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Abstract

This dissertation presents a new approach to prognostics and health monitoring for automotive applications

using a piezoresistive silicon stress sensor. The stress sensor is a component with promising performance for

monitoring the condition of an electronic system, as it is able to measure stress values that can be directly

related to the damage sustained by the system. The primary challenge in this study is to apply a stress

sensor to system-level monitoring. To achieve this goal, this study firstly evaluates the uncertainties of

measurement conducted with the sensor, and then the study develops a reliable solution for gathering data

with a large number of sensors.

After overcoming these preliminary challenges, the study forms a framework for monitoring an electronic

system with a piezoresistive stress sensor. Following this, an approach to prognostics and health monitoring

involving this sensor is established. Specifically, the study chooses to use a fusion approach, which includes

both model-based and data-driven approaches to prognostics; such an approach minimizes the drawbacks

of using these methods separately. As the first step, the physics of failure model for the investigated

product is established. The process of physics of failure model development is supported by a detailed

numerical analysis of the investigated product under both active and passive thermal loading. Accurate

FEM modeling provides valuable insight into the product behavior and enables quantitative evaluation of

loads acting in the considered design elements. Then, a real-time monitoring of the investigated product

under given loading conditions is realized to enable the system to estimate the remaining useful life based

on the existing model. However, the load in the design element may abruptly change when delamination

occurs. A developed data-driven approach focuses on delamination detection based on a monitoring signal.

The data driven methodology utilizes statistical pattern recognition methods in order to ensure damage

detection in an automatic and reliable manner. Finally, a way to combine the developed physics-of-failure

and data-driven approaches is proposed, thus creating fusion approach to prognostics and health monitoring

based on piezoresistive stress sensor measurements.
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Zusammenfassung

In dieser Dissertation wird ein neues Vorgehen an Prognostics and Health Monitoring für Automobileanwen-

dung durch Benutzung eines piezoresistiven Spannungssensors vorgestellt. Der piezoresistive Sensor ist sehr

entwicklungsfähig für Zuverlässigkeitsanwendungen, weil er die direkte Messung von mechanischen Spannun-

gen ermöglicht, die auf die Schadensentwicklung bezogen werden kann. Die Hauptherausforderung dieser

Studie ist die Umsetzung des Spannungsensors für das Monitoring am Systemniveau. Um dieses Ziel zu

erreichen, muss die Messunsichercheit von dem Sensor ausgewertet werden. Desweiteren muss ein System

entwickelt werden, welches das Messen mit mehreren Sensoren in der selben Zeit ermöglicht.

Nachdem der Rahmen für die elektronische Systemmonitoring mit dem piezoresistiven Spannungssensor

festgelegt wurde, konnte ein Vorgehen an Prognostics and Health Monitoring, welches den Sensor beinhal-

tet, etabliert werden. Es wurde ein Hybridvorgehen ausgewählt, welches das Model Based und das Data

Driven Vorgehen enthält und die Nachteile der getrennten Benutzung dieser Methoden minimalisiert. Als

erstes muss ein Lebensdauermodel für das untersuchte Produkt entwickelt werden, das von FEM Model-

lierung unterstützt wird. Die detaillerte FEM Analyse gibt eine wertvolle Einsicht in das Produktverhalten

und ermöglicht quantitative Evaluierung von der Belastung, die auf die betrachtete Konstruktionselemente

wirkt. Als nächstes muss das Echtzeitmonitoring von dem untersuchten Produkt durchgeführt werden,

um die Beurteilung von den Lebensdauer unter Verwendung von dem entwickelten Lebensdauermodel zu

ermöglichen. Jedoch steigt die Belastung auf die betrachteten Konstruktionselemente plötzlich, wenn die

Delamination auftritt. Deswegen wird das entwickelte Data Driven Vorgehen auf die Delaminationerkennung

basierend auf die Spannungssensormessung fokusiert. Es benutzt statistiche Strukturerkennungsalgorithmen,

die die automatische und zuverlässige Delaminationdetektion ermöglichen. Letztendlich wird das Hybrid-

vorgehen an PHM vorgeschlagen, das beide entwickelte Methoden kombiniert.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Benefits of autonomous driving

Autonomous driving is a technology that has potential to provide solutions for many challenges of our fast

developing world, and it also can ensure safety on the roads. It can prevent up to 90% of all road accidents

that are caused by human error [1]; these errors are mainly due to poor risk assessment, improper situation

analysis, and slow or incorrect reaction of the driver. All of these problems do not concern autonomous driving

systems. These systems are not susceptible to fatigue, nor can they be affected emotionally. Additionally,

their decision time is much shorter. With autonomous driving and the internet-of-things technology, traffic

flow can become more efficient than before. This change will most likely lower the level of stress for many

drivers. It can also reduce fuel consumption and the level of exhaust emission. Such an effect is particularly

important as more people are anticipated to live in urbanized areas in the future, and in these areas traffic

jams and air pollution could become a major problem. Moreover, the assistance systems can improve safety

and comfort of driving, which is especially crucial as we are facing demographic changes. In particular,

these systems can help the growing elderly population to remain active. An additional benefit from the

introduction of assistance systems is the productive use of time during driving, thus enhancing driving

pleasure. This is a clear advantage as individuals are becoming more mobile and connected every day. In

particular, the young generation would rather spend their time using mobility solutions than driving a car.

The automotive industry is already aware of all these advantages and the changes that this technology

will bring to the automotive market. Therefore, autonomous driving is currently in an intensive develop-

ment phase, which includes studies regarding reliability methods as these are crucial for avoiding sudden

malfunctions of such a system.

1.1.2 Reliability issues

The autonomous driving technology is a huge challenge for the engineering community with regards to

reliability. The human error factor is eliminated in a situation where the steering of a car relies only on the

electronic control system, and the whole risk of malfunctioning is shifted to the system. Furthermore, as

electronic control systems become more complex, reliability issues also become more complicated. In other

words, there are simply many more things that can go wrong. The interactions between different parts of a

system are also very complex—it is very difficult to predict how even a minor change in one part of a system

can affect its whole behavior. To get a sense on the current situation, some data can be introduced here.

Among cars over a three-year usage in the 2008-2013 period [2], the number of electrical faults increased
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CHAPTER 1. INTRODUCTION

by 66%. The least reliable electric systems experienced a failure in one out of every three cars per year [2].

The most reliable vehicle model had only one breakdown in every seven cars (see Figure 1.1.1). On average,

every fourth vehicle developed a problem in its electrical system. In order to introduce autonomous driving

features on the market, this situation must be drastically improved.

Figure 1.1.1: Ten most reliable manufacturers of electric systems [2].

One way to achieve this goal is redundancy. The idea behind it is that in case of failure, an additional system

should switch on to enable a safe stop of a vehicle. For example, in the case of an autonomous steering system

failure, an additional system would take control over the car or pass the control to the driver. However, that

should concern not only the steering unit but also other electronic systems (e.g., the electronic control unit).

Thus, using redundancy in many of the electronic systems that are in the vehicles currently available would

be very expensive. The repair time and cost would also increase significantly.

A more viable solution that addresses reliability concerning autonomous driving would be prognostics and

health monitoring (PHM). It is a method that enables the reliability assessment of a system during its actual

operation. Monitoring the state of health of electronics in real time enables a prediction of the oncoming

failure. Thus, it mitigates the risk of sudden failure which may cause further damage, and it does so by

informing the user before the fault occurs. PHM is a new and very promising field; it provides warnings

about imminent failure, and it also increases system availability. Moreover, it lowers the cost of inspections

and gathers the data on the load history of a product for future design optimization, qualification, and

root cause failure analysis [3]. However, to implement this method it is crucial to monitor the system using

suitable sensors. Usually, appropriate sensors that can measure load are applied to the system, such as

temperature sensors for thermal loads or acceleration sensors for vibration or shock. However, these sensors

are not able to directly measure the parameters related to a damage. This can be accomplished using a

silicon-based piezoresistive stress sensor that is able to directly measure mechanical stress. Thus, it would

be very interesting to apply this type of sensor to reliability applications, and this thesis investigates how

the sensor can be used for implementation of PHM methodology for automotive electronics.

1.2 Objectives

The main research question that is addressed in this study is whether a piezoresistive stress sensor can

be integrated within an ECU and whether it can be used to monitor its state of health. Thus, the main

goal of this research is to make a feasibility study on the application of a piezoresistive silicon stress sensor

for PHM methodology for automotive applications. The main challenge in this study is to apply a stress
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CHAPTER 1. INTRODUCTION

sensor to system-level monitoring. To achieve this objective, the study firstly evaluates the uncertainties

of measurement conducted with the sensor. After this, a reliable solution for gathering data from a large

number of sensors can be developed.

Next, the study establishes an approach to PHM involving the piezoresistive stress sensor. To realize this

goal, a physics-of-failure model is firstly established for the investigated product. Additionally, a data-driven

approach is developed in order to detect any anomalies that may cause a change in the loading conditions

of the considered design elements. Finally, a method to combine the developed physics-of-failure and data

driven approach is proposed.

1.3 Outline

The topics covered in this thesis are organized into nine chapters, and this section provides a brief description

of the contents of each chapter.

Chapter 2 presents the state-of-the-art research concerning PHM methods. The focus is on introducing a fu-

sion approach for PHM since this is the approach adapted in this work. A fusion approach for PHM combines

both PHM techniques developed up until this point—including model-based and data-driven approaches.

This approach also takes advantage of virtual modeling for early development stage optimization of design,

as well as for physics-of-failure modeling. All three of these methods are explained in the chapter along with

examples of their application from present literature. Additionally, the chapter clarifies the general scheme

for creating PHM methodology; such a scheme is later adapted using the piezoresistive stress sensor.

Chapter 3 describes the piezoresistive silicon-based stress sensor that is a main tool proposed for PHM

methods implementation in this thesis. The advantages of this sensor are presented along with the challenges

encountered in the duration of this study. A detailed description of the working principle and governing

equations is provided. Additionally, the uncertainties of measurements are assessed to enable the practical

use of this sensor.

Chapter 4 discusses the product type investigated in this research and identifies the microelectronic package

considered for this study. The chapter also introduces a test vehicle designed to study reliability of the

investigated package on the system level.

Chapter 5 presents the results of virtual modeling. In this thesis, the virtual modelling technique is used

mainly for the accurate physics-of-failure modeling. The model is prepared in a highly meticulous way with

a special emphasis on accurate material modeling and geometry representation. For a proper active load

condition modeling, a detailed multi-domain and multi-level simulation of an investigated test vehicle is

performed.

Chapter 6 describes the results of the investigation on model-based approach to prognostics. The test

vehicles are subjected to an accelerated reliability test under active and passive load conditions. During the

experiments, the load acting on the test vehicles is continuously monitored. The results of this experiment

are then correlated with the simulation results to obtain a lifetime model and to predict the state of health

of the system.

Chapter 7 describes the results of the investigation on the data-driven approach to prognostics. First, the

chapter presents a feasibility study on damage detection using the stress sensor. This study uses the results of

a simulation with different investigated failure modes. The applicability of two statistical pattern recognition

algorithms for failure detection is studied. The two investigated algorithms are the Mahalanobis distance

and singular value decomposition. Their performances are then compared. Next, a support vector machine

algorithm for a damage typology is implemented. Finally, the algorithms are tested with data coming from

measurements that were gathered during the delamination progression.
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Chapter 8 provides an explanation on how both physics-of-failure and data driven approaches can be brought

together in order to predict the remaining useful life of a product in a systematic way. This method benefits

from the advantages of both approaches and helps to limit their drawbacks.

Finally, Chapter 9 summarizes the main achievements of this thesis, and the conclusions are drawn. In

addition, my original contribution to the knowledge gap is presented.
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Chapter 2

State of the art

2.1 Introduction

PHM is a relatively new discipline that focuses on the development of methods to evaluate the reliability of

a system in its real life cycle conditions. The basis of PHM consists of monitoring the system during its use

in real time so that impending failures could be predicted. Thus reliability can be ensured when the user is

informed before the failure occurs.

Figure 2.1.1: Publication numbers concerning PHM during the last 20 years based on search hits on Google
Scholar.

The topics of PHM has continued to draw more attention from scholars; this can be seen from the number

of publications devoted to this subject (see Figure 2.1.1). A possible reason for the growing interest is the

many potential benefits that PHM can bring. Some benefits include:

� Warning of system failure in advance

� Lower life-cycle cost (e.g., a reduction of inspection costs or downtime)

� Increase of system availability (through the extension of maintenance cycles)

� Knowledge of load history for future design and root cause failure analysis

Figure 2.1.2 presents the general process flow of PHM. Sensors interrogate the system, and the state of health

(SoH) can be assessed based on gathered data. That process is called diagnostics. Prognostics consists of

an estimation of the remaining useful life (RUL) based on known current SoH. Knowing the RUL enables

forecasting of maintenance actions, thereby improving safety and cost management.
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There are two main groups of prognostics methods—physics-based approaches and data-driven approaches.

A method that merges all of these methodologies is referred to as a fusion approach, which employs all the

advantages of the underlying methods while minimizing their deficiencies.

All these methods are described in detail in the following sections so that the state of the art in PHM can

be better understood. The main goal of this research is to produce a feasibility study on the application of

piezoresistive silicon stress sensors for PHM in automotive applications, and hence it is important to know

which methods and approaches are already available.

Figure 2.1.2: Process flow of PHM.

2.2 Virtual modeling

Numerical simulations play an important role in the product development process in that they assess the

reliability of the product. The concept of simulation-driven design can help also to optimize the product at

its early development stage, thus leading to the reduction of the required development time. In this research,

virtual modelling techniques are used to support not only product development but also the development

of the PHM approach; with such functions, these techniques can go beyond the state of the art. In this

section, a short description is provided for the virtual modelling techniques that are available for product

development in different development stages. These techniques are also summarized in Figure 2.2.1.

Figure 2.2.1: Schematic of the simulation driven design concept.

At the early design phase when very limited information is available regarding the designed component,

numerical simulation allows a virtual study of the effect of the parameters, such as geometries, material

properties, and loading conditions. As for PHM methodology development, the virtual modeling techniques

can help to determine the optimal position of the sensors or canary devices so that they are subjected to

the maximal load that can occur in the system (e.g., maximal temperature point). At this stage, there is

no information on allowable loads that the designed component can withstand. Yet, it is still possible to
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qualitatively optimize the design to minimize overall deformation and the stress/strain state. An example of

such a simplified numerical method proposed for the very early design phase was presented in [4], in which

virtual design of experiment (VDoE) was used to study the effect of molding compound on the stress state

inside IC package. The results were used for recommending a molding compound for the package design.

Detailed material characterization is conducted as a next step. It is crucial to have correct material models

implemented in order to obtain quantitative predictions on the system behavior. The studies in [5] and [6]

have presented a characterization of epoxy-based thermosets. Linear viscoelastic and nonlinear viscoelastic

models were developed based on the results obtained from dynamic mechanical analysis (DMA) finite stress

tests. After this step, these models were implemented into a FEM simulation, and numerical predictions

were compared with experiment results to confirm the accuracy of FEM prediction.

The third part of a simulation-driven design focuses on physics-of-failure modeling. To obtain the quantita-

tive results required in this study, a couple of conditions must be satisfied. The process flow of the proposed

physics-of-failure simulation is shown in Figure 6.3.1. First, a detailed geometry of all design elements must

be taken into account. The geometry is typically validated by cross sectioning [7], x-ray inspection, or an

etching of the molding compound. Additionally, the material models must be known at this stage. Fur-

thermore, the boundary and loading conditions must be defined as accurately as possible. For an accurate

prediction of thermo-mechanical behavior under an active power condition, the power dissipation in all de-

sign elements should be taken into account. The detailed modelling enables risk assessment for different

failure modes. Additionally, a physics-of-failure based lifetime model for a given failure can be built, which

can then be further used to predict the RUL using a model-based approach to PHM.

Figure 2.2.2: PoF modeling workflow.

The last step of the simulation-driven design is verification. At this point, the virtually optimized ECU is

built and tested. The experimental results are used for verifying the numerical predictions. Depending on

the simulation type, different experimental methods can be implemented. For the validation of thermal mod-

els, methods such as thermography [8] and temperature (e.g., using thermocouples) or thermal impedance

measurements [9], [10] can be used. Various methods are also available to validate thermo-mechanical simula-

tions. Most commonly utilized are optical methods that measure deformations (e.g., digital image correlation

for warpage measurements [11]) or moiré interferometry for in-plane displacement measurements [12]. Other

methods including stress [13] and strain [14] measurements can be applied successfully.

2.3 Model-based approach

The basis of the physics-of-failure approach consists of an in-situ monitoring of the system along with the

prior knowledge on failure modes and the model of damage to assess the RUL [15]. The procedure of
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physics-based prognostics is shown on Figure 2.3.1. The prognostics uses a mathematical representation

of the system and thus requires prior knowledge concerning product life cycle, materials, construction, and

failure mechanisms. The failure mode should be identified, and its appearance must also be described in a

mathematical way to use this method. To be able to assess the level of stress in a design element and to

compute accumulated damage, it is necessary to implement FEM modelling techniques. Additionally, the

parameters related to the failure modes and mechanisms in question must be defined and monitored. These

parameters must be directly related to the loading conditions of a system. After gathering data, it should

be reduced in such a way that the load history evaluation is feasible. The reduced data is then used as input

for the physics-of-failure model, and the derivation of RUL is also made possible.

The physics-of-failure method can predict RUL under varying loading conditions. It provides a full un-

derstanding of the system behavior. Thus, the information gathered in the process of developing this

methodology for a given product can be used also to optimize the product. However, an assumption made

with this method is that the failure model is accurate. This is not always true, especially when taking into

account the complexity of various scenarios, such as loading conditions in modern electronic systems or new

materials introduced in the systems. Furthermore, the system level RUL estimation may be challenging due

to complexity of the problem. It is not possible to estimate the RUL for every component in the system; the

focus must be put on critical components. Additionally, it is not simple to find sensors that directly measure

the information that is relevant for failure models.

Figure 2.3.1: The process flow of physics-based approach to prognostics.

There are many examples of use of this method in the literature. Yin et al. [16] used it to evaluate the RUL

of an IGBT power module. The measured parameter was current flowing through the component. Based on

this, the junction temperature was calculated using a compact thermal model. The next step involved an

analysis of the load profile using a rainflow algorithm; this is done to obtain the knowledge of the number of

cycles with a given temperature change and mean. To construct the reduced order model that describes an

accumulated plastic strain in dependence of temperature cycles, the FEM model was created, and the results

were collected according to the design of experiment (DoE) with multiple values of temperature parameters.

The value of the accumulated strain for every group of thermal cycles separately was used in a strain-based

lifetime prediction model. The accumulated damage was then calculated using the Palmgren–Miner rule.
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Another approach was presented in [17], [18]. These studies gathered and analyzed the data for the en-

vironmental loads on a printed circuit board (PCB) placed under the engine hood of a car. Temperature

and vibration sensors were placed on the test board, as well as circuitry to monitor the resistance of solder

joints. The data was used along with appropriate failure models to evaluate the damage in the solder joints.

The thermal fatigue failure model was based on the temperature cycles amplitude and the rate of temper-

ature changes. To extract needed information from the data gathered by the temperature sensor, both the

ordered overall range method and rainflow analysis were used. Based on the vibration data gathered by

the accelerometer, power spectral density was calculated. Then, the transformed data was used as an input

for the failure model. Additionally, the damage due to shock load—which occurs during an accident—was

evaluated. After this, the Palmgren–Miner rule was used to calculate the total accumulated damage in the

solder joints. Finally, the data concerning accumulated damage was confronted with the signal from the

resistance monitoring device. A good correlation was observed.

In [19], a PoF approach for solder joints was presented; this approach was based on materials behavior

modelling. The study focused on the development of a software solution that would be able to accurately

predict the damage accumulation within solder joints on a system level in an efficient way. For the basis for

the calculations, the study developed microstructural failure models for the solder joint fatigue. A couple

of different models was embedded into the software, mainly models of crack nucleation, microscopic crack

growth, and crack propagation. Additionally, a Monte-Carlo simulation was introduced to account for a

random grain structure of solder. The input to the failure models was the information on the initial state of

the system and field usage conditions. To estimate the initial damage state, a couple of methods were used.

First, using cross-sections of the investigated samples, the real geometry and its variability were determined.

Then, the residual stress that is introduced by manufacturing processes and aging due to storage was assessed

using modelling techniques. The information about field usage condition was gathered by temperature and

vibration sensors and then translated by means of FEM simulations to obtain detailed data on loads in every

point of a test vehicle. To make the analysis computationally efficient, the investigated system was modelled

in a hierarchical manner—the system was divided into components which were then further divided into

sub-components so that every interconnect can be analyzed separately.

More examples of the development of model-based approach methodology based on the external load mea-

surements—such as temperature or vibration spectrum—can be found in [20]–[22]. As mentioned, this

present study focuses on the implementation of the piezoresistive stress sensor that can directly monitor

the mechanical load that causes the damage and thus may be more suitable for monitoring of the SoH.

In the next sections, implementation steps of a physics-of-failure based approach are discussed in greater

details. A similar implementation scheme is used in this work to develop the model-based approach using

the piezoresistive stress sensor.

2.3.1 FMMEA

The first step that must be executed in order to implement a physics-of-failure prognostics approach is to

perform a thorough analysis of the investigated system. This process starts with a detailed structure analysis,

including the establishing of all functional relationships and physical connections between the components

[23]. Then, the load acting on the system during its life cycle must be defined. It may be a single mechanical,

thermal, electrical, chemical load or a combination of two or more load types. This leads to a failure mode,

mechanism and effects analysis (FMMEA) that allows users to identify and prioritize potential failure modes.

The FMMEA was proposed by Pecht et al. [24]-[25] to address the limitation of the failure mode and effect

analysis (FMEA). FMEA is widely used to identify potential failures and their effects on product reliability

[26]. It also identifies measures that can be taken to minimize the risk of a failure. In the electronic industry,

FMEA is used to analyze the system behavior early in the development process to enhance its reliability
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[27]. Although FMEA is complex, it does not identify the failure mechanisms and models. It assesses which

failures can occur but does not analyze the physical processes that lead to them—this is the main difference

between FMEA and FMMEA. Thus, FMEA methodology is mainly used for safety analysis [28]-[30].

FMMEA allows users not only to identify the potential failure as well as its effect on the functionality

of a product but also the mechanisms, which actually lead to failures under complex load conditions [31].

Failure mechanisms are the processes that induce failures under various loads (e.g., electrical, thermal, and

mechanical) [32]. Proper identification of failure mechanisms is essential for understanding why the failure

modes occur. This process should be supported by stress analysis in order to determine the stress levels in

critical design elements under a known load. The stress analysis is usually supported by FEM simulations.

This knowledge can be further used to plan the tests and optimize the nominal design. Additionally,

failure models can be identified. They are mathematical descriptions used for quantitatively evaluating the

susceptibility to failure, which is required for predicting the useful life span of a product. In summary,

FMMEA requires a clear understanding of the relationship between the requirements of the product and

its physical characteristics. Furthermore, it defines the interactions between materials and stress under

operating conditions.

The results of the conducted FMMEA for the investigated ECU are presented in Section 6.2.

2.3.2 Life cycle monitoring

Once a failure model is established, the appropriate parameters that require monitoring during the life cycle

of a product must be identified. The choice of load parameters to be recorded depends on several factors,

such as the available methods, the type of investigated failure mode and mechanism, the conditions that

lead to the failure, and the inputs of the defined failure model. After this, the monitoring of the relevant

environmental load enables the in situ assessment of the accumulated damage. The novelty of present study

is that a sensor that can directly measure mechanical stress is used for monitoring the system. Thus, the

monitored parameter will not be an environmental load but the internal load in the ECU.

In most cases, the environmental loads acting on a product are monitored, and those may be of various

nature — such as thermal, mechanical, chemical, or electrical. The thermal loading monitoring should take

into account the steady state temperatures and temperature ranges, as well as the temperature gradients,

ramp rates, and temperature cycles [15]. Similarly, for the mechanical loads, both vibration and shock should

be considered. To gather useful information on loading conditions, a suitable sensors must be chosen. First

of all, these sensors should be precise and should have short response time. Additionally, they should be

easy to integrate within a monitored system, and hence they should be characterized by small size, small

weight, low power consumption and be easy to install [33]. Moreover, they should be placed in a system in

such a way where they are able to capture all the critical load parameters. The temperature sensors should

be able to capture the temperature acting on a design element in question and thus should be located in its

close vicinity. A separate vibration sensor should be provided for every mechanically independent part of

the system.

The considerations on applicability of the piezoresistive stress sensor for the ECU monitoring can be found

in Chapter 4.

2.3.3 RUL calculation

RUL calculation is based on a damage accumulation model. A damage accumulation model predicts, how

the different loads over different time periods are influencing the reliability. Although various models for

predicting the accumulation of damage have been proposed and reviewed [34], the most widely used is
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Palmgren–Miner’s rule [35]. There are several other linear models available, such as the models by Lundberg,

Langer, or Smith, as well as nonlinear models like by Henry or by Corten and Dolan [34]. However, the

simplicity and reasonable accuracy of Palmgren–Miner’s method have made it the choice among scholars,

as seen in the method’s widespread application. Palmgren–Miner’s model assumes linear accumulation of

damage. The damage accumulated due to one stress level loading is directly proportional to the number of

cycles performed at this stress level and can be described with the following equation:

Dn =
nf
Nf

(2.3.1)

Where:

nf - number of cycles performed at a given stress level

Nf - total number of cycles at a given stress level that would provoke failure

The damage occurs when the combined damage indexes from different stress levels are totaled to 1:

∑
Di =

n∑
i=1

ni
Ni
≤ 1 (2.3.2)

The main disadvantage of this model is the fact that it does not take into account the order of load application,

even though it has been shown that the history of loading has influence on the reliability [36].

Based on the damage index, the RUL of a product can be assessed. Additionally, it is necessary to assume

the future loading conditions that act on a system. With this in mind, the calculation can be performed in

two ways. First, the approach presented in [37] can be applied, according to this formula:

RULN = N ·
(

1

DN
− 1

)
(2.3.3)

Where:

N - number of cycles/days/hours of operation

DN - damage ratio at the end of N cycles/days/hours

This method uses an average over the loading conditions from all time periods until N as the predicted future

loading conditions. It can lead to problems in some cases — for instance, when the load during the previous

usage cycle is much below average, the calculated RUL grows with respect to the last evaluation. Therefore,

this method is recommended for the cases in which the loading conditions do not show big variability.

Another method was proposed in [17] to handle this limitation. Here, an iterative approach to RUL calcu-

lation is presented, according to the relation:

RULN = RULN−1 −DN · PTL (2.3.4)

Where:

RULN−1 - remaining useful life calculated at the end of N-1 period

DN - damage ratio at the end of N cycles/days/hours

PTL - predicted total life

The total life is calculated once at the beginning of product usage, assuming some average loading conditions.

Then, according to the actual usage conditions, the RUL is calculated in the real time.

It is also worth noting that the prediction of RUL based on the physics-of-failure model is always related

to some uncertainties. According to [38], there are four main sources of uncertainty in the lifetime predic-
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tion, namely measurement uncertainty, parameter uncertainty, failure criteria uncertainty, and future usage

uncertainty. These should be evaluated and taken into account in the process of RUL calculation.

In this work, an iterative approach to calculate RUL is adapted, and its realization is presented in Sections

6.4 and 7.2.

2.4 Data-driven approach

Data-driven approach is used in the case where system model is not available. This approach uses historical

data and knowledge on failure influence on the system along with statistical and machine learning methods

to estimate RUL. It is generally used for system-level degradation, and it puts focus on obtaining patterns

and describing relationships that exist in the data gathered from the system. Such data can consist of the

temperature, vibration, voltage, and currents.

A data-driven approach does not require either knowledge regarding material properties or the construction

of the investigated system; the approach is able to capture complex relationships and learn trends without

specific failure modes knowledge. However, the historical data on the system in its healthy and damaged

states are needed. The challenge in obtaining the data is that it is impossible to collect the data about

all possible failures, given that the modifications of the design are introduced constantly. Moreover, in

this method, damage models are created based on the data gathered under specific loading conditions and

corresponding failures. Thus, a change of loading condition can lead to different failure and detection

problems. Additionally, the root cause analysis of damage is limited when using this method. Furthermore,

the non-exact, non-linear, and non-stationary characteristics of a system can constitute a challenge to the

detection algorithms and can lead to incorrect prediction [39]. Aside from this, a question of reliability of

the sensors must be raised since erroneous monitoring data can provide unexpected responses.

The process flow of the data-driven approach is presented on Figure 2.4.1. Usually, the employment of the

data-driven approach to prognostics includes gathering data, describing how the measured signals change

during different kinds of failures, constructing the diagnostic matrix, and then applying correlation algo-

rithms during the real-time monitoring of parameters in order to predict possible impending failure. The

process starts with analysis of the system in question. To identify the monitored parameters, it is necessary

to determine the most crucial elements in the product as well as the environmental and loading conditions.

Additionally, the feasibility and limitations of monitoring must be assessed, and the economic justification

for the system monitoring must be provided. This stage also includes gathering data in the test setup and

creating a database on healthy and failed behavior. Following this, the data is gathered in situ from the

system in the real working conditions. The reduction, compression, and normalization algorithms should

be used for effective data transmission and storage. The information may be stored locally or in a cloud,

and from time to time it is sent to a maintenance station. After this, the data must be analyzed so that its

important features can be extracted. This can be done in a number of ways, such as using statistical methods

or calculating error functions. By correlating the data from the database and the current measurement of

the system, the state of health of the system is assessed using methods such as neural networks or statis-

tical classification. The algorithms used for the data correlation include particle filtering [40], Mahalanobis

distance (MD) [41], SVMs [42], and wavelet decomposition [43]. If the information regarding the behavior

of the system with different failures is available, the anomalies in the gathered data can be detected and

the fault can be identified. Additionally, by observing some trends and features of the data, a RUL can be

calculated.

This methodology was used in [44] to detect failures in automotive engines. In the study, the signals from

different sensors were used to detect and classify the fault. The preprocessing of obtained signals was

conducted using a wavelet method, which enables significant features extraction from the data collected
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Figure 2.4.1: The procedure of data-driven prognostics.

in various engine operating conditions. The wavelets capture transient pre- and post-failure characteristics

very efficiently. Afterwards, pattern recognition techniques were used to isolate the failure. In addition, the

fault diagnostic matrix was constructed, which can be used to classify a fault based only on the wavelet

coefficients derived from sensor signals.

Another approach to a failure prediction of an induction motor was investigated in [45]. In the study, the

current spectrum of a motor was chosen as a monitored signal because it depends on the vibration of a

motor. Thus, the spectrum can be used to identify a mechanical fault. An additional advantage is the low

cost of this solution, as it does not require any additional sensor use. However, the current spectrum also

depends on the current load of a motor. Hence, a data processing method based on the neural network

approach was developed in the study. This method is able to detect anomalies in the signal that are not

caused by loading condition changes. The methodology was tested using experimental data gathered from

different motor types and was proven to be effective. Furthermore, the developed monitoring system was

installed in various fields, such as in an oil refinery. The system was able to detect the fault of the motor

when an inlet to a water pump was blocked because of a clogged filter.

A data driven approach was also used in [46] for enterprise servers prognostics. The investigated system was

monitored using an established monitoring method called a continuous system telemetry harness (CSTH),

which was developed by Sun Microsystems. The CSTH allowed the gathering the information not only on

hardware and software performance but also on the physical conditions in which the system works, such

as the temperature and humidity. The first step of data processing consisted of establishing the statistical

distributions of measured parameters. Then, the data was processed with the multivariate state estimation

technique (MSET) and the sequential probability ratio test (SPRT). MSET was designed to analyze the

complex systems that identify the correlations between different parameters. In a training phase, it created

empirical models for every monitored parameter that were used for estimating the expected behavior of

the system for every observation time. Afterwards, the predicted and measured state were compared, and

the difference between them was provided to the SPRT algorithm. The SPTR then checked whether the

difference between the actual and forecasted states of the system was statistically significant and if the

needed alarm was raised.

Other applications of a data-driven approach include specific electronic components prognostics [47]-[49],

process control [50], avionics and space application systems prognostics [51]-[53], telecom systems prognostics

[54], nuclear structures, systems and components diagnostics [55], industry maintenance [56], and many more.

A common point for the approaches presented in the literature is that they are based on the monitoring

of high level performance parameters. The piezoresistive stress sensor used in this work allows to monitor

the structural health of the ECU based on mechanical stress measurement, which is directly related to the

mechanical fault.
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2.4.1 Monitoring

With a data-driven approach, the monitoring methodology is different than in the physics-of-failure approach.

Here, the direct monitoring of loading conditions is of less importance. The monitored parameters should be

chosen based on their value as a damage indicator. The parameter can be a voltage or current signal that

shifts over a lifetime of a product, or vibration signature in case structural damage occurs; it can also be

high level performance parameters (e.g., user wait time or the number of executed operations per minute)

or other parameters related to the performance of a product. The physical working conditions such as the

temperature of the device, ambient temperature, or relative humidity may also be measured, but this is

done mainly to correlate the working conditions with monitored signals. In many cases, the characteristics

that are already monitored in the system can be used. This reduces the cost of developing such a system,

namely by the cost of additional sensors. The advantage of the piezoresistive stress sensor investigated in

this work for PHM is that its signal can be used for both load monitoring for the model-based approach and

performance monitoring for the data-driven approach. The values measured by the sensor are also directly

related to the damage and can thus provide a more accurate evaluation of SoH of the system.

2.4.2 Database creation

A database containing information on the healthy behavior of a system must be created to train the data

driven algorithms. As mentioned before, it should take into account the fact that the response of the system

is usually strongly dependent on the operating and environmental conditions. Moreover, the variability that

exists between different products of the same type should be taken into account. In the cases, when it

is desired not only to predict failure but also to classify the failure, a database containing information on

system behavior under different failure modes must be established.

The data acquisition can be done during the development stage of a product, which takes place typically

during reliability testing. In cases where historical data is available, the data can be used for training. It

should be noted that the patterns and trends present in the data can actually be generalized for the same type

of product. However, the exact training data should be gathered in the specific system that the methodology

is developed for, given that the data characteristics may differ. In some cases, it is also possible to use the

data that is measured at the beginning of the product lifetime as healthy data. The training datasets for

the damage detection algorithms implemented in this work are discussed in Chapter 7.

2.4.3 Data analysis

As mentioned before, a large variety of numerical methods for the data-driven approach are available. They

are generally divided in three groups: statistical methods (e.g., chi square test and Bayesian classifier),

machine learning techniques (e.g., neural networks and decision tree classifier), and supervised classification

methods (e.g., particle filtering and fuzzy c-classifier method) [3]. For this present study, the methods

implemented are MD, SVD, and SVMs. A brief description of each of these methods along with examples

of its applications is presented in this subsection.

Mahalanobis distance

MD is a statistical pattern recognition method that is able to identify the data groups that show anomalous

behavior. It calculates a distance in a multidimensional space while taking into account the correlation

between parameters. It requires a database of healthy states to create a reference correlation matrix. It can

be used for an efficient monitoring of a multidimensional system state. The main advantage of this method
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is that it does not require prior knowledge concerning the failures in the monitored system. This means that

the only thing needed to implement the algorithm is the healthy baseline, which in principle can be created

based on the initial measurements in the system. Another advantage is that this method does not reduce

the data dimensionality, preserving all the information. The fault identification is possible when the relation

of MD values with different failure types is established. Additionally, the calculation is performed based on

normalized data, which eliminates the problem of scaling. Other advantages of this method include good

accuracy and easy implementation, but the method can be affected by masking effects. This algorithm is

discussed in greater detail in Chapter 7.

The MD approach has been widely used in the literature for the diagnostics and prognostics of different

electronic devices and systems. Some of the application examples are described in this subsection.

The studies in [41] and [57] have developed the MD approach with probabilistic determination of warning and

fault detection threshold. The presented method was illustrated with an example of health state monitoring

for a commercial notebook. Multiple performance parameters were recorded in situ, such as fan speed, CPU

temperature, motherboard temperature, and the percentage of CPU usage. The data was gathered under

different environmental and loading conditions; such conditions include various humidity environments,

at various temperatures, and with different power supplies. The investigated conditions have exceeded the

manufacturer’s specified range in order to produce data on overstress operation. Based on the gathered data,

a healthy baseline was constructed. Two types of threshold values were determined—one general threshold

value for a system level failure detection and individual thresholds for specific failures. The methodology has

been tested using both training and test data. The two studies have confirmed that this method is suitable

for fault identification based on multi-parametric data.

Another example of MD implementation is presented in [58], where the damage in solder joints caused by

mechanical shock and vibration was investigated. The data concerning strain evolution during controlled

impact were used as input for the method. The tests were performed according to JEDEC standards. The

data for training and testing the algorithm were gathered by both FEM simulation and in experiments. The

local strain values were gathered experimentally by strain gages, and a full field strain was recorded using

a digital image correlation technique. The transient strain signal was used as a health indicator. Both fast

Fourier transform (FFT) and time frequency analysis (TFA) methods were used for feature extraction. After

this, three different statistical pattern recognition techniques were used for health state assessment, namely

the techniques of MD, wavelet packet energy, and joint time frequency analysis. All of them could detect

progressing failure and showed similar performance.

The studies in [59]-[60] investigated the MD approach for the health monitoring of a light emitting diode.

First, the useful life of a LED was defined according to the recommendations given by the Alliance for

Solid-State Illumination Systems and Technologies (ASSIST); specifically, it was defined as the time until

the 30% decrease in light intensity of a device. Then, the parameters for monitoring during experiments

were defined. Since current through the p-n junction and the p-n junction temperature are known to be good

performance indicators, it was decided that these parameters would be monitored. The failure of a diode was

captured using a light detector, with an output proportional to the light intensity. The training and testing

data were gathered during the accelerating of lifetime testing. After this, the Euclidian and MD approaches

were applied. Both of them successfully detected the impending failure based on measured parameters.

Additionally, the studies noted that the light intensity of a LED decreases linearly at the end of the lifetime.

This enabled a lifetime model formulation and consequently RUL prediction based on monitored values.

In [61], the health monitoring methodology based on MD was implemented for a hard disk drive (HDD).

The major failure modes of HDDs were identified and prioritized. It was established that the head disk

interface causes usually most of the reliability problems. Then, the parameters to monitor were determined.

In the case of HDD, the monitoring technology already exists and is established on the market. It is

called S.M.A.R.T. (which stands for Self-Monitoring, Analysis and Reporting Technology), and it enables
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monitoring of such parameters, such as head flying height, data throughput performance, spin up time,

and re-allocated sector count. The existing signal processing is based on threshold methods and shows

low detection rate. Therefore, a more robust approach to data evaluation was investigated. The authors

proposed a method based on MD calculation. The performance of the method was evaluated based on data

gathered from a large sample of healthy and broken hard drives. Two versions of algorithm were tested—one

took into account all monitored parameters, and the other only considered the parameters that are relevant

in a head disk’s interface reliability issues. It was shown that considering a smaller number of parameters

leads to a better failure prediction performance (i.e., a lower false alarm rate and failure detection rate).

Numerous further examples of MD use in health monitoring can be found in [62]-[67]. In the presented

examples, the developed PHM approaches are based on high level performance signals. That means that the

failure can be detected only after the system performance started to deteriorate. In this work, MD applied

as the damage detection algorithm is based on the stress pattern on the surface of the measurement chip.

Thus, the developed methodology has the potential to detect structural fault in the system in situ before

the system performance is affected.

Singular Value Decomposition

Singular value decomposition (SVD) is a discrete version of the algorithm known as proper orthogonal

decomposition (POD). It is a multi-variate statistical method for data analysis. Its primary use is order

reduction as it enables the projection of high-dimensional data into lower dimensional space [68]. It also

enables feature extraction from the data by unveiling its structure. The main idea is to decompose the

matrix into a product of two orthonormal matrices and one containing the singular values of the original

matrix. When the investigated matrix contains data with damage, the calculated decomposition components

are different from the ones calculated only with data from intact structures. The detailed description of this

method is provided in Chapter 7. This method is widely used for damage detection, especially for structural

applications based on vibration data. Some examples of SVD implementations from literature are presented

in this section.

In [69], the POD method was applied to damage detection in the composite antenna structure for avionics

applications. The signal which indicates failure was the vibration spectrum gathered by piezoelectric ele-

ments. The SVD method was used to find the proper orthogonal modes and values from the gathered data.

In the study, it was shown that the structural damage changes the structure of a data matrix, consequently

affecting its proper orthogonal modes. The damage index was defined as an angle between the healthy and

tested subspace, which is a product of matrix decomposition. A detection threshold was defined based on

normal distribution statistics within 95% confidence intervals. The proposed approach was tested using two

kinds of data containing damage, namely a structure with impact damage and a structure with an additive

mass. The study showed that the developed approach was efficient in damage detection with no false alarms.

Another approach to damage detection using SVD based on vibration spectrum is presented in [70]. The

introduced method should be applicable to the structure of arbitrary complexity. Additionally, the method

should be able to distinguish between the vibration spectrum changes caused by damage and those caused

by different loading conditions. This method was based on determining a rank of the matrix that contains

characteristic vectors of a structure that are defined for different loading conditions. The characteristic

vector could consist of data such as natural frequencies, mode shapes, frequency response functions, and

transmissibility. Next, the data measured in situ was placed in the last column of such a matrix. The

study demonstrated that the rank of the matrix remains unchanged if the measurement data corresponds

to a healthy state and grows if the structure is damaged. In the proposed approach, the rank of a matrix

was estimated using SVD algorithm as the number of singular values that are larger than measurement

noise. The proposed methodology was tested using two sets of data—data from the simulation of a truss

structure and data from cantilever beam measurements. Different working conditions were investigated using
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different mass conditions, both in simulation and measurements. In the simulation, the structural damage

was modelled as the change in the structure stiffness; in the measurements, different sized indents were cut

in the beam. In both cases, the damage was detected with satisfactory efficiency.

Further examples include fault detection in industrial manufacturing processes [72]-[74], engines of various

applications [75]-[77], and power electronics [78]-[79]. In the present study, the SVD algorithm is tested to

verify whether it can be used for structural fault detection with a completely different type of data—stress

distribution on the surface of a chip.

Support Vector Machines

A support vector machine (SVM) is a machine learning algorithm that can solve classification problems.

It was introduced by Vapnik in [80]. Its main advantage is that it can form accurate boundaries between

datasets even with small amount of training data [81]. Additionally, it often provides a good generalization

and finds a single global minimum for a problem. The basic idea behind it is to locate the plane separating

the distinct datasets in such a way that the distance between the datasets is maximized. When input

data sets have n-dimensions, the algorithm search for an n-1-dimensional hyperplane that separates them.

This hyperplane can constitute linear or non-linear boundary. A more detailed description of the algorithm

can be found in Chapter 7. This algorithm is widely used for damage classification. Examples of SVM

implementation are presented in this section.

In [82], the SVM method was investigated for fault classification in an induction motor. Three different

parameters for fault classification were studied—the stator line current, currents circulating between parallel

branches of a motor, and the force on a rotor. Multiple failure modes were considered; these include a

shorted turn or a shorted coil in stator winding and a broken rotor bar. First, data concerning behavior

of a motor under these failure modes were gathered using simulation approach. The SVM algorithm was

performing best when trained with the force on the rotor and circulating current data. The classification

based on the stator current data was not explicit. Additionally, the data from an experiment was gathered.

In this case, the SVM algorithm was able to classify correctly all investigated failure modes based on stator

line current measurements.

In [83], the SVM algorithm was used to detect faults in analog electronic circuits. Three health states were

defined—healthy, sub-healthy and failed. The classification should be done between these three classes for the

data concerning different faults. Additionally, a method for health degree estimator calculation based on the

distance of an investigated point from the respective data sets was presented. This parameter could be used

to estimate whether the component would change its class soon. The proposed approach was tested on data

gathered by simulating a voltage regulator circuit. The mean value of the voltage and ripple coefficients

at the outputs of the circuit were chosen as monitored values. The tolerances of parameters of the used

components were taken into account in healthy state data collection. Then, the faults of different severity

were inserted. An analysis of the gathered data has shown that the proposed approach qualified the state

of the system properly in 80% of the cases.

In [84], a comprehensive approach to fault identification in a gearbox by means of SVM was proposed. The

developed method used a vibration spectrum of a gearbox as a damage indicator. Before training the SVM

algorithm, the input signal was preprocessed to extract the data features. First, a time domain averaging

was applied in order to filter the noise. A wavelet packet decomposition method was then used for the feature

extraction. Next, the data was normalized and its dimensionality was reduced using a principal component

analysis algorithm. Additionally, the study recognized a great effect from the SVM algorithm parameters

on the algorithm behavior. The identified parameters were the penalty parameter in the optimization

formulation and the constant in radial basis function kernel. Thus, they were optimized using the particle

swarm optimization (PSO) method. The proposed approach was tested with two sets of data, namely the
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theoretical and the gathered data in an experiment. The investigated failure modes included a broken tooth,

cracks, and wear-out. The proposed approach correctly classified over 90% of the failures from the data

gathered under different load conditions. Additionally, it was demonstrated that without the preprocessing,

the same algorithm showed much poorer performance.

Another prognostics and health monitoring method using SVM algorithm for automotive applications was

proposed in [85]. The developed system consisted of a number of components, namely 1) a communication

module in a car, 2) a smartphone that establishes connection between the car and service center, and 3)

the logistics, maintenance and emergency centers. Every element of this system had different tasks—from

gathering the systems performance data through data analysis and health estimation, to maintenance action

scheduling and organization. The presented system did not require any additional hardware installation;

it could use the signals from sensors already available in a car. The proposed prognostics algorithm is the

least squares SVM (LS-SVM)—a time optimized version of classical SVM—which is suitable for real-time

calculations. The healthy and failure data for training should be provided by the reliability experts. Four

classes of health state were proposed: healthy state, 40% RUL, 10% RUL and failure. The approach is tested

with the data from transmission control unit. The monitored parameters included revolutions per minute,

vehicle speed, and gearbox temperature. The training database was constructed based on expert knowledge;

the proposed approach was effective in the correct classification of a system health state. Additionally, the

performance of the SVD algorithm for this problem was compared with this of k-nearest neighbor classifier

method. The LS-SVM algorithm was not only more accurate, but it also demonstrated a higher degree of

specificity and sensitivity.

Some further applications of the SVM technique include avionics [86]-[87] and spacecraft prognostics [88],

battery lifetime prediction [89], and nuclear power plant diagnostics [90]. In this work, the SVM technique

is investigated for a structural fault classification based on the stress sensor signal.

2.5 Fusion approach for prognostics

The basic idea of a fusion approach for prognostics is to use both model and data-driven approaches, since

they complement each other and limit each other’s deficiencies. The concept was introduced in [91] by Zhang

et al. It reduces the uncertainty in system damage prediction and takes into account both normal loading

conditions and anomalies.

A workflow of a fusion PHM approach is presented in Figure 2.5.1. It starts with the definition and analysis

of an investigated system, usually using a FMMEA method. It allows for the definition of the critical

components of a system, the expected failure modes and their models, as well as the parameters to monitor.

The monitored characteristics should include both operational loads and performance parameters of the

investigated product. The gathered data is processed further in two ways. First, the RUL is estimated

based on an established physics-of-failure model and the environmental loads measurements. Additionally,

the performance parameters are compared with the database in search for anomalies and trends that could

indicate damage progression. The detection of product degradation by a data-driven algorithm leads to

the update of an established failure model for more accurate failure prediction. In such a way, a data-

driven approach is utilized to adjust the PoF model. On the other hand, the PoF model can be used in

this methodology to determine thresholds and failure criteria for data driven algorithm. This improves the

accuracy and efficiency of RUL prediction.

This method is especially well suitable for a system level prognostics. The components degradation can be

monitored based on their performance parameters. When an anomaly is detected, the degrading component

can be identified and matched with a specific failure mechanism. A PoF model can then be determined and

used for RUL calculation. This enables an accurate and efficient identification and assessment of a damage

accumulation and progression on a system level.
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Figure 2.5.1: Procedure of fusion prognostics.

This is a relatively new concept, but it has already gained much popularity because of its obvious advantages.

Some implementation examples of fusion approach to PHM are described further in this section.

An early example of this method implementation is presented in [92], which showcases a physics-of-failure

model that was implemented to predict the RUL of a helicopter gearbox. This model calculated the proba-

bility of failure as a joint probability of crack initiation and propagation. It was created based on detailed

FEM modelling results used for extracting strain values that act on the design elements, and accelerated

reliability tests to determine the constants present in a lifetime equation. The model was updated only to

take into consideration the probability of a critical crack propagation when a crack has been detected in the

tested structure. The system state was monitored using its vibration spectrum.

An implementation of fusion prognostics methodology for solder joint failures prediction in digital electronics

is presented in [93]. The physics-of-failure model was based on inelastic strain range as a damage parameter

and was used along with Miner’s rule for damage accumulation estimation. To implement a data-driven

approach to consider prognostics uncertainties, an uncertainty adjusted prognostics (UAP) method was

developed. The in-situ measurements for temperature as well as the resistance in a daisy chain of different

type of packages were taken as inputs to the algorithm. Historical data concerning failures were provided

and were further utilized to estimate the RUL using extrapolation techniques. A database of possible

kernels for fitting was given in order to achieve the best possible prediction quality. The uncertainties in

RUL prediction were calculated based on goodness of fit. The RULs computed using both approaches were

then combined using the transferable belief model (TBM) as this method does not require knowledge on

probability distributions of the respective RUL estimates. The proposed approach was tested using thermal

cycling data with an irregular load profile in order to simulate field conditions. The study showed that a

fusion of both data driven and physics-of-failure techniques improved the performance of lifetime prediction

methodology.

Another implementation is proposed in [94] for multilayer ceramic capacitors (MLCCs) under thermo-

mechanical loading and humidity exposure. Two main failure mechanisms were identified, namely silver

migration—which can cause short circuit failure—and degradation of dielectric material, which results in

lowering of insulation resistance. The insulation resistance, capacitance, and dissipation factor were chosen

as parameters to be monitored. A sample of capacitors were subjected to reliability testing, and some of

them failed. The healthy baseline was constructed based on data gathered from capacitors that survived the
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tests. The study then used a MSET technique to calculate the residual between the predicted and actual

states of a component. Moreover, a SPTR method was used for anomaly detection. When an anomaly was

observed, the failure mode could be identified based on a previous analysis of possible damage mechanisms.

In this way, a PoF model could then be applied to calculate RUL. In the presented approach, the PoF model

was created for silver migration based on testing data. The proposed methodology was able to predict the

end of a lifetime before the failure occurred.

In [95], a fusion approach to lithium-ion batteries prognostics was presented. The physics-of-failure method-

ology was established using the exponential capacity fade model. The largest uncertainty in the predictions

of this model was introduced by the inaccurate estimation of parameters, as they depended on a sample

variation, as well as differences of operational and environmental conditions. Thus, a method to update the

model parameters in the real time was proposed. For this purpose, the last n measurements were stored

and used for an in-situ parameter optimization using the Levenberg–Marquardt method. A particle filtering

technique was then used to estimate the distribution of capacity values calculated with the updated model,

and the RUL was assessed. This approach was tested with four sets of data coming from different battery

types and with different aging behavior. The study found that the developed approach which combined

data-driven and model-based methodologies was more effective in predicting the battery lifetime than pure

data driven algorithm.

The examples of fusion approaches found in literature, similar to the cases of model-based approaches and

data-driven approaches, are mainly based on the environmental load measurements or high level performance

parameters. Additionally, in most of the cases the applicability of the measurement techniques in field

conditions were not considered. The main advantage of the fusion approach developed in this work is that

it can be realized using one sensor that can monitor both the load in the system and its structural health.

The use of a novel sensor is the main reason why this work goes beyond state of the art.

2.6 Summary

Most of the presented examples of the implementation of PHM methodology focuses on development of PHM

based on signals that can only be indirectly related to the failure (i.e., performance parameters or external

loads such as temperature or vibration). In some cases such as in [19] or [92], the mechanical load acting

on the monitored design element is calculated based on external load measurement and numerical models.

In [58], a methodology based on strain measurement during shock and vibration loads was proposed, but

in practice it would be impossible to use DIC technique to measure strains in the field. This work fills

a gap in PHM research because it concerns the applicability of a piezoresistive stress sensor to the ECU

level monitoring. The main advantage of this sensor is that it can directly measure the mechanical stress

that act upon the electronic system. The mechanical stress can be related to both load and damage in the

electronic system; hence, a fusion approach for prognostics for ECU can be developed based on stress sensor

measurement. The established methods and algorithms used in PHM fields—such as FMMEA, Miner’s rule,

MD or SVM—are adapted in this research. This work goes beyond the state of the art because of the system

level application of piezoresistive stress sensors to PHM.
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Investigated system

3.1 Electronic control unit

The system investigated in this thesis is an electronic control unit (ECU) that was developed for automotive

applications. In a modern vehicle, there are multiple control units, such as units for engine control, transmis-

sion control, and steering control (see Figure 3.1.1). The use of electronics in automotive applications brings

in many advantages; some of these include the enhancement of on-road performance, the improvement of

fuel consumption, the reduction of exhaust gas, and the extension of battery life.

Figure 3.1.1: Overview on electronic modules used in a modern vehicle [96].

An ECU is a complex electronic system that integrates a large number of electronic components. It is

mounted under the engine hood where it is subjected to harsh environmental conditions, such as temperature

changes and vibration. Reliability is one of the most important issues as an ECU module is directly related

to vehicle safety. For this reason, a significant amount of time and effort has been dedicated to develop

reliable devices. A common way to protect the electronic module from its environment is to use a metal case
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(a) (b) (c)

Figure 3.1.2: ECUs with and without cases. (a) ECU without a case. (b) ECU encased in a metal case. (c)
ECU encapsulated by epoxy molding compound (EMC).

as depicted in Figure 3.1.2(b). Such a hard case would not only protect the module from chemical loads and

impact damage but also minimize electromagnetic interference (EMI) problems. However, this technology

is rather expensive. Thus, a transfer molding technology has been adopted instead to protect the ECU. An

example of an overmolded ECU is shown in (c) of Figure 3.1.2. At present, the epoxy molding compound

(EMC) can be obtained at a low cost, which is an advantage; moreover, the EMC ensures protection of the

module from a harsh environment. It is especially effective against vibration and chemical loads.

However, the outer mold introduces some additional mechanical stresses on the ECU. First, chemical curing

shrinkage occurs during the molding transfer process; this shrinkage is caused by the cross-linking of a

polymer. The EMC volume decreases due to curing shrinkage, and the module deforms accordingly, as

shown in (a) of Figure 3.1.3. Moreover, due to a CTE mismatch between the EMC and other materials

present in the system, additional thermo-mechanical stresses are introduced, as shown in (b) of Figure 3.1.3.

These issues create additional reliability challenges, which are investigated in this thesis.

(a) (b)

Figure 3.1.3: Mechanical stress in ECU is caused by (a) curing shrinkage and (b) CTE mismatch [12].

3.2 Investigated package

In this investigation, the package of interest is the DPAK (Discrete Package). It is an SMD power package

that has excellent current handling and thermal dissipation capabilities. It is widely used to encapsulate

power transistors, such as MOSFETs and IGBTs.

Figure 3.2.1 shows the DPAK package and its components. In this package, a semiconductor die is soldered

onto the copper-lead frame. The top terminals of the semiconductor device are connected to external pin

bars by a metal wire bond. The whole construction is overmolded using EMC.

The device in the DPAK package investigated in this thesis is an IGBT transistor. IGBTs are high voltage

power devices that are able to operate with a very high current density. They have a high peak current

capability, good ruggedness, and simple gate drive requirements [97]. Additionally, they are fast like power
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Figure 3.2.1: DPAK package.

MOSFETs, and they have low conduction losses, much like bipolar transistors. This makes them suitable

for a wide range of switching applications. The investigated device is used as an automotive ignition switch.

The current IGBT technology ensures good power dissipation and switching speed for this application.

The ignition system in a car uses an inductive discharge. The basic structure of an ignition circuit consists

of a control unit, a drive circuit, an ignition IGBT, a coil, and a spark plug (see Figure 3.2.2) [98]. The

control unit consists of a processor that creates a timing signal for the drive circuit. The signal timing is

optimized in order to save fuel, limit emissions, and maximize power efficiency given instantaneous engine

speed, temperature, and torque. The drive circuit is a simple amplifier that turns the IGBT switch on and

off, which in turn controls the energy delivered to the ignition coil. Switching of current in the ignition

coil causes an abrupt change in the magnetic flux in the ignition coil. According to the Faraday’s law of

induction, this generates a large over-voltage pulse that is used to create an ignition spark.

Figure 3.2.2: General scheme of the inductive discharge ignition system[98].

Thus, during the operation of the ignition system a large amount of power is dissipated in the DPAK package,

which then causes the local temperature to rise. The temperature gradients are created, consequently

provoking thermal strains even within the same material. This creates a much more complex stress situation,

where in addition to the stresses introduced by the mismatch of thermal expansion coefficients in different

layers, the stresses within the same material exist. Hence, a careful analysis is needed in order to assess the

proper reliability.
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(a) (b)

Figure 3.3.1: Test vehicle a) top view b) bottom view.

3.3 Test vehicles

For this study, a special set of samples based on a construction of an overmolded ECU product has been

manufactured as shown in Figure 3.3.1. They will be referenced to as test vehicles. It is an ignition control

ECU that is using DPAK components as the IGBT switch. Exactly as in the product, the test vehicle is

an overmolded structure with four full copper-layered PCB containing six DPAK packages. The packages

are placed in pairs at three different positions on the PCB; two pairs are located along the edges of the

PCB. The DPAKs within these two pairs have different relative orientations and the orientation toward the

edges of the PCB. Pair 1 is placed next to each other and perpendicularly to the edge of the PCB; Pair 3

is placed parallel to the edge but against each other. Pair 2 is located in the middle; one of the DPAKs

is rotated by 90°toward the other. The goal of this design is to investigate the influence of the orientation

of the package on the internal stress state. In addition, the test vehicle can be used to study the effect of

orthotropic properties of the PCB caused by a different amount of glass fibers in the ply in x- and y-direction

of the PCB.

During the active cycling condition, a power of 1.2 W is dissipated in every DPAK package to reproduce the

real loading situation in the product. To dissipate the heat effectively, thermal vias are placed on the PCB

directly under the power packages according to the product design. The passive thermal cycling experiments

are performed according to product requirements (i.e., between -40°C and 125°C). The mechanical fixation of

the test vehicles during reliability testing also corresponds to the field use case, and it is of a free expansion

type.

Figure 3.3.2: Overmolded sample.

On the other side of the PCB, three piezoresistive stress sensors are placed underneath each DPAK pair

where the highest temperature during active operation is expected (see Figure 3.3.1(b)). These are the

locations where the largest load occurs during reliability testing, and thus the failure is likely to occur there
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first. Hence, it is the main region of interest, since the ultimate goal is to detect the failure that occurs in

DPAK package. The stress sensors are to be used for feature extraction, from which the state of health of

the control unit is estimated. The sensor chip size is much smaller than the size of the monitored DPAK

package. A larger sensor would have a better sensitivity and would be able to detect potential structural

faults in the larger area. However, the small sensor used here has a particular advantage in that its stiffness

does not have a significant influence on the stiffness of the system. Increased local stiffness could lead to an

earlier failure in the system.

In addition to the stress sensors, three temperature sensors are used for in-situ temperature measurements,

which is critically required for an active operation of the designed test vehicle during active power cycling.

The test vehicles are produced in bare PCB and overmolded version. The overmolded sample is shown in

Figure 3.3.2. The outer mold protects the module from harsh environmental conditions. It is produced in a

separate molding process and has a significant influence on the thermo-mechanical behavior of the module.

Investigation of both bare PCB and overmolded samples enables analysis of the influence of outer mold on

the system reliability.
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Chapter 4

Piezoresistive stress sensor

4.1 Introduction

As mentioned, this thesis investigates how a piezoresistive silicon-based stress sensor can be a possible tool

for implementing PHM methodology. To reach this goal, it is imperative to overcome the challenges posed

by the measurements with this sensor.

First, it is necessary to design a new measurement system that enables measurements with multiple sensors

at a time [99]. To achieve this goal, this study constructs a system that is able to gather the data from

eight sensors at a time. Additional advantages of the designed solution is mobility, flexibility, and capacity

to store a large amount of data.

Next, it is crucial to understand the measurement uncertainties. Extensive analytical and experimental

analyses were performed in this work based on both theoretical and experimental data. The uncertainties

were evaluated at different complexity levels. The investigated samples included:

� a sensor glued onto a LTCC

� a sensor encapsulated in a 3x3 mm LGA package

� a sensor encapsulated in a 3x3 mm LGA package soldered onto a PCB

� a sensor encapsulated in 3x3 mm LGA package soldered onto a PCB and overmolded

In this study, possible sources of calculation errors were identified, such as in cases where the piezoresistive

coefficient depended on temperature and on measurement current. After this, a thorough analysis of the

systematic errors present in the measurements was conducted. The analyzed errors resulted from the simpli-

fications made in the stress calculation from measured currents. Finally, random errors were evaluated based

on measurements performed on eight samples of each kind, and the uncertainties related to the measurement

process were separated from the uncertainties related to the samples variability [100].

4.2 Potential

Piezoresistive stress sensors have continued to garner more attention, especially for high reliability applica-

tions. The main advantage of this type of sensor is that it measures mechanical stress, which is a parameter

directly related to damage. Additionally, the sensor can be easily integrated within electronic systems as it

consists of a silicon die and can be encapsulated in any microelectronic package.
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A resistance-based sensor was initially introduced, but its applications have been limited due to its large

size (about 300 µm times 300 µm), which additionally can affect the accuracy of measurement. The stress

can be different in resistors throughout the rosette, and thus the measurement result is an average over the

surface. The second limitation of resistive stress sensors is the need to have a reference measurement in a

state without stress. Moreover, to have a reliable measurement results in various temperatures, a reference

value is needed at every measured temperature [101]. This makes it impossible to use these sensors on a

wide scale since characterizing every one of them is unpractical.

The CMOS-based sensors have been developed to cope with the critical limitation of the resistance-based

sensor. They do not need calibration due to placement of transistors in current mirror configuration. Ad-

ditionally, the measurement technique is simpler because the output signal is of a current type instead of

resistance. Moreover, the sensitivity of the sensor is enhanced because of the light doping of silicon. The

CMOS sensor also allows the stress to be measured in a localized manner. A single measurement cell has

the dimensions of 50 µm x 50 µm; in practice, sensors with multiple stress-sensing cells on one chip are

used. Furthermore, it is easy to integrate the sensing element with active circuitry. Multiplexers allow data

acquisition from all of measurement cells.

The CMOS stress sensor has been used by various research groups. Jaeger et al. [102]-[108] made an analysis

of CMOS stress sensor behavior in various measurement circuits. The sensor in a cascade current mirror

configuration was produced, and an investigation was conducted on how the encapsulation process affects

the stress in the package. The results of measurements were compared with FEM simulation to confirm the

accuracy of the measurements. The group from Freiburg University IMTEK designed a CMOS stress sensor,

which uses the pseudo hall effect in silicon for stress measurement. In their research, they characterized

the sensor [109]-[111], created a matrix of cells with active circuitry [112]-[113], and used this sensor for

monitoring of wire bonding process [114]-[115].

More recently, the possibility of using this sensor for PHM has been realized. In [116]-[118], Roberts et al.

studied both the evolution of stress during packaging processes and thermal cycling reliability testing using

a resistive type of stress sensor. They found that the stress changes rapidly at the beginning of cycling, and

after this stage only minor changes are seen. In [119], Rahim et al. showed the changes of the signal of a

stress sensor due to delamination. Similar results during thermal cycling have been presented in [120] and in

[121]-[122]. In [123]-[124], Lall et al. observed the changes in stresses measured by the sensor at the point as

delamination appears but only before the change could be detected by other available methods. From this,

stress sensor measurement was identified as a possible technique to detect leading indicator of failure.

In the course of this thesis, a further investigation has been conducted concerning the potential application

of a piezoresistive silicon stress sensor for PHM methodology at a system level. The stresses measured during

both the thermal cycling of PCB-based ECUs and overmolded modules have been analyzed and compared

[125]. The induction of the stresses during active thermal cycling was also investigated [125]. In [126], the

evolution of stresses during reliability testing was presented. The time effects on the material behavior has

also been studied [127].

4.3 Fundamentals of IForce sensor

The sensor used in this research is designed in CMOS technology. It means, that a pair of MOS transistors

is connected into current mirror circuit (see Figure 4.3.1). The current mirror configuration forces the same

current in both branches of the circuit as long as the parameters of both transistors match one another.

The stress sensitive channels of MOSFET transistors in both branches of the current mirror are oriented

at a different angle to the crystallographic axes of the silicon. Mechanical stress acts on the properties of

these transistors in a different way, thus forcing the circuit out of balance. This effect can be measured as a
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(a) (b)

Figure 4.3.1: Current mirror circuit used for stress measurement. (a) nMOS current mirror used for xy shear
stress measurement. (b) pMOS current mirror used for difference in normal in-plane stress measurement.

difference in currents in both branches of the current mirror. Based on the current difference, the mechanical

stresses acting in a circuit can be determined.

4.3.1 Basic formulas for stress calculation

There are two current mirrors in a sensor—one is of a p conductivity type, and the other is of an n conductivity

type. This enables measurement of two stress components, namely shear stress in the xy-direction and a

difference in normal in plane stress. The nMOS current mirror is used for calculation of an xy-shear stress,

according to the formula [128]:

σ12 =
1

πnD

I1 − I2
I1 + I2

(4.3.1)

Where:

I1, I2 - currents in both branches of current mirror

πnD - piezoresistive coefficient of n doped silicon ( πnD = πn11 − πn22)

The pMOS current mirror is used for difference in normal in plane stress calculation, according to the formula

[128]:

σd = σ11 − σ22 =
1

πp44

I1 − I2
I1 + I2

(4.3.2)

Where:

πp44 - piezoresistive coefficient of p doped silicon.

The choice of type of conductivity (p or n) of channels of current mirrors was made in a way that resulted in

possibly largest sensitivity to stress—the πD coefficient is the largest in an n-type silicon and π44 is the largest

in the p-type silicon. Table 4.3 shows the values of the relevant piezoresistive constants. (4.3.1)–(4.3.2) show

that no reference current is needed. The calculations are made using the instantaneous current values. These

equations will be derived and further discussed within the next sections of this chapter.

4.3.2 Basics of construction

Figure 4.3.2 shows the construction of a sensor used in this study. Each measuring cell contains eight

transistor pairs; there are two pMOS and two nMOS stress sensitive transistor pairs, and these two current
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mirrors have a different transistor orientations on the input. This means that for a p-type current mirror,

one mirror has the input on the transistor oriented at 90°and the other mirror at 0°; for n-type mirrors, the

analogical situation occurs.

The remaining transistor pairs are stress insensitive, and their channels have the same orientation towards

crystallographic axes. In this case as well, there are two versions of current mirrors that have different

orientations. These stress insensitive current mirrors were necessary at the early development stage of the

sensor. They were used for obtaining the electrical characteristics of the produced devices in order to

characterize their dependence on temperature independently of stress.

Additionally, in every sensing cell there is a bipolar transistor for temperature measurement. Having accurate

information on the temperature is crucial because the piezoresistive constants are dependent on temperature.

This effect and its influence on the measurement uncertainties is discussed in greater detail in further sections

of this chapter.

This configuration that consists of a set of eight MOSFET transistor pairs combined with the bipolar

transistor is referred to as a single measurement cell in this thesis, as depicted in (a) of Figure 4.3.2. It can

be seen, that in one sensor there are multiple measurement cells. As shown in (b) of Figure 4.3.2, the sensor

considered here has 12 measurement cells placed in a 4x4 matrix; cells in the corners are inactive, because

the place is needed for bonding pads. The exact die used in this work consists of two sensors (see Figure

4.3.2(c)). For the sake of simplicity, only the results gathered from one of the sensors are presented in here.

This can be done without any information loss since the stress distribution in the cases considered in this

thesis is close to symmetrical along the y-axis.

(a) (b)

(c)

Figure 4.3.2: : Construction of a sensor. (a) The single measurement cell. (b) Cells placed in a matrix,
creating a chip. (c) Configuration used in this study, consisting of two 4x4 sensors with exact places of
measurements marked.

46



CHAPTER 4. PIEZORESISTIVE STRESS SENSOR

4.3.3 Communication protocol

The chip used in this work was developed in a project founded by the German Federal Ministry of Research

and Technology; the project focused on the characterization of the stress induced during encapsulation

process [129]. This chip was designed in such a way that enables adaptation of both the size and shape

of the silicon die to the investigated package. It is possible to cut the dies containing multiple sensors

from a wafer and encapsulate them within one package; it should also be noted that a sensor consisting of

two separate devices is used in this thesis. This process produces the proportional growth of the number

of pins that is necessary for measurements. To minimize the number of used pins within one device, a

custom communication protocol with a sensor was developed. The communication is done over power

supply terminal, both by current and voltage modulation. There are four pins per device: ground potential

terminal (GND), power supply (VDD), and two current measurement pins labelled CUR1 and CUR2.

The measurement sequence of one cell consists of 17 measurement phases. During first four phases, the NMOS

current mirrors are measured. First, the stress sensitive mirror is measured in a forward and backward

configuration; it should be noted that the input terminal is changing at this time. Then, the same is

conducted for stress insensitive current mirrors; the following four phases correspond to PMOS current

mirrors measurement. Afterwards, one phase is dedicated to temperature measurements using a bipolar

transistor. The final eight phases enable communication with the chip. In these phases, using current

modulation on power supply, the address of a currently measured cell is sent—on the first four bits the row

number is coded, and the last four bits correspond to a column number. When the communicated bit has

a value of 1, the supply current increases by 4 mA for the duration of a given measurement phase. When

it has a value of 0, the current remains at the default level. Figure 4.3.3 shows the time diagram of the

communication phase, and Table 4.1 summarizes the measurements phases.

Figure 4.3.3: Communication phase protocol of the IForce sensor.

The information from the consecutive measurement cells and phases is gathered in series. Switching between

them is realized through voltage modulation on the power supply terminal. There are three logical power

supply levels, as marked in Figure 4.3.4. The measurement of the current for stress calculation is always

conducted on the highest power supply level, V DDhigh. A change between successive measurement phases

is executed on the falling edge when the power supply level is changed from V DDhigh to V DDmedium and

when a change occurs between successive cells on the falling edge from V DDmedium to V DDlow. The current

cell number and phase number are independent from each other. This means that when a cell number is

changed, the phase remains the same. Figure 4.4.1 presents a diagram with the communication protocol.
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No. Measurement phase

1 stress sensitive NMOS forward measurement
2 stress sensitive NMOS reverse measurement
3 stress insensitive NMOS forward measurement
4 stress insensitive NMOS reverse measurement
5 stress sensitive PMOS forward measurement
6 stress sensitive PMOS reverse measurement
7 stress insensitive PMOS forward measurement
8 stress insensitive PMOS reverse measurement
9 temperature measurement using bipolar transistor
10 communication row number (LSB)
11 communication row number (second bit)
12 communication row number (third bit)
13 communication row number (MSB)
14 communication column number (LSB)
15 communication column number (second bit)
16 communication column number (third bit)
17 communication column number (MSB)

Table 4.1: IForce sensor measurement phases.

Figure 4.3.4: Logical power supply levels of the IForce sensor.

4.4 Challenges

This section discusses the main challenges posed by the application of the IForce piezoresistive silicon-based

stress sensor. First of all, at the initial stage of this work, there was a fundamental lack of an appropriate

acquisition system dedicated to the sensor. The communication protocol is custom made, and hence a special

dedicated solution for gathering data from multiple sensors had to be created; the developed acquisition unit

is described in this section. Furthermore, there are challenges posed by temperature and current dependency

of piezoresistive constants; these are also discussed in this section. Finally, the derivation of formulas for

stress calculation is performed in order to present all the assumptions that are made in the process. Some

of them may induce systematical errors in measurements. The systematical errors are evaluated on different

packaging levels.
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Figure 4.4.1: Steering protocol of the IForce stress sensor.

4.4.1 Acquisition system

Up until this point, the data from IForce sensors were gathered by a dedicated acquisition unit called ChiRP

Control Unit, which was developed by TZM company. This unit consists of several functional units (see

Figure 4.4.2). Multifunction input/output (I/O) is a block that generates the signal to communicate with a

sensor over the power supply signal; it also digitalizes the output of the sensor (i.e., the input and output

currents of current mirrors). The current source and waveform amplification unit provides a sufficient and

stable amount of current to the chip; it also amplifies the signal from the generator and from the sensor.

Programmable control logic (PLC) and PC have controlling functions—PLC is dedicated to only control the

current source with the waveform amplifier while PC controls the whole measurement process. In addition,

a dedicated software was developed that allows the process of gathering the data to be managed. This makes

the procedure user-friendly in that the software enables the whole measurement sequence to be set—such as

which measurements should be taken on which cells or in which order—and it also processes and presents

the acquired data in a way that is readable and easy to interpret.

Figure 4.4.2: Functional scheme of an existing acquisition unit [130].

The major disadvantage of this system is the lack of mobility. It is rather large—in size, it is similar to

that of a stationary PC. Moreover, it requires some peripherals and a supply from a common power line.

In practice, it cannot be used outside the laboratory. It also allows measuring to be performed only for one

chip at a time, and for the current study, it is required to handle multiple sensors in parallel. Figure 4.4.3

depicts the existing acquisition unit.
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Figure 4.4.3: Photograph of an existing commercial solution.

For this thesis, it was necessary to minimize this system to a point where it is small enough to be mobile

in order to conduct in-situ measurements for a large number of sensors. The developed acquisition system

is based on the microcontroller discovery board STM32F4, and other modules of the system need to be

compatible with it. All inputs of the sensors are controlled by a digital-to-analog converter (DAC). The

systems steered from a converter include the voltage generator, which ensures that there is a power supply

to the chip and the communication with it, as well as the driving of the current source. Outputs from the

chip are digitalized by analog-to-digital converters (ADC). There are three signals that should be read from

the sensor, namely the input and output currents of the current mirror and the supply current, over which

the data concerning the outgoing measurement are transmitted. Since all of these signals are of a current

modulation type, they have to be measured in a differential mode. The whole system is also designed in

such a way that the power supply can be taken from the car battery to enable data to be gathered in real

working conditions. Figure 4.4.4 presents the functional scheme of the developed solution.

Figure 4.4.4: Functional scheme of the developed acquisition unit.

The functioning acquisition unit was built and tested (see Figure 4.4.5). The dimensions of the developed

acquisition unit (WxHxD) are 96x33x65 mm. Both the current source and voltage generator are found to

be stable and accurate [131]. The differences of the actual and designed values of the signals are the result

of the scattered values of the resistors used; they do not exceed 2.5%. This is not crucial because the only

values that are needed to calculate the stress are the currents in both branches of the current mirror. Thus,

the most important task is to measure the currents as accurately as possible.

The ADC has a 12-bit resolution. The nominal reference voltage is 2.048 V, and thus the measurement

resolution is 0.5 mV. However, for the measurements of the current mirror signals, a PGA gain functionality

is used, and this further improves accuracy. This gain is an internal amplifier circuit that can be used if the

full scale of conversion is not used. In here, the PGA gain is set to 8. This means that the resolution is

increased by 8 times to 0.0625 mV. The current is measured over a 1 kΩ resistor with a tolerance of 0.1% to
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ensure good measurement accuracy. This also ensures that the resolution of the current measurement would

be at a 0.0625 µA level. The total error of conversion does not rise above ± 2 least significant bit (LSB) [132].

The conversion rate is around 50 samples/sec; this is not critical because the planned measurements do not

concern rapidly changing phenomena. This is also the reason why the tests can be executed sequentially.

Thus, in order to gather information from multiple sensors, a multiplexer can be used.

Figure 4.4.5: The created acquisition unit.

The developed device can measure up to 8 sensors at the same time. In the designed solution, two separate

multiplexers are used—one for multiplexing the measurement current signals and one for multiplexing the

power supply voltage. The multiplexer used for measurement signal is of a differential type. To ensure a

good accuracy of measurement, the on-resistance difference between the channels should be minimized. In

the chosen device, it should typically not go beyond 0.2 Ω [133]. The main requirement for the multiplexer

used for switching the power supply signal is that it should be able to switch high enough currents [134].

The typical supply current should not exceed 10 mA, but in some cases it can be higher and reach up to 100

mA.

The gathered data is saved in an USB flash drive. The data is saved in an unprocessed way, meaning that

only the measured values of the currents and voltages are saved. In addition, the time of the measurement

is saved for every sensor separately. The data evaluation is done in a Matlab environment. Based on

the measured values difference of in-plane stresses, shear stress and temperature can be calculated. The

communication with the IForce sensor can also be analyzed.

Every change in the measurement process must be introduced from the program level; such changes can

include the change of the type of sensor or the number of sensor measured. This makes this solution less

user friendly than the one from TZM. However, for an aware user, the handling of the device should not

pose any problems.

The validation of the results obtained from the developed acquisition unit is done using results acquired

with the established PC-based system as a reference. First, a distribution of stresses measured at room

temperature is compared, as shown in Figure 4.4.6. The accordance of results is very good, in that only

minor differences are shown, and they do not exceed a value of 1 MPa. Following this, the stresses measured

during a whole temperature cycle -40°C to 150°C is compared. This is the temperature range in which the

IForce sensor is rated; the results are shown in Figure 4.4.7. Again, only minor differences are observable.

It is worth noting that in the case of measurements within a full temperature cycle, the difference in the

obtained results is caused also by the differences in the temperature cycles itself. These differences in turn

are caused by factors, such as the specifics of a climate chamber setup, the difference in humidity levels, and

the time dependent properties of materials.
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(a) (b)

Figure 4.4.6: Comparison of measurement results at room temperature. (a) Old acquisition system. (b)
New acquisition system.

(a) (b)

Figure 4.4.7: Comparison of measurement results during a temperature cycle. (a) Difference stress. (b)
Shear stress.
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4.4.2 Simplification in stress calculation

In this section, the formulas for stress calculation are derived and discussed. In the derivation of these

equations, some assumptions that affect the uncertainties of measurements are made. It is crucial to take

note of these assumptions when using a CMOS piezoresistive silicon-based stress sensor.

The starting point to these considerations are the equations that describe the piezoresistive effect in (100)

silicon. When a coordination system as in Figure 4.4.8 is chosen (x-axis aligned with [110] crystallographic

axis and y-axis aligned with [1̄00] crystallographic axis], resistivity in the chosen direction is described by

following set of equations [101]:

∆ρSi
ρSi

∣∣∣∣
0°

=
πpS
2

(σ11 + σ22) +
πp44
2

(σ11 − σ22) + πp12σ33 + fp(∆T ) (4.4.1)

∆ρSi
ρSi

∣∣∣∣
90°

=
πpS
2

(σ11 + σ22)− πp44
2

(σ11 − σ22) + πp12σ33 + fp(∆T ) (4.4.2)

∆ρSi
ρSi

∣∣∣∣
45°

=
πnS
2

(σ11 + σ22) + πnDσ12 + πn12σ33 + fn(∆T ) (4.4.3)

∆ρSi
ρSi

∣∣∣∣
−45°

=
πnS
2

(σ11 + σ22)− πnDσ12 + πn12σ33 + fn(∆T ) (4.4.4)

Where:

ρSi - resistivity of silicon in chosen direction

f(∆T ) - function describing temperature effects on resistivity change

Figure 4.4.8: Chosen coordinate system for (100) Silicon.

However, the physical value measured by this sensor is not resistance but drain current. The widely known

equation describing the MOSFET drain current behavior in saturation region is [102]:

ID =
1

2
µe Cox

W

L
(UGS − Uth)2 (4.4.5)

Where:

UGS - voltage between gate and source
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Uth - threshold voltage of MOSFET

µe - mobility of electrical carriers in the channel of MOSFET

Cox - capacitance of the oxide layer

W - width of the MOSFET channel

L - length of the MOSFET channel

In this equation, the dimensional changes due to mechanical stress can be neglected. Deformation of silicon

is small, even at relatively high stress values because of its high Young’s modulus. The threshold voltage is

independent of mechanical stress, as proven in [102]. Thus, the change of drain current induced by mechanical

stress mainly depends on mobility changes, and for small fractional changes, the following can be used [102]:

∆ID
ID

=
∆µe
µe

(4.4.6)

Mobility is also directly related to resistivity of silicon, according to [135]:

ρSi =
1

qeµeNd
(4.4.7)

Where:

qe - electrical charge of majority carrier

Nd - net impurity concentration

Again, for small fractional changes, the following can be written:

∆ρSi
ρSi

= −∆µe
µe

(4.4.8)

Thus, in combining (4.4.6) and (4.4.8), the result is as follows:

∆ID
ID

= −∆ρSi
ρSi

(4.4.9)

(4.4.1)–(4.4.4) can be applied for the recalculation of stresses based on drain current measurement. However,

the actual values measured are calculated in this way:

ID = ID0 + ∆ID = ID0(1− ∆ρSi
ρSi

) (4.4.10)

Where:

ID0 - reference current (in an absence of mechanical stress)

By substituting (4.4.1)–(4.4.4) into (4.4.10), the following is obtained [102]:

ID|0° = ID0

[
1−

Πp
S

2
(σ11 + σ22)− Πp

44

2
(σ11 − σ22)−Πp

12σ33 + fp(∆T )

]
(4.4.11)

ID|90° = ID0

[
1−

Πp
S

2
(σ11 + σ22) +

Πp
44

2
(σ11 − σ22)−Πp

12σ33 + fp(∆T )

]
(4.4.12)

ID|45° = ID0

[
1− Πn

S

2
(σ11 + σ22)−Πn

Dσ12 −Πn
12σ33 + fn(∆T )

]
(4.4.13)
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ID|45° = ID0

[
1− Πn

S

2
(σ11 + σ22) + Πn

Dσ12 −Πn
12σ33 + fn(∆T )

]
(4.4.14)

Where:

Πn
D, Πp

44, Πn
S , Πp

S , Πn
12, Πp

12 - effective piezoresistive coefficients (influenced by the circuit)

To make the equations independent of reference current, the difference in the current from both branches of

a circuit is divided by the sum of the currents. The resulting equations take the following form:

ID|45° − ID|−45°

ID|45° + ID|−45°

=
−Πn

Dσ12

1−Πn
S

(
σ11+σ22

2

)
−Πn

12σ33 + fn(∆T )
(4.4.15)

ID|0° − ID|90°
ID|0° + ID|90°

=
−Πp

44(σ11 − σ22)

1−Πp
S

(
σ11+σ22

2

)
−Πp

12σ33 + fn(∆T )
(4.4.16)

The temperature term is taken into account as the temperature dependent piezoresistive coefficient. As for

stress-related terms in the denominator, an assumption is made that these can be omitted, given they should

account for only a low percentage of error. Here, the analysis of errors introduced by this assumption is

made. The neglected terms are firstly written in this way:

D = 1−ΠS(T )

(
σ11 + σ22

2

)
−Π12(T )σ33 (4.4.17)

After this, (4.4.16)–(4.4.15) are rewritten to a form that can be used for stress calculation:

σ12 = −Dn 1

Πn
D(T )

ID|45° − ID|−45°

ID|45° + ID|−45°

(4.4.18)

σ11 − σ22 = −Dp 2

Πp
44(T )

ID|0° − ID|90°
ID|0° + ID|90°

(4.4.19)

In (4.3.1) and (4.3.2), the assumption is made where D = 1. The influence from additional stress terms

in the relevant application can be directly evaluated by taking into account the term D. Table 4.3 shows

values of relevant piezoresistive coefficients; these values are theoretical and concern only resistors produced

in silicon. However, due to the lack of more accurate information for the sensor used, this study continues

to use these values for a further evaluation of errors induced by other stress components.

Piezoresistive coefficient n-type silicon p-type silicon

π11 -1.022 0.066
π12 0.534 -0.011
π44 -0.136 1.381

πS = π11 + π12 -0.488 0.055
πD = π11 − π12 -01.556 0.077

Table 4.2: Piezoresistive coefficients for n-type and p-type silicon with net impurities level smaller than 1018
cm−3

The error introduced by the sum of stress and z-direction stress in the calculation of shear stress is shown

in Figure 4.4.9. The errors coming from the sum of stresses and z-direction stress are not linearly combined,

and thus they are represented jointly on one plot. The fracture strength of silicon is 300 MPa; for this reason,

the calculation were made to 300 MPa for z-stress and to 600 MPa for the sum of the stresses. The error

introduced in shear stress calculation can be as high as 40% in the worst case scenario. The error in the
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calculation of difference stress is shown in Figure 4.4.10. In this case, the maximal error is much smaller and

reaches 2%. This error can be compensated only if the values of out-of-plane stress and the sum of in-plane

stresses are known. In the use cases where this error has a considerable effect on the results, these values

have to be calculated using FEM simulation. In this way, they can be provided to the acquisition system

that can compensates the error of the measurement using (4.4.18)–(4.4.19).

In further parts of this chapter, the real values of the sum of stress and the z-direction stress in the investi-

gated samples are evaluated based on FEM simulation. This procedure is conducted on different packaging

levels, namely concerning sensor glued on low temperature cofired ceramics (LTCC), encapsulated in LGA

package, and soldered onto the PCB. This enables an evaluation of error propagation with growing packaging

level.

Figure 4.4.9: Error introduced in a shear stress by the sum of normal in-plane stress and z-stress components.

Figure 4.4.10: Error introduced in difference stress calculation by the sum of normal in-plane stress and
z-stress components.

4.4.3 Piezoresistive coefficients dependence on temperature

As mentioned, the effect from temperature is taken into account in the form of temperature dependent

piezoresistive coefficients. Our sensors were characterized in a temperature range from 22°C to 170°C.

The measured characteristics were linear, and the temperature coefficient of piezoresistive constants were

calculated (see Table 4.3) [129]. However, these values were measured using silicon bare dies by applying

stress to the samples in four point bending test. Thus, the values of the components of stress in the D term

are minimal, and the effect on their dependence on temperature cannot be evaluated.

Because of a strong dependence of piezoresistivity on temperature, it is crucial to accurately measure the
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Coefficient [GPa]−1 Thermal coefficient [GPa ·K]−1

π11 -0.78 0.83e-3
π12 1.008 -1.3e-3

Table 4.3: Piezoresistive coefficients for n-type and p-type silicon with net impurities level smaller than 1018

cm−3.

(a) (b)

Figure 4.4.11: Dependence of (a) Πp
44 and (b) Πn

S piezoresistive coefficients on measurement current.

temperature in which the stress measurement is taken. As mentioned, every cell of the IForce sensor contains

a bipolar transistor for temperature measurement. However, in practice this way of temperature measure-

ment turned out to be too inaccurate, and thus another method is implemented. This method uses the linear

dependency of MOSFET’s threshold voltage Uth on temperature. As mentioned, the threshold voltage of

MOSFET is independent of mechanical stress, which makes it suitable for this application. To calculate Uth,

a measurement of drain-source voltage UDS at three drain level currents must be made. Then, the threshold

voltage is determined, and the temperature can be calculated according to the formula:

T =
(Uth − Uth0)

α Uth

+ T0; (4.4.20)

Where:

Uth - threshold voltage at the measured temperature

UTh0 - threshold voltage at the reference temperature

α UTh - temperature coefficient of threshold voltage

T0 - reference temperature

The temperature coefficient α UTh must be calculated empirically using a calibration procedure. It is worth

mentioning that this measurement method is a relative one; therefore, a reference measurement at a known

temperature is needed at the beginning of every experiment. However, this approach to temperature mea-

surement has a good accuracy and was used throughout this work.

4.4.4 Piezoresistive coefficients dependence on measurement current

In the recent studies [108], the dependence of piezoresistive coefficients on the measurement current was

reported. This observation was verified with measurements taken in this thesis. Figure 4.4.11 shows the

piezoresistive coefficient dependence on the current of a sensor used in this paper. The sensor was char-

acterized using a 500 µA measurement current, and the presented values were normalized using known

piezoresistive coefficients at this level of current. This property does not affect the accuracy of measurement

but users should be aware of it.
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(a) (b)

Figure 4.5.1: The LTCC sample used in this experiment. (a) Whole substrate. (b) Close up on the silicon
die.

4.5 Uncertainties evaluation

The accuracy considerations of measurements with the stress sensor can be found in the literature. In [136],

Jaeger et al. discussed calibration errors and rosette alignment errors for a resistive type of stress sensors. In

[137], Hussain et al. discussed measurement errors of the rosette type sensor on (111) silicon. More extensive

analytical and experimental analyses on the measurement uncertainties are required so that the applicability

of the sensor in the PHM domain can be extended.

4.5.1 Experimental validation

This section presents the experimental results of measurements conducted at different packaging levels with

the stress sensor; FEM simulation results are given here as well. The goal of these considerations is to evaluate

the effect of the sum of stresses and out of plane stress on the measurement results as the complexity of the

system grows.

The thesis takes the simplest case of the silicon sensor glued onto LTCC as the starting point (see Figure

4.5.1). This sample consists of a ceramic substrate with a NiPdAu metallization layer. The sensor die

is attached to it with an adhesive, and electrical connections are constituted with gold wire bonds. The

behavior of this sample is relatively straightforward as it is possible to assume both silicon and LTCC

materials are linear elastic. The only viscoelastic material in this system is the adhesive that mounts the

chip to the LTCC. However, this material was characterized on site using DMA and TMA techniques. Thus,

its properties have been determined and can be further used to predict the thermo-mechanical behavior of

the sample.

Then, the sensor in a 3x3 mm Land Grid Array (LGA) package is investigated (see Figure 4.5.2). A double

sensor chip (two times 12 measurement cells) is glued onto a PCB substrate. The electrical connections from

the chip to the substrate are constituted by wire bonds. The terminals that form the electrical connection to

the outside of the package are established by a metallization layer on the bottom side of the PCB substrate.

The whole construction is encapsulated by an EMC. The schematic of the package is shown in Figure 4.5.2(b)

and the x-ray is in Figure 4.5.2(c).

The next set of samples consists of a sensor in an LGA package soldered onto a PCB (see Figure 4.5.3(a)).

Finally, the overmolded test vehicle was examined. The cross-section showing overmolded stress sensor is

presented in (b) of Figure 4.5.3. Both these samples are based on the test vehicles introduced in Chapter 3.

In this case, an evaluation of stresses on system level was conducted.

To separate the systematical and random errors in the measurements, eight samples of each kind are mea-

sured, and an average value is taken for further analysis. Then, the measurement results were compared
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(a) (b) (c)

Figure 4.5.2: LGA package. (a) Image of an LGA package. (b) LGA package construction [(1) mold, (2)
PCB, (3) stress sensor, (4) ceramic, (5) die attach, (6) wire bond, (7) soldering pads ]. (c) X-ray of the
package with the points of measurement marked.

(a) (b)

Figure 4.5.3: The samples used in this experiment. (a) Sensor in LGA package soldered onto a PCB. (b)
Cross- section of an overmolded sample.

with the simulation.

Measurements were made at -40°C and 125°C for every sample. The presented values are relative in order to

enable a comparison with the simulation; the reference measurement was taken at room temperature. Figures

4.5.4-4.5.7 present the averaged results of the measurements from eight samples on LTCC, on component

level, on a PCB, and in an overmolded case, respectively. It is worth noting that the measured stress has

a symmetrical distribution only in the cases of LTCC and the overmolded sensor. The LTCC sample is

symmetrical on the x-axis, while the LGA package is not (see Figure 4.5.2). Thus, the distribution of stress

in the LGA package presented in Figures 4.5.5-4.5.6 cannot be symmetrical. In the case of the overmolded

sample, the constraint introduced by outer EMC plays a dominant role on the behavior of the package, and

the asymmetry introduced by the LGA package design is negligible. However, in all four cases, the structure

is close to symmetrical on the y-axis, as well as results from both sides of the sensor. This allows us to

present the measurement results only from one half of the sensor without losing much information.

The values in Figures 4.5.4 to 4.5.7 are presented along with the corresponding results from simulations and

from error bars related to sample variability. Figure 4.5.4 shows the results concerning LTCC. Here, the

agreement between the simulation and measurement is very good for both difference stress and shear stress,

especially when the error bars are taken into account. It is mainly due to the fact that the thermo-mechanical

behavior of this sample is straightforward and can be accurately predicted.

In Figure 4.5.5, the same results for the standalone component are presented. The agreement between

measurements and the simulation in this case is reasonable, but taking the calculated uncertainties into

account does not fully explain the differences. The distribution of stresses within the silicon die is predicted

correctly by numerical modeling. The differences between the measured and predicted values do not exceed

5 MPa and may be a result of various factors, such as slight geometrical differences or the humidity present

in the molding compound.

Next, the results with PCB samples are shown in Figure 4.5.6. Here, the agreement between the simulation
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(a)

(b) (c)

(d) (e)

Figure 4.5.4: Simulation vs measurement results for LTCC samples. (a) Sensor with marked measurement
points. (b) Difference stress at -40°C. (c) Difference stress at 125°C. (d) Shear stress at -40°C. (e) Shear
stress at 125°C.
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(a)

(b) (c)

(d) (e)

Figure 4.5.5: Simulation vs measurement results for component level samples. (a) Sensor with marked
measurement points. (b) Difference stress at -40°C. (c) Difference stress at 125°C. (d) Shear stress at -40°C.
(e) Shear stress at 125°C.
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(a)

(b) (c)

(d) (e)

Figure 4.5.6: Simulation vs measurement results for PCB samples. (a) Sensor with marked measurement
points. (b) Difference stress at -40°C. (c) Difference stress at 125°C. (d) Shear stress at -40°C. (e) Shear
stress at 125°C.
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(a)

(b) (c)

(d) (e)

Figure 4.5.7: Simulation vs measurement results for overmolded samples. (a) Sensor cross-section. (b)
Difference stress at -40°C. (c) Difference stress at 125°C. (d) Shear stress at -40°C. (e) Shear stress at 125°C.
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and the experiment is satisfactory only for shear stress measurements. In the case of difference stress, the

results are in the same range of values, but the distributions are inconsistent. This is caused by various

factors, such as the assumption regarding linear material properties of solder. On a system level, the

modelling of solder with non-linear material properties would be computationally too expensive. Another

possible reason for this discrepancy is that the initial deformation of a package is not taken into account in

a simulation, and the stress free temperature is assumed at 25°C. However, the predicted range of values is

acceptable, and the simulation can be used for further analysis.

Finally, Figure 4.5.7 shows the results concerning overmolded samples. In here, the distribution of stress

on the silicon die is matching. However, there are some slight discrepancies when it comes to the values

of stresses. This may be caused by the non-linear temperature dependent material properties of the outer

molding compound. The behavior of this material is very complex and very hard to capture in such a

complicated model. However, the differences between the measured and simulated values are reasonably

small; in most cases they do not exceed 10 MPa. Thus, the simulation results are considered satisfactory

and are used for further analysis.

4.5.2 Sample variation

The values of standard deviation as a measure of sample variation are evaluated for all investigated cases

and are summarized in Table 4.4. As expected, the sample variation increases with the packaging level as the

number of varying design parameters also grows; these parameters can entail different materials or different

layers thickness. The more complex the sample, the more processes it needs to go through and the more

variability exists between the samples. The values of sample variations for a corresponding measurement

cells are plotted in Figures 4.5.9-4.5.12 at all four packaging levels. The variation is smaller with shear

stresses because the corresponding stress values are smaller. However, there are no significant differences

between the measurements executed at different temperatures.

Table 4.4: Standard deviation as a measure of sample variation at different packaging levels.

σ12 standard deviation [MPa] σd standard deviation [MPa]

LTCC 0.23 0.6
LGA package 0.5 0.8

PCB 0.8 1.45
Overmolded 1.3 2.7

4.5.3 Random error

Additionally, the repeatability of the measurements was assessed. The goal is to determine what part of

statistical error is caused by the measurement process itself. For this purpose, 60 consecutive measurements

were conducted at a controlled temperature of 25°C. This uncertainty is independent of the packaging level,

and thus the measurements are conducted only for PCB samples. The results in a form of histogram for

both difference stress and shear stress measurements are shown in Figure 4.5.8. They confirm that a normal

distribution of the investigated variable can be assumed. The average repeatability over all measurement

cells calculated at 68% (1σ) confidence level was 0.18 MPa for shear stress and 0.27 MPa for difference stress.

It should be emphasized that the main factor affecting the repeatability in here is the accuracy of the current

measurement. Although both currents are measured with the same precision, the repeatability is different.

It is caused by the different constants in (4.3.1) and (4.3.2) that introduce other uncertainty propagation

into the final results. It can be easily seen that the uncertainty propagation of current measurement depends

linearly on the piezoresistive constant used for stress calculation. The ratio of the relevant constants is

around 2:3, which is similar to the ratio of the calculated repeatability values.
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(a) (b)

Figure 4.5.8: The histogram of measurements conducted in the same conditions (a) for shear stress and (b)
for difference stress.

(a) (b)

Figure 4.5.9: Errors evaluation of LTCC samples. (a) Systematic error. (b) Sample variation.

4.5.4 Systematic error

The validated simulations were used to extract the values of the sum of stresses and z-component of stress

for evaluation of systematic errors. The results of this study are presented in this section.

The systematic error was calculated in percentage according to (4.4.17), taking into consideration the signs

of corresponding stress values. The values in MPa are calculated based on the measurement results. The

values of both systematic errors and sample variations for a corresponding measurement cells were plotted in

Figures 4.5.9-4.5.12 for all investigated cases. There are no observable trends in the uncertainties distribution,

neither for different cells, nor stress values or temperatures.

To compare the systematic error values quantitatively, the maximal values of the sum of stresses and calcu-

lated errors in percentage and in MPa are summarized in Table 4.5. It is worth noting that the systematic

error, similarly to the statistical uncertainty, increases with the packaging level. For LTCC, the absolute

value of this error does not exceed 0.0007 MPa, while for the component it is already around 0.017 MPa. At

the PCB level, it reaches 0.03 MPa, and in the case of the overmolded sample, it amounts to 0.1 MPa. This

shows that the relevant stress levels increases with the packaging level, but the maximal error even on the

system level remains negligible. A much greater influence on the uncertainties of these measurements are

introduced by sample variation and random errors. Even for the overmolded samples, this error is around

two orders smaller than the random error.
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(a) (b)

Figure 4.5.10: Errors evaluation of component level samples. (a) Systematic error. (b) Sample variation.

(a) (b)

Figure 4.5.11: Errors evaluation of PCB level samples. (a) Systematic error. (b) Sample variation.

(a) (b)

Figure 4.5.12: Errors evaluation of overmolded samples level. (a) Systematic error. (b) Sample variation.
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Table 4.5: The maximal values of calculated systematical errors at different packaging levels.

LTCC Component PCB Overmolded

z component of stress [MPa] 7.96 5.71 10.27 6.58
Sum of stresses [MPa] 6.6 35.97 53.52 186.88

Max. error σ12 [%] 0.54 0.73 1.4 4.37
Max. error σ12 [MPa] 0.0004 0.017 0.029 0.023

Max. error σd [%] 0.022 0.10 0.15 0.51
Max. error σd [MPa] 0.0007 0.013 0.014 0.096

4.6 Summary

This chapter introduced the piezoresistive silicon-based stress sensor, which has a major potential for appli-

cations in PHM. The sensor directly measures stresses in the structure, and thus can be directly related to

damage. This chapter also discussed the construction, the working principle, and communication protocol

of the used sensor. Then, the challenges that come from the measurements with this sensor were identified.

These include the dependence of piezoresistive coefficients on temperature and on measurement current, a

lack of a dedicated measurement system, and the systematical errors introduced in stress calculation caused

by the simplification of the formulas. Then, the developed solution for data gathering from a large number

of sensors was presented. Additionally, the statistical and random uncertainties related to the measurements

with the CMOS-based piezoresistive stress sensor were evaluated. In the case of statistical error, the error

caused by the measurement process itself was separated from the error caused by other factors, such as the

variability between samples. It was shown that the systematic errors introduced by the simplifications in

the stress calculation are negligibly small, even at a system level. However, the value of this error is strongly

application dependent, and in the worst case scenario it can be as large as 10-15%. Users should be aware

of this, and they should make sure that in their specific application this error can be in fact ignored.
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Chapter 5

Virtual modeling

5.1 Introduction

In this thesis, a detailed FEM modelling of the investigated ECU is performed. The model was prepared in a

very meticulous way (see Figure 5.1.1). Geometry was validated with cross-sections and x-ray imaging. For

a detailed stress sensor modelling, a PCB substrate homogenization technique was implemented [138]. The

viscoelastic material properties were implemented for all epoxy-based thermosets and PCB prepreg. Exact

loading conditions of an active operation were modelled by executing a series of coupled simulations, namely

electrical, thermal, and thermo-mechanical [139]. To create a physics-of-failure model, a submodeling tech-

nique was used. This method enables an evaluation of the exact load on the design elements where the failure

is expected. Various validation techniques were used. Thermography and thermocouples measurements were

used to validate thermal model prediction. The thermo-mechanical simulation was validated locally by the

stress sensor and globally by warpage measurements. Additionally, for a detailed assessment of behavior of

all the materials, moiré interferometry was used.

Figure 5.1.1: PoF modeling workflow.

For all numerical simulations presented in this work, a commercial FEM code ANSYS® was used. The
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important steps of model preparation are described in this section.

5.2 Geometry

First of all, a detailed geometry of all design elements must be considered. This includes the copper layer

layouts on the PCB with thermal vias, as well as the internal geometry of the components.

The identified failure mechanisms are strictly related to the design elements of the package. These compo-

nents are commercially available, and thus our knowledge on its internal structure was limited. To collect

the necessary information on the inner construction of the DPAK component, an x-ray imaging of the IC

package was performed. The mold was then etched from the DPAKs, as shown in Figure 5.2.1. Based on

this, it was possible to create a detailed geometry of the wire bond. Finally, the DPAK was cross-sectioned

to collect the information on the thickness of the copper lead frame, the die attach, and the thickness of the

silicon die.

(a) (b) (c)

Figure 5.2.1: DPAK package. (a) Modelled geometry. (b) Etched. (c) Cross-sectioned.

Moreover, the internal geometry of the stress sensor must be very accurate. This includes also the layout of

the PCB within the sensor package. Simulating the exact geometry is computationally too expensive, as the

PCB layout contains very small features. Thus, the PCB substrate inside the sensor package was modelled

using homogenization technique [138]. The procedure of an applied homogenization approach is presented

in Figure 5.2.2. First of all, a number of copper and prepreg layers of a considered PCB substrate must be

defined. In this case, there are two copper layers containing layout—one layer is at the top and the other is

on the bottom of a substrate. The substrate model is divided into respective layers of known thickness. The

prepreg layer in the middle is modelled as continuous material with orthotropic properties. For the layers

containing layout, a mesh from the FEM model must be known in order to implement the homogenization

technique. Then, the local properties can be calculated for each cell of the FEM model separately using

linear rules of mixture. The effective Young’s modulus is calculated as follows [140]:

Eeff = VCu ECu + VPpg EPpg (5.2.1)

Where:

VCu,VPpg - the volume fraction of copper and prepreg (VCu + VPpg = 1),

ECu,EPpg - the Young’s modulus of copper and prepreg.

Similarly, other effective properties are computed as an average of properties of the individual phases accord-

ing to their volume fractions. The orthotropic nature of Young’s modulus of prepreg are taken into account

by calculating the effective values in every direction separately. An example of a calculated effective Young’s

modulus distribution is shown in Figure 5.2.3. The effective value of CTE is calculated while taking into

account the elasticity modulus, according to the relation here [141]:
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αeff =
αCu VCu ECu + αPpg VPpg EPpg

VCu ECu + VPpg EPpg
(5.2.2)

Where:

αCu,αPpg - the coefficient of thermal expansion of copper and prepreg.

The results from the simulation that takes the layout into account validate the measurements much better

as shown in Figure 5.2.4. The range of stress values is predicted properly in both cases. However, the

distribution of stresses on the silicon die changes significantly when the detailed geometry is considered. In

the case of simplified geometry, there is a peak in stress values at the edge of the chip in cells 6 and 7; this

peak is not observed in measurements. The detailed simulation predicts the stress distribution much more

accurately.

Figure 5.2.2: Homogenization technique workflow.

(a) (b) (c)

Figure 5.2.3: Calculated effective Young’s modulus distribution. (a) Sensor PCB layout. (b) Calculated
homogenized Young’s modulus values in the x-direction for the top layer and (c) for the bottom layer.

Another very important aspect of stress sensor modelling is appropriate meshing. Throughout the chip

thickness, the mesh should be finer near the chip surface, as shown in Figure 5.2.5(a). This is because the

actual device measures the stresses only in the top layer. The area at the top of the chip was divided according

to the chip cells arrangement as depicted in Figure 5.2.5(b). The actual position of measurement cells marked

on an X-ray picture of the sensor is presented in Figure 5.2.5(c). The applied mesh is hexahedral, with four

by four element matrix in every measurement cell. Due to such a geometry preparation, it is possible to

extract the values from the exact same locations as in the experiment.

Finally, the geometry of the test vehicle PCB should also be prepared very carefully. In this approach, the

PCB layout must be modelled explicitly in order to perform electrical simulation. The layout also affects
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(a) (b) (c)

Figure 5.2.4: Stress measurement vs. simulation with/without layout. (a) Cells position. (b) At -40°C. (c)
At 125°C.

(a) (b) (c)

Figure 5.2.5: The geometry of the stress sensor. (a) Mesh through the thickness of the chip. (b) Mesh view
from the top of the chip. (c) Placement of the measurement cells in an actual sensor package.

the results of thermal modelling. The structure of the PCB (number of layers and its thickness) determines

the thermal and thermo-mechanical behavior of the test vehicle. These details of the PCB geometry were

validated by cross-sectioning the existing test vehicle.

(a) (b)

Figure 5.2.6: Comparison between (a) a modelled geometry (b) a real geometry.

Furthermore, the appropriate meshing is essential to avoid mesh influence on the results, especially when

values of stress are evaluated. As mentioned, the stress sensor mesh was prepared very carefully and meticu-

lously. Also, the critical layers in wire bond and solder—where the damage parameters are evaluated—were

meshed with high quality hexahedral elements. As a general rule, a dominant hexahedral mesh was applied

to all bodies. Moreover, in all bodies with large surface to thickness ratio, at least two elements across the

thickness were used in order to avoid having too stiff behavior. On the other hand, in such a large system

level model, the element count should be considered. Having too large of a number of elements causes a very

long solution time. Thus, in the bodies where no stress values were evaluated, a coarser mesh was applied.
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The final model of the overmolded test vehicle consist of roughly 3.5 million nodes.

5.3 Materials

Another important aspect of accurate FEM modelling is material properties characterization. The linear

elastic properties of LTCC were measured in one of the previous projects and available for use. The de-

tailed DMA characterization of the adhesives and molding compounds were performed on site; the molding

compounds are of an epoxy-based thermoset type. These measurements were performed specifically for the

investigated product. Typically, three to four samples are tested in tensile and in three point bending mode.

Only one representative measurement made in tensile mode is then taken for the creation of the material

model. The other measurements are made to ensure that the values are consistent, and they are compared

to each other based on the variability range supplied by the material supplier. This value is specific for

every type of material. The results of our measurements are usually also compared to the characterization

results provided by the supplier. Additionally, composite materials used for PCBs were characterized by

measuring the prepreg and copper foils separately. Afterwards, the linear viscoelastic material models were

created using an optimization procedure to calculate prony terms that can be implemented in the FEM

software. The thermo-mechanical material properties used in a discussed model are presented in Table 5.1.

The electrical and thermal properties that are summarized in Table 5.2 are taken from a public database.

Table 5.1: Thermo-mechanical material properties

Material properties Modulus of
elasticity

CTE Material law

[MPa] [ppm/K]

LTCC
Ceramics 128000 6 Linear-elastic
Adhesive 3940 40 Viscoelastic

PCB
Copper traces 80000 17 Linear-elastic
Prepreg 24000 14 Viscoelastic

Stress sensor

Substrate 23000 19 Homogenized
Adhesive 8000 51 Viscoelastic
Silicon die 167000 8 Linear-elastic
EMC 26000 8 Viscoelastic

DPAK

Copper lead frame 125000 17 Linear-elastic
Solder 49551 20 Viscoplastic
Silicon die 167000 8 Linear-elastic
EMC 17000 12 Viscoelastic
Wire bond 64000 25 Viscoelastic
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Table 5.2: Thermal and electrical material properties

Material properties Resistivity Heat con-
ductivity

[Ω·m] [W/ m ·K]

PCB
Copper traces 2e-8 350
Prepreg - 0.7

Stress sensor

Substrate - 0.7
Adhesive - 1
Silicon die - 120
EMC - 0.75

DPAK

Copper lead frame 2e-8 300
Solder 2e-7 50
Silicon die - 120
EMC - 1.5
Wire bond 3e-14 230

5.4 Loading conditions

For a system level simulation such as entire ECUs, both the boundary and loading conditions play a very

important role. The predictability of the numerical simulations strongly depends on residual stresses due to

assembly steps as well as coupled loading conditions.

In this study, the electrical, thermal, and thermo-mechanical simulations are conducted sequentially in order

to predict the expected lifetime of design elements, such as a solder joint or wire bond. Details of this

simulation chain are described in the following sections.

5.4.1 Electrical model

It is especially crucial for a physics-of-failure model assessment to take into account the exact load in the

investigated design element. In the testing conditions, in each DPAK package a power of 1.2 W is dissipated,

but the current passing through the system causes a significant heat dissipation also in other parts of the

circuit. In particular, the heat dissipation in the wire bond is relevant not only because it is a design element

considered when creating a physics-of-failure model but also because the current density in this area may be

large. Additionally, it was observed during experiments that the current in the paths on the PCB affected

the temperature distribution.

To consider these effects, this thesis developed an electrical model. In this simulation, a current flow was set

through the wire bonds, copper frame, solder, and copper layers. The current flow through the silicon die is

not considered. For the silicon die to be taken into consideration in an electrical model, a silicon die layout

would have to be known. Moreover, it can be assumed that the heat dissipation is homogenous because of

the high thermal conductivity of silicon. Thus, the known heat dissipation in silicon is considered first in

the thermal model.

Figure 5.4.1. presents the calculated Joule heat distribution. The increased heating caused by the current

flow can be observed in the copper traces on a PCB and in the wire bond that connects the emitter terminal.

5.4.2 Thermal model

A thermal simulation was conducted to calculate the temperature distribution under an active loading profile.

For the first loading condition, the Joule heating distribution result from the electrical simulation was used.
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(a) (b)

Figure 5.4.1: Joule heating on the PCB from the electrical simulation. (a) PCB overview. (b) Inside of
DPAK package.

(a) (b)

Figure 5.4.2: Comparison of (a) the result of thermal simulation and (b) thermography of the test vehicle
under active loading conditions.

Additionally, a known heat dissipation in the silicon die was introduced. The test vehicle was placed on a

thermally insulating surface under natural convection conditions.

The result of the thermal simulation is shown in (a) of Figure 5.4.2. The maximum temperature reached

81°C. Pair 1 has much higher temperatures as the DPAKs are located close to each other. As expected, the

lowest temperature was observed in Pair 3 as the effective distance between the DPAKs was larger and thus

cross-heating was smaller.

This result was validated with thermography measurements. The test vehicle was painted with a matte

black paint for an ideal and uniform reflectance of the sample. Measurements were made continuously until

the steady state was reached, which occurs at around the 30 minute mark of power dissipation. The result

is shown in (b) of Figure 5.4.2. The temperature distribution agrees well with the numerical prediction.

More specifically, the predicted maximum temperature is nearly identical to the measured value, and the

predicted temperature distribution at the top of the DPAK shows a very similar distribution compared

with the measurement data (e.g., the lower temperature in the area of the two copper lead fingers for all six

DPAKs). The effect of the PCBs self-heating is visible in both simulation and experimental results. A slightly

higher temperature in the copper paths is evident, which is attributed to detailed geometry representation

(i.e., fine details of the PCB traces are found in the model) and realistic loading conditions (i.e., the model

uses the results of the electrical simulation for the thermal analysis). The validated thermal simulation

results are carried to the next step as an input for the thermo-mechanical simulation.
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5.4.3 Global thermo-mechanical model

The simulation was conducted in two steps in order to predict the expected lifetime of relative small design

elements, such as solder joint and wire bond. First, an approximated global response of the system was

obtained from a linear analysis to make the analysis numerically feasible. The free expansion boundary

conditions were defined which correspond to the field use case and all the preformed experiments. Next,

the submodeling technique was employed in order to investigate the local loads that can cause solder joint

failure or wire bond lift-off. For the submodeling, critical layers were created specifically in the solder joint

and the wire bond.

Figure 5.4.3: Global PCB deformation.

The accumulated creep or plastic strain energy dissipated in the critical layers was used as a damage in-

dex. Two separate simulations were conducted—a passive temperature cycle in the range of temperatures

from -40°C to 125°C and an active temperature cycle. The active thermal condition uses the temperature

distribution obtained from the thermal simulation. The out-of-plane deformation obtained from structural

simulation with active thermal load is presented in Figure 5.4.3. The test vehicle bends visibly along the

longer edge, which is found to have the largest deformation in the middle of the PCB, just where the DPAK

packages are placed.

Both passive and active simulations were globally validated using warpage measurement. The deformation

of the test vehicle was measured using digital image correlation (DIC). Figure 5.4.4 depicts the results of the

DIC, which represent the absolute deformation of the test vehicle. The relative out-of-plane displacements

evaluated along a diagonal line (white line) are compared with the numerical prediction in (a) and (b) of

Figure 5.4.5. Both results correlate very well with the experimental data.

Figure 5.4.4: Measured absolute out of plane deformation. The path along which the results are evaluated
is marked in white.
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(a) (b)

Figure 5.4.5: Warpage measurement and simulation comparison. (a) Passive cycling at -40°C and 125°C.
(b) Active cycling at room temperature.

(a) (b)

Figure 5.4.6: Critical layer location in solder joint (a) with its schematic and (b) damaged component.

5.4.4 Thermo-mechanical submodel

The results obtained from the submodeling were used for risk assessment. Both of the damage indexes were

calculated in a critical layer that was created specifically at the interface between the copper lead frame pin

and the solder joint. The critical layers were created in order to achieve the required mesh quality at the

location where the damage parameters are evaluated. Mesh quality is one of the most critical parameters in

achieving the desired accuracy. Hexahedral elements that were 10 µm thick with an aspect ratio less than

1:5 were used in this study in both critical layers. The thickness of this layer was 10 µm and it was located

in the area where failure was expected.

Creep strain energy density (CSED) or creep strain (CS) is the most common damage index to evaluate the

lifetime of a solder joint [142]. The CSED damage indicator was used in this work, and it was calculated

until the values converged to the steady state value. Typically, the steady state dissipation of CSED is

reached in three to five and five to ten cycles for passive and active temperature cycles respectively. Figure

5.4.6 shows the location of the critical layer for solder joint; the effect of intermetallics was ignored.

For the wire bond, plastic strain energy density (PSED) was used as damage index. The values were

calculated in a critical layer at the interface between the wire bond and the copper lead frame, at a point

where the failure was expected (Figure 5.4.7).

Figure 5.4.8(a) depicts a representative creep strain energy density distribution in the critical layer of the

solder joint. The maximum CSED is accumulated on the top of the solder joint at the interface with a

copper lead finger, at the point where the lead finger bends. It is also the point where the crack initiation

was observed during temperature cycle experiments. To reduce the mesh sensitivity, the volume averaged

method (VAM) was used (1). With this method, the damage indexes of each element are normalized by the

volume of the element as:
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(a) (b)

Figure 5.4.7: Critical layer for the wire bond (a) with its schematic (b) and damaged component.

(a) (b)

Figure 5.4.8: The results evaluated within the critical layer. (a) CSED distribution in the critical layer of
the solder joint. (b) PSED distribution in the critical layer of the wire bond.

∆WAVG =

∑
∆WSED ∗ Vel∑

Vel
(5.4.1)

Where:

WAVG - the average creep (plastic) strain energy density accumulated per cycle in a critical layer,

WSED - the creep (plastic) strain energy density accumulated per cycle in each element,

Vel - the volume of each element.

The same methodology was implemented to calculate the damage indexes of the wire bond. Figure 5.4.8(b)

depicts the PSED accumulated during the last passive temperature cycle. The critical load occurred at the

edge of the bond. The obtained results are further used in order to create a physics-of-failure model, as

presented in Chapter 6.

5.5 Verification

5.5.1 Moiré interferometry method description

To carefully verify predictions of the thermo-mechanical modeling, a moiré interferometry experiment was

conducted. The main goal of this study is to verify the non-linear behavior of the materials present in the

system, mainly the molding compounds and PCB prepreg.

Moiré interferometry is an optical measurement technique that enables a recording of in-plane deformations

parallel to the surface of the sample. Based on that, it is possible to calculate strains induced in a solid body.
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A major advantage of this technique is the fact that it enables displacement measurement with very good

sensitivity on the whole surface of the sample. Moreover, it is very accurate due to large signal-to-noise ratio.

Furthermore, as it responds only to the geometrical changes, it is equally effective to measure all kinds of

deformations (e.g., elastic, viscoelastic, or plastic) and materials (e.g., isotropic, orthotropic, or anisotropic)

that have been subjected to various loadings (e.g., mechanical, thermal, or dynamic) [143]. This technique

has been extensively used in the microelectronics industry to investigate stresses induced by thermal cycling

[[144]–[146] and hydroscopic swelling [147]–[149] in electronic packages.

An example of a moiré pattern that gives us the information on the specimen deformation is shown in Figure

5.5.1. The mechanism of formation of this pattern is simple spatial interference of two regular patterns;

the idea is presented in Figure 5.5.2. In the moiré measurement system, one of the patterns is created by

a grating replicated on an investigated sample surface. The grating is replicated on a specimen before the

deformation takes place, and the deformation state of the sample in the time of the grating replication is

taken as a reference. The typical specimen grating frequency is 1200 lines/mm in both x- and y- directions.

The reference pattern is created by a virtual grating, by either diffraction or interference of two coherent

beams as shown in Figure 5.5.3. Usually, virtual reference gratings have spatial frequency of 2400 lines/mm.

When a sample is not deformed, these two beams create a uniform fringe pattern. After applying the

load, the grating on a sample is then deformed, and the directions of diffracted rays are changed. This

creates the irregular interference pattern that can be analyzed further to obtain information on deformation

distribution. During the experiment, two orthogonal fields U and V are recorded, which represent the x-

and y- components of displacement at every point.

Figure 5.5.1: U and V field displacement for an electronic package [7].

The schematic diagram that illustrates the functioning principle of the moiré interferometer is shown in Figure

5.5.4. In general, the measurement setup consists of several components, namely 1) a grating replicated on

a specimen, 2) optical elements that are used to create the virtual reference gratings, and 3) a camera to

register the fringe pattern. The grating replicated on a specimen has the pattern in both x and y-directions.

The beams B1 and B2 are marked in green, and they create a virtual reference grating for an Nx fringe

pattern that corresponds to the x-component of displacement. Similarly, the beams B3 and B4, marked

in blue, are needed for the evaluation of the y-component of displacement. They must be coherent and

collimated. Typically, a digital CCD camera is used to register the fringe patterns, and it must focus on

the surface of the specimen. The spatial resolution of this method depends on the frequency of gratings,

and for given values (the grating on a specimen 1200 lines/mm, the reference grating 2400 lines/mm) the

displacement of 0.417 µm corresponds to one fringe order.

The fringes counting starts with the choice of a zero order fringe that establishes a reference. Along this

fringe, the displacement is assumed to be zero. The fringes are then counted, and a relative displacement in

the rest of the sample is calculated based on the following relations:
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Figure 5.5.2: The specimen and reference grating interact with each other to form moiré pattern [143].

(a) (b)

Figure 5.5.3: Formation of virtual grating through (a) diffraction and (b) interference of two coherent beams
[143].

U =
1

fs
Nx (5.5.1)

V =
1

fs
Ny (5.5.2)

Where:

U , V - displacements in x- and y-directions,

Nx, Ny - the fringe orders in x- and y-directions,

fs - the spatial frequency of the virtual reference grating (2400 lines/mm).

After this, it is possible to calculate the in-plane strains based on the finite differences approximations of

the respective derivatives:

εx =
∆U

∆x
=

1

f

(
∆Nx
∆x

)
(5.5.3)

εy =
∆V

∆y
=

1

f

(
∆Ny
∆y

)
(5.5.4)
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Figure 5.5.4: A general schematic of moiré interferometry. [150].

γxy =
∆U

∆y
+

∆V

∆x
=

1

f

(
∆Nx
∆y

+
∆Ny
∆x

)
(5.5.5)

Where:

εx, εy - normal strains,

γxy - shear strain.

These equations also allow for an intuitive interpretation of the fringe pattern—the strains are bigger in the

regions where the fringes are denser. Additionally, if the calculation of stresses is necessary, it can be made

based on the known stress-strain relations for the investigated material.

5.5.2 Measurement setup

In this investigation, the thermal deformation of an ECU subjected to the passive and active thermal cycling

was analyzed using moiré interferometry. For the measurements, a portable engineering moiré interferometer

(PEMI) and a convection oven were used. Figure 5.5.5 presents a schematic of the setup for real-time

observation of thermal deformation; this setup minimizes the effect of vibration caused by air circulating

inside the oven on the measurement [144]. This is achieved by mechanically coupling the optical part of the

setup with the sample holder using a glass rod. Hence, all parts of the PEMI and the sample vibrate in

unison, and all vibration effects on the measurement are cancelled. Additionally, a specimen is mechanically

isolated from the oven, and no vibration from the oven is transferred to the experimental setup. Therefore,

measurements can be made while the oven is being operated, thus maintaining a high measurement resolution.

Thanks to the low thermal conductivity of glass, the heat transfer between thermal chamber and optical

system is minimized.

The complete experimental setup is illustrated in Figure 5.5.6. The stress state in the ECU specimens was

monitored by the stress sensor during the experiments. For the passive thermal condition, specimens were

placed inside the convection oven, and the deformations were documented as a function of temperature. The

minimum and maximum temperature was -40°C and 150°C respectively. For the active thermal condition,

the specimens were tested under the natural convection condition at 25°C with 1.2 W of electrical power
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Figure 5.5.5: Schematic of the moiré setup for real-time observation of thermal deformation.

dissipated in each of the DPAK packages. Additionally, thermocouples were attached to different locations

on the specimen surface to collect temperatures through DAQ during experiments.

Figure 5.5.6: Schematic of complex experimental system.

Two additional sets of ECU specimens were designed and fabricated for thermal deformation analyses—

one for passive and one for active thermal condition investigation. They were produced using the same

materials and the same processes at the same manufacturers as the main test vehicles for this study. Thus,

the transferability of the results between the two sets of test vehicles is ensured since the objective of this

study is to validate the material behavior. The only modification to the main test vehicles is the positioning

of the DPAK packages and stress sensors. In this case, the DPAK packages and stress sensors are placed on

one side of the PCB to minimize the necessary field of view for the moiré interferometry. Additionally, these

need to be aligned in a way that enables a cross-section through all the components at once. The specimens

subjected to active cycling were designed in a way that can preserve functional electronic components (i.e.,

power packages for thermal cycling and stress sensors) even after making a cross-section needed to perform

moiré interferometry experiments as presented in (a) and (b) of Figure 5.5.7). To prepare the samples for

the moiré experiment, the test vehicles were ground flat to expose the Al bond, Cu leads, Cu pad, and

DPAK mold, as shown in (c) and (d) of Figure 5.5.7. The specimen gratings (fs = 1200 lines per mm) were

replicated on the unusually large cross-sections (50 mm × 12 mm) using epoxy based adhesive cured at room

temperature.

Each set contains two different configurations: unmolded ECU and molded ECU (see Figure 5.5.8), where

two DPAK packages and one silicon based stress sensor were mounted onto the PCB.
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(a) (b)

(c) (d)

Figure 5.5.7: Cross sections of specimens. The specimens for passive thermal condition are seen in (a) and
(b). The specimens for active thermal condition are seen in (c) and (d).

(a) (b)

Figure 5.5.8: ECU configurations. (a) Unmolded configuration. (b) Molded configuration.

5.5.3 Results

Representative fringe patterns obtained at -40°C and 150°C are shown in Figures 5.5.9 and 5.5.10. The

corresponding contour interval in the moiré fringe patterns amounts to 417 nm/fringe order. For a convenient

analysis, the outlines of DPAK packages, stress sensor, and PCB were drawn onto the fringe patterns. The

thermal deformations in the ECU specimens are very complicated. It is caused by the fact that the thermal

and mechanical properties of the used materials are temperature dependent. The deformation patterns

are quite different between the molded and unmolded ECUs because the outer EMC constrains the system

significantly. The results revealed the effect of the outer EMC on the thermal deformations of ECU.

To quantitatively evaluate the deformation state in the investigated ECUs and the effect of the outer mold

on the thermo-mechanical behavior of the system, the deformation was evaluated along the lines presented

in (a) of Figure 5.5.11. As depicted in (b) of Figure 5.5.11, U displacements of the PCB along line 1 are

almost the same in the unmolded and molded ECUs at -40°C. However, at 150°C the U displacement of the

PCB becomes smaller in the molded ECU, which indicates that the material properties are dependent on

temperature. It is worth noting that the outer EMC has a small effect on the U displacement of the DPAK

package along Line 2, while it increases the V displacement of DPAK along Line 3, as presented in (b) and

(c) of Figure 5.5.11. The thermal deformations on the cross sections of stress sensors on those two specimens

are completely different, as shown in Figure 5.5.9 and Figure 5.5.10.

(a) (b)

(c) (d)

Figure 5.5.9: Representative fringe patterns of unmolded ECU subjected to passive thermal condition. (a)
U field at -40°C. (b) V field at -40°C. (c) U field at 125°C. (d) V field at 125°C.
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(a) (b)

(c) (d)

Figure 5.5.10: Representative fringe patterns of molded ECU subjected to passive thermal condition. (a) U
field at -40°C. (b) V field at -40°C. (c) U field at 125°C. (d) V field at 125°C.

(a)

(b)

(c) (d)

Figure 5.5.11: Experimental displacements on both the DPAK and the PCB. (a) Evaluation lines. (b)
Results along Line 1. (c) Results along Line 2. (d) Results along Line 3.
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(a) (b)

(c) (d)

Figure 5.5.12: Representative fringe patterns of the ECU subjected to active thermal condition. (a) U field
of the unmolded sample. (b) V field of the unmolded sample. (c) U field of the molded sample. (d) V field
of the molded sample.

(a) (b)

Figure 5.5.13: 3D model of moiré specimens for the passive thermal condition. (a) Unmolded and (b) molded
with outer EMC.

Figure 5.5.12 shows the fringe patterns under the active thermal condition. A denser U field fringe patterns

in the PCB in the area of DPAKs indicate local heat generation. The warpage on PCB is evident in the V

displacement field of an unmolded specimen. The outer EMC alleviates the warpage of PCB, as shown in

Figure 5.5.12(b).

5.5.4 Simulation validation

Since the dedicated test vehicles were designed for purpose of this study and the specimens were cross-

sectioned, a separate model with new geometry must be created. However, this study focuses on the valida-

tion of material behavior. The model geometry for both molded and unmolded cases is presented in Figure

5.5.13. The critical cross section of interest was placed in the same way as in the experiment; exactly as in

the experiment, it exposes the components, namely the Al bonds, DPAK mold, and Cu pad. The properties

of some materials like copper or aluminum are well known. The outer EMC, DPAK mold, and prepreg of

the PCB have temperature dependent properties and occupy the majority of the volume inside ECUs. For

this reason, the behavior of these materials are in the main focus of this investigation. The verification

was performed by correlating the results from the FEM model and from the experiment under passive and

active thermal conditions. Displacement results from the experiments and numerical simulation confirmed

the accuracy of FEM modeling.

The displacement shapes are similar to experimental fringe patterns, as seen in Figure 5.5.14. Quantitative

comparisons were done using the displacement values plotted along different lines. The results along Line 1,

Line 2 and Line 3 for unmolded ECU are plotted in (a), (b) and (c) of Figure 5.5.15 respectively. For the

molded ECU, the displacement results along Line 4 are illustrated in Figure 5.5.16.

The thermal simulation was carried out to obtain the temperature distributions at steady state for the

active thermal condition case, as shown in Figure 5.5.17. The temperature differences within 4°C between
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(a) (b)

(c) (d)

Figure 5.5.14: U and V displacements for a) unmolded and b) molded ECU at -40°C.

(a)

(b)

(c) (d)

Figure 5.5.15: Experimental displacements on DPAK and PCB along lines shown in the insert.
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(a) (b)

Figure 5.5.16: Comparisons of U displacements on molded ECU along line 4 shown in the insert.

(a) (b)

Figure 5.5.17: Temperature distributions for (a) unmolded and (b) molded specimens at steady state.

numerical and experimental results were achieved. The maximum temperature inside the molded package

was around 60.3°C, which is below the glass transition temperature of the DPAK mold, outer EMC, and

prepreg.

The temperature distributions were then taken as an input load to the thermo-mechanical FEM model

in order to study the thermal deformations of ECU during active operation. As shown in Figure 5.5.18,

reasonably good correlations were obtained, and these confirmed the accuracy of FEM modeling. One of the

factors that affect accuracy in this case is the fact that the temperature distribution prediction taken as the

input load was calculated with a limited accuracy in the previous step.

The verified FEM model was further utilized in this thesis to study stress distributions in both a whole

unmolded and a molded ECU package and to investigate the effect of outer EMC on a product’s reliability.
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(a)

(b) (c)

Figure 5.5.18: Comparisons of experimental and numerical results at active thermal condition along lines
shown in the insert.

5.6 Summary

This chapter presents the details of the performed FEM modeling. First, the important steps of model

preparation were described, including detailed geometry, material characterization, and modeling. To ob-

tain a precise prediction of loading in the design elements—which are of interest from a reliability point of

view—a series of consecutive simulations was performed, namely electrical, thermal, and thermo-mechanical

simulations. A submodeling technique was then utilized in order to have the non-linear properties of solder

and wire bonds to be taken into account in a computationally feasible way. This submodeling also enabled

the creation of a very high quality mesh, especially in the area were the damage indexes should be evalu-

ated. Additionally, a comprehensive verification of thermo-mechanical behavior of viscoelastic materials was

conducted by means of moiré interferometry. The experiment was conducted under both active and passive

thermal conditions, and it confirmed the accuracy of FEM model.
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Model-based approach

6.1 Introduction

This chapter develops a physics-of-failure prognostics approach for an ECU, in which loading conditions

are monitored using the piezoresistive silicon stress sensor. The workflow of the proposed methodology is

presented in Figure 6.1.1. First, a FMMEA is performed in order to establish possible damage mechanisms

in an investigated system. Then, the available physics-of-failure models for the identified failure modes are

reviewed and appropriate approach is chosen. Next, FEM simulation is executed in order to evaluate the

damage parameters. Additionally, analysis of the results enables better understanding of the investigated

system behavior under given load conditions. The reliability tests are defined and performed to verify the

approach. During the temperature cycling the system is monitored using piezoresistive silicon stress sensor

to gather the data about temperature and mechanical stress. The value of damage parameter and the

monitored value of stress and temperature are related to each other by means of validated FEM model. This

finally enables RUL calculation.

Figure 6.1.1: Proposed methodology of model based approach.

6.2 Failure mode identification

FMMEA was conducted as a first step in this study. Three major failure modes were identified:
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� delamination between the molding compound and the copper lead frame (see Figure 6.2.1(a)),

� wire bond lift-off (see Figure 6.2.1(b)),

� solder joint crack due to fatigue (see Figure 6.2.1(c)).

Solder crack due to fatigue is a very common failure mode that has been investigated extensively in the

literature [151]–[154]. The corresponding failure mechanism is the occurrence of cyclic thermo-mechanical

stresses provoked by CTE mismatch between the materials that constitute electronic system. Similar to a

solder joint failure, the failure mechanism in the case of a wire bond lift-off is the occurrence of the cyclic

thermo-mechanical stresses on the wire bond foot. The wire bond that is expected to fail first is the thinner

of the two bonds (with a diameter of 125 µm) that forms the electrical connection for the gate terminal.

Delamination is caused by the weak adhesion between the molding compound and copper; specifically, it is a

crack on the interface of the materials. The corresponding failure mechanism is the occurrence of the shear

stress on the material interface that exceeds the adhesion strength. Delamination does not cause an electrical

failure, but it does significantly accelerate other failure modes since it causes a larger cyclic mechanical load to

act on a design element. In the analyzed case, a wire-bond lift-off is accelerated substantially by delamination

between the molding compound and copper pins in the direct vicinity of the bond foot of the wire bond.

Similarly, solder crack due to fatigue is accelerated by the delamination that occurs between the solder and

outer molding.

All of above-mentioned failures are investigated in this work. To predict reliability accurately, the choice

of an adequate physics-based model is necessary. In the following sections, the available models for the

considered failures are discussed.

Figure 6.2.1: Expected failure modes. (a) Delamination between molding compound and copper lead frame.
(b) Wire bond failure. (c) Solder joint failure [126].

6.2.1 Wire bond failure model

Wire bonds form electrical connections inside the component package. In power packages, they are subjected

to large temperature swings. They are heated up not only passively by the heat dissipated in silicon

die but also actively, since they may carry significant currents. The mechanical failures are caused by

thermo-mechanical stresses that are provoked by different coefficients of the thermal expansion of silicon and

aluminum. The forces acting in the system during thermal loading provoke repeated bending of the wire or

stress between the bond pad and wire. Consequently, horizontal or vertical heel cracks may appear. The
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most common relation that describes how the number of cycles to failure depend on certain chosen damage

parameters is a simple power law equation [155]:

Nf = C1(Ψ)(C2) (6.2.1)

Where:

Nf - number of cycles to failure

Ψ - a damage parameter e.g. temperature range, mean temperature, current density, plastic strain

C1, C2 - constants, usually determined experimentally

One of the most popular fatigue models based on the power law is the plastic strain-based model described

by the Coffin–Manson equation [156]. This model describes low-cycle fatigue behavior; a damage parameter

in this model is the plastic strain PS induced per cycle (εpl). The main disadvantage of this approach is

that plastic strain is not easy to evaluate. It can only be estimated by a finite-element analysis or other

numerical methods. Therefore, the model cannot be easily validated. It can be only done using end of life

tests of samples with various properties, such as their different geometries or materials. Although validation

may be unfeasible at this point, the approach can still provide a comparative analysis of different designs,

and it can be done based on numerical simulations.

Another very well-known model is Basquin’s equation [157]. The damage parameter in this model is a stress

range ∆σ. It is a high cycle regime model—this means that it can be applied to the estimation of thermal

fatigue life of wire bonds only when the stresses do not exceed yield stress. Here, the same considerations

concerning the estimation of damage parameter as for the Coffin–Manson model also holds.

Aside from this, there is yet another highly popular lifetime model for wire bonds which uses the temperature

range of the load cycle as a damage parameter. This model is based on an assumption that the damage is

caused by the thermo-mechanical stresses introduced by differences in the coefficients of thermal expansion

between silicon and aluminum. The thermal strain in this situation is linearly dependent on the temperature

difference. A relation between fatigue lifetime and the temperature range can then take the form of a

power law. The main advantage of this model is that it is very straightforward to implement because the

temperature can easily be measured. However, its accuracy is limited; it is also used only in cases where the

temperature range does not exceed 120°C [158].

Various other models do exist, and each one may use different parameters—such as the mean temperature or

current density. There are also models that use a specific method, such as models based on Paris Law, fracture

mechanics, or Arrhenius equation. A substantial disadvantage of all of these models is their assumption that

wire bonds are subjected to regular load cycles, which in reality is rarely the case. In other words, irregular

cycling should be taken into account, and the Palmgren–Miner rule can be applied for this purpose.

In this work, a model based on PSED as a damage parameter is implemented. Such an approach has an

advantage over the above-discussed approaches in that it captures the accumulated damage more accurately.

This approach takes the nonlinearity of a stress-strain curve for aluminum into account by using the hysteresis

curve to calculate the damage parameter. In this way, it considers both stresses and strains acting in the

design element. Additionally, the result depends not only on the temperature but also on the ramp rate and

history of loading. However, similar to the strain or stress based models, the damage parameter cannot be

easily measured. Thus, the approach in using a detailed FEM simulation was chosen to evaluate PSED in a

wire bond.

6.2.2 Solder joint failure model

Solder joint reliability becomes an important issue as a result of constant decrease of interconnect size.

It forms not only the electrical connection but also the mechanical bond between the component and the
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substrate. Considering mechanical wearout mechanism, most failures are the effect of differences in the

coefficient of thermal expansion (CTE) and resulting thermo-mechanical stresses. The PCB substrates have

CTE much different than solder and other materials used in production of microelectronic packages, therefore

substantial strains are induced that provoke the solder joint fatigue.

However, it is not easy to evaluate the reliability of solder joints. The analytical models present the simplistic

view on the case and are not able to take into consideration all the factors, for instance complex geometries

or material properties that change during temperature cycling. Yet, they are generally quick and easy to use.

Numerical models can deal with complex geometries and material properties but they are time consuming

and require validation through experiments.

The models for lifetime prediction of solder joints under thermo-mechanical loading utilize mainly plastic

strain, creep strain and energy criterion as a physical damage parameters. The models based on plastic

strains include mentioned before Coffin–Manson equation or Solomon and Engelmeier models. However,

solder is expected to deform mainly due to creep behavior since in the typical application temperature lays

relatively close to its melting point (for lead-free solder, the melting temperature is typically 217°C). The

models based on creep strain as a damage parameter include Knecht and Fox or Syed models [159]. Two

mechanisms of creep behavior are identified—matrix creep and grain boundary creep. Knecht and Fox

introduced a model based on creep shear strain range in the matrix, taking into account the microstructure

of solder [160]. Syed proposed a model that takes both matrix and grain boundary creep into account [161].

These models provide more comprehensive lifetime modeling but they are not able to capture the complex

deformation fatigue as they neglect the plastic and elastic strain components. In some situations, like when

temperature change has high ramp rate, plastic strain cannot be neglected.

Another group of fatigue models for solder uses hysteresis energy terms as a damage parameter. This group

contains models that employ different energy components (elastic, plastic, creep) and different lifetime

relations [159]. In this work, a model based on power law that uses CSED as a damage parameter is

implemented. It was introduced by Darveaux in [162]. This model takes into account the hysteresis of

strain-stress curve for solder. It has the advantage that it takes into account the nonlinear behavior of solder

which is affected by the loading conditions. It is worth to notice that this model predicts only the number of

cycles needed to initiate the crack and is not applicable for crack propagation. Usually, FEM simulation is

performed to estimate CSED values. This approach was also applied in this work; a detailed model, which

enables evaluation of mechanical loads in the solder joints was created.

6.2.3 Delamination

Delamination is one of the considerable problems in packaging industry, as it influences the reliability of a

whole package. Delamination does not cause immediate failure but it often leads to acceleration of other

failure modes. It damages the thermal interface, what can lead to overheating. Moreover, it increases the

mechanical stress acting on the other design elements, what leads to acceleration of various fatigue related

failure modes. In large molded ECUs there are couple of interfaces where the delamination can occur—these

include interfaces between the molding compound and cooper lead frame, between molding compound and

silicon chip, between outer molding compound and PCB etc.

Various mechanisms may provoke delamination. When the stresses are high enough to surpass adhesion

strength, the delamination at the interfaces begins. The stress may be induced by e.g., differences in

CTE, in-plane shear stiffness mismatch or even mismatch in Poisson ratios. It can be also initiated during

manufacturing process as a consequence of differences in the thermo-mechanical properties. Other factor

that could initiate delamination is the appearance of micro cracks somewhere near the interface. Usually, the

delamination is initiated in a few places at the same time. It propagates during application of a component,

thus compromising the reliability.
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To model this type of failure, typically the fracture mechanics is applied [163]. There is no general rule that

states when the delamination should be detected or how widespread it has to be in order to classify it as

failure. It is much too complex, as it depends on the interface where the delamination occurs, the geometry

of the package, and the cyclic stress conditions. These considerations are beyond the scope of this thesis.

Here, the influence of a delamination on the wire-bond lift-off and solder fatigue is investigated.

6.3 Physics-of-failure model creation

After choosing the appropriate failure models, it is necessary to establish all needed parameters. The workflow

of a failure model creation is presented in Figure 6.3.1. To calculate the values of damage parameters

accurately, it is crucial to perform a detailed FEM modeling. The simulation approach is described in

Chapter 5. Here, the results of modelling are presented and analyzed. Additionally, the model should be

validated by means of experiment. Various test vehicles should be prepared to obtain different stress levels

in the critical design elements. The details of the approach are presented in the following sections.

6.3.1 Modeling results

In this section, the results of modelling are demonstrated. Separate models were created for all the test

vehicles and loading conditions used in the reliability testing. In total, four different cases were calculated,

namely using a molded vehicle and an unmolded vehicle being subjected to both passive loading and active

loading.

As mentioned, the damage parameters were evaluated in a critical layer where the failure is expected. Values

of both of damage indicators—namely CSED for solder joints and PSED for wire bonds—vary during the

first couple of cycles because of the time dependent properties of materials within the system. To obtain

a converged value of damage parameters, the simulation contained three load cycles. Figure 6.3.2 presents

the evolution of the accumulated CSED and PSED during the thermal cycling. The presented values are

normalized to the maximal calculated value of CSED and PSED in order to observe the relative changes of

the values between cycles. Within the three cycles, the accumulated CSED and PSED has changed by 1.3%

and 0.8% respectively. This change would lead to a 1.2% error in calculation of solder joint lifetime and a

0.5% error in the calculation of wire bond lifetime. Still, all the values of PSED and CSED parameters were

extracted from the last calculated cycle to ensure correctness of the approach in all simulated cases. The

values that are taken into account as a damage parameter are marked in Figure 6.3.2.

Figure 6.3.1: Physics-of-failure model creation workflow.
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(a) (b)

Figure 6.3.2: The evolution of damage parameters during first three cycles of simulation a) CSED b) PSED.

(a) (b)

Figure 6.3.3: (a) Numbering of DPAKs in the test vehicle. (b) Normalized values of PSED and CSED for
every DPAK package during passive cycling loading of bare PCB.

(a) (b)

Figure 6.3.4: (a) Numbering of DPAKs in the test vehicle. (b) Normalized values of PSED and CSED for
every DPAK package during active cycling loading of bare PCB.
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(a) (b)

Figure 6.3.5: (a) Numbering of DPAKs in the test vehicle. (b) Normalized values of PSED and CSED for
every DPAK package during passive cycling loading of overmolded PCB.

Figures 6.3.3 to 6.3.5 show the normalized results for respective DPAK packages; in particular, Figure 6.3.3

presents the results for a bare PCB test vehicle subjected to passive thermal condition. Here, the values of

the PSED parameter were similar for all packages, and they did not vary more than 5%. This is caused by

the dominant role of the local deformation state inside the package on the load acting on the wire bond.

The CSED values varied more significantly, the difference between smallest and largest value amounts to

12%. The smallest value of CSED is observed in DPAKs 3 and 4; these are located in the middle of the PCB

where the induced stresses are the lowest.

Figure 6.3.4 depicts the results for the PCB test vehicle which was subjected to active thermal condition.

In this case, again the PSED value is comparable for all the DPAKs, and it does not vary more than by 3%.

CSED is largest in DPAKs number 5 and 6, which are at the edge of the PCB. There, the temperature rise

caused by power dissipation in components is the lowest, which causes a larger local deformation at negative

temperatures than in other parts of PCB.

Finally, in Figure 6.3.5 the results concerning passive thermal condition for overmolded case are shown.

Again, the values of PSED do not vary significantly; the difference between the smallest and largest value

reaches 7%. The variation in CSED values is much more significant with a 40% difference between the largest

value in DPAK 2 and the smallest value in DPAK 5. Overall, the smaller values of CSED can be observed

for DPAKs 4 to 6 that are oriented parallel to the longer PCB edge. This causes a different stress state, as

these packages are less stiff in the bending direction.

Figure 6.3.6 presents the comparison of PSED and CSED values for different test vehicle types. The CSED

is largest in the case of active cycling of a bare PCB followed by passive cycling of PCB. The PSED value is

largest for the overmolded test vehicle subjected to active and passive cycling. This means that the solder

joints will fail faster in PCB test vehicles that in molded ones. Then, the wire bond will fail faster in the

case of overmolded modules. This is caused by the constraint introduced by the outer mold that prevents

the deformation of a PCB and introduces more stress inside the components.

6.3.2 Reliability testing

To complete the physics-of-failure model, it was necessary to perform reliability tests. The workflow of

prepared trials is shown in Figure 6.3.7. Two versions of test vehicles were designed and fabricated—bare

PCBs and overmolded modules. Each group was divided in two parts; one of them was subjected to a

passive condition, and the other was subjective to a combined active and passive thermal condition. The

detailed test conditions are presented in Figure 6.3.8 and the testing setup is shown in Figure 6.3.9. The
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Figure 6.3.6: Comparison of the damage parameters between different samples groups.

samples were cycled passively in a convection oven between -55°C and 125°C with 15 minutes dwell time.

Additionally, for active loading condition, 1W power was dissipated in every DPAK at -55°C hold time. The

temperature and local stress conditions were monitored using the piezoresistive silicon stress sensor in real

time for the whole duration of the testing. Additionally, a periodical examination using scanning acoustic

microscopy (SAM) and electrical testing was performed.

Figure 6.3.7: Reliability testing workflow.

An example of measured stress evolution over one thermal cycle is presented in Figure 6.3.10. Both measured

stress values decreased as the temperature increased as shown in Figure 6.3.10(c) and (d). This could be

caused by the fact that the stress free temperature for the investigated test vehicle was 175°C; it is a

temperature at which transfer molding is performed. Naturally, the largest stresses were observed at -55°C,

as it is the most distant point from stress free temperature. The lowest value of stress difference at -55°C

was recorded at Cells 6 and 7, which are located at the edge of silicon die as shown in Figure 6.3.10(b).

These are the only two cells where the difference stress has a positive value. This means that part of the

chip is dominated by an x-component of stress. Further away towards the neutral axis of the package, the

value of the stress difference decreases; in the middle in Cells 3 and 10, it is dominated by the y-component

of stress. The largest negative value of stress is observed in Cells 11 and 12, where are on the bottom edge

of the sensor. It has to be taken into account that the LGA package construction is not symmetrical in the

y-direction. Additionally, the shape of silicon die is rectangular with a longer horizontal edge. This causes a

clear dominance of y-direction stresses throughout the chip, which is most visible on the horizontal edges of

the chip. The measured values of shear stress are much smaller than the values of difference stress. In fact,

96



CHAPTER 6. MODEL-BASED APPROACH

(a) (b)

Figure 6.3.8: The loading conditions used in reliability testing. (a) Passive loading condition. (b) Active
loading condition.

Figure 6.3.9: Reliability testing setup.

the forces that cause xy-shear stress were minimal in the considered construction.

In Figure 6.3.11, the stress evolution over the initial 50 hours of thermal cycling is presented; the measured

temperature, the difference stress measured in cell 1, and the shear stress measured in cell 1 are shown in

(a), (b), and (c) of the figure respectively. The temperature cycles are regular and no variation in time was

observed. In the case of stress difference, a slight variation can be noticed in the few initial cycles, and

eventually the stress stabilized. In the case of shear stress, the variation in the initial cycles is also clearly

visible, but additionally the stress drifted over the first 20-30 cycles, until it eventually stabilized afterwards.

These variations are caused by initial relaxation and humidity uptake.

In order to track the variation of stresses in all measurement cells over large number of cycles the stress

values at a maximal and minimal temperatures was extracted from cycling data as presented in Figure

6.3.12. The difference stress evolution at 125°C, the difference stress evolution at -55°C, the shear stress

evolution at 125°C and the shear stress evolution at -55°C are depicted in (a), (b), (c) and (d) of Figure

6.3.12 respectively. The observed variations in the stress values at the beginning of thermal cycling are much

more evident in the measurements at an elevated temperature. However, the initial change at low and high

temperatures were of the same magnitude. The absolute values of measured stresses were much larger at

-55°C. It is interesting to note that the change in the initial few cycles had a different direction in Cells

6 and 7, which are on the edge of silicon die (see Figure 6.3.12(a)). This is caused by the dominance of

the x-direction stress in the region of the silicon die where Cells 6 and 7 are located. As mentioned, the

y-component of stress is dominant in the remainder of the chip.
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(a)

(b)

(c)

(d)

Figure 6.3.10: Results of system monitoring over one cycle. (a) Measurement cells. (b) Measured tempera-
ture. (c) Difference stress. (d) Shear stress.
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(a)

(b)

(c)

Figure 6.3.11: Results of system monitoring over multiple cycles. (a) Measured temperature. (b) Difference
stress. (c) Shear stress.
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(a)

(b)

(c)

(d)

Figure 6.3.12: The stress evolution during thermal cycling. (a) Difference stress at 125°C. b) Difference
stress at -55°C c) Shear stress at 125°C. d) Shear stress at -55°C.
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6.4 RUL calculation

This section presents the RUL calculation done based on the developed failure models and monitoring data

gathered during reliability testing. It should be noted that during reliability testing, failure was not observed,

and thus the failure model could not be validated. Hence, the results presented in this section are purely

illustrative, and they have been included only to demonstrate the developed approach.

The total predicted lifetimes for all calculated cases are summarized in Table 6.1. In all cases, the test

vehicles subjected to active cycling will fail faster than the respective sample subjected to passive cycling.

In the case of bare PCB samples, the failure mode that will likely occur first is a wire-bond lift-off. However,

in the case of molded samples, solder joint will likely break first. The outer mold decreases the total lifetime

of wire bonds and increases the total lifetime of solder joints. This is caused by the fact that the outer

mold induces compressive stresses in solder joints. At the same time, the construction becomes stiffer; this

prevents the package from deforming freely and causes larger stress amplitudes inside DPAK package, thus

accelerating wire-bond lift-off.

Table 6.1: Predicted life for investigated test vehicles (in cycles)

Element Bare PCB Molded PCB
Passive Active Passive Active

Solder 2955 2776 7469 7448
Wire bond 5486 5147 3222 2719

The total number of completed thermal cycles is 600, and until then no failure was observed. This is in

accordance with the presented calculated lifetimes, as the fastest failing component should brake at around

3000 cycles. The tests were not continued because of time limitations for this research.

In Figure 6.5.1, the in-situ RUL calculation for the investigated test vehicles is presented. At every cycle, a

new value of RUL is calculated based on the signal from stress sensor and damage parameters calculated by

means of FEM modeling. The use of a stress sensor measurement for system monitoring provides advantages

such as the possibility to detect the setting of material parameters or changes due to humidity intake. In

the case presented in Figure 6.5.1, a regular series of load cycles is provided. In the case of an irregular load

profile, the Miner’s rule can be applied for RUL calculation. Additionally, a model order reduction method

should be applied in the future in order to enable an in situ evaluation of damage parameters.

6.5 Summary

This chapter presented a model-based approach for PHM that uses a piezoresistive stress sensor for system

monitoring. First, an FMMEA was performed to identify the most critical design elements in the investigated

system, which turned out to be wire bonds and solder joints. Then, appropriate failure models were chosen.

The failure model for wire bonds and for solder is based on PSED and on creep strain energy density

respectively. The damage parameters were calculated based on a detailed FEM analysis. After establishing

the model of failure for both design elements, their total lifetimes were estimated. Results showed that for

overmolded samples, the failure that would occur first was wire-bond lift-off. In the case of a bare PCB,

the solder joint would fail first. Reliability tests were then designed and performed to verify the approach.

It was observed that there are changes in the stress values as measured by the piezoresistive sensor caused

by material setting and humidity uptake. One point to note is that the 3000 cycles—which theoretically

should lead to a failure—have not been performed. Finally, a methodology to calculate the RUL in situ was

presented. In the future, a model order reduction should be implemented to allow for the evaluation of the

damage parameters in situ. Additionally, a Miner’s rule should be used to consider the cycles of different

amplitudes.
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(a)

(b)

Figure 6.5.1: The RUL calculation for (a) solder joints and (b) wire bonds.
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Data-driven approach

7.1 Introduction

In this chapter, the piezoresistive silicon-based stress sensor is studied for the application in a data-driven

approach to PHM. It has been shown already that delamination can be detected by sensing the signal change

of the sensor [164]. However, a systematic study regarding how different failures can affect the sensor output

has not yet been conducted.

First, an FEM analysis was conducted to fill this gap. Various failure modes were introduced into the

validated model (presented in Chapter 5), and the virtual response of the sensor was investigated. Specifically,

three failure modes have been investigated; they were chosen based on the performed FMMEA described in

Chapter 6. The first of these was delamination in the area of the sensor as shown in (a) of Figure 7.1.2. This

failure should give the largest response of a sensor. The second one was delamination in the DPAK area (see

Figure 7.1.2(b)) which investigates whether a failure not directly placed under the sensor can be detected.

The delamination in the area of soldering in any of the components accelerates solder joint fatigue; in the

area of DPAK, delamination specifically accelerates the wire-bond lift-off. The third investigated failure

mode was a solder crack that could happen due to fatigue, and this fault was located under the sensor (see

Figure 7.1.2(c)). This failure was inserted in such a way that does not affect the electrical connections of the

sensor. Table 7.1 summarizes the investigated failures and the reference names used later on in the chapter.

Figure 7.1.1: Proposed workflow for use of studied algorithms.

Collected data was then analyzed using statistical pattern recognition algorithms. Three different algorithms
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(a) (b) (c)

Figure 7.1.2: Locations of the inserted failure modes. (a) Delamination in the sensor area. (b) Delamination
in the DPAK area. (c) Solder crack in sensor area.

were studied—MD [165] and SVD [69]-[70] for damage detection; and SVMs for damage typology [166]. The

damage detection algorithms do not require a prior knowledge regarding failures; they only search for any

deviations from the norm in the data. The SVM algorithm can classify the data containing different failure

modes. However, it needs information on the typical signals concerning different failures. When an unknown

failure occurs, it can be falsely classified as a healthy state. Hence, the proposed workflow of studied

algorithms includes firstly one of the detection algorithms and then a classification algorithm as presented

in Figure 7.1.1. Because this investigation focuses on detecting different damage types, the considerations

regarding damage size are beyond the scope of this study.

Next, the developed approaches for failure detection were tested with measurement data in which the pro-

gression of delamination was observed. Both algorithms were adapted for the real time measurements with

the actual variability present in the results. Additionally, an adaptive update of the healthy baseline was

implemented. This allows for the classifying of the phenomena, such as the aging of the materials or the

humidity intake, that introduces changes into the signal but do not represent failure, as a healthy behavior.

Table 7.1: Investigated failure modes

FM1 Delamination in the sensor area
FM2 Delamination in the DPAK area
FM3 Solder crack in sensor area

To apply the statistical pattern recognition techniques, the information on the variability of sensor responses

is needed. For this purpose, the uncertainties from the experiment evaluated in Chapter 3 were used here.

After an evaluation of the simulation results, it was found that the sample variability was too high to detect

failure in a reliable way. Thus, only the variability related to the measurement process is taken into account

in the process of creating the statistical distribution. This means that a database of healthy results was

created as normal distribution with a standard deviation of 0.3 MPa for stress difference and 0.2 MPa for

shear stress values.

7.2 Mahalanobis distance

MD is defined as a distance in a multidimensional space that considers correlations among parameters [167].

It is similar to Euclidean distance; the only difference is that it takes correlation coefficients of performance

parameters into account. This is also a reason for the algorithm’s sensitivity.

This approach needs both a healthy baseline and a threshold to classify a product to be healthy or unhealthy.

Figure 7.2.1 presents an MD algorithm workflow. The methodology begins with gathering the sensor data,

namely the values of stress difference and shear stress at location of the 24 sensor cells, as shown in Figure
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7.2.2. These values are referred to as performance parameters. The typical performance parameters pattern

for a molded sample in a healthy state is presented in Figure 7.2.3. For the sake of simplicity, they are

presented as the half pattern (i.e., 12 points from a half of the chip); the other half is symmetrical. This

is actually just another representation of the data depicted in Figure 4.5.7. Thus, it is an average pattern

measured from 8 samples. It is worth noting that the general pattern is kept between the measurements

at low and high temperatures. However, the pattern is expected to change due to structural change in the

system.

The performance parameters are stored in a matrix Xij with elements denoted as xij (see Figure 7.2.2),

where i = 1, 2, . . . , p and p is the total number of performance parameters (here p = 24) and j = 1, 2, . . . ,m

where m is the total number of observations. The normalized values are calculated as follows [167]:

zij =
xij − x̄i
si

(7.2.1)

Where:

x̄i =
1

m

m∑
j=1

xij (7.2.2)

si =

√∑m
j=1(xij − x̄i)2

m− 1
(7.2.3)

The correlation matrix is calculated as:

C =
1

m− 1

m∑
j=1

ZjZ
T
j (7.2.4)

Finally, the MD for a healthy dataset is calculated as:

MDj =
1

p
ZTj C

−1Zj (7.2.5)

After calculating the MD values for each observation from healthy baseline, it is necessary to establish

a threshold which is used for making a decision between a healthy and a damaged state. For threshold

determination, a probabilistic approach is used. Since the MD is not normally distributed, a Box-Cox

transformation [167] is used. This transformation converts the variable, which contains only positive values

and does not follow normal distribution into a normally distributed variable. It is defined as follows [168]:

x(λ) =

xλ−1
λ for λ 6= 0

ln(x) for λ = 0
(7.2.6)

Where:

x(λ) - the transformed data

x = x1, x2, ..., xm - the input vector of data observation.

The parameter λ is calculated by maximizing the following function:

f(x, λ) = −m
2
ln

[
m∑
i=1

(xi(λ)− x̄(λ))2

m

]
+ (λ− 1)

m∑
i=1

ln(xi) (7.2.7)

Where:
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(a) (b)

Figure 7.2.1: MD algorithm workflow. (a) Threshold determination workflow with detailed algorithm. (b)
Complete algorithm workflow.

Figure 7.2.2: Input matrix construction.

x̄(λ) =
1

n

m∑
i=1

xi(λ) (7.2.8)

After applying this transformation, the determination of a threshold can be done based on mean (µx) and

standard deviation (σx) of the resulting variable. Since higher MD values are the ones that indicate failure,

only the upper part of the control chart is significant for this approach. A warning limit threshold is defined

as (µx + 2σx) and a fault alarm threshold as (µx + 3σx). Then, for every point where the calculated MD

value will be smaller than the fault alarm threshold, the point lies within 99.8 % of the points provided to

the healthy database, and thus it is qualified as healthy. The points for which MD value crosses the fault

alarm threshold is classified as an outlier (i.e., point containing failure). The MD value of 0 would mean

that the tested measurement point corresponds exactly to the average point of the healthy database. The

numerical values of MD are directly related to the standard deviation of the healthy database MDs.

The main advantage of this method is that it does not require knowledge of failure modes for training.

That means the only thing needed to start the algorithm is a healthy baseline that can be created based

on the initial measurements in the system. Additionally, the MD values are calculated using the normalized

values of performance parameters, which eliminates the problem of scaling. Other advantages include a good

accuracy and easy implementation.
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(a)

(b) (c)

(d) (e)

Figure 7.2.3: The performance parameters pattern. (a) Difference stress at -40°C. (b) Difference stress at
125°C. (c) Shear stress at -40°C. (d) Shear stress at 125°C.
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7.2.1 Results based on simulation

A result of fault classification conducted with an MD approach is presented in Figure 7.2.4. The first hundred

points are from the healthy baseline, and the last data point contains damage. This point is clearly detected,

and it is seen to cross the fault alarm threshold. However, some of the points from healthy baseline do cross

the warning level. It is caused by the threshold definition—around 98% of the points should lay within the

(µx+2σx) bound. To deal with this feature in real time measurements, a couple of consecutive points should

be classified as potentially containing failure so that the actual warning can be given.

Figure 7.2.4: Results of MD algorithm.

The detection results for all failure modes using both stress difference and shear stress data are presented

in Table 7.2. It shows that this method works very well in detecting failure for different damage types. The

only case here where the results are not always conclusive is that of damage recognition based on shear stress

values.

Table 7.2: Damage detection by MD algorithm for different failure modes and stress components

Condition -40 °C 125 °C active

Failure mode σd σxy σd σxy σd σxy

FM1 3 3 3 3 3 3

FM2 3 5 3 5 3 5

FM3 3 3 3 3 3 3

In conclusion, it can be stated that this method can easily be used for damage detection, although for a

robust algorithm it must be further improved.

7.2.2 Results based on measurements

Next, the developed approach was applied to the data gathered from experiment. In order to obtain the

signal containing failure, a set of pre-delaminated samples was produced. The samples were subjected to

temperature cycling between -40°C and 125°C and examined using a SAM for every 150 cycles. Figure 7.2.5
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presents a propagation of delamination that was observed. In this particular case, the delamination occurred

just under the sensor on the other side of PCB, on the interface between outer molding compound and the

PCB. Figure 7.2.6 shows an example of a stress measured during the propagation of delamination. For the

sake of simplicity, a signal from only one of the measurement cells is presented. The data points are extracted

separately at temperatures of 125°C and -40°C in order to evaluate the stress evolution independent of the

thermo-mechanical behavior of the system. The delamination progression was observed in the measurement

data for about 10 temperature cycles, starting at cycle number 30. The stresses in different measurement

cells change with different trends, and this situation causes the pattern of stress distribution over silicon chip

to change.

Figure 7.2.5: The images of a sample region where delamination progression was observed from a SAM.

Figure 7.2.7 shows similar data except this one is from a healthy system with no observed failure. In these

data, changes in the signal were also observed. They are caused by various effects, such as material aging,

material setting, or moisture intake/uptake. However, the observed changes had a much smaller magnitude

and did not cause a rapid changes in the signal. The major challenge of applying the pattern recognition

techniques to the measurement data is to be able to distinguish between the healthy changes and the changes

caused by a failure.

To take the healthy changes of a signal into account, the algorithm was modified—specifically, an adaptive

update of a healthy baseline was introduced. The modified workflow is presented in Figure 7.2.8. In

this approach, every point is tested using an existing healthy baseline. When a data point is classified as

healthy, the baseline is then updated; its oldest point is replaced with the new one. This also necessitates a

recalculation of the threshold, which is then adapted to the existing healthy baseline.

The results of the MD approach applied to healthy data are presented in Figure 7.2.9. As observed in

Figure 7.2.9(a), the algorithm with a constant healthy baseline provided false warning results after around

(a) (b)

Figure 7.2.6: Measured difference stress during temperature cycling when the delamination progression was
observed. Values extracted (a) at 125°C and (b) at -40°C.
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(a) (b)

Figure 7.2.7: Measured difference stress during temperature cycling when no failure was observed. Values
extracted (a) at 125°C and (b) at -40°C.

Figure 7.2.8: Workflow of implementation of MD with adaptive update of the healthy database.
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(a) (b)

Figure 7.2.9: The results of MD algorithm applied on healthy data from measurement. (a) Algorithm with
constant healthy baseline. b) Algorithm with adaptive healthy baseline update.

(a) (b)

Figure 7.2.10: The results of MD algorithm applied on measurement data with failure. (a) Algorithm with
constant healthy baseline. (b) Algorithm with adaptive healthy baseline update.

60 measurement points and a false fault alarm after around 120 points. A clear growing trend can be

observed in the data. This behavior was eliminated by updating the healthy baseline in every step as shown

in Figure 7.2.9(b). In this case, the MD values do not show any clear trend and are distributed randomly.

This eliminates the concern about false failure detection due to normal changes of sensor response. The

warning threshold was exceeded only by a few points, which occurred for the statistical reasons that were

discussed in previous sections. It is worth noting that the threshold changes also with every update of the

healthy baseline. However, there are no observable trends in the thresholds behavior.

In Figure 7.2.10, the analogical results are shown for the data containing failure. In both cases, the failure

is clearly detected starting with the 30th point in the data set. The algorithm was tested with all available

data containing failure, and failure was detected in all of the cases.

7.3 Singular Value Decomposition

SVD is a discrete version of the algorithm known as POD, and it is a multi-variate statistical method for

data analysis. In this work it is used for feature extraction from the data by revealing its structure. The

main idea here is to decompose the matrix into a product:

Xij = UorthSV
T
orth (7.3.1)

Where:

Uorth and Vorth - two orthonormal matrices,

S - matrix containing the singular values σS of the matrix Xij .
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When the matrix Xij contains data with damage, the decomposition deviates from the one calculated only

with data from intact structures. Figure 7.3.1 shows an example illustrating the effect of data containing a

failure of the singular values.

Figure 7.3.1: The effect of data containing a failure of the singular values of a matrix.

The classical LS-SVD algorithm workflow used in this work is presented in Figure 7.3.2 [68]. The first step is

to create a performance parameter space. Matrix Xij is built in the same way as for MD approach—that is,

the values of stress difference and shear stress at the 24 sensor cells locations are the performance parameters,

stored in a matrix Xij with elements denoted as xij , where i = 1, 2, . . . , p and p is the total number of

performance parameters (here p = 24) and j = 1, 2, . . . ,m where m is the total number of observations

[68]. A condition that has to be fulfilled in order to detect a failure using this method is that the number

of observations containing damage must be greater or equal to the number of healthy observations. In this

case, a matrix with eight columns is created, with the four first columns containing healthy data and the rest

of the data with damage. Next, the matrix is decomposed according to (7.3.1). All the singular values below

the arbitrary chosen noise level are then set to a value of 0, and the matrix X1 is resynthesized. Afterwards,

the residual matrix E1, the standard deviation of residuals, and the standard deviation of every observation

are computed. Finally, the relative distance dj is obtained which follows χ2 distribution with a mean of

m = 1. The threshold for fault qualification is determined based on standard deviation σ of this distribution

with a confidence level 95%. Using this procedure, an automatic classification between damaged and healthy

observations can be made.

The problem with the classical LS-SVD technique is that it is very sensitive to outliers [68]. To reduce any

effects from outliers, an iterative SVD can be used. In this approach, the classical LS-SVD algorithm is firstly

applied. Then, the observations with outlying distance dj are eliminated, and the SVD of the remaining

observations is calculated again. The workflow of iterative SVD is presented in Figure 7.3.3.

Another approach that can be used to improve the performance of SVD algorithm is robust SVD introduced

in [68]. Figure 7.3.4 presents the workflow of a robust SVD algorithm. The algorithm starts with drawing

a random subset of half of the observations from the input matrix Xij and computing SVD of the obtained

matrix Xl. This is done for every possible combination of columns, which means l = m!/((m/2)!)2 times. Next,

the right singular matrix Vl′ is extended to all the columns in the original input matrix, and the new matrix

Xl′ is resynthesized. Residuals El as well as relative distances dj are then calculated. Following this, a cost

function is calculated as the RMS of half of the smallest distances, according to the formula:

κ =

m/2∑
k=1

|dk|2 (7.3.2)
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Figure 7.3.2: Classical SVD algorithm workflow [68].

Figure 7.3.3: Iterative SVD algorithm workflow [68].

As the final solution of robust SVD, the result of the combination with the smallest cost function is chosen.

This method is computationally more expensive, but it provides much more reliable results.

The main advantage of an SVD approach is its short calculation time. As shown in Table 7.3 both classic and

iterative SVD have very short calculation time. Robust SVD is computationally more expensive but it also

produces more reliable results. Its calculation time strongly depends on the number of observations taken

into account, as all the combinations of columns must be considered. Similar to the MD method, it does

not require prior knowledge on the failure modes, and it works on normalized data. The main disadvantage

here is that it requires multiple observations containing failure to be firstly made before damage detection

can occur.

7.3.1 Results based on simulation

Figure 7.3.5 shows an example of the output of a classical LS-SVD; iterative SVD and robust SVD are

presented in Figures 7.3.6 and 7.3.7 respectively. All of the SVD calculations were made with matrix

containing eight observations; among them four were healthy and four contained failure.

In the case of classical LS-SVD, there is no significant difference between the results for shear stress and

stress difference. In both of these cases, the threshold is at a level of around 1.0. The distances calculated

for healthy points have values close to 0, and for data containing failure the values were between 1.0 and 3.0.
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Figure 7.3.4: Robust SVD algorithm workflow [68].

In the case of iterative SVD, the distances calculated for unhealthy points are much larger for shear stress

data than difference stress. The threshold is in both cases at approximately the same value of around 2.0. It

is yet different for a robust SVD results, where the distances for difference stress are much larger than those

for shear stress. This shows that there is no obvious choice of a measured parameter that should be chosen

for the analysis. To make the detection more reliable, it may be even needed to analyze both signals. It is

also worth noting that the robust and iterative SVD provide a much sharper separation of the healthy and

damaged observations.

These methods were tested on data concerning all three failure modes, and in all cases the damage was

detected.

7.3.2 Results based on measurement

The SVD algorithms were tested on the same experimental data sets containing failure as MD. Similar to the

case of MD algorithm, an adaptive healthy baseline update was implemented for SVD. Figure 7.3.8 presents

the results of robust SVD with a constant healthy baseline, and Figure 7.3.9 presents robust SVD results

with an adaptive healthy baseline. It can be observed that in both cases the failure is first detected at the

33rd observation point. The delay is caused by the fact that the SVD method detects failure only when the

input matrix contains at least the same number of observation points with failure as the number of healthy

ones. The use of an adaptive healthy baseline update does not affect the point of failure detection. However,

it improves the behavior of the algorithm in the case of a healthy data analysis. In the case of the constant

healthy baseline, a steady growth in a calculated relative distance is observed throughout the healthy data

as shown in Figure 7.3.8(a). The false positive result of failure detection happens at around the 30th data

point. This behavior is eliminated by the adaptive healthy baseline update. As presented in Figure 7.3.9(a),

the calculated relative distances do not show any trend in time, and all data points are correctly classified

as healthy.

All three versions of SVD algorithm were tested using measurement data. The results of classical LS-SVD

are presented in Figure 7.3.10, while iterative SVD and robust SVD are seen in Figures 7.3.11 and 7.3.9

respectively. Among those three approaches, only robust SVD was able to detect failure in a reliable way. A
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Figure 7.3.5: Example of the LS-SVD results.

Figure 7.3.6: Example of the iterative SVD results.
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Figure 7.3.7: Example of the robust SVD results.

slight change of the calculated relative distance can be seen in the LS-SVD results where the failure occurs

as depicted in Figure 7.3.10(b). However, the sensitivity of the method is not sufficient to detect the failure.

Also, in the case of the iterative algorithm, the apparent change of values of relative distance is caused by

an analysis of data containing failure. Nevertheless, the results become highly unstable, and this is caused

by the fact that in this algorithm the outliers are removed in a course of calculation. Hence, the algorithm

which tries to detect this type of failure in some of the cases removes the observations containing failure

from the input matrix.

The most satisfying results are obtained using a robust SVD algorithm. The failure is detected at the first

possible point in time. However, this is the most computationally expensive version of SVD to use, and the

calculation time is comparable to MD.

(a) (b)

Figure 7.3.8: The results of robust algorithm with constant healthy baseline applied (a) on healthy data
from measurement and (b) on data with failure.
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(a) (b)

Figure 7.3.9: The results of robust SVD algorithm with adaptive healthy baseline update applied (a) on
healthy data from measurement and (b) on data with failure.

(a) (b)

Figure 7.3.10: : Results of an LS-SVD algorithm with adaptive healthy baseline update applied (a) on
healthy data from measurement and (b) on data with failure.

(a) (b)

Figure 7.3.11: Results of an iterative SVD algorithm with adaptive healthy baseline update applied (a) on
healthy data from measurement and (b) on data with failure.
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7.4 Comparison of data detection algorithms

The MD and SVD algorithms are both used for damage detection, and their performances have been eval-

uated and compared. Table 7.4 summarizes the advantages and disadvantages of both presented methods.

Both algorithms work on normalized data and do not require prior knowledge on failures. The calculation

time of MD is much longer as the calculations are made using relatively big matrices. For the MD approach,

it is recommended that the healthy baseline is large so that failure can be detected in a reliable manner. In

the case of SVD, the healthy baseline should be limited. The first reason for this is that failure detection

can be made only when there are as many healthy as unhealthy observations. Additionally, too many points

in the healthy baseline can cause SVD algorithm to be somehow too strict, which then could give false

positive outcomes. Handling of much smaller data sets causes the SVD algorithm to have a much shorter

calculation time. However, the robust SVD algorithm has a comparable calculation time to MD, as the

matrix decomposition must be calculated multiple times. This is also the only version of the algorithm that

detects a failure in a reliable way. Thus, the MD method is somehow more suitable for damage detection as

it can detect the damage earlier and has a comparable calculation time.

Table 7.3: Calculation time of used algorithms

Algorithm Calculation time [s]
Mahalanobis Distance 0.11
Classic SVD 0.05
Iterative SVD 0.08
Robust SVD 0.10

Table 7.4: Advantages and disadvantages of tested damage detection algorithms

Mahalanobis Distance SVD

Advantages

Works on normalized data Works on normalized data
Short calculation time

Does not require prior knowledge
about failures

Does not require prior knowledge
about failures

Good accuracy
Easy to implement

Disadvantages

Relatively long calculation time
Inconclusive for shear stress re-
sults

Sensitive to noise

False warning result Requires more than one data
point for data with failure

7.5 Support Vector Machine

SVM is a machine learning algorithm that can solve classification problems. Its main advantage is that it

can form accurate boundaries between datasets even with a small amount of training data [81]. Additionally,

it can often provide a good generalization and can find a single global minimum for a problem.

The main idea behind using an SVM is to find the plane separating the given datasets in such a way that the

distance between them is maximized. For n—dimensional sets of data, an n − 1—dimensional hyperplane

that separates them is searched. This hyperplane can be a linear or non-linear boundary.
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To explain the SVM algorithm, an example of two dimensional linear problem is presented (see Figure 7.5.1).

First, the training data are labeled, thus creating separate sets. For each point, xi from the first data set

the value yi = −1 is assigned as a label; for points xi from the other set, the value yi = 1 is assigned.

The classification in this case is performed by considering plane H1 to consist of the points that satisfy the

equation wx + b = 0, where w is normal to the plane and b is the perpendicular distance from the plane

to the origin, normalized by length of w. The following conditions should be satisfied for all training data

points:

xi · w + b ≥ 1 for yi = 1 (7.5.1)

xi · w + b ≤ −1 for yi = −1 (7.5.2)

Figure 7.5.1: Linear SVM problem.

The points for which (7.5.1) is satisfied are found on the hyperplane H2, and the points for which (7.5.2)

is satisfied are found on the hyperplane H3. Hence, the distance between H1 and H2 is d+ = 1/||w||, the

distance between H1 and H3 is d− = 1/||w||, and the margin is simply 2/||w||. Considering that H2 and

H3 are parallel and no points lie between them, the optimization problem needs to minimize ||w||2, which is

subjected to the constraint:

yi(xiw + b)− 1 ≥ 0 (7.5.3)

(7.5.3) simply combines (7.5.1) and (7.5.2) into one set of inequalities. The optimization problem is then

solved by changing the constraints into Lagrangian multipliers. The objective function can be written as

[81]:

Lp =
1

2
||w2|| −

m∑
i=1

αiyi(xiw + b) +

m∑
i=1

αi (7.5.4)

where αi are positive Lagrangian multipliers.
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The aim is to minimize Lp with respect to w and b.

The non-linear classification involves mapping the data points from a lower dimensional feature space into

a higher dimensional space. This can be made by a function, which is called a kernel function. There are

several functions used in the literature, but the one used in this study is the Gaussian radial basis function

(RBF):

K(xi, xj) = exp(−||x− y||
2

2σ2
) (7.5.5)

After mapping the points, the same linear separation procedure is applied, and the calculations are just

executed in a different space.

For the given problem, different approaches to define performance parameters set were tested. The one that

was able to separate the datasets containing different failures was when the SVM method was applied to each

sensor cell separately—that is, the training data contained healthy and unhealthy values of stress difference

and shear stress, measured at one location on the silicon chip. The results are depicted on 12 separate graphs

concerning cells on the left side of the chip, as shown in Figure 7.5.2. The right side of the sensor behaves

symmetrically, and it is not shown here for the sake of simplicity. Each graph depicts a rectangular space

divided into subspaces marked with a different background color. They represent the areas separated by

the boundaries between datasets calculated by the algorithm. Additionally, points representing the training

data are placed on each graph. In general, the data sets containing different failures are well separated. It is

worth noting that the performance of the algorithm depends on the position on the chip of the measurement.

The datasets are separated the best in Cells 3 and 10 which are located inside the chip, and the worst are

found in Cells 1 and 6 on the edge of the chip. Also, in some cells the points indicating FM2 are not perfectly

separated from the healthy data. However, if one of the previous methods has already identified the point

as one that contains failure, it is possible to easily avoid having the wrong qualification given by SVM. That

is another reason why this method is proposed only for damage typology, not for damage detection.

This result shows that the SVM algorithm can classify the damage using SVM algorithm based on the

measurement from the piezoresistive stress sensor. However, the typical signals corresponding to different

failures occurring in the system must be provided as an input to the algorithm. This signal will likely

have different characteristics depending on various criteria used, such as the type of the ECU, different

material used, the position of the sensor, or the size of the sensor. Hence, providing a complete database

for the algorithm is complex; in practice, the input data would have to be supplied based on the field

measurements. Therefore, it is indispensable to use a damage detection algorithm before using the damage

classification algorithm.

120



CHAPTER 7. DATA-DRIVEN APPROACH

Figure 7.5.2: Results of SVM algorithm with RBF kernel function calculated separately for every cell.

7.6 Summary

This chapter explored damage detection using the piezoresistive silicon stress sensor. First, the stress states

in the sensor subjected to different damage types was collected using validated FEM simulations. Then, three

statistical pattern recognition algorithms were investigated with the data—namely MD and SVD for damage

detection and SVM for damage typology. Both damage detection algorithms have successfully distinguished

the differences between healthy and damage containing data, even for the case where failure was not inserted

directly under the sensor. The advantages and disadvantages of both algorithms were evaluated. The SVM

was applied to classify the failures. Additionally, the damage detection algorithms were tested with the

available data containing damage progression.

For future studies, it is recommended to conduct a broader study to evaluate the minimum size of failure

that can be detected by the sensor. Additionally, more of the actual damage data from the test vehicles

should be collected to evaluate the performance of the proposed approach.
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Chapter 8

Fusion approach

8.1 Proposed methodology

The two presented approaches for PHM using a piezoresistive stress sensor can be combined in order to

improve their performances. The proposed workflow of such a fusion approach is presented in Figure 8.1.1.

The methodology requires an in-situ monitoring of the investigated system using a piezoresistive stress sensor.

The measured signal can be used to implement both physics-of-failure and data-driven approaches. The

periodically measured temperature and stress values can be used as inputs to the reduced FEM model. The

FEM model should be simplified by a model order reduction technique in order to enable in-situ evaluation

of damage parameters, such as PSED or CSED. Then, using the established physics-of-failure model, it is

possible to execute periodical calculation of RUL. In the same time, the pattern recognition algorithms can

observe the stress signal in search for delamination signature. When it is detected, the reduced model for

calculation of damage parameters can be updated. This leads to more accurate failure prediction under

changing load conditions.

Figure 8.1.1: Workflow of proposed fusion approach.

8.2 RUL calculation

When the delamination occurs, the load in the design element changes rapidly. Because of this, an iterative

approach was chosen for RUL calculation. The non-iterative approach takes an average of the load history
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as a reference for RUL calculation, thus it is not suitable for cases where the load permanently increases.

The iterative method for RUL calculation is based on the following equation [17]:

RULN = RULN−1 −DN · PTL (8.2.1)

Where:

RULN−1 - remaining useful life calculated at the end of N-1 period

DN - damage ratio accumulated over the Nth cycle/day/hour

PTL - predicted total life

However, in this approach the predicted total life is calculated only at the beginning. In the case where the

delamination causes a permanent change in the load, the predicted total life should be updated as delam-

ination appears so that a more accurate RUL prediction can be obtained. Hence, when the delamination

occurs, a damage accumulated until the date should be calculated first. To do this, it is assumed that the

delamination was detected at the (n+ 1) cycle. The RUL at the end of n-th cycle can be expressed as:

RULn = PTL1(1−Dn) (8.2.2)

Where:

Dn - damage ratio accumulated until the nth cycle

PTL1 - predicted total life at the load level without delamination

Then, the damage accumulated until n-th cycle can be calculated as:

Dn = 1− PTL1

RULn
(8.2.3)

Similar equation as (8.2.2) can be formulated for the load level after delamination PTL2:

RULn = PTL2(1−Dn) (8.2.4)

Combining (8.2.3) and (8.2.4), we obtain:

RULn = PTL2
RULn
PTL1

(8.2.5)

This value can be further used in (8.2.1) as the RUL after first load cycle with delamination is calculated.

Additionally, values of the predicted total life as well as of damage accumulated per cycle should be updated.

A result of a RUL calculation with an iterative method and updated predicted total life is shown in Figure

8.2.1. In this study, the damage parameters which were used for the calculation of RUL when the delami-

nation occurred was evaluated using FEM simulation. Two different cases were calculated. For wire bond

failure, the delamination between the copper lead frame and the DPAK mold in the area of a wire bond heel

was modeled. For solder joints, the delamination was modeled between the solder and outer mold. Both of

these cases maximize the delamination impact on the load in the investigated design elements.

According to the established failure model, the reliability of both wire bond and solder joint should decrease

significantly when delamination occurs Figure 8.2.1. In the case of solder joint fatigue, when the delamination

occurred, the RUL decreased from about 7500 thermal cycles to 700. In the case of a wire bond, delamination

decreased from about 3000 thermal cycles to 600. It shows how critical it is to consider structural damage

such as delamination while evaluating the RUL of an electronic system.
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(a)

(b)

Figure 8.2.1: RUL calculation for (a) a solder joint and (b) a wire bond.

In the future investigations, the focus should be on optimizing the package of the sensor and its location in

the system to enable the most efficient detection of the delamination in the critical regions. The sensor should

be placed in direct vicinity of the critical design element to ensure a reliable failure detection. Additionally,

this would help the sensor signal to be directly related to the load acting on the investigated design element.

It would also be reasonable to consider integrating the sensor in the microelectronic package that is expected

to fail first, or even integrating it within the silicon chip of this package. In this way, the same material

properties which affect the stress state in the investigated design element would also affect the stresses

measured with the piezoresistive stress sensor.
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Chapter 9

Summary

PHM is a promising field of research in the reliability domain. Its main aim is to evaluate the reliability

of a device in the real working conditions. Implementation of this methodology is especially attractive for

automotive applications as the technology develops towards autonomous driving. This technology will likely

address many needs of our fast developing world—it could increase vehicle traffic safety, and it could also

reduce exhaust emission and traffic jams. However, the autonomous driving system has to be very reliable,

and as seen in this thesis, such a high reliability can be achieved using PHM methodology.

The PHM techniques can generally be divided into three groups—model-based, data-driven and fusion

approaches. The model-based approach usually utilizes a detailed analysis of an investigated device. The

goal of the analysis is to identify the possible failure modes and understand the mechanisms that activate

them. Once this is achieved, a physics-of-failure model for the most vulnerable design elements can then be

created. In-situ monitoring of a load acting on the investigated device completes the approach and enables

the calculation of RUL. The data-driven approach is typically based on the monitoring of performance

parameters of an investigated device and does not require prior knowledge on its construction, failure modes,

or expected loads. It always involves the usage of algorithms for data analysis to detect the deviations of

the investigated system behavior from norm and anomalies. Lastly, a fusion approach combines both model-

based and data-driven approaches in order to produce a more reliable RUL prediction.

The main goal of this study is to develop a framework for the implementation of a piezoresistive silicon

stress sensor to PHM methodology for automotive applications. This sensor is very promising for reliability

monitoring, as it is able to measure stress values that are directly related to the damage. The initial challenge

in this study was to apply a stress sensor for system-level monitoring. The findings show that it was possible

to develop an approach to PHM involving this sensor. The aim is to develop a fusion approach, since it

minimizes the drawbacks of using the model-based and data-driven approaches separately.

To realize the assumptions of this thesis, the fundamental work on the applicability of piezoresistive stress

sensor on a system level was firstly conducted, as described in Chapter 3. At the beginning, the uncertainties

related to the measurements with the stress sensor were quantified, and their sources were also identified. The

major challenges in conducting accurate measurements using a CMOS piezoresistive stress sensor included

the relationship between their characteristics and certain parameters—specifically in that their characteristics

depend on the temperature and operating current. Also, the calculated stress values can be dependent on

other components of stress that are assumed insignificant in the governing equations. To apply the sensor

at a system level, it is recommended to estimate all the components of stress which appear in the governing

equations in order to verify the accuracy of the conducted measurements. Additionally, this thesis developed

and tested a novel acquisition unit that enables gathering the data from a large number of sensors. Only

using a miniaturized system with multiple measurement channels enabled the collection of sufficient data

which are essential when applying the piezoresistive silicon stress sensor for system-level monitoring.
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After accomplishing the initial preparatory stage of this research, a methodology for a fusion approach

to PHM was prepared. This was achieved in three stages. First, to obtain an insight into the thermo-

mechanical behavior of an investigated test vehicle, a detailed FEM modeling was performed. The chosen

approach is described in details in Chapter 5. The development of a model included detailed geometry

preparation, material modelling, and accurate definitions of boundary conditions. The active operation of

the investigated test vehicle was simulated using coupled solutions of electro-thermal, thermal, and thermo-

mechanical models to determine the exact loading conditions. Then, the model was verified using the moiré

interferometry technique, which is a full field optical measurement method that can determine the in-plane

deformations within the whole cross section of a test vehicle. It also allows an accurate modeling verification,

including the behavior of all used materials. Two challenges encountered in making these measurements

involves using an unusually large surface of the sample and also conducting the measurements under an

active thermal loading condition. Following this, a model-based approach was developed, as described in

Chapter 6. The model-based approach preparation started with using FMMEA to determine the most

vulnerable design elements and the possible mechanisms of failure. The delamination between a copper lead

frame and molding compound, solder fatigue and wire-bond lift-off were identified as the leading mechanisms

of failure. Next, the physics-of-failure models for solder fatigue and wire-bond lift-off were established and

the defined damage parameters were extracted from the validated simulation. Additionally, reliability tests

were performed to verify the methodology. Four groups of test vehicles were tested—these were with/without

outer mold, subjected to active and passive cycling. During thermal cycling the test vehicles were monitored

using piezoresistive stress sensors, which recorded not only the stress, but also temperature values. The stress

sensor signal was correlated with the load acting on the damage parameters by means of FEM simulations.

This allowed a real-time evaluation of RUL for the tested devices.

Next, the study developed a data-driven approach based on measurements from the stress sensor. When

a failure such as delamination occurs, the thermo-mechanical behavior of the device changes. This change

can be detected using a piezoresistive stress sensor, as it reacts directly to mechanical loads. A developed

data-driven approach focuses on delamination detection based on a monitoring signal. The data-driven

methodology utilizes statistical pattern recognition methods in order to ensure that damage detection would

take place in an automatic and reliable way. MD and SVD were studied for damage detection; the MD

algorithm showed a better performance when it was applied to the stress sensor data. Additionally, an

SVM approach was tested to see whether it can be used for damage classification. Findings show that the

approach could detect a fault based on a signal from the stress sensor, and it could also identify the type of

the fault. A recommendation was made to use both damage detection and damage classification algorithms

in order to avoid situations where an unknown previously failure is classified as a healthy behavior.

Finally, a way to combine both developed approaches was proposed. In this approach, the investigated

product should be monitored using a piezoresistive stress sensor. Then, the RUL of an investigated product

should be calculated based on the developed physics-of-failure model and monitoring signal. Simultaneously,

a data-driven approach should be used to detect any anomalies in the stress signal. If a damage is detected,

the physics-of-failure model can be updated so that the model takes the changed loading conditions into

consideration, which consequently leads to a more accurate prediction of RUL.

9.1 Conclusions

In this study, it was shown that the piezoresistive stress sensor can be implemented to monitor the state of

health of an ECU. My original contribution to the knowledge gap includes the development of a framework

to apply the piezoresistive silicon stress sensor on a system level as well as proposing a fusion approach to

PHM using the sensor. This includes the development of a real-time monitoring method, a physics-of-failure

approach, and a data-driven approach to PHM, based on piezoresistive silicon stress sensor measurements.
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First, the study extended the applicability of piezoresistive stress sensor. Additionally, the uncertainties on

a system level were quantified, and the study recommends that an estimation should be firstly made for

both the z-component and the sum of in-plane stresses that act on the silicon die before applying the sensor

on a system level. The reason for this is so that more accurate measurements can be made. Furthermore,

the study developed an approach for the detailed modeling of complex loading conditions. Moreover, a

method for accurate stress results extraction from the stress sensor simulation was found—specifically at

the location where the stress is evaluated exactly in the regions where it is measured. The study also

proposed a model-based approach to prognostics based on monitoring using the stress sensor. To verify the

approach, the reliability test were planned and performed. Following this, the study proposed a data driven

approach to prognostics based on measurements with the stress sensor. The statistical pattern recognition

techniques—MD and SVD—were studied for damage detection. It was found that MD is more suitable for

damage detection based on the stress sensor signal. MD requires the same computational power as SVD,

but it is able to detect the fault earlier. Moreover, the study found that a failure can be detected and

also isolated based on the stress sensor signal. Finally, the study proposed to combine both the developed

methods; the proposed fusion approach used a data-driven approach for delamination detection so that the

physics-of-failure model can be continually updated for a more accurate estimation of RUL.

9.2 Outlook

The future research should focus on gathering stress measurement data during damage initiation and pro-

gression. It is recommended to design a test vehicle where failure occurs much earlier. Furthermore, the

damage should occur in a controlled way. To ensure high stresses acting on critical design elements, a couple

of approaches can be used, such as 1) designing a very stiff construction, 2) using materials that have large

mismatch in thermal expansion coefficients or by making the construction weaker, 3) minimizing adhesion

between the layers, and 4) reducing the size of solder joints or the diameter of wire bond. FEM modelling

should be implemented in the design process of such specimens. The data gathered from the prepared speci-

mens should be used to develop a database of stress sensor response with different failures for the data-driven

approach. The minimal damage size detectable by the sensor should be determined. Furthermore, it should

be investigated how the distance to the damage affects the sensor signal.

Additionally, the packaging of the sensor in a more robust way should be considered. It would be most

advantageous to encapsulate the sensor directly in the package of interest. Also, the position of the stress

sensor in the system should be determined with the help of FEM modeling. The location should be chosen

in such a way that maximizes the stresses acting on the die so that damage could occur there first. Aside

from this, the sensitivity of a sensor to the damage could be maximized by an appropriate placement of the

sensor.

Moreover, the model order reduction technique should be developed to enable real time evaluation of damage

parameters for the physics-of-failure model. Then, it should be implemented in the acquisition unit that

gathers the data from the sensors. Furthermore, data reduction algorithms that enable the gathering of the

data in the field for long time periods should be established. Then, the Miner’s rule should be implemented

to evaluate the RUL under varying load conditions.

Finally, a study to validate the developed approach should be conducted. It should involve reliability testing

with an irregular loading profile. This would allow the validation of a method in conditions similar to

the field. An approach to take irregular load history into account while calculating RUL should also be

proposed. This is important not only for model-based approaches; data-driven approaches should be tested

against irregular load conditions also. Ultimately, the methodology should be tested in a real field conditions

to monitor an ECU working under the engine hood.
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