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Zusammenfassung

Die Genomforschung ist innerhalb der letzten Jahre stark gewachsen. Fortschritte in
der Sequenzierungstechnologie haben zu einer wahren Flut von genomweiten Daten
geführt, die es uns ermöglichen, die genetische Architektur von komplexen Phäno-
typen detaillierter als jemals zuvor zu untersuchen. Selbst die modernsten Analyse-
methoden stoßen jedoch an ihre Grenzen, wenn die E↵ektgrößen zwischen den Mar-
kern zu stark schwanken, Störfaktoren die Analyse erschweren, oder die Abhängigkei-
ten zwischen verwandten Phänotypen ignoriert werden. Das Ziel dieser Arbeit ist es,
mehrere Methoden zu entwickeln, die diese Herausforderungen e�zient bewältigen
können.

Unser erster Beitrag ist der LMM-Lasso, ein Hybrid-Modell, das die Vorteile
von Variablenselektion mit linearen gemischten Modellen verbindet. Dafür zerlegt
er die phänotypische Varianz in zwei Komponenten: die erste besteht aus individu-
ellen genetischen E↵ekten. Die zweite aus E↵ekten, die entweder durch Störfaktoren
hervorgerufen werden oder zwar genetischer Natur sind, sich aber nicht auf individu-
elle Marker zurückführen lassen. Der Vorteil unseres Modells ist zum einen, dass
die selektierten Koe�zienten leichter zu interpretieren sind als bei etablierte Stan-
dardverfahren und zum anderem diese auch an Vorhersagegenauigkeit übertro↵en
werden.

Der zweite Beitrag beschreibt eine kritische Evaluierung verschiedener Lasso-
Methoden, die a-priori bekannte strukturelle Informationen über die genetische Mar-
ker und den untersuchten Phänotypen benutzen. Wir bewerten die verschiedenen
Ansätze auf Grund ihrer Vorhersagegenauigkeit auf simulierten Daten und auf Gen-
expressionsdaten in Hefe. Beide Experimente zeigen, dass Strukturinformationen
nur dann helfen, wenn ihre Annahmen gerechtfertigt sind – sobald die Annahmen
verletzt sind, hat die Zuhilfenahme der Strukturinformation den gegenteiligen E↵ekt.
Um dem vorzubeugen, schlagen wir in unserem nächstem Beitrag vor, die Struktur
zwischen den Phänotypen aus den Daten zu lernen.

Im dritten Beitrag stellen wir ein e�zientes Rechenverfahren für Multi-Task
Gauss-Prozesse auf, das sowohl die genetische Verwandtschaft zwischen den Phäno-
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typen als auch die Verwandtschaft der Residuen lernt. Unser Inferenzverfahren zeich-
net sich durch einen verminderten Laufzeit- und Speicherbedarf aus und ermöglicht
uns damit, die gemeinsame Heritabilität von Phänotypen auf großen Datensätzen
zu untersuchen. Das Kapitel wird durch zwei Versuchsstudien vervollständigt; einer
genomweiten Assoziationsstudie von Arabidopsis thaliana und einer Genexpression-
sanalyse in Hefe, die bestätigen dass die neue Methode bessere Vorhersagen liefert.

Die Vorteile der gemeinsamen Modellierung von Variablenselektion und Störfaktoren,
sowie von Multi-Task Learning, werden in all unseren Versuchsreihen deutlich. Während
sich unsere Experimente vor allem auf Anwendungen aus dem Bereich der Genomik
konzentrieren, sind die von uns entwickelten Methoden jedoch allgemeingültig und
können auch in anderen Feldern Anwendung finden.



Abstract

A series of rapid changes has a↵ected the field of genomics within the last few years.
Advances in sequencing technology have led to an explosion of genotype and pheno-
type data, which allows us to explore the genetic architecture of complex traits at a
finer scale than ever before. However, current approaches often fall short if the ef-
fect sizes of the markers are heterogenous, confounding factors harm the analysis, or
dependencies between related phenotypes are erroneously ignored. While confound-
ing factors may cause spurious associations between markers and the phenotype of
interest, assuming homogenous e↵ect sizes of all markers and independent pheno-
types can lead to a loss of power in detecting markers with weak e↵ect sizes. The
aim of this thesis is to develop more accurate statistical methods that address these
shortcomings while at the same time retain e�cient computations.

Our first contribution is the LMM-Lasso, a hybrid model that combines the ad-
vantages of sparse linear models and linear mixed models. Our model dissects the
phenotypic variability into components that either result from (1) individual genetic
e↵ects or (2) e↵ects that are either caused by confounding, such as population struc-
ture, or by genetic e↵ects that are too small to be traced back to single markers.
Besides better interpretability of the selected markers, our method yields significantly
more accurate phenotype predictions than standard sparse linear models.

Secondly, we provide a critical assessment of di↵erent Lasso methods that incor-
porate input and output structure that is known a-priori. Our results on simulated
and gene expression level data in yeast indicate that methods that do not incorporate
structural information work better than methods that make incorrect assumptions
about the data. In order to avoid the use of incorrect prior knowledge, we suggest
in our next contribution to rather learn the output structure from the data.

Thirdly, we present an e�cient inference scheme for multi-task Gaussian pro-
cesses that learns the genetic relatedness between the phenotypes, as well as the
relatedness between the residuals. Our reformulation reduces the runtime and mem-
ory requirement significantly, making it possible to analyze the cross-heritability of
large numbers of phenotypes and sample cohorts. We demonstrate the practical
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use of our model in genome-wide association studies in Arabidopsis thaliana and an
expression quantitate trait loci (eQTL) study in yeast.

Our experiments highlight the importance of feature selection, confounder cor-
rection and multi-task learning for applications in the field of genomics. Moreover,
the methods we developed are general, and can thus also be used in other application
domains.
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Chapter 1

Introduction

Since the first draft of the human genome was sequenced in 2001 (Lander et al.,
2001), tremendous progress has been made, allowing us to study the human genome
at an unprecedented level of detail today. Large consortia, such as the HapMap
Project (Frazer et al., 2007) or the 1000 Genomes Project (Abecasis et al., 2012),
have helped in identifying positions in the genome that di↵er between di↵erent in-
dividuals, so-called single nucleotide polymorphisms (SNPs). In genome-wide asso-
ciation studies, SNPs are used as markers to detect associations between the trait
under observation and a specific region of the genome by correlating genetic di↵er-
ences with phenotypic profiles in large cohorts of related or unrelated individuals.
The phenotype can in principle be any quantifiable characteristics. Both, continuous
or discrete measure are frequently being considered. For instance, if we are inter-
ested in finding markers, which are associated with a quantitative trait, we can test
whether people carrying the one variant tend to have a larger phenotypic value than
people carrying the other variant. If the phenotype is qualitative, such as carrying a
particular disease, we can test whether one of the variants is more frequent in people
that carry the disease. In contrast to traditional linkage analysis, which build upon
pedigree information to identify regions in the genome that co-segregate with the
disease of interest (Ott et al., 2011), association studies are easier to conduct (Nord-
borg and Weigel, 2008) and more powerful in detecting genes that only have a weak
e↵ect on the phenotype (Risch and Merikangas, 1996).

In the last seven years, genome-wide association studies have amongst others
yielded valuable insights into the genetic architecture of global-level traits in plants
(Atwell et al., 2010) and mice (Flint and Eskin, 2012), as well as the risks for com-
mon human diseases, such as inflammatory bowel disease (Khor et al., 2011), major
depression (Kohli et al., 2011) and type 2 diabetes (Scott et al., 2007). So far, more
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2 Chapter 1. Introduction

than 2000 robust associations with more than 300 complex diseases and traits have
been reported (Manolio, 2013). In spite of these successes, our understanding of
these phenotypes is far from being complete and we are just beginning to unravel
the biological mechanisms underlying them. In particular, the associations uncov-
ered to date only account for a small proportion of the phenotypic variances and the
e↵ect sizes of the individual markers are small (Maher, 2008). This can be shown
for the instance of height, which has about 180 known associated variants, but they
only account for ⇠ 10% of the phenotypic variance, although traditional methods
estimate that the heritability of height is around 80% (Lango Allen et al., 2010; Viss-
cher et al., 2008). Originally, heritability is estimated by comparing the resemblance
of relatives by regressing the mean parental phenotype against its o↵spring. This
measures the so-called narrow-sense heritability h2 that is based on additive genetic
e↵ects only. It does not include the e↵ects of other genetic factors, such as dom-
inance e↵ects, gene-gene interactions and gene-environment interactions (Visscher
et al., 2008). The gap between h2 and the heritability estimate h2

GWAS

, based on
all significant markers only, is commonly referred to as missing heritability, and has
received attention over the last few years (Manolio et al., 2009; Zaitlen and Kraft,
2012; Bloom et al., 2013). Many di↵erent explanations have been proposed, including
structural variations, rare variants, and the joint contribution of many small additive
e↵ects (Eichler et al., 2010). In addition, epistatic e↵ects can lead to an overesti-
mate of the narrow-sense heritability (Zuk et al., 2012). Examples of these include
amongst others a duplication of the APP locus, which causes autosomal dominant
early-onset Alzheimer disease (Rovelet-Lecrux et al., 2006), and an epistatic interac-
tion between HLA-B*51 and ERAP1, which contributes to the disease susceptibility
for Behçet’s disease (Kirino et al., 2013).

Polygenic architecture A major source of missing heritability can be contributed
to common SNPs that have e↵ect sizes too small for being able to be detected. Park
et al. (2010) used data from existing genome-wide association studies to estimate the
number of associated loci and the distribution of their e↵ect sizes, to show that most
complex phenotypes are likely to be controlled by thousands of susceptibility loci
with e↵ect sizes that are too small to be detected by current sample sizes. Purcell
et al. (2009) and Stahl et al. (2012) computed an additive polygenic risk score based
on SNPs that have a p-value below a certain significance threshold. By varying that
threshold, they could show that including markers with a p-value above the genome-
wide significance level improves the predictive performance on an independent test
dataset, confirming the importance of yet undiscovered associations. At the same
time, Yang et al. (2010) used a linear mixed model approach to show that much
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larger parts of the phenotypic variance can be explained by rather using all common
SNPs jointly than using the subset of significant SNPs only.

The consequences we can draw from that are twofold: First, there is hidden
information contained in the SNP data that current methods cannot trace down to
the single SNP level. Albeit larger sample sizes will help to gain additional power,
it is unlikely that all risk variants can be revealed (Park et al., 2010).

Second, using SNP data only, the heritability estimates of Yang et al. (2010) pro-
vide an upper bound for what predictions with a linear model can achieve. Luckily,
the development of new predictive models is still an area of active research (de los
Campos et al., 2010). Most of the approaches are based on linear models, but they
di↵er in the assumptions they make about the e↵ect sizes. To give an example: Using
a Gaussian prior leads to homogenous shrinkage across all SNPs, while sparse priors
assign a larger weight to few markers and set the remaining weights to zero (Meuwis-
sen et al., 2001). It depends on the genetic architecture of the phenotype at hand
which prior should be chosen. If the e↵ect sizes of the markers di↵er little and many
variants contribute to the phenotype, the gaussian prior is well suited. However,
if there are few causal variants that have a large e↵ete on the phenotype, sparse
priors are to be preferred. In practice, we rarely know which of the two scenarios
we will encounter which is why we require approaches that can automatically decide
between the two. For instance, Bloom et al. (2013) analyzed growth in yeast under
multiple conditions and observed a various degree of trait complexity: the number
of quantitative trait loci (QTL) and their e↵ect sizes di↵ered substantially between
the traits.

Confounding The search of associated variants is often hindered by hidden factors
that have an association with the phenotype as well as with the markers. If they are
not corrected for, they can lead to spurious associations between the markers and
the phenotype. One of the main sources of confounding in genome-wide association
studies is population structure (Marchini et al., 2004). Consider therefor having a
dataset consisting of two subpopulations. Both have a di↵erent genetic background
and the disease is more prevalent in one of the two subpopulations. Then all SNPs,
that are di↵erentiated between the subpopulations, have an association with the
phenotype. Lander and Schork (1994) have come up with an example illustrating
this: Consider the phenotype “eating with chopsticks” for people living in the San
Francisco area. The population of San Francisco harbors many people of East-Asian
origin, people who are arguably better trained in eating with chopsticks. Variants
that are more common in East Asian populations, such as the human leukocyte
antigen complex, which plays an important role in immunology, would then appear



4 Chapter 1. Introduction

to be associated with the phenotype “eating with chopsticks”, albeit there is no
causal relationship between the chopstick skills of a person and its immune system.

In practice, population structure is di�cult to avoid and even in a seemingly
stratified sample the extent of hidden structure cannot be ignored (Newman et al.,
2001). Models that account for the presence of such structure are routinely applied
and have been shown to greatly reduce the impact of population stratification. For
instance, EIGENSTRAT builds on the idea of extracting the major axes of population
di↵erentiation using a PCA decomposition of the genotype data (Price et al., 2006),
and subsequently including them into the model as additional covariates. Linear
mixed models (Kang et al., 2008, 2010; Lippert et al., 2011; Zhou and Stephens, 2012)
provide for a more fine-grained control by modeling the contribution of population
structure as a random e↵ect, correcting also e↵ectively for family structure and
cryptic relatedness. The relatedness between the individuals is thereby estimated
from the SNP data, by basically counting how many alleles the individuals share.
The more alleles they share, the more similar the individuals are. In heritability
estimation, the similarity between the samples is estimated in a similar fashion,
albeit with a di↵erent intention: It is counted how many alleles the individuals share
to get a proxy of how many causal alleles they have in common.

Listgarten et al. (2012) were one of the first that connected confounding in
GWAS and heritability estimation, by proposing that parts of the confounding is
due to shared genetic factors. In consequence, they propose to only include those
SNPs in the background model, that are associated with the phenotype. While it has
been shown that conditioning on a subset of relevant markers increases power if no
population structure is present (Lippert et al., 2013), often all markers are needed to
correct for population structure (Yang et al., 2014). In practice, it is common to have
datasets that are subject to polygenic e↵ects and population structure, demanding
new methods that allow for both.

From one to many: multidimensional phenotypes Pleiotropy describes the
e↵ect if a variant or a gene is associated with several phenotypes (Mackay et al.,
2009). The phenotypes can hereby be either distinct phenotypes (Lee et al., 2012)
or the same phenotype measured under di↵erent conditions (Gagneur et al., 2013).
The occurrences of pleiotropy are ubiquitous: Conservative estimates have shown
that at least 16.9% of the genes and 4.6% of the SNPs that are associated with
complex human diseases have pleiotropic e↵ects (Sivakumaran et al., 2011). The
protein PTPN22 is, for instance, associated with several immune-related diseases,
resulting in a higher probability that they share the same genetic pathway (Solovie↵
et al., 2013). While it is important to know which phenotypes share a common e↵ect,
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it is equally interesting to understand which variants only a↵ect the phenotype under
specific conditions. Amongst others, prominent examples can be found in the field
of pharmacogenetics, in which the e↵ectiveness of a drug can be harmed if a patient
is carrying a specific mutation (Hunter, 2005). The risk of colorectal adenoma is for
instance reduced for regular aspirin users that carry the slow allele of the enzyme
UGT1A6, which is responsible for impaired aspirin metabolism (Bigler et al., 2001;
Chan et al., 2005).

Going from one variant to multiple variants, we can also extend the heritability
concept to multiple phenotypes. A way of doing that is examining the genetic cross-
correlations between di↵erent phenotypes (Price et al., 2011; Vattikuti et al., 2012).
Unfortunately, due to computational issues most analysis have been restricted to at
most a handful of phenotypes so far. It will be interesting to see how these concepts
can be carried over to high-dimensional phenotypes, such as gene expression levels.
Genes that are co-expressed can be clustered into groups then, which are presumably
involved in the same biological process. So far, existing algorithms that assemble co-
expression networks, have mostly been based on empirical correlations only making
them vulnerable to confounding factors (Mackay et al., 2009). Using the genetic
correlations instead will allow us to study gene networks at a much finer level of
detail, helping us to identify complex co-expression patterns between genes.

1.1 Contributions of this thesis

It has been the goal of this thesis to develop scalable algorithms that help to unravel
the complex relationships between genotypes and phenotypes.

In the beginning of the genome-wide association era, most association tests were
univariate tests, testing one marker at a time while ignoring all other e↵ects. While
this is computationally less demanding, these methods fall short if the genetic ar-
chitecture of the phenotype is polygenic, i.e. many loci contribute jointly to the
phenotypic variability. Instead, multivariate methods have the capacity to explicitly
model the additive e↵ects of multiple markers, leading to an increase in power for de-
tecting weak e↵ects. There exists a large body of work to address this issue, ranging
from sparse models (Li et al., 2011; Hoggart et al., 2008; Carbonetto and Stephens,
2012) to variance component models (Kang et al., 2008, 2010; Yang et al., 2010).
These algorithms di↵er substantially in the assumptions they make about the e↵ect
sizes, demanding a new class of models that requires less stringent assumptions and
is capable to automatically decide which genetic architecture fits best. At the same
time, it is unclear how to combine the benefits of multivariate sparse modeling with
confounder correction, as population stratification is common.
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While most analyses today are carried out on the single trait level, many datasets
contain measurements of multiple correlated phenotypes. Body mass index, percent
fat mass and waist circumference are, for example, di↵erent measurements that are
all used to describe human obesity. All three of them are strongly correlated to each
other (Shriner, 2012). By modeling them jointly, we cannot only increase the power
to detect e↵ects, but also gain insights into their interplay. However, most current
approaches make either assumptions that are too simplistic, such that the noise is
independent between the measured phenotypes (Stegle et al., 2011), or they do not
scale up to dataset sizes of interest (Korte et al., 2012).

1.1.1 Confounder correction for Lasso methods

In Chapter 3, we propose the LMM-Lasso, a hybrid model that combines the advan-
tages of linear mixed models and sparse regression models. Linear mixed model are
often used to correct for confounding factors in genome-wide association studies, but
also for heritability estimation and phenotype prediction, assuming that the causal
variants can be best approximated by using all markers. Sparse models, in contrast,
assume that only a few variants contribute to the phenotypic variability. Our ap-
proach combines the merits of both models. It allows a few outlier variants to have
a large impact on the phenotype, while smaller e↵ects, that cannot be traced back
to individual markers, and environmental factors are modeled separately.

We demonstrate the practical use of LMM-Lasso in genome-wide association stud-
ies in Arabidopsis thaliana (Atwell et al., 2010) and linkage mapping in mouse (Valdar
et al., 2006b), in which our method achieves significantly more accurate phenotype
predictions than standard sparse models for 91% of the considered phenotypes. En-
richment of known candidate genes suggests that the individual associations retrieved
by LMM-Lasso are likely to be genuine.

This work was done jointly with Christoph Lippert, Oliver Stegle and Karsten
Borgwardt, and resulted in the publication

• Barbara Rakitsch, Christoph Lippert, Oliver Stegle, Karsten Borgwardt
A Lasso Multi-Marker Mixed Model for Association Mapping with Population
Structure Correction,
Bioinformatics 29 (2), 206-214.

Barbara Rakitsch, Christoph Lippert, Oliver Stegle and Karsten Borgwardt
conceived the method and designed the study. Barbara Rakitsch, Christoph
Lippert and Oliver Stegle designed the experiments and analyzed the data.
Barbara Rakitsch performed the experiments and wrote the source code. Bar-
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bara Rakitsch, Christoph Lippert, Oliver Stegle and Karsten Borgwardt wrote
the paper.

1.1.2 Incorporating structural information

Multi-trait models are being widely used to couple regressors that share the same
underlying signal. By leveraging the data over multiple traits, a substantial power
gain can be achieved in many cases (Obozinski et al., 2008; Kim and Xing, 2009). In
addition, many existing methods aim to exploit prior knowledge about interactions
of genetic loci in biological networks to reduce the search space of possible marker
combinations (Li and Li, 2008; Azencott et al., 2013). In Chapter 4, we compare
di↵erent Lasso methods that incorporate both, input and output structure.

Our experiments on simulated data and on an eQTL study in yeast (Smith and
Kruglyak, 2008) suggest that structural information has to be used with care, as
methods that do not incorporate structural information work better than methods
that make incorrect assumptions about the data. We conduct two experiments on
the yeast eQTL dataset, demonstrating that a loose coupling of the weight vectors
across related phenotypes works best if the true genetic relatedness between the
di↵erent phenotypes is not known.

This part of the thesis is based on unpublished work done in collaboration with
Recep Colak and Karsten Borgwardt. The study was conceived and designed by
all three authors jointly. Barbara Rakitsch developed the mathematical speed-ups.
Recep Colak and Barbara Rakitsch performed the experiments and wrote the source
code. Recep Colak, Barbara Rakitsch and Karsten Borgwardt wrote the manuscript.

1.1.3 Scalable multi-trait models

In Chapter 5, we propose a multi-trait model approach that circumvents the draw-
backs of the approaches from the previous chapter by learning the coupling of the
weight vectors and allowing for correlated residuals to account for hidden confound-
ing. Models of this type have been used before (Henderson, 1984; Zhang, 2007; Korte
et al., 2012), but we are the first ones to show that e�cient inference of the model
parameters and predictions are possible for that class of models.

We compare the predictive power of our approach against existing methods on
synthetic data, gene expression levels of yeast (Smith and Kruglyak, 2008), and
developmental phenotypes of Arabidopsis thaliana (Atwell et al., 2010). Our method
outperforms its competitors on all three datasets.
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This project was developed together with Christoph Lippert, Karsten Borgwardt
and Oliver Stegle, and published in:

• Barbara Rakitsch, Christoph Lippert, Karsten Borgwardt*, Oliver Stegle*
It is all in the noise: E�cient multi-task Gaussian process inference with struc-
tured residuals,
Neural Information Processing Systems (NIPS) 2013, Lake Tahoe,
USA.

Barbara Rakitsch, Christoph Lippert, Karsten Borgwardt and Oliver Stegle
conceived the method. Barbara Rakitsch derived the mathematical tricks for
the algorithm, performed the experiments and wrote the source code. All
authors contributed in writing the manuscript.

We conclude in Chapter 6 by summarizing the individual contributions and pro-
viding an outlook to future research.

The experiments and the theoretical results from Chapter 3 and Chapter 5 are
based on the publications mentioned above. We unified the notation in all chapters
for better readability.



Chapter 2

Regression

So far, we have described the key challenges in genomics: Small sample sizes are
confronted with a large number of genetic variants, complex genetic architectures
and confounding factors, which may cause spurious associations between markers
and phenotype. To advance the power of genome-wide association studies, it is
irremissible to model these factors as accurate as possible.

Before discussing the contributions of this thesis to tackle these challenges, we
here summarize the necessary background: Section 2.1 gives a brief introduction to
linear models, and Section 2.2 extends these concepts to the non-linear case. It also
defines the notation and terminology used in the remainder of this thesis.

2.1 Linear regression

In linear regression, we try to find a linear mapping between the continuous target
variable y and the features {x

1

, . . . , x
M

}

y =
MX

m=1

w
m

x
m

, (2.1)

where M denotes the number of features. The mapping is defined by the parametric

weight vector w =
�
w

1

. . . w
M

�> 2 RM . The weights w are unknown and must

be inferred from the data. In statistical genetics, the features x =
�
x

1

. . . x
M

�> 2
RM typically correspond to genetic markers and the target variable y denotes the
phenotype of interest.

The model in (2.1) can be expressed in compact matrix notation, by stacking the

N observations into the vector y =
�
y

1

, . . . y
N

�>
and the features to the matrix

9
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X =
�
x

1

, . . . ,x
N

�> 2 RN⇥M . This allows us to rewrite the linear model as:

y = Xw. (2.2)

In practice, the relationship between the features and the outcome is most often
non-deterministic. Reasons for this can be manifold and include amongst others
measurement noise, unmeasured causal processes, or non-linear relationships. We
can account for this by adding a noise term in our model

y = Xw + ✏, (2.3)

with E [✏] = 0 and Cov [✏] = �2

e

I. Given a dataset (X,y), the goal of linear re-
gression is to find a weight vector w that fits the data best. Depending on the
assumptions we put on the weights and on the noise, we arrive at di↵erent estima-
tors: In this chapter, we give a brief overview over the most important estimators
and highlight some of their properties.

For a more detailed description, we refer the interested reader to (Bishop, 2006;
Fahrmeir et al., 2009; Hastie et al., 2009). Bishop (2006) gives a probabilistic per-
spective, Hastie et al. (2009) represent the frequentist position, and Fahrmeir et al.
(2009) provide the statistical framework of linear regression.

2.1.1 Least squares

The most common approach for fitting the weights w is to minimize the sum of the
squared training error

ŵ

LS = argmin
w

(y � Xw)> (y � Xw) (2.4)

Since the objective function is convex in w, its global minimum can be found by
setting the gradient to zero. The gradient of the sum of squares error is:

r
w

(y � Xw)> (y � Xw) = �2X> (y � Xw) (2.5)

Provided that the matrix XX

> is not singular, we can then obtain the estimator
ŵ

LS by setting the gradient to zero and solving subsequently for ŵ

LS:

0 =X

> (y � Xŵ

LS

)

, X

>
Xŵ

LS =X

>
y (2.6)

, ŵ

LS =
�
X

>
X

��1

X

>
y. (2.7)
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We can either computer ŵ

LS by solving the linear system (2.6) or by computing the
inverse directly (2.7). Unless the matrix XX

> has a specific structure that can be
exploited, either approach scales in O(M3) time.

Minimizing the least squares objective can also be motivated from the probabilis-
tic perspective, assuming that the noise is Gaussian distributed. It is then easy to
show that the maximum likelihood estimate ŵ

ML coincides with the least-squares
estimator

ŵ

ML =argmax
w

logN
�
y

��
Xw, �2

e

I

�

=argmax
w

� 1

2�2

e

(y � Xw)> (y � Xw)

= argmin
w

(y � Xw)> (y � Xw)

=ŵ

LS. (2.8)

The least squares estimator has a number of appealing statistical properties, which
we will study in the following. First, the least squares estimator is unbiased. That
means that its expected value equals the true value

E
⇥
ŵ

LS

⇤
= E

h�
X

>
X

��1

X

>
y

i
=
�
X

>
X

��1

X

>E [y] =
�
X

>
X

��1

X

>
Xw = w.

(2.9)

Let USU

> be the eigenvalue decomposition of X

>
X. The least squares estimator

is the least certain in giving the directions which are described by the eigenvectors
with small eigenvalues:

Cov
⇥
ŵ

LS

⇤
= E

h�
ŵ

LS � w

� �
ŵ

LS � w

�>i

= E
h�

X

>
X

��1

X

> (y � Xw) (y � Xw)>
�
ŵ

LS � w

�>
X

�
X

>
X

��1

i

= �2

e

�
X

>
X

��1

X

>
X

�
X

>
X

��1

= �2

e

�
X

>
X

��1

= �2

e

US

�1

U

>. (2.10)

Geometric interpretation The predicted outcome of the training data ŷ

LS =
Xŵ

LS is a linear combination of the features X and lies thus in the subspace
span (X), spanned by the features X. If we minimize the sum of squared dis-
tances between the observed and the predicted outcomes, we seek the predictor that
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Figure 2.1: A geometric inter-
pretation of least squares. Let
the number of data points be N =
3 and the number of features be
M = 2. The two feature vectors
(x

11

, x
21

, x
31

), (x
12

, x
22

, x
32

) span
a two-dimensional subspace in R3.
The orthogonal projection of y 2
R3 onto the subspace is the least
squares estimator of y. Based
on Hastie et al. (2009).

x1

x2

y

proj(y)

is closest to to true outcome and within the subspace span (X). From a geometric
perspective, that point is given by the orthogonal projection of y onto span (X) (see
Figure 2.1). This point is mathematically equivalent to the least squares estima-
tor. If y lies inside the spanned subspace, the predicted outcome recovers the true
outcome.

Best linear unbiased estimator In statistics, the least squares estimator is
known to be the best linear unbiased estimator, as proven in the Gauss-Markov
theorem (Fahrmeir et al., 2009). Assuming that the noise is independent and identi-
cally distributed, one can show that under all unbiased estimates, the least squares
estimator has the smallest variance

Var
⇥
ŵLS

m

⇤
 Var [ŵ

m

] , m = 1, . . . ,M. (2.11)

Notably, that theorem holds not only for Gaussian noise, but for general noise distri-
butions. In general, there exist estimators with lower variance, however this reduction
of variance comes at the cost of biased estimates. Optimizing the trade-o↵ between
bias and variance is an important challenge in statistics and machine learning (Ge-
man et al., 1992; Domingos, 2000). In the following, we present a selection of biased
estimators which outperforms the least squares predictor in terms of interpretability
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and predictive power. Intuitively, the reduction in variance is achieved by introduc-
ing regularization to shrink many of the coe�cients towards zero, at the price of
zero-biased solutions.

2.1.2 Ridge regression

One of the most widely used approaches to reduce the variance of the estimator is
to penalize the `

p

-norm of the regularizer:

kwk
p

= p

vuut
MX

m=1

|w
m

|p. (2.12)

Depending on which `
p

-norm is used, di↵erent estimators are preferred: Comparing
the `

1

and `
2

-norm, we can observe that the `
2

-norm penalizes large entries stronger,
leading to an estimator which tends to have only few large entries. Contrary, the
`
1

-norm punishes vectors with many small values more, resulting in an estimator
which contains many very small or zero entries (Boyd and Vandenberghe, 2004). In
ridge regression (Hoerl and Kennard, 1970), the squared `

2

-norm is used:

ŵ

ridge = argmin
w

(y � Xw)> (y � Xw)| {z }
error term

+� kwk2

2| {z }
regularizer

. (2.13)

The parameter � determines the trade-o↵ between fitting the data and regular-
ization. The setting � = 0 correspond to an unregularized model which is equivalent
to the least squares regressor. However, if the dataset contains much more features
than samples (N ⌧ M), the learned estimator tends to overfit the data, i.e. the
model fit does not only capture the true signal but also the noise. This reduces
the generalization performance to new data points (see also Figure 2.2). With in-
creasing �, less noise is explained by the estimator which in turn leads to better
generalization behavior and a smaller variance of the estimator. However, an in-
crease of � also shrinks the coe�cients further towards zero leading to a larger bias.
Figure 2.2 summarizes the relationship between overfitting, bias and variance on a
synthetic dataset. In practice, the best value for � is not known and is often learnt
by maximizing the out of sample predictive performance via cross-validation.

Solutions to the regularized least squares problem can be derived analogously to
the standard least squares problem: By setting the gradient to zero, we can solve for
the global minimum of the objective. The gradient with respect to the weight vector
is given by

r
w

(y � Xw)> (y � Xw) + �w

>
w = �2X>(y � Xw) + 2�w (2.14)
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Figure 2.2: Bias-Variance decomposi-
tion. The training error (blue line) and
test error (green line) are shown as a func-
tion of the regularization parameter �.
Standard errors are computed over 30 rep-
etitions. The test error (green line) decom-
poses into the squared bias (yellow), the
variance (red) and noise.

For each repetition, we draw N = 200 ran-
dom points as training set. The target is
determined by the function y = Xw + ✏

with signal-to-noise ratio of 0.8 and M =
300. The weight vector and the test set
(200 samples) are fixed over all repetitions.

After setting it to zero, we can solve for ŵ

ridge

ŵ

ridge =
�
X

>
X + �I

��1

X

>
y (2.15)

= X

> �
XX

> + �I

��1

y. (2.16)

If the number of samples N is larger than the number of features M , we can either
solve for the estimator in feature-space (2.15) or by using one of the Searle identi-
ties (Petersen and Pedersen, 2012) in sample-space (2.16), leading to a runtime of
O (min(M3, N3)).

Important insights into the regularization mechanism can be gained from employ-
ing the singular value decomposition of X = USV

> and looking at the predicted
outcomes (as discussed in Hastie et al. (2009) and Murphy (2012))

ŷ

ridge = X

h
X

> �
XX

> + �I

��1

y

i

= US

2
U

> �
US

2

U

> + �I

��1

y

= US

2

�
S

2 + �I

��1

U

>
y

= UŜU

>
y, (2.17)

where Ŝ is a diagonal matrix with Ŝ
jj

= S2

jj

/
�
S2

jj

+ �
�
. The diagonal entries of Ŝ

lie between 0 if S2

jj

⌧ � and 1 if S2

jj

� �. The smaller therefore the jth eigenvalue
is, the less the direction of the jth eigenvector is taken into account. In the last
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section 2.1.1, we showed that the least squares estimator is the least certain for the
directions corresponding to small eigenvalues. The ridge regression estimator shrinks
these directions resulting in a more stable solution.

2.1.3 Bayesian linear regression

It turns out that the ridge regression objective is equivalent to a MAP solution of
linear regression with a Gaussian prior on the regression weights:

w ⇠ N
�
w

��0, �2

g

I

�
. (2.18)

The hyperparameter �2

g

controls thereby the width of the Gaussian. We can obtain
the posterior distribution of the weight vector by applying Bayes theorem

p(w|X,y, �2

g

, �2

e

) / p(y|X,w, �2

e

)p(w|�2

g

)

= N
�
y

��
Xw, �2

e

I

�
N
�
w

��0, �2

g

I

�

= N
�
w

��⌃�1

X

>
y, �2

e

⌃�1

�
, (2.19)

where ⌃ is defined as X

>
X + �

2
e

�

2
g

I. Since the Gaussian distribution is symmetric,

the mean estimator coincides with the maximum a posteriori estimate, which in turn
is equivalent to the ridge regression estimator

argmax
w

logN
�
y

��
Xw, �2

e

I

�
+ logN

�
w

��0, �2

g

I

�

= argmax
w

� 1

2�2

e

(y � Xw)> (y � Xw) � 1

2�2

g

w

>
w

= argmin
w

(y � Xw)> (y � Xw) +
�2

e

�2

g

w

>
w. (2.20)

The tradeo↵ parameter � can thereby be reinterpreted as the ratio between the noise
level �2

e

and the prior strength �2

g

. If the uncertainty in w is large, it makes sense
to not work with a point estimate, like the maximum a posterior estimate, but to
marginalize over all possible weights.
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The uncertainty of the weight vector w can then be retrained when predicting
the outcome for some new features X

?:

p(y?|X?,X,y, �2

g

, �2

e

) =

Z
p(y?|X?,w, �2

e

)p(w|X,y, �2

g

, �2

e

)dw

=

Z
N
�
y

?

��
X

?

w, �2

e

I

�
N
�
w

��⌃�1

X

>
y, �2

e

⌃�1

�

= N
⇣
y

?

���X?⌃�1

Xy, �2

e

⇣
I + X

?⌃�1

X

?

>
⌘⌘

= N
 

y

?

�����X
?

X

>
✓

XX

> +
�2

e

�2

g

I

◆�1

y , �2

e

I + �2

g

X

?

X

?

>

��2

g

X

?

X

>(XX

> +
�2

e

�2

g

I)�1

XX

?

>
◆
, (2.21)

where the last equality can be derived by applying the Woodbury identity (A.28).
We note that the mean predictions of Bayesian linear regression is consistent with the
predictions obtained by ridge regression (2.15). The hyperparameters �2

g

, �2

e

are most
often not known beforehand and can be inferred from the data via cross-validation
or by optimizing the evidence

p(y|X, �2

e

, �2

g

) =

Z
p(y|X,w, �2

e

)p(w|�2

g

)dw

=

Z
N
�
y

��
Xw, �2

e

I

�
N
�
w

��0, �2

g

I

�
dw

= N
�
y

��0, �2

g

XX

> + �2

e

I

�
. (2.22)

When maximizing the marginal likelihood, we can either work with the gradient or
do an exhaustive search over all (�2

g

, �2

e

) combinations. Since the likelihood function
is non-convex, gradient-based optimization can be stuck in a local optimum. On the
contrary, scanning all (�2

g

, �2

e

) combinations ensures that we find the global optimum.
If done naively, evaluating the likelihood for the complete (�2

g

, �2

e

) grid is slow since we
have to invert the covariance matrix for each likelihood evaluation. However, by using
the reparameterization (�2

g

,� = �

2
e

�

2
g

) and employing the eigenvalue decomposition of
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XX

> = USU

>, computing the likelihood can be done e�ciently

log p(y|X, �2

e

, �2

g

) / � N log 2⇡ � log
���2

g

�
XX

> + �I

���� y

> ⇥�2

g

�
XX

> + �I

�⇤�1

y

/ � N log 2⇡�2

g

� log
��
USU

> + �I

��� 1

�2

g

y

> �
USU

> + �I

��1

y

/ � N log 2⇡�2

g

� log
��
U (S + �I)U

>��� 1

�2

g

y

> ⇥
U (S + �I)U

>⇤�1

y

/ � N log 2⇡�2

g

� log |S + �I| � 1

�2

g

�
U

>
y

�>
(S + �I)�1

�
U

>
y

�

/ � N log 2⇡�2

g

�
mX

i=1

log (S
ii

+ �) � 1

�2

g

mX

i=1

1

S
ii

+ �

�
U

>
y

�
2

i

(2.23)

after having once computed the eigenvalue decomposition (Lippert et al., 2011).
A full Bayesian treatment, in which we marginalize over the hyperparameters, is
possible as well (Murray and Adams, 2010). However, it comes at the cost of a
substantial increase in computation time, since the resulting integral is no longer
analytically tractable.

2.1.4 Linear mixed models

A linear mixed model is a linear model containining a fixed e↵ect w that has an
unobserved, but fixed value and a random e↵ect u which is an unobserved random
variable drawn from a normal distribution N (u |0,R). The feature matrix Z 2
RN⇥Q describes the features belonging to the random e↵ect u 2 RQ:

y = Xw + Zu + ✏. (2.24)

From the Bayesian perspective, we can interpret the linear mixed model as a linear
model in which the weights come from two di↵erent prior distributions: w has an
improper uniform prior and u a Gaussian prior (Robinson, 1991).

Linear mixed models are often used in genome-wide association studies as they
can account for population stratification (Yu et al., 2006; Kang et al., 2008; Zhang
et al., 2010; Kang et al., 2010; Lippert et al., 2011). In a nutshell, the significance
of a single SNP is determined by comparing the fit between the model having the
marker included as a fixed e↵ect and the the model having the marker excluded.
All other observed covariates, such as age or gender, are included as fixed e↵ects
as well. Population stratification cannot be directly observed and is treated as a
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random e↵ect. Its covariance matrix can be estimated from the genetic markers, and
describes the genetic similarity between the samples.

If we are interested in the estimates of the fixed e↵ects ŵ and of the random
e↵ects û, we can maximize over the posterior of our model:

argmax
w,u

logN
�
y

��
Xw + Zu, �2

e

I

�
+ logN (u |0,R)

= argmin
w,u

1

�2

e

(y � Xw � Zu)> (y � Xw � Zu) + u

>
R

�1

u (2.25)

Evaluating the gradient and setting it to zero, as done in Section 2.1.2, we arrive at
the so-called mixed model equations (Henderson, 1950; Henderson et al., 1959)

✓
X

>
X X

>
Z

Z

>
X Z

>
Z + �2

e

R

�1

◆✓
ŵ

û

◆
=

✓
X

>
y

Z

>
y

◆
(2.26)

The solution of the linear system is also known as the BLUP estimate, whereby BLUP
stands for best linear unbiased predictions (Goldberger, 1962; Robinson, 1991). By
fixing one of the weight vectors in (2.25), we see the close connections between
linear mixed models and the approaches discussed before: when keeping w fixed, the
estimate of u is mathematically equivalent to the MAP estimate of Bayesian linear
regression on the residual outcome y � Xw and under the non-isotropic Gaussian
prior N (0,R). When fixing u, w is equivalent to the least squares estimator on
the residuals y � Zu. When we are only interested in the fixed e↵ects, we can also
marginalize over the random e↵ects

p(y|X,Z,R, �2

e

) = N
�
y

��
Xw,ZRZ

> + �2

e

I

�
, (2.27)

similarly to what we have done in Bayesian linear regression (2.23). Hyperparameters
can be optimized analogously to what we have discussed there.

2.1.5 Lasso methods

In statistical genetics, we measure up to millions of SNPs and want to identify a
small subset of them that play an important role in understanding the biological
mechanisms underlying the phenotype. There is a substantial body of literature
concerning feature selection in general (Buehlmann and van de Geer, 2011; Miller,
2002; O’Hara and Sillanpaa, 2009) and tailored to genome-wide association studies,
in particular (Hoggart et al., 2008; He and Lin, 2011; Carbonetto and Stephens,
2012).
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wLS

w1

w2

wlasso

(a) Lasso

wLS

w1

w2

wridge

(b) Ridge Regression

Figure 2.3: Contours of the error and regularization function. We show the
contour plots of the error function for Lasso (left) and Ridge regression (right) in
pink. Points along one contour line have the same function value. We restrict our
attention to the weight vectors for which the regularization function is smaller than
a certain threshold ↵ (yellow-shaded area). The optimal solution is found when the
contours first hit the constraint region. For the Lasso, the solution is sparse (it lies
on the axis), while for the Ridge it is not. Adopted from Tibshirani (1994).

Finding a subset of relevant features is in general an NP-hard problem, and
although exact algorithms exist, they do not scale up to problems of our size (Hastie
et al., 2009). We concentrate here on the so called Lasso methods (Tibshirani, 1994),
which employ an `

1

-norm as regularization term:

ŵ

lasso

= argmin
w

(y � Xw)> (y � Xw) + �kwk
1

. (2.28)

The name Lasso is a short for “least absolute selection and shrinkage operator”.
The first term “least absolute selection” means that the Lasso selects a subset of
variables (for a graphical explanation see 2.3). The second term “shrinkage operator”
means that the coe�cients of the selected variables are shrunk towards zero. For
understanding the Lasso, it is helpful to look at its subderivative as done in Murphy
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(2012)
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We then examine if zero is contained in the subdi↵erential:

0 2 �c
k

+ a
k

ŵ
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{��} if ŵ
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< 0

[��,+�] if ŵ
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= 0

{+�} if ŵ
k

> 0

(2.30)

If c
k

< ��, then �c
k

� � > 0. Since a
k

> 0 that implicates that ŵ
k

< 0 and
the optimum is found at ŵ

k

= c

k

+�

a

k

. The case c
k

> � is symmetric and leads to

ŵ
k

= c

k

��

a

k

> 0. If �� < c
k

< �, then the subdi↵erental is zero at ŵ
k

= 0. As c

k

a

k

is the least squares fit, we can observe that for |c
k

| > �, the coe�cient is shrunk by
the factor �

a

k

, while for|c
k

| < �, the feature is not selected.
In contrast to the other estimators we have seen so far, there is neither a closed

form solution for the Lasso estimator, nor can we use a gradient-based solver since
the regularization term is not di↵erentiable at zero. Nevertheless, the development
of e�cient Lasso solvers has been an active area of research over the last years,
and di↵erent algorithms, including coordinate descent (Fu, 1998), stochastic gradi-
ent (Shalev-Shwartz and Tewari, 2009) or interior point methods (Kim et al., 2007)
have been established that scale up to reasonable dataset sizes.

Lasso approaches have also been considered under the name Basis Pursuit in
signal processing (Chen et al., 1998). They can also be derived from a Bayesian
perspective when using a Laplacian prior and solving for the maximum a posteriori
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estimate (Park and Casella, 2008). However, a fully Bayesian treatment has to be
treated with care: In contrast to the MAP solution, the posterior mean, as well as
the samples drawn from the posterior, are non-sparse.

2.2 Gaussian processes

When we discussed Bayesian linear regression in Section 2.1.3, we observed that
predictions (2.21) could be either evaluated in feature or in sample space. In feature
space, we needed to compute the weight vector w directly, whereas in sample space,
we solely worked with the scalar product between the inputs XX

>. More generally,
it is often advantageous to not work with the raw features directly, but to map them
into a higher non-linear space �(X). Then, as long as we can e�ciently compute
the kernel �(X)�(X)>, we do not have to explicitly map the raw features into the
new space. In fact, we do not even have to know the feature space as long as we
can prove that it exists. This is commonly known as the kernel trick (Scholkopf and
Smola, 2001), which is one of the main ideas behind Gaussian processes.

An excellent overview of Gaussian processes is given for instance by Barber (2012)
or MacKay (1998) and an in-depth description by Rasmussen and Williams (2005).

2.2.1 Prior on functions

In Rasmussen and Williams (2005), a Gaussian process is a distribution over func-
tions f , defined by the mean function m(x) = E [f(x)] and the covariance function
k(x,x0) = E [(f(x) � E [f(x)])(f(x0) � E [f(x0)])]

f ⇠ GP(m(x), k(x,x0)). (2.31)

Intuitively, a Gaussian process can be regarded as the generalization of a Gaus-
sian distribution to infinite many samples. For any finite dataset (x

1

, . . . ,x
N

), we
can marginalize out all the infinitely many unobserved samples: the corresponding
function values (f(x

1

), . . . , f(x
N

)) follow then a joint Gaussian distribution.
The definition of the covariance function implicates that, for any input data

(x
1

, . . . ,x
N

), the covariance matrix K 2 RN⇥N , defined by

K
ij

= k(x
i

,x
j

), (2.32)

must be positive semidefinite, that is xKx

> � 0 for all x.
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Figure 1.4: XXX. even more

obtained by looking at the predictions. For parametric models, the predictive distribution
of a new data point x

? is independent of the training data (X, y) once the parameters ✓

are known

p(y?|x?, X, y, ✓) = p(y?|x?, ✓). (1.34)

In contrast for non-parametric methods, there does not exist a parametric representa-
tion of the function, and we need the complete training data to make further predictions
(see also Figure 1.4).

1.4.2 Relationship to Linear Models

• show mean and covariance function of bayesian linear regression

• show that every dot product kernel is PSD

• in turn, every PSD matrix can be written as dot product (mercer’s theorem)

• if the mean function is not 0, we are at linear mixed models

1.4.3 Covariance Functions

• linear

• polynomial, link to epistatic

• squared exponential

(a) Parametric Model

y1 y2 ym

x1 x2 xm

…..

…..

y*

x*

(b) Nonparametric Model

Figure 2.4: Di↵erence between parametric and nonparametric models.
Graphical presentation of a parametric model (left) and of a nonparametric model
(right). Given the parameters, predictions are independent of the training data in
parametric methods. In nonparametric methods, the dependencies cannot be re-
solved. Adopted from Barber (2012).

Nonparametric models Gaussian processes are a prominent member of the class
of nonparametric methods (Ghahramani, 2013). One way to distinguish parametric
models from non-parametric models can be obtained by looking at the number of
parameters: parametric methods have a limited number of parameters, while non-
parametric methods can have infinitely many. Another way of distinguishing can be
obtained by looking at their predicting behavior. For parametric models, the predic-
tive distribution of a new data point x

? is independent of the training data (X,y),
once the parameters ✓ are known

p(y?|x?,X,y,✓) = p(y?|x?,✓). (2.33)

In contrast, non-parametric models have no parametric representation, and we need
the complete training data to make further predictions (see also Figure 2.4). While
this comes at the cost of a higher memory requirement, it also implies more flexibility:
The complexity of the model is not bound by the size of the parametric vector, but
can grow with the dataset size (Ghahramani, 2013).
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(a) linear (b) polynomial (c) squared exponential

Figure 2.5: Samples drawn from a Gaussian process with di↵erent co-
variance functions. From left to right: We used a linear (�2 = 1), polynomial
(�2 = 1, c = 0, d = 2) and squared exponential covariance (�2 = 1, l2 = 1) function.
To demonstrate the wiggling e↵ect of l2, we also show the squared exponential co-
variance with l2 = 0.5 (dashed lines). The mean function was set to zero in all three
experiments.

2.2.2 Covariance functions

The covariance of the outcomes y and y

0 is defined by its features and the choice of
the kernel:

cov(y,y0) = k(x,x0). (2.34)

The kernel measures the similarity between the features x and x

0: The larger the
similarity is, the more the two points covary. In the following, we will first give a
few examples of commonly used kernel functions and then show how to create new
kernel functions out of old ones.

The linear kernel is defined as

k(x,x0) = �2

xx

0>, (2.35)

with �2 as a scaling factor. In fact, Gaussian processes with a linear kernel and
a zero mean function m(x) = 0 are equivalent to Bayesian linear regression (see
Section 2.1.3). As we showed there using linear algebra, predictions (2.21) and the
evidence (2.22) can be expressed via the kernel K = XX

> only. There is also a close
connection between linear mixed models (see Section 2.1.4) and Gaussian processes:
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After marginalizing out the random e↵ects, a linear mixed model can be seen as a
Gaussian process with the linear mean function m(X) = Xw and the covariance
matrix K = ZRZ

>.
The polynomial kernel is defined as

k(x,x0) = �2

⇣
xx

0> + c
⌘

d

, (2.36)

where the scaling factor �2, the constant c and the degree d of the polynomial are
hyperparameters. If c = 0 and d = 2, the feature space consists of all pairs of
features �(x) = x ⌦ x 2 RM

2
. By using the kernel trick, we can reduce the runtime

for computing the covariance matrix from O(M2N2) to O(MN2):

k(x,x0) = (x ⌦ x) (x0 ⌦ x

0)>

=
�
xx

0>�⌦
�
xx

0>�

=
�
xx

0>�2

The squared exponential kernel is given by

k(x,x0) = �2 exp

✓
�(x � x

0)>(x � x

0)

2l2

◆
(2.37)

where �2 is a scaling factor and l2 the lengthscale of the kernel. It can serve as
an example of a stationary covariance function since the covariance function can be
expressed as a function of the distance of the two inputs x and x

0. Samples from
the di↵erent covariance functions are shown in Figure 2.5.

A straight-forward way to create new covariance functions is to combine already
existing ones (Scholkopf and Smola, 2001). Let k

1

, k
2

be two valid covariance func-
tions. Then the sum of the two

k(x,x0) = k
1

(x,x0) + k
2

(x,x0) (2.38)

is again a valid covariance function. The same holds for the pointwise product

k(x,x0) = k
1

(x,x0) · k
2

(x,x0), (2.39)

the Kronecker product

k

✓✓
x

z

◆
,

✓
x

0

z

0

◆◆
= k

1

(x,x0) · k
2

(z, z0), (2.40)
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and the sum of two covariance functions

k

✓✓
x

z

◆
,

✓
x

0

z

0

◆◆
= k

1

(x,x0) + k
2

(z, z0). (2.41)

The Kronecker product plays thereby a prominent role within the di↵erent com-
binators as it can be either used to speed up computations (Wilson et al., 2013) or
extend the Gaussian process framework to multitask learning (Bonilla et al., 2008).

It is important to decide carefully which covariance function to use. If the func-
tion to be learnt is not captured by the class of functions the covariance function
can present, the performance of the Gaussian process, as of any other kernel-based
method, will be poor. Fortunately, the design of a new expressive covariance func-
tions is still an active area of research (Wilson et al., 2013), as is the extension to
non-vectorial inputs (Sonnenburg et al., 2007; Feragen et al., 2013).

2.2.3 Predictions

So far, we have discussed di↵erent priors for Gaussian processes. In the following,
we will investigate how observations change our beliefs over the function f . For that
we assume a given training set X 2 RN⇥M ,f 2 RN and a test data set for which
we want to make predictions X

? 2 RN

?⇥M . We then first note the joint probability
over the training and testing points

✓
f

f

?

◆
⇠ N

✓✓
m(X)
m(X?)

◆
,

✓
K K

?

>

K

?

K

??

◆◆
, (2.42)

where K

? denotes the covariance matrix between the test and the training instances,
and K

?? the covariance matrix between the test instances.
By conditioning on the training data, we yield a posterior distribution over the

function values of the test dataset

p(f ?|X?,X,f) = N (f ? |m?,V ? ) , (2.43)

where

m

? = m(X?) + K

?

K

�1 (f � m(X)) (2.44)

V

? = K

?? � K

?

K

�1

K

?

>. (2.45)

By discussing the two extreme cases, we are able to gain important insights:
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(a) No observation (b) 1 observation (c) 3 observations

Figure 2.6: Drawing functions from the posterior. We used a Gaussian process
with mean function m(x) = x and squared exponential covariance function (�2 = 1,
and l2 = 1). In the first plot from the left, we draw samples from the prior. In the
other two plots, we draw samples from the posterior after having made one obser-
vation (middle) and three observations (right plot). Observations are marked as red
dots. The black line depicts the mean predictions. The yellow area contains all pre-
dictions within two standard derivations from the mean. Adopted from Rasmussen
and Williams (2005).
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1. If the training data points are equal to the test points, i.e. X

? = X, the mean
predictions collapse to the observed function values: all functions drawn from
the posterior pass through the observed data points (see also Figure 2.6).

2. If the test points are not similar to the training points, K

? approaches zero,
which results in predictions that are close to the ones obtained by the prior.
That also makes intuitively sense: We cannot learn anything about the function
values of X

?, as long as we have not yet observed any similar inputs.

In reality, we rarely observe the function values directly. Instead, they are usually
perturbed by noise:

y = f + ✏ (2.46)

Assuming that the noise is Gaussian, ✏ ⇠ N (0, �2

e

I), we can marginalize over the
noise, leading to a covariance matrix of the form K + �2

e

I. Similar to the noiseless
case, we can then perform predictions via

p(f ?|X?,X,y) =N
⇣
f

?

���m(X?) + K

?

⇥
K + �2

e

I

⇤�1

(y � m(X)) ;

K

?? � K

?

⇥
K + �2

e

I

⇤�1

K

?

>
⌘
. (2.47)

Making predictions, with or without noise, scales cubically in the number of
samples O(N3) since we have to invert the covariance matrix between the training
points. In practice, this can be prohibitive if the number of data points is large
(> 10.000). However, the development of scalable approximations is still an active
area of research, and exciting progress has been made over the last years (Titsias,
2009; Hensman et al., 2013).

2.2.4 Learning the hyperparameters

In Section 2.2.2, we got to know a number of di↵erent covariance functions. They
all share a dependence on some hyperparameters ✓. For instance, the squared expo-
nential kernel has two hyperparameters, ✓ = {�2, l2}: the scaling factor �2 and the
lengthscale l2. In practice, we often do not know what the true values of the hyper-
parameters are, and we have to infer them from the data. Two popular approaches
for doing so are cross-validation and maximizing the evidence of the data. However,
both have advantages and disadvantages: Cross-validation can be slow, because it
entails a grid search over all possible parameter combinations. Computing the evi-
dence is faster, but often trapped to a local optimum, since the likelihood function is
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not convex. However, we also discussed earlier that the success of Gaussian processes
is dependent on an expressive covariance function. Unfortunately, the expressiveness
of the covariance functions often comes at the price of a large number of hyperparam-
eters (for instance when we start combining di↵erent covariance functions), making
cross-validation infeasible.

Maximizing the evidence function is often carried out by using a gradient-based
optimization technique, such as Quasi-Newton algorithms (Nocedal and Wright,
2000). In a nutshell, all we have to do is to provide the solver with the evidence
function

log p(y|X,✓) = logN (y |m(X),K )

= �N

2
log (2⇡) � 1

2
log |K| � 1

2
(y � m(X))> K

�1 (y � m(X)) ,

(2.48)

the gradient with respect to the covariance parameters ✓
j

@

@✓
j

log p(y|X,✓) = � 1

2
Tr

✓
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�1

@

@✓
j

K

◆

+
1

2
(y � m(X))> K

�1

✓
@

@✓
j

K

◆
K

�1 (y � m(X)) (2.49)

and with respect to the mean parameters ✓
j

@

@✓
j

log p(y|X,✓) = � (y � m(X))> K

�1

@

@✓
j

m(X). (2.50)

The optimizer then finds a local maximum by iteratively approximating the evidence
function with a local quadratic model followed by a step in its steepest direction.
In contrast to Newton approaches, quasi-Newton approaches build the quadratic ap-
proximation without making use of the Hessian, often leading to a superior runtime.
For evaluating the function and its gradients, we have to invert the covariance ma-
trix K, leading to a runtime of O(N3) per iteration. By using multiple restarts with
di↵erent initializations, we can avoid being caught in a bad local maximum.

2.3 Summary

In this chapter, we studied linear models and Gaussian processes. It is important to
understand the connections between the two. First, Gaussian processes can be de-
rived from Bayesian linear regression by mapping the data into a higher dimensional
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feature space. More importantly, we do not need to know that mapping explicitly,
as long as we can prove that it exists and can compute its kernel e�ciently. Second,
linear mixed models are also closely connected to Gaussian processes if the random
e↵ect is treated as a Gaussian process prior (Liu et al., 2007). The work presented
here builds on recent advances made in both fields.

In genomics, linear mixed models are often the model of choice when it comes
to association testing: The random e↵ect allows to correct for confounding, either
induced by shared genetic or environmental factors, reducing the number of False
Positives. For computing the random e↵ect covariance matrix, a linear kernel on all
markers is commonly used. This can be interpreted in two ways: We can either think
of the covariance matrix as a genetic similarity matrix that measures the relatedness
between individuals by using the SNP markers, or, as a Bayesian linear additive
model, in which each marker contributes to the phenotype (Goddard et al., 2009).
The second approach reveals one of the main limitations of linear mixed models:
It assumes that all SNPs are associated with the phenotype, and it does not allow
for outlier SNPs, which have a larger e↵ect size (Zaitlen and Kraft, 2012; Lippert
et al., 2013). In the following chapter, we will present an algorithm that relaxes
these assumptions by including markers with a large e↵ect size as fixed e↵ects in
the model. By designing a better background model, we can increase the power to
detect weak associations.
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Chapter 3

Confounder correction for Lasso
methods

One of the key challenges in association testing is, as we elucidated before, to design
multivariate methods that can correct for population stratification. Linear mixed
models are often used to correct for population stratification, but do predominantly
consider individual markers in isolation. In contrast, sparse methods increase the
power to detect multifactorial associations, but cannot deal with confounding.

The goal of this chapter is to develop an algorithm that combines the merits of
linear mixed models and sparse approaches while allowing e�cient computation. Our
approach tackles the problem in a three-step procedure: in a first step, it estimates
how much phenotypic variance can be explained by population structure. In a second
step, it transforms the markers and the phenotype such that the correlation due to the
population structure is removed. Finally, a sparse solver is used on the transformed
data to identify a set of markers that jointly contribute to the phenotype. The
additional runtime for confounder correction is a one-time cubic operation in the
number of samples O(N3), which is negligible compared to the runtime of the sparse
solver.

We define our new approach in Section 3.1 and give a detailed description of
the inference scheme in Section 3.2. In Section 3.3, our experiments show that the
rigorous combination of sparse and mixed modeling approaches yields greater power
to detect true causal e↵ects in a large range of settings. In genome-wide association
studies in Arabidopsis thaliana and linkage mapping in mice, our method achieves
significantly more accurate phenotype predictions than its competitors and retrieves
associations that are enriched for known candidate genes.

31
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3.1 Feature selection in the presence of confound-
ing

Our approach builds on linear mixed models (see Section 2.1.4), explaining the phe-
notype variability by a sum of individual genetic e↵ects and random confounding
variables. In brief, the phenotype of N samples y = (y

1

, . . . , y
N

) is expressed as a
linear function of the markers X 2 RN⇥M

y = Xw|{z}
genetic factors

+ u|{z}
confounding

+ ✏|{z}
noise

. (3.1)

Here, ✏ 2 RN denotes observation noise and u 2 RN are confounding influences. Con-
founding influences in genetic mapping are typically not directly observed, however
their Gaussian covariance K can in many cases be estimated from the observed data.
To account for confounding by population structure, K can be reliably estimated
from genetic markers, for example using the realized relationship matrix which cap-
tures the overall genetic similarity between all pairs of samples (Hayes et al., 2009).
Similarly, in genetic analyses of gene expression, K can be fit to capture and correct
for the confounding e↵ect of gene expression heterogeneity (Listgarten et al., 2010;
Fusi et al., 2012). Marginalizing over the random e↵ect u results in a Gaussian
marginal likelihood model (Kang et al., 2008) whose covariance matrix accounts for
confounding variation and observation noise.

The resulting mixed model is typically considered in the context of single candi-
date SNPs, i.e. restricting the sum in Eq. (3.1) to a particular SNP while ignoring
all others (see Section 2.1.4). While computationally e�cient and easy to interpret,
this independent analysis can be compromised by complex genetic architectures with
some genetic factors masking others (Platt et al., 2010b). Some improvements can
be achieved by step-wise regression or forward selection, which has recently been
extended to the mixed model framework (Yang et al., 2012a; Segura et al., 2012).
However, these approaches are often caught in suboptimal modes as they are order
dependent (Segura et al., 2012). As an alternative, we propose an e�cient approach
to carry out joint inference over all markers as implied by Eq. (3.1). Our approach
assesses all SNPs at the same time while accounting for their interdependencies and
without making any assumptions on their ordering. To allow for applications to
genome-wide SNP data, we regularize the fixed e↵ects by an `

1

-norm, assigning zero
e↵ect size to the majority of SNPs as done in the classical Lasso (see Section 2.1.5).
We call this approach LMM-Lasso as it combines the advantages of established linear
mixed models (LMM) with sparse Lasso regression.
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There is a vast amount of literature using a `
1

-regularized approach for genome-
wide association studies (Wu et al., 2009; Lee and Xing, 2012; Kim and Xing, 2009).
In Foster et al. (2007), a sparse random e↵ect model is proposed, in which the markers
are modeled as random e↵ects drawn from a Laplacian distribution. In Hoggart et al.
(2008) and Li et al. (2011), the authors suggest to add principal components to the
model to correct for population structure. While these approaches can be e↵ective in
some settings, principal components cannot account for family structure or cryptic
relatedness (Price et al., 2010). Importantly, none of these approaches considers
including random e↵ects to control for confounding. A notable exception is the
general `

1

-mixed model framework by Schelldorfer et al. (2011) and Schelldorfer and
Bühlmann (2011), who consider a random e↵ect component but do not provide a
scalable algorithm that is applicable to genome-wide settings. More recently, Zhou
et al. (2013) introduced a fully Bayesian approach to tackle the same problem by
using a mixture of two Gaussians as prior. This is conceptually close to the work
presented here, as it is equivalent to a linear mixed model with a spike-and-slab prior
on the fixed e↵ects and employing a linear kernel as random e↵ect covariance matrix.

Probabilistic model Let X denote the N ⇥M matrix of M SNPs for N individ-
uals, x

j

is then the N ⇥ 1 vector representing SNP j. We model the phenotype for
N individuals, y = (y

1

, . . . , y
N

) as the sum of genetic e↵ects w
j

of SNPs x

j

and con-
founding influences u (see Eq. (3.1)). The genetic e↵ects are treated as fixed e↵ects,
whereas the confounding influences are modeled as random e↵ects. The genetic e↵ect
terms are summed over genome-wide polymorphisms, where the great majority of
SNPs has zero e↵ect size, i.e. w

j

= 0, which is achieved by a Laplace shrinkage prior
on all weights. The random variable u is not observed directly. Instead, we assume
that the distribution of u is Gaussian with covariance K, u ⇠ N (0, �2

g

K).
Assuming Gaussian noise, ✏ ⇠ N (0, �2

e

I), and marginalizing over the random
variable u, we can write down the conditional posterior distribution over the weight
vector w:

p(w|y,X,K, �2

g

, �2

e

,�) / N
�
y

��
Xw, �2

g

K + �2

e

I

�
| {z }

marginal likelihood

MY

m=1

e�
�

2 |wm

|

| {z }
prior

. (3.2)

Here, � denotes the sparsity hyperparameter of the Laplace prior, �2

e

is the residual
noise variance and �2

g

denotes the variance of the random e↵ect component.
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3.2 Parameter inference

Learning the hyperparameters ⇥ = {�, �2

g

, �2

e

} and the weights w jointly is a hard
non-convex optimization problem. Here, we propose a combination of fitting some
of these parameters on the null model with the individual SNP e↵ects excluded and
reduction to a standard Lasso regression problem.

Null-model fitting To obtain a practical and scalable algorithm, we first optimize
�2

g

, �2

e

by maximum likelihood under the null model (w = 0), ignoring the e↵ect of
individual SNPs. The analogous procedure is widely used in single-SNP mixed mod-
els, and has been shown to yield near-identical results to an exact approach (Kang
et al., 2010). To speed up the computations needed, we optimize the ratio of the
random e↵ect and the noise variance, � = �2

e

/�2

g

, which can be optimized e�ciently
by using computational tricks similar to (2.23):

p(y|,K, �2

g

, �,�) / N
�
y

��0, �2

g

(K + �I)
�
. (3.3)

Briefly, we compute the eigendecomposition of the covariance K = USU

> which can
be used to rotate the data such that the covariance matrix of the normal distribution
is isotropic. We carry out one-dimensional numerical optimization of the marginal
likelihood (Eq. (3.3)) with respect to �, whereas �2

g

can be optimized in closed form
in every evaluation.

Whitening the data Having fixed �, we use the eigendecomposition of K again
to rotate our data such that the covariance matrix becomes isotropic:

p(w|ỹ, X̃,K, �2

g

,�) / N
⇣
ỹ
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Here, X̃ denote the rotated and rescaled genotypes and ỹ the respectively phe-
notypes:

X̃ = (S + �I)�
1
2U>X,

ỹ = (S + �I)�
1
2U>y. (3.5)

In Figure 3.1, we show graphically how the correlation between the SNPs and the
phenotypes are resolved when projecting both.
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Figure 3.1: Whitening the data. The covariance matrix K + �I is used to decor-
relate the markers from the phenotype by projecting them along the principal com-
ponents and rescaling them to unit variance.

Solving the Lasso Using this transformation, the task of determining the most
probable weights in Eq. (3.4) is now equivalent to the Lasso regression model, since
maximizing the posterior with respect to w is equivalent to minimizing the negative
log of Eq. (3.4):

min
w

1

�2

g

kỹ � X̃wk2

2

+ �kwk
1

. (3.6)

An appropriate setting of � can be found by cross-validation to maximize the overall
predictive performance or stability selection (Meinshausen and Bühlmann, 2010).

The computational e�ciency of the three-stage procedure proposed here depends
on the approximation to fit � on the null model, allowing for the reduction of the
problem to standard Lasso regression. For univariate single-SNP mixed models,
e�cient optimization of � for each SNP can be done by recently proposed computa-
tional tricks (Lippert et al., 2011; Zhou and Stephens, 2012). Unfortunately, these
techniques cannot be directly applied in the multivariate setting. In principle it is
possible to extend the cross-validation to optimize over pairs (�,�). However, this
remains impracticable for most datasets due to the additional computational cost im-
plied and hence we consider optimizing � on the null model in the experiments (Kang
et al., 2010).
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3.2.1 Phenotype prediction

Given a trained LMM-Lasso model on a set of genotypes and phenotypes, we can
predict the unobserved phenotype of test individuals. The predictive distribution can
be derived by conditioning the joint distribution over all individuals on the training
individuals, resulting in a Gaussian predictive distribution (2.43) with mean

m

? = X

?

w| {z }
Lasso prediction

+K

?(K + �I)�1(y � Xw)| {z }
Random e↵ect prediction

(3.7)

and covariance

⌃? = �2

g

(K?? + �I) � �2

g

K

?(K + �I)�1

K

?

>, (3.8)

where K

? is the covariance matrix between the test and the training samples and
K

?? the covariance between the test samples. The mean prediction is thereby a sum
of contributions from the Lasso component and the Gaussian process prediction on
the Lasso residuals.

3.2.2 Choice of the random e↵ect covariance to account for
population structure

Depending on the application, the random e↵ect covariance K can be chosen in a
variety of ways. Here, we discuss specific options to account for population structure.

Choice of genetic similarity matrix For the identity by descent matrix (IBD),
an entry is defined as the predicted proportion of the genome that is identical by
descent given the pedigree information. In contrast, the identity by state matrix
(IBS) simply counts the number of loci on which the samples agree, whereas the
realized relationship matrix (RRM) is calculated as the linear kernel between the
SNPs (Hayes et al., 2009). In subsequent experiments, we have used the realized
relationship matrix. An example for the RRM-matrix derived from the Arabidopsis
thaliana dataset is given in Figure 3.2

Realized relationship matrix and relationship to Bayesian linear regres-
sion From a Bayesian perspective, employing the realized relationship matrix as
the covariance matrix is equivalent to integrating over all SNPs in a linear additive

model with an independent Gaussian prior over the weights N
⇣
0,

�

2
g

M

I

⌘
(Goddard

et al., 2009). The choice of a Gaussian prior reflects the belief that many markers
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Figure 3.2: Realized relationship
matrix from the 1196 plants of
Arabidopsis thaliana available
from (Horton et al., 2012). The
relatedness between the individuals is
complex and strong as the matrix is
deeply structured.

have a small e↵ect on the phenotype. However, it does not allow for a few markers
to have a large e↵ect on the phenotype as it is often the case (Zaitlen and Kraft,
2012). For instance in rice, large amounts of the phenotypic variance of agronomic
traits can be explained by single markers (Huang et al., 2010).

Thus, choosing this particular covariance matrix K can be regarded as modeling
genetic e↵ects that are confounded due to population structure or to small additive
infinitesimal e↵ects, whereas single SNPs that have a su�ciently large e↵ect size are
directly included as fixed e↵ects into the Lasso model.

3.2.3 Relationship to stepwise regression

The di↵erence between stepwise regression and the Lasso can be seen easiest by
going over Stagewise Linear Regression. In stepwise regression, we start with the
SNP having the largest e↵ect size. We then iteratively add SNPs that can explain
most of the phenotype conditioned on the markers that have already been selected.
In Stagewise Linear Regression instead, one moves only a small step in the direction
of the most correlated SNP and then re-estimates the most correlated SNP on the
residual phenotype which is far less greedy. In Efron et al. (2004), it is shown that
there is a close relation between Stagewise Linear Regression and Lasso resulting in
almost identical solutions.

3.2.4 Scalability and runtime

The appeal of the LMM-Lasso is a runtime performance comparable to the standard
LASSO. The di↵erence is a one-time o↵ cubic cost for the decomposition of the
random e↵ect matrix K to rotate the genotype and phenotype data (3.5).
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To demonstrate the applicability to genome-wide datasets, we have empirically
measured the runtime for computing the complete path of sparsity regularizers on
the synthetic dataset, consisting of 1,196 plants and 213,624 SNPs. On a single core
of a Mac Pro (3GHz, 12 MB L2-Cache, 16GB Memory), the Lasso required 145
minutes CPU time and the LMM-Lasso 146 minutes of CPU time.

If needed, the runtime of LMM-Lasso could be improved in several ways. First,
the runtime of the `

1

-solver is heavily dependent on the optimization method used, see
also Section 2.1.5 for a discussion of state-of-the art methods. Second, if the number
of samples is large (N > 105), the runtime is dominated by the decomposition of
K and rotating the data for the optimization of �. As shown in Lippert et al.
(2011), reducing the covariance K to a low-rank representation calculated from a
small subset of M

active

SNPs, yields very similar results while reducing the runtime
from O(N2M) to O(NM2

active

).

3.3 Experiments

Preprocessing We standardized the SNP data, which has the e↵ect that the prior
on the e↵ect size is dependent on the minor allele frequency (MAF): SNPs with a
low MAF require a smaller weight to have the same e↵ect on the phenotype, and
hence will be more likely driven to zero at the MAP-solution. On the phenotypes, we
performed a Box-Cox transformation (Sakia, 1992) and subsequently standardized
the data.

Model selection Variation of the model complexity of Lasso methods can either
be done by choosing the number of active SNPs or equivalently by varying the hyper-
parameter � explicitly. For the benefit of direct interpretability, we chose to vary the
number of active SNPs. For a fixed number of selected SNPs, we find the correspond-
ing hyperparameter � by a combination of bracketing and bisection as done in Wu
et al. (2009). To select which of these Lasso-model is most suitable, we consider
alternative strategies, depending on the objective.

1. Phenotype prediction To predict phenotypes, we use 10-fold cross-validation.
We split the data randomly into 10 folds. Each fold is once picked as test
dataset, with all other folds being used for training the model. The model
is selected to maximize the explained variance on the test set. In this com-
parison, we consider models with di↵erent numbers of SNPs, varying from
{0, 1, 2, . . . , 10, 20, 30, . . . , 100, 150, 200, 250} with the additional constraint that
the number of active SNPs shall not exceed the number of samples.
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2. Variable selection To assess the significance of individual features, we con-
sider stability selection (Meinshausen and Bühlmann, 2010). Here, we fix the
number of active SNPs to 20 and draw randomly 90% of the data 100 times.
To accommodate the limited sample size, we did not use 50% of the samples
for each draw as proposed in the original article. We selected all SNPs that
were found in > 50% of all restarts. We used the smallest threshold possible
to also detect SNPs that have a small e↵ect size. In consequence, we allowed
to select of a modest number of false-positive results. Significance estimates
can be deduced from the selection frequency of individual SNPs (Meinshausen
et al., 2009).

To obtain a complete ranking of features, as used to evaluate models in the
simulation study, we use the LASSO regularization path and rank features by
the order of inclusion into the model.

3.3.1 Semi-empirical setting with known ground truth

We assessed the ability of LMM-Lasso to recover true genotype to phenotype as-
sociations in a semi-empirical simulated dataset based on the extended A. thaliana
dataset (Horton et al., 2012) consisting of 1196 plants. To ensure realistic charac-
teristics of population structure, we simulated confounding such that it borrows key
characteristics from Arabidopsis thaliana, which is a strongly structured population.
We considered real phenotype data to obtain realistic background signal that is sub-
ject to population structure. In addition to this empirical background, we added
simulated associations with di↵erent e↵ect sizes and a range of complexities of the
genetic models.

For simulating population-driven e↵ects, we used the real phenotype leaf num-
ber at flowering time (LN, 16�C, 16 hrs daylight) which is available for 176 plants.
Univariate analyses as done in Atwell et al. (2010) have shown that the phenotype
has an excess of associations when population structure is not accounted for. On the
other hand, after correction the p-values are approximately uniformly distributed.
First, to determine the fraction of genetic and residual variance, we fit a random
e↵ects model to LN, which we subsequently used to predict the population structure
for the remaining 1,020 plants. We then simulated the phenotypes as follows:

y = �2

sig

y

sig

+ (1 � �2

sig

)[�2

pop

y

pop

+ (1 � �2

pop

)✏],

where y

sig

= X

(k)w, X

(k) is the SNP data for the k causal SNPs, w ⇠ N (0, 1

k

I)
and ✏ ⇠ N (0, I). The first two causal SNPs are drawn such that they are in close
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linkage (distance between 1kb and 10kb), the remaining causal SNPs are randomly
drawn from the complete genome.

The initial settings used for the simulation experiments were �2

sig

= 0.7, �2

pop

= 0.5
and k = 100. To determine the influence of the population strength, we considered
�2

sig

= 0.5, k = 20 and varied �2

pop

2 {0.0, 0.3, 0.5, 0.7, 0.9, 1.0}. To experimentally
assess the impact of the overall noise, we fixed k = 100, �2

pop

= 0.5, and let �2

sig

vary in
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Finally, we considered di↵erent numbers of causal SNPs
k 2 {10, 20, 500, 100, 300, 1000} and fixed �2

sig

= 0.7, �2

pop

= 0.5. For the linkage
experiments, we used the �2

sig

= 0.7, �2

pop

= 0.5 and k = 10. We simulated 30
phenotypes for all settings.

To compare our method to existing techniques, we considered the standard Lasso,
which models all SNPs jointly but without correcting for population structure, as
well as an univariate Linear Mixed Model, which e↵ectively controls for confounding,
but considers each SNP in isolation. As a baseline, we also considered a standard
univariate Linear Model (LM), which neither accounts for confounding nor considers
joint e↵ects due to complex genetic architectures. Both, the standard Lasso and
LMM-Lasso were fit in identical ways (see Section 3.3). For the linear mixed model
and the LMM-Lasso, we used the RRM as covariance matrix and fit � on the null
model. For univariate models, the ranking of individual SNPs was done according
to their p-values, for multivariate models we considered the order of inclusion into
the model.

Since in many cases the causal loci might not be genotyped and stochastic e↵ects
might cause larger correlations between strongly correlated SNPs and the phenotype,
we consider a SNP, called positive by the model, as a True Positive if it is in close
proximity to the known causal SNP (+/- 10kb). On the other hand, if a SNP, called
positive by the model, is not close to a causal SNP, it is considered as a False Positive.
A fair comparison between the univariate and multivariate methods is di�cult as the
univariate methods select blocks of linked markers, whereas the multivariate methods
select only representative markers per block. To account for this principle di↵erence,
we employed a post-processing procedure to sparsify the solutions of all methods in
a comparable manner. For this purpose, we iteratively selected the most associated
marker genome-wide. To ensure that the next marker is not in LD to this SNP, we
ignored neighboring markers (+/- 10kb) and proceeded with selecting the next SNP.
This process was repeated until no marker above the threshold was left.

LMM-Lasso ranks causal SNPs higher than alternative methods First,
we compared the alternative methods in terms of their accuracy in recovering SNPs
with a true simulated association (Figure 3.3a). Methods that account for popula-
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(a) Precision/Recall (b) ROC

Figure 3.3: Evaluation of alternative methods on semi-empirical GWAS
datasets, mimicking population structure as found in Arabidopsis

thaliana . (a) Precision-Recall Curve for recovering simulated causal SNPs using
alternative methods. Shown is precision (TP/(TP+FP)) as a function of the recall
(TP/(TP+FN)). (b) Alternative evaluation of each method on the identical dataset
using Receiver operating characteristics (ROC). Shown is the True Positive Rate
(TPR) as a function of the False Positive Rate (FPR).
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(a) E↵ect size vs. area under precision recall curve

(b) Averaged neg. log-likelihood vs. number of active SNPs
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Figure 3.4: Characteristics of alternative methods on semi-empirical GWAS
dataset. (a) Area under the precision recall curve as a function of the total e↵ect
size of all causal SNPs. (b) Average negative log-likelihood of each selected SNPs
under the multivariate normal distribution N (0,K) as a function of the number
of SNPs that are active in the model. The smaller the log likelihood is, the more
the SNPs are correlated with the population structure. For the LMM-Lasso and
the Lasso active SNPs have been selected by following the regularization path. For
linear mixed model (LMM) and linear model (LM), the set of active SNPs have been
obtained in ascending order of the p-value obtained. In the beginning, Lasso and
the linear model choose SNPs that heavily reflect the population structure, while the
mixed model approaches do not. In both figures, the number of causal SNPs was
100.
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tion structure (LMM-Lasso, LMM) are more accurate than their counterparts, with
LMM-Lasso performing best. While the linear mixed model performs well at recov-
ering strong associations, the independent statistical testing falls short in detecting
weaker associations which are likely masked by stronger e↵ects (Figure 3.4a). Com-
paring methods that account for population structure and naive methods, we observe
that accounting for this confounding e↵ect avoids the selection of SNPs that merely
reflect relatedness without a causal e↵ect (Figure 3.4b). An alternative evaluation,
which considers the receiver operating characteristic curve, given in Figure 3.3b,
yields identical conclusions.

Next, we explored the impact of variable simulation settings. As common in the
literature, we used the area under the precision-recall curve as a summary perfor-
mance measure to compare di↵erent algorithms. Precision and recall both depend
on the decision threshold, above which a marker is predicted to be activated. By
varying this threshold, one obtains a precision-recall curve.

Figure 3.5a shows the area under the precision recall curve as a function of an
increasing ratio of population structure and independent environmental noise. When
the confounding population structure is weak, both the Lasso and the LMM-Lasso
perform similar. As expected, the benefits of population structure correction in
LMM-Lasso are most pronounced in the regime of strong confounding. We also
examined the ability of each method to recover genetic e↵ects for increasing com-
plexities of the genetic model, varying the number of true causal SNPs while keeping
the overall genetic heritability fixed (Figure 3.5b). LMM-Lasso performs better than
alternative methods for the whole range of considered settings with the di↵erence
in accuracy being the largest for genetic architectures of medium complexity. These
results show that, in the regime of a larger number of true weak associations, it is
advantageous to include a genetic covariance K that accounts for some of the weak
e↵ects (Yang et al., 2010). The identical e↵ect is observed when varying the ratio
between true genetic signal versus confounding and noise (Figure 3.5c). Again, the
performance of the LMM-Lasso is superior to all other methods and the strengths
are particularly visible for medium signal to noise ratios.

Multivariate models better di↵erentiate multiple causal loci from correla-
tion due to linkage Previously, step-wise regression models that include genetic
variants in the order of e↵ect sizes have been considered to di↵erentiate between
true genetic heterozygosity and local correlation due to linkage (Yang et al., 2012a).
Here, we show that LMM-Lasso can be successfully applied for the same task, how-
ever with the additional benefit that a step-wise order of including genetic markers
as co-factors is not needed (Figure 3.6). The comparison includes true genetic het-
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erogeneity where two loci within linkage disequilibrium (LD) jointly regulate the
phenotype (left) as well as a single genetic e↵ect that is broadened by LD (right).
The LMM-Lasso model is able to di↵erentiate between the two types of genetic ar-
chitectures reliably, whereas the Linear Mixed Model su↵ers from correlation due to
linkage.

3.3.2 LMM-Lasso explains the genetic architecture of com-
plex traits in model systems

Having shown the accuracy of LMM-Lasso in recovering causal SNPs in simulations,
we now demonstrate that the LMM-Lasso better models the genotype-to-phenotype
map in Arabidopsis thaliana and mouse (Valdar et al., 2006a). In this experiment,
we focus on 20 flowering time phenotypes for Arabidopsis thaliana, which are well
characterized, and 273 mouse phenotypes which are relevant to human health.

Data We obtained genotype and phenotype data for up to 199 accessions of Ara-
bidopsis thaliana from Atwell et al. (2010). Each genotype comprises 216,130 single
nucleotide polymorphisms per accession. We study the group of phenotypes related
to the flowering time of the plants. We excluded phenotypes that were measured
for less than 150 accessions to avoid possible small sample size e↵ects, resulting in a
total of 20 flowering phenotypes that were considered. The relatedness between indi-
viduals ranges in a wide spectrum leading to a complex population structure (Platt
et al., 2010a).

We also obtained genotype and phenotype data for 1,940 mice from a multi-
parent inbred population (Valdar et al., 2006a). Each individual genotype comprises
of 12,226 single nucleotide polymorphisms. All mice were derived from eight inbred
strains and were crossed to produce a heterogenous stock. The phenotypes span a
large variety of di↵erent measurements ranging from biochemical to behavioral traits.
Here, we focused on 273 phenotypes which have numeric or binary values.

LMM-Lasso more accurately predicts phenotype from genotype and un-
covers sparser genetic models First, we considered phenotype prediction to
investigate the capability of alternative methods to explain the joint e↵ect of groups
of SNPs on phenotypes. To measure the predictive power, we assessed which frac-
tion of the total phenotypic variation can be explained by the markers using di↵erent
methods (Ober et al., 2012). Explained variance is defined as the fraction of the total
variance of the phenotype that can be explained by the model and in our experi-
ments equals one minus the mean squared error as we preprocesed the data to have
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zero-mean and unit-variance. We avoided prediction on the training data, as for
all methods this leads to anti-conservative estimates of variance explained due to
overfitting.

Figure 3.7a and 3.7b show the explained variance of the two methods on the
independent test data set for each phenotype in the two datasets. For both model
organisms, LMM-Lasso explained at least as much variation as the Lasso. In a
fraction of 85.00% of the Arabidopsis thaliana and 91.58% of the mouse phenotypes,
LMM-Lasso was more accurate in predicting the phenotype and thus explained a
greater fraction of the phenotype variability from genetic factors than the Lasso.
In contrast, Lasso achieved better performance in only 15.00% of the Arabidopsis
thaliana and 8.42% of the mouse phenotypes. Beyond an assessment of the genetic
component of phenotypes, LMM-Lasso dissects the phenotypic variability into the
contributions of individual SNPs and of population structure. Figure 3.7c and 3.7d
show the number of SNPs selected in the respective genetic models for prediction.
With the exception of two phenotypes, LMM-Lasso selected substantially fewer SNPs
than the Lasso, suggesting that the Lasso includes additional SNPs into the model
to capture the e↵ect of population structure through an additional set of individual
SNPs. This observation is in line with the insights derived from the simulation
setting where the majority of excess SNPs selected by Lasso are indeed driven by
population e↵ects (Figure 3.4b). Although the genetic models fit by LMM-Lasso are
substantially sparser, they nevertheless suggest complex genetic control by multiple
loci. In 90.00% of Arabidopsis thaliana and in 66.06% of the mouse phenotypes,
LMM-Lasso selected more than one SNP, in 40.00/45.49% of the cases the number
of SNPs in the model was greater than 10.

LMM-Lasso allows for dissecting individual SNP e↵ects from global ge-
netic e↵ects driven by population structure Next, we investigated the ability
of LMM-Lasso to di↵erentiate between individual genetic e↵ects and e↵ects caused
by population structure. Figure 3.8 shows the explained variances for the phenotype
flowering time (measured at 10�C) for Arabidopsis thaliana. Again, these estimates
were obtained using a cross validation approach. It is known (Zhao et al., 2007)
that flowering is strikingly associated with population structure, which explains why
the LMM-Lasso already captured a substantial fraction (45.17%) of the phenotypic
variance, when using realized relationships alone (no active SNPs). Due to the small
sample size, cross-validation can underestimate the true explained variance (Hastie
et al., 2009). Nevertheless, cross-validation is fair for comparison and conservative
as it avoids possible overfitting.

For increasing number of SNPs included in the model, the explained variance
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Phenotype LMM-Lasso Lasso
LD 5/54 4/69
LDV 5/63 3/69
SD 3/55 2/61
SDV 5/54 2/60
FT10 1/48 4/67
FT16 3/51 4/68
FT22 2/54 1/64
2W 3/53 2/65
8W 2/51 4/59
FLC 5/52 3/53
FRI 3/43 3/46
8WGHFT 4/59 2/66
8WGHLN 1/48 4/58
0WGHFT 4/58 3/63
FTField 4/61 3/69
FTDiameterField 1/49 1/51
FTGH 1/49 2/61
LN10 3/50 2/67
LN16 2/58 3/64
LN22 4/54 2/65

Table 3.1: Associations close to known candidate genes. We report true
positives/positives (TP/P) for LMM-Lasso and Lasso for all phenotypes related to
flowering time in Arabidopsis thaliana. P are all activated SNPs and TP are all
activated SNPs that are close to candidate genes.

of LMM-Lasso gradually shifted from the kernel to individual SNP e↵ects. In this
example, the best performance (48.87%) was reached with 30 SNPs in the model
where the relative contribution of the random e↵ect model was 33.10% and of the
individual SNPs is 15.77%. In comparison, Lasso explained at most 46.53% of the
total variance, when 125 SNPs were included in the model.

Associations found by LMM-Lasso are enriched for SNPs in proximity
to known candidate genes Finally, we considered the associations retrieved by
alternative methods in terms of their enrichment near candidate genes with known
implications for flowering in Arabidopsis thaliana. Lippert et al. (2011) showed that
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Phenotype Chrom. Position GeneID LM LMM
LD 4 (466307,466800) AT4G01060 (2.55,6.40) (3.37,4.20)
2W 4 (454542,460246) AT4G01060 (8.29,1.89) (6.03,4.26)
FLC 4 (205170,210657) AT4G00450 (6.88,5.40) (5.01,4.78)
FRI 4 (268809,268990) AT4G00650 (20.91,15.13) (17.45,13.65)
FRI 4 (268990,276143) AT4G00650 (15.13,17.36) (13.65,14.37)

Table 3.2: Candidate genes containing multiple associations. List of all candi-
date genes that have two activated SNPs in close proximity for all phenotype related
to flowering time of Arabidopsis thaliana. The last two columns show the � log

10

transformed p-values for the linear and the linear mixed model.

it can be advantageous to remove the SNP of interest from the population structure
covariance. Thus, we applied LMM-Lasso on a per-chromosome basis estimating
the e↵ect of population structure from all remaining chromosomes. To obtain a
comparable cuto↵ of significance, we employed stability selection for both the LMM-
Lasso and Lasso (see Section 3.3).

Table 3.1 shows that the LMM-Lasso found a greater number of SNPs linked to
candidate genes for twelve phenotypes, whereas Lasso retrieved a greater number
for only six phenotypes. In the remaining two phenotypes, both methods performed
identically We also investigated to what extent the solution is a↵ected by di↵erent
selection thresholds (see Figure 3.9). Reassuringly, the LMM-Lasso outperformed
the standard Lasso over a large range of di↵erent values.

We also considered to what extent the findings provide evidence for allelic hetero-
geneity or the existence of an imperfectly tagged causal locus. Overall, 14.75% of the
SNPs linked to candidate genes and selected by the LMM-Lasso appear as adjacent
pairs (Table 3.2), i.e. having a distance less than 10kb to each other, while 5.56%
of the SNPs selected by the Lasso do. From all activated SNPs, 8.18% selected by
LMM-Lasso and 18.96% selected by the Lasso have at least a second active SNP in
close proximity.

3.4 Summary

In this chapter, we have presented a Lasso multi-marker mixed model for detecting
genetic associations in the presence of confounding influences such as population
structure. The approach combines the attractive properties of mixed models that
allow for elegant correction for confounding e↵ects and those of multi-marker models
that consider the joint e↵ects of sets of genetic markers rather than one single locus.
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In our experiments, we could show that the LMM-Lasso does not only improve the
prediction accuracy, but also allows for dissecting the explained variance into broad-
scale genetic e↵ects and individual genetic e↵ects.

Arguably, the LMM-Lasso works best if population structure is present and few
markers have a strong e↵ect on the phenotype. If only population structure is present,
the solution found by the LMM-Lasso resembles the ridge regression estimate. In
contrast, if no population structure is present, it is similar to the Lasso solution. The
power of the presented method lies in its ability to adapt to the genetic architecture
at hand as it reduces the assumptions made on the e↵ect sizes.
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(a) Population structure strength (b) Trait complexity: Varying signal strength

(c) Trait complexity: Varying number of
causal SNPs

Figure 3.5: Evaluation of alternative methods on the semi-empirical GWAS
dataset for di↵erent simulation settings. Area under precision recall curve for
finding the true simulated associations. Alternative simulation parameters have been
varied in a chosen range. (a) Evaluation for di↵erent relative strength of population
structure �2

pop

. (b) Evaluation for true simulated genetic models with increasing
complexity (more causal SNPs). (c) Evaluation for variable signal to noise ratio �2

sig

.
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(a) Linear Mixed Model, one causal variant

(b) LMM-Lasso, one causal variant

(c) Linear Mixed Model, two causal variants

(d) LMM-Lasso, two causal variants

Figure 3.6: Di↵erentiation between multiple causal loci from spurious cor-
relation due to linkage on simulated data. The upper two plots show a single
SNP with a strong e↵ect in an LD block. The lower two plots show the same LD
block, but with an additional SNP e↵ect with weaker e↵ect size in the opposite di-
rection. While both methods detect the SNP with large e↵ect size, the second one is
only uniquely recovered by the LMM-Lasso. The red lines indicate the causal SNPs,
the blue dots the assigned score.
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(a) Arabidopsis test variance (b) Mouse test variance

(c) Arabidopsis number of SNPs (d) Mouse number of SNPs

Figure 3.7: Predictive power and sparsity of the fitted genetic models for
Lasso and LMM-Lasso applied to quantitative traits in model systems.
Considered were flowering phenotypes in Arabidopsis thaliana and bio-chemical and
physiological phenotypes with relevance for human health profiled in mouse. Com-
parative evaluations include the fraction of the phenotypic variance predicted and
the complexity of the fitted genetic model (number of active SNPs). (a) Explained
variance in Arabidopsis. (b) Explained variance in mouse. (c) Complexity of fitted
models in Arabidopsis. (d) Complexity of fitted models in mouse.
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Figure 3.8: Variance dissection into individual SNP e↵ects and global ge-
netic background driven by population structure. Shown is the explained
variance on an independent test set as a function of the number of active SNPs for
the flowering phenotype (10�C) in Arabidopsis thaliana. In blue, the predictive test
set variance of the Lasso as a function of the number of SNPs in the model. In
green, the total predictive variance of LMM-Lasso for di↵erent sparsity levels. The
shaded area indicates the fraction of variance LMM-Lasso explains by means of indi-
vidual SNP e↵ects (yellow) and population structure (green). LMM-Lasso without
additional SNPs in the model corresponds to a genetic random e↵ect model (black
star).
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Figure 3.9: Evaluation of the Lasso methods for FLC gene expression
in Arabidopsis thaliana. Precision-Recall Curve for recovering SNPs in prox-
imity to known candidate genes using alternative methods. Shown is precision
(TP/(TP+FP)) as a a function of the recall (TP/(TP+FN)). Each point in the
plot corresponds to a specific selection threshold.
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Chapter 4

Incorporating structural
information into the Lasso

In the last chapter, we presented an algorithm that increased power by adding a
random e↵ect to the Lasso model that can account for population structure. In this
chapter, we take a di↵erent route and increase power by either leveraging samples
over correlated phenotypes or by coupling the e↵ect sizes of markers that are known
to be related. Both results in a reduction of the model space and can be combined
with an additional random e↵ect if confounding is present.

The idea of coupling regressors of correlated traits is well established and has
been used before to induce information sharing across related traits (Knott and Ha-
ley, 2000; Jiang and Zeng, 1995; Caruana, 1997; Argyriou et al., 2007). In statistical
genetics, the applications of multi-trait models are wide-spread and can roughly be
divided into two lines: first, sparse linear models that reward solutions in which the
same markers are selected (Kim and Xing, 2009; Lee et al., 2010; Wang et al., 2012),
and, second, mixed-model approaches that allow for shared random e↵ects (Hender-
son, 1984; Price et al., 2011; Korte et al., 2012). In this chapter, we concentrate on
di↵erent `

1

-regularized models that belong to the group of sparse linear models. The
Lasso objective is a flexible one which can be extended by additional regularization
terms with ease. For instance, if a set of correlated traits has been recorded, then a
multi-task Lasso model is employed to reward solutions in which the same markers
are selected over related phenotypes (Kim and Xing, 2009). If gene pathways or
other network informations between the markers are available, solutions that select
markers concordant with this prior knowledge are preferred (Lee et al., 2009).

In Section 4.1, we give an overview of di↵erent Lasso models utilizing input and
output prior structure. We also derive a new Lasso model, the AAALasso, that fills

55
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an important gap in the taxonomy of methods using input and output structure. In
Section 4.2, we present an e�cient inference scheme for estimating its parameters.
In our experiments (Section 4.3), we critically assess the advantages and pitfalls of
Lasso models that incorporate input and output structure.

4.1 Methods overview

In this section, we give an overview of di↵erent Lasso models that take relations be-
tween markers and phenotypes into account. In its most general form, the structured
Lasso problem is to minimize

kY � XW k2

Fro

+ �kW k
1

+ �
in

⌦
in

(W ) + �
out

⌦
out

(W ). (4.1)

The phenotype matrix Y is a N ⇥ T dimensional matrix, where N is the number
of samples and T is the number of traits. X 2 RN⇥M is the SNP matrix, where M
is the number of SNPs, and W 2 RM⇥T is the coe�cient matrix to be estimated.
With a slight abuse of notation, we write Y

n,:

to access the nth row of the phenotype
matrix, and Y

:,t

for the tth column of the phenotype matrix. The first term rewards
a solution with accurate prediction of the phenotype (minimal loss), while the second
term commonly rewards sparsity in the solution, that is, solutions that set the weights
of only few SNPs to non-zero are preferred. � is a trade-o↵ parameter between loss
minimization and sparseness. The larger � is, the more markers are set to 0. ⌦

in

(W )
and ⌦

out

(W ) are regularizers that reward solutions in which related input variables
(SNPs) or related output variables (phenotypes) receive similar weights W . �

in

and
�

out

are their respective regularization parameters, which control to which degree our
solution should respect input or output structure. If both, �

in

and �
out

are zero, the
problem reduces to the standard Lasso problem which we discussed in Section 2.1.5.
A family of recent studies have investigated di↵erent types of regularizers on input
and/or output structure, the most prominent ones of which we discuss below.

4.1.1 Exploiting input structure

The Group Lasso (Yuan et al., 2006) extends the Lasso in a way that it defines groups
of input features, and rewards similar weights for features from the same group by an
`
2

-norm regularization. Such groups could be SNPs from genes that are members of
the same biochemical pathway. In Group Lasso, ⌦

in

(W
:,t

) is defined for phenotype
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t as

⌦
in

(W
:,t

) =
X

g2G
in

kW

g,t

k
2

, (4.2)

where G
in

is the set of predefined groups of SNPs. A popular instance of the Group
Lasso is the Elastic Net algorithm (Zou and Hastie, 2005), where all SNPs belong to
the same group. Within a group, the grouped `

2

-norm allows for e↵ects in opposite
directions, but unlike the following approaches, it cannot consider the relatedness be-
tween two individual SNPs within a group. Two other models that incorporate input
structure into the Lasso problem are the non-convex Fused Graph Lasso (ncFGS) ap-
proach by Yang et al. (2012b) and the network-constrained Regularized Lasso by Li
and Li (2008). The Fused Graph Lasso model (Yang et al., 2012b) couples input
variables via

⌦
in

(W
:,t

) =
X

i⇠j2G

in

k|W
i,t

| � |W
j,t

|k
1

(4.3)

That is, it assumes that we are given a graph G
in

between SNPs, e.g. a protein
interaction network, and minimizes the di↵erence in the absolute weights of SNPs
that are interacting in this network. Due to the use of absolute weights, interacting
SNPs can have identical or opposite directions of e↵ect. The network constrained
regularized Lasso (Li and Li, 2008) defines ⌦

in

as:

⌦
in

(W
:,t

) =
X

i⇠j2G

in

↵
i,j
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� W
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d

j

!
2

(4.4)

Here, we again assume that a network between SNPs is given, with edge weights
↵

i,j

that represent the strength of the interaction. This regularizer rewards solutions
in which SNPs with strong interactions in the graph receive similar weights. These
weights are rescaled by the square root of the degree of each SNP d

i

in the SNP graph,
to allow SNPs that are having more connections, for instance regulatory elements,
to have larger coe�cients.

In contrast to the other two approaches discussed before, this model assumes that
coupled markers have an e↵ect in the same direction (synergistic e↵ect) and does not
allow for e↵ects in opposite directions (antagonistic e↵ect). However, synergistic and
antagonistic e↵ects of SNPs are both plausible scenarios, as demonstrated in yeast:
In a recent study, Jelier et al. (2011) were able to predict yeast growth phenotypes
based on genotypes using a simple additive model across a↵ected genes and observed
genetic loci with growth-enhancing and inhibiting e↵ects.
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4.1.2 Exploiting output structure

The models using output structure strive to exploit the fact that in the presence of a
collection of several phenotypes, we may know which of these phenotypes are related
to each other and search for a possibility to use this knowledge for more accurate
variable selection. The first common way of coupling phenotypes is the standard
Multi-Task Lasso (MTLasso) from Obozinski et al. (2008). It uses a `

2

-norm to
reward solutions in which a SNP receives similar weights across all phenotypes

⌦
out

(W ) =
MX

m=1

kW

m,:

k
2

(4.5)

If we have more specific information about which phenotypes are correlated, then
we can reward solutions in which the weight vector for correlated phenotypes are
similar. This model is referred to as Graph-Guided Fused Lasso (FGLasso) (Kim
et al., 2009).

⌦
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k⇠l2G

out
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� sign(r
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)W
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k
1

(4.6)

Here, G
out

is the graph of correlation scores between phenotypes, and r
k,l

is the
correlation between phenotype k and l.

4.1.3 Exploiting input and output structure

Structured Input Output Lasso (SIOL) by Lee and Xing (2012) and Two-Graph
Guided Multitask Lasso (MTLasso2G) by Chen et al. (2012) are two recent Lasso
models which take both input and output structure into account. In Lee and Xing
(2012), the authors extend the idea of group Lasso in having both groups G

in

of
SNPs in the input level and groups G

out

of phenotypes in the output level. That is,
the regularization terms are defined as:
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Chen et al. (2012), on the other hand, couples the weights of correlated SNPs on
the input level and the weights of correlated phenotypes on the output level:
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where s
i,j

is the Pearson’s correlation coe�cient between SNP i and j, ↵
i,j

is the
edge weight between SNP i and j, �

k,l

is the edge weight between trait k and l. For
simplicity, the authors (Chen et al., 2012) set the edge weights to the absolute value
of the correlation coe�cient.

While we agree with the authors that strongly correlated phenotypes are more
likely to be caused by the same subset of SNPs, we argue that linkage disequilib-
rium between two SNPs does not imply functional coherence and propose to use a
biological network as input information instead. We propose a novel model called
AAALasso, a Lasso model that exploits both structured input and structured output
information. For linking the SNPs, we use a regularization term similar to (Yang
et al., 2012b), for linking the phenotypes, we use a regularization term similar to (Kim
et al., 2009). Although both regularizers have been used before, the combination of
both is novel. Our proposed method can handle antagonistic e↵ects between related
markers, while at the same time favoring pleiotropic markers that have a shared
e↵ect across correlated traits:
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(4.9)

Figure 4.1 demonstrates how our proposed model exploits input and output struc-
ture for coupling the coe�cients to be estimated. In this toy example, the traits y

1

and y

2

are correlated to each other and hence their respective coe�cients, i.e. W
i,1

and W
i,2

for SNP i 2 {1 . . . 8}, will be coupled via shrinking the di↵erence between
their magnitudes. However, the coe�cients of y

3

will be optimized independently of
y

1

and y

2

. Similarly, the coe�cients of x

1

and x

2

, i.e. X

:,1

and X

:,2

, are coupled
(across all outputs) as the blue edge between them implies they have similar e↵ects
on the phenotypic traits. In this case, their coe�cients will both be pushed to zero
as they have no e↵ect on any of the output traits. On the other hand, W

4,1

and
W

5,1

(resp. W
4,2

and W
5,2

) will both be non-zero and close to each other in terms of
magnitude due to the dashed lines between x

4

,x
5

and y

1

,y
2

.
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y1# y2# y3#

x3# x5# x6#x4# x7# x8#x1# x2#

Figure 4.1: Demonstration of the coupling of input and output. Red solid
edges represent correlations between the phenotypes, blue solid lines represent re-
lational dependencies between the SNPs. A dashed line represents an association
between an SNP and a phenotype.

4.2 Parameter inference

Solving the optimization problem (4.9) is hindered by the input penalty term that
makes the objective non-convex. While in principle, we can still use a similar proce-
dure as proposed in Yang et al. (2012b), the complexity of the algorithm changes from
O(TM3) when solving for each trait individually to O(T 3M3) when solving jointly
which is clearly prohibitive. By exploiting structured sparsity using Kronecker Prod-
ucts, we are able to improve the complexity of the algorithm significantly. In the
following, we will first give a very brief outline of the general algorithm and then in-
troduce the new speed-ups. For a more detailed description of the general algorithm,
we refer the interested reader to the original paper from Yang et al. (2012b), for an
introduction to Kronecker products we refer to the Appendix A.3.

The objective can be recast as an instance of DC (di↵erence of convex functions)
programming (Tao and An, 1997) by rewriting the objective as the di↵erence between
the two convex functions f

1

(W ), f
2

(W ), where:
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where we exploit the identity
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The problem is solved iteratively by substituting the concave part �f
2

(W ) by its
a�ne minorization until convergence. The a�ne minimization of the mth iteration
is defined as
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m)Tvec(@f
2

(W m)), (4.12)

where W

m is the solution of the previous iteration. In the following, we abbre-
viate the derivative @f

2

, evaluated at W

m, with C

m = @f
2

(W m). The resulting
subproblem is convex and is solved by alternating direction method of multipliers
(ADMM) (Boyd et al., 2011). We first introduce auxiliary variables Z,Z

in

,Z
out

to
decouple the regularization terms from the loss term in the objective, while coupling
them again in the constraints:
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where T

in

,T
out

embed the network constraints: for each edge in the input network,
we add two rows in T

in

, one with +1 on positions i and j, and one with +1 on
position i and �1 on position j. For each edge in the output network, we add one
row in T

out

, with +1 on position k and sign(�r
k,l

) on position l. The remaining
entries are set to 0.

ADMM uses the augmented Lagrangian to reformulate the problem as follows
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where ⇢ > 0 are the step sizes in the dual update, µ,µ
in

,µ
out

are the Lagrangian
multipliers. We then iteratively solve for ⇥ = {W ,Z,Z
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,Z
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,µ,µ
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,µ
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} until
convergence. Other than W , the updates are easy to compute and are as follows:
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where S
�/⇢

is the soft-thresholding operator defined as follows (Rockafellar, 1970):
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Solving for the coe�cients W

k+1 in iteration k requires to solve the linear system
b

k = Kvec(W k+1), where

K = (I ⌦ X)T (I ⌦ X) + ⇢ (I ⌦ T

in

)T (I ⌦ T

in

) + ⇢ (T
out

⌦ I)T (T
out

⌦ I) + ⇢I

b

k = vec(XT

Y ) + vec (Cm) + vec
�
⇢Zk � µ

k

�
+ vec

�
T

T

in

(⇢Zk

in

� µ

k

in

�

+vec
�
(⇢Zk

out

� µ

k

out

)T
out

�
, (4.23)

While the authors in Yang et al. (2012b) propose to compute one Cholesky fac-
torization in the beginning to speed-up the subsequent iterations, computing the
factorization is prohibitive in our setting as its runtime complexity is O(T 3M3). In-
stead, we propose to solve the linear system by using conjugate gradients (Shewchuk,
1994). Conjugate gradient (CG) is an iterative method for solving linear systems ef-
ficiently. Specially, if the matrix-vector product can be computed within acceptable
time and memory resources, as we do by exploiting the Kronecker structure, the
speed-up can be significant:

Kvec(W ) = vec(XT

XW ) + vec(T T

in

T

in

W ) + vec(WT

out

T

T

out

) + ⇢vec(W )

. (4.24)

Using the Kronecker speed-ups reduces the runtime for computing the matrix-vector
product from O(T 2M2) to O(T 2M+M2T ) and reduces the memory complexity from
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Figure 4.2: Runtime comparison for
varying number of traits. The naive
method, based on a Cholesky factoriza-
tion, is shown in green (dashed), the pro-
posed method, exploiting the Kronecker
structure, is shown in blue (solid). Shown
is the averaged runtime (in seconds) and
its standard error as a function of the num-
ber of traits.

O(M2T 2) to O(M2 + T 2). If the number of SNPs is large, computing the M ⇥ M
matrices is still prohibitive. For X

T

X we can exploit its low-rank structure, since
the number of samples is usually small compared to the number of SNPs, decreasing
the runtime again to O(MNT ) and the memory requirements to O(NM+MT+NT )
by never explicitly computing the outer product XTX, but X

T (XW ). While we
cannot assume that the matrices T

in

,T
out

have low-rank, we can exploit the fact that
they are very sparse (having only two non-zero entries per row).

We measured the runtime of our algorithm on a MacPro (8 cores, 2GHz, 12MB
L2-Cache, 16GB Memory) for a varying number of traits {3, 6, . . . , 30}, while keep-
ing the number of SNPs and samples fixed (P = 500, N = 100). Subsequently, we
compared our method to a naive algorithm that computes a one-time Cholesky fac-
torization of K for solving the ridge regression subproblems. The corresponding run
times are shown in Figure 4.2, confirming the significantly improved scalability of
our method.

4.3 Experiments

In this section, we compare di↵erent Lasso approaches in extensive simulation studies
and in an eQTL study that aims to determine variants a↵ecting gene expression un-
der nutrient limiting response in yeast (Smith and Kruglyak, 2008). For comparison,
we selected a comprehensive, publicly available set of six algorithms and our newly
defined method AAALasso. As a baseline, we considered the standard Lasso (Tib-
shirani, 1994). The family of methods using input structure only is represented by
the non-convex Fused Graph Lasso approach (ncFGS) (Yang et al., 2012b). The
Multi-Task Lasso (MTLasso) (Obozinski et al., 2008) and the Graph-Guided Fused
Lasso (FGLasso) (Kim et al., 2009) are representatives of the methods using out-
put structure only. The two very recent models MTLasso2G (Chen et al., 2012),
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SIOL (Lee and Xing, 2012) and the AAALasso use input as well as output struc-
ture. FGLasso and ncFGS are both special instances of our proposed method. For
the standard Lasso and MTLasso, we used the freely available MATLAB toolbox
of Tomioka et al. (2011).

4.3.1 Simulations

The evaluation of the di↵erent methods on real data is complicated by the fact
that reliable ground truth information is missing. To systematically evaluate the
aforementioned algorithms, we conducted experiments on synthetic datasets with
known ground truth first.

Data We generated datasets with a N = 100 samples, M = 500 SNPs and T = 3
traits each. The SNPs are bi-allelic, each of the two alleles is binary and the minor
allele frequency ranges between 0.05 and 0.45. For each trait, 3% of all SNPs are
selected as causal, having a non-zero weight, while the remaining SNP weights are
set to 0. We implemented a simple scheme to simulate shared SNP e↵ects, which in
turn gives rise to pleiotropy and hence to correlated outputs. We chose the SNPs
and their coe�cients for the first two traits T

1

, T
2

independently. The third trait T
3

is a combination of the former two having ↵% of its causal SNPs inherited from the
first trait, the remaining (100� ↵)% causal SNPs are derived from the second trait.
The overlap parameter ↵ varies in {0, 10, 20, 30, 40, 50}. By varying ↵, we were able
to generate arbitrary correlation dependencies between the traits. For example, if
↵ = 0, T

3

has the same causal SNPs as T
1

and is independent of T
2

. On the other
end of the spectrum, when ↵ = 50, T

3

gets half of its causal SNPs from T
1

, and half
of T

2

, being equally correlated with the two traits. The intermediate ↵ values result
in various other dependency structures and thereby provide a comprehensive set of
cases that one might experience in real experimental data.

The coe�cients of T
1

and T
2

are randomly drawn from one of the four Gaussian
distributions N (µ = ±1, � = 0.05), N (µ = ±0.7, � = 0.05). This in turn means
several loci are a↵ecting the trait in an additive manner with similar magnitude.
By allowing positive and negative e↵ect sizes of similar magnitudes, we simulate
antagonistic additive e↵ects. Next, the coe�cients of T

3

are adopted from the source
traits and a small amount of noise is added.

Subsequently, we added some noise to the simulated phenotypes, such that the
explained variances lies between 0.85 and 0.95 when knowing the true coe�cients.

Finally, we simulated the input network by adding 50 edges between causal SNPs,
500 edges between non-causal SNPs and 10 conflicting edges between causal and non-
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Simulation Glucose Glucose vs. Ethanol
Method � �

in

�
out

� �
in

�
out

STDLasso 1.0000 - - 4.0000 - - 4.0000 - -
MTLasso 4.0000 - - 16.0000 - - 16.0000 - -
FGLasso 1.0000 - 1.0000 4.000 - 1.0000 4.0000 - 1.0000
ncFGS 1.0000 0.0625 - 4.000 0.0156 - 4.0000 0.0625 -
MTLasso2G 0.2500 0.0625 0.0039 0.2500 0.0039 0.0039 0.0625 0.0039 0.0039
eSIOL 0.0312 0.0156 0.0312 0.0078 0.0078 0.0312 0.0117 0.0117 0.0312
AAALasso 1.0000 0.2500 1.0000 4.0000 0.0039 0.2500 4.0000 0.0039 1.0000

Table 4.1: Chosen regularization parameters. For each method, we show the
median of the regularization parameters determined by cross-validation. All regu-
larization parameters lie within the chosen intervals or on the left-boundary of the
interval. For all methods except SIOL we used the set {4�4, 4�3, 4�2, 4�140, 41, 42, 43}.
For SIOL, we changed the range to {2�8, 2�7, 2�6, 2�5, 2�4, 2�3, 2�2, 2�1, 20} since the
data is internally normalized.

causal SNPs, which amounts to noise input network. Using this scheme, we generated
300 datasets, 50 for each value of ↵. To ensure that our input network is topologically
close to real gene/protein networks, the input network is generated as a scale-free
network using the iGraph (Csardi and Nepusz, 2006) package of R.

Experimental Setting We used 5-fold cross validation with a grid search scheme
to choose regularization parameters that minimize mean squared error (MSE) for all
algorithms. For each method, we optimized the applicable regularization parameters
�, �

in

, �
out

. All regularization parameters can take one of the values in {4�4, 4�3, 4�2,
4�1, 40, 41, 42, 43}. Since SIOL (Lee and Xing, 2012) uses an internal normalization
step in its training procedure, we changed the range to {2�8, 2�7, 2�6, 2�5, 2�4, 2�3,
2�2,2�1, 20} and learned a least squares estimator on the non-zero coe�cients on top.
Since we do not account for epistasis, we set the corresponding parameter of SIOL
to 0. In Table 4.1, the median of the chosen regularization parameters is shown for
each method assuring that the chosen intervals are sensitive.

We defined an output edge, if the absolute correlation between the two traits is
larger than 0.4 (needed for MTLasso2G and AAALasso). In addition, SIOL requires
group definitions on the input and output level. For this we used the connected
components of the trait correlation network as the output groups and the edges of
the input network for the input groupings as suggested by the authors (Seunghak
Lee, personal communication, 2013).

We measured the performance of algorithms in terms of (a) detecting SNPs with
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Figure 4.3: Performance of all algorithms on simulated data. Left: Comparing
the methods in terms of predictive power. Shown is the Explained Variance (EV)
as a function of ↵. The dashed gray line represents the upper bound, i.e. EV
obtained when using true co-e�cient matrix. Right: Area under Precision recall
curve (AUPRC) for recovering the simulated associations as a function of the overlap
parameter ↵. The error bars represent the standard error.

a true simulated e↵ect and (b) in terms of predictive power. To measure the power
to recover the true coe�cient matrix �, we calculated the Area Under Precision
Recall Curve (AUPRC) for the non-zero coe�cients. The precision-recall curve shows
the precision (TP/(TP+FP)) as a function of the recall (TP/(TP+FN)), where TP
are the True Positives, FP the False Positives and FN the False Negatives. For
measuring the predictive power, we used the explained variance which is defined
as the squared Pearson Correlation coe�cient between the true and the predicted
phenotype, averaged over the traits.

Results We display the results for the di↵erent methods for varying ↵ in Figure 4.3.
In general, we depict that methods that make correct use of either/both structural
information perform better than those that do not. Methods that do not incorporate
structural information in turn perform better than methods that make incorrect use
of structural information.

While our simulation setting assumes that prior information is given via net-
works, SIOL is designed for grouping information. We tried various di↵erent network-
group transformations (data not shown here), and continued with the one working
best. The input/output structure in our scenario is complex allowing for overlapping
groups and groups of all di↵erent sizes. As discussed in Kim and Xing (2010), this
can cause to imbalance between the di↵erent SNPs if not accounted for and leads
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Figure 4.4: Power comparison for varying input noise. We fixed the overlap
parameter ↵ = 0.3 and varied the number of conflicting edges between 0 and 50.
For each setting, we generated 50 datasets. The performance of all methods that are
exploiting input structure is dropping as the number of conflicting edges is increasing,
while the performance of the other methods stays constant.

to a loss of power. In contrast, the other structural methods shrink the di↵erence
between the weight coe�cients and not their magnitude.

FGLasso and M2Lasso2G have the same output penalty term, while M2Lasso2G
has an additional input penalty term. Since the input penalty does not allow for
antagonistic e↵ects, but rather minimizes the di↵erence between the coe�cients of
two connected SNPs, it performs worse than FGLasso which can flexibly set the
coe�cients of all SNPs. ncFGS, which has an input penalty term that supports
antagonistic e↵ects, also reaches high levels of precision/recall and predictive power.
FGLasso can account for two strongly correlated traits (small ↵) as well as for three
mildly correlated traits (large ↵). Our proposed method, AAALasso, consistently
outperforms all competitors as it combines the advantages of ncFGS and FGLasso.

We also performed simulations to measure robustness of the algorithms under
noisy input priors (see Figure 4.4). Our results suggest that the AAALasso, and its
submodels, can cope with a modest amount of input noise.

4.3.2 eQTL study in yeast

In our next experiment, we assessed the performance of the methods AAALasso,
STDLasso, MTLasso, MTLasso2G and SIOL on the yeast eQTL dataset from Smith
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Figure 4.5: Hierarchical clustering of the gene expression levels under glu-
cose treatment (left) and of the di↵erence between gene expression levels
under ethanol and glucose treatments (right). Under the glucose condition,
genes can be divided into two major clusters of co-expressed genes, whereas on the
right, the co-expression pattern is more complex containing two major co-expression
clusters, one of which contains three smaller clusters that are weakly co-expressed
with the other small clusters. For the EG experiment, we focused on cluster 2, for
the DCS experiment on cluster 2 and 4.

and Kruglyak (2008).

Data The dataset contains gene expression levels of 5637 genes and 1260 unique
SNPs (out of 2956 SNPs) for 109 yeast strains. The strains are obtained by crosses
of the parental strains BY and RM. The main goal of the original eQTL study of
Smith and Kruglyak (2008) was to uncover associations between genetic loci and
gene expression under di↵erent environmental conditions (glucose or ethanol as the
sole carbon source).

We conducted two experiments: in the first one, we studied gene expression levels
related to metabolism under the glucose condition, in the second one we studied gene
expression levels related to metabolism that are di↵erentially expressed under the
glucose and ethanol condition. From this point on, we refer to the first experiment
as EG, which stands for excessive glucose, and to the second one as DCS, which
stands for di↵erential carbon source.

We first selected di↵erentially expressed genes by filtering out genes with standard
deviation less than 1.5. Then, we clustered the remaining di↵erentially expressed
genes using a simple hierarchical clustering scheme with complete linkage. As Fig-
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ure 4.5 (A) shows, we obtained two relatively large clusters of co-expressed genes in
the EG experiment: Cluster-2 is related to carbon and energy metabolism, whereas
Cluster-1 contains genes involved in mating. Since the main findings of Smith and
Kruglyak (2008) are related to growth under changing carbon resources, we concen-
trated on the metabolism cluster, containing eight genes (listed in Table 4.2), in our
analysis. Since the pairwise correlation coe�cients in the cluster are strong (> 0.8),
we used a fully connected graph as output network.

In the DCS experiment, we found four small clusters of co-expressed genes.
Cluster-2,3 and 4 contain genes related to carbon metabolism, stress response and
respiration regulation, while the Cluster-1 contains genes related to iron transport.
We again focused on carbon related clusters but this time we only picked Cluster-
2 and Cluster-4 to obtain a more complicated output structure. We coupled all
traits that have an absolute correlation threshold of 0.5 or larger, resulting in a more
complex output structure compared to the EG experiment.

For the input network, we linked each SNP with its nearest gene within a 2Kb
neighborhood and constructed an edge if the corresponding genes are interacting.
We selected the top 100K interactions from each of the yeast function networks
String (Franceschini et al., 2013) and GeneMania (Warde-Farley et al., 2010) result-
ing in 2221 interactions for the SNPs under observation.

Experiments We learned the best tuning parameters with a 5-fold cross validation
scheme for each algorithm, as described in the previous section. We randomly split
the data into 80% for training and 20% for testing and repeated this procedure
100 times. Similar to Meinshausen and Bühlmann (2010), we counted all SNPs as
Positives that were turned on, i.e. non-zero coe�cients, in at least 80 runs.

Known associations IRA2 is a GTPase-activating protein that negatively reg-
ulates the RAS-cAMP pathway, a key component of the cellular response to glu-
cose (Broach, 1991). Smith and Kruglyak (2008) reported a strong association
between the gene IRA2 and the expression of energy metabolism and growth related
transcripts. The IRA2 region is highly polymorphic containing dozens of SNPs
and and is recovered by all methods in both experiments. In addition, Smith and
Kruglyak (2008) report a weakly significant association with ethanol induced di↵eren-
tial genes and CIN5, a transcription factor that mediates pleiotropic drug resistance
and salt tolerance and has a function in oxidative stress. This gene contains several
SNPs including two non-synonymous ones and is found by all methods in the glucose
and ethanol comparison experiment as well. This finding suggests that all methods
successfully recover the two main e↵ectors.
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Exp. ORF Gene Function

EG

YDR343C HXT6 High-a�nity glucose transporter; nearly identical to Hxt7p;
expressed at high basal levels relative to other HXTs, re-
pression of expression by high glucose

YDR342C HXT7 High-a�nity glucose transporter, member of the major fa-
cilitator superfamily; expression repressed by high glucose
levels

YBR117C TKL2 Transketolase, together with transaldolase phosphate cre-
ates a reversible link between the pentose phosphate path-
way and glycolysis

YGR043C Transaldolase of unknown function involved in diauxic shift
YMR169C ALD3 Cytoplasmic aldehyde dehydrogenase, involved in beta-

alanine synthesis; expression is induced by stress and re-
pressed by glucose

YAL061W Cytoplasmic aldehyde dehydrogenase, whose expression is
induced by stress and repressed by glucose

YGR248W SOL4 6-phosphogluconolactonase; protein abundance increases in
response to DNA replication stress

YGR088W CTT1 Cytosolic catalase T, which is involved in hydrogen peroxide
detoxification and oxidative stress response

DGS

YML054C CYB2 Cytochrome b2 (L-lactate cytochrome-c oxidoreductase), re-
quired for lactate utilization; expression is repressed by glu-
cose and anaerobic conditions

YDR343C HXT6 High-a�nity glucose transporter; nearly identical to Hxt7p;
expressed at high basal levels relative to other HXTs, re-
pression of expression by high glucose

YDL218W Putative protein of unknown function; YDL218W transcrip-
tion is regulated by Azf1p and induced by starvation and
aerobic conditions

YDR342C HXT7 High-a�nity glucose transporter, member of the major fa-
cilitator superfamily; expression repressed by high glucose
levels

YHR139C SPS100 Protein required for spore wall maturation; expressed during
sporulation

YGR087C PDC6 Minor isoform of pyruvate decarboxylase, decarboxy-
lates pyruvate to acetaldehyde, involved in amino acid
catabolism; transcription is glucose- and ethanol-dependent

Table 4.2: Phenotypes used in the yeast experiments. Members of the
co-expression cluster used in the glucose (top) and glucose vs. ethanol (bottom) ex-
periments. The classification to functions were derived from Saccharomyces Genome
Database (Cherry et al., 2012).
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Experiment Algorithm Antagonistic: A

A+S

Synergistic: S

A+S

EG

AAALasso 0.43 0.57
FGLasso 0.40 0.60
MTLasso 0.42 0.58
MTLasso2G 0.35 0.65
STDLasso 0.44 0.56
eSIOL 0.43 0.57
ncFGS 0.49 0.51

DGS

AAALasso 0.57 0.43
FGLasso 0.56 0.44
MTLasso 0.55 0.45
MTLasso2G 0.27 0.73
STDLasso 0.55 0.45
eSIOL 0.56 0.44
ncFGS 0.54 0.46

Table 4.3: Frequencies of categories of antagonistic and synergistic e↵ects
among interacting pairs of active SNPs.

Antagonistic e↵ects We analyzed the prevalence of antagonistic e↵ects among
the co-selected SNPs. We again focused on the top-100 active SNPs of each method
and counted the ratios between synergistic and antagonistic pairs.

For each method, we went over the input network edges whose SNPs are selected
and compared the SNP weights for the given edge. We then classified the edges as
synergistic (S), if both SNPs are active and the coe�cients have the same direction,
and antagonistic (A), if both SNPs are active and the coe�cients have opposite
directions. We then derived ratios antagonistic/synergistic interactions among active
edges as shown in Table 4.3. All algorithms, except of MTLasso2G, find abundant
antagonistic e↵ects. Moreover, the ratio of antagonistic e↵ects is similar between our
proposed method and the standard methods (STDLasso, MTLasso) that do not use
any input structure suggesting that antagonistic e↵ects are as common as synergistic
ones. MTLasso2G significantly deviates from all other methods as it assumes in the
model that all interactions are synergistic (see Table 4.3). We believe this assumption
is the core reason for its overall poor performance.

Next, we checked if the gene IRA2 has an antagonistic e↵ector in the glucose
condition. We report an antagonistic relation if the two genes are co-selected in at
least half of the runs. The methods AAALasso, ncFGS and MTLasso2G recovered
an antagonistic association between IRA2 and GPB2. The gene GPB2 is a multi-
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Algorithm EG DCS
AAALasso 0.40 ± 0.014 0.36 ± 0.010
FGLasso 0.43 ± 0.014 0.34 ± 0.010
ncFGS 0.36 ± 0.014 0.30 ± 0.009
eSIOL 0.25 ± 0.012 0.22 ± 0.008
MTLasso2G 0.32 ± 0.014 0.31 ± 0.010
MTLasso 0.44 ± 0.014 0.39 ± 0.010
STDLasso 0.42 ± 0.013 0.34 ± 0.009

Table 4.4: Predictive power analysis. Explained variance (± standard error)
achieved by all algorithms in both datasets.

step regulator of the cAMP-PKA signalling pathway, which has major roles in the
regulation of metabolism, stress resistance and cell cycle progression. In Phan et al.
(2010), it is shown that the GPB2 protein binds and negatively regulates IRA2 by
promoting its ubiquitin-dependent proteolysis.

Predictive power We also investigated the predictive power of the di↵erent ap-
proaches by measuring the explained variance (see Table 4.4). MTLasso performs
best over both datasets, followed by the standard Lasso, FGLasso and the AAALasso.
In the following, we go over the di↵erent approaches and relate their performance
to the MTLasso and the standard Lasso, depending if the method is a single or
multi-trait approach.

The MTLasso assumes that all tasks are correlated, but does neither put any
restrictions on the magnitude of the coe�cients nor on their directions. In contrast
to eSIOL, the groups cannot be overlapping, preventing that di↵erent SNPs are
di↵erently penalized.

ncFGS extends the standard Lasso by coupling the weights of markers that are
connected via the input network. In both experiments, the predictive performance
deteriorates by incorporating the input structure. Here, we give two potential ex-
planations for this: First, the input network is likely to be noisy resulting in linked
markers that do not have a joint e↵ect on the phenotype. Second, the assumption
that the weights of connected markers are equal in magnitude might be violated.

While MTLasso and FGLasso are both multi-trait approaches, FGLasso attempts
to model the phenotypic relatedness at a finer level. In the EG experiment, we used
a fully connected graph as output network, as the pairwise correlation coe�cients are
strong. Both methods perform roughly equally, which shows that both regularization
schemes work well in the case of strong genetic correlations. On the DCS experi-
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ment, however, the MTLasso outperforms the FGLasso. This can be attributed to
the following: First, the phenotypic correlations are less pronounced, making it less
likely that a SNP has the same e↵ect size on both phenotypes. Second, we coupled
two traits dependent on their phenotypic correlation assuming that phenotypic cor-
relation can be used as an proxy for the genetic correlation. However, shared hidden
confounding factors can also lead to spurious phenotypic correlations (Listgarten
et al., 2010; Fusi et al., 2012), inducing false edges in the output network.

Since the AAALasso is a combination of the two methods above, their discussion
applies here as well: The assumption that the weight coe�cients have the same
magnitude might be too strong, and both, the input and the output network, might
be noisy. Finally, MTLasso2G is significantly outperformed by the standard Lasso
in both experiments, which is most possibly caused by its restriction to synergistic
e↵ects, as we discussed above.

4.4 Summary

In this chapter, we have compared di↵erent Lasso models that utilize input and
output structure. In simulations, we could verify that incorporating prior knowledge
improves the predictive performance of standard Lasso methods, if its assumptions
are fulfilled. However, on the yeast dataset, a loose coupling of the weight vectors
across correlated phenotypes worked best for both experiments. Methods that use
biological knowledge to couple the coe�cients across markers did not improve the
predictive performance, neither did methods that couple the magnitudes of the weight
coe�cients across traits.

A fundamental challenge of all approaches using input structure is that they rely
on incomplete and noisy prior information (von Mering et al., 2002). Unfortunately,
the same also applies to approaches using output structure: We cannot infer which
phenotypes are genetically correlated by looking at the phenotypic correlations only.
Instead, we have to account for hidden confounding and learn the genetic correla-
tions to reduce the number of false edges that are induced by spurious correlations.
In addition, coupling the magnitudes of the weight vector assumes that the same
amount of the phenotypic variance can be explained by the genetic markers. This
assumption is for instance violated if the phenotypes are measured in di↵erent scales.
In the following chapter, we will present a method that learns the genetic correlations
between the phenotypes while accounting for hidden confounding factors, resolving
the drawbacks of the methods studied in this chapter.
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Chapter 5

Scalable multi-trait models

In the last chapter, we compared di↵erent multi-trait models that increase power
by leveraging samples over related phenotypes. One of the main drawbacks of the
studied methods has been their underlying assumption that the genetic relatedness
between the di↵erent phenotypes is known a-priori.

Here, we propose a multi-task Gaussian process approach that instead learns
the genetic relatedness between the phenotypes, as well as the relatedness between
the residuals. Conceptually similar methods have been proposed before, but they
either use a simpler noise model (Bonilla et al., 2008; Stegle et al., 2011) or lack
e�cient inference (Henderson, 1984): While the naive approach has a cubic runtime
in the number of samples and in the number of traits O(N3 · T 3) and a quadratic
memory requirement O(N2·T 2), our reformulation reduces the runtime to O(N3+T 3)
and the memory requirement to O(N2 + T 2), making the analysis of large number
of phenotypes and sample cohorts feasible. In statistical genetics, applications of
this class of models are wide-spread and include amongst others cross-heritability
estimation (Deary et al., 2012), phenotype prediction (Jia and Jannink, 2012) and
finding pleiotropic e↵ects (Korte et al., 2012).

In Section 5.1, we first show how our model can be derived from the standard
linear model. In Section 5.2, we provide an e�cient inference scheme for parameter
estimation and out-of-sample prediction. Our experiments in Section 5.3 confirm
the benefits of our model on simulated data as well as on genome-wide data from
Arabidopsis thaliana and an eQTL study in yeast.

75
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5.1 From linear models to multi-task Gaussian pro-
cesses

In the following, we derive the multi-task Gaussian process regression model with
correlated noise from standard linear regression (see also Section 2.1). Let Y 2 RN⇥T

denote the N ⇥ T phenotype matrix for N samples and T traits. A column of this
matrix corresponds to a particular phenotype t and is denoted as y

t

. Its outputs are
determined by a linear function of the markers X 2 RN⇥M

y

t

= Xw

t| {z }
genetic factors

+ ✏

t|{z}
noise

. (5.1)
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Marginalizing out the weights W and the residuals E results in a matrix-variate
normal model with sum of Kronecker products covariance structure
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where vecY =
�
y

>
1

. . .y>
T

�>
denotes the vector obtained by vertical concatenation

of all columns of Y , and R

NN

= XX

> is the sample-sample covariance matrix that
results from the marginalization over the weights W in Eqn. (5.1). An introduction
to the Kronecker product is given in the Appendix A.3.

The diagonal elements of C hereby represent the strength of the genetic signal for
the individual traits, the diagonal elements of ⌃ the magnitude of the noise variance
for the individual traits. The o↵-diagonal elements of C show how strongly the
traits change together depending on their genetic similarity. The interpretation of
these coe�cients is dependent whether the individuals of the dataset are related or
not: if the samples in the dataset are unrelated, the covariance matrix R can be
seen as a proxy for the tagged causal variants, and genetic variance refers to the
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aggregation of the tagged causal e↵ects that are shared over the traits (Lee et al.,
2012). Contrary, if the samples are related, the genetic variance does not only absorb
the causal variants that are in linkage disequilibrium with the markers, but also with
untagged causal variants as the markers are correlated over the complete genome
(Vattikuti et al., 2012; Visscher et al., 2010). In practice, neither the form of the
genetic trait-trait covariance matrix C nor the form of noise trait-trait covariance
matrix ⌃ are known a priori and hence both need to be inferred from the data,
fitting a set of corresponding covariance parameters ✓

C

and ✓

⌃

.
In the following, we will refer to a Gaussian process model with this type of sum of

Kronecker products covariance structure as GP-kronsum1. As common to any kernel
method, the linear covariance R can be replaced with any other positive semi-definite
covariance function. In statistical genetics, other common choices besides the linear
kernel would be the identity by descent matrix or the identity by state matrix (see
Section 3.2.2). Note, that we could have equivalently derived our model by using
a standard Gaussian process over vecY assuming a product covariance function for
the genetic signal and the noise. Further, we assume here that the mean function is
zero - an assumption that is often made for Gaussian processes. However, extensions
to non-zero mean functions are straightforward and can for instance be used for
accelerated association testing for correlated traits (Korte et al., 2012; Zhou and
Stephens, 2013).

In machine learning, work proposing this type of multi-trait Gaussian process
models builds on Bonilla and Williams (Bonilla et al., 2008), who have emphasized
that the power of Kronecker covariance models for GP models (Eqn. (5.2)) is linked to
non-zero observation noise. In fact, in the limit of noise-free training observations, the
coupling of traits for predictions is lost in the predictive model, reducing to ordinary
Gaussian process regressors for each individual phenotype. Most multi-task Gaussian
process models build on a simple independent noise model, an assumption that is
mainly routed in computational convenience. For example Stegle et al. (2011) show
that this assumption renders the evaluation of the model likelihood and parameter
gradients tractable, avoiding the explicit evaluation of the Kronecker covariance.

In animal breeding, conceptually similar models have been studied intensively in
the context of multivariate linear mixed models. Algorithms for parameters estima-
tion include Newton-Raphson (Patterson and Thompson, 1971; Thompson, 1973),
derivative-free (Meyer, 1989) and expectation maximization (EM) approaches (Foul-
ley and van Dyk, 2000). However, none of these approaches scale to the datasets of
the size we are interested in: The gradient-based methods require to solve a cubic

1The covariance is defined as the sum of two Kronecker products and not as the classical Kro-
necker sum C � R = C ⌦ I + I ⌦ R.
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operation O(N3T 3) per iteration, while the gradient-free methods can be computed
more e�ciently (Ducrocq and Chapuis, 1997; Meyer, 1991). However, they can only
be used for a moderate number of tasks, since the search space explodes otherwise.
For a more detailed overview over the di↵erent methods, we refer to Knight (2008).

In geostatistics (Zhang, 2007), linear coregionalization models have been intro-
duced to allow for more complicated covariance structures: the signal covariance
matrix is modeled as a sum of Kronecker products and the noise covariance matrix
as a single Kronecker product. Parameter inference is carried out by expectation
maximization and requires to compute the inverse of the complete covariance ma-
trix in each iteration - an operation that is cubic in the number samples times the
number of traits O(N3T 3). There exists also work in machine learning that extends
Gaussian process multi-task models to more complex covariance structures (Álvarez
and Lawrence, 2008; Wilson et al., 2012; Archembeau et al., 2011), but this leads
inevitably to more complex inference schemes involving variational approximation or
MCMC sampling.

In parallel to that work, Zhou and Stephens (2013) also developed an e�cient
inference scheme for the class of models we are studying here. However, there are
two main di↵erences between our and their approach: first, our approaches uses
a gradient-based optimizer to find the best parameters, while the method of Zhou
and Stephens (2013) employs a combination of an EM-variant and the Newton-
Raphson algorithm (Meyer, 2006). Second, Zhou and Stephens (2013) do not put
any restrictions on C and ⌃, while we restrict them to be low-rank. This restriction
is crucial to avoid overfitting if the number of phenotypes is larger than a handful:
the number of free parameters grows quadratically with the number of traits T ,
while the number of new data points grows only linearly (Friedman et al., 2008;
Meyer and Kirkpatrick, 2005). Lately, Dahl et al. (2013) also considered an e�cient
EM-algorithm for the same model, but further assumed that the precision matrices
C

�1 and ⌃�1 are sparse.

Predictive distribution In a GP-kronsum model, predictions for new data points
can be carried out by using the standard Gaussian process framework, introduced in
Section 2.2:

p(vec Y

⇤|R⇤,Y ) = N (vecY ⇤ |vec M

⇤,V ⇤ ) , (5.3)

where M

⇤ denotes the mean prediction and V

⇤ is the predictive covariance. An-
alytical expressions for both can then be obtained analogously to the single trait
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case (2.47), yielding:

vec M

⇤ = (C ⌦ R

⇤) (C ⌦ R + ⌃ ⌦ I)�1 vecY ,

V

⇤ = (C ⌦ R

⇤⇤) + (⌃ ⌦ I) � (C ⌦ R

⇤) (C ⌦ R + ⌃ ⌦ I)�1 (C ⌦ R

⇤) ,

where R

⇤ is the sample-sample covariance matrix between the test and training
instances, and R

⇤⇤ is the sample-sample covariance matrix between the test instances.

Task cancellation for equal task covariance matrices A notable form of the
predictive distribution (5.3) arises for the special case C = ⌃, that is the trait-
trait covariance matrix of signal and noise are identical. Similar to previous results
for noise-free observations (Bonilla et al., 2008), maximizing the marginal likelihood
p(vec Y |C,R,⌃) with respect to the parameters ✓

R

becomes independent of C

and the predictions are decoupled across the phenotypes, i.e. the benefits from joint
modeling are lost:

vec M

⇤ = (C ⌦ R

⇤) (C ⌦ R + ⌃ ⌦ I)�1 vecY
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⇤) (C ⌦ R + C ⌦ I)�1 vecY

= (C ⌦ R

⇤) (C ⌦ (R + I))�1 vecY

= (C ⌦ R

⇤)
�
C

�1 ⌦ (R + I)�1

�
vecY
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⇤(R + I)�1vecY

= vec
�
R

⇤(R + I)�1

Y

�
(5.4)

In this case, the predictions depend only on the sample-sample covariance, but not
on the trait-trait covariance. Thus, the GP-kronsum model is most useful when the
covariance structure between the residuals is independent of the covariance structure
of the genetic signal.

5.2 E�cient inference

In general, e�cient inference can be carried out for Gaussian models with a sum
covariance of two arbitrary Kronecker products

p(vecY |C,R,⌃) = N (vecY |0,C
TT

⌦ R

NN

+ ⌃
TT

⌦ ⌦
NN

) . (5.5)

The key idea is to first consider a suitable data transformation that leads to a diago-
nalization of all covariance matrices and second to exploit Kronecker tricks whenever
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possible. Let ⌃ = U

⌃

S

⌃

U

>
⌃

be the eigenvalue decomposition of ⌃, and analogously
for ⌦. Borrowing ideas from Kalaitzis and Lawrence (2012), we can first bring the
covariance matrix in a more amenable form by factoring out the structured noise:
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where C̃ = S
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. In the following, we use
K̃ = C̃ ⌦ R̃ + I ⌦ I for this transformed covariance.

E�cient log likelihood evaluation The log model likelihood (Eqn. (5.5)) can
be expressed in terms of the transformed covariance K̃:
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�1vecỸ , (5.7)

where vecỸ =
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are the pro-

jected phenotypes. Except for the additional term �1

2

ln|S
⌃

⌦ S

⌦

|, resulting from
the transformation, the log likelihood has exactly the same form as for multi-task GP
regression with iid noise (Bonilla et al., 2008; Stegle et al., 2011). Using an analogous
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derivation, we can now e�ciently evaluate the log likelihood:
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= � NT

2
ln(2⇡) � 1

2
ln
���(U

˜

C

⌦ U

˜

R

) (S
˜

C

⌦ S

˜

R

+ I ⌦ I) (U
˜

C

⌦ U

˜

R

)>
����

N

2
ln|S

⌃

|

� T

2
ln|S

⌦

| � 1

2
vecỸ >
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where we have defined the eigenvalue decomposition of C̃ as U
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for R̃.

E�cient gradient evaluation The derivative of the log marginal likelihood with
respect to a single covariance parameter ✓

R

2 ✓

R

is given by:
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vecỸ >

✓
@

@✓
R

K̃

�1

◆
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The derivative of the log determinant term can then be e�ciently evaluated as follows:
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Since SC̃ ⌦ SR̃ + I ⌦ I is a diagonal matrix, we thereby only have to evaluate the

diaogonal entries of SC̃⌦U>
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product. Next, we turn to the derivative of the squared form
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where
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Finally, plugging the derivative of the log determinant and the squared form together
again, we obtain
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Analogous gradients can be derived for all other covariance parameters ✓ 2 {✓

C

, ✓

⌃

,
✓

⌦

}. The proposed speed-ups also apply to the special cases where ⌃ is modeled
as being diagonal as in (Bonilla et al., 2008), or for optimizing the parameters of a
kernel function. Since the sum of Kronecker products generally can not be written
as a single Kronecker product, the speed-ups cannot be generalized to larger sums
of Kronecker products.
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E�cient prediction Similarly, the mean predictor (Eqn. (5.3)) can be e�ciently
evaluated
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Gradient-based parameter inference The closed-form expression of the marginal
likelihood (Eqn. (5.8)) and gradients with respect to covariance parameters (Eqn. (5.12))
allow for use of gradient-based parameter inference. In the experiments, we employ
a variant of L-BFGS-B (Zhu et al., 1997).

Computational cost. While the naive approach has a runtime of O(N3 · T 3)
and memory requirement of O(N2 · T 2), as it explicitly computes and inverts the
Kronecker products, our inference scheme reduces the runtime to O(N3 + T 3) and
the memory requirement to O(N2 + T 2), making it applicable to large numbers of
samples and phenotypes. The empirical runtime savings over the naive approach are
explored in the next section.

5.3 Experiments

We investigated the performance of the proposed GP-kronsum model on simulated
data, as well as on phenotype prediction. To investigate the benefits of structured
residual covariances, we compared the GP-kronsum model to a Gaussian process
(GP-kronprod) with iid noise (Stegle et al., 2011)
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as well as independent modeling of traits using a standard Gaussian process (GP-
single)
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and joint modeling of all phenotypes using a standard Gaussian on a pooled dataset,
naively merging data from all tasks (GP-pool).
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The predictive performance of individual models was assessed through 10-fold
cross-validation. For each fold, model parameters were fit on the training data only.
To avoid local optima during training, parameter fitting was carried out using five
random restarts of the parameters on 90% of the training instances.

The remaining 10% of the training instances were used for out of sample selection
using the maximum log likelihood as criterion. Unless stated otherwise, in the multi-
task models the relationship between tasks was parameterized as zz

>+�2

I, the sum
of a rank-1 matrix and a constant diagonal component. The rank-1 matrix allows for
e↵ects that are shared over all phenotypes, while the identity matrix allows for trait-
specific e↵ects. Both parameters, z and �2, were learnt by optimizing the marginal
likelihood. Finally, we measured the predictive performance of the di↵erent methods
via the averaged square of Pearson’s correlation coe�cient r2 between the true and
the predicted output, averaged over all phenotypes (Ober et al., 2012).

5.3.1 Simulations

First, we considered simulated experiments to explore the runtime behavior and to
find out if there are settings in which GP-kronsum performs better than existing
methods.

Runtime evaluation As a first experiment, we examined the runtime behavior
of our method as a function of the number of samples and of the number of pheno-
types. Both parameters were varied in the range {16, 32, 64, 128, 256}. The simulated
dataset was drawn from the GP-kronsum model (Eqn. (5.2)) using a linear kernel
for the sample-sample covariance matrix R and rank-1 matrices for the trait-trait
covariances C and ⌃. The runtime of this model was assessed for a single likeli-
hood optimization on an AMD Opteron Processor 6,378 using a single core (2.4GHz,
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(a) E�cient Implementation (b) Naive Implementation

Figure 5.1: Runtime comparison on synthetic data. We compare our e�cient
GP-KS implementation (left) versus its naive counterpart (right). Shown is the
runtime in seconds on a logarithmic scale as a function of the sample size and the
number of traits. The optimization was stopped prematurely if it did not complete
after 104 seconds.

2,048 KB Cache, 512 GB Memory) and compared to a naive implementation. The
optimization was stopped prematurely if it did not converge within 104 seconds.

In the experiments, we used a standard linear kernel on the SNPs as sample-
sample covariance while learning the trait-trait covariances. This modeling choice
results in a steeper runtime increase with the number of traits, due to the increasing
number of model parameters to be estimated. Figure 5.1 demonstrates the significant
speed-up. While our algorithm can handle 256 samples/256 tasks with ease, the naive
implementation failed to process more than 32 samples/32 tasks.

Hidden confounding induces correlated residuals A common source of struc-
tured residuals are hidden confounders such as environmental (Hunter, 2005) demo-
graphic (Rodwell et al., 2004) and technical factors (Kerr and Churchill, 2001). While
this is well acknowledged when studying gene expression data (Leek and Storey, 2007;
Listgarten et al., 2010; Fusi et al., 2012), we here explore the consequences of hidden
confounding for multi-trait prediction. For this, we simulated the phenotypes as
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(a) Total Signal (b) Hidden Signal (c) Shared Signal

Figure 5.2: Evaluation of alternative methods for di↵erent simulation set-
tings. (a) Evaluation for varying signal strength. (b) Evaluation for variable impact
of the hidden signal. (c) Evaluation for di↵erent strength of relatedness between the
tasks. In each simulation setting, all other parameters were kept constant at default
parameters marked with the yellow star symbol.

follows:
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where Z 2 RN⇥P are the unobserved confounders with P being the number of
unobserved confounders and u

t

2 RP being the weights. The prior on the weights
are specified as follows:
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where r and s are drawn from the standard normal distribution and represent the
shared phenotypic e↵ects. The trade-o↵ parameter µ

common

determines the extent of
relatedness between the phenotypes, the parameter µ

hidden

controls the ratio between
the genetic and the confounding e↵ect, and the parameter µ

signal

defines the ratio
between noise and signal. Finally, the noise is drawn from an isotropic Gaussian
distribution ✏

t

⇠ N (0, (1 � µ
signal

)I).
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To investigate the impact of the di↵erent trade-o↵ parameters, we considered a
series of datasets varying one of the parameters while keeping others fixed. We varied
µ

signal

in the range {0.1, 0.3, 0.5, 0.7,0.9, 1.0}, µ
common

2 {0.0, 0.1, 0.3, 0.5, 0.7,0.9, 1.0}
and µ

hidden

2 {0.0, 0.1, 0.3,0.5, 0.7, 0.9, 1.0}, with default values marked in bold.
Note that the best possible explained variance for the default setting is 45%, as the
signal is split up equally between the genetic and the confounding process. For all
simulation experiments, we created datasets with 200 samples and 10 phenotypes.
The number of SNPs was set to 200, as well as the number of hidden confounders.
For each such simulation setting, we created 30 datasets.

First, we considered the impact of variation in signal strength µ
signal

(Figure 5.2a),
where the overall signal was divided up equally between the two processes. Both GP-
single and GP-kronsum performed better as the overall signal strength increased.
The performance of GP-kronsum was superior, as the model can exploit the relat-
edness between the di↵erent phenotypes. Second, we explored the ability of the
di↵erent methods to cope with hidden confounding (Figure 5.2b). In the absence
of confounding factors (µ

hidden

= 0), GP-kronprod and GP-kronsum had very simi-
lar performances, as both methods leverage the shared genetic signal, thereby out-
performing the single-task Gaussian processes. However, as the magnitude of the
confounder increases, GP-kronprod falsely explains the task correlation completely
by the genetic covariance term which leads to loss of predictive power. Last, we
examined the ability of di↵erent methods to exploit the relatedness between the
traits (Figure 5.2c). Since GP-single assumed independent phenotypes, the model
performed very similarly across the full range of experiments. GP-kronprod su↵ered
from the same limitations as previously described, since the correlation between
the confounding e↵ects increases synchronously with the correlation between the ge-
netic e↵ects as µ

common

increases. In contrast, GP-kronsum could take advantage of
the shared component between the phenotypes, as knowledge is transferred between
them. GP-pool was consistently outperformed by all competitors as two of its main
assumptions are heavily violated: samples of di↵erent phenotypes do not share the
same signal and the residuals are neither independent of each other, nor do they have
the same noise level.

In summary, the proposed model is robust to a range of di↵erent settings and
clearly outperforms its competitors when the tasks are related to each other and
hidden confounders are present.
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(a) Empirical (b) Signal (c) Noise

Figure 5.3: Fitted task covariance matrices for gene expression levels in
yeast. (a) Empirical covariance matrix of the gene expression levels. (b) Signal
covariance matrix learnt by GP-kronsum. (c) Noise covariance matrix learnt by
GP-kronsum. The ordering of the tasks was determined using hierarchical clustering
on the empirical covariance matrix.

5.3.2 Applications to phenotype prediction

We next applied our method to developmental phenotypes in Arabidopsis thaliana
and gene expression levels in yeast demonstrating that hidden confounders play an
important role in phenotype prediction and hence warrant greater attention.

Gene expression prediction in yeast We considered gene expression levels from
a yeast genetics study (Smith and Kruglyak, 2008). The dataset comprised of gene
expression levels of 5, 493 genes and 2, 956 SNPs, measured for 109 yeast crosses.
Expression levels for each cross were measured in two conditions (glucose and ethanol
as carbon source), yielding a total of 218 samples. In this experiment, we treated
the condition information as a hidden factor instead of regressing it out, which is
analogous to the confounding factors in the simulation experiments. The goal of
this experiment was to investigate how alternative methods can deal and correct for
this hidden covariate. We normalized the markers and all phenotypes to zero mean
and unit variance. Subsequently, we filtered out all genes that were not consistently
expressed in at least 90% of the samples (z-score cuto↵ 1.5). We also discarded genes
having a heritability h2 of less than 0.1 or were complete heritable h2 > 0.9, reducing
the number of genes to 123, which we considered as tasks in our experiment. The
heritability was estimated by a univariate Gaussian process model. We used a linear
kernel calculated on the markers for the sample-sample covariance.

Figure 5.3 shows the empirical covariance and the learnt task covariances by
GP-kronsum. Both learnt covariances are highly structured, demonstrating that the
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Figure 5.4: Correlation between the mean di↵erence of the two conditions
and the latent factors on the yeast dataset. Shown is the strength of the latent
factor of (a) the genetic signal and (b) the noise trait-trait covariance matrix as a
function of the mean di↵erence between the two environmental conditions. Each dot
corresponds to one gene expression level.

assumption of iid noise in the GP-kronprod model is violated in this dataset. While
the signal task covariance matrix reflects genetic signals that are shared between the
gene expression levels, the noise covariance matrix mainly captures the mean shift be-
tween the two conditions the gene expression levels were measured in (Figure 5.4). To
investigate the robustness of the reconstructed latent factor, we repeated the train-
ing 10 times. The mean latent factors and its standard errors were 0.2103 ± 0.0088
(averaged over factors, over the 10 best runs selected by out-of-sample likelihood),
demonstrating robustness of the inference.

When considering alternative methods for out of sample prediction, the proposed
Kronecker Sum model (r2(GP-kronsum)=0.3322 ± 0.0014) performed significantly
better than previous approaches (r2(GP-pool)=0.0673±0.0004, r2(GP-single)=0.2594±
0.0011, r2(GP-kronprod)=0.1820 ± 0.0020). The results are averaged over 10 runs
and ± denotes the corresponding standard errors.

Multi-phenotype prediction in Arabidopsis thaliana As a second dataset,
we considered a genome-wide association study in Arabidopsis thaliana (Atwell et al.,
2010) to assess the prediction of developmental phenotypes from genomic data. This
dataset consisted of 147 samples and 216,130 single nucleotide polymorphisms (SNPs,
here used as features). We considered the phenotypes flowering period duration, life
cycle period, maturation period and reproduction period. To avoid outliers and issues
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Flowering period Life cycle Maturation Reproduction
duration period period period

GP-pool 0.0502 ± 0.0025 0.1038 ± 0.0034 0.0460 ± 0.0024 0.0478 ± 0.0013
GP-single 0.0385 ± 0.0017 0.3500 ± 0.0069 0.1612 ± 0.0027 0.0272 ± 0.0024
GP-kronprod 0.0846 ± 0.0021 0.3417 ± 0.0062 0.1878 ± 0.0042 0.0492 ± 0.0032
GP-kronsum 0.1127 ± 0.0049 0.3485 ± 0.0068 0.1918 ± 0.0041 0.0501 ± 0.0033

Table 5.1: Predictive performance of the di↵erent methods on the Arabidop-
sis thaliana dataset. Shown is the squared correlation coe�cient and its standard
error (measured by repeating 10-fold cross-validation 10 times).

due to non-Gaussianity, we preprocessed the phenotypic data by first converting it to
ranks and squashing the ranks through the inverse cumulative Gaussian distribution.
The SNPs in Arabidopsis thaliana are homozygous and we discarded all markers with
a minor allele frequency of less than 10%, resulting in 176,436 SNPs. Subsequently,
we normalized the markers to zero mean and unit variance. Again, we used a linear
kernel on the SNPs as sample covariance.

Since the causal processes in Arabidopsis thaliana are complex, we allowed the
rank of the signal and noise matrix to vary between 1 and 3. The appropriate rank
complexity was selected on the 10% hold out data of the training fold. We considered
the average squared correlation coe�cient on the holdout fraction of the training data
to select the model for prediction on the test dataset. Notably, for GP-kronprod, the
selected task complexity was rank(C) = 3, whereas GP-kronsum selected a simpler
structure for the signal task covariance (rank(C) = 1) and chose a more complex
noise covariance, rank(⌃) = 2.

The cross validation prediction performance of each model is shown in Table 5.1.
For reproduction period, GP-single is outperformed by all other methods. For the
phenotype life cycle period, the noise estimates of the univariate GP model were close
to zero, and hence all methods, except of GP-pool, performed equally well since the
measurements of the other phenotypes do not provide additional information. For
maturation period, GP-kronsum and GP-kronprod showed improved performance
compared to GP-single and GP-pool. For flowering period duration, GP-kronsum
outperformed its competitors.

5.4 Summary

Here, we presented an e�cient inference scheme for learning multi-trait Gaussian
process models. In our experiments, we concentrated on phenotype prediction, but
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the method, and the proposed speed-ups, can equally be used for cross-heritability
estimation (Lee et al., 2012) and as background model for association testing in
multivariate linear mixed models (Segura et al., 2012; Zhou and Stephens, 2013).

In our applications, we demonstrated the advantages of our proposed model over
a broad range of di↵erent settings. However and as we noted before, the benefits
of multi-trait modeling are lost if a) the phenotypes are fully determined by the
genetic covariance matrix b) the signal and noise trait-trait covariance matrices are
identical to each other or c) the phenotypes are not correlated to each other. In
these circumstance, it is likely that the simpler single-trait model is working better
than our proposed model as the number of parameters to be learnt is smaller. In
practice, we recommend to use cross-validation to determine which model is the most
appropriate one.
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Chapter 6

Discussion and outlook

In this thesis, we have studied various methods to learn the relationship between
genotypes and phenotypes in complex traits. This chapter provides a summary of
the findings we have retained and also gives an outlook to open problems we want
to tackle in the future.

6.1 Thesis summary

Early work in statistical genetics dates back to Georg Mendel who discovered pat-
terns of inheritance for certain qualitative traits in peas in 1865, henceforth called
Mendelian inheritance (Mendel, 1866). In the beginning of the twentieth century,
his laws were rediscovered, leading to controversies concerning the universality of
the Mendelian laws; his supporters accepted that most traits can be explained by a
single gene, while biometricians argued that Mendelian patterns could not account
for many quantitative traits following a normal distribution (Plomin et al., 2009).
In 1918, Ronald Fisher unified both theories by showing that the aggregation of
multiple genetic e↵ects leads to normally distributed phenotypes, whereas each gene
is inherited according to Mendel’s laws (Fisher, 1918). With the advent of genomic
data, it is now possible to study this polygenic architecture of complex traits at an
unprecedented level of detail (Purcell et al., 2009; Yang et al., 2010). However, many
models that are used today are still overly simple, and do not take advantage of the
wealth of data that is available.

In Chapter 1, we have given a short introduction to the field of genomics and
presented the challenges this thesis is concerned with. Chapter 2 provides the math-
ematical background for the remaining thesis.

In Chapter 3, we have introduced a new mixed model approach, the LMM-Lasso,
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which allows for the inclusion of markers with large e↵ect sizes as fixed e↵ects. The
random e↵ect of the mixed model can hereby either represent confounding e↵ects,
such as population structure, or genetic e↵ects that are too small to be traced down
to individual markers. As a result, LMM-Lasso is able to recover individual genetic
e↵ects better than other existing methods in challenging settings with complex ge-
netic architectures, weak e↵ects of individual markers or in the presence of strong
confounding e↵ects. Compared to a pure Lasso regression model, the coe�cients are
easier to interpret as the confounding factors are picked up by the random e↵ect.
This helps to resolve the ambiguity between individual genetic e↵ects and phenotypic
variability due to population structure.

In Chapter 4 and 5, we have studied the benefits of incorporating prior knowledge
and of leveraging the data over multiple correlated traits. We have used out-of-sample
prediction accuracy as our main evaluation criterion as it is almost assumption-free
and therefore a reasonably objective criterion. In Chapter 4, we have compared a
number of di↵erent models which either couple the coe�cients of markers that are
connected in a given biological network and/or the coe�cients between the pheno-
typic traits that are related to each other. By means of simulations, we have verified
that both is of help if the assumptions made by the model are met by the data. How-
ever, we could not confirm the same benefits on the yeast dataset we have analyzed.
This leads us to the following conclusions.

1. Using biological knowledge to couple the coe�cient does not improve the solu-
tion in general, while multi-task learning can increase the accuracy of pheno-
type predictions.

2. Coupling the magnitudes of the weight coe�cients across multiple phenotypes
can lead to biases if the scales of the phenotypes are di↵erent. In practice,
it is hard to determine the best scaling, since the signal-to-noise ratio of the
di↵erent phenotypes cannot be known in advance.

3. The grouping of the phenotypes must be executed with care, since the pheno-
types can also be statistically correlated due to shared hidden confounders.

In Chapter 5, we have designed the multi-trait model GP-kronsum that avoids the
shortcomings of the multi-trait models we have considered in the previous chapter.
This has been achieved by learning the correlations between the weight vectors and
allowing for correlated residuals. While the model is not new per se but has been
used before (Henderson, 1984; Zhang, 2007; Korte et al., 2012), we are first in showing
that e�cient inference is possible for that type of models: our algorithm reduces the
runtime burden from O(N3T 3) to O(N3 + T 3) and the memory requirement from
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O(N2T 2) to O(N2+T 2). This makes applications with a large number of individuals
and phenotypes feasible. In our experiments, we have demonstrated that our method
outperforms simpler alternatives in terms of predictive power. In addition, our model
is not restricted to applications in phenotype predictions, but can also be used for
variance component modeling or as a background model for association testing in
correlated traits.

6.2 Future work

This thesis has introduced new approaches to learn the mapping between genotypes
and phenotypes. Based on these results, we identify several future research directions.
First, we discuss extensions that are directly linked to the work presented in this
thesis. Second, we provide some new and more general ideas for genomic association
studies.

6.2.1 Combining multi-trait models with feature selection

The positive results with the LMM-Lasso and the GP-kronsum model indicate that
there is potential to combine the merits of both. We can exploit the same algorithmic
steps as in the LMM-Lasso algorithm, that are

1. fit a null-model

2. whiten the phenotypes and the markers

3. solve a Lasso problem on the transformed data.

The null-model fitting (step 1) is done by learning the trait-trait covariance matrices
using the inference scheme presented in Chapter 5. When whitening the data, it
is important to preserve its Kronecker structure. Otherwise, the feature matrix
inflates into a TN ⇥ M matrix leading to an increased memory requirement and
an increased runtime for the subsequent steps. This can be achieved by making
use of the Kronecker tricks once again. As a result, the consequential optimization
problem can no longer be cast into the standard Lasso form. However, the resulting
optimization problem is still convex, and adopting an existing `

1

-solver to the new
task should be feasible. We have already completed some experiments combining the
multi-trait model with greedy forward selection, demonstrating the synergetic e↵ects
of marker selection and multi-trait modeling. We will try to further expand this by
using the Lasso instead of performing a sequential selection strategy.
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6.2.2 Significance estimates for the LMM-Lasso

A second direction of further work is to assess the markers in terms of statistical
significance. Meinshausen et al. (2009) developed an algorithm for estimating p-
values for Lasso methods that is related to stability selection, since it also involves
randomized splitting of the dataset. However, it has not yet been investigated how
strong the sample size splitting a↵ects the power of Lasso-based methods. More
recently, Lockhart et al. (2013) and Javanmard and Montanari (2013) proposed
further approaches for estimating the significance in Lasso models. However, none of
these three methods provides an out-of-the-box solution for estimating the statistical
significance of the markers in the LMM-Lasso model on a genome-wide scale. A
more straight-forward approach can be obtained by the following two-step procedure:
First, we train the LMM-Lasso on the complete set of markers. Second, the selected
SNPs are included as additional fixed e↵ects in a standard linear mixed model,
retaining their `

1

-penalty. Significance estimates can then be obtained via standard
univariate testing in the linear mixed model setting (Yu et al., 2006).

The only di↵erence is that we remove a selected marker from the model if the
tested SNP is in close proximity (Listgarten et al., 2012). With this scheme, one
needs to solve one Lasso problem for each test which is conducted. However, the
runtime overload is small as only a limited number of markers is included as fixed
e↵ects, and the coe�cients of the selected markers are similar between the di↵erent
tests. One can exploit this by initializing the coe�cients with the solution obtained
by the initial training, i.e. warm-starts, which allows to quickly update them. The
approach is conceptually close to the work of Segura et al. (2012), but avoids a
sequential selection of markers.

6.2.3 Extending multi-trait models to more than one kernel

In Section 5, we have shown that e�cient inference is feasible for a sum of two Kro-
necker products. Unfortunately, one cannot straightforwardly extend these results to
larger sums as the sum of Kronecker products is in general not a Kronecker product
itself. Models of this type are required, for example, for association testing between a
group of markers and a group of correlated phenotypes, as we studied in Casale et al.
(2013). A similar approach was also introduced by Price et al. (2011) for studying
cis- and trans-specific gene expression levels in di↵erent tissues. Currently, analyses
of this type can only be performed on small datasets for which computing the explicit
covariance matrix is feasible. This leads to a cubic runtime in the number of samples
and number of traits O(N3T 3) and quadratic memory requirement O(N2T 2).
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We want to overcome this by employing iterative solvers which can exploit the
Kronecker structure of the covariance matrix.

6.2.4 From multiple to complex phenotypes

Earlier in this work, we proposed methods for analyzing multiple phenotypes jointly.
In the future, we would like to extend this to more complex phenotypes, like mi-
croscopy images (Meijon et al., 2014) or electronic medical records (Denny et al.,
2013). Amongst others, Karaletsos et al. (2012) and Parts et al. (2011) have pre-
sented promising work in this field. They propose to first learn a latent feature
representation of the phenotype and then perform association mapping between the
markers and the inferred factors. By designing new association mapping techniques
that allow for non-continuous phenotypes, such as graphs or trees (Feragen et al.,
2013), we want to directly test for associations instead.

6.2.5 Association testing in linear time

In this thesis, we have worked on approaches that work well for datasets with up to
several thousands of samples and hundreds of thousands of markers. While this is
good enough for most datasets that are publicly available at this moment, it will not
su�ce for new datasets that are currently created. Large consortia, like the Genetic
Investigation of Anthropometric Traits, have already gathered data for over hundreds
of thousands of individuals (Berndt et al., 2013), requiring new algorithms that scale
linearly with the number of samples and the number of markers. Fortunately, a
number of fast and accurate sparse approximations to Gaussian processes have been
proposed recently, which scale well and allow for parallel inference (Hensman et al.,
2013; Gal et al., 2014). We think that similar inference schemes as presented there
can also be used to accelerate association testing in linear mixed models. Moreover,
we are exploring new covariance functions which might allow for faster inference.
For instance, Davies and Ghahramani (2014) suggest to construct a kernel based
on random partitioning of the data. The similarity between two points is thereby
defined as the probability that the two points are assigned to the same cluster. In
genetics, SNP-based clustering is inevitably linked to inferring the population struc-
ture (Pritchard et al., 2000), making this the perfect choice for designing a covariance
function that can capture the relatedness between samples. We also started explor-
ing a permutation-based approach to correct for population structure (Huang et al.,
2013). The key idea behind this is that the exchange probability between two sam-
ples is proportional to their similarity, making it more likely that samples are shu✏ed
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within the same population. The method is generic in two ways: firstly, we can use
an arbitrary covariance function to measure the similarity between the samples, and
secondly, we can choose any desired test statistic for association testing.
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Appendix

In this appendix, we provide a brief refresher to probability theory and linear alge-
bra. For a more detailed introduction of probability theory, we refer the reader to
(Wasserman, 2004; Bishop, 2006) and for linear algebra to (Lay, 2012; Golub and
Van Loan, 1996).

A.1 Probability theory

In probability theory, we are given an experiment and want to assign a probability
to a possible event A. An event is thereby a set of possible outcomes, and the set of
of all possible outcomes is called the sample space ⌃.

Formally, we can then define a probability function p, as as any function that
fulfills the following three axioms:

1. p(A)  0 for all events A 2 ⌃.

2. p(⌦) = 1.

3. if A
1

, A
2

, . . . 2 ⌃ are disjoint, then

p

 1[

i=1

A
i

!
=

1X

i=1

p(A
i

). (A.1)

Probabilities can either be interpreted as “relative frequencies with which an event
occurs in the long run”(Bulmer, 1979) or as a “subjective degree of belief”(Koller and
Friedman, 2009), resulting in the frequentists and the Bayesian school of thought.
While there has been and still is much dispute about the di↵erent merits of the two
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approaches, a deeper discussion lies beyond the scope of this thesis, and can for
instance be found in (Efron, 1986; MacKay, 2002). In this work, we use a pragmatic
approach and apply techniques from both fields, depending on our subjective opinion
what suits best for the problem at hand.

Basic properties Let A and B be two events. Then, their joint distribution is
denoted as p(A,B). The two events are independent, if

p(A,B) = p(A)p(B). (A.2)

If p(B) > 0, the conditional probability of A given B is

p(A|B) =
p(A,B)

p(B)
. (A.3)

The product rule is then obtained by rewriting the definition of the conditional
probability as

p(A,B) = p(A)p(B|A), (A.4)

and the sum rule is given by

p(A) =
X

B

p(A,B). (A.5)

By combining the sum and product rule, we directly get to Bayes theorem

p(A|B) =
p(B|A)p(A)P
B

p(B|A)p(A) . (A.6)

Random variable A random variable describes a mapping X : ⌦ ! R from the
sample space to the real numbers. Random variables can either be discrete, taking a
countable list of values, or continuous, taking any value in one or multiple intervals.
From now on, we concentrate on the continuous case.

The cumulative distribution function F
X

: R ! [0, 1] of a random variable X is
given by

F
X

(x) = p(X  0). (A.7)

If the random variable X is continuous, the corresponding probability density
function f

X

fulfills the following properties:
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1. f
X

(x) � 0

2.
R1
�1 f

X

(x)dx = 1

3. p(a < X < b) =
R

b

a

f
X

(x)dx for a  b.

The cumulative distribution function F
X

and the probability density function f
X

are
then linked via the identity

F
X

(x) =

Z
x

�1
f

X

(t)dt. (A.8)

Moments The expected value of a random variable X is defined as

E [X] =

Z
xf(x)dx. (A.9)

and its variance as

Var [X] = E
⇥
(X � E [X])2

⇤
. (A.10)

The standard deviation � of the random variable X is defined as the square root of
its variance.

Gaussian distribution The Gaussian distribution is parameterized by the mean
µ and the variance �2, and defined by the probability density function

N
�
x
��µ, �2

�
=

1p
2⇡�2

exp� 1

2�2

(x � µ)2 . (A.11)

The distribution is bell-shaped around the mean and its width is determined by the
variance parameter, see also Figure A.1. Its extension to d dimensions is given by

N (x |µ,⌃) =
1p

(2⇡)d |⌃|
exp

✓
�1

2
(x � µ)> ⌃�1 (x � µ)

◆
, (A.12)

where µ is now the d-dimensional mean vector, and ⌃ is the d⇥d covariance matrix.
The importance of the Gaussian distribution is grounded by the central limit

theorem. It states that, under mild conditions, the sum of a large number of in-
dependent random variables, that need not necessarily be Gaussian distributed by
themselves, will be approximately Gaussian distributed (Bulmer, 1979).
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Figure A.1: One-dimensional
Gaussian distribution. Gaus-
sian probability density function
(pdf), with mean µ = 0 and
variance �2 = 1, is shown in
blue. The mean is depicted with
red, the standard deviation �
with green. 68.27% of the mass
of the distribution is within one
standard deviation of the mean
(yellow-shaded area).

Apart from that, the Gaussian distribution is also loved for its analytically
tractability. If the marginal distribution p(x) and the conditional distribution p(y|x)
are normally distributed

p(x) = N
�
x

��
µ,⇤�1

�
, (A.13)

p(y|x) = N
�
y

��
Ax + b,L�1

�
, (A.14)

it is easy to show that the marginal distribution of p(y) and the conditional distribu-
tion p(x|y) are again Gaussians, and have a closed-form solution for the mean and
the covariance (Bishop, 2006)

p(y) = N
�
y

��
Aµ + b,L�1 + A⇤�1

A

> � , (A.15)

p(x|y) = N
�
x

��⌃
⇥
A

>
L(y � b) + ⇤µ

⇤
,⌃
�
, (A.16)

where ⌃ =
�
⇤ + A

>
LA

��1

.

Prior, posterior and likelihood In Bayesian statistics, the parameters ✓ are not
fixed, but random variables. They are endowed with a prior distribution p(✓) that
reflects our beliefs, before we have seen any data. The likelihood function p(D|✓)
connects the parameters with the data: it describes how good the parameters ✓ can
explain the dataset D. After having observed the data, we can then update our
beliefs of the parameters ✓ by using Bayes theorem

p(✓|D) =
p(D|✓)p(✓)

p(D)
(A.17)
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yielding the posterior distribution p(✓|D). The maximum a posteriori probability
(MAP) of ✓ is the mode of the posterior. If the prior is flat, that means it assigns
the same probability to all parameter values, the MAP estimate coincides with the
maximum likelihood solution. The normalization constant p(D) is often also called
the evidence of the data

p(D) =

Z
p(D|✓)p(✓)d✓, (A.18)

and can be used for model comparisons. For instance, a popular way to determine the
hyperparameters, that are the parameters of the prior, is to maximize the evidence
function.

A.2 Linear algebra

A vector a is of the form

a =

0

BBB@

a
1

a
2

...
a

n

1

CCCA
, (A.19)

where a
i

2 R is the ith entry of a. A matrix A is the concatenation of vectors

A =
�
a

1

a

2

. . . a

m

,
�
. (A.20)

The matrix A 2 Rn⇥m consists of m columns and n rows. The columns of A are
described by the vectors a

i

. The (i, j) entry of the matrix A is indexed by A
ij

. A
diagonal matrix D is a square n⇥n matrix, that is zero for all non-diagonal entries.
The identity matrix I is a diagonal matrix, whose diagonal entries are one.

Matrix multiplication Let A be a m ⇥ n matrix, B an n ⇥ p and C a p ⇥ q
matrix. Then, the following identities are satisfied:

A(BC) = (AB)C (A.21)

A(B + C) = AB + AC (A.22)

(B + C)A = BA + CA (A.23)

In general, AB = BA does not hold.



104 Appendix A. Appendix

Transpose The transpose of a m ⇥ n matrix A =
�
a

1

a

2

. . . a

m

,
�
is obtained

by writing the columns of A as the rows,

A

> =

0

BBB@

a

>
1

a

>
2

...
a

>
m

1

CCCA
, (A.24)

yielding a n⇥m matrix. Let B be a n⇥p matrix. Then (AB)> = B

>
A

>. A matrix
is called symmetric if A = A

>.

Inverse The matrix A 2 Rn⇥n is invertible if there exists a matrix A

�1 2 Rn⇥n,
such that

AA

�1 = I (A.25)

A

�1

A = I (A.26)

If a matrix is not invertible, it is also called singular. Let B be a second n⇥n matrix.
Provided both matrices are not singular, the inverse of its product is given by

(AB)�1 = B

�1

A

�1. (A.27)

Let A be an invertible n⇥n matrix, and U ,V be two n⇥p matrices. The Wood-
bury identity (Golub and Van Loan, 1996) can significantly speed-up computations,
if A is easy to invert and p ⌧ n:

�
A + UV

>��1

= A

�1 �
h
A

�1

U

�
I + V

>
A

�1

U

��1

V

>
A

�1

i
. (A.28)

Trace The trace of a square matrix A 2 Rn⇥n is defined as the sum over its
diagonal entries. The following equalities hold for A,B,C 2 Rn⇥n

Tr(A) = Tr
�
A

>� (A.29)

Tr(ABC) = Tr(CBA) = Tr(BAC). (A.30)

Determinants The determinant |·| of a square matrix A 2 Rn⇥n is defined as

|A| =
X

�

(±1)N�A
1,i1 · A

1,i2 · . . . · A
1,i

n

(A.31)
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where the sum is going over all permutations � = (i
1

, . . . , i
n

) and N
�

is the number
of pairwise permutations needed to go from 1, 2, . . . , n to i

1

, i
2

, . . . , i
n

. Given A,B 2
Rn⇥n, c 2 R, we can exploit the following identities

|AB| = |A| · |B| (A.32)��
A

�1

�� = |A|�1 (A.33)

|cA| = cn |A| . (A.34)

Eigendecomposition An eigenvector of a square matrix A 2 Rn⇥n is a nonzero
vector u such that

Au = �u, (A.35)

where � is the corresponding eigenvalue. If the matrix A is in addition symmetric,
then there exists a orthogonal matrix U , such that

A = USU

>, (A.36)

where S = diag (�
1

, . . . ,�
n

) is a diagonal matrix, containing the eigenvalues of A,
and U =

�
u

1

. . .u
n

�
contains as columns the eigenvectors of A. The eigenvalues

of a general matrix A are complex, while they are real for any symmetric matrix.
Given the eigenvalue decomposition of A, we can compute its determinant, trace
and inverse as

|A| =
nY

i=1

�
i

, TrA =
P

n

i=1

�
i

, A

�1 = US

�1

U

>. (A.37)

Non-negative matrices A square n⇥nmatrix A is said to be positive-semidefinite,
if

x

>
Ax � 0 (A.38)

for all x 2 Rn. If a matrix is positive-semidefinite, all of its eigenvalues are non-
negative.

Singular value decomposition Let A be an arbitrary m ⇥ n matrix. Then, its
singular value decomposition is given by

A = USV

>, (A.39)
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where U 2 Rm⇥m contains the left-singular vectors, V 2 Rn⇥n the right-singular
vectors, and S 2 Rm⇥n the singular values of A on its diagonal. The eigenvalue
decomposition and the singular value decomposition are closely linked, as the left
singular vectors are the eigenvectors of A

>
A, the right singular vectors the eigenvec-

tors of AA

>, and the non-zero singular values are the square roots of the non-zero
eigenvalues of AA

> and AA

>.

Gradient The derivative of a vector x 2 Rm with respect to a scalar y is a again
a vector of size m, for which the ith entry is defined as

✓
@x

@y

◆

i

=
@x

i

@y
(A.40)

Analogously, the derivative of a scalar x with respect to a vector y 2 Rn is a vector
of size n, with the entries

✓
@x

@y

◆

i

=
@x

@y
i

. (A.41)

The same rules apply for derivatives of a vector x with respect to a vector y, and
their extensions to general matrices. The gradient vector of a function f : Rn ! R
is defined as

r
x

f =

0

B@

@f

@x1
...

@f

@x

n

1

CA . (A.42)

In the following, we provide a short list of well known derivative rules that were
used throughout the thesis. For a more exhaustive enumeration, we refer the reader
to (Petersen and Pedersen, 2012).

@

@✓
(X + Y ) =

✓
@

@✓
X

◆
+

✓
@

@✓
Y

◆
(A.43)

@
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(X ⌦ Y ) =

✓
@

@✓
X ⌦ Y

◆
+ X ⌦

✓
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@✓
Y

◆
(A.44)

@
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X

�1 = �X

�1
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@✓
X

◆
X

�1 (A.45)

@
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log
��
X

�1

�� = Tr
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X

�1
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X
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(A.46)
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Kronecker Product

� ==

Amxn  Bpxq  

(A  

Kronecker Product

� =B)mpxnq  

(a) Kronecker Product

vec(Y)NT  

YNxT  

(b) vec operator

Figure A.2: Graphical description of the Kronecker product and the vec
operator. Left: The Kronecker product is a matrix product that multiplies each
element of A with the complete matrix B. Right: The vec operator reshapes a
matrix into a vector by concatenating the columns of the matrix.

A.3 Kronecker product

Let A be a m⇥ n matrix, and B be a p⇥ q matrix. The Kronecker product A ⌦ B

is a mp ⇥ nq matrix and defined as follows:

A ⌦ B =

0

B@
A

11

B . . . A
1n

B

...
. . .

...
A

m1

B . . . A
mn

B

1

CA (A.47)

The following equalities hold (Bernstein, 2009):

(A ⌦ B)(C ⌦ D) = AC ⌦ BD (A.48)

(A ⌦ B)> = A

> ⌦ B

> (A.49)

(A ⌦ B)�1 = A

�1 ⌦ B

�1 (A.50)

|A ⌦ B| = |A|p · |B|n (A.51)

(A ⌦ B) vec(Y ) = vec
�
BY A

>� , (A.52)

where vec(Y ) is obtained by vertical concatenation of the columns of Y . A graphical
description of the Kronecker product and the vec operator is given in A.2.
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Let U

A

S

A

U

>
A

be the eigenvalue decomposition of A and U

B

S

B

U

>
B

the eigenvalue
decomposition of B, then

(U
A

⌦ U

B

)
�
S

A

⌦ S

B

+ �2

I

� �
U

>
A

⌦ U

>
B

�
(A.53)

is the eigenvalue decomposition of A ⌦ B + �2

I, where �2 is a non-negative scalar.
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2.1 A geometric interpretation of least squares. Let the num-
ber of data points be N = 3 and the number of features be M =
2. The two feature vectors (x
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31
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32

) span a two-
dimensional subspace in R3. The orthogonal projection of y 2 R3

onto the subspace is the least squares estimator of y. Based on Hastie
et al. (2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Bias-Variance decomposition. The training error (blue line) and
test error (green line) are shown as a function of the regularization
parameter �. Standard errors are computed over 30 repetitions. The
test error (green line) decomposes into the squared bias (yellow), the
variance (red) and noise.

For each repetition, we draw N = 200 random points as training set.
The target is determined by the function y = Xw+ ✏ with signal-to-
noise ratio of 0.8 and M = 300. The weight vector and the test set
(200 samples) are fixed over all repetitions. . . . . . . . . . . . . . . 14

2.3 Contours of the error and regularization function. We show the
contour plots of the error function for Lasso (left) and Ridge regression
(right) in pink. Points along one contour line have the same function
value. We restrict our attention to the weight vectors for which the
regularization function is smaller than a certain threshold ↵ (yellow-
shaded area). The optimal solution is found when the contours first
hit the constraint region. For the Lasso, the solution is sparse (it lies
on the axis), while for the Ridge it is not. Adopted from Tibshirani
(1994). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.4 Di↵erence between parametric and nonparametric models.
Graphical presentation of a parametric model (left) and of a nonpara-
metric model (right). Given the parameters, predictions are indepen-
dent of the training data in parametric methods. In nonparametric
methods, the dependencies cannot be resolved. Adopted from Barber
(2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Samples drawn from a Gaussian process with di↵erent co-
variance functions. From left to right: We used a linear (�2 = 1),
polynomial (�2 = 1, c = 0, d = 2) and squared exponential covariance
(�2 = 1, l2 = 1) function. To demonstrate the wiggling e↵ect of l2, we
also show the squared exponential covariance with l2 = 0.5 (dashed
lines). The mean function was set to zero in all three experiments. . . 23

2.6 Drawing functions from the posterior. We used a Gaussian pro-
cess with mean function m(x) = x and squared exponential covariance
function (�2 = 1, and l2 = 1). In the first plot from the left, we draw
samples from the prior. In the other two plots, we draw samples from
the posterior after having made one observation (middle) and three
observations (right plot). Observations are marked as red dots. The
black line depicts the mean predictions. The yellow area contains all
predictions within two standard derivations from the mean. Adopted
from Rasmussen and Williams (2005). . . . . . . . . . . . . . . . . . . 26

3.1 Whitening the data. The covariance matrix K + �I is used to
decorrelate the markers from the phenotype by projecting them along
the principal components and rescaling them to unit variance. . . . . 35

3.2 Realized relationship matrix from the 1196 plants of Ara-

bidopsis thaliana available from (Horton et al., 2012). The
relatedness between the individuals is complex and strong as the ma-
trix is deeply structured. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Evaluation of alternative methods on semi-empirical GWAS
datasets, mimicking population structure as found in Ara-

bidopsis thaliana . (a) Precision-Recall Curve for recovering sim-
ulated causal SNPs using alternative methods. Shown is precision
(TP/(TP+FP)) as a function of the recall (TP/(TP+FN)). (b) Al-
ternative evaluation of each method on the identical dataset using
Receiver operating characteristics (ROC). Shown is the True Positive
Rate (TPR) as a function of the False Positive Rate (FPR). . . . . . 41
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3.4 Characteristics of alternative methods on semi-empirical GWAS
dataset. (a) Area under the precision recall curve as a function of
the total e↵ect size of all causal SNPs. (b) Average negative log-
likelihood of each selected SNPs under the multivariate normal distri-
bution N (0,K) as a function of the number of SNPs that are active
in the model. The smaller the log likelihood is, the more the SNPs are
correlated with the population structure. For the LMM-Lasso and the
Lasso active SNPs have been selected by following the regularization
path. For linear mixed model (LMM) and linear model (LM), the set
of active SNPs have been obtained in ascending order of the p-value
obtained. In the beginning, Lasso and the linear model choose SNPs
that heavily reflect the population structure, while the mixed model
approaches do not. In both figures, the number of causal SNPs was
100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Evaluation of alternative methods on the semi-empirical GWAS
dataset for di↵erent simulation settings. Area under precision
recall curve for finding the true simulated associations. Alternative
simulation parameters have been varied in a chosen range. (a) Evalu-
ation for di↵erent relative strength of population structure �2

pop

. (b)
Evaluation for true simulated genetic models with increasing complex-
ity (more causal SNPs). (c) Evaluation for variable signal to noise
ratio �2

sig

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Di↵erentiation between multiple causal loci from spurious
correlation due to linkage on simulated data. The upper two
plots show a single SNP with a strong e↵ect in an LD block. The lower
two plots show the same LD block, but with an additional SNP e↵ect
with weaker e↵ect size in the opposite direction. While both methods
detect the SNP with large e↵ect size, the second one is only uniquely
recovered by the LMM-Lasso. The red lines indicate the causal SNPs,
the blue dots the assigned score. . . . . . . . . . . . . . . . . . . . . . 50
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3.7 Predictive power and sparsity of the fitted genetic models
for Lasso and LMM-Lasso applied to quantitative traits in
model systems. Considered were flowering phenotypes in Ara-
bidopsis thaliana and bio-chemical and physiological phenotypes with
relevance for human health profiled in mouse. Comparative evalua-
tions include the fraction of the phenotypic variance predicted and the
complexity of the fitted genetic model (number of active SNPs). (a)
Explained variance in Arabidopsis. (b) Explained variance in mouse.
(c) Complexity of fitted models in Arabidopsis. (d) Complexity of
fitted models in mouse. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Variance dissection into individual SNP e↵ects and global
genetic background driven by population structure. Shown
is the explained variance on an independent test set as a function
of the number of active SNPs for the flowering phenotype (10�C)
in Arabidopsis thaliana. In blue, the predictive test set variance of
the Lasso as a function of the number of SNPs in the model. In
green, the total predictive variance of LMM-Lasso for di↵erent sparsity
levels. The shaded area indicates the fraction of variance LMM-Lasso
explains by means of individual SNP e↵ects (yellow) and population
structure (green). LMM-Lasso without additional SNPs in the model
corresponds to a genetic random e↵ect model (black star). . . . . . . 52

3.9 Evaluation of the Lasso methods for FLC gene expression
in Arabidopsis thaliana. Precision-Recall Curve for recovering
SNPs in proximity to known candidate genes using alternative meth-
ods. Shown is precision (TP/(TP+FP)) as a a function of the recall
(TP/(TP+FN)). Each point in the plot corresponds to a specific se-
lection threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Demonstration of the coupling of input and output. Red solid
edges represent correlations between the phenotypes, blue solid lines
represent relational dependencies between the SNPs. A dashed line
represents an association between an SNP and a phenotype. . . . . . 60

4.2 Runtime comparison for varying number of traits. The naive
method, based on a Cholesky factorization, is shown in green (dashed),
the proposed method, exploiting the Kronecker structure, is shown
in blue (solid). Shown is the averaged runtime (in seconds) and its
standard error as a function of the number of traits. . . . . . . . . . 63
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4.3 Performance of all algorithms on simulated data. Left: Com-
paring the methods in terms of predictive power. Shown is the Ex-
plained Variance (EV) as a function of ↵. The dashed gray line repre-
sents the upper bound, i.e. EV obtained when using true co-e�cient
matrix. Right: Area under Precision recall curve (AUPRC) for recov-
ering the simulated associations as a function of the overlap parameter
↵. The error bars represent the standard error. . . . . . . . . . . . . . 66

4.4 Power comparison for varying input noise. We fixed the overlap
parameter ↵ = 0.3 and varied the number of conflicting edges between
0 and 50. For each setting, we generated 50 datasets. The performance
of all methods that are exploiting input structure is dropping as the
number of conflicting edges is increasing, while the performance of the
other methods stays constant. . . . . . . . . . . . . . . . . . . . . . 67

4.5 Hierarchical clustering of the gene expression levels under
glucose treatment (left) and of the di↵erence between gene
expression levels under ethanol and glucose treatments (right).
Under the glucose condition, genes can be divided into two major clus-
ters of co-expressed genes, whereas on the right, the co-expression pat-
tern is more complex containing two major co-expression clusters, one
of which contains three smaller clusters that are weakly co-expressed
with the other small clusters. For the EG experiment, we focused on
cluster 2, for the DCS experiment on cluster 2 and 4. . . . . . . . . . 68

5.1 Runtime comparison on synthetic data. We compare our e�-
cient GP-KS implementation (left) versus its naive counterpart (right).
Shown is the runtime in seconds on a logarithmic scale as a function
of the sample size and the number of traits. The optimization was
stopped prematurely if it did not complete after 104 seconds. . . . . 85

5.2 Evaluation of alternative methods for di↵erent simulation
settings. (a) Evaluation for varying signal strength. (b) Evaluation
for variable impact of the hidden signal. (c) Evaluation for di↵erent
strength of relatedness between the tasks. In each simulation setting,
all other parameters were kept constant at default parameters marked
with the yellow star symbol. . . . . . . . . . . . . . . . . . . . . . . 86
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5.3 Fitted task covariance matrices for gene expression levels in
yeast. (a) Empirical covariance matrix of the gene expression levels.
(b) Signal covariance matrix learnt by GP-kronsum. (c) Noise co-
variance matrix learnt by GP-kronsum. The ordering of the tasks was
determined using hierarchical clustering on the empirical covariance
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Correlation between the mean di↵erence of the two condi-
tions and the latent factors on the yeast dataset. Shown is
the strength of the latent factor of (a) the genetic signal and (b) the
noise trait-trait covariance matrix as a function of the mean di↵erence
between the two environmental conditions. Each dot corresponds to
one gene expression level. . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 One-dimensional Gaussian distribution. Gaussian probability
density function (pdf), with mean µ = 0 and variance �2 = 1, is
shown in blue. The mean is depicted with red, the standard deviation
� with green. 68.27% of the mass of the distribution is within one
standard deviation of the mean (yellow-shaded area). . . . . . . . . . 102

A.2 Graphical description of the Kronecker product and the vec
operator. Left: The Kronecker product is a matrix product that
multiplies each element of A with the complete matrix B. Right:
The vec operator reshapes a matrix into a vector by concatenating
the columns of the matrix. . . . . . . . . . . . . . . . . . . . . . . . 107
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3.1 Associations close to known candidate genes. We report true
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4.3 Frequencies of categories of antagonistic and synergistic ef-
fects among interacting pairs of active SNPs. . . . . . . . . . 71
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