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Counterregulation of cAMP-directed kinase
activities controls ciliogenesis
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The primary cilium emanates from the cell surface of growth-arrested cells and plays a
central role in vertebrate development and tissue homeostasis. The mechanisms that control
ciliogenesis have been extensively explored. However, the intersection between GPCR sig-
naling and the ubiquitin pathway in the control of cilium stability are unknown. Here we
observe that cAMP elevation promotes cilia resorption. At centriolar satellites, we identify a
multimeric complex nucleated by PCM1 that includes two kinases, NEK10 and PKA, and the
E3 ubiquitin ligase CHIP. We show that NEK10 is essential for ciliogenesis in mammals and
for the development of medaka fish. PKA phosphorylation primes NEK10 for CHIP-mediated
ubiquitination and proteolysis resulting in cilia resorption. Disarrangement of this control
mechanism occurs in proliferative and genetic disorders. These findings unveil a pericen-
triolar kinase signalosome that efficiently links the cAMP cascade with the ubiquitin-
proteasome system, thereby controlling essential aspects of ciliogenesis.
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rimary cilia are sensory organelles that receive, integrate,

and transmit a variety of extracellular signals to intracel-

lular compartments. Receptors, ion channels, transporter
proteins, scaffolds, and effector proteins localize and function at
ciliary compartments. The primary cilium focuses signal trans-
mission and contributes to cell homeostasis during development
and tissue remodeling!%. Recent findings support a key role of the
primary cilium in important aspects of vertebrate development
and tissue homeostasis. Altered ciliogenesis or dysfunctional cilia
cause ciliopathies that have been causally linked to a wide range
of genetic and proliferative diseases®. Therefore, understanding of
the basic and conserved mechanism of ciliogenesis or cilium
removal will expose new avenues for pharmacological targeting of
such disorders.

Primary cilia extend from the basal body, which is derived
from the mother centriole of the centrosome and consists of an
axoneme formed by nine doublet microtubules surrounded by the
ciliary membrane. Cilium assembly is induced when cells
deprived of mitogens leave the cell cycle. This process is initiated
by the docking of ciliary vesicles at the distal site of the basal
body. The growth of axonemal microtubules and subsequent
fusion of the nascent cilium with plasma membrane culminates in
the formation of mature cilia!. A wide array of pericentriolar
proteins have been identified as major regulators of cilia assem-
bly, growth, and maintenance®. The pericentriolar matrix protein
1 (PCM1), a central component of centriolar satellites, is localized
within the electron dense granules scattered around centrosomes.
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PCM1 acts as scaffolding platform to organize centrosomal and
pericentriolar proteins that are implicated in the spatiotemporal
dynamics of both centrioles and the microtubule network>. The
central role of PCMI1 in ciliogenesis has been described®. Reg-
ulators, effectors, and components of the ciliary compartment
form macromolecular complexes with PCMI1. Accordingly,
depletion of PCM1 leads to delocalization of its pericentriolar and
ciliary partners and to a concomitant loss-of-primary cilia”®.
PCML1 is also a target of the ubiquitin-proteasome system (UPS).
In growing cells, ubiquitylation of PCM1, AZI1, and CEP290 by
the E3 ligase MIBI1 suppresses primary cilium formation. Under
stress conditions, inactivation of MIB1 by stress kinases abolishes
AZ11, PCM1, and CEP290 ubiquitylation and promotes cilio-
genesis in proliferating cells”~!!.

Components of the cAMP cascade, such as G-protein coupled
receptors (GPCRs), adenylate cyclases (ACs), and phosphodies-
terases (PDEs) are central signaling units that act on the primary
cilium and are functionally implicated in critical aspects of cilium
formation and signaling'>~!'%. Proteomic screening and in situ
immunolocalization studies identified cAMP-dependent protein
kinase A (PKA) holoenzyme as a main component of the ciliary
compartment. Localization of PKA to the cilium and its cAMP-
dependent spatiotemporal activation is important for antagoniz-
ing Hedgehog-initiated signaling, which is essential for normal
embryonic development!>!>16" Recently, the orphan GPCR
Gprl161, known to be involved in cAMP and hedgehog signaling
has been identified as a scaffolding protein (A kinase anchoring
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Fig. 1 Assembly of a pericentriolar kinase complex. a HEK293 cells were serum-deprived for 36 h and then left untreated (CNT) or stimulated for 3 h with
isoproterenol (Iso) or forskolin (FSK) and doubly stained for acethylated tubulin and Drag5. Cumulative data from five independent experiments are shown.
*p < 0.05 (Student's t-test). Where indicated, the cells were pretreated for 30 min with the PKA inhibitor (PKAi) H89 (5 uM) before stimulation. b RIIp was
immunopurified from whole-cell extracts (WCE). IgG was used as control. The precipitates and lysates were immunoblotted with anti-PCM1 and anti-RIIp
antibodies. ¢ Lysates of NEK10-flag expressing cells were subjected to pull down assays with purified GST or GST-RIIf fusion. The precipitates and lysates
were immunoblotted with anti-PCM1, anti-flag and anti-RIIp. d HEK293 cells were fixed and immunostained for endogenous PCM1, NEK10, and RIIp. A
merge composite of the three signals and magnification of a selected area are shown (right panels)
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Fig. 2 NEKTO localization and regulation of primary cilium formation. a Serum-deprived HEK293 cells were immunostained for NEK10 and acetylated
tubulin and analyzed by confocal microscope equipped with Airyscan superResolution imaging module. A merge composite 2D and 3D of the signals is
shown. b HEK293 cells were transiently transfected with control (siCNT) or with siRNAs targeting NEK10 (siNEK10), serum deprived for 36 h, formalin-
fixed and immunostained for acetylated tubulin. Where indicated, NEK10-flag vector (either wild type or kinase dead, KD) was included in the siRNAs
transfection mixture. NEK10 expression was visualized with anti-flag antibody. Arrows indicate the localtion of the cilium in cells expressing flag-tagged
NEK10. Cumulative data from three independent experiments are shown (lower right panel). For each group a minimum of 100 cells/experiment was

averaged. *p <0.05; **p < 0.07; ***p <0.001 (Student's t-test)

protein; AKAP) for recruiting PKA to the primary cilium!>!7.

Such scaffold mediated targeting of PKA holoenzymes in proxi-
mity of its substrates, ogtimizes the biological responses to hor-
mone stimulation'®2",  The question arises if other
macromolecular PKA complexes at the base of cilium are
involved in cilium formation. Delocalization of PKA from the
cilium profoundly impacts on downstream developmental path-
ways, suggesting distinct PKA signalosomes that locally control
cAMP messages not only at the organelle but also for its for-
mation'2. However, the composition of the macromolecular PKA
complexes at the basis of this ciliary compartment is still
unknown. Moreover, the link between the cAMP pathway and
the control of cilium resorption in hormone-stimulated cells is
still undefined. Here we fill this gap by identifying PCM1 as an
interlinking platform for cAMP-sensing and kinase (NEK10 and
PKA) counterregulation, which is actually relevant for
ciliogenesis.

We found that NEKI10 is required for cilia biogenesis, both in
mammals and lower vertebrates (i.e, medaka fish). PKA

| (2018)9:1224

phosphorylation induces ubiquitination and proteolysis of
NEK10 by the co-assembled E3 ligase CHIP. We present evidence
that the loss-of-NEK10 promotes cilium resorption. This UPS
and kinase-involved control mechanism for cilium dynamics
might be deregulated in specific human cancers and genetic
disorders.

Results

PCM1 targets PKA and NEKI0 to the centriolar satellites.
Activation of PKA by cAMP agonists at the primary cilium is
functionally linked to developmental pathways'2. However, if and
how PKA regulates the stability of primary cilium in growth-
arrested cells remained largely elusive. We therefore tested the
impact of PKA activation on cilium stability. We used an
experimental model where the formation of primary cilia can be
induced by serum deprivation?!. Cilia are visualized by immu-
nofluorescence using an antibody directed against acetylated
tubulin, a modified form of tubulin that specifically accumulates
at primary cilia®?. As shown in Fig. 1a, serum deprivation for 36 h
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promoted the formation of primary cilia (CNT). Interestingly,
activation of adenylate cyclase by the diterpene forskolin (FSK),
stimulation of beta-adrenergic receptor pathways (bAR) by iso-
proterenol (ISO) or serum readdition induced a rapid resorption
of primary cilia (Fig. la, Supplementary Fig. la-b). Serum resti-
mulation significantly elevated the intracellular levels of cAMP in
serum deprived cells, as did forskolin or isoproterenol that
maximaly activate it (Supplementary Fig. 1c-d). Serum readdition
also increased phosphorylation of PKA substrates (Supplemen-
tary Fig. le). Treatment with drugs did not affect cell viability,
since readdition of serum to FSK-treated cells restored cell pro-
liferation (Supplementary Fig. 1f). Moreover, the effects of cAMP
stimulation were mediated by PKA, since inhibiting the kinase by
a pharmacological inhibitor (Fig. 1a) or by PKI (Supplementary
Fig. 2) prevented cilium resorption induced by foskolin treat-
ment. This finding suggested a control mechanism of cilia sta-
bility in starved cells mediated by the cAMP pathway.

Large-scale proteomic analyses identified PKA as a component
of a macromolecular complex nucleated by PCM1?%. Moreover,
we identified the Nima-related Kinase 10 (NEK10) in the
unprocessed proteomics dataset of PKA interactors'3. NEK10 is
a member of the NEK family kinases involved in microtubule
dynamics, cell cycle progression and ciliogenesis?*. Based on
these observations, we investigated how PKA intersects with
NEK10 pathway to control primary cilium stability. First, we
asked if PKA and NEK10 can be assembled within the same
complex by PCM1. Co-immunoprecipitation assays (Fig. 1b) and
GST-pull-down experiments (Fig. 1c) revealed a trimeric complex
composed of PCM1, NEK10, and RIIp. Furthermore, immunos-
taining analysis revealed that PCM1, NEK10, and RIIp signals
partially co-localized at pericentrional region, supporting the
notion that the three proteins can be present within the same
intracellular compartment (Fig. 1d).

Next, we analyzed the binary interaction between PCMI1 and
both kinases (PKA and NEK10). Co-immunoprecipitation assays
confirmed that PCM1 and NEK10 form a stable complex in
lysates (Supplementary Fig. 3a). To identify the domain of PCM1
that mediates the NEK10 binding, we generated a series of
deletion mutants and tested their ability to interact with the

residues 941-1207 of PCM1 mediate the interaction with
NEK10 (Supplementary Fig. 3b-d). Similarly, we studied the
binding between PCMI1 and PKA. Co-immunoprecipitation
experiments of endogenous proteins confirmed the presence of
PCM1 and PKA within the same complex (Supplementary Fig. 4).
Additionally, double immunostaining for endogenous RIIP
subunit and PCM1 confirmed that a significant fraction of PKA
co-localized with PCM1 (Supplementary Fig. 5a). Genetic
knockdown of PCM1 reduced the intensity of pericentriolar RIIp
staining, suggesting that PCM1 was, at least in part, required for
PKA localization at centriolar satellites (Supplementary Fig. 5b).
Despite the evidence that PKA and PCMI1 form a stable complex
in cAMP precipitation studies®> (Supplementary Fig. 6), we could
not confirm binary interactions using in vitro binding assays with
recombinant proteins. These findings are consistent with the
notion that the interaction between these proteins is indirect.

Essential role of NEK10 in ciliogenesis. Members of the NEK
family have been implicated in various aspects of microtubule
dynamics and ciliogenesis®*~2°. NEK10 localizes at centriolar
satellites. We therefore tested whether localization was involved
in regulating primary cilium formation. Immunostaining analysis
confirmed that a significant fraction of NEKI10 is, indeed, loca-
lized at cilia where it appeared uniformily distributed along the
axoneme (Fig. 2a and Supplementary Movie 1). Note that in some
cells a NEK10 staining at the base of the cilium could be detected,
suggesting that localization of this kinase at ciliary compartment
is a dynamically regulated mechanism. Given its localization at
cilia, we tested whether NEK10 is required for ciliogenesis. As
shown in Fig. 2b (upper panels) and Supplementary Fig. 7a,
genetic silencing of NEK10 reduced the number of ciliated cells.
Re-introduction of an exogenous NEK10 that cannot be targeted
by the siRNA rescued cilia in NEK10-depleted cells. The con-
tribution of NEKI10 in ciliogenesis was also analyzed by inter-
fering with its kinase activity. Thus, expression of a kinase-dead
mutant of NEK10 (NEK10-KD) carrying the K548R mutation>’
significantly reduced the number of ciliated cells (Fig. 2b, lower
panels). To provide insights into how Nek10 regulates ciliation,

kinase. Co-immunoprecipitation assays demonstrated that we performed a proteome analysis of NEK10 complexes in cAMP
Table 1 Selected NEK10-associated proteins identified by mass spectrometry analysis. Cells transiently expressing NEK10-Flag
WT or the mutant T812A were subjected to immuno-precipitations (IPs) using Flag antibody (IPs were done in the presence of
serum following 10 pM Forskolin treatment for 15 min). IPs performed with anti-GFP antibodies served as control. A selection of
enriched and high-scoring proteins identified in two independent experiments are presented
Accession # Gene name Description Score?
Q5T9A4 ATD3B ATPase family AAA domain-containing protein 3B 279.72
QONVI7 ATD3A ATPase family AAA domain-containing protein 3A 177.73
Q5SW79 CE170 Centrosomal protein of 170 kDa 79.81
Q13263 TIF1B Transcription intermediary factor 1-beta 46.99
Qo6P47 AGAP3 Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 40.07
Q9UPQ3 AGAPT Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 38.88
P12236 ADT3 ADP/ATP translocase 3 26
Q6PID8 KLD10 Kelch domain-containing protein 10 22.44
P49674 KCIE Casein kinase | isoform epsilon 17.35
Q99755 PIS1A Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha 15.94
Q5JTW2 CEP78 Centrosomal protein of 78 kDa 15.9
000139 KIF2A Kinesin-like protein KIF2A 14.37
P27348 1433T 14-3-3 protein theta 1n.62
Q3KQU3 MA7D1 MAP7 domain-containing protein 1 10.92
Q9HDC5 JPH1 Junctophilin-1 9.56
P62258 1433E 14-3-3 protein epsilon 9.51
P46940 IQGA1 Ras GTPase-activating-like protein IQGAP1 7.28
2Mascot score: protein score reflects the combined scores of all observed mass spectra that can be matched to amino acid sequences within that protein. A higher score indicates a more confident match
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Fig. 3 PKA phosphorylates NEK10 in vivo and in vitro. a Transfected HEK293 cells were left untreated or stimulated with forskolin for 60 min. Where
indicated, MG132 (20 uM) was added to the medium. Lysates were immunoblotted for flag and tubulin. b The domain organization of NEK10 and the

position of T223 and T812 are indicated. Composition of truncated NEK10

expression constructs are shown. ¢ Cells transfected with either wild-type

NEK10-flag or with NEK10-flag mutants (T223A-Flag and T812A-Flag) were left untreated or stimulated with FSK (15 min). NEK10 was immunopurified
with anti-flag antibodies. The precipitates were immunoblotted with anti-flag and with anti-phospho-(K/R)(K/R)X(S*/T*) specific antibodies. The
quantification is shown from n= 4 independent experiments (+SEM). d Commassie brilliant blue (CBB) stained gels of recombinant GST hybrid NEK10
proteins composed of the phosphorylation site mutation T812A and distinct parts of NEK10 are shown. @ Recombinant and GST-fused NEK10 proteins were
used as substrates for in vitro phosphorylation assays using recombinant and hexa-histidin-tagged PKAc. GST-immobilized fusion proteins were analyzed
in immunoblotting experiments with an anti-phospho-(K/R)(K/R)X(S*/T*) specific antibody. Shown is a representative result from n =3 independent
experiments. f HEK293 cells transiently expressing NEK10-flag were treated with KT5720 (5 uM; 60 min) and then stimulated with forskolin (20 uM;
15 min) or isoproterenol (100 nM; 15 min). Cells were lysed and NEK10-flag was immunoprecipitated using anti-flag antibodies. Immunoblotting was
performed with anti-flag and with anti-phospho-(K/R)(K/R)X(S*/T*) specific antibodies. The quantification from n = 4 independent experiments (£SEM)

is shown

stimulated cells. Table 1 presents a selection of enriched and
high-scoring proteins. In the IPs from the overexpressed HEK293
cell system, we could not detect major differences of interactions
between wt and the T812A mutant. Centrosomal proteins and
members of cytoskeleton-associated molecular motor proteins
show a high-score probability as NEK10 interactors, suggesting a
role for this kinase in cytoskeletal events taking place at centriolar
satellites. However, further work is required to confirm this
hypothesis and characterize the relevant NEK10 substrates
involved in ciliogenesis.

PKA phosphorylation primes NEK10 for proteolysis. To gain
further insight into the mechanism of cAMP action on cilia
formation, we monitored NEK10 levels in cells stimulated with
FSK. Figure 3a shows that FSK treatment reduced the levels of
NEK10. Pre-treating the cells with MG132, a proteasome inhi-
bitor, restored NEK10 levels in the presence of FSK (Fig. 3a).
Importantly, FSK-induced loss-of-NEK10 was reproduced in cells
pretreated with cycloheximide, an inhibitor of translation, sup-
porting the concept that cAMP acts through the UPS to control
NEK10 stability (Supplementary Fig. 7b). The data above indicate
that, in response to cAMP stimulation, NEKI10 undergoes

proteasomal degradation. We assume that PKA phosphorylation
primes NEK10 for proteolysis. Primary sequence analysis of
NEK10 predicts two conserved PKA phosphorylation sites (T223
and T812) (Fig. 3b and Supplementary Fig. 8). To ask if phos-
phorylation of one or both of these sites renders
NEK10 susceptible to proteolysis, we generated mutant forms of
NEKI10 using a site-directed mutagenesis approach to substitute
either T223 or T812 with alanine. We tested our hypothesis by
analyzing the phosphorylation status of affinity-isolated NEK10
with a PKA substrate antibody. In contrast to phosphorylation of
the wild type and T223A NEKI0 mutant, the substitution of
T812A abolished both basal and FSK-induced NEK10 phos-
phorylation (Fig. 3c). To prove that PKA directly phosphorylates
NEK10, we purified a series of recombinant and GST-fused
NEK10 hybrid proteins spanning distinct NEK10 domains from
bacterial BL21 cell lysates (Fig. 3d). The purified polypeptides
were subjected to in vitro phosphorylation assays using recom-
binant his-tagged PKAc. As shown in Fig. 3e and Supplementary
Fig. 9, the C-terminal fragments of NEK10 were efficiently
phosphorylated by PKAc. In contrast, the T812A mutation
completely prevented phosphorylation of the NEK10 pro-
tein fragments by PKAc. To confirm that indeed PKA mediates
NEK10 phosphorylation in cells, we pretreated cells with the PKA
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Fig. 4 PKA phosphorylation induces NEK10 proteolysis and cilia resorption. a-b Cells transfected with either wild-type NEK10-flag or with T812A-flag

mutant were left untreated or stimulated with forskolin (a) or isoproterenol (b) for 30-60 min. Lysates were immunoblotted for flag and tubulin. ¢ Cells
were transiently co-transfected with NEK10-flag construct (either wild type or T812A mutant) and HA-ubiquitin. 24 h after transfection, cells were treated
with MG132 (20 uM) for 1h and then stimulated with FSK. Lysates were subjected to immunoprecipitation with anti-flag and immunoblotted with anti-HA
and anti-flag. d Cells transfected with either wild-type NEK10-flag or with T812A-flag mutant were serum deprived for 36 h, left untreated or stimulated
with FSK (3 h) and doubly immunostained for acetylated tubulin and flag. e Quantitative analysis of flag-positive ciliated cells expressing either wild type or
T812A NEK10 mutant. Cumulative data from three independent experiments are shown. For each group a minimum of 100 cells/experiment was averaged.

*p < 0.05 versus NEK10-flag and T812A mutant

inhibitor KT5720 followed by FSK or Isoproterenol exposure>!32,
We confirmed that PKA inhibition prevents the further increase
of NEK10 phosphorylation (Fig. 3f). Taken together, these data
indicate that PKAc directly phosphorylates NEK10 at T812, both
in vitro and in vivo.

We next asked if phosphorylation of T812 by PKA affects
NEK10 stability. As suspected, the T812A NEK10 mutant, when
expressed in heterologous cells, was not degraded by FSK (Fig. 4a)
or isoproterenol (Fig. 4b) treatment, compared to the wild-type
protein. These data suggest that modification of NEK10 by PKA
is required for proteolysis by the UPS. As shown in Fig. 4c, FSK
treatment, indeed, induced poly-ubiquitination of NEK10. Poly-
ubiquitination was abrogated by the T812A mutation. Next, we
tested whether NEK10 phosphorylation was required for primary
cilium disassembly induced by the cAMP cascade. Cells were
transiently transfected with NEKI10 (either wild type or the
NEK10-T812A mutant), serum-deprived for 2 days and then
treated with FSK. As shown in Fig. 4d, e, the T812A mutation
prevented FSK-induced cilia disassembly, supporting the concept
that PKA phosphorylation of T812 primes NEK10 for proteolysis,
which results in cilia disassembly.

NEKI10 is required for medaka fish development. To further
prove the role of Nek10 in ciliogenesis, we carried out an in vivo
analysis in the medaka fish (Oryzias latipes, ol) model system by

6 NATURE COMMUNICATIONS | (2018)9:1224

means of both gene overexpression and knockdown and rescue
assays, as already described>>. Nek10 was previously reported to
be ubiquitously expressed at low levels in most adult mouse tis-
sues®”. However, its expression during the embryogenesis was not
defined. By immunofluorescence analysis, we characterized the
expression of NEK10 on medaka embryo at Stage (St.)30 (Sup-
plementary Fig. 10), in which organogenesis is completed. This
experiment revealed that 0INek10 is ubiquitously expressed in the
whole embryo with high levels in the central nervous system
(CNS).

We then analyzed the contribution of NEKI10 and cilia
disassembly. From St.30-32 onward, overexpression of NEK10-
KD, but not wild-type NEK10, led to embryonic morphological
abnormalities (Fig. 5a). In particular, embryos overexpressing
NEK10-KD showed a dose-dependent phenotype characterized
by a significant reduction in trunk size. This defect was associated
with microphthalmia, microcephaly, and cardiovascular abnorm-
alities, including pericardial edema. These morphological altera-
tions can be correlated with loss of normal cilia functions, as
already reported®. In a fraction of the embryos (17%),
overexpression of NEK10-KD was embryonic lethal. To better
determine the function of NEK10 during embryo development
and its role in the onset and progression of the phenotype, we
knockdown oINek10 with a specific morpholino (MO) directed
against the second splice donor site (MO-Spl Exo2 NEK10). A
significant percentage of these embryos were morphologically
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Fig. 5 NEKT0 is required for medaka fish development. a Stereomicroscopic images of WT, NEK10 WT, NEK10-KD, MO-Spl Exo2 Nek10, MO-Spl Exo2
Nek10/NEK10 WT, and MO-Spl Exo2 Nek10/NEK10-T812A injected Medaka larvae, at stage 40. NEK10 WT injected larvae appear morphological identical
to control WT larvae. NEK10-KD and MO Spl Exo2 show morphological alterations (i.e., microphthalmia, microcephaly, curved body, and others), which
were all reminiscent of defective cilia phenotypes in medaka cilia mutants. NEK10-WT co-injections with MO-Spl Exo2 NEK10 rescued the morphological
phenotype that was observed in MO-Spl Exo2 NEK10 larvae. NEK10-T812A co-injections with MO-Spl Exo2 NEK10 were not able to rescue the
morphological phenotype observed in MO-Spl Exo2 NEK10 larvae. b Confocal images of cilia of the neural tube cells in the WT, NEK10 WT, MO-Spl Exo2
NEK10/NEK10 WT, NEK10-KD, MO-Spl Exo2 NEK10, MO-Spl Exo2 NEK10/NEK10-T812A stained with anti-acetylated a-tubulin Ab (green) and DAPI
(blue). ¢ In the graph is reported cilium length measurements of WT, WT-NEK10, NEK10-KD, MO-Spl Exo2, MO-Spl Exo2/NEK10 WT, NEK10-T812A, and
MO-Spl Exo2/NEK10-T812A embryos (n12) (ANOVA test: ***p < 0.000005; **p < 0.00005; *p < 0.0005)

indistinguishable from those overexpressing Nekl10-KD and
displayed similar defects in the eye, CNS and trunk size, as well
as pericardial edema formation. Notably, we did not observe any
apparent alteration in left-right asymmetry with respect to
controls as assessed by morphological inspection (Fig. 5a). We
next asked whether changes in apoptosis and/or cell proliferation
were associated with the phenotype observed in morphant
embryos. From St.30-32 onward, the terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay, a specific
method to detect cell death, revealed a significant increase in the
number of TUNEL-positive apoptotic cells in the whole embryos
in comparison with both control-injected embryos (Supplemen-
tary Fig. 10). In particular, we revealed a substantial increase in
the number of TUNEL-positive cells in the central nervous
system, neuroretina and in the tail of morphant embryos
compared to control-injected embryos.

In contrast, we did not observe any alteration in the number of
proliferating cells in the whole-morphant embryos in comparison
to control-injected embryos, as determined by immunostaining
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for phosphorylated histone H3 (PHH3), a specific marker for cells
in the M-phase (Supplementary Fig. 10). In agreement to this
observation, vibratome sections of PHH3-stained morphant
embryos did not reveal any differences in proliferation rate in
different regions of morphant embryos, such as eye, brain and tail
in comparison to control-injected embryos (Supplementary
Fig. 10).

To determine whether both phenotypes (Nek10-KD and MO-
Spl Exo2 NEK10) were indeed related to abnormal ciliogenesis,
we investigated cilia formation on the apical surface of cells of the
neural tube at St.24-26 stage of medaka embryo development
using whole-mount immunostaining with anti-acetylated o-
tubulin. Notably, a large proportion of embryos injected with
NEK10-KD, but not with the of wild-type NEK10, and analysed
at St.24-26 (2-days post fertilization, [pf]) showed a significant
reduction in cilia length (Fig. 5b, c). Consistent with these
observations, MO-Spl Exo2 NEKI10 injections induce a statisti-
cally significant reduction of cilia length (Fig. 5b, ). Importantly,
activation of p53 is an occasional off-target effect of Mo
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Fig. 6 CHIP ubiquitylates and degrades NEK10. a Cells were co-transfected with NEK10-flag, HSP70-V5 and CHIP-myc. To prevent NEK10 degradation,
cells were treated with MG132 (20 uM) for 8 h before collecting. Lysates were immunoprecipitated with anti-flag or with control IgG. The precipitates and
lysates were immunoblotted with the indicated antibodies. b Cells were co-transfected with NEK10-flag vectors (either wild type or T812A mutant),
HSP70-V5 and CHIP-myc, serum deprived for 24 h and left untreated or stimulated with FSK. Lysates were immunoprecipitated with anti-flag. The
precipitates and lysates were immunoblotted with the indicated antibodies. € Cumulative data of the experiment shown in b. The results represent the
mean values  S.E. of three independent experiments. d Lysates from cells co-transfected with NEK10-flag and CHIP (either wild type or K30A mutant)
were immunoblotted with the indicated antibodies. e Cells were co-transfected with HA-ubiquitin, NEK10-flag and CHIPk30a-myc or with control plasmid
(CMV). 24 h after transfection, to avoid degradation of the ubiquitinated target protein, the cells were treated with MG132 (20 uM) for 8 h and then
stimulated with FSK. Lysates were subjected to immunoprecipitation with anti-flag and immunoblotted with anti-HA, anti-flag and anti-myc antibodies.
f Cells co-transfected with HA-ubiquitin, NEK10-flag and siRNAs (either control siRNA or siCHIP) were serum-deprived overnight and stimulated with
isoproterenol. Lysates were subjected to immuno-precipitations with anti-flag antibody. Ubiquitinated NEK10 was revealed by immunoblot with anti-HA
antibodies. g Cells were transiently transfected with control or with siRNAs targeting CHIP, serum-deprived for 36 h and then left untreated or stimulated
with FSK. Primary cilia were visualized by immunostaining for acetylated tubulin. Cumulative data from five independent experiments are shown. For each

group a minimum of 100 cells/experiment was averaged.

injections, which can be counteracted by injection of a
morpholino against p53 (Mo-p53), a key protein involved in
the apoptotic pathway>. Therefore, to rule out possible non-
specific effects of MO- Spl Exo2 NEK10, we coinjected it with the
Mo-p53. We did not observe any modifications of the phenotype,
which supports the high specificity of MO-Spl Exo2 NEK10
phenotype (Supplementary Fig. 10). Consistent to these observa-
tions, co-injection of human wild-type NEKIO that is not
recognized by the morpholino MO-Spl Exo2 NEK10, induced a
statistically significant rescue of cilia length (Fig. 5b, c), which
reflected in a fully rescue of medaka embryo development
(Fig. 5a). In contrast, co-injection of human mutated NEK10-
T812A did not result in a rescue of morphant phenotype.
Altogether, these results strongly supported the absence of off-
targeting effects and the specificity of the phenotype induced
by Nekl0 knockdown. Importantly, overexpression of the
NEK10-T812A mutant caused a significant reduction of cilia
length compared to both control and wild-type NEK10 injected
embryos (Fig. 5b, c). Notably, its co-injection with MO-Spl Exo2
NEKI10 exacerbated embryonic morphological abnormalities in
comparison to NEK10-KD and MO-Spl Exo2 NEKI10 injected
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*p <0.05 versus siCNT and siCHIP + FSK

embryos (Fig. 5a). However, no additive reduction of cilia length
was observed in the NEKI10-T812A/MO-Spl Exo2 NEK10
coinjected embryos (Fig. 5b, c). Taken together, these data
suggest that NEK10 affects embryogenesis of medaka fish by
modulating the ciliogenesis pathway that is counteracted by PKA
phosphorylation at T812.

CHIP is the NEK10 E3 ubiquitin ligase. We showed above that
cAMP elevation induces NEK10 ubiquitination. We returned to
the original proteomics dataset of macromolecular PKA com-
plexes and selected the E3 ubiquitin ligase CHIP (C-terminus of
HSP70-interacting protein) for further analyses. CHIP was a hit
from the processed and published dataset of direct or indirect
PKA interactors'3, CHIP, encoded by the gene STUBI, is an E3
ub-ligase that contains a tetra-tricopeptide (TPR) motif tandem
repeats at its N-terminus that mediates interaction with HSP70.
The CHIP C-terminus includes a U-box domain separated by a
charged coiled-coil region. CHIP is expressed in all mammalian
tissues and ubiquitinates most HSP70-bound substrates, acting as
a major protein quality system®°~*2. First, we tested whether
CHIP interacts with NEK10. As shown in Fig. 6a and
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Fig. 7 CHIP, NEKT0 and cilia in SCAR16 fibroblasts and cancer tissues. a Skin fibroblasts from healthy volunteers (BJ) and SCAR16 patients (AX71) were
serum deprived for 48 h and treated with FSK (80 uM/6 h). Cells were fixed and stained for acetylated tubulin and Drag5. Where indicated, AX71 cells
were transiently transfected with siRNA targeting endogenous NEK10, before stimulation. b Cumulative data from four independent experiments are
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*p < 0.05; **p < 0.01. ¢ Immunohistochemistry for NEK10, CHIP, and acetylated

tubulin of the following tissue sections: prostate (normal tissue and high-grade cancer) and glial tumors (astrocytoma and glioblastoma). A total of 8
prostate and 6 glial tumor tissue speciments were analyzed. d Schematic depiction of the proposed model: In growth-arrested cells, NEK10 positively
contributes to ciliogenesis. Stimulation of adenylate cyclase (AC) by e.g., a defined GPCR ligand increases cAMP levels and activates PKA. PKA
phosphorylates NEK10 at T812. Phosphorylated NEK10 undergoes CHIP-mediated ubiquitination and proteolysis, which subsequently leads to cilium

disassembly

Supplementary Fig. 11a and Fig. 11b, a stable complex between
NEK10, CHIP, and HSP70 could be isolated from cell lysates. The
interaction between the three proteins was regulated by cAMP.
Thus, treatment with FSK-induced binding between NEK10 and
endogenous or exogenous HSP70 and CHIP (Fig. 6b and Sup-
plementary Fig. 11a—c). To note that induction of CHIP binding
to NEK10 by FSK was greater compared to that of HSP70, sug-
gesting that Hsp70-independent mechanism(s) could also con-
tribute to CHIP binding to NEK10 (Supplementary Fig. 11c¢). In
contrast, the T812A mutation significantly decreased NEK10
binding to HSP70 and CHIP (Fig. 6b, c). We then asked if CHIP
degrades NEK10 in the absence of MG132. As suspected, wild-
type CHIP, but not its catalytically inactive mutant (K30A),
reduced NEKI10 levels (Fig. 6d). Moreover, expression of the
CHIP K30A mutant (Fig. 6e) or genetic silencing of endogenous
CHIP (Fig. 6f) prevented FSK-induced NEKI10 poly-
ubiquitination. These findings supported the idea that cAMP
controls NEK10 stability through CHIP. Next, we asked if CHIP
mediates the effects of cAMP on cilia stability. Figure 6g,
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Supplementary Fig. 11d and Fig. 11e show that downregulation of
endogenous CHIP prevented cilia resorption induced by FSK
treatment.

Dysregulation of CHIP affects cilia in human diseases. Biallelic
STUBI mutations resulting in aberrant CHIP have been identified
in patients with clinical features of autosomal recessive spino-
cerebellar ataxia-16 (SCAR16). This is a rare genetic syndrome
characterized by truncal and limb ataxia resulting in gait
instability, mild peripheral sensory neuropathy, and cognitive
defects, often as part of a widespread multisystemic neurode-
generative process*>. Hypogonadism can also be present in these
patients (Gordon Holmes syndrome, GHS), consistent with sig-
naling defects and altered responses to hypothalamic hor-
mones**~*7. Mice lacking STUBI/CHIP gene show a phenotype
that recapltulates most of the SCAR16 features*®. Accordingly, we
determined whether CHIP mutations affect primary cilia. We
analyzed ciliogenesis in primary fibroblasts isolated from cuta-
neous biopsies of SCAR16 patients or from healthy volunteers.
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Figure 7a, b and Supplementary Fig. 12 show that FSK treatment
in normal fibroblasts promoted resorption of cilia. In contrast, no
major effects of FSK stimulation on cilia were evident in SCAR16
fibroblasts. Interestingly, genetic silencing of NEK10 in SCAR16
fibroblasts markedly reduced the number of ciliated cells, even in
the absence of FSK, further supporting a role of the CHIP-NEK10
axis in control of cilium stability.

CHIP is a tumor associated-gene whose levels relate to tumor
grade?®0, Since CHIP controls NEK10 stability, we explored how
CHIP overexpression in cancer tissues is linked to NEK10 levels
and ciliogenesis. Strong CHIP staining was evident in high-grade
glial tumors (glioblastoma), compared to low-grade glioma
(astrocytoma). Similarly, CHIP staining was robust in prostate
cancer tissue, compared to a normal counterpart (Fig. 7c). High
levels of CHIP staining in malignant tumors were linked to low
levels of NEK10, in both prostate and glioma tissues. Moreover,
no cilia could be found in glioblastoma samples, compared to
astrocytoma (Fig. 7c). Similarly, high-grade prostate cancer
tissues show a drastic reduction of ciliated cells, compared to a
normal couterpart, most likely reflecting a high rate of cell
proliferation, as shown by loss-of-cilia in Ki67-positive cancer
cells (Supplementary Fig. 13).

Discussion

Here we report the identification of a pericentriolar scaffold
complex functionally nucleated by PCM1 that controls cAMP
signaling events at the primary cilium. In growth-arrested cells,
NEK10 is required for cilia assembly. GPCR-mediated activation
of PKA induces ubiquitination and proteolysis of NEK10, which
culminates in cilia resorption. CHIP was identified as the E3
ligase responsible for NEK10 ubiquitination. Inactivating muta-
tions of CHIP, as seen in SCAR16 disease, severely influenced
cAMP-induced cilia resoprtion, whereas increased expression of
CHIP was linked to reduced NEKI10 levels and reduced cilio-
genesis in human cancers.

The primary cilium is a compartmentalized hub for signal
integration and propagation relevant for many developmental
processes. In dividing cells, the transition between centrosome
and primary cilium is functionally linked. In mitotic interphase,
centrosomes organize the cytoplasmic microtubule network,
whereas in mitosis they regulate mitotic spindle dynamics and
cytokinesis. In postmitotic cells, the centrosome migrates to the
cell surface, and one of the centrioles differentiates into a basal
body from which microtubules nucleate to form a primary cilium.
In normal proliferating cells, the cilium can be transiently
observed in G1 phase, disappearing when the cell enters the cell
cycle®. A significant fraction of PKA is localized at the base of
cilium through interaction with AKAPs, controlling essential
aspects of ciliogenesis and the Hedgehog (Hh) pathway!3-16:18,
However, the impact of PKA activation on the turnover of ciliary
proteins and its role in primary cilium stability were largely
unknown.

We provide evidence that NEK10 is a novel pericentriolar
protein required for primary cilium formation. The localization of
NEK10 at this site is mediated by its interaction with PCM1, a
pericentriolar scaffold protein involved in different aspects of
microtubule dynamics, cell division, and ciliogenesis’. We
demonstrated that NEK10 is essential for ciliogenesis in mam-
malian cells and that its function is conserved in lower verte-
brates. Thus, interfering with NEK10 expression or activity in
Medaka fish negatively impacted on ciliogenesis and embryo
development. Defects generated by NEKI10 downregulation
included reduction of trunk size, microphthalmia, microcephaly,
cardiovascular abnormalities, and pericardial edema, supporting a
major role of this kinase in ciliary processes underlying vertebrate
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development. Following GPCR stimulation, NEK10 becomes a
target of the cAMP cascade. Once activated by cAMP, PKA
phosphorylates NEK10 at T812. Phosphorylation primes NEK10
for ubiquitination and proteolysis. Decreased NEK10 levels leads
to cilia resorption. This regulatory system efficiently couples
GPCR signaling to cilia disassembly, accounting for a more
general role of cAMP in controlling the sensitivity of cilia to
hormones that act at the cell membrane (Fig. 7d). Importantly,
the PKA acceptor site T812 is not conserved among the other
mammalian members of the NEK family, suggesting a non-
redundant mode of regulation of NEK10 by the PKA pathway. By
proteomic screening, we identified CHIP as the E3 ligase that
ubiquitylates and degrades NEK10, promoting cilia disassembly
in response to cAMP stimulation. These findings point to CHIP
as a novel regulator of protein turnover at ciliary sites that effi-
ciently couples GPCR signaling to cilia dynamics. This mode of
regulation was further supported by evidence that germline
inactivating mutations of CHIP that cause SCAR16 disease pre-
vented cAMP-induced disassembly of cilia. Conversely, accu-
mulation of CHIP in malignant tumor lesions was linked to low
levels of NEK10 and reduced numbers of ciliated cells.

These findings elucidate the mechanism(s) underlying cilia
resorption during GPCR stimulation, both in healthy and disease
conditions. They also provide mechanistic insights into how
cAMP controls cell growth. It is well established that the cAMP
cascade regulates growth and differentiation of a wide variety of
cell types. PKA activation can either induce or inhibit cell growth,
depending on cell type, or metabolic conditions®>>>, In growth-
arrested endocrine cells, the cAMP-PKA pathway promotes the
transition from GO to G1 phase, allowing the cells to progress
through the cell cycle. The transition from quiescent to pro-
liferative state requires disassembly of the primary cilium!. Pre-
vious work revealed that activation of cAMP pathway in growth-
arrested, serum supplemented confluent cells may support cilio-
genesis®»>°, This apparent discrepancy could not be ascribed to
the different cell models used, since we confirmed that in serum
supplemented, confluent cells cAMP stimulation had no major
impact on cilum stability (Supplementary Fig. 14). These findings
suggest that cAMP pathway may have a dual effect on primary
cilia depending on how growth arrest is achieved. In the presence
of serum, cAMP contributes to primary ciliogenesis induced by
cell confluency, while under serum starvation the same messenger
promotes cilium disassembly.

Several targets of PKA have been identified and causally linked
to induction of cell growth. However, if and how PKA activation
modulates the activity of proteins controlling cilia stability in
starved cells was largely unexplored. Our findings help define the
relevance of PKA pathway in cilia resorption in the course of
hormone stimulation. We show that PKA activation by cAMP
agonists targets NEK10 for proteolysis through the UPS. The
cAMP cascade induces cilia disassembly and promotes entry into
the cell cycle by removing the NEK10 pro-ciliogenic kinase.
NEKI10 thus represents a nodal point in the ciliary compartment
where cAMP signaling and the UPS converge and integrate to
control essential aspects of cilia dynamics and, most likely, cell
growth. Mutations affecting any component of this proteolytic
machinery may alter the sensitivity of the cells to hormones or
growth factors, profoundly impacting on cell growth and verte-
brate development.

In conclusion, we have identified a PCM1-centered multimeric
complex that functionally links second messenger signaling
(cAMP), kinase activities (PKA, NEK10), and the UPS (CHIP) to
cilia dynamics. This mechanism explains how compartmentalized
signaling networks regulate cilia formation in both physiological
and pathological conditions.
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Methods

Cell lines and tissues. Human embryonic kidney cell line (HEK293) and primary
skin fibroblasts from SCAR16 patients were cultured in Dulbecco modified Eagle’s
medium containing 10% fetal bovine serum in an atmosphere of 5% CO,. Bioptic
samples of glial tumors surgically removed from patients were provided by Neu-
romed Institute of Pozzilli, Italy. All patients gave their informed consents.

Plasmids and transfection. Vectors encoding for NEK10-flag (wild type and
mutants) and PCM1-HA were provided by Dr Stambolic V and Dr Kamiya A.,
respectively>®*®, HA-Ub, CHIP-myc (wild type and K30A mutant), HSP70-V5,
were provided by Dr Carlomagno F and RIIB-myc was provided by Dr Ginsberg
MH>". PCM1 deletion mutants and NEK10 phosphorylation mutants (T223A and
T812A) were generated by PCR using specific oligonucleotides. RSV-PKIa was
kindly provided by Dr McKnight GS (University of Washington, US)®. siRNAs
targeting distinct segments of coding regions of NEK10 and CHIP were purchased
from IDT and Life technologies. siRNAs were transiently transfected using Lipo-
fectamine 2000 (Invitrogen) at a final concentration of 100 pmol/ml of culture
medium. For siRNA experiments, similar data were obtained using a mixture or
four or two independent siRNAs. Transfection efficiency was monitored by
including a GFP vector in the transfection mixture. The siRNA sequence (IDT)
targeting the 3’-UTR (untranslated region) of human NEK10: sense sequence: 5'-
CCACAAGACAUUAGUAAAUUUACTT-3’ antisense sequence: 5'-CGGGU-
GUUCUGUAAUCAUUUAAAUGAA-3’ or human CHIP sense sequence: 5'-
UUACACCAACCGGGCCUULtt-3'; antisense sequence: 5'-CAAGGCCC
GGUUGGUGUAAta-3'.

Antibodies and chemicals. The following primary antibodies were used: Goat
antibody directed against NEK10 (dilutions: 1/500 for immunoblot, 1/100 for
immunofluorescence; Santa Cruz Biotechnology, sc133083), rabbit polyclonal
directed against PCM1 (dilutions 1/1000 for immunoblot, 1/100 for immunopre-
cipitation, 1/100 for immunofluorescence; Abcam), rabbit polyclonal directed
against PCM1 (dilutions: 1/1000 for immunoblot, 1/100 for immunoprecipitation;
Cell Signaling, #5259), mouse monoclonal directed against CHIP (dilutions: 1/1000
for immunoblot, 1/100 for immunofluorescence; Santa Cruz Biotechnology,
$c133083), mouse monoclonal directed against tubulin (dilution 1/8000 for
immunoblot; Sigma, T6199), mouse monoclonal directed against acethylated
tubulin (dilution 1/100 for immunofluorescence; Sigma,T7451), rabbit polyclonal
directed against acetylated tubulin (dilution 1/100 for immunofluorescence;
Abcam, ab125356), mouse monoclonal directed against RIIP (dilutions: 1/2000 for
immunoblot, 1/200 for immunoprecipitation; BD Trasduction, 610625), mouse
monoclonal directed against flag (dilutions: 1/4000 for immunoblot, 1/200 for
immunoprecipitation; Sigma, F3165), mouse monoclonal directed against myc
(dilutions: 1/1000 for immunoblot, 1/100 for immunoprecipitation; Sigma M4439),
mouse monoclonal directed against HA (dilution 1/1000 for immunoblot; Cov-
ance, 901501), HA (dilution 1/1000 for immunoblot; Roche, 11583816001), rabbit
polyclonal directed against actin (dilution 1/3000 for immunoblot, Santa Cruz
Biotechnology, sc7210), goat polyclonal directed against NEK10 (1/100 for
immunofluorescence Santa Cruz Biotechnology #103067). Phospho-PKA substrate
polyclonal rabbit antibody against the (K/R)(K/R)X(S*/T*) motif (dilution 1/1000
for inmunoblot, Cell Signalling, 9621). Antibody protein complexes were detected
by HRP-conjugated antibodies and ECL (Amersham Pharmacia).

Immunoprecipitation and pull down assays. Cells were homogenized and sub-
jected to immunoprecipitation and immunoblot analyses®®. GST-fusions were
expressed and purified from BL21 (DE3) pLysS cells. GST hybrid proteins
immobilized on glutathione beads were incubated for 3 h with cell lysates from
HEK293 cells transiently expressing flag-NEK10 constructs in lysis buffer (150 mM
NaCl, 50 mM Tris-HCI, pH 7.5, 5mM MgCl, 5mM DDT, 1 mM EDTA, 1%
Triton X-100) in rotation at 4 °C for 4 h. Pellets were washed four times in lysis
buffer supplemented with NaCl (1 M final concentration) and eluted in Laemmli
buffer. Eluted samples were size-fractionated on SDS-PAGE and immunoblotted.

PKA in vitro phosphorylation assay. NEK10 WT and T812A coding sequences
(786-1115 aa; 519-1115 aa, and 1-519 aa) were PCR-amplified and cloned into the
PGEX-5X-1 vector (Sigma) as EcoRI/Xhol fragments (primers GST-NEK10_Fw1:
5'-CGCGGGAATTCATGATGAAATATTTAGACAACTTATC-3'; GST-
NEK10_Fw2: 5'-CGCGGGAATTCTATGCAATTTTGGATCATCTTGG-3';
GSTNEK10_Fw3: 5'-CGCGGGAATTCATGCCTGATCAAGATAAAAAGGTG-
3’; GST-NEK10_Rvl1: 5-CTCGGCTCGAGTCATCTTTTGGTTGGGTG-3'; GST-
NEK10_Rv2: 5'-CTGGCCTCGAGTCAGTTGCCTATATATTTCAAAGG-3").
GST-NEK10 recombinant proteins were expressed in the E. coli strain BL21-DE3-
RIL and expression was induced with 0.8 mM isopropyl-b-p- thiogalactopyrano-
side (IPTG) at 16 °C for 16 h. Cells were collected by centrifugation, resuspended in
in PBS/0.5% Triton and lysed at 1300 psi using a French press device. Clarified
lysates were subjected to GST purifications using Glutathione-sepharose beads (GE
Healthcare) following the supplier’s instructions. His6-PKAc expression was car-
ried out in the E. coli strain Rosetta pLysS (Novagen) containing the plasmid
pET11d-his6-PKAc. Protein expression was induced with 1 mM IPTG for 3 h at 37
°C. Cells were collected by centrifugation and pellets were resuspended in 50 mM
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sodium phosphate pH 8.0, 300 mM NaCl and 10 mM Imidazol. Clarified lysates
were subjected to Ni-NTA agarose purification (Invitrogen) following manu-
facturer’s instructions®, For the phosphorylation reaction, equal amounts of GST-
NEKI10 protein beads were incubated with recombinant His6-PKAc in phos-
phorylation buffer (40 mM Tris at pH 7.5, 0.1 mM EGTA, 10 mM ATP and 10 mM
MgCl,) at 30 °C for 20 min at 1000 r.p.m. Beads were washed four times with PBS/
0.5% Triton, subjected to SDS-PAGE and immunoblotting using an anti-phospho-
(K/R)(K/R)X(S*/T*) specific antibody.

Medaka stocks. The Cab-strain of wt medaka fish (Oryzias latipes) was main-
tained following standard conditions (i.e., 12 h/12 h dark/light conditions at 27 °C)
61, Embryos were staged according to the method proposed by Iwamatsu®2. All
studies on fish were conducted in strict accordance with the institutional guidelines
for animal research and approved by the Italian Ministry of Health; Department of
Public Health, Animal Health, Nutrition, and Food Safety in accordance to the law
on animal experimentation (D.Lgs. 26/2014). Furthermore, all animal treatments
were reviewed and approved in advance by the Ethics Committee at the TIGEM
Institute, (Pozzuoli (NA), Italy.

Sequence analysis. The available medaka oINEKI0 genomic sequences were
retrieved from public databases (http://genome.ucsc.edu/) and aligned with human
NEK10 transcript (NM_001031741.3) to identify exons on the basis of sequence
conservation®?,

mRNA and MO injection of medaka embryos. In vitro synthesis of human
NEK10, NEK10-KD (lys548arg), and NEK10-T812A mRNAs were performed
following manufacture’s instruction®*. NEK10-KD and NEK10-T812A mRNA was
injected at 25-75ng/ul to observe dose-dependent phenotypes in comparison to
NEK10 that did not show any phenotype. Selected working concentrations were 75
ng/ul. A morpholino (Mo; Gene Tools LLC, Oregon, USA) was designed against
the splicing donor of exon2 (Mo-NEK10: 5'-
TGTGTTGCTCTTCACCTCCCGTCTG-3') of the medaka orthologous of the
NEK10 gene (oINEK10) whereas a control Mo (Mo-p53: 5'-CGGGAATCG-
CACCGACAACAATACG-3') was used as a control. The specificity and inhibitory
efficiencies of Mo-NEK10 were determined by using opportune controls®. Fifty
picoliters of Mo-NEK10 solution (~1/10 of the cell volume) was injected at a 0.09
mM concentration into one blastomere at the one/two-cell stage.®®

Whole-mount immunostaining. Whole-mount immunostaining was performed
and photographed, as described®’. Embryos at Stage 24 and Stage 30 were fixed in
4% paraformaldehyde, 2X phosphate-buffered saline (PBS) and 0.1% Tween-20.
The fixed embryos were detached from chorion and washed with PTW 1X.
Embryos were digested 20 min with 1 ug/ml proteinase K and washed two fold with
2 mg/ml glycine/PTW 1X. The samples were fixed 20 min in 4% paraformaldehyde,
2X phosphate-buffered saline (PBS) and 0.1% Tween-20, washed with PTW 1X
and then incubated for 2 h in block (FBS 1%/PTW 1X), at room temperature. The
embryos were incubated with mouse anti-acetylated a-tubulin antibody 1:1000 (6-
11B-1; Sigma-Aldrich, St Louis, MO, USA), and goat anti-NEK10 1:100 (Santa
Cruz Biotechnology #103067), overnight at 4 °C. The samples were washed with
PTW 1X, incubated with the secondary antibody, Alexa-488 goat anti-mouse IgG
(ThermoFisher) and Alexa-594 rabbit anti-goat IgG (ThermoFisher), then with
DAPI (1:500). Finally, the embryos were placed in glycerol 100%.

Cell proliferation assay. The proliferation rate was analysed by immunostaining
using an anti-phospho-histone H3 monoclonal antibody (1:400; Cell Signaling
Technology). A peroxidase-conjugated anti-rabbit antibody (1:200; Vector
Laboratories) was used, followed by diaminobenzidine staining. To prevent pig-
mentation of the RPE, medaka embryos were incubated with phenylthiourea
(PTU). Specifically, from stage 19 (1 day post fertilization) onwards medaka
embryos were grown in Yamamoto media supplemented with 0.003% 1-phenyl 2-
thiourea (PTU; Sigma-Aldrich) to prevent pigment formation®®.

Detection of apoptotic cell death. The extent and distribution of apoptotic cell
death was determined by TUNEL, using the In Situ Cell Death Detection Kit, POD
(Roche), following the manufacturer’s protocol. Alternatively, a peroxidase con-
jugated anti-rabbit antibody (1:200; Vector Laboratories, Burlingame, CA, USA)
was used followed by diaminobenzidine staining®®. To prevent pigmentation of the
RPE, medaka embryos were incubated with phenylthiourea (PTU).

RNA extraction, cDNA synthesis and RT-PCR. To confirm abberant splicing in
oINEK10 transcript, ctrl and MO injected embryos were subjected to a RT-PCR.
Therefore, total RNAs from MO-injected and ctrl Medaka embryos, at stage 24,
were extracted by using miRNeasy Mini Kit (Qiagen). The first-strand cDNA
synthesis was carried out with the QuantiTect Reverse Transcription Kit (Qiagen),
using 1 pg of DNA-free RNA in a final volume of 20 pl, according to the manu-
facturer’s instructions. RT-PCR was employed to evaluate the MO-induced aber-
rant splicing compared to the control. PCR reaction was carried out with
AmpliTaq Gold DNA Polymerase (ThermoFisher) in a total volume of 25 ul
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containing 1 pl cDNA and 2 uM primers for MO Spl Exo2 (FW: 5'-AGA-
CAGCCAACGTGGCGTCA-3', REV: 5'-CCATGCTGAACAGAAAGCGA-3).
After initial denaturing step of 10" at 95 °C, cycling steps were as follows: 1" at 95 °
C, 1" at 56°C, and 2’ at 72 °C.

Statistical analysis. In all experiments the significance of differences between
groups was evaluated by One-way ANOVA with Tukey HSD as post hoc multi-
comparison test. Error bars indicate SEM.

Immunofluorescence and confocal analysis. For immunofluorescence study,
cells were plated on poly-L-lysine coated (10 ug/ml) glass coverslips, fixed, and
immunostained with the primary antibodies. Where indicated, cells were serum
deprived before fixation. The immunoreactive signals were visualized by
fluorescent-labeled secondary antibodies. the fluorescent signals were visualized
using a Zeiss LSM 510 Meta argon/krypton laser scanning confocal microscope.
Quantification of the immunofluorescent signals and correlation (Pearson’s)
coefficient were calculated by Image]J software. Confocal images were acquired
using a LSM 700 Zeiss confocal microscope (Carl Zeiss International, Germany).
Images were captured using the ZEN software (Carl Zeiss International). Analysis
of the length of cilia were performed by Image] software. For cilia counting, we
considered as cutoff for cilia the length >1 um. High-resolution images were
acquired with a Zeiss LSM 880 confocal microscope equipped with Airyscan
superresolution imaging module, using a x63/1.40 NA Plan-Apochromat Oil DIC
M27 objective lens (Zeiss Microlmaging, Jena, Germany). Z-stacks covering the
whole depth of cells with the interval of 0.018 pum were acquired, followed by
Airyscan image processing (set at 7) and analyses using ZEN image acquisition and
processing software (Zeiss Microlmaging). Maximum intensity projections shown
in the figures were also obtained using ZEN software.

Immunohistochemical analysis. Tissue sections were de-paraffinized in xylene
and rehydrated with graded ethanol. Antigen retrieval was carried out in citrate
buffer (pH = 6.0, 12 min, microwave oven). Endogenous peroxidase activity was
quenched with 0.3% hydrogen peroxide for 12 min. Non-specific binding sites were
blocked with 5% normal horse serum in TBS-Tween (Wash buffer, Dako, Glostrup,
Denmark) for 30 min. Sections were incubated with primary antibodies overnight
at 4 °C. All sections were visualized using the Liquid DAB Substrate Chromogen
System for peroxidase (DakoCytomation) and were counterstained with hema-
toxylin, dehydrated, and mounted.

cAMP precipitation. HEK293 cells transiently overexpressing PCM1-flag lysed
and subjected to precipitations with Rp-8-AHA-cAMP or 8-AHA-cAMP agarose
resins (Biolog) for 2 h to precipitate either activated R or inactive R:C holoenzyme
complexes. In this assay, binding of R subunits to the resin-coupled cAMP ana-
logue results in re-association of PKAc:R subunits. As a control, we added an excess
of cAMP (5 mM) to mask the cAMP-binding sites in the R subunits for pre-
cipitation. Resin-associated complexes were washed with the lysis buffer and
subjected to immunoblot analysis.

cAMP quantification. HEK293 stably expressing the beta-2 adrenergic receptor
were serum-starved for 16 h. Cells were exposed to treatments with 10% serum, 20
uM Forskolin or 100 nM Isoproterenol (each for 20 min). After washing steps cell
lysis was performed with 0.1 M HCI (for 20 min). The 1:2 diluted soluble cell
fractions (in 0.1 M HCI) were subjected to cAMP measurements using the Direct
cAMP Enzyme Immunoassay Kit (#CA200, Sigma) following the manufacturer’s
instructions. cAMP levels were measured by a plate reader analyses at 415 nm (with
595 nm correction). All the samples were run in duplicates from three independent
experiments (three biological replicates each).

Data availability. All data are available within the article and Supplementary files
or available from the authors upon request.
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