the assessment of secondary structure conservation in
predicted ncRNA transcripts a structure conservation pipeline was integrated in
NOCORNAC. The pipeline is able to automatically collect for each candidate a set
of sequences with an optimal evolutionary distance from a sequence database. These
sequences are then aligned and further preprocessed before they are used as input
for RNAz. This allows for an assignment of RNAz P-values to ncRNA candidates
without the necessity to decide on related organisms for a whole genome alignment.
As all steps of the pipeline depend on the previous ones they are applied sequentially
for each candidate. However, the processing of the set of candidates is parallelized. A
schematic representation of NOCORNAC’s structure conservation pipeline is shown
in figure 3.3.

3.3.1. Collecting homologous sequences

RNAz is applied to a set of aligned sequences that have to be in an appropriate
evolutionary distance to each other in order to predict if they share a conserved
secondary structure. An optimal mean pairwise identity (MPI) of the alignment is
around 80% [61]. Alignments with an MPI significantly above 90% are problematic
as sequences that are nearly identical naturally fold into almost the same structure.
Therefore, reliable information about conserved structures can only be derived from
divergent sequences. An MPI below 50% should also be avoided as an accurate
prediction of the consensus structure becomes infeasible.
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Figure 3.3.: Overview of NOCORNAC’s structure conservation pipeline. For each
predicted ncRNA transcript homologous sequences are collected using
BLAST. The sequences are aligned with ClustalW and sequences with
an optimal pairwise identity are selected. A final alignment is generated
for the selected sequences and RNAz is applied to the final alignment.
The predicted ncRNA transcripts are finally annotated with the RNAz
P-values, which indicate the probability of a conserved secondary struc-
ture.

Considering these constraints the structure conservation pipeline has been de-
signed to collect a set of sequences for each ncRNA candidate individually whose
MPI is as close as possible to the optimum of 80%. Thus, as a first step a nucleotide
BLAST search (blastn) [6] in a sequence database is performed for the ncRNA
candidate. This database can be for example the NCBI “Nucleotide collection (nt)”,
which can be downloaded from the NCBI FTP server'. However, as this database
includes also eukaryotic sequences it is more efficient to construct a custom database
from all bacterial genome sequences, which can also be downloaded from NCBI?.

All BLAST parameters are customizable in NOCORNAC’s configuration file. By
default standard blastn parameters are used. An exception is a reduction of the
word size to 7, which is necessary to also be able to align short sequences. In addi-
tion to that the filter for low complexity regions is switched off, as it appeared that
this filter decreases the overall sensitivity especially for ncRNA candidates contain-
ing repetitive regions such as the poly-A region following many Rho-independent
terminator signals.

3.3.2. Preliminary alignment and selection of sequences

All hits with a pairwise identity in comparison to the query below 50% and above
95% are discarded. If the number of remaining sequences is insufficient the ncRNA
candidate is not further processed and no RNAz P-value is computed. By default the
minimal alignment size is 2. The accepted hits are aligned using ClustalW [154] to
determine the best set of sequences for the final alignment that is used as input for
RNAz. Starting with the sequence that is closest to the optimal pairwise identity of
80% to the query, sequences are iteratively added to the final alignment set always

Lftp:/ /ftp.ncbi.nih.gov /blast/db/
2ftp://ftp.nchi.nih.gov/genomes/Bacteria/all.fna.tar.gz
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selecting the sequence which leads to the MPI closest to 80%. This is done until the
maximum alignment size is reached, which is 4 by default.

3.3.3. Final alignment and P-value calculation

The selected sequences are then realigned using ClustalW and the resulting final
alignment is used as input for RNAz. The ncRNA candidate is annotated with the
resulting P-value. If the length of the alignment exceeds 200 bp it is sliced by a
sliding window approach with a window size of 200 bp and an offset of 20 bp. Each
alignment window is separately analyzed with RNAz. The ncRNA candidate is then
annotated with the best P-value of all windows. Therefore, a predicted transcript
gets a positive prediction even if only a part of it is potentially structurally conserved.
This increases sensitivity for longer transcripts that also contain regions without any
conserved structure. In addition, the sliding window approach reduces the run-time
significantly.

3.3.4. Application to kingdom-wide ncRNA prediction

In a study conducted by Andreas Friedrich in his master thesis [49] the structure
conservation pipeline of NOCORNAC was applied to the prediction of ncRNA tran-
scripts in the genomes of 125 bacteria from 25 different phyla. This resulted in
altogether 68,643 predictions, where the number of putative ncRNAs per genome
varied between 82 and 1633. The vast majority of transcripts was predicted antisense
to protein-coding genes. All predicted elements were further characterized with re-
spect to their conservation in other species and several other properties. In addition,
the GraphClust pipeline [70] has been applied to cluster ncRNA candidates with
respect to their secondary structure.

It turned out that most of them are only conserved on the species level with only
a few being found across phyla, most of which representing housekeeping RNAs like
rRNAs or tRNAs. Interestingly, some elements have been identified that are also
found in only a few species but they belong to different phyla. A more detailed
analysis showed that in these cases the respective species usually populate similar
habitats. Horizontal gene transfer between divers bacteria that can be found in
similar habitats or host environments has been shown to be quite likely [123]. Thus,
the elements identified here might also have been subject to horizontal gene transfer.
More thorough studies are required in this context in order to rule out that the effect
is due to a bias in the prediction procedure or due to the chosen thresholds.

Another observation that has been made is that cis-asRNA candidates tend
to have significantly lower RNAz P-values in comparison to predicted intergenic
ncRNAs. A reason for this might be the slightly different mechanisms of regula-
tion. Both, trans-encoded and cis-encoded regulatory RNAs regulate their target by
RNA-RNA interaction with its mRNA. However, for cis-encoded ncRNAs, which are
located antisense to their target gene, the size of the complementary region is often
very large, while the interaction sites in trans-encoded ncRNAs is shorter. Thus, for
trans-encoded elements the secondary structure potentially plays a more important
role, which results in more conserved structures for this group of ncRNAs.
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This observation shows that the prediction of cis-encoded ncRNAs is more chal-
lenging than for intergenic elements. In addition to the low structure conservation,
sequence conservation is a problematic criterion as a search for homologous sequences
is biased by the sequence of the protein-coding gene that is located antisense to the
RNA. Thus, a combination of computational methods and experimental results as
presented in chapter 7 is necessary to enhance the performance of asRNA detection
significantly.

3.4. Prediction of RNA-RNA interaction networks

NOCORNAC is able to automatically apply the RNA-RNA interaction prediction
program IntaRNA to a set of predicted ncRNA regions and protein-coding genes
that are selected by the user. The results are filtered and included in the automatic
annotation of predicted ncRNA regions. The filtering is done with respect to the
free energy and to the size of the interacting regions. The respective thresholds can
be customized by the user. By default they are dynamically chosen by NOCORNAC
so that only the n best percentiles of all interactions are considered. n is set to 2
by default but this value can also be adjusted in the configuration file. Interactions
contained in the best percentile are regarded as high-scoring interactions with respect
to their energy value and/or length.

The resulting interaction network is also used to generate a GML or DOT file that
can be visualized by a graph visualization tool. In this network, nodes represent the
interacting elements, where ncRNAs are shown as squares and protein-coding genes
are shown as circles. Edges represent predicted interactions. Interactions selected
because of their low energy value are shown in red whereas interactions selected
because of their length are shown in blue. An example of a small interaction network
is shown in figure 3.4.

3.4.1. Transcript Interaction Profiles

A functionality of NOCORNAC related to the prediction of RNA-RNA interactions
is the calculation of interaction profiles for each RNA that is involved in at least
one predicted interaction. The interaction profile is a graph that assigns to each
nucleotide position of the respective RNA a value that describes its participation in
predicted interactions.

More precisely there are 4 different types of interaction profiles. n(z) denotes
the number of interactions nucleotide x is involved in. g(x) denotes the expected
free energy value of an interaction in which nucleotide z is involved. p(z) denotes
the probability that nucleotide x participates in an interaction in which its RNA
is involved and ppet(x) denotes the probability that nucleotide z is involved in any
interaction considering all interactions in the network. These profiles are calculated
as follows.
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Figure 3.4.: Example of an RNA-RNA interaction network. Protein-coding genes are
depicted as blue circles, ncRNAs are depicted as red rectangles. The de-
gree of the nodes is denoted by their size and their opacity. Red edges show
high-scoring interactions with respect to the free energy value, while blue
edges denote interactions with long interaction sites. Interactions shown
as purple edges have a good free energy value and a long interaction site.
Interactions between a protein-coding gene and its cis-encoded asRNA
are shown in black. The network is visualized with yEd [180].
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Let s be a single RNA sequence and s(z) the xzth nucleotide of that RNA. I is the
set of interactions in which s participates and I, is the subset of such interactions
that involve the xth nucleotide of s. Then the four profiles are defined as:

L
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where Fj; is the free energy value of interaction ¢, R is the gas constant, T is the
temperature in Kelvin and [ is the set of all interactions in the network. g(x) is set
to zero, if nucleotide z is not involved in an interaction.

Using these formulas, the contribution of an interaction to a profile is weighted
with its Boltzmann factor except for the profile n(x). The profile types have different
applications. They can all be used to identify regions of an RNA that are likely to be
involved in an interaction. p can be used to compare regions within the same RNA,
whereas ppe: is more suitable for inter profile comparisons.

An example of an interaction profile plot is shown in figure 3.5.

3.4.2. Transcript Interaction Matrix

To allow for a quick evaluation of the most probable partners of each RNA con-
tained in the predicted interaction network the transcript interaction matriz (Lynat)
is calculated. It denotes for each element x and any other element y the probability
that the interaction partner of x is y. A single cell (x,y) of the matrix is calculated
as follows:

E.
Yier,, € T
Ipat(z,y) = ===, (3.3)

Yier, €
where E; is the free energy value of interaction i, R is the gas constant, T is the
temperature in Kelvin, I, is the set of all interactions element z is involved in and
I, is the set of all interactions between = and y. Note that |1, | is usually 0 or 1
as only the optimal interaction for a pair is predicted, if default settings are used.
The resulting matrix can be visualized as a heatmap, for example.

3.4.3. Interactive RNA-RNA interaction prediction in nocoRNAc’s R
environment

A more customizable functionality for RNA-RNA interaction prediction is integrated
in NOCORNAC’s R environment. Here, the function intarna can be used to pre-
dict interactions between individual RNAs or sets of RNAs that are available in the
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Figure 3.5.: Example of an RNA-RNA interaction profile plot showing position, prob-
ability and free energy of all interactions predicted for a protein-coding
RNA. In this example the 3’ end of the RNA has two high-scoring inter-
actions.
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environment. This includes ncRNA regions (as for example calculated by RNAz),
ncRNA transcripts predicted by NOCORNAC and gene annotations. In addition to
that users can import their own annotations or create annotations in the environ-
ment. It is also possible to enter sequence information directly.

This functionality is therefore extremely flexible allowing for the prediction of
interactions between any kind of RNA molecules, which is not limited to interactions
between ncRNAs and mRNAs. Interactions between two ncRNAs or two mRNAs
can also be predicted, for example.

Most sRNAs regulate the translation of an mRNA by binding to its 5> UTR and
sequestering the ribosome binding site. Although examples are known where the
sRNA binds to the coding region of the mRNA, it is in general desirable to include
the 5" and 3’ UTRs of annotated genes in the RNA-RNA interaction analysis. For
that reason it is possible to specify an upstream and downstream context size that
is additionally considered during the interaction prediction.

The most important property of predicted RNA-RNA interactions that can be
used for their evaluation is the predicted free energy of the interaction. This value,
which is provided by IntaRNA includes the energy that is needed to make the inter-
action sites in both molecules accessible and the free energy of the duplex formation
between the two molecules. The interaction can only be assumed to take place if
this value is negative.

However, it is generally difficult to estimate how low the free energy value has to
be to assume a strong and highly probable interaction. This is because this value is
influenced by various properties of the RNA molecules such as the length of the two
sequences and their GC-content. Therefore, it is useful to evaluate the significance
of the interaction statistically instead of relying on the free energy value alone.

For this the intarna function in NOCORNAC’s R environment incorporates meth-
ods for z-score and p-value calculation. In order to calculate these values the se-
quences of the RNAs that are subject to the interaction prediction are shuffled
several times and each time the interaction prediction is repeated. By default only
the target sequence is shuffled as the standard application of the intarna function is
to search for possible targets of an ncRNA among all protein-coding genes. z-scores
are then computed by subtracting the mean free energy value of these samplings
from the free energy value of the original prediction and dividing by the standard
deviation. Two approaches are used to calculate p-values. In the first approach the
original free energy value is subtracted from all values of the samplings. Then a one-
sided one-sample t-test is performed on the resulting values (alternative hypothesis:
true mean is greater than 0). In a second approach the fraction of sampled values
that is greater or equal to the original predicted value is computed. By default the
first approach is used as for the second approach the number of samplings that is
needed to estimate reliable p-values is much higher, which especially affects small
p-values.

Using z-scores and p-values in addition to the free energy values allows for much
more precise evaluation of the predictions that is independent from sequence length
and composition.
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3.5. nocoRNAC’s interactive R environment

NOCORNAC produces a single output file in GFF format, which contains all pre-
dicted features (SIDD sites, terminators), ncRNA transcripts and also protein-coding
regions. More detailed information on these predictions is provided as attributes to
the respective entries. This file can be used as input for genome browsers, for exam-
ple.

However, the GFF file represents a very static representation of the prediction
results. Depending on the analysis the user wants to perform on the data, several
postprocessing steps such as filtering might be necessary. These analyses steps have
to be performed dynamically in many cases, i.e., thresholds for subsequent filtering
steps might depend on the results of the previous ones, which make continuous user
interaction necessary. Additionally, the user might want to investigate interim results
by means of statistics or visualization.

To allow for this dynamic analysis of the results NOCORNAC is able to provide
parts of its data structure within an interactive R [125, 53] environment, allowing the
user to perform a variety of statistical analyses to the results as well as to visualize
them.

Most of the data structures are presented as a data.frame. All tables listing infor-
mation about sequence features, i.e., regions in a genomic context, contain at least
the columns start, end and strand to define the respective locus. This applies to
sidd.sites, terminators, nc.transcripts, ncRNAs and genes. Single or multiple
lines of these tables can be used as input for the function getSequences which re-
turns a set of respective DNA sequences, to which all functions of the Bioconductor
package Biostrings [113] are applicable, thus allowing for sequence manipulation
or conversion (e.g., translation to AA sequences) or export as multi FASTA file.

The elements can also serve as input to the intarna function for the prediction
of RNA-RNA interactions (see 3.4.3).

ncRNA transcripts and related features The sidd.sites and terminators tables
contain energy values and confidence scores of all predicted SIDD sites and termi-
nator signals, respectively. The nc.transcripts table contains information about
predicted ncRNA transcripts such as the identifier of the ncRNA region in whose
context the transcript was predicted as well as the identifiers of the SIDD site and
the terminator, by which the transcript is defined. Finally, each entry contains a list
of all protein-coding genes to which the ncRNA transcript is located antisense.

ncRNA regions The ncRNAs table, which represents the set of ncRNA regions,
which have been predicted by RNAz, has a different kind of structure, i.e., it is a list
of lists. Each element contains the entries $start, $end, $strand so that it can be
handled by the getSequences and the intarna function. Additionally it contains the
RNAz P-value ($score), NOCORNAC’s classification information ($class, lists of
all SIDD sites and terminators that have been assigned to that region ($sidd.sites,
$terminators), a list of all protein-coding genes that are overlapping that region
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($genes) and a list of all ncRNA transcripts that have been predicted in the context
of that region ($pred.transcripts).

genomic sequence and SIDD profile In addition to these data structures
NOCORNAC’s R environment provides the complete genome of the target organ-
ism (genome) as a DNAString object, which serves as the basis of the getSequences
function but which can also be freely accessed by the user with all functionalities of
Biostrings.

The SIDD profile, which is calculated by NOCORNAC for the target genome, is
provided as a numeric vector sidd.profile with the length of the genome and a
SIDD value for each genomic position. Therefore, the SIDD profile can be visualized
for any genomic region by using standard plotting functions implemented in R.

RNA-RNA interactions If an RNA-RNA interaction network has been com-
puted the respective results are also provided in NOCORNAC’s R environment.
The primary information about all predicted interactions is listed in the table
interactions. For each interaction this data.frame contains the IDs of the tran-
scripts that are involved in the interaction, the coordinates of the interaction region
in relation to the transcripts and the free energy value of the interaction. In addi-
tion, the individual energy values are listed which are combined to calculate the free
energy value of the interaction. I.e. the energy that is needed to make the interaction
site accessible for each of the transcripts and the hybridization energy of the duplex.

The interaction profiles that have been calculated for each transcript (sec-
tion 3.4.1) are provided as numeric matrices. These matrices are iProfileN (n(x)),
iProfileP (p(x)), iProfilePnet (ppct(z)) and iProfileG (g(z)).

These profiles can be visualized individually for each transcript or as multi profile
plots for a set of transcripts using R’s standard plotting function. To visualize a
combination of p(z) and g(x) as a 3D plot NOCORNAC’s R environment integrates
the function iProfilePGplot. It takes the ID of an interacting transcript as input
and visualizes the two respective profiles by the help of R’s scatterplot3d [91].
This allows for an easy identification of all relevant interaction sites of the transcript
with an indication of their probability and free energy value. An example for such a
visualization is shown in figure 3.5.

The interaction matrix containing all pairwise interaction probabilities of all tran-
scripts (section 3.4.2) is provided as a numeric matrix (iMatrix). This matrix or
parts of it can for example be visualized as a heatmap. It can also be used to deter-
mine the most probable interaction partners of a transcript or a group of transcripts.
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4. ncRNAs as regulators in the model
bacterium Streptomyces coelicolor

Streptomyces coelicolor is a Gram-positive antibiotics producing soil bacterium and
a model organism of the genus Streptomyces [17, 115]. Its linear chromosome is more
than 8Mb in length, has a high G/C content (72%) and encodes about 7800 genes.
The life cycle of S. coelicolor undergoes a metabolic switch from primary metabolism
in the exponential growth phase to secondary metabolism during stationary growth.
The secondary metabolism is characterized by the production of, so-called, secondary
metabolites. Many of these substances have an antibiotic effect. Most prominently
the antibiotics actinorhodin (ACT), undecylprodigiosin (RED), and the calcium-
dependant antibiotic (CDA) are produced by S. coelicolor. However, many more
secondary metabolites have been identified, most of which are only produced under
very specific conditions and often in very low concentrations. Furthermore, their
function remains unknown in many cases. In addition, several, so-called ‘cryptic’
secondary metabolic pathways have been identified, which are predicted to be in-
volved in the production of secondary metabolites that have not been measured yet.
As the produced antibiotics could be clinically relevant the mechanisms involved in
the regulation of secondary metabolism are of major interest and turned out to be
very complex [20].

In the SysMO-STREAM consortium the transcriptome of S. coelicolor undergoing
the metabolic switch has been studied in unprecedented detail [109, 164, 99]. For
this, S. coelicolor wild type and mutant strains were grown under various nutrient
limiting conditions during controlled submerged batch fermentations and a custom
design microarray including probes for intergenic regions and predicted ncRNAs was
used to produce transcriptomic time series data in a highly reproducible manner [13].
These analyses were complemented by proteomic and metabolomic studies [153, 3].
The aim of these studies was to elucidate regulatory mechanisms controlling the
metabolic switch and the production of secondary metabolites.

In the context of regulation non-coding RNAs (ncRNAs) are of increasing inter-
est [12] (see also section 2.1). In bacteria this most importantly involves mechanisms
related to pathogenicity [121, 55, 52, 1], specific housekeeping functions or adapta-
tion to various stress situations [106, 182, 144]. In order to study the role of ncRNAs
in the regulation of the metabolic switch and secondary metabolism the ncRNA tran-
script prediction and characterization program NOCORNAC (chapter 3) was applied
to the genome of S. coelicolor [65]. The results of this genome-wide ncRNA predic-
tion are presented in section 4.1. Transcriptomic data from a time series expression
analysis of S. coelicolor wild type grown under phosphate limited conditions [109]
was used to validate and characterize the expression of the predicted elements (sec-
tion 4.2). Furthermore, a comparative gene expression analysis in S. coelicolor wild
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type and a SCglnK-3 mutant strain under glutamate limited conditions is presented
in section 4.5 [164]. Sections 4.3 and 4.4 describe the prediction of RNA-RNA in-
teractions between putative ncRNAs and protein-coding genes, which led to the
identification of putative ncRNA transcripts potentially regulating antibiotics pro-
duction in §. coelicolor.

4.1. Genome-wide prediction and characterization of
ncRNAs in S. coelicolor

The first step of the analysis was the genome-wide prediction of candidate ncRNA
loci in S. coelicolor, for which the program RNAz [61] was used. RNAz needs a multiple
sequence alignment as input, which is then classified as potentially containing a
conserved structured RNA or not. The sequence alignments used as input were
gathered as follows. As the basis a whole-genome alignment of the three related
Streptomyces species S. coelicolor [17], S. avermitilis [75] and S. griseus [112] was
generated using the genome alignment software Mauve [37, 38|. For further processing
the xmfa alignment as produced by Mauve was converted into maf format.

RNAz applies its classification procedure to the complete alignment which is used
as input. Thus, the whole-genome alignment needs to be sliced prior to RNAz appli-
cation. In order to be able to detect ncRNA transcripts of different sizes a sliding
window procedure using different window sizes was applied to the alignment. Here,
window sizes of 60, 80, 100, 120 and 160 nucleotides and a step size of 20 nucleotides
were used. RNAz was applied to all windows that contain alignment information for all
three species. Using these criteria 34.6% of the genome of S. coelicolor was covered.
An RNAz SVM P-value of 0.5 has been used as threshold to classify an alignment
window as potentially containing a conserved structured RNA. All overlapping win-
dows with a positive classification were merged and used as input for NOCORNAC
for further processing.

The RNAz application resulted in the prediction of 4,707 ncRNA loci in the genome
of S. coelicolor. After processing with NOCORNAC 2,358 of these regions were anno-
tated with a Rho-independent terminator signal and 2,237 regions were annotated
with a SIDD site. The application of NOCORNAC’s ncRNA transcript prediction
procedure to annotated regions resulted in 843 putative ncRNA transcripts. Com-
parison with genome annotations showed that 653 predicted transcripts are antisense
to protein-coding regions while 180 are located intergenic and 10 are partially over-
lapping a protein-coding region on the sense strand. The predicted elements were
also compared to annotated known ncRNAs like rRNAs, tRNAs, etc. This showed
that 96 of the intergenic predictions correspond to known ncRNAs while 84 are
putatively novel ncRNA transcripts.

NOCORNAC’s interactive R environment allows for a more detailed analysis of the
whole dataset or single elements. In addition, a functionality for the visualization of
ncRNA loci and related information is provided. Example plots for two 5S ribosomal
RNAs are shown in figure 4.1. In addition to the predicted transcript, the plots
contain the ncRNA locus as predicted by RNAz and transcriptional features like
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Figure 4.1.: Transcription feature plots of ncRNA transcripts predicted by
NOCORNAC (blue arrows) covering annotated ribosomal RNAs (red ar-
rows). The SIDD profile of the genomic region is drawn as a black graph
(related scale on the y-axis). The coordinates of the genomic region are
denoted on the x-axis. The ncRNA locus predicted by RNAz is shown as
a black line. Predicted Rho-independent terminator signals are depicted
as short black arrows. NOCORNAC considers the properties of the pre-
dicted transcription features (free energy value of SIDD sites; confidence
value for terminators) and not only their position to predict the strand.

Rho-independent terminator signals and the SIDD profile for the entire region. With
the help of these plots specific predictions can be evaluated, e.g., with respect to all
signals in the region, which might give rise to alternative predictions.

Each predicted ncRNA transcript starts at a so-called SIDD site, which is defined
as a genomic locus where a significant drop in the SIDD profile is observed. These
SIDD sites can have a length of up to several tens of base pairs. This makes a
precise localization of the transcription start difficult. To increase the probability
of including the whole transcript in the prediction the start of the transcript is
predicted at the start of the SIDD site. Note that the transcript might actually
start further downstream. The localization of the terminator signals is more precise,
but in many cases there are several signals predicted for a region. This can also be
observed for the examples shown in figure 4.1. In both cases the actual transcripts
end some base pairs further upstream than the prediction. It also has to be noted
that NOCORNAC includes the whole terminator in the prediction while it is usually
not considered to be part of the respective RNA motif as annotated in the database
(e.g. Rfam).

In many situations there are transcriptional start and also termination signals
at both sites of the ncRNA locus as can be seen in figure 4.1 (right). This makes
the determination of the strand of the ncRNA transcript difficult. In such a case
NOCORNAC selects the transcript with the stronger signals, which allowed for the
correct prediction of the strand at the depicted loci.
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Figure 4.2.: Boxplots of RNAz P-value distributions of candidate loci in S. coelicolor
without a transcript predicted by NOCORNAC (A) and regions for which
an ncRNA transcript was predicted (B).

The degree of structural conservation as measured by RNAz is one of the most
important criteria in the context of ncRNA prediction. As the primary function of
NOCORNAC is to improve ncRNA predictions by integrating transcriptional feature
detection, a relevant question is if there is a correlation between the RNAz P-value
and the strength of transcriptional features of the candidate loci. To answer this
question the predicted ncRNA loci of S. coelicolor were grouped in two sets. One set
(A) consists of loci for which no ncRNA transcript was detected by NOCORNAC.
The second set (B) contains candidate loci with a transcript prediction. The P-value
distribution of the loci containing a transcript has a significantly higher mean than
the respective distribution of the loci without a transcript prediction (figure 4.2).
The P-value of more than 60% of the regions for which a transcript was predicted
exceeds 0.9. Furthermore, a one-sided two-sample T-test that was applied to the two
distributions rejected the null hypothesis with a p-value of 6.66 - 107%°. The effect
gets even more pronounced if transcripts are only predicted with high confidence
signals. Stricter thresholds of 4 kcal/mol for the SIDD site detection and 76 for
the terminator confidence resulted in more than 90% of the transcript containing
candidate loci having an RNAz P-value exceeding 0.9.

To evaluate NOCORNAC with respect to sensitivity and specificity the ncRNA
candidate loci as predicted with RNAz and the ncRNA transcripts predicted by
NOCORNAC were compared to all annotated ncRNAs for S. coelicolor in NCBI
Genbank [16] and the Rfam database (10.0) [50]. The results of this evaluation are
summarized in table 4.1.

RNAz predicted an ncRNA candidate locus for all 21 annotated ncRNA genes (not
considering tRNAs), of which NOCORNAC classified 16 (76%) correctly as ncRNA
transcripts. For this evaluation a correct classification was only counted if the strand
of the transcript was correctly predicted by NOCORNAC. If the strand information
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Table 4.1.: Comparison of predicted ncRNA loci and transcripts to annotation from
NCBI and Rfam for S. coelicolor.

predicted transcript predicted transcript
nocoRNAc SIPHT
annotated ncRNAs RNAz locus [correctness %] [correctness %]
21 ncRNA genes 21 (100%) 16 (76%) 13 (62%)
65 tRNAs 57 (88%) 30 (53%) 1 (2%)
28 cis-regulatory motifs 17 (61%) 1 (94%) 2 (93%)

The first column contains the numbers of annotated elements for 3 types of ncRNAs in S. coelicolor:
ncRNA genes (without tRNAs) and tRNAs from NCBI as well as cis-regulatory motifs from Rfam.
The second column indicates the number of elements for which RNAz predicted an ncRNA locus
(strand-unspecific). Columns 3 and 4 indicate the number of annotated elements predicted to be
an ncRNA transcript (strand-specific) by NOCORNAC and SIPHT, respectively.

is disregarded, NOCORNAC finds 19 of 21 transcripts while missing the correct
strand prediction for three of them. For 7 of the 16 correctly predicted transcripts
NOCORNAC predicted very strong transcription signals. The free energy values of
the SIDD sites were calculated to be below 4.0 kcal/mol and the confidence values
of terminator exceeded 75. According to the authors of TransTermHP such termina-
tors can be considered as high confidence predictions [82]. Three of the loci show an
RNAz prediction that is shorter than the database annotation, while it is too long
in two other cases. The transcript prediction algorithm of NOCORNAC can com-
pensate for this to some extent and predicts the boundaries of the ncRNAs more
precisely than RNAz alone. In addition, NOCORNAC is able to specify the strand
of the predicted transcripts. Example loci are shown in figure 4.3. With respect to
the tRNAs 57 of 65 loci were detected by RNAz, of which 30 were classified as tran-
scripts by NOCORNAC, including a correct specification of the strand. For another
4 loci the strand was incorrectly predicted. In the Rfam database (version 10.0)
28 cis-regulatory elements are annotated for S. coelicolor. These elements are part
of mRNAs and are not transcribed on their own. As they consist of an evolution-
ary conserved secondary structure RNAz is able to detect them and NOCORNAC’s
ncRNA transcript prediction algorithm should be able to distinguish such elements
from ncRNAs that are transcribed independently from mRNAs. Of the 28 elements
17 were detected by RNAz and NOCORNAC classifies only one of 17 elements as an
ncRNA transcript, which corresponds to a correctness of more than 90%.

Another computational pipeline for the prediction and annotation of ncRNAs in
bacteria is SIPHT [93]. SIPHT predicts ncRNAs only in intergenic regions but also
takes structure conservation and transcriptional signals, such as Rho-independent
transcription terminators and sigma factor binding sites into account. Its general
approach is therefore most comparable with that of NOCORNAC. To compare the
performance of SIPHT to NOCORNAC’s it was applied to the genome of S. coelicolor
using its web-interface with standard parameters.

For all intergenic regions in the genome of S. coelicolor SIPHT predicted 391
ncRNA transcripts. As for the evaluation of NOCORNAC the predictions were com-

pared to annotated ncRNAs. A summary of the results is also provided in ta-
ble 4.1. Of 86 annotated ncRNA transcripts including tRNAs SIPHT detects 14
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Figure 4.3.: Transcription feature plots of predicted ncRNA transcripts (blue arrows)
covering annotated ribosomal RNAs (red arrows). For a detailed legend
see figure 4.1. In the first example the RN Az prediction is shorter than the
annotated ncRNA (left), while it is much longer in the second example
(right). In both cases the prediction of the transcript boundaries was
improved by NOCORNAC.

while NOCORNAC is able to detect 46. Especially for tRNAs the sensitivity of
SIPHT is quite low as only one of 65 elements is detected. In combination with
RNAz NOCORNAC detects 30 tRNAs correctly, which is more than 50%. Further-
more, SIPHT classifies two cis-regulatory elements as ncRNA transcripts, which is
comparable to NOCORNAC’s performance.

4.2. Time series expression analysis of predicted ncRNA
transcripts

To verify the expression of ncRNA transcripts predicted for S. coelicolor, data from
a high resolution time series transcriptome analysis was used, where the effects of
phosphate limitation were studied for S. coelicolor M145 wild type cultivated in
submerged batch fermentations [109]. A custom design microarray was utilized con-
taining 226,576 perfect match oligonucleotide probes that interrogate 8,205 protein-
coding regions, 10,834 intergenic regions using a tiling approach, and 3,672 regions
antisense to protein-coding genes [13]. During the cultivation phosphate was depleted
at 35 h after inoculation. Samples were analyzed for altogether 32 time points cov-
ering a 40 h interval from 20 h to 60 h after inoculation.

For the expression profiling of the predicted ncRNA transcripts the array probe
sequences were aligned to the S. coelicolor genome and the probe interrogation posi-
tions were compared to the loci of the predicted ncRNA transcripts. All transcripts
that were interrogated by at least four array probes were considered for the sub-
sequent analysis. For each of these transcripts their array probes were grouped in
probe sets, which were then added to the CDF descriptor file of the Affymetrix
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Figure 4.4.: Left: Boxplot of average expression profile differences of predicted asRNAs
and their respective protein-coding genes. A negative value indicates a
higher expression level of the coding gene. (x = asRNA; y = protein;
d(z,y) = (O°1, =i — yi)/n). Right: Boxplot of expression profile corre-
lations of predicted asRNAs with a variant expression profile and their
respective protein-coding gene.

chip. By this, their expression values could be calculated for the different time-
points along with those of protein-coding genes. The normalized expression matrix
for ncRNAs and coding genes was obtained using RMA as described for the protein-
coding dataset [109, 13]. The analysis and visualization of the expression profiles
was performed using the transcriptome analysis software Mayday [14].

403 of the 843 predicted ncRNA transcripts fulfilled the criterion of at least four
interrogating array probes and their expression was profiled for the 32 time points
covering the growth curve of S. coelicolor affected by the phosphate limited cultiva-
tion conditions. 92 of these elements are located in intergenic regions, whereas the
other 311 are located antisense to protein-coding genes. A comparison to annotated
ncRNAs showed that 47 of the 92 loci represent putative novel ncRNA transcripts.
Altogether 317 of the 403 measured transcripts are considered to be expressed at at
least one time-point when using the first quartile of the expression value distribution
of the coding elements as a threshold. After application of a variance threshold of
0.025 (regularized variance) 71 of the expressed ncRNA transcripts are considered
to show differential expression across the time series.

One important ability of NOCORNAC is the prediction of antisense RNA tran-
scripts. For 235 of the measured antisense RNAs expression could be detected for
at least one time-point. For the respective sense-antisense pairs the relation of their
absolute expression values was investigated. This was done by calculating the expres-
sion value differences of coding genes and their antisense RNAs over the complete
expression profile. The result is visualized as a boxplot in figure 4.4 (left). For the
majority of sense-antisense pairs the coding gene shows a higher expression than the
antisense RNA. However, in about 35% of the cases the expression of the antisense
RNA is higher.
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47 of the 235 expressed antisense RNAs had a variant expression profile. For these
the correlation of the expression profile with that of the respective coding gene
was calculated. The resulting correlation value distribution is shown as a boxplot
in figure 4.4 (right). It turned out that most sense-antisense pairs show a positive
correlation. About 75% of the correlation values are above 0.4 with the median being
0.78. There are no pairs with a strong anticorrelation of expression profiles. Only
weak anticorrelation values, which are greater than —0.4, are observed.

To elucidate the different expression patterns that the variant antisense RNA
transcripts show during the course of the time series, an unsupervised expression
profile clustering was conducted. Profile plots for four expression profile clusters of
antisense RN As together with their respective antisense genes are shown in figure 4.5.
The expression of almost all transcripts shows a reaction to the phosphate depletion
event at 35h. 24 of the 47 predicted transcripts show a significant downregulation
about 1h after the depletion event, which can also be observed for the respective
coding genes, of which the majority encodes ribosomal proteins (figure 4.5A).

Four of the predicted antisense RNAs are significantly upregulated immedi-
ately after the phosphate depletion (figure 4.5B). Their antisense genes show an
even stronger upregulation at the same time. The phosphate binding protein PstS
(SCO4142) and the polyphosphate kinase Ppk (SCO4145) are contained in this ex-
pression cluster. For these genes it could be shown that they are part of the PhoP
regulon [131]. PhoP is a transcription regulator that controls the expression of vari-
ous genes involved in phosphate uptake and metabolism and shows a strong reaction
to phosphate limitation [131].

The genes in the other two expression profile clusters (figure 4.5C/D) are devel-
opmental genes that are for example involved in chromosome replication or RNA
synthesis. Most of these genes are downregulated as a reaction to phosphate deple-
tion.

The investigation of the 92 predicted ncRNA transcripts that are located in in-
tergenic regions revealed that 82 can be considered as expressed at at least one time
point. Of these, 38 do not correspond to an annotated element and are therefore
putative novel ncRNAs. Expression profiles of 5 predicted ncRNA transcripts with
a differential expression across the time series are shown in figure 4.6. The expression
of ncRNA1107_1 is upregulated during the time-course. However, this upregulation
does not seem to be related to the phosphate limitation. In contrast, the expres-
sion of the two elements ncRNA852_1 and ncRNA2873_1 shows a clear reaction to
the phosphate depletion event. They are significantly upregulated about 1h after
phosphate is depleted. The expression of ncRNA2823_1 decreases slightly during
the time-course without any clear reaction to the depletion event and the profile
of ncRNA4158_1 shows a high variance in general but no clear tendency of up- or
downregulation.

The predicted ncRNAs have been further assessed with respect to their potential
to regulate protein-coding genes by RNA-RNA interactions (see sections 4.3 and 4.4).
The putative ncRNA transcript ncRNA2823_1 turned out to be a very good candi-
date for a non-coding element regulating antibiotic production in S. coelicolor (see
section 4.4).
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Figure 4.5.: Expression profile plots of 4 clusters of asRNAs (red) and their protein-
coding genes (black), which resulted from an unsupervised expression
profile clustering. The time-point of phosphate depletion is indicated by
a grey vertical line.
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Figure 4.6.: Expression profile plot of predicted ncRNA transcripts that are located
in intergenic regions and that show a variant expression profile. The time-
point of phosphate depletion is indicated by a grey vertical line.

4.3. Prediction of a network of potential RNA-RNA
interactions in Streptomyces coelicolor

As a proof of concept for the methods described in section 3.4 and for a further
characterization of the ncRNA loci predicted in the genome of Streptomyces coeli-
color, their potential to be involved in RNA-RNA interactions with the mRNAs
of protein-coding genes was assessed. For this, all predicted ncRNA loci that were
shown to be expressed at at least one time-point (expression value > 7.0) during
the time series analysis (see section 4.2) and all protein-coding genes that showed a
variant expression across the time series (regularized variance > 0.1) were included
in this analysis. An RNA-RNA interaction network was predicted for these ele-
ments with NOCORNAC by utilizing the RNA-RNA interaction prediction program
IntaRNA [30]. The results were filtered and evaluated with NOCORNAC’s interactive
R environment (section 3.5). Interaction networks were visualized with yEd [180].

Altogether 507 ncRNA loci and 322 protein-coding genes were used as input. For
the IntaRNA prediction a seed length of 8 was used with 1 mismatch allowed in the
seed region. For sequences longer than 100 bp a sliding window approach was ap-
plied with a window size of 100 nt (IntaRNA parameter -w). Furthermore, the flags -U
and -P were set for the application of the RNAup model [105] and the RNAplfold [18]
model during the calculation of the free energy values of the interaction. The result-
ing interaction predictions were filtered with respect to their free energy values and
the length of the interaction site. Only interactions among the best percentile with
respect to one of these properties or among the best two percentiles with respect to
both properties were kept.
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The filtered interaction network contained 491 ncRNA loci, 315 protein-coding
genes and altogether 1554 predicted interactions. An overview of the full interaction
graph is shown in figure 4.7. 64 of the 1554 high-scoring interactions involve a cis-
asRNA that was predicted for the respective protein-coding target. All other high-
scoring interactions are predicted between trans-encoded elements.

The median number of interactions per ncRNA locus is 4. However, it turned
out that for some ncRNA loci a very high number of potential interactions was
predicted. The subgraph showing the five ncRNA loci with the highest degree is
shown in figure 4.8. The median number of predicted interactions per protein-coding
gene is 2. An extraordinary high number of interactions was predicted for the three
polyketide synthases cpkABC (SCO6275, SCO6274, SCO6273), which are part of
a type I PKS gene cluster [117]. The cluster has been shown to be involved in the
production of a yellow compound [118, 57] and probably in antibiotic activity [57].
However, the functions of the cluster and the produced compound are not fully
characterized yet. Time series expression profiles of the three genes in S. coelicolor
wild type grown under phosphate limited conditions are shown in figure 4.9. They
show a strong upregulation at 22 h after inoculation and about 4 h later they are
downregulated to their initial expression level. A reaction to the phosphate depletion
event, which occurred at 35 h after inoculation, cannot be observed.

The subgraph showing the elements for which a high-scoring interaction with the
three PKS genes was predicted is shown in figure 4.10. It can be observed that
for some of the ncRNAs interactions with two or even all three genes have been
predicted. Furthermore, for each of the 5 ncRNA hubs depicted in figure 4.8 high-
scoring interactions were predicted with all three genes. All of these interactions
were predicted with trans-encoded ncRNAs as no cis-encoded asRNAs of SCO6273-
SCO6275 were included in the analysis. As described in section 3.4.1 NOCORNAC
can calculate RNA-RNA interaction profiles for elements for which several interac-
tions have been predicted in order to assess which of the interactions are the most
probable ones. Interaction profile plots for SCO6274 and SCO6275 are shown in fig-
ure 4.11. In these plots for each interaction site of the respective mRNA its position
is visualized in addition to the free energy and the probability of the interaction. It
can be observed that the vast majority of predicted interactions have an extremely
low probability. For SCO6274 only one probable interaction has been predicted. The
probability of this interaction is almost 1.0. For SCO6275 two probable interactions
have been predicted, where one interaction has a probability of about 0.7 and the
other one of about 0.3.

This evaluation of the interaction profiles, which are computed by NOCORNAC,
shows how they can be applied to determine the most probable interactions for each
target within a network of hundreds or thousands of predicted interactions. This
allows for choosing only significant interactions for further analyses or experimental
validation. It is apparent that the free energy value alone would not be sufficient
for this selection as many interactions with similar free energy values have been
predicted for SCO6274 and SCO6275. However, it turned out that only three of them
have a significant probability. Of course, the interaction with the best free energy
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Figure 4.7.: Visualization of a predicted RNA-RNA interaction network in S. coeli-
color involving — after filtering — 491 predicted ncRNAs, 315 protein-
coding genes and 1554 predicted interactions. Protein-coding genes are
depicted as blue circles, ncRNAs as red rectangles. The degree of the
nodes is denoted by their size and their opacity. Red edges show high-
scoring interactions with respect to the free energy value, while blue edges
denote interactions with long interaction sites. Interactions shown as pur-
ple edges have a good free energy value and a long interaction site. In-
teractions between a protein-coding gene and its cis-encoded asRNA are
shown in black. The network was exported as a gml file and laid out with
yEd [180].
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Figure 4.8.: Visualization of the RNA-RNA interaction network involving the five
ncRNAs with the highest degree. For a detailed description of the visual
elements see figure 4.7.

value is also the most probable one, but that does not mean that this interaction is
the only one that has a significant probability as has been observed for SCO6275.

The ncRNA and mRNA hubs that have been identified are promising candidates
for elements potentially involved in regulatory processes. To strengthen this hypoth-
esis, thorough assessments of their secondary structures, functional annotations and
expression patterns should be the next steps. In the context of S. coelicolor particu-
larly the regulation of antibiotics production is of interest. The next section focuses
on two predicted ncRNA transcripts that are potentially involved in this process.
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Figure 4.9.: Time series expression profiles of c¢pkABC (SCO6275, SCO6274,
SCO6273) in S. coelicolor wild type grown under phosphate limited con-
ditions.
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Figure 4.10.: Visualization of the RNA-RNA interaction network involving the three
polyketide synthases SCO6273-SCO6275. For a detailed description of
the visual elements see figure 4.7.
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Figure 4.11.: Visualization of RNA-RNA interaction profiles for the two genes
SC06274 (top) and SCO6275 (bottom). The x-axis denotes the posi-
tion within the gene sequence in base pairs. The y-axis and the z-axis
denote iProfileP and iProfileG, respectively. Thereby, for each interac-
tion that was predicted for the respective gene, its position, the free
energy value and its probability considering all predicted interactions
is shown. It has to be noted that in these plots all predicted interac-
tions are included without restriction to high-scoring interactions. Most
of the predicted interactions have only a low probability. For SCO6274
one interaction with very high probability was predicted (almost 1.0),
while for SCO6275 two interactions with high probability were predicted
(~ 0.3 and ~ 0.7).
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4.4. Putative non-coding RNA transcripts potentially
involved in the regulation of antibiotic production in
Streptomyces coelicolor

In addition to the expression analysis the predicted ncRNA transcripts in the genome
of S. coelicolor have been further investigated with respect to their potential function
as regulators of protein-coding genes. Two of them are extremely promising candi-
dates as regulators of antibiotics production. They are located upstream of the cold
shock protein csp! (SCO4295) and upstream of groEL2 (SCO4296), respectively.

It has been shown that the intergenic regions upstream of the corresponding ho-
mologs in Streptomyces hygroscopicus, if artificially introduced into S. coelicolor
J1501 using high copy number plasmids, result in an increase in the production of
the antibiotic compounds actinorhodin (ACT) and undecylprodigiosin (RED) [100].
Furthermore, the authors demonstrated that the introduction of the fragments has
a direct or indirect influence on the expression of the actinorhodin pathway-specific
regulator actII-ORF (SCO5085), which is increased in strains carrying the plasmid.
Thus, ncRNAs that might be contained in these regions are potentially targeting
the respective antibiotic pathway regulators actII-ORF4 (SCO5085) and redD/Z
(SCO5877/SCO5881) or their regulators.

Several genes have been identified that potentially act as pleiotropic regulators
of antibiotic production in S. coelicolor [78]. As a candidate for a global down-
regulator wblA (SCO3579) has been suggested. A probable global upregulator is
the putative sigma factor SCO5147. As another antibiotic downregulator that func-
tions independently from wblA the putative TetR family transcriptional regulator
SCO1712 has been identified [88]. Overexpression of SCO1712 leads to a repression of
the antibiotic pathway-specific regulators actII-ORF/ (SCO5085) for ACT, redD/Z
(SCO5877/SCO5881) for RED and cdaR for CDA (calcium-dependent antibiotic)
and thus to a significant reduction of antibiotic production.

The predicted ncRNAs that are located in the respective intergenic regions were
carefully analysed for transcriptional features. In addition, their expression was pro-
filed for the complete time series of S. coelicolor grown under phosphate limited
conditions, and protein-coding genes were identified that show similar expression
patterns.

To specify the potential regulatory function of the two putative ncRNA tran-
scripts, RNA-RNA interaction predictions were performed between the ncRNAs
and protein-coding genes with functional annotations including the known antibi-
otic regulators listed above.

To increase the confidence of high scoring interaction candidates by compensating
the effects of transcript lengths and base pair frequencies z-scores and p-values were
calculated for predicted interactions.

4.4.1. Transcriptional features of predicted csp-ncRNA

The structurally conserved region upstream of cspl as predicted by RNAz has a
significant P-value of 0.94. NOCORNAC was used to analyse this region for tran-
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Figure 4.12.: Transcription feature plot of the csp-ncRNA (ncRNA2823_1). The region
predicted by RNAz is drawn as a black line. The SIDD profile is shown as
a black graph. Small black arrows represent predicted terminator signals.
The transcript predicted by NOCORNAC is drawn as a blue arrow. The
green arrow denotes the position of the csp! CDS (SCO4295). Black
dots show the restriction sites in the original S. hygroscopicus fragment
mapped to the genome of S. coelicolor.

scriptional features. A SIDD site with a free energy value of about 2.0 kcal/mol
was found upstream of the region and thus chosen as the predicted transcription
start for this ncRNA. Furthermore, a predicted Rho-independent terminator with a
confidence value of 51 was found within the region. The resulting predicted ncRNA
transcript (csp-ncRNA) is of 198 nt length and it is located upstream of the cold
shock protein cspl (SCO4295). It ends 34 nt upstream of the translation start site
of cspl. A plot showing all predicted transcriptional features for this region is shown
in figure 4.12.

4.4.2. Effects of different DNA fragments of S. hygroscopicus on
antibiotics production in S. coelicolor

Several different DNA fragments originating from the intergenic region upstream of
cspl in S. hygroscopicus have been introduced into S. coelicolor J1501 to determine
the exact region necessary to affect antibiotic production [100]. Different restriction
sites were used to generate several different fragments.
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Table 4.2.: Effects of fragment FcoRI-Ddel on antibiotic production in S. coelicolor

J1501 [100].
Antibiotic Control Carrying Fragment
Actinorhodin 100% 140%

Undecylprodigiosin = 100% 139%

The antibiotic production of the strain carrying the fragment is stated relatively to the unmodified
strain J1501. The fragment causes an increase in the production of Actinorhodin and Undecylprodi-
giosin by a factor of about 1.4.

The size of the genomic region in S. hygroscopicus from which fragments have been
introduced has a length of 1899 bp. The chromosomal coordinates of the fragments
are defined by the respective restriction sites of the restriction enzymes. To map
the relevant fragments to the genome of S. coelicolor the nucleotide sequence of the
original genomic region was first digested in silico to get the location of the fragments
relative to the genomic region of S. hygroscopicus. To determine the coordinates
relative to the genome of S. coelicolor a BLAST search has been conducted with the
S. hygroscopicus region as query and the genomic sequence of S. coelicolor as target.
The original fragment positions were then mapped to the S. coelicolor genome using
the resulting alignment.

The restriction sites that are relevant for the relative position of the csp-ncRNA
are shown in figure 4.12. The two fragments, Nrul-Ddel and FEcoRI-Ddel, led to
an increased antibiotics production. Fragments that end at Smal did not influence
antibiotics production.

The sequence similarity between S. coelicolor and S. hygroscopicus is quite high
for the EcoRI-Ddel fragment (about 89%), whereas it is significantly lower for the
region between Nrul and EcoRI (about 51%).

The effects of the fragment EcoRI-Ddel on antibiotic production in S. coelicolor
J1501 are shown in table 4.2. The production of ACT and RED is increased by a
factor of about 1.4.

4.4.3. Expression of the csp-ncRNA during the phosphate limited time
series

An expression profile of the csp-ncRNA is shown in figure 4.13. 20h after inoculation
the expression is at a higher value (about 9.0) and it decreases until it reaches its
minimum at 42h after inoculation (about 7.0). Among the protein-coding genes with
a similar expression profile is the transcriptional regulator ginR (SCO4159) and the
two genes cobN (SCO1849) and cobO (SCO1851), which are involved in cobalamin
biosynthesis.
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Figure 4.13.: Time series expression profile of csp-ncRNA (thick red profile) together
with the expression profiles of protein-coding genes showing a similar
expression pattern (Pearson Correlation distance < 0.1).

4.4.4. Potential RNA-RNA interaction targets of the csp-ncRNA

To identify possible targets of the csp-ncRNA RNA-RNA interaction predictions
have been conducted using the intarna function integrated in NOCORNAC’s R
environment (see section 3.4.3).

In the target prediction for the csp-ncRNA all protein-coding genes with an an-
notated function were considered. The complete sequence of the ncRNA and the
complete CDS of the genes were used as input.

z-score and p-value calculations have been conducted for the 10 highest scoring
predicted RNA-RNA interaction partners of the csp-ncRNA that are annotated to
have a regulatory function. The results are listed in table 4.3. Furthermore, inter-
action prediction statistics were computed for the antibiotic regulators actll-ORF/
(SCO5085), redD/Z (SCO5877/SCO5881), wblA and SCO5147. For each gene the
free energy value of the predicted interaction with the csp-ncRNA is given as well
as a z-score and p-values calculated for this prediction.

No strong interaction was predicted for the pathway-specific regulator genes of
ACT and RED or the global antibiotic regulators wblA or SCO5147. However, a very
good interaction was predicted for the global antibiotic regulator TetR (SCO1712).
The confidence of the low free energy value of about —17.8 kcal/mol is strengthened
by a low z-score and a very small p-value. A summary of the details of this predicted
interaction is provided in table 4.4.

In addition, there are some more (putative) regulatory genes, for which a strong
interaction was predicted. SCO1587 is annotated as a GntR family protein. Detailed

55



4. ncRNAs as regulators in the model bacterium Streptomyces coelicolor

Table 4.3.: Regulatory genes potentially targeted by the csp-ncRNA via RNA-RNA

interaction.
SCO ID annotation length energy z-score p-value
SCO1587 GntR 1151 -20.4517 -3.79 3.06e-13
SC0O5828 Response regulator 628 -19.4142 -6.71 8.77e-18
SCO6696 Other regulation 2448 -19.3817 -3.76 3.47e-13
SCO5460 Other regulation (AbaA) 608 -18.3866 -6.98 4.21e-18
SCO1897 DeoR 691 -17.8802 -4.84 3.69e-15
SCO1712 TetR 461 -17.7836 -3.81 2.79e-13
SCO3664 Other regulation 743 -17.7031 -4.00 1.14e-13
SCO3556 AraC 1239 -17.4250 -3.92 1.64e-13
SC0O0194 sigma factor 606 -17.2942 -2.77 7.31e-11
SCO7767 Other regulation 825 -17.1686 -4.14 6.19e-14
SCO5085 actII-ORF4 767 -8.79622 0.98 0.99
SCO5877 redD 1052 -10.9028 0.11 0.69
SCO5881 redZ 653 -10.2637 -0.79 0.0010
SCO3579 wblA 338 -10.4563 -0.10 0.31
SCO5147 putative sigma factor 671 -9.47578 0.57 0.99

For each potential target gene the locus tag, gene name or functional annotation, CDS length and
details about the predicted interaction with the csp-ncRNA are provided. Interaction details include
the free energy value of the interaction predicted by IntaRNA and the respective z-score and p-value
as calculated by NocORNAC.

information about the specific function of this gene is not available. However, the
DasR regulator, which belongs to a subclass of this family, has been shown to be
a global regulator of primary metabolism and development in S. coelicolor [128].
It has also been shown to influence antibiotic production, but there was no strong
interaction predicted between the csp-ncRNA and the DasR mRNA.

SCO1897 is a protein of the DeoR family. DeoR-like transcription repressors occur
in diverse bacteria as regulators of sugar and nucleoside metabolic systems (Pfam).
Therefore, it is very unlikely that a specific regulation of the antibiotic production
involves this gene.

Expression profiles of all genes listed in table 4.3 are presented in figure 4.14.
Almost all genes, for which a good interaction was predicted, do not show a signifi-
cant differential expression across the time series, although most of them are clearly
expressed. This is also true for tetR (SCO1712). Only the putative sigma factor
SCO0194 shows a significantly higher expression at the beginning of the time-course
than at later time-points and interestingly the profile is fairly similar to the expres-
sion profile of the csp-ncRNA.

These results suggest that the csp-ncRNA might potentially regulate TetR via
RNA-RNA interaction, as TetR is the only protein, for which a high interaction
probability was predicted and for which it has been shown, that it clearly acts
as a global antibiotic downregulator. If the csp-ncRNA represses TetR, this could
explain why a DNA fragment that contains this predicted ncRNA is able to increase
antibiotic production significantly when introduced into S. coelicolor.

To investigate this possible interaction further the secondary structure of the
csp-ncRNA was predicted and the potential interaction site with the TetR mRNA
has been determined. The RNAfold web server was used to predict and visualize
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Figure 4.14.: Time series expression profiles of regulatory genes predicted to be po-
tentially targeted by the csp-ncRNA in S. coelicolor wild type grown
under phosphate limited conditions.
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Table 4.4.: Details on the predicted RNA-RNA interaction between the csp-ncRNA
and the TetR mRNA.

ncRNA length 618 bp
target length 198 bp
position of interaction site ncRNA 120-146
position of interaction site target 234-265
ED ncRNA 13.3 kecal/mol
ED target 15.2 kcal/mol
hybridization energy -46.2 kcal/mol
interaction energy -17.8 kcal/mol
zZ-score -3.81
p-value 2.79e-13

The ED values denote the energy needed to make the interaction site accessible in the ncRNA and
the target mRNA.

secondary structures (standard parameters) [62]. The position of the interaction
site was parsed from the IntaRNA output. The visual indication of the site in the
secondary structure plots was done manually. The result is shown in figure 4.15. In
the MFE structure the site contains two unpaired regions, one at its beginning and
one at its end, which consist of about 7 nt each. This can probably be sufficient
for the initiation of an interaction. The predicted site also spans a stem in the
MFE structure. However, the base pair probabilities of this stem are relatively low.
Thus, this region might still be involved in the duplex formation with a potential
interaction target. Altogether the predicted interaction site consists of 27 nt in the
csp-ncRNA and 32 nt in the TetR mRNA, where it is located in the middle of the
sequence.

The position of the interaction site in the csp-ncRNA is 52 nt upstream of the
3’ end. Therefore, the site would also be contained in the ncRNA if it starts with its
alternative SIDD site located at the start of the EcoRI-Ddel fragment. To confirm
this an additional RNA-RNA interaction prediction was performed between this
shorter version of the ncRNA (EcoRI-csp-ncRNA) and the TetR mRNA. The result
is shown in figure 4.16. The predicted interaction site is 4 nt shorter but apart from
this the position of the site is the same. It still contains two unpaired regions at its
start and end. Thus, also the topology of the site has not changed significantly. The
base pairing probabilities of the stem that is spanned by the site in this MFE are
much higher, though.

Interestingly, the position of the interaction site in the csp-ncRNA is almost the
same for the predicted interactions with the mRNAs of other regulatory genes listed
in table 4.3, such as SCO1587 and SCO1897. However, the base pairings of these
interactions are more different.
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Figure 4.15.: Predicted secondary structure of the csp-ncRNA with indicated pre-
dicted interaction site with the tetR mRNA (black line). The color-code
represents base pairing probabilities.
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o d

Figure 4.16.: Predicted secondary structure of the EcoRI-csp-ncRNA with indicated
predicted interaction site with the tetR mRNA (black line). The color-
code represents base pairing probabilities.

4.4.5. Predicted ncRNA upstream of groEL2 may also influence
antibiotic production

Upstream of SCO4296 (groEL2) another ncRNA transcript was predicted (groEL-
ncRNA). A transcription feature plot of the respective genomic region is shown in
figure 4.17. The groEL-ncRNA overlaps the CDS of SC04296. It has been shown
that the intergenic region upstream of groEL2 in Streptomyces hygroscopicus, if
artificially introduced into S. coelicolor J1501, results in a similar increase in antibi-
otic production as the introduction of the EcoRI-Ddel fragment [100]. The intro-
duction of a fragment containing both loci results in an even stronger increase. It
has to be mentioned that this larger fragment also contains the complete CDS of
espl (SCO4295). The effects of the different fragments on antibiotic production in
S. coelicolor are summarized in table 4.5.

An expression profile of the groEL-ncRNA is shown in figure 4.18.

RNA-RNA interaction prediction between the groEL-ncRNA and the TetR
(SCO1712) mRNA resulted in a medium free energy value of —11.46 kcal/mol, with
a significant z-score of —2.96 and a very small p-value of 2.377e — 11.
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Table 4.5.: Effects of fragment FEcoRI-Ddel (A), fragment containing the groEL-
ncRNA (B) and fragment containing both loci (C) on antibiotic production
in S. coelicolor J1501 [100].

Antibiotic Control Carrying Fragment
A B C
Actinorhodin 100% 140% 157% 255%

Undecylprodigiosin  100% 139% 154% 294%

The antibiotic production of the strains carrying the respective fragments is stated relatively to the
unmodified strain J1501.

mwloc2825_SC04296(+)
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Figure 4.17.: Transcription feature plot of groEL-ncRNA (ncRNA2825_1). The green
arrow denotes the position of the groEL2 CDS (SC0O4296). For a detailed
legend see figure 4.12.
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Figure 4.18.: Time series expression profile of the predicted groEL-ncRNA in S. coeli-
color wild type grown under phosphate limited conditions.
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4.5. Differential gene expression in a S. coelicolor GInK
mutant

In Streptomyces coelicolor the protein GInK is an important nitrogen sensor and reg-
ulator of genes involved in nitrogen metabolism. Furthermore, it also has a regulatory
influence on morphological differentiation and production of secondary metabolites.
To identify genes that show a direct or indirect reaction to the depletion of nitro-
gen in the cultivation medium and that are regulated by GInK, two transcriptome
time series experiments have been conducted and analysed. In the previous sections
data from time series experiments have been investigated, where the S. coelicolor
wild type was grown under phosphate limited conditions. In this section, one time
series is presented, where S. coelicolor wild type (M145) was grown under gluta-
mate limited conditions and a second time series, where a glnK inactivation mutant
(SCginK-3 [69]) was cultivated under the same conditions. A comparative analysis
of the two time series with respect to the expression of protein-coding genes has
been published in [164]. In this section these results are summarized.

For the wild type strain altogether 30 samples were analysed covering a time
interval from 20h to 58h after inoculation. The resolution was one hour from 24
to 32h and from 40 to 42h, and half an hour from 32 to 40h. After 40h samples
were analysed for 44, 46, 54, and 58h after inoculation. For the SCginK-3 mutant 16
samples were considered in four hour resolution from 21 to 33h, in one hour resolution
from 33 to 40h, and in two hour resolution from 40 to 50h after inoculation. The
glutamate depletion event was at 34.5h in the wild type and at 34h in the mutant
strain.

The time series data analysis tool Tiala [77], which is integrated in the tran-
scriptome analysis software MAYDAY [14], was used for the comparative analysis
and visualization of the two transcriptomic time series. MAYDAY was used for the
expression profile clustering and for visualization. A self-written script was used
to perform an initial screening of all protein-coding genes to determine if they are
expressed in only one or both time series and if the expression levels differ. For
protein-coding genes showing a variant expression profile in at least one of the time
series the script evaluates the correlation of the two expression profiles to decide if
a gene shows a similar expression pattern in both time series or not. The results of
this pre-screening were evaluated manually using the comparative expression profile
visualization methods integrated in Tiala.

4.5.1. Unsupervised expression profile clustering of variant genes in the
wild type strain

As a first aspect the expression patterns that were exhibited during the time-course
of the wild type cultivation and the reaction of genes to the glutamate depletion event
were investigated. For this, an expression profile clustering (QT-Clustering) of all 651
genes with a variant expression profile across the time series (regularized variance >
0.05) was performed. Most of these 651 genes are either down- or upregulated around
the time of glutamate depletion. 313 genes are downregulated around the time of
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Figure 4.19.: Expression profiles of genes that show a downregulation around the time
of glutamate depletion in the wild type strain. Genes downregulated at
35h after inoculation are shown in blue. Genes downregulated at 35.5h
after inoculation are highlighted in red.

glutamate depletion. The vast majority of these genes starts at a high expression
level and shows a strong downregulation at 35h after inoculation (figure 4.19). It
consists of many genes involved in the TCA cycle or glycolysis as well as amino
acid metabolism. The glutamate transporter encoding genes gluABCD (SCO5774-
SCO5T7TT), the nar2 operon (SCO0216-SC0O0219) and the ATP synthase gene cluster
(SCO5366-SCO5374) are also contained in this group as well as a large number of
ribosomal protein encoding genes. A small group of genes shows nearly the same
expression pattern, but the downregulation at the glutamate depletion event occurs
half an hour later at 35.5h (highlighted in figure 4.19). The group contains, for
example, genes involved in sulfate assimilation (cysH, cysCDN; SCO6097-SC0O6100).

307 genes are upregulated around the time of glutamate depletion or shortly after-
wards. One cluster of genes shows even an earlier reaction. These genes are upregu-
lated at 24h after inoculation and are downregulated about 3h later (figure 4.20A).
At 35h they show a second upregulation for about 1 to 1.5h. Contained in this
group is for example the putative TetR family regulator SCO3207. A second group
of genes shows an upregulation at 35h, which lasts for only about half an hour (fig-
ure 4.20B). Among these is for example the sigma factor SCO7314. Another group of
genes is also upregulated at 35h but for up to 1.5h (figure 4.20C). In this group many
genes involved in fatty acid metabolism can be found as well as various transporters
(e.g. sugar transporters) and the ectoine biosynthesis genes. The largest group of
genes shows an upregulation at 35h which lasts up to 6h (figure 4.20D). Among
these 107 genes there are again many transporters and genes involved in amino acid
metabolism. In addition, some genes of the TCA cycle and the NADH dehydroge-
nase cluster (nuo genes; SCO4562-SC0O4575) are contained in this group. A small
group of genes is upregulated at 35.5h for up to 1h (figure 4.20E). It contains for ex-
ample the phenylacetic acid degradation protein encoding genes SCO7469-SCO7474
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(paa genes). Another small group of genes is upregulated at 36h and downregulated
about 1h later (figure 4.20F). It contains several transporters and the acetoacetyl-
CoA synthetase encoding gene acsA (SCO1393). Two further groups of genes show
a later upregulation that does not seem to be directly connected to the glutamate
depletion event. The first group is upregulated at 38h for about 3h (figure 4.20G). It
contains the sigma factor sigU (SC02954) and several membrane protein encoding
genes. The second group, which shows an upregulation at 44h, that lasts until the
end of the time series (figure 4.20H), mainly consists of the actinorhodin biosynthesis
gene cluster.

4.5.2. Expression profile analysis of genes related to nitrogen
metabolism in the wild type strain

A specific analysis of genes known to be related to nitrogen metabolism was per-
formed in the wild type strain under glutamate limited conditions.

An expression-based clustering of these 41 genes revealed that 20 show a change
in expression level at the time of glutamate depletion (35h). Six of these genes show
an upregulation. narB (SCO7374) and gltB (SCO2026) are among them, although
they show only a slight upregulation. The most striking upregulation is exhibited by
glnA4 (SCO1613), which, after a strong upregulation at 35h, is downregulated after
40h. 14 genes are downregulated at the time of glutamate depletion. This group
includes among others the operons nar2 (SC00216-SC0O0219) and nar3 (SCO4947-
SCO04950), the regulator ginR (SCO4159) and the gene of glutamine synthetase I
glnA (SCO2198). The strongest downregulation is shown by the genes of the nar2
operon. Interestingly, some of the downregulated genes are upregulated soon after
glutamate depletion. This is especially the case for the nar8 genes, which show a
strong upregulation immediately after downregulation. Other genes show a similar
upregulation, e.g. ginR and ginA.

Expression profiles of these genes are shown in figures 4.21 and 4.22.

4.5.3. Genes regulated in the wild type strain and not differentially
regulated in the SCginK-3 mutant

101 genes were identified that are upregulated in the wild type strain around the
time of glutamate depletion and that are almost not differentially regulated in the
SCglnK-3 mutant. L.e., their expression remains at a constant level or they are only
slightly upregulated in the SCginK-3 mutant but their upregulation in the wild type
strain is significantly stronger.

Among these genes is for instance the NADH dehydrogenase cluster (SCO4562-
SCO4575). In the SCginK-3 mutant this group shows an increase in expression from
the beginning of the time series until about 40h after inoculation. Then a slight
downregulation is observed until the end of the time series. In the wild type strain
these genes remain at a constant expression level at the beginning of the time-course
until the time of glutamate depletion when they are strongly upregulated by about
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Figure 4.20.: Expression profiles of different gene expression clusters that show an
upregulation around or after the time of glutamate depletion in the wild

type strain.
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Figure 4.21.: Expression profiles of genes involved in nitrogen metabolism in the wild
type strain.
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Figure 4.22.: Expression profiles of the nar, nar2 and nar3 operons in the wild type
strain.
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2 fold changes on logarithmic scale. This strong upregulation is not observed in the
SCginK-3 mutant.

A significant differential expression is also observed for the gas vesicle synthesis
genes gupOAF (SCO6499-SCO6501). In the wild type strain gupA and gupF show
a strong upregulation by almost 3 fold changes at the time of glutamate deple-
tion. About 3 hours later they are downregulated to their initial expression level.
In the SCginK-3 mutant the expression of the two genes remains almost constant
throughout the time series. Interestingly, gupO is clearly upregulated in both time
series at the time of glutamate depletion, but the increase in expression strength is
significantly stronger in the wild type strain.

Another group of differentially expressed genes are the ramCSABR genes
(SCO6681-6685). At the time of glutamate depletion the ramCSA genes are sig-
nificantly upregulated in the wild type strain but they show a constant expression
level throughout the time series in the SCginK-3 mutant. For ramB no reaction to
glutamate depletion is observed in both time series. ramR is upregulated after glu-
tamate depletion in the SCglnK-3 mutant and the wild type strain but in the wild
type strain the upregulation is stronger.

4.5.4. Genes regulated in the SCg/nK-3 mutant and not or only slightly
differentially regulated in the wild type strain

42 genes were identified that are clearly upregulated in the SCginK-3 mutant around
the time of glutamate depletion and that show a significantly different expression in
the wild type strain. Among these are for example the ragA BKR genes (SCO4072-
SCO4075). The ragA BK genes show a very strong upregulation of 2 to 3 fold changes
immediately after glutamate depletion in the SCglnK-3 mutant. These genes are also
upregulated after this event in the wild type strain but change in expression strength
is significantly weaker (about 1 fold change). The regulator gene ragR is only slightly
upregulated in the SCginK-3 mutant after glutamate depletion while its expression
level is almost constant throughout the time-course in the wild type strain.

4.5.5. Differentially regulated genes of the TCA cycle and Glycolysis

An analysis of the genes involved in the TCA cycle revealed that most of them
are not differentially regulated when comparing the SCglnK-3 mutant to the wild
type strain. An exception are the two succinate dehydrogenase genes SCO5106 and
SCO5107. They show a strong upregulation in the wild type strain around the time
of glutamate depletion (about 2.5 fold changes). Then they remain at a very high
expression level until 40h after inoculation. In the SCglnK-3 mutant these two genes
show only a weak upregulation around the time of glutamate depletion (below one
fold change, see figure 4.23). Interestingly, the expression profile of ginA4 (SCO1613),
which is very similar to the profiles of SCO5106 and SCO5107 in the wild type strain,
shows a different behaviour in the SCglnK-3 mutant.

Most of the genes involved in glycolysis are also not differentially regulated be-
tween the SCglnK-3 mutant and the wild type strain. However, SCO5983 and
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Figure 4.23.: Expression profiles of the two succinate dehydrogenase genes SCO5106
and SCO5107. (blue: wild type; red: SCglnK-3 mutant)

SCO0259 show a very strong response to glutamate depletion in the wild type
strain. Around this event both genes are upregulated by about 1.5 fold changes
and then they are immediately downregulated to their initial level. In the wild type
strain SCO5983 shows no reaction and SCO0259 is only slightly upregulated about
4 hours after the phosphate depletion event (see figure 4.24).

4.5.6. Ectoine biosynthesis gene cluster

An interesting phenomenon is observed for the genes of the ectoine biosynthesis
cluster ectABCD (SCO1864-SCO1867). Around the time of glutamate depletion
these genes are upregulated in the wild type strain and downregulated in the SCglnK-
3 mutant (see figure 4.25). In the wild type strain about 3h after the upregulation
the expression decreases. In the SCglnKk-3 mutant the reaction of the ect genes is
slower.

4.5.7. Genes involved in antibiotic biosynthesis

Although the production of actinorhodin (Act) is significantly lower in the SCginK-3
mutant in comparison to the wild type strain, the expression levels of the respective
biosynthesis genes (SCO5071-SCO5092) are quite similar at the end of the time
series. However, in the wild type strain the upregulation of this gene cluster begins at
the time of glutamate depletion about 35h after inoculation, whereas in the SCglnK-
3 mutant it begins 2h after the depletion event and it is significantly steeper so that
at about 42h after inoculation the expression level of the cluster is almost the same
in both time series.
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Figure 4.24.: Expression profiles of SCO5983 and SC00259. (blue: wild type; red:
SCglnK-3 mutant)
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Figure 4.25.: Expression profiles of the ectA BCD genes (blue: wild type; red: SCginK-
3 mutant)
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In the SCyginK-3 mutant only a very small amount of undecylprodigiosin (Red) is
produced. Interestingly, the expression profiles of the Red biosynthesis gene cluster
do not differ considerably between the two time series.

4.5.8. Conclusions

The results presented here, represent the first high-resolution time series transcrip-
tome study comparing a Streptomyces coelicolor wild type strain and a SCginK-3
mutant strain under glutamate limited conditions. The comparative analysis of gene
expression data of this level of detail bears several challenges as biologically relevant
differences in expression patterns have to be distinguished from random fluctuations
on a global scale. Here, these challenges have been successfully addressed by com-
bining automated screening approaches with comparative visual analytics. By this,
the effect of the used glutamate limited growth medium on the two strains could be
studied in great detail.

Interestingly, most genes involved in nitrogen metabolism show similar expression
profiles when comparing the wild type strain to the SCglnK-3 mutant or only slight
changes can be observed. One possible explanation could be that the glutamate
limitation of the medium was not as effective as expected. To further elucidate the
role of GInK as a regulator, more experiments using different growth media have to
be conducted and analysed in a comparative manner as it has been presented here.
Additional experiments will also help to further explore the interesting and in many
cases unexpected expression patterns observed in this study, such as the dynamic
expression behaviour of the ectoine biosynthesis genes.
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5. The SuperGenome: A new
representation of multiple
whole-genome alignments

In the fields of genomics and transcriptomics comparative analyses between differ-
ent species, strains or individuals are of major importance. Due to next generation
sequencing technologies data can be produced in single nucleotide resolution and
comparative methods have to operate at this level, for example in the context of
comparative analyses of single nucleotide polymorphisms or transcription start sites.

In this chapter I will describe the SuperGenome, a concept that forms the fun-
damental basis of these comparative analyses. The SuperGenome is a novel way to
represent multiple whole-genome alignments to provide a common coordinate sys-
tem allowing for an efficient handling of comparative data. The flexibility of this
approach is demonstrated by its application to the field of whole-genome alignment
visualization.

5.1. The SuperGenome algorithm

There is a significant difference between multiple sequence alignments of short se-
quences (such as genes) and whole-genome alignments. In standard sequence align-
ments it is guaranteed that the order of the characters in the aligned sequences is
equal to the order in the original sequences. From the perspective of sequence evo-
lution this means that sequence information might be inserted or deleted or single
characters might be changed, but the possibility that parts of the sequence might
interchange their positions is not considered.

This assumption is true in most cases when dealing with short sequences and most
alignment algorithms that guarantee an optimal solution would become computa-
tionally infeasible without this assumption, as dynamic programming would not be
applicable any more.

However, in a whole-genome context the occurrence of rearrangements has to be
considered [39, 148]. This not only includes translocations, where genomic regions
change their location but also inversions, where genomic regions are replaced by their
reverse complement. These events prevent the application of sequence alignment in
the classical sense. However, it is still assumed that the regions that are affected
by rearrangements are of a significant size and that therefore a standard sequence
alignment is still possible within a local context.

The alignment of the complete genomes is then represented by a set of such locally
collinear alignments, which are often referred to as blocks. In this context collinearity
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Figure 5.1.: Schematic representation of the SuperGenome concept. A SuperGenome
is constructed for a set of aligned genomes (here Genome 1 and
Genome 2). The SuperGenome consists of all regions that are contained
in at least one of the aligned regions. For example block B is only con-
tained in Genome 2 and block E is only contained in Genome 1. Thus,
none of the aligned genomes contains all blocks and could serve as a
proper reference for comparative analyses. The SuperGenome as a meta
reference contains all regions and calculates mappings between the global
SuperGenome coordinate system and the coordinate systems of the indi-
vidual genomes (here denoted as colored ribbons). This high-resolution
mapping allows for modelling small insertions or deletions (block C') and
genomic rearrangements (block D represents an inversion between the
two genomes).

refers to global gapped alignments by which the order of nucleotides in each of the
aligned sequences is preserved. Programs computing whole-genome alignments of
this form are for example Mauve [37, 38|, Mugsy [9] and TBA [22]. Although solving the
problem of multiple whole-genome alignments, this approach lacks some features of
classical alignments such as an unambiguously defined alignment coordinate system.
However, an unambiguous coordinate system is a necessity for comparative analyses.

Various programs for the comparative analysis and visualization of multiple
genomes have been published (e.g., the VISTA program suite [48], CGAT [158] or
GECO [86]; see also [5] for a review). Most solutions, however, are based on the se-
lection of a reference genome especially for visualization. The necessity to define a
specific reference can be problematic. For elements that are located in regions of
other genomes that cannot be aligned to the chosen reference it is not possible to
assign any alignment coordinates. Furthermore, the alignment coordinate system
changes with the selected reference. As repeated analyses with altering reference
genomes are infeasible in most cases, a concept of a meta reference is needed that
represents all genomes that are compared in a study.

For this the SuperGenome concept has been developed in this dissertation in order
to bridge the gap between whole-genome alignments that model rearrangements by
producing a set of collinearly aligned regions and methods relying on a clearly de-
fined coordinate system for comparative analyses, visualization or other applications.
The SuperGenome is independent of a reference sequence and explicitly includes un-
aligned regions. A schematic representation of the SuperGenome concept is depicted
in figure 5.1.
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The SuperGenome was developed on Mauve alignments but the concept is ap-
plicable to all aligners producing a set of alignment blocks. The length of the
SuperGenome is defined by the overall length of all blocks including unaligned re-
gions. The core implementation of the SuperGenome consists of two integer arrays
for each genome in the multiple alignment. One array stores for each genomic po-
sition the corresponding position in the SuperGenome, the second array stores for
each position of the SuperGenome the respective position in the genome (the inverse
mapping). Here, 1-based indexing applies, where an entry of the value 0 indicates
that the respective SuperGenome position has no representative in the respective
genome. Thus, this position is contained in one or more other genomes but could not
be aligned to this genome. A negative value indicates a mapping to the respective
position but on the other strand, thus, representing an inversion.

5.1.1. Preprocessing

The mapping is calculated by parsing and processing the alignment information in
each alignment block. For this the blocks are first sorted according to their location
in the aligned genomes. Though the functionality of the SuperGenome is completely
independent from the order of the blocks, they have to be processed in some or-
der and therefore it was decided to chose an ordering strategy that produces an
order close to that in the aligned genomes. As the order of the blocks differs from
genome to genome, the genomic orders are considered with different priority, which
is determined by the order of the genomes in the alignment. This means that the
first genome in the alignment has the highest priority. Thus, the order of all blocks
that appear in the first genome is determined by their position in this genome. The
order of all blocks that do not appear in the first but in the second genome of the
alignment is determined by their position in the second genome, and so on. In this
way the order of aligned regions in the SuperGenome is depending on their order in
the aligned genomes with the first aligned genome having the most influence.

5.1.2. Coordinate mapping

In the next step the coordinate mapping is determined. For this each block is pro-
cessed as follows. For each position ¢ in each aligned sequence that is contained in the
block the algorithm calculates at first the respective position in the source genome
g(7) by using the genomic start or end coordinate of the block (gpiockStarts Gblock End)-
If the sequence was taken from the forward strand the start coordinate (gpiocksStart)
is used as offset and for sequences taken from the reverse strand of the respective
genome the end coordinate (gpiockEnd) is used.

The offset combined with the position in the sequence excluding gaps (i') de-
fines the genomic coordinate for the forward strand (g9(i) = gpockStart + 1 — 1)
and the reverse strand (g(¢1) = gpiockEna — ¢ + 1), respectively. The position in
the block itself is simply given by the position in the sequence when gaps are
included (7). The respective position in the SuperGenome super(i) is then calcu-
lated by the position in the block added to the start coordinate of the block in the
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SuperGenome (Superyockstart), which is the sum of the lengths of all previous blocks
plus 1 (super(i) = superyiockstart + 1)-

The respective genomic coordinate (including strand modifier) is then stored
at this index in the SuperGenome mapping array for that genome and the
SuperGenome position is stored in the genomic array, which points to the
SuperGenome, respectively.

These two mapping arrays, which are calculated for each genome form the core
data structure of the SuperGenome. This structure is utilized for all operations that
directly act on the SuperGenome.

5.1.3. The SuperGenome Interface

Any direct operations on the SuperGenome data structure require detailed knowl-
edge of how this structure represents the multiple whole-genome alignment and
how this information has to be processed. Thus, the SuperGenome implementation
contains a set of wrapper functions performing various SuperGenome-based coordi-
nate and sequence transformations that allow the programmer to make use of the
SuperGenome’s functionality without full knowledge of the underlying data struc-
ture.

Position mapping The most basic transformations concern the mapping
of single positions. The function getPosInGenome(String genomeID, int
superGenomePos) takes a genome ID and a SuperGenome coordinate as input and
returns the respective genomic coordinate. If there is no mapping of this specific
SuperGenome position into the respective genome, a value of 0 is returned. If the
respective genomic coordinate is located inside a region that is inverted in relation
to the SuperGenome a negative value is returned.

Respectively, the function getPosInSuperGenome(String genomeID, int
genomePos) takes a genomic position as input and returns the corresponding
SuperGenome position using the same encoding for inversions. A value of 0,
however, will never be returned by this function as there are no genomic positions
which are not represented by the SuperGenome.

When a SuperGenome position cannot be mapped to a genome, it might be
useful to get the closest position, where a mapping is possible. For this the func-
tion getNextMappingPosInGenome (String genomelID, int superGenomePos) can
be used. It takes a genome ID and a SuperGenome position as input and searches for
the SuperGenome position that is closest to the input position and can be mapped
to the respective genome. Then the corresponding genomic position is returned.

Mapping position specific data RNA-seq expression data is often provided in the
wiggle format, which consists of two columns, where the first contains the genomic
coordinate and the second contains the expression value for that position. There are
only entries for positions, where expression has been detected.

These wiggle tracks can be the basis for measuring gene expression or per-
forming other types of analysis like detecting transcription start sites (TSS) as
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described in chapter 6. The function superGenomifyXYtrack(String genomelD,
double xyTrack[]) takes such a track as input, which relates to the coordinate
system of a specific genome, and transfers it into the coordinate system of the
SuperGenome. This for example allows for the comparative visualization of RNA-seq
data from different organisms as they can then be visualized within the same coordi-
nate system, for which a standard genome browser can be used, if the SuperGenome
is used as the reference.

Mapping genomic annotations In addition to RNA-seq data genome anno-
tations can be mapped into the SuperGenome coordinate system or from
the SuperGenome into individual genomes. This includes intervals like genes
(superGenomifyGenes, genomifySuperGenes) and single-nucleotide annotations
like T'SS (superGenomifyTSS, genomifySuperTSS).

When genes from different genomes are mapped to the SuperGenome they can
be directly compared using their SuperGenome coordinates. E.g., if two genes from
different genomes overlap in the SuperGenome, this means that these genes or parts
of the genes are aligned in the alignment the SuperGenome is based on. Therefore,
by the simple calculation of interval intersections assumptions about the similarity
and thus homology of genes can be made, which can be used as the basis for a
SuperGenome-based ortholog detection. In section 6.1.8 this mechanism is used to
compare expression values of orthologous genes.

The TSS detection algorithm described in chapter 6 makes also use of this func-
tionality to associate T'SS to each other that have been detected in different genomes.

Sequence transformation When investigating potential orthologs or promoter re-
gions of associated TSS a direct sequence comparison is necessary. To accomplish
this the function superGenomifyFASTA can be used to map a genomic sequence into
the SuperGenome coordinate system. To SuperGenome positions to which there is
no mapping from the respective genome the gap character (-) is assigned. These
sequences can also be used for visualization in an alignment viewer or in a genome
browser alongside RNA-seq data, for example.

In addition, a SuperGenome consensus sequence can be generated by us-
ing the function superGenomeConsensus. This is done by determining for each
SuperGenome position the most abundant nucleotide that is found at the respective
position in all genomes to which this SuperGenome position can be mapped. The
SuperGenome consensus does not contain any gaps.

Alignment statistics The SuperGenome provides several functions to calculate ba-
sic alignment statistics. These encompass the number of perfectly matching align-
ment columns (getPerfectColCount) or the number of deletions and insertions for
each genome (getDelCountMap, getInsCountMap). Here, deletions are defined as
columns, where one genome contains a gap and at least two other genomes are
aligned at that position. An insertion is defined as an alignment column that only
contains one character and otherwise only gaps.
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Furthermore, the length of the SuperGenome, which corresponds to the
length of the complete alignment, can be retrieved by using the function
getAlignmentLength.

Exporting the SuperGenome mapping The core of the SuperGenome, which is the
coordinate mapping between the individual genomes and the SuperGenome coordi-
nate system can be exported to a plain text file for external processing. The exported
file consists of one row for each SuperGenome position and each row consists of the
SuperGenome coordinate and the respective coordinates in the individual genomes.
If a SuperGenome position cannot be mapped to a genome the entry for this genome
is ’0’. Inversions are represented by negative coordinates.

5.2. GenomeRing: alignment visualization based on
SuperGenome coordinates

The SuperGenome concept was the basis of a new genome alignment visualization
approach [64].

The field of genome visualization is increasingly dynamic as more and more ge-
nomic data become available. There are various genome visualization approaches
(see Nielsen et al. for a review [108]), which in some cases aim at a comparative
visualization of multiple genomes.

However, many challenges involved in this field still remain to be overcome. Many
existing visualization techniques, for example, do not address the problem of devi-
ating coordinate systems of comparatively visualized genomes. Regions of similarity
are often highlighted by ribbons or indicated by color coding. This, however, quickly
leads to visual clutter and, in addition regions of similarity are often not visually
aligned. The absence of a common coordinate system also makes the comparative vi-
sualization of genome annotations very challenging. Here, GenomeRing is presented,
which specifically focuses on the comprehensive visualization of differences and sim-
ilarities between genomes on the basis of a SuperGenome coordinate system based
on a multiple whole-genome alignment. With this combination of the SuperGenome
concept and a circular multiple genome visualizer GenomeRing won the Most Cre-
ative Algorithm Award of the Illumina iDEA Challenge 2011.

5.2.1. Preprocessing

In a first step the SuperGenome is used to generate a set of blocks, which represent
genomic regions that are either shared by two or more genomes or that are unique
to single genomes. To accomplish this, the block information as provided by the
aligner is further refined. Each sequence in each alignment block is scanned for gap
regions that are longer than a user defined threshold (minBlockSize). These regions
represent loci that are missing from one or more genomes. At the start and the end
coordinates of these regions break points are annotated, which potentially give rise to
borders of new blocks. The break point sets of all sequences in an alignment block are
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then merged and subblocks are generated for each consecutive pair of break points
which result in subblocks not shorter than the minimal block size (minBlockSize).
In a last step neighboring subblocks with the same genome composition are merged
(i.e., subblocks representing regions in the same set of genomes). The final set of all
subblocks is then subject to visualization with GenomeRing.

5.2.2. Layout of GenomeRing

GenomeRing visualizes the set of SuperGenome blocks, which represent the multiple
whole-genome alignment, with a circular layout. It consists of two concentric circles,
one for the forward and one for the reverse direction, which allows for the indica-
tion of inversions. An overview of GenomeRing’s visual components is presented in
figure 5.2.

The SuperGenome blocks are laid out on the two circles with each block being
visually represented on both of them. For each genome there is a colored path that
traverses blocks that are contained in this genome and that skips blocks that are
not contained. By this the path connects the blocks according to their order in the
respective genome. If the path traverses a block on the inner ring the respective
region is inverted in comparison to the genomes whose paths traverse the block on
the outer ring. Start and end of each genome are indicated by small colored flags.

In GenomeRing, for each block it can be quickly identified in which genomes it
appears by visually evaluating its color composition, i.e., the colors of the paths that
traverse this block.

This kind of layout allows for an easy identification of genomic regions where the
aligned genomes are similar or where they vary or which are unique for a certain
genome. The structure of each individual genome is preserved in the visualization by
the respective path. Therefore, the actual order of the SuperGenome blocks on the
circles is arbitrary and can be optimized to enhance visual clarity. For this several
heuristics have been integrated that reorder the SuperGenome blocks to minimize
the number and the length of the jump edges, i.e., the number of events in which a
block has to be skipped by a genome’s path.

5.2.3. Uncovering differences between genomic architectures

One of GenomeRing’s main applications is the discovery of large-scale deletions or
insertions. These can be due to genomic islands, which are caused by horizontal
transfer, or prophages or plasmids that have been integrated into the chromosome.
Such regions are of major interest because they potentially contain virulence factors
in the case of pathogenicity islands or genes involved in drug resistance in the case
of antibiotic resistance islands.

To demonstrate how GenomeRing can be used to identify these kind of regions,
it was applied to four Campylobacter jejuni strains (RM1221, NCTC11168, 81-176,
81116). This is a Gram-negative food-born pathogen that is one of the major causes
of gastroenteritis [145].
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Figure 5.2.: GenomeRing visualization of an artificial example involving three
genomes. The SuperGenome consists of four blocks A, B, C' and D. The
SuperGenome blocks are laid out on two concentric circles (rings). For
each genome a colored path connects the blocks in the order as they ap-
pear in that genome. Blocks that are not contained in the genome are
skipped. The path traverses blocks that are contained in the genome ei-
ther on the outer ring or the inner ring. By this, inversions between the
genomes in the outer ring and the genomes in the inner ring are visualized.
The start and end of each genome are depicted as small colored flags. In
this example Genome 1 consists of blocks D and B, Genome 2 consists
of blocks B, A, C' and Genome & consists of blocks A, C, D. For each
block it can be easily seen in which genomes it occurs by evaluating its
color composition. For example, block D is contained in genomes 1 and
3 (red and green) while block A is contained in genomes 2 and 3 (blue
and green). In block A Genome 2 (blue) is shown on the inner ring and
Genome 3 (green) is shown on the outer ring. Thus, block A represents
an inversion between genomes 2 and 3.
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Figure 5.3.: GenomeRing visualization of an alignment of the four Campylobacter je-
jung strains RM1221, NCTC11168, 81-176 and 81116. Four of the blocks
indicate insertions in C. jejuni RM1221 and represent genomic islands
(CJIE1-4). The parameter for the minimal block length was set to 10 kb.
The inner ring is empty in this view as there are no inversions between
the genomes. [64]
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The SuperGenome was generated with a minimal block size of 10 kb. After sub-
block generation the resulting SuperGenome consisted of 14 blocks, which were sub-
ject to the GenomeRing visualization (see figure 5.3). For each block the color pattern
indicates in which genomes the respective block is contained. Thus, a block which is
traversed by all genome paths because it is conserved in all genomes shows the full
color pattern. In this example most blocks can be found in all genomes. However,
there are four large blocks representing insertions in C. jejuni RM1221. These blocks
can be easily identified in the visualization as they are traversed by only one genome
path (that of RM1221) while it is skipped by all other paths. The respective regions
correspond to, so-called, Campylobacter jejuni-integrated elements (CJIEs) [47, 116].
CJIEL is a Mu-like phage and therefore also called CMLP1 ( Campylobacter Mu-like
phage 1). CJIE2 and CJIE4 also contain phage-related proteins, whereas CJIE3 is
a putative integrated plasmid.

5.2.4. Integrating genome annotations

One major purpose of the SuperGenome is to allow for a consistent assignment of
coordinates to genome annotations even in the presence of insertions, deletions and
genomic rearrangements. This functionality is also used here to display genome anno-
tations in GenomeRing. GenomeRing is implemented in the transcriptome analysis
software MAYDAY [14], which, in addition, allows for an integration of gene expres-
sion data, for example.

This is demonstrated by the application of the SuperGenome and GenomeRing to
an alignment of the three Helicobacter pylori strains 26695, J99 and P12. In addition,
gene expression data for H. pylori 26695 was analysed with MAYDAY and the results
were visualized in GenomeRing. Helicobacter pylori is a Gram-negative pathogen
populating the human stomach. It can cause gastritis and also gastric cancer [34].
Large parts of the human population are infected with this bacterium, which is,
however, asymptomatic for most individuals. Understanding the mechanisms that
are responsible for its pathogenicity is therefore of major importance in order to
develop effective treatments. In 2010 Sharma et al. completed a very comprehensive
transcriptomic study of Helicobacter pylori strain 26695 cultivating the organism
under five conditions [142]. It was grown to mid-logarithmic phase (ML), under
acid stress (AS), in contact with responsive gastric epithelial cells (AG) and non-
responsive liver cells (HU), and in pure cell culture medium (PL).

The SuperGenome generation was applied to the alignment of the three strains
with a minimal block size of 50 kb, thus, only showing large differences between
the strains. This results in a SuperGenome that contains eight blocks. Two of these
blocks are due to inversions between the strains 26695 and J99/P12 (see figure 5.4).

To integrate the expression data of the study by Sharma et al. it was loaded
into MAYDAY and a z-score normalization followed by a k-means clustering of the
expression profiles was performed. By this groups of genes were identified that are
differentially expressed under a certain cultivation condition. For the visualization
two large expression profile clusters were selected, where one was upregulated under
acid stress (AS) and the other one showed an upregulation when the bacteria grew
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in contact with liver cells (HU). Different colors were assigned to the two clusters
and the loci of the genes that are contained in the clusters were mapped into the
path of H. pylori strain 26695 in the GenomeRing visualization using the color of
the respective cluster. This provides a comprehensive overview of the location of
genes that show differential regulation under a certain experimental condition.

GenomeRing easily shows that in many cases genes that are upregulated under
the same cultivation condition, either AS or HU, are located in close vicinity. One
such locus is highlighted in figure 5.4. These appear as stretches of loci that are
visualized in the same color. The investigation of genes that are co-localized and
co-expressed under specific conditions is of major interest as these genes are often
involved in the same pathways and are therefore functionally related.

In order to enable the user to investigate identified regions of interest in more
detail, GenomeRing can be linked to the genome browser that is integrated into
MAYDAY.

Linkage to Mayday’s genome browser The advantage of GenomeRing’s inte-
gration in MAYDAY is that locus-specific expression data can be visualized and
GenomeRing can be linked to MAYDAY’s linear genome browser [150]. This allows
for a selection of a specific region region in the GenomeRing visualization, which will
then be displayed in the linear browser and can thus be investigated more in detail.
An example is given in figure 5.5. In the linear browser the gene loci are visualized
alongside a, so-called, heatmap track that indicates the gene expression values for
the different cultivation conditions. Furthermore, the expression is also visualized in
single-nucleotide resolution as wiggle tracks for the two conditions HU and AS.

There are two clusters of co-expressed genes which are located in the respective
region. The larger cluster consists of genes that are upregulated when the organism
grows in contact with liver cells (HU condition). The second cluster, which is located
downstream, is smaller and contains genes that are upregulated under acid stress (AS
condition). Most of the genes in the larger cluster are ribosomal proteins. Of the four
genes that are contained in the smaller cluster two are annotated as hypothetical
proteins and two as cation efflux system proteins (czcA), which are known to be
activated at low pH levels [21]. The co-expression of the four genes suggests that the
two proteins of unknown function are potentially involved in the same system or a
similar protective mechanism.

At this point MAYDAY’s genome browser can be further used for a more detailed
analysis of the locus. The heatmap track in figure 5.5B, for example, shows that
the genes in the two clusters are very specifically upregulated under condition HU
and AS, respectively, while being at a quite low expression level under the other
conditions. In addition, the single-nucleotide resolution RNA-seq data visualized
as wiggle tracks can be employed for the characterization of the architectures of
chromosomal genes clusters, e.g., in the context of T'SS and operon prediction.

Thereby this applications demonstrates how the visualization concept of
GenomeRing, which is based on the SuperGenome, can be used to gain an instant
overview of similarities and differences of the investigated genomes, while its integra-
tion in MAYDAY allows for the inclusion of transcriptomic data analysis and visual-
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Figure 5.4.: GenomeRing visualization of an alignment of the three Helicobacter pylori
strains 26695, J99 and P12. The parameter for the minimal block length
was set to 50 kb. Blocks 5 and 6 represent two large inversions between
strains 26695 and J99/P12. For strain 26695 gene expression data has
been mapped into the respective path (red). Genes that are upregulated
in condition HU are shown in purple while genes upregulated in condition
AS are shown in green. The locus indicated by a red rectangle is shown
in more detail in figure 5.5. [64]
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Figure 5.5.: Visualization of the locus highlighted in figure 5.4 in the genome of Heli-
cobacter pylori 26695 using the linear genome browser integrated in M AY-
DAY. Five tracks are displayed: A, genomic coordinates for the genome
of H. pylori 26695. B, expression value heatmap track for genes that
are upregulated under conditions HU or AS (forward strand: above the
baseline, reverse strand: below the baseline). The expression of all five
conditions is shown in the heatmap (from top to bottom: AG, AS, HU,
ML, PL). C, annotations of protein-coding genes. Co-localized genes that
are upregulated under the same condition are highlighted by horizontal
braces. D, RNA-seq wiggle track for the condition HU (reverse strand).
E, RNA-seq wiggle track for the condition AS (forward strand). [64]

ization. Furthermore, the linkage with MAYDAY’s linear genome browser enables the
detailed inspection of relevant loci, which have been identified in the GenomeRing
visualization.
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6. Comparative prediction of TSS using
the SuperGenome

RNA-seq data allows for unprecedented insights into the transcriptomic structure
of an organism as expression is measured in single-nucleotide resolution. Thus, the
importance of the automated analysis of RNA-seq data becomes evident as increas-
ingly more and more data is generated not just from single transcriptomes but either
from different conditions or from different organisms.

However, this leads to new challenges for the researcher and for computational
methods as comparative analyses also have to be performed on single-nucleotide
level.

One of the genomic features that can be deduced from RNA-seq data, for which
comparable high-throughput methods did not exist before, are transcription start
sites (T'SS). Information on where exactly in the genome a transcript starts is of
major importance in order to identify features involved in the regulation of tran-
scription such as sigma factor binding sites or other transcription factor binding
sites. In addition, accurate genome-wide TSS maps can assist in the identification
and characterization of promoter regions or cis-regulatory elements that are part of
the 5> UTR of the transcript, such as riboswitches.

However, an organism-specific global T'SS map cannot easily be used for further
comparative analyses, because even if TSS maps for other organisms exist, they
are not directly comparable, as they refer to completely independent coordinate
systems. T'SS in different maps could be associated to each other for example by
mapping of orthologous genes [81]. However, this strategy might lack accuracy as
TSS in different organisms can only be roughly associated to each other by their
location with respect to orthologs but not in single-nucleotide resolution. Also, this
approach does not allow for a comparative analysis of T'SS that cannot be related
to known genes.

For these reasons it is desirable to directly perform a comparative detection and
characterization of TSS on multiple organisms. In order to achieve a high accu-
racy and sensitivity T'SS need to be detected and assigned to each other in single-
nucleotide resolution. For this, the comparative analysis has to take place in the
context of a global coordinate system based on the genomes included in the study.

To accomplish this an algorithm was developed that allows for a fully automated
genome-wide annotation of TSS in a comparative manner by the integration of
the SuperGenome (chapter 5). The approach is complemented by methods for the
normalization of RNA-seq expression data and the automated classification of de-
tected TSS. In order to provide these functionalities in a user friendly environment
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TSSPREDATOR was developed, which combines the methods in a common frame
work with a graphical user interface.

6.1. The TSS prediction pipeline

The complete data processing pipeline resulting in the prediction of global com-
parative T'SS maps consists of several steps. In the first step differential RNA-seq
(dRNA-seq) data is read and normalized. The dRNA-seq technique was developed
by Sharma et al. in 2010 [142]. Using this protocol two libraries are produced
for RNA sequencing. One standard library remains untreated. A second library
is treated with a terminator exonuclease that specifically degrades RNA fragments
with a 5" monophosphate. By this, the 5’ ends of primary transcripts, which carry
a 5’ triphosphate are enriched in this library. In order to distinguish real TSS from
RNA processing sites this treated library is compared to the untreated library and
only sites that appear to be enriched in the treated library can be considered to be
TSS. The dRNA-seq technique is illustrated in figure 6.1.

After normalization of the data TSS candidates are detected in the replicates
of all data sets and replicates are compared to eliminate candidates that could
not be reproduced. In the next step the T'SS candidates of the different data sets
are associated to each other in order to decide for each TSS in which of the data
sets it could be detected. For the comparative analysis among different strains or
species the SuperGenome approach is used in this step. Finally, the detected TSS
are classified with respect to their location relatively to annotated genes and the
results are presented in the form of a comprehensive MasterTable consisting of all
predicted TSS and detailed information on each element. An overview of the T'SS
prediction pipeline is presented in figure 6.2. In the following all steps of the pipeline
are described in detail.

6.1.1. Normalization

The first data processing step following an RNA-seq experiment is read mapping.
The TSS detection method described here is not working on the mapping data
directly but on coverage graphs in single nucleotide resolution that are derived from
these data. These graphs (also called wiggle graphs) basically consist of a value for
each genomic position indicating the number of mapped reads covering the respective
position. As the mapping is strand-specific this results in two graphs per library, one
for the forward and one for the reverse strand.

The graphs are usually normalized by the complete number of reads that could be
mapped from this library. However, this number is often biases by only a few strongly
expressed transcripts [43, 130]. These can be ribosomal RNAs, as the efficiency of the
rRNA depletion protocol might vary between libraries. For this reason an additional
normalization of the dRNA-seq graphs is conducted prior to TSS detection. This
is done by performing a percentile normalization, which is more robust against the
variation of very strongly expressed genes than using the total number of mapped
reads as a normalization factor. For this the 90th percentile of all expression values
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Tllustration of the differential RNA-seq (dRNA-seq) protocol. Two RNA
sequencing libraries are produced, one that is untreated and one that
is treated with a terminator exonuclease that degrades RNAs with a
5" monophosphate in order to enrich the 5’ ends of primary transcripts
that carry a 5’ triphosphate. Both libraries are sequenced and the se-
quencing data are compared to distinguish TSS from RNA processing
sites.
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Basic steps of the TSS prediction pipeline. The dRNA-seq input data is
read and normalized. TSS candidates are detected in the replicates of
the different data sets and the results are compared in order to eliminate
irreproducible sites. The SuperGenome approach is employed to associate
TSS candidates from different genomes to each other. After classification
with respect to annotated genes all results such as the T'SS MasterTable
and supplemental data are generated.
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is calculated and used as the normalization factor. The factor is calculated from
the treated library, but it is applied to both, the treated and the untreated library.
Thus, the enrichment factors are not changed during this normalization step. After
the dRNA-seq graphs of libraries have been normalized, all expression values are
multiplied by the minimal normalization factor in order to restore the original data
range.

This normalization procedure actually makes no assumptions about the normal-
ization state of the input data as the result is independent of any factor that have
have been applied as a normalization factor earlier. However, still a linear normaliza-
tion is used, which might not be sufficient if non-linear effects occur. A comparison
of TSS expression height distributions after normalization between 4 RNA-seq li-
braries of 4 different Campylobacter jejuni strains (see chapter 7 for details) is shown
as a Q-Q plot matrix in figure 6.3. For several libraries non-linear effects are evi-
dent. However, reasonable expression height thresholds for the annotation of TSS
are between 5 and 10 reads. In this interval the normalization strategy presented
here seems to be sufficient as pronounced non-linear effects are only observed for
much higher expression levels.

Another important property for TSS prediction is the enrichment factor, i.e.,
the factor by which the expression value in the treated library is higher than in
the untreated library. It has to be considered that the efficiency of the enrichment
procedure directly influences the number of detectable T'SS. Variations between the
enrichment rates of different libraries biases the comparative analysis. In figure 6.4
the distributions of enrichment factors of predicted T'SS are compared between 4
different C. jejuni strains. Here, only the normalization method described above
was applied. The enrichment rates differ significantly between the strains. E.g., in
strain NC_009312 the enrichment strength was about twice as high compared to
strain NC_009839.

To account for this effect an additional normalization method was integrated.
For this a preliminary prediction of TSS is performed for each pair of treated and
untreated library, which uses fixed thresholds of 0.1 for the minimal step height
and 1.5 for the minimal step factor (see 6.1.2). Other properties are not evaluated.
The resulting TSS set is then used to determine the median enrichment factor for
the respective library pair. Taking the library pair with the strongest enrichment as
reference these values are used to determine for each pair the normalization factor
that is necessary to achieve the same rate as the reference. This factor is then
applied to the dRNA-seq graphs of the respective untreated library. In figure 6.5 the
same comparison as described above is shown but with this additional normalization
applied to the data. As for the expression heights there seem to be additional non-
linear differences between the libraries. However, a reasonable threshold for the
minimal enrichment factor will presumably be smaller than 10 in any case and the
normalization compensates for all significant effects in an interval between 0 and 20.
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Figure 6.3.: Q-Q plot matrix comparing the distributions of TSS expression heights
after normalization between 4 Campylobacter jejuni strains. Only the
interval between 0 and 20 reads, which is relevant for the threshold of the
TSS prediction method is shown.
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Figure 6.4.: Q-Q plot matrix comparing the distributions of T'SS enrichment factors
without additional normalization between 4 Campylobacter jejuni strains.
Only the interval between 0 and 20 reads, which is relevant for the thresh-
old of the T'SS prediction method is shown.
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Figure 6.5.: Q-Q plot matrix comparing the distributions of TSS enrichment factors
with additional normalization between 4 Campylobacter jejuni strains.
Only the interval between 0 and 20 reads, which is relevant for the thresh-

old of the T'SS prediction method is shown.
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6.1.2. Basic TSS detection procedure

The basic prediction of TSS is taking place on three different levels. The initial
prediction is performed on the replicate level for each replicate separately. On the
genome level the results from all replicates of the respective genome are combined
to get an individual prediction for that genome. Finally, on the SuperGenome level
the TSS of the individual genomes are assigned to each other as described in the
next section (6.1.3).

For the initial prediction of TSS in each replicate the dRNA-seq graphs are pro-
cessed as follows: In a first step the algorithm localizes positions in the graph of the
treated library where a significant number of reads start, because these loci are po-
tential transcript starts. More precisely, for each position ¢ in the graph the absolute
change of the expression height in comparison to the previous position e(i) —e(i—1)
is calculated, where e(i) is the expression height at position i (Figure 6.6). However,
this criterion alone would not be able to consider the local background of the TSS
candidate. Therefore, the factor of height change e(i)/e(i — 1) is calculated. Using
default thresholds the factor has to be greater than or equal to 1.5 and the abso-
lute height has to be greater than or equal to 0.1. Note that the latter is a relative
value with respect to the normalization factor, which is the 90th percentile by de-
fault. Thus, the default threshold for the expression height is 0.1 - 90th percentile.
By relating the threshold to the normalization factor the necessity to adapt it to
the data range is avoided. In addition to those two thresholds it is evaluated for
how many base pairs the expression height stays above the threshold. This value
also has to exceed a certain threshold, which depends on the length of the reads
that have been produced during the RNA-seq experiment. This is to prevent only
partially mapping reads from being detected as a TSS. Additionally the enrichment
factor at the position of the candidate is calculated as the ratio of the expression
values of the treated and the untreated library (etreated(?)/€untreated(?)). However,
the factor is not evaluated in this step. The default values for the thresholds have
been determined by evaluating the method on a global set of manually annotated
TSS from a dRNA-seq study by Sharma et al. in 2010 [142].

This process is performed for both strands separately. In the next step the TSS
candidate sets of all replicates of an experiment are compared to evaluate in how
many replicates a T'SS candidate was detected. For this comparison TSS candidates
from different replicates are assigned to each other if their position does not differ by
more than 1 bp. T'SS are then summarized across replicates so that there is one final
set of TSS for the respective genome. During this step the position of the genomic
TSS is determined by the respective replicate TSS with the highest expression. The
absolute expression height, factor of height change and enrichment factor of the
genomic TSS are determined by taking the respective maxima over all replicate T'SS
that contributed to the genomic TSS. By default a TSS candidate has to be detected
in at least one replicate to be kept. However, in order to increase specificity this value
can be increased.

At many loci where a transcript starts it can be observed that the expression height
of the dRNA-seq graph increases in several steps, which might lead to an annotation
of several TSS candidates. Although there are many cases where alternative TSS can
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Figure 6.6.: Schematic representation of basic TSS detection criteria. The expression
graphs from the treated (red) and untreated (blue) library are the basis
for the TSS detection procedure. The most important parameters that
are considered during the process are the absolute expression height at
the position of the potential T'SS (e(i) —e(i — 1)) and the factor of height
change at that position (e(i)/e(i — 1)), where e(i) is the expression value
at position 7. Additionally, the enrichment factor at the same position is
taken into account (i.e. the ratio of the expression values from the treated
and untreated library).

be found one would not expect this to happen frequently if the alternative TSS has a
distance of only one or two base pairs. In this case this might rather be an artifact of
the sequencing procedure or read mapping. For this reason genomic TSS candidates
are clustered if they are located on the same strand and are not further than 3 bp
apart. From each cluster only the T'SS with the highest expression is kept.

6.1.3. Cross-genome comparison of TSS using the SuperGenome

In the next step TSS candidates from different genomes are assigned to each other
in order to decide in which genomes a TSS occurs and appears to be enriched. For
this the individual genomic T'SS are mapped into the SuperGenome. Then the ge-
nomic TSS sets are compared and candidates are assigned to each other if they are
not further than 1 bp apart on the SuperGenome level. In the next step genomic
TSS candidates that have been assigned to each other are summarized to form
a SuperGenome TSS (SuperTSS). Each SuperTSS carries all information of its ge-
nomic T'SS including their positions and all properties, i.e., the respective expression
height, factor of height change and enrichment factor.

Finally these SuperTSS candidates undergo an additional filtering procedure to
increase the confidence of the prediction. For this a stricter set of criteria is applied
that have to be fulfilled by at least one genomic TSS of the SuperTSS. In particular
the absolute expression height has to be greater than or equal to 0.3, the factor of
height change has to be greater than or equal to 2.0 and the enrichment factor has
to be 2.0 or above. Thus, a SuperTSS has to be enriched in at least one genome.
Genomic TSS are classified as enriched if their enrichment factor is at least 2.0 or
as not enriched otherwise. If the enrichment factor of a genomic TSS is very low,
i.e., if the expression value in the untreated library is at least 1.5 times higher than
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Figure 6.7.: Illustration of T'SS classes. T'SS can be classified as Primary, Secondary,
Internal, Antisense or Orphan depending on their location relative to
annotated genes.

in the treated library, the TSS is considered as a processing site and not classified
as detected.

If a SuperTSS was not detected in a certain genome, i.e., if there is no genomic
TSS of the respective genome assigned to that SuperTSS, there will still be a TSS
candidate annotated if the SuperTSS can be mapped into the respective genome.
This is the case if the respective locus of the SuperGenome represents a region of
the whole-genome alignment of which the genome was a part of. In such a case the
genomic TSS candidate will be classified as mapped, but not as detected.

6.1.4. Classification of detected TSS

In the next step the final TSS annotations are further classified according to their
location relative to annotated genes. This is done for each genome separately. For this
a similar classification scheme as previously described by Sharma et al. is used [142].
An illustration of the different TSS classes is presented in figure 6.7. For each TSS
it is decided if it is the Primary or Secondary TSS of a gene, if it is an Internal
TSS, an Antisense TSS or if it cannot be assigned to either of these classes. In this
case the TSS is classified as an Orphan. A TSS is classified as Primary or Secondary
if it is located upstream of a gene’s translation start site not further apart than
300 bp. The TSS with the strongest expression is classified as Primary. All other
TSS that are assigned to the same gene are classified as Secondary. Internal TSS
are located within an annotated gene on the sense strand and Antisense TSS are
located inside a gene or within a maximal distance of 150 bp on the antisense strand.
These assignments are indicated in the respective columns of the MasterTable, as
described in detail in the next subsection.

6.1.5. Comprehensive compilation of the results: The MasterTable

The results of the cross-genome TSS detection procedure are primarily presented
in the form of a table. Since it contains all important information about the TSS
prediction results it is called the MasterTable. It contains for each SuperTSS one
row for each genomic T'SS that could at least be mapped to its respective genome.
If a genomic TSS was assigned to more than one TSS class, there is one row for each
classification. A T'SS can for example be classified as Primary for a certain gene and
as Antisense for another one.

The MasterTable consists of 28 columns. In the first two columns the position
and strand of the SuperT'SS are given, which refer to the SuperGenome coordinate
system. The next two columns indicate to how many genomes the SuperTSS could
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be mapped and in how many it was detected. Column 5 contains the identifier of
the genome to which the information in the next columns (i.e., the information
on the genomic TSS) are referring. The next five columns indicate if the genomic
TSS was detected and found to be enriched and they provide detailed values for
the expression height, the expression factor and the enrichment factor of the TSS.
Column 11 contains the number of classes the TSS was assigned to. The position and
strand of the genomic TSS referring to the respective genome are given in the next
two columns. The following 5 columns provide information about the annotated gene
to which the genomic TSS was assigned during the classification procedure. That
is the locus tag of the gene and its functional annotation as well as its length and
the length of the 5 UTR in the case of primary and secondary TSS. Columns 19-22
show the class assignment of the TSS (Primary, Secondary, Internal or Antisense).
Here, Orphan TSS, which are not in the vicinity of an annotated gene, are indicated
by zeros in all four columns. The next columns indicate if the TSS was annotated
automatically or manually and if it might belong to a novel SRNA/asRNA. All
TSS that have been detected by the software are marked as automatically detected.
However, the researcher might want to add rows manually, which refer to T'SS that
have not been detected by the program. This might be the case if the TSS is too
weak to exceed the threshold but there are other indications that are not considered
by the algorithm. In the last column the upstream sequence of the TSS is provided
(50 bp plus the base of the TSS).

The structure of the MasterTable has been designed to allow for very specific
manual analyses but also automated processing, e.g., using R. Thus, it is very easy
to apply customized filters in a spreadsheet application, for example. By this it
is possible to apply stricter sets of thresholds. For example a filter can be used
that selects only TSS with a certain expression height or only enriched TSS or
TSS that were detected in at least 2 genomes or in all genomes. The provided
information about each T'SS can also be used to understand why a certain prediction
or classification has been made. This knowledge can then be used to refine the TSS
detection parameters, for example. In addition to that the researcher can define a
custom classification scheme and use this for statistical analyses. An example could
be the comparison of expression heights of all perfectly conserved UTR TSS with
those of all genome specific UTR TSS (classified as primary or secondary; detected
in all genomes vs. detected in one genome).

Furthermore, the additional information on related gene annotations can be uti-
lized to compare UTR lengths or calculated UTR length distributions in general.
Additionally, the provided upstream sequence of TSS can be the basis for motif
search and promoter analysis. For a detailed use case on how the MasterTable can
be exploited in a study see chapter 7, where a transcriptomic study in Campylobac-
ter jejunt is presented.

6.1.6. Additional files

In addition to the MasterTable several supplementary result files are generated.
All TSS annotations are provided as a GFF file for the SuperGenome coordinate
system and for each genome individually. The normalized dRNA-seq graphs are
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written in wiggle format, again for both coordinate systems. The dRNA-seq graphs in
SuperGenome coordinates are especially useful as they can be loaded into a genome
browser to verify the predictions manually, which is possible as the expression graphs
are aligned via the SuperGenome. Thus, it is in principle also possible to use the
software solely for the alignment and normalization of RNA-seq expression data
from different genomes. The aligned graphs can then be used for manual analysis or
comparative computational methods.

Additionally, all genomic sequences aligned to SuperGenome coordinates are pro-
vided as a multi FASTA file, which can also be loaded in a genome browser. Finally, a
small table containing some overview statistics is generated. Here, the total number
of detected TSS on SuperGenome level and for the individual genomes is provided.
These numbers are broken down to show the numbers of T'SS in the different classes.

6.1.7. Comparative analysis of different experimental conditions

In general the comparative TSS prediction as described above is designed to be
applied to a set of different genomes. However, a different type of study would be
the comparison of various experimental conditions applied to the same organism.
In this case the SuperGenome transformation that is necessary for the comparison
of different genomes can be omitted. Therefore, the software can be run in a cross-
condition rather than a cross-genome mode, where no SuperGenome transformation
is performed and only one genomic sequence and one genome annotation has to be
provided.

Besides this all prediction, comparison and classification procedures are the same,
as the SuperGenome, which is used for cross-genome studies, can be seen as an
interface between the whole-genome alignment and the applied comparative method.
Thus, the methods do not have to be adapted no matter if they are applied to the
SuperGenome and therefore a multiple genome alignment or if they are applied to
an ordinary genomic coordinate system.

For compatibility reasons the structure of the MasterTable does not differ between
the two types of studies. However, some of the columns have a different meaning
when experimental conditions are compared instead of genomes. The genome iden-
tifier, for example, is replaced by the identifier of the experimental condition. In
addition there are still SuperT'SS summarizing TSS that have been detected in the
different conditions, but in contrast to the genome comparison mode the SuperTSS
refer to the genomic coordinate system instead of the SuperGenome.

6.1.8. Generation of cross-genome expression matrices using the
SuperGenome

During the course of a comparative TSS prediction the SuperGenome concept not
only allows for the cross-genome assignment of T'SS but also for the alignment of
the genomic dRNA-seq graphs in single-nucleotide precision. Thus, the method can
also be utilized for the comparative analysis of gene expression.
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For this, the SuperGenome is in a first step used to map individual genomic anno-
tations into its global coordinate system. In the next step genes that are covering the
same locus in the SuperGenome are summarized in groups (so-called SuperGenes).
This is done by starting with the set of annotated genes of one genome and creating
a SuperGene for each element. Then the gene annotations of the next genome are
compared to the existing SuperGenes. If an annotation covers the same locus as an
existing SuperGene, it is added to it. If there is no SuperGene at the same locus, a
new SuperGene is created for the annotation. If the annotation is overlapping more
than one SuperGene it is added to all of them. In the most complicated situation
more than one annotation overlaps the same SuperGene. In this case the respec-
tive SuperGene is duplicated for each overlapping annotation and the annotation is
added. This procedure is performed for each genome in the study.

Then, for each SuperGene a common interrogatable region is defined that is cov-
ered by all genes that are contained in the SuperGene. Thus, if a SuperGene is
duplicated during the building process, this results in two SuperGenes that partially
contain the same genomic genes. However, their common interrogatable regions will
differ as their gene content is not completely the same. Therefore, even the expres-
sion values of those genes that the two SuperGenes have in common will not be
identical between the SuperGenes.

Finally, the SuperGenome is used to map the interrogatable regions back to the
individual genomic coordinate systems. Here, the respective dRNA-seq graphs are
used to determine the mean expression value of the region resulting in an expression
value for the SuperGene in the respective organism.

The output is an expression matrix with one row for each SuperGene and one col-
umn for each experiment. Note that SuperGenes do not necessarily contain a gene
for each genome. In this case the missing entry is indicated by a "NA“ in the ex-
pression matrix. The genes a SuperGene is consisting of are in most cases orthologs.
However, as these ortholog groups are defined via the SuperGenome instead of a
reciprocal BLAST search, they are not denoted as orthologous but as SuperGene.
It is also important to note that especially when genes are added to more than
one SuperGene or when SuperGenes have to be duplicated, the respective elements
are unlikely to be real orthologs. For this reason several thresholds can be set that
prevent genes from being assigned to the same SuperGene if they do not overlap
significantly or if their pairwise sequence identity is too low.

In addition, it is possible to use an available ortholog mapping as input. In
this case the SuperGenes are built according to that mapping instead of using the
SuperGenome. The remaining processing steps are the same.

It is important to note that despite of the normalization that is applied to the
dRNA-seq graphs the expression matrix cannot considered to be perfectly normal-
ized as the used normalization method only accounts for linear effects, which is
sufficient for the TSS detection (see section 6.1.1) but not for comparative expres-
sion analysis. Thus, the matrix has to be handled like a raw expression matrix.
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6.2. TSSpredator: A user friendly solution for comparative
TSS prediction

The generation of the SuperGenome as a representation for a multiple whole-genome
alignment and the TSS detection algorithm are technically separate concepts, which
have been joined to allow for a comparative analysis across different genomes. How-
ever, the initial implementation required a significant amount of manual work and
the compilation of a study-specific configuration file, which was also done by hand.

To enable other researchers to use these methods and adapt their application to
their needs TSSPREDATOR was developed. TSSPREDATOR is a user friendly frame-
work with an interactive and dynamic graphical user interface that allows for an
easy setup of the study. In addition, TSSPREDATOR can be used via its command
line interface, which makes the integration into automated pipelines easy.

TSSPREDATOR’s graphical user interface (GUI) is clearly structured and consists
of different areas dealing with different sets of parameters or information that is
provided. A screenshot of the GUI is presented in figure 6.8.

In the study setup area (Figure 6.8A) general settings for the study can be made.
Most importantly these are the type of the study, which is either the comparison
of different genomes or the comparison of different experimental conditions, the
number of genomes/conditions and replicates, and the path to the output directory.
A project name can also be specified.

If the comparative analysis involves different genomes, an alignment file in XMFA
format has to be provided. In this case TSSPREDATOR can automatically infer the
number of genomes as well as their alignment IDs and names from the XMFA file.
The number of replicates has to be set manually. After adjusting the number of
genomes/conditions and replicates pressing the Set button will create settings tabs
for each genome/condition and replicate, respectively.

In the parameter area (Figure 6.8B) specific parameters of the TSS prediction
procedure can be changed (see section 6.1.2). Instead of changing individual pa-
rameters it is also possible to select a parameter preset from the drop-down menu.
The presets affect the thresholds for the expression height, the expression factor and
the enrichment factor. Currently there are five different parameter presets. Besides
the default parameters there are two more specific presets (more specific and very
specific) and two more sensitive presets (more sensitive and very sensitive). With
an increased sensitivity TSSPREDATOR detects also T'SS of very weakly expressed
genes. However, a higher number of false positive predictions has to be expected.
When more specific settings are used a higher expression level and a stronger enrich-
ment is required to detect T'SS. Thus, the reliability of the predictions is increased
but weak T'SS will be missed with these settings.

For each genome/condition of the study a tab is generated (Figure 6.8C), in
which settings specific for this genome/condition can be made. This includes the
name and alignment ID, and file paths to the genomic sequence (FASTA) and the
genome annotation (GFF). In addition, for each replicate a tab is displayed within
the respective genome/condition tab, where the RNA-seq wiggle file paths of the
replicate can be entered.
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Figure 6.8.: Screenshot of the TSSPREDATOR graphical user interface.
A: General settings for the study. B: TSS prediction parameters and
other settings. C: Genome/Condition specific settings and files. D: Mes-
sage area, where information about the prediction procedure is displayed.
E: Buttons to Load or Save a configuration. F: RUN button to start the
prediction procedure. The Cancel button stops a running prediction.
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6. Comparative prediction of TSS using the SuperGenome

In the message area (Figure 6.8D) information about a running prediction pro-
cess is displayed. Thus, it can be easily determined in which step a running prediction
procedure currently is. After the normalization step (see section 6.1.1) the standard
normalization factors and the enrichment normalization factors are displayed for
each replicate. At the end of the procedure a brief summary is shown indicating the
complete number of TSS in the study (SuperTSS) and in the individual genomes/-
conditions.

Using the Save or Load button (Figure 6.8E) a configuration including all set-
tings can be saved, or a previously saved configuration can be loaded, respectively.
The configuration is saved in a format that TSSPREDATOR can take as input when
running from the command line. Thus, a study can be easily set up using the con-
venient GUI, the configuration can be saved and used for automated processing in
a pipeline.

By pressing the RUN button (Figure 6.8F) the prediction procedure is started
using the current settings and parameters. A running prediction procedure can be
canceled using the Cancel button. The first steps of the prediction procedure are
the import and normalization of the dRNA-seq data. As this step takes a significant
amount of time, the normalized dRNA-seq graphs are cached so that they do not
have to be processed again until the program is closed. This allows the user to
evaluate different parameter combinations without undergoing the time-consuming
data processing every time.

For a study consisting of four different bacterial strains with genome lengths of
~2 Mb and two biological replicates TSSPREDATOR takes 236 seconds for a complete
comparative prediction of TSS including the import of all RNA-seq data and writing
the normalized graphs. If the dRNA-seq graphs are already cached and writing of
the normalized graphs is switched off, i.e., if the workload is reduced to the TSS
prediction, comparative analysis and classification, TSSPREDATOR takes 17 seconds.
The memory consumption is below 1 GB. Runtimes have been determined on a
desktop PC on one core of an Intel® Core"2 Quad Q9300 (2.5GHz).
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7. Novel ncRNAs in the human pathogen
Campylobacter jejuni

In 2010, Sharma et al. presented a comprehensive study of the primary transcriptome
of the major human pathogen Helicobacter pylori [142]. For this, a novel differential
RNA-seq (dRNA-seq) technique was developed for the enrichment of the 5" end of
primary transcripts. The data resulting from this method was utilized for the manual
generation of a genome-wide map of transcription start sites (T'SS). Using this global
TSS map the promoter regions of many annotated genes could be characterized in
detail. Furthermore, several candidates for novel non-coding RNAs were detected in
addition to an overall high abundance of antisense transcription. This study involved
one strain, which was grown under 5 different cultivation conditions in order to
increase the depth of the data.

The aim of the work presented in this chapter was the compilation of a global
comparative TSS map for four Campylobacter jejuni strains [45]. C. jejuniis a Gram-
negative, microaerophilic pathogenic bacterium that is the major cause of gastroen-
teritis in human [40, 179]. However, the knowledge about its virulence mechanisms is
very limited. Although a type-IV secretion system has been found to be encoded on
the plasmid of strain 81-176 [11], which other strains lack, no secretion system could
be identified in the genome. It has been hypothesized that other more general capa-
bilities of the bacterium like its motility contribute to its pathogenicity [74, 73, 168].
So far, little is known about the global transcriptomic structure of this organism.
Especially the non-coding part of the transcriptome is largely unexplored.

Due to differences between the genomic architectures of the four strains used in
this study, mainly insertions, a manual comparative analysis of the data becomes
infeasible. Therefore, the SuperGenome concept and the automated TSS detection
procedure described in chapter 6 have been applied to the genome-wide detection
and comparative characterization of TSS based on dRNA-seq data that was obtained
for the four strains of C. jejuni. Among other analyses these results were used for
the characterization of promoter regions and the identification of novel sRNAs in
C. jejuni.

7.1. Comparative prediction of TSS in four C. jejuni strains

The basis for the comparative T'SS prediction were differential RN A sequencing data
produced for each of the four C. jejuni strains of the study. These strains are C. je-
guni RM1221, NCTC11168, 81-176 and 81116. Strain RM1221 was isolated from
chicken, the other strains were isolated from human. The size of the chromosomes
of these strains varies around 1.6 Mb except for strain RM1221, whose chromosome
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7. Novel ncRNAs in the human pathogen Campylobacter jejuni

has a size of about 1.8 Mb, which is mainly due to four large insertions, so-called
Campylobacter jejuni-integrated elements (CJIEs) [47, 116], most of which are in-
tegrated prophages. This also accounts for its higher number of annotated open
reading frames, which is 1,838 for RM1221, where the other genomes have about
1,600 annotated open reading frames. The GC-content of the four genomes is about
30%.

The bacterial strains were grown under microaerobic conditions and samples were
taken from two biological replicates at mid-exponential growth phase. For each
replicate two libraries were constructed. For one library RNA was treated with
5’-phosphate-dependent terminator exonuclease in order to deplete processed tran-
scripts as described by Sharma et al. [142]. The other library was not treated. The
libraries were sequenced using an Illumina HiSeq 2000 in single read mode.

Reads have been mapped against the respective reference genomes using
segemehl [72]. dRNA-seq graphs containing the number of covering reads for each
genomic position were generated using the Integrated Genome Browser [107]. For
each library two graphs were produced, one for the forward strand and one for the re-
verse strand. Each graph was then normalized by the total number of mapped reads.
These graphs were then used as input for the comparative T'SS prediction procedure,
where they were further normalized and processed as described in chapter 6.

For the generation of the SuperGenome (chapter 5) a multiple whole-genome align-
ment of the four strains was generated using the progressiveMauve algorithm [38]
of the genome alignment software Mauve [37]. In order to improve the sensitivity of
the alignment the seed families option of the aligner was set, which allows for a lim-
ited number of mismatches during the seed matching process. Besides that standard
parameters were used.

The resulting SuperGenome has a length of 2,115,274 bp, of which 1,380,020
alignment columns (~65%) are perfectly conserved among the strains.

The TSS prediction was performed using default parameters. On the genome level
a T'SS candidate was required to be detected in both replicates to be accepted for
the respective genome.

Overall 3377 TSS were detected on the SuperGenome level. An overview of the
different numbers of conserved and specific TSS in the different strains or classes is
presented in table 7.1. On the genome level these represent between 1905 TSS in
strain NCTC11168 and 2167 TSS in strain RM1221. That RM1221 shows the highest
number of detected TSS is not surprising because of its large genomic insertions.
The number of TSS that are conserved in all four strains is 1035. A comparable
number of 1067 TSS are conserved in two or three strains. Altogether 1275 TSS
were found to be specific for a single strain. In the individual strains the number of
specific T'SS varies between 246 in strain NCTC11168 and 450 in strain RM1221,
which, again, is due to the larger genome of this strain.

The conservation of T'SS in the four strains is illustrated in figure 7.1A. Figure 7.1C
shows the overlap of TSS sets if the T'SS are not required to be detected in both
replicates. It turns out that between 82% and 88% of all TSS in the final set are
confirmed by both replicates. The enrichment rates are also quite similar when com-
paring the strains. Figure 7.1B shows the respective Venn diagram if only enriched
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7.1. Comparative prediction of TSS in four C. jejuni strains

Table 7.1.: Number of detected TSS in the different TSS classes.
All Primary Secondary Internal Antisense  Orphan

Number of SuperTSS: 3377 973 (29%) 327 (10%) 1217 (36%) 1624 (48%) 61 (2%)
Conserved in all strains: 1035 527 (51%) 92 (9%) 328 (32%) 445 (43%) 10 (1%)
Conserved in 2 or 3 strains: 1067 204 (19%) 118 (11%) 398 (37%) 534 (50%) 36 (3%)
TSS in NCTC11168: 1905 675 (35%) 180 (9%) 653 (34%) 843 (44%) 17 (1%)
TSS in 81-176: 2003 676 (34%) 193 (10%) 651 (33%) 937 (47%) 20 (1%)
TSS in 81116: 1944 690 (35%) 181 (9%) 653 (34%) 856 (44%) 25 (1%)
TSS in RM1221: 2167 744 (34%) 202 (9%) 735 (34%) 988 (46%) 25 (1%)
Specific for NCTC11168: 246 46 (19%) 19 (8%) 106 (43%) 119 (48%) 3 (1%)
Specific for 81-176: 260 34 (13%) 24 (9%) 98 (38%) 141 (54%) 4 (2%)
Specific for 81116: 319 58 (18%) 35 (11%) 128 (40%) 150 (47%) 5 (2%)
Specific for RM1221: 450 104 (23%) 39 (9%) 159 (35%) 235 (52%) 3 (1%)
Only missing in NCTC11168: 109 22 (20%) 1 (10%) 36 (33%) 59 (54%) 4 (4%)
Only missing in 81-176: 97 25 (26%) 8 (8%) 38 (39%) 40 (41%) 4 (4%)
Only missing in 81116: 165 33 (20%) 24 (15%) 61 (37%) 83 (50%) 6 (4%)
Only missing in RM1221: 99 21 (21%) 0 (10%) 35 (35%) 50 (51%) 3 (3%)

Number of detected TSS in the different TSS classes with respect to the strains the TSS were
detected in. The table shows all detected TSS regardless of their enrichment. The percentages are
related to the respective number of T'SS summed over all classes.

TSS are considered. The enrichment rates vary between 90% and 93%. This small
variation indicates that the RNA-seq graph were sufficiently normalized with respect
to the enrichment strength. However, evaluation of enrichment rates for conserved
TSS shows that only 79% of the TSS that are conserved in all four strains are also
enriched in all strains. These elements should still be considered as TSS of primary
transcripts as it seems to be quite unlikely that they represent primary transcripts
in some strains and processing sites in other. Nevertheless, this possibility cannot
be excluded. Therefore, the TSS detection algorithm reports all elements that are
found to be enriched in at least one strain. As information about the enrichment is
included in the MasterTable, specific filtering can be applied during postprocessing
steps in the case that only TSS enriched in all strains are of interest. In this study,
however, all TSS enriched in one strain or more were considered for the final global
TSS map.

Although the overall enrichment rates do not differ significantly between the
strains, a more detailed evaluation of the individual enrichment factors of conserved
TSS shows only a correlation of about 0.5 between each pair of strains, whereas the
correlation of the respective T'SS expression heights varies between 0.69 and 0.78.

The number of TSS in the different classes (Primary, Secondary, Internal, An-
tisense or Orphan) is significantly influenced by the conservation of the TSS. Re-
garding TSS conserved in all four strains about 60% are classified as UTR TSS
(Primary or Secondary). Among the TSS that are specific for an individual strain
only between 22% and 32% are classified as UTR TSS, while the respective frac-
tion of Internal and Antisense TSS is higher. The proportion of Orphan TSS is also
rising to about 4% in contrast to about 1% when considering conserved TSS. This
picture indicates that UTR TSS are significantly more likely to be conserved than
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7. Novel ncRNAs in the human pathogen Campylobacter jejuni

other classes and that strain specific TSS tend to have a higher fraction of TSS that
are Internal, Antisense or Orphan. However, in general the fraction of Internal and
especially Antisense TSS is quite high. On the SuperGenome level 1624 T'SS were
detected that were classified as Antisense. In the individual strains they represent
between 843 and 988 Antisense TSS, which corresponds to about 45% of the TSS
detected in the respective strains. Besides this immense amount of antisense tran-
scription the fraction of Internal TSS is also quite high constituting about 33% of
all TSS detected in a strain. While the antisense transcripts might have a regulatory
function the role of internal sense transcripts is even more unclear.

As the TSS classes are not disjoint a T'SS can be assigned to more than one class.
The overlap of TSS classes in the different strains is illustrated in figure 7.2. About
25% of all Primary TSS are also classified as Internal and about the same fraction
is also classified as Antisense. In each strain between 20 and 30 TSS are classified
as Internal but are also located Antisense to a different gene. This shows that a
significant amount of antisense transcription and also internal transcription starts is
actually due to protein-coding transcripts with overlapping genomic location. How-
ever, about 75% of all Antisense or Internal TSS cannot be explained by this and
therefore potentially represent independent transcripts.

7.2. SNP—-dependent strain-specific promoter usage

The comparative analysis of the global T'SS maps of the four C. jejuni strains allowed
for the identification of promoters with a high level of sequence conservation, but
their downstream genes show extremely different expression levels. It turned out
that in many of these cases single nucleotide polymorphisms (SNP) can lead to a
strain-specific promoter usage. L.e., the detection of SNPs in the respective promoter
regions of the four strains correlates with the expression that is observed for the
corresponding T'SS.

An example for this is an internal T'SS of the pnk gene as illustrated in figure 7.3.
The promoter region of the primary TSS of this gene is perfectly conserved among the
four strains and a strong expression is observed in all of them. However, the internal
TSS, which is located further downstream, is only expressed in strains RM1221 and
NCTC11168. The respective promoter in the other two strains, 81-176 and 81116,
seems to be disrupted by a SNP in the -10 box.

Other examples of strain-specific promoter usage revealed that mutations in the
A /T-rich region upstream of the -10 box might also be responsible for a loss of
transcription. This indicates that this region is either directly or indirectly relevant
during transcription initiation.

7.3. Novel ncRNAs in C. jejuni

On the basis of the automated cross-genome TSS prediction it was possible to iden-
tify TSS that potentially belong to novel non-coding RNAs in addition to those that
could be assigned to protein-coding genes. The fraction of antisense TSS in each
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A: Detected in both replicates

81-176 81116
(2003 TSS, 87%) (1944 TSS, 85%)

NCTC11168
(1905 TSS, 82%)

RM1221
(2167 TSS, 88%)

Circles indicate strain specific TSS
Percentages are related to the respective numbers

in diagram C.
B: Detected in both replicates C: Detected in one or two replicates
AND enriched
81-176 81116 81-176 81116
(1806 TSS, 90%) (1766 TSS, 91%) (2295 TSS) (2285 TSS)
NCTC11168 RM1221 NCTC11168 RM1221

(1720 TSS, 90%) (2013 TSS, 93%) (2316 TSS) (2452 TSS)

Circles indicate strain specific TSS Circles indicate strain specific TSS
Percentages are related to the respective numbers
in diagram A.

Figure 7.1.: A: Venn diagram showing the overlap of the TSS sets detected in both
replicates of the respective strains. The percentages next to the indicated
numbers of TSS are related to the respective TSS set that was detected
in at least one replicate. The fraction of TSS detected in both replicates
varies between 82% and 88%. B: Venn diagrams showing the overlap of
the TSS sets detected in both replicates and found to be enriched in
the respective strains. The percentages next to the indicated numbers of
TSS are related to the respective numbers in diagram A. The fraction of
enriched T'SS varies between 90% and 93%. C: Venn diagram showing the
overlap of the TSS sets detected in at least one replicate of the respective
strains.

107



7. Novel ncRNAs in the human pathogen Campylobacter jejuni

NCTC11168
Secondary Internal
(180 TSS) (653 TSS)

Antisense
(843 TSS)

Primary
(675 TSS)

Orphan

81116
Secondary Internal
(181 TSS) (653 TSS)

Antisense
(856 TSS)

Primary
(690 TSS)

Orphan

81-176
Secondary Internal
(193 TSS)

(651 TSS) i
Antisense

(937 TSS)

Primary
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RM1221
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202 TSS 735TSS
Primary ( ) ( ) Antisense
(744 TSS) (988 TSS)
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Figure 7.2.: TSS classifications for the individual strains. The Venn diagrams indi-
cate the overlap between TSS classes for the four individual strains.
Many TSS are assigned to more than one class. For example in
NCTC11168, 167 of the 675 Primary TSS (~25%) are also classified
as Internal and 162 (~24%) are also classified as Antisense. In 81-
176, 172 of the 676 Primary TSS (~25%) are also classified as Inter-
nal and 162 (~24%) are also classified as Antisense. In 81116, 171 of
the 690 Primary TSS (~25%) are also classified as Internal and 161
(~23%) are also classified as Antisense. In RM1221, 200 of the 744 Pri-
mary TSS (~27%) are also classified as Internal and 181 (~24%) are
also classified as Antisense. Venn diagrams were generated by VENNY
(http://bioinfogp.cnb.csic.es/tools/venny /index.html).
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RM1221 lJ RM1221
81-176 l 81-176
81116
81116
NCTC11168
NCTC11168
RM1221 ATGATTTGTTTAAAATATC CGATTT[TGTTATTITCTTTAG
81-176 ATGATTTGTTTAAAATATCTGATTT[TGTTATTTICTTITAG
i |'> 81116 ATGATTTGTTTAAAATATCITGATTT|TGTTATTITCTITTAG

NCTC11168 ATGATTTGTTTAAAATATC CGATTT|[TGTTATTITCTTTAG

pnk -10 box

Figure 7.3.: Example of an internal TSS in C. jejuni, whose expression is affected
by a mutation in its promoter sequence. Left: RNA-seq data shown for
the genomic locus of the pnk gene. The RNA-seq expression graphs of
the four C. jejuni strains RM1221, 81-176, 81116 and NCTC11168 have
been mapped to the SuperGenome coordinate system for a direct visual
comparison. The primary TSS of the pnk gene, which coincides with the
translation start, is expressed in all four strains. Transcription of the
internal TSS, which is located further downstream, is only observed in
the two strains RM1221 and NCTC11168. Right: Close-up view of the
promoter region of the internal TSS showing RNA-seq data and sequence
information in the SuperGenome coordinate system. In strains 81-176
and 81116, where no transcription was measured at the internal TSS, a
mutation from C to T compared to the other strains can be observed
within the -10 box of the promoter.
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genome is about 45%. The high abundance of antisense TSS suggests that there is
potentially a large repertoire of cis-encoded antisense RNAs in C. jejuni. In addition,
several candidates for trans-encoded ncRNAs could be identified. The expression of
most candidate ncRNAs could be verified by Northern blots. BLAST analyses re-
vealed that on the sequence level many ncRNAs are only conserved in C. jejuni.
Few elements, however, also show conservation in other Campylobacter species or
even in Helicobacter. In contrast some other elements are not even conserved among
the four C. jejuni strains of the study. These elements might therefore be involved
in the regulation of strain-specific mechanisms. Furthermore, some of the ncRNAs
conserved in all four strains were not found to be expressed in all of them.

The automatically detected TSS also helped to characterize a type-II CRISPR
system (clustered regularly interspaced short palindromic repeats) in three of the
four investigated strains (see also section 2.1.5). In strain 81-176 the CRISPR locus
cannot be found and only a weak expression of the system is detected in strain
RM1221, where the cas9 gene, which is required for crRNA stabilization carries a
stop mutation. In type-II CRISPR systems a ncRNA termed TracrRNA is involved
in crRNA maturation [41, 98]. From the dRNA-seq analysis it is evident that this
RNA as well as the crRNAs are transcribed. Interestingly, enriched T'SS were found
upstream of each repeat-spacer unit. Thus, in the investigated C. jejuni strains each
crRNA unit carries its own promoter, whereas in other similar systems that have
been characterized a single transcript is produced, which consists of all crRNAs and
an upstream leader sequence.
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8. A pipeline for the genomic
reconstruction and analysis of ancient
pathogens

As demonstrated in chapter 7 the comparative integration of transcriptomic and
genomic data can reveal small differences in the genome, like single nucleotide poly-
morphisms (SNP), which can alter the transcriptomic output of an organism signifi-
cantly. Therefore, such analyses can help to identify the causes of certain phenotypic
differences, for example in the context of pathogenicity.

Understanding why specific bacterial strains are virulent for humans or life stock
while other strains of the same species are not is of major importance for modern
medicine as this knowledge can lead to the development of new treatments.

However, studying these differences can also be of historical interest. In the field
of paleogenetics, ancient DNA (aDNA) sampled from old remains such as bones
is sequenced and used to reconstruct the genomes of ancient organisms, which can
be the human genome or the genomes of ancient pathogens [171]. One important
question in this context is why infectious diseases like the plague or leprosy caused
such devastating pandemics in the medieval time while they seem to be much less
virulent nowadays.

In 2011, Bos et al. were able to isolate DNA of a medieval strain of Yersinia pestis,
which was responsible for the Black Death, claiming about 100 million victims world-
wide during the medieval time [24, 140]. Using an array enrichment technique it was
possible to sequence enough Y. pestis DNA to generate a draft genome that could be
compared to modern reference genomes. This comparison showed no unique SNPs in
the medieval strain indicating that the decreased virulence of modern strains cannot
be explained by genomic variation alone.

To conduct these comparative analyses between ancient bacterial strains and mod-
ern strains in a systematical and reproducible manner, experimental as well as com-
putational methods are needed that consider the specific properties of ancient sam-
ples [124]. One of the issues that have to be dealt with is the short length of the
aDNA fragments. This makes classical paired-end sequencing difficult or even im-
possible. The short fragments can still be sequenced from both ends, but the two
reads will probably overlap at their 3’ ends. Thus, their is no real mate-pair informa-
tion that can be exploited during read mapping or de novo assembly. However, the
fact that the two paired reads are overlapping can be used to correct for sequencing
errors in the overlapping region. For this, the two overlapping paired-end reads reads
are merged into one single read. Any discrepancies regarding the two sequences of
the overlapping region can be solved by taking the sequence information from the
read that has a higher base calling score at the respective position. An additional
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advantage of this read merging procedure is an increased length of the resulting
single reads, which leads to a higher confidence in mapping. Because of the usually
low genomic coverage in aDNA projects it is important to achieve high mapping
confidence value in order to keep as many reads a possible for the SNP analysis.
Reads with a low mapping confidence have to be discarded as they could lead to
false positive SNP calls.

Another challenge in aDNA processing is the occurrence of DNA damage [27].
These damage patterns can be used to determine if the sampled DNA is really of
ancient origin and the amount of damage can in some cases even be used to roughly
estimate the age of the DNA [56]. However, for further processing the DNA is usually
chemically repaired [28], in order to decrease the noise during SNP detection, for
example. For repaired aDNA fragments no damage pattern has to be taken into
account during the analysis of the sequencing reads.

The fact that DNA fragments are shorter in ancient samples and that mate pairs
are not available also affects de novo assembly. To assemble ancient genomes with-
out relying on a reference sequence can be important to assess variations of the
genomic architectures of ancient and modern genomes, which cannot be done by
read mapping alone. In addition to the shorter fragment length in general, the reads
resulting from the sequencing are of different length after postprocessing, which is
due to the merging of read pairs and lower base call scores at the 3’ end, which
often makes a trimming of the reads necessary. Most short read assemblers such as
S0APdenovo [90, 96], Velvet [181] or ABySS [143] (see [134, 25] for reviews) are based
on a de Bruijn graph that indirectly models the overlap between reads by splitting
them into k-mers, which form the vertices of the graph. Overlaps between k-mers
are represented by directed edges. Contigs are constructed by the identification of
Eulerian or Hamiltonian paths in the graph. The topology of the graph and the
performance of the approach are highly dependent on the chosen k-mer size. The
optimal value for k depends on various factors such as the read length, the error rate
and the number of reads in relation to the expected genome size. If the chosen value
is too small, bridging even small repeat regions is not possible anymore. In addition,
a small k leads to a graph with a large number of vertices, which is very complex
and more difficult to process. Larger values for k, on the other hand, make the de-
tection of small overlaps between reads impossible. This is especially relevant if the
reads are short and the estimated genomic coverage is low. Furthermore, reads that
are shorter than the selected k-mer size cannot be considered during the assembly.
However, if the reads vary in length it might not be possible to avoid the exclusion
of very short reads.

Most of the mentioned factors can be problematic in the context of ancient genome
assembly. The reads are of varying length and often quite short and the total amount
of DNA that originates from the target organism is low, which leads to a low genomic
coverage. The fact that ancient samples actually are metagenomic samples in all
cases is also one of the biggest challenges in the context of de novo assembly. For
these reasons it is usually not possible to estimate the optimal k-mer size prior to
the analysis and it is not sufficient to only test a small range of values. Instead, an
exhaustive search for the optimal parameter is necessary.
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A proper de movo assembly of an ancient genome is not possible in many cases
due to a low amount of endogenous DNA and, therefore, a low genomic coverage.
However, a partial reconstruction based on read mapping to a reference sequence
might still be possible. For multiple samples this reconstruction has to be conducted
in an efficient and reproducible manner.

Computational tools for the specific preprocessing and analysis of aDNA sequenc-
ing data have been developed earlier [83]. In addition, for the mapping of aDNA se-
quencing reads to reference sequences the software MIA is available, which is able to
consider specific properties of aDNA, such as damage patterns, during the mapping
process [58]. MIA, however, has been developed for rather small reference sequences
such as the mitochondrial genome, but due to its runtime and memory consump-
tion it is not applicable to full prokaryotic or eukaryotic genomes. Thus, for the
analysis of ancient bacterial genomes fast read mappers have to be applied, which
are primarily designed to work on sequencing data of modern DNA. Therefore, the
adaptation of various parameters to the properties of aDNA is potentially neces-
sary [139]. In addition, tools for comparative genomic analyses have to be applied
in order to elucidate variation between ancient and modern genomes.

In this chapter I will present an automated computational pipeline for the re-
construction and comparative analysis of ancient genomes. This pipeline has been
developed and applied in the context of the genome-wide comparison of medieval and
modern strains of Mycobacterium leprae, a bacterial pathogen causing leprosy [141].
The details of each step are described in the following sections.

8.1. A pipeline for ancient bacterial genome reconstruction
and analysis

The pipeline presented here addresses all steps starting from the preprocessing of
sequence data to read mapping and comparative SNP calling. It consists both of
state of the art tools as well as self developed scripts. A schematic representation of
the workflow is depicted in figure 8.1.

After merging of overlapping read pairs the quality of the resulting reads is as-
sessed and bases of low sequencing quality are trimmed from the 3’ end. The re-
maining reads are used for de movo assembly or mapping to a reference genome.
SNPs are called on the basis of the mapping and after filtering the SNPs are used to
generate a draft genome sequence for each sample. The draft genomes of all samples
are aligned in order to call SNPs comparatively in all samples. The alignment of
SNP positions is used to reconstruct the phylogeny of all samples. Furthermore, the
effect of the SNPs on protein-coding genes is predicted.

8.1.1. Preprocessing and Mapping

In the first step the sequencing quality of all samples is assessed using FastQC [8].
Adapters are removed and by default nucleotides with a phred score smaller than 20
are trimmed from the 3’ end. All reads with a length of 30 nucleotides or longer are
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Figure 8.1.: Schematic representation of the aDNA processing pipeline. Overlapping
read pairs are merged and trimmed to preserve only bases with high se-
quencing quality. The reads are then used as input for a de novo assembly
or for mapping to a reference genome. Based on the reference mapping,
SNPs are detected and used to generate draft genome sequences for all
samples, which are then aligned in order to detect SNPs comparatively
in the complete data set. Aligned SNP position are used for phylogenetic
analyses. In addition, the effects of SNPs on protein-coding genes are
determined.

SNP Calling and € Mapping to Reference
Draft Genome Generation Genome

kept. For samples that are subject to paired-end sequencing with overlapping reads,
which usually applies to the ancient samples, overlapping read pairs are merged, if
the size of the overlap region is at least 10 nucleotides.

The remaining reads of all samples are then mapped to a common reference
genome using the Burrows-Wheeler Aligner (BWA) [89]. For this the BWA samse algo-
rithm is applied.

8.1.2. Mapping assemblies

The next steps are concerned with the genome reconstruction. For this, the read
mappings of all sequenced samples are used to create a so-called mapping assem-
bly for each strain. In comparison to a reference-free de novo assembly the draft
sequence is generated by evaluating the results of the mapping as described in the
following. In a first step, the UnifiedGenotyper module [42] of the Genome Anal-
ysis Toolkit (GATK) [101] is applied to each mapping, i.e., to each bam file. GATK
produces a vcf file (variant call format [36]) as output. The EMIT_ALL_SITES flag of
UnifiedGenotyper is set to make sure that the resulting vcf files contain one entry
for each genomic position of the reference genome. Thus, reference bases as well a
variant positions are called and emitted.

In the second step the Java tool VCF2Draft, which was developed during this
dissertation, is applied to the vcf file of each sample to generate the draft sequences.
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VCF2Draft reads a vcf file row by row and incorporates for each row and thus for
each call that was made by GATK one nucleotide into the new draft sequence. Using
default parameters it incorporates a reference base, if the quality of the respective
call was at least 30 and the position was covered by at least 5 reads. A variant call
(SNP) is incorporated, if the same quality threshold is fulfilled, if at least 5 reads
covering the respective locus contain the SNP and if the fraction of mapped reads
containing the SNP was at least 90%. If not all of these requirements for a variant
call are fulfilled, but the quality threshold is still reached, the reference base is called
instead, but only if it is confirmed by at least 5 reads. If neither a reference call nor a
variant call can be made, the character ‘N’ is incorporated at the respective position.

In addition to the draft sequence that contains ‘N’s at positions without a specific
call, two further draft sequences are generated. First, a draft sequence that contains
the reference base instead of ‘N’ is generated. This sequence is used during the mul-
tiple whole-genome alignment step as the alignment quality is much higher when
avoiding ambiguous bases (see 8.1.3). Second, a draft sequence with a special uncer-
tainty encoding is generated. Instead of the ‘N’ character it contains the numbers 1,
2, 3, 4 encoding A, C, G, T at positions where a call was rejected (e.g. due to low
coverage) but the reads covering the respective position unambiguously indicate a
certain nucleotide call. Using this special draft sequence allows for the differentiation
between a clear SNP call, a weak SNP call, a clear/weak reference call and no call
(‘N’) at a certain position.

8.1.3. MAUVE Alignment

To compare variant positions among strains including multiple published refer-
ence genomes, a multiple whole-genome alignment of all generated draft sequences
and the genomic sequences of selected reference sequences is computed using the
progressiveMauve algorithm [38] integrated in the whole-genome alignment soft-
ware Mauve [37]. The SNP export function available in Mauve is used to generate a
list of all alignment columns in which at least one strain contains a SNP in compar-
ison to the primary reference sequence, which was used for mapping.

This list is then subject to further processing, for which the Java program
SNPtableAnalyzer was developed in this dissertation. In a first postprocessing step,
those alignment columns are labeled that represent SNPs that are located in regions
that should be excluded from the analysis. This allows for their exclusion during
phylogenetic analysis. In the final SNP table that is generated by the pipeline these
SNPs are listed but indicated as excluded from further analysis. Regions that are ex-
cluded from the analysis can be repeat regions or loci to which metagenomic reads
from other organisms are mapping. They can be identified by an environmental,
negative control sample that does not contain the target organism.

The concatenation of the filtered alignment columns is then converted into fasta
format and can be used as input for MEGA5 [151] or BEAST [44] for example to perform
the phylogenetic and the dating analysis, respectively.

In addition to the output for phylogenetic analyses SNPtableAnalyzer produces
an input file for SnpEff in order to predict effects of SNPs on protein-coding genes.
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8.1.4. SNP effect analysis

For further analyses with respect to the effect of SNPs on annotated genes the
software SnpEff [33] is applied to the identified variant positions. If non-coding
genes and pseudogenes should be considered during the SnpEff analysis, a custom
database has to be constructed as these elements are not part of the databases that
are provided by SnpEff. The SnpEff parameter for the up-/downstream region size
for reporting SNPs that are located upstream or downstream of genes is set to 100
nt. For all other parameters default values are used.

SNPtableAnalyzer is applied to the SnpEff output and the original Mauve output
simultaneously to compile a comprehensive table providing information on each SNP
regarding its effect on annotated genes and the strains in which the SNP occurs.
For this SNPtableAnalyzer utilizes the draft sequences produced with the special
uncertainty encoding to distinguish clearly called SNPs and reference bases from
positions, where the thresholds for calling were not reached due to low coverage, for
example, but where the reads mapping to the respective locus still indicate either a
SNP or a reference call. This is to improve the overall interpretability of the results
presented in the final SNP table.

8.2. Application to the comparison of medieval and modern
Mycobacterium leprae strains

The analysis pipeline was applied to the comparative analysis of 5 leprosy samples
from different skeletal remains (Jorgen 625, Refshale_16, 3077, SK8, SK2), 7 samples
from recent biopsies of leprosy patients (S2, S9, S10, S11, S13, S14, S15) and 4 ref-
erence strains (TN, Br4923, Thai53, NHDP63). In the samples the fraction of leprae
DNA was increased using an array enrichment technique. In the Jorgen_625 sample
the amount of endogenous DNA was so high (40%) that an enrichment step was
not necessary. Medieval and modern samples were then subject to high-throughput
sequencing and draft genomes were generated by mapping the sequencing reads to
M. leprae TN as a global reference. Further analyses steps included the comparative
annotation of SNPs among the draft genomes of the samples and fully sequenced
reference strains. In addition, the well preserved DNA in the Jorgen_625 sample al-
lowed for a de movo assembly and thus the unbiased and reference-free generation
of a draft genome that could be used to search for potential changes in genome
architectures between medieval and modern strains.

To elucidate the origin and the development of Mycobacterium leprae the identified
variant positions were used for phylogenetic analyses.

8.2.1. Mapping assemblies and SNP analysis

As the common reference for read mapping the genome of Mycobacterium leprae TN
was chosen. Considering the thresholds for reference base and SNP calling (coverage
> 5 reads; quality > 30; major allele frequency > 90%) the fraction of the genome
that could be reconstructed was between 83.8% (sample 3077) and 98.3% (sample
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Jorgen_625) for the medieval samples and between 84.4% (sample S2) and 97.6%
(sample S11) for the modern samples. Thus, the values for the genomic coverages
do not differ significantly between medieval and modern samples and the sample
with the highest coverage is Jorgen_625, for which the array enrichment was not
necessary. This indicates a surprisingly high preservation of M. leprae DNA in the
medieval samples.

In the draft sequence generation procedure the number of called variant positions
ranged from 62 (sample 3077) to 115 (sample SK2) for the medieval samples and
from 65 (sample S2) to 217 (sample S15) for the modern samples. Again, there is
no significant difference with respect to the number of SNP calls between medieval
and modern genomes except sample S15, which has an extraordinary high number
of variant calls, which might be due to higher selection pressure resulting from anti-
leprosy treatment [97].

The alignment of the reconstructed draft genomes of the 5 medieval strains and
the 7 modern strains with the published reference genomes M. leprae TN, Brd923,
Thaib3 and NHDP63 led to the identification of altogether 755 variant position, of
which 723 remain after the exclusion of regions to which reads from the negative
control sample SK12 mapped. This sample was taken from a skeleton of the same
medieval cemetery as sample SK2 with no indication of an infection with M. leprae.
For the SNP effect analysis a custom gene annotation database for the reference
M. leprae TN was built using the respective GFF file from NCBI (NC_002677.gff).
The analysis revealed that 349 of 723 SNPs cause non-synonymous changes in an-
notated genes. 141 of those 349 SNPs are located in pseudogenes. Thus 208 SNPs
affect genes producing a potentially functional protein. The gene with the highest
number of non-synonymous SNPs is the cell surface protein ML0411. It contains
10 non-synonymous SNPs of which one was detected in all strains (sample SK14
has insufficient coverage at that position). One SNP was specifically detected in the
medieval sample Refshale_16. Each of the other 8 SNPs were found in one or two
modern samples.

Overall, the genomic diversity between ancient and modern strains is quite low.
Therefore, the decline of leprosy in Europe was probably not caused by a reduced
virulence but by other factors like host immunity or improved hygiene conditions.

8.2.2. Phylogenetic analysis

On the basis of the 723 variant positions between the 5 medieval strains, the 7 mod-
ern strains and the 4 reference genomes a phylogenetic analysis was performed. For
this, the genome of Mycobacterium avium 104 (NC_008595.1) was included as an
outgroup. However, the set of variant positions was restricted to sites that show
variation among the M. leprae strains. The rooted phylogenetic tree was inferred
using maximum parsimony as implemented in MEGA5 [151]. Sites with more than
10% alignment gaps or missing data were excluded, which restricted the data set to
537 sites. Bootstrap values were computed from 500 repetitions. The resulting phy-
logenetic tree is depicted in figure 8.2. The five medieval samples form two distinct
branches. Samples Jorgen 625 and SK2 cluster with the modern strain NHDP63. The
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Figure 8.2.: Maximum Parsimony tree of ancient and modern M. leprae strains. An-
cient strains are highlighted in red, modern strains sequenced in this study
are highlighted in blue and publicly available full genomes are highlighted
in green. Internal nodes are labeled with bootstrap statistics. Branches
are labeled with branch lengths representing the absolute number of sub-
stitutions.

other branch consists of the medieval strains 3077, Refshale 16 and SK8. Notably,
none of the modern strains falls on this branch. Sequencing of more modern M. lep-
rae strains will help to investigate if these three medieval strains might represent an
extinct lineage.

8.2.3. De novo assembly

Due to the well preserved M. leprae DNA in the Jorgen_ 625 sample it was possible
to perform a de movo assembly of the respective metagenome. For this the short
read assembly software SOAPdenovo [90] was used. Several different values for the
k-mer size parameter were evaluated. All possible k-mers from k=107 to k=127 were
evaluated with k=127 yielding the best results. Furthermore, three smaller values for
k were also tested (k=49, k=79, k=93) in order to check if there is a second optimum
regarding assembly performance, which was not the case. As quality measures the
number of contigs, the average and maximal contig size, the contig N50/N90 and
the total length of the assembly were used. The resulting assembly was then further
analysed by aligning all contigs with a minimal length of 1,000 nt to the M. leprae
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Figure 8.3.: Coverage of the M. leprae TN genome (left) and the number of aligned
contigs (right) in relation to the minimal contig length.

TN reference genome in order to search for structural variation in the genomic
architecture and to calculate the genomic coverage.

The best assembly, which was achieved with a k-mer size of 127 consisted of
18,701 contigs longer than 128 bases. However, most of the short contigs, which
were not significantly longer than the k-mer size, were of low quality or contained
low complexity sequences like homopolymers. The assembly was therefore filtered for
contigs with a minimal length of 1,000 bases, which resulted in 2,354 metagenomic
contigs. The average contig size was 6,165 bases with an N50 of 20,008 bases and a
maximal contig size of 241,390 bases. Of the 2,354 metagenome contigs 169 could
be aligned to the M. leprae TN reference genome achieving a coverage of 97.57%.
Using different values for the contig length filter revealed that stricter filtering still
leads to a quite good genomic coverage. Figure 8.3 shows the genomic coverage
and the number of aligned contigs in relation to the minimal contig length. Up
to a length threshold of 8,000 bases coverages above 90% are reached. This shows
that only a very small part of the genome cannot be covered when restricting the
assembly to long contigs. Furthermore, the alignment revealed that most of the gaps
between contigs are due to repetitive regions. Altogether 145 of 169 contig gaps
overlap a repeat region that is annotated in the genome of M. leprae TN. Resolving
repetitive regions is a general challenge during de novo assembly using short reads.
As most of the contig gaps are caused by repetitive regions and more than 97%
of the reference genome is covered by the assembly, it can be concluded that the
quality of the ancient genome assembly presented here is comparable to assemblies
of modern bacterial genomes.
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Understanding life and the complex mechanisms by which it is sustained and by
which it develops or evolves has become a scientific discipline that is more than
ever based on the processing of complex information. High-throughput technologies
generate huge amounts of biological data related to an organism’s genome or tran-
scriptome and thereby to the information processing of life itself. Understanding this
information is therefore a crucial step towards understanding the mechanisms of life.
In the past decades it has become more and more evident that even for bacteria the
genomic architecture and the transcriptome are much more complex than just being
a collection of genes, where each gene encodes one single protein, which fulfills one
single function. Today we know that many transcripts do not encode proteins but
fulfill their function as non-coding RNAs. This functionality can be regulatory or
catalytic and therefore as complex as that of proteins. Even the architecture of a
single transcript can be quite complex with regulatory non-coding RNA structures
being part of untranslated regions of the transcript, for example. This makes clear
that deciphering the genome of an organism means far more than the localization
of protein-coding regions. In order to fully understand the information encrypted in
a genome, more complex information has to be considered such as the localization
of functional non-coding elements and the characteristics of all identified transcripts
in general. This can be information about the interaction target of regulatory non-
coding RNAs or about the architecture of protein-coding transcripts, e.g., the precise
localization of promoter regions and transcription start sites.

In this thesis I presented several algorithms and tools for the characterization of
an organism’s coding and non-coding transcriptome.

With NOoCORNAC a powerful and versatile software for the prediction and char-
acterization of non-coding RNAs in bacterial genomes is provided. NOCORNAC has
been applied to the identification and further assessment of non-coding RNAs in the
antibiotic producing bacterium Streptomyces coelicolor. By the integration of high-
resolution time series expression data for predicted elements a major contribution to
the characterization of this bacterium’s non-coding transcriptome has been made.
In addition, non-coding elements potentially involved in the regulation of antibiotics
production could be identified.

For the comparative analysis of genomic and transcriptomic data across several
genomes the SuperGenome algorithm is introduced, which allows for the genera-
tion of a common coordinate system for multiple genomes that differ by insertions,
deletions or genomic rearrangements. In this thesis the SuperGenome has been uti-
lized as the basis for two quite different applications. First, it served as the basis
for GenomeRing, a tool for the visualization of architectural differences between
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genomes. In 2011, this concept won the Most Creative Algorithm Award of the Illu-
mina iDEA Challenge.

Second, the SuperGenome was integrated with an algorithm for transcription start
site (TSS) prediction from RNA-seq data, which is also presented in this disserta-
tion. The TSS prediction algorithm together with the SuperGenome allow for a
comparative annotation of T'SS across multiple genomes. The global T'SS maps gen-
erated by this approach form the basis for a precise characterization of an organism’s
transcriptome including the identification of novel coding or non-coding genes.

In this thesis I describe the application of these algorithms to the comparative
annotation of TSS in four Campylobacter jejuni strains. In this study several novel
non-coding RNAs in the genomes of the four strains could be discovered including
a new CRISPR locus. Furthermore, the promoter regions of many genes could be
characterized in detail, which revealed variation of promoter activity between strains
that depends on specific single nucleotide polymorphisms (SNPs) that are located
in the promoter region.

In the emerging field of paleogenetics, which deals with the analysis of ancient
DNA, the integration of transcriptomic data is not possible as RNA is not preserved
in old samples. However, the reconstruction of full genomes from ancient DNA is
possible and allows for comparative analyses together with modern genomes in order
to elucidate an organism’s evolution. In this dissertation I presented a computational
pipeline for the comparative analysis of ancient and modern bacterial genomes, which
is applied to the comparison of ancient and modern strains of Mycobacterium leprae,
a bacterial pathogen causing leprosy.

Altogether, the algorithms and tools presented in this dissertation in addition to
the knowledge that has been gained by their application represent a valuable con-
tribution to the understanding of the organization of bacterial genomes and tran-
scriptomes. In the following sections the individual contributions are discussed in
detail.

9.1. nocoRNACc as a versatile toolbox for non-coding RNA
prediction and characterization

In this dissertation NOCORNAC has been introduced, which is a Java program
for the prediction and characterization of non-coding RNA transcripts in bacte-
rial genomes [65]. For this, NOCORNAC incorporates methods for the prediction of
transcriptional features.

For the detection of promoter regions the so-called SIDD model [15] is imple-
mented in NOCORNAC, which is used for the localization of regions on the DNA
where the separation of the duplex is favorable. These regions are called SIDD sites.
The SIDD model considers the energy needed to separate the duplex but also the
torsional energy for unwinding the helix and the influence of superhelical stress. The
advantage of this model is its general applicability to bacterial genomes without any
prior knowledge about transcription factor binding site motifs. This is especially
valuable for organisms where detailed information about transcription factors are
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missing or where the number of transcription factors is very high like in Strepto-
myces coelicolor. In addition, many sequence motifs of binding sites are short and
degenerated, which leads to high number of false positive predictions. It has been
shown that SIDD sites are not only associated with transcription start sites but also
other genomic features [122, 2, 176, 23]. However, their strong association with pro-
moter regions has been proven [167, 165] and, furthermore, it could be shown that
SIDD sites are overrepresented in upstream regions of regulatory genes that directly
react to environmental changes [166]. Still, the occurrence of false positive predic-
tions is likely. A notable disadvantage of SIDD sites is their size. SIDD sites can
be tens of base pairs in length, which makes a precise localization of the transcrip-
tion start difficult. In addition, SIDD sites are not strand-specific. For these reasons
NOCORNAC does not rely on SIDD sites alone when predicting ncRNA transcripts.

For the detection of Rho-independent transcription terminator signals
NOCORNAC utilizes the program TransTermHP [82]. Unlike SIDD sites the location
of these terminator predictions is very precise and they are strand-specific. Thus,
their combination with detected SIDD sites makes the prediction of ncRNA tran-
scripts possible and allows for distinguishing them from cis-regulatory elements,
as could have been shown in this dissertation. Using annotated ncRNA genes in
S. coelicolor as a test set NOCORNAC predicts a transcript in 76% of the cases.
In addition, 94% of the annotated cis-regulatory elements were classified correctly.
However, NOCORNAC’s performance on tRNAs was rather low. Only for 53% of all
annotated tRNA genes a transcript was predicted. However, tRNAs are often tran-
scribed polycistronically. Thus, they cannot be detected as individual transcripts.

In general it has to be considered that NOCORNAC can only predict transcripts,
where transcription termination is induced by a Rho-independent terminator and
transcripts whose transcription is terminated by the Rho protein will be missed. As
it has been shown that Rho is involved in the termination of some ncRNAs [120] the
integration of a feature for the prediction of Rho-dependent transcription termina-
tion should be in the focus of future development.

For the prediction of ncRNA transcripts NOCORNAC offers two strategies. One
strategy is to apply the prediction to predefined loci that are provided by the user.
For these loci there should preferably be some indication that they might contain a
functional structured RNA. In this dissertation RNAz [61] was used for the genome-
wide prediction of ncRNA loci. However, other approaches for the gathering of can-
didate loci can be used instead, such as the application of other prediction methods.
A combination of multiple approaches could also be employed to increase sensitivity
or specificity. In addition, it is up to the user to perform any kind of prefiltering
on these regions. They can be restricted to intergenic regions, for example, in or-
der to specifically search for trans-encoded ncRNAs. In general, however, one of the
strengths of NOCORNAC is its ability to perform a genome-wide prediction including
protein-coding regions to predict cis-encoded antisense RNAs.

The second strategy works without any predefined loci and predicts ncRNA candi-
date loci in a genome-wide manner by combining SIDD sites and terminator signals.
NOCORNAC’s structure conservation pipeline is applied to these candidates to deter-
mine their potential to contain structurally conserved RNA. For this, NOCORNAC
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uses BLAST to collect homologous sequences with an optimal evolutionary distance
to the query and applies RNAz to an alignment of these sequences. The advantage of
this approach is that the related organisms from which the homologous sequences
are chosen do not have to defined by the user. Instead, the sequences are chosen
individually for each query. Predicted ncRNA candidates are annotated with the
results of the structure conservation pipeline, i.e., the RNAz P-values, which can be
used for filtering.

NOCORNAC offers a variety of methods for the further characterization of pre-
dicted ncRNAs. One of them is the prediction of RNA-RNA interactions interactions
by the utilization of the program IntaRNA. By this NOCORNAC is able to predict
potential RNA-RNA interactions between all predicted ncRNA loci and protein-
coding transcripts, which results in a genome-wide RNA-RNA interaction network.
As has been shown in this dissertation the number of predictions is usually quite
high also containing a lot of improbable interactions. Therefore, NOCORNAC pro-
vides several possibilities for the filtering of predicted interactions and the more de-
tailed assessment of selected interaction candidates. The interaction profiles, which
are calculated by NOCORNAC and which can be investigated in NOCORNAC’s R
environment, give an indication about which interaction sites are most probable
considering the whole network. Furthermore, the R environment offers the function-
ality to perform RNA-RNA interaction predictions on specific subsets of elements
with possibility to calculate z-scores and p-values to assess the significance of the
predicted interactions. The results presented in section 4.4 suggest that these values
are more informative than the free energy of the predicted interaction alone.

In addition to the analysis of interactions, NOCORNAC’s R environment allows
for an interactive and dynamic analysis of all prediction related data. Predicted ele-
ments can be filtered with respect to various properties such as the strength of SIDD
sites, the confidence of their terminator signals or structure conservation potential.
Furthermore, the powerful functionalities offered by R can be applied for the statis-
tical assessment of these values or for their visualization. This makes NOCORNAC’s
usage much more efficient and additionally allows for a detailed customization of
the output. Where the standard output of NOCORNAC is a GFF file, the R environ-
ment can be used to retrieve the sequences of all predicted elements, for example,
or only those elements satisfying a specified condition. In this context the R pack-
age Bioconductor [53] has evolved to a powerful toolbox also for the analysis of
sequencing data. As NOCORNAC’s R environment is compatible with Bioconductor
functions and data types the integrated analysis of predictions and experimental
data can be performed within the environment as has been demonstrated in sec-
tions 4.1 and 4.2.

9.2. nocoRNACc uncovering putative ncRNA regulators in
Streptomyces coelicolor
In this dissertation the application of NOCORNAC to the genome of Strepto-

myces coelicolor has been described. S. coelicolor is an important antibiotic pro-
ducing model organism. To a large extent the mechanisms involved in the reg-
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ulation of the production of these secondary metabolites have remained unex-
plored. Within the SysMO STREAM consortium S. coelicolor wild type and dif-
ferent mutant strains were grown under various conditions and the transcriptome,
proteome and metabolome of the organism was profiled in unprecedented de-
tail [109, 164, 99, 13, 153, 3]. The transcriptomics data was used to validate the
expression of predicted ncRNAs and to characterize them further [65].

Of 403 predicted ncRNA transcripts that were measured 317 showed expression
under the tested conditions. It turned out that the expression of a high number
of predicted cis-encoded antisense RNAs correlates with the expression of their
protein-coding target in many cases. In addition, the expression of several predicted
ncRNAs in intergenic regions has been confirmed. Some of them show a clear reaction
to the nutrient limitation event and might be involved in the regulation of metabolic
processes.

Furthermore, a systematic study of potential RNA-RNA interactions between
predicted ncRNAs and mRNAs identified an element putatively involved in the reg-
ulation of antibiotics production. For the ncRNA transcript, which was predicted
upstream of the cold shock protein csp, an interaction with the mRNA of TetR, a
global downregulator of antibiotics production, was predicted. In an earlier study
by Martines-Costa et al. [100] the region upstream of csp has been introduced into
S. coelicolor using high copy number plasmids, which led to an upregulation of an-
tibiotics production. The microarray screen indicated that the ncRNA is transcribed
and if the predicted interaction with the TetR mRNA takes place in vivo, this would
explain why an overrepresentation of that locus in the cell induces a stronger an-
tibiotics production. In this case the expression of TetR would be downregulated
due to the interaction and this would silence its repressive influence on antibiotics
production. In this context NOCORNAC’s ability to calculate z-scores and p-values
for predicted interactions proved to be extremely useful, as the TetR mRNA would
not be among the top-scoring candidates if only the free energy of the interaction
would have been considered.

It has to be noted that the predicted interaction site between the csp-ncRNA
and TetR is located in the middle of the TetR mRNA. Thus, the direct occlusion
of the ribosome binding site cannot be the mechanism of regulation. However, the
binding of the ncRNA might influence the secondary structure of the TetR mRNA
in a way that represses translation or the degradation of the molecule is promoted.
Furthermore, it has to be considered that the results presented in this thesis are
purely based on in silico analyses, which are strengthened, however, by the study
of Martines-Costa et al.. As a next step the transcription of the csp-ncRNA has
to be verified using primer extension, for example. The insertion of a constitutive
promoter could be used then to overexpress the ncRNA, possibly confirming the
promoting effect on antibiotics production. To my knowledge this would be the first
known trans-encoded ncRNA that is increasing antibiotics production in Strepto-
myces, while one trans-encoded ncRNA [163] and one cis-asRNA [35] decreasing
antibiotics production have already been described.

Non-coding RNAs in S. coelicolor have also been reported in earlier studies. Panek
et al. [114] identified 32 ncRNA of which 15 where also found in our study. In ad-
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dition, Swiercz et al. [149] detected 9 ncRNAs of which we found 2. Later studies,
however, made use of deep RNA sequencing techniques for the genome-wide exper-
imental detection of ncRNAs in S. coelicolor. By this, Suess et al. [162] identified
63 ncRNA of which 29 are located antisense to a protein-coding gene. In a very re-
cent study Moody et al. [104] identified ncRNAs in S. coelicolor, S. avermitilis and
S. venezuelae confirming a high degree of antisense transcription in all three species.
The authors could show that the expression of ncRNAs including asRNAs is highly
species dependent even if the sequence is perfectly conserved in the three genomes.
This leads to two possible conclusions. First, in silico analyses, which are based on
genomic sequences, can only give an indication of where ncRNAs might be found
in the target genome. They are not able to predict in which species or under which
conditions the elements might be expressed. Second, RNA-seq analyses are also lim-
ited to some degree as they are only able to detect ncRNAs that are expressed in
the investigated organism under the investigated conditions. Given the specific ex-
pression of many identified ncRNAs RNA-seq analyses alone are probably also not
powerful enough to disclose the full ncRNA repertoire of an organism. In addition,
a further characterization of experimentally identified elements is still necessary.
Thus, the integration of experimental results and computational analyses promises
to be fruitful, e.g., to assess the identified elements with respect to conservation of
sequence and structure or with respect to their RNA-RNA interaction potential.
Thus, NOCORNAC offers the integration with the results of the automated TSS pre-
diction presented in section 6.1.2, which works on differential RNA-seq data [142]
and which will be discussed in detail in section 9.4. By this, all integrated methods
for ncRNA characterization can be applied to the identified elements. In addition,
NOCORNAC can assist in the determination of the ncRNA transcript’s 3’ end by
the utilization of predicted transcription terminator signals. While the differential
RNA-seq technique allows for a precise localization of a transcript’s 5’ start, the
exact localization of the 3’ end remains much more challenging.

9.3. The SuperGenome concept as the basis for
comparative analyses

Comparative analyses involving multiple species are increasingly important as the
number of sequenced genomes is continuously rising. However, these analyses bear
challenges as the compared genomes often differ with respect to their genomic ar-
chitecture. Due to insertions, deletions but also genomic rearrangements, such as
translocations or inversion, the genomes have different coordinate systems making
the direct comparison of coordinate-based features difficult or impossible.

In chapter 5 the SuperGenome concept was presented as an approach to a solution
of this problem. The SuperGenome is independent from a fixed reference genome
and is computed on the basis of a multiple whole-genome alignment. It provides
a common coordinate system for the aligned species and a mapping between this
common coordinate system and the coordinate systems of the individual genomes.
Furthermore, the SuperGenome implementation offers a variety of functions operat-
ing on the SuperGenome data structure to allow for coordinate transformations of

126



9.3. The SuperGenome concept as the basis for comparative analyses

genome annotations, such as genes or transcription start sites (TSS), or of genomic
and transcriptomic data, such as RN A-seq expression graphs in single-nucleotide res-
olution. This can be utilized to compare the expression of homologous genes, if they
have been aligned in the multiple whole-genome alignment, without the necessity of
an ortholog mapping. Furthermore, it is possible to investigate conserved intergenic
regions in order to discover novel coding or non-coding transcripts, for example. All
these comparisons can be performed despite any architectural differences between
the genomes as genomic regions that are conserved among the organisms will be
assigned the same coordinates in the SuperGenome.

In principle, any software that is working on genomic data could also be applied
to the SuperGenome and annotations that have been projected into its coordinate
system. Standard genome browsers can be utilized, for example, to visualize genomic
and transcriptomic data of different organisms as tracks in the same browser window.
Elements in the different genomes that are related to each other, such as homologous
genes or their TSS, share the same position in the SuperGenome and therefore
they are also visualized at the same position in the genome browser, although their
original genomic coordinates are completely different. E.g., an element might be
located in the middle of the genome in one organism and due to a translocation
the respective homologous element of another organism might be located at the end
of the genome. The SuperGenome can compensate for these effects as long as the
elements have been aligned in the multiple whole-genome alignment.

Two different applications of the SuperGenome approach have been presented in
this thesis. In connection with GenomeRing it was applied to the comparative vi-
sualization of genomic architectures (section 5.2). The second application was its
integration with an algorithm for TSS detection from RNA-seq data to allow for a
cross-genome annotation and comparison of the detected elements (chapter 6). In
the context of alignment visualization GenomeRing employs a different strategy in
comparison to other visualization tools. The linear viewer integrated in Mauve [37],
for example, visualizes conserved regions as colored blocks. For each genome these
blocks are shown in the order they appear in that genome. As the order of the
blocks differs between the genomes they are connected by lines and by a common
color. Due to the varying position of a block between the different genomes it can
therefore be quite difficult for the user to quickly identify blocks that are missing
in specific genomes. Another circular viewer is Circos [85], where the block repre-
sentations of the different genomes are laid out on a circle and connected by lines
or ribbons. Both approaches focus on preserving the genomic architectures of the
individual genomes in the visualization. GenomeRing, however, focuses on high-
lighting differences and similarities between the genomes by visualizing each block
only once independently of the number of genomes in which the block is conserved.
As a colored path representing the aligned genomes either traverse blocks or skips
them, the user can immediately identify conserved blocks that can be found in all
genomes or regions that are specific for only a subset of genomes. The architec-
ture of the individual genomes is still shown as the paths connect the blocks in
the order they appear in the respective genome. The application of GenomeRing to
the four Campylobacter jejuni strains that were also subject of a comparative T'SS
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analysis (chapter 7) demonstrated how this visualization technique can be utilized
for the quick identification of architectural differences between the genomes. On the
other hand GenomeRing also proved its ability to guide in-depth analyses as demon-
strated by its application to the alignment of three Helicobacter pylori strains [142].
GenomeRing’s connection to MAYDAY’s linear genome browser and the integration
of transcriptomic data allowed for multi-level inspection of the strains. Getting a
global overview of architectural differences in GenomeRing the incorporation of gene
annotations and results of transcriptomic analyses allows the user to quickly iden-
tify loci of interest, which can then be investigated on the level of gene clusters or
single genes by GenomeRing’s linkage to MAYDAY’s genome browser. An even more
detailed analysis is made possible by integrating position specific expression informa-
tion in the form of RNA-seq data. This demonstrates how the SuperGenome-based
visualization of genome alignments in GenomeRing complement the application of
other tools, such as standard genome browsers, for a more comprehensive integrated
analysis of genomic and transcriptomic data.

In the current implementation the number of genomes that can be visualized in
GenomeRing is limited, which is due to the fact that in the visualization genomes are
distinguished using different colors. However, this problem can be overcome in future
implementations by developing aggregation techniques that allow for the grouping
of genomes that are highly similar with respect to large parts of the genome. By
this, differences between groups of genomes would be emphasized even more. It is
likely that the SuperGenome basis of GenomeRing will prove to be very helpful for
this task as similarities and differences between genomes and groups of genomes are
implicitly modeled in the SuperGenome. Therefore, algorithms for the clustering and
summarization of genomes and genomic regions will have to operate on the core data
structure of the SuperGenome. Thus, the results of these summarization techniques
will be beneficial not only for the visualization with GenomeRing but potentially in
the context of all applications of the SuperGenome approach.

However, for all possible applications it has to be considered that the
SuperGenome strongly depends on the alignment that is used as input. If homol-
ogous regions are not properly aligned in the input data, they will not share the
same SuperGenome coordinates and comparative analyses will not be possible for
those loci. Furthermore, in its current implementation the SuperGenome only allows
for an injective mapping of coordinates between the SuperGenome and the original
genomes. Thus, a SuperGenome position can map to only one position in any of
the other genomes and duplications are therefore not modelled by this approach.
Mauve [38], however, which is used for the generation of multiple whole-genome
alignments is also not able to handle duplications, but there are other tools for
genome alignment that can find duplications, such as MUMmer [87]. As gene duplica-
tion is an important evolutionary mechanism in prokaryotes and eukaryotes [84] the
extension of the SuperGenome concept in this respect would be beneficial to allow
for the comparative analysis of such events.

Another unsolved challenge is the ‘evolution’ of the SuperGenome itself. In the
course of a study of a bacterial species, for example, the number of sequenced
genomes of different strains might grow over time, or additional sequences have to
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be incorporated during follow-up studies. This brings up the question of how to ex-
tend an already computed SuperGenome. The incorporation of additional genomes
in the multiple alignment might change the resulting SuperGenome coordinate sys-
tem. The only exception would be the unlikely case that the additional genome
has no insertions in comparison to the other genomes in the alignment. Therefore,
the results of any analysis performed on the original SuperGenome would have to
be transferred into the extended SuperGenome, which is currently an open prob-
lem in itself as there might be inconsistencies between the original multiple genome
alignment and the extended one. A solution to this would be sequence-to-profile
alignments, which are not supported by Mauve yet. If it is desired, however, to keep
already assigned SuperGenome coordinates unchanged even if more sequences are
added, a significantly more complex coordinate concept would be necessary that al-
lows for the insertion of new positions between coordinates ¢ and i + 1, for example.
While it might be possible to employ such a complex coordinate concept within a
closed software, the whole SuperGenome concept would loose its general applicabil-
ity and software that is not designed to work on the basis of the SuperGenome, like
standard genome browsers, could not be used anymore to inspect the results of the
SuperGenome computation. Thus, the extensibility of the SuperGenome has to be
a major subject during future development of the concept.

9.4. A novel SuperGenome-based TSS prediction approach
applied to the comparative analysis of
Campylobacter jejuni strains

Deep sequencing technologies become more and more efficient with respect to time
and cost and the increasing number of RNA-seq data sets requires computational
methods for high-throughput analyses, which have to be conducted in a comparative
manner in many cases. One important part of RNA-seq data analysis is the detection
of transcription start sites (TSS) as they allow for the more detailed characterization
of annotated genes and the identification of novel coding or non-coding transcripts.

In this thesis an algorithm for the automated prediction of TSS from differ-
ential RNA-seq data (dARNA-seq) has been presented (chapter 6.1.3), which in-
tegrates the SuperGenome approach for a comparative characterization of TSS
across different genomes. In previous studies genome-wide T'SS maps on the ba-
sis of RNA-seq data were compiled manually or generated by semi-automated ap-
proaches, which predicted candidate loci that had to be further assessed by hand
[142, 103, 4, 76, 46, 137, 173, 174]. The reproducibility of such methods is very
limited in most cases and approaches including a lot of manual verification are ex-
tremely time-consuming with extensive comparative analyses being infeasible. The
TSS prediction algorithm that has been developed during this thesis considers the
same criteria which are used during manual T'SS annotations. It thus provides de-
tailed features for each predicted TSS, such as its expression strength, enrichment
factor and classification with respect to its location relative to annotated genes. This
makes the prediction procedure highly transparent allowing for an evaluation and

129



9. Discussion

refinement of the used parameters. A benchmark based on a global TSS map that
has been manually annotated for Helicobacter pylori [142] resulted in a sensitiv-
ity of 82% and a precision rate of 75%. However, the performance of the method
can be increased by the integration of more data, as the approach presented here
allows for a comparative analysis across data sets from different genomes or cultiva-
tion conditions. Furthermore, the confidence of predictions can be increased by the
incorporation of replicates.

Another fully automated method for the genome-wide prediction of T'SS in sin-
gle data sets has been recently presented by Schmidtke et al. [138, 7]. It employs
a sophisticated statistical model calculating p-values for TSS candidates based on
dRNA-seq data. However, such a statistical approach is less transparent as it is
difficult to infer relevant properties like expression strength and enrichment factor
from the computed p-values and these are therefore hard to interpret. Thus, it might
be challenging for the user to understand why a prediction has been made and to
decide on how to change parameters to influence the prediction. During future de-
velopment a combination of both approaches would be fruitful as the T'SS detection
strategy presented in this thesis could be complemented with statistical confidence
estimations. This would be extremely helpful especially for the evaluation of weak
TSS candidates. Furthermore, the method by Schmidtke et al. is not designed for
comparative analyses. A combination of both models would therefore also allow for
an extension of the statistical assessment to the simultaneous analysis of multiple
data sets using the SuperGenome approach.

For the convenient application of the T'SS prediction procedure, the algorithm to-
gether with the SuperGenome computation have been integrated and complemented
by a graphical user interface in the Java program TSSPREDATOR. The program al-
lows for an easy setup of all relevant parameters and file paths. TSSPREDATOR can
be applied to the comparative analysis of data sets from different cultivation condi-
tions or from different organisms, which is made possible by the application of the
SuperGenome approach. The results are compiled in a comprehensive MasterTable
that allows for further analyses of the predicted elements. This table is complemented
by several other result files, such as a table with TSS prediction statistics, normal-
ized expression graphs and genome annotations and sequences, which have been
transformed into the SuperGenome coordinate system in the case of cross-genome
analyses.

TSSPREDATOR provides various parameter presets yielding predictions with dif-
ferent sensitivity and specificity, since it can be difficult for the user to decide on
reasonable parameters. However, an optimal decision on the parameter settings re-
mains challenging. It could be shown in this dissertation that the normalization
strategies that are applied during the preprocessing of the data can compensate for
many effects that would otherwise lead to a bias in the prediction procedure. The
normalization considers different numbers of sequencing reads as well as variation
between the enrichment strengths. Nevertheless, an adaptation of the parameters to
the specific requirements of the study is necessary in most cases. Ideally, the differ-
ent parameter sets should be evaluated by the help of experimentally validated TSS.
However, the evaluation of a large set of predicted TSS is very laborious and might
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not be feasible in the context of most studies. Thus, TSS annotations resulting from
an automated genome-wide prediction procedure should still be considered as puta-
tive. Nonetheless, with the rising number of transcriptomic studies the global TSS
maps produced by the approach presented in this dissertation will provide insights
into similarities and differences between the transcriptome architectures of various
bacteria. This will help to elucidate regulatory mechanisms involved in a multitude
of biological functions, such as pathogenicity or adaptation.

In chapter 7 the application of the SuperGenome-based comparative TSS predic-
tion procedure to four strains of the human pathogen Campylobacter jejuni has been
presented. The analyses were based on a previously developed differential RNA-seq
(dRNA-seq) approach [142], which allows for an enrichment of reads originating from
the 5 end of primary transcripts.

The application of the approach resulted in the annotation of about 2000 T'SS in
each of the four C. jejuni strains. The comparative cross-genome detection of TSS
revealed that a majority of the elements is conserved in multiple strains. However,
many examples of TSS could be identified that showed a very specific expression in
only one of the strains, although promoter sequences were often highly conserved
among strains. This shows that a purely sequence-based analysis is not sufficient
to assess conserved expression of genes in different organisms. In addition, it was
observed that even those elements that are expressed in all strains show different
levels of expression in many cases. Furthermore, on the basis of the automatically
generated T'SS maps several SNPs in promoter regions could be identified that could
explain the loss of gene expression. In some cases these SNPs are located in the A /T-
rich upstream sequence of the promoter, which suggests that this region plays an
important role during transcription initiation. It has been suggested earlier that a
high genetic microdiversity in C. jejuni allows this pathogen to flexibly adapt to
changing environments [59] and the identified genes with SNPs in their promoter
regions that influence their transcription might be good candidates of factors poten-
tially involved in environment-specific adaptation.

The global TSS map also allowed for the identification and comparative analysis
of non-coding RNAs in the four C. jejuni strains. A conservation analysis revealed
that many of them are specific for C. jejuni or even for single strains while others are
more widely conserved. One of the most interesting observations in this context was
the discovery of a minimal CRISPR/Cas system, which in contrast to the systems
found in other bacteria contains individual promoters for the crRNAs. Therefore,
only one processing event is required during the maturation of the crRNAs. However,
the roles of the identified ncRNAs and the influence of the discovered CRISPR locus
are still unclear and have to be elucidated by further studies. Furthermore, the high
number of detected antisense TSS suggests that cis-encoded antisense RNAs might
be involved in various regulatory processes in C. jejuni.

Overall it has been shown in this thesis that global comparative T'SS maps gener-
ated with the SuperGenome-based TSS detection algorithm presented here can be
utilized to identify potentially regulatory elements on a genome-wide scale. In the
light of the continuously increasing number of RNA-seq studies TSSPREDATOR will
provide a valuable approach to the comparative analysis among different bacteria or
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experimental conditions and allow for the annotation of TSS and characterization
of promoter regions as well as for the identification of novel coding or non-coding
transcripts.

9.5. A computational pipeline for the analysis of ancient
pathogens

In comparative studies of bacterial organisms such as the one presented in chap-
ter 7 different bacterial strains or species are compared to each other in order to
explain phenotypic differences, for example, often in the context of pathogenicity.
In other studies the reaction to different experimental conditions, such as nutrient
limitations, is studied (see chapter 4). In the field of paleogenetics, however, the
aim is the reconstruction of genomes from ancient material like skeletal remains in
order to compare these genomic information to those of related modern organisms.
This allows for gaining insights into the long-term evolution of that species and for
tracking its origin.

In this dissertation the development of a computational pipeline for the analysis of
ancient genomes was presented (chapter 8). It covers all relevant analysis steps from
the preprocessing of the DNA-seq data, read mapping to the reference genome,
genotyping and draft genome generation and alignment through to comparative
SNP typing as the basis of phylogenetic analysis and, finally, SNP effect analysis.
When processing ancient DNA their specific properties have to be considered. Most
importantly ancient genomic fragments are usually degenerated to a great extent,
which results in shorter and fewer fragments. Thus, paired-end sequencing with
large insert sizes is not possible and the genomic coverage that can be achieved is
significantly lower compared to DNA-seq from modern DNA.

It could be shown in this thesis that a comparative analysis of ancient samples
together with modern samples can compensate for these effects to some extent. For
SNPs that were clearly detected in some of the samples the thresholds for detection
with respect to coverage and quality were loosened for the other samples in order
to be able to detect SNPs despite some degree of uncertainty. This allowed for a
significant reduction of missing data. Furthermore, the alignment-based comparative
SNP calling allowed for the effective incorporation of multiple reference genomes.

The analysis pipeline has been applied to the comparison of modern and ancient
Mycobacterium leprae strains. Altogether 755 SNPs were detected and annotated by
the pipeline in the complete data set. Interestingly, it turned out that the genomic
diversity between ancient and modern samples is rather low. This poses the question
why leprosy was a much more devastating disease in medieval times than it is today.
Considering the results of the analysis this is most certainly not due to a lower
virulence of the pathogen but instead caused by other factors like host immunity or
improved hygiene conditions.

In addition to the analysis of SNPs and the phylogeny of the studied samples a de
novo assembly of one of the ancient samples was possible due to the high amount of
endogenous M. leprae DNA. The comparison of this de novo assembly to a modern
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reference revealed that there are no structural variations between the ancient and
modern strains. Furthermore, most gaps between contigs correspond to repetitive
regions in the genome of M. leprae. Considering that bridging repetitive regions is
generally a challenge in the context of short read assembly this shows that the data
generated from the ancient DNA of that sample was of sufficient quality and depth
for an effective reconstruction of the genome.

This study nicely shows how improved experimental protocols and bioinformatics
methods allow for the study of the historical evolution of pathogens. By this, the field
of paleogenetics, to which bioinformatics made and will continue to make valuable
contributions, adds another dimension to comparative studies between organisms.

0.6. Conclusion

In the past years the complex structure of genomes and transcriptomes even of bacte-
rial organisms has become more and more evident. The central dogma of molecular
biology, which states that one gene encodes one single protein, which fulfills one
single function has been falsified in many cases. Nowadays, the importance of non-
coding RNAs, which are transcripts that do not encode proteins at all, is increasingly
recognized. In addition, investigating the architecture of a transcript itself, i.e., the
localization of its promoter region and transcription start site, for example, is essen-
tial in order to assess the potential function and the biological mechanism in which
the respective gene is involved.

As biological data is produced in huge amounts due to new high-throughput tech-
nologies, genomic and transcriptomic analyses have to be efficiently automatised and
often they have to be applied in a comparative manner integrating data for multi-
ple genomes. In this dissertation I presented several methods for the computational
characterization of non-coding but also protein-coding transcripts in bacteria. The
application of these methods identified novel non-coding elements in different bacte-
ria, some of which are potentially involved in the regulation of important mechanisms
such as antibiotic production.

Thus, the algorithms and tools presented in this thesis could be utilized to gain sig-
nificant insights into the organization of the genomes and transcriptomes of various
bacterial organisms. In the future these methods will continue to support researchers
in assessing the genomic and transcriptomic architectures of bacteria in the light of
the ever growing amount and complexity of biological data.
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