Chien Ing Yeo and Edward R.T. Tiekink*

Crystal structure of the (E)-O-methyl-N-phenylthiocarbamate – 4,4'-bipyridine (1/1), $C_{18}H_{17}N_3OS$

https://doi.org/10.1515/ncrs-2017-0401 Received December 12, 2017; accepted February 23, 2018; available online March 16, 2018

Abstract

 $C_{18}H_{17}N_3OS$, monoclinic, C_2/c (no. 15), a = 13.4754(3) Å, b = 13.8997(3) Å, c = 18.0300(4) Å, $\beta = 107.202(3)^{\circ}$, $V = 3226.03(13) \text{ Å}^3$, Z = 8, $R_{\text{gt}}(F) = 0.0341$, $wR_{\text{ref}}(F^2) = 0.0878$, T = 100(2) K.

CCDC no.: 1825491

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement Table 1: Data collection and handling.

Crystal:	Colourless plate
Size:	$0.24 \times 0.20 \times 0.04~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	18.4 cm ⁻¹
Diffractometer, scan mode:	SuperNova Dual, ω scans
$2\theta_{max}$, completeness:	150°, 98.6%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	6551, 3285, 0.020
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$, 2972
N(param) _{refined} :	213
Programs:	Agilent programs [1], SHELX [2, 3], ORTEP [4]

method and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

4,4'-Bipyridine (Merck; bpy; 0.05 g, 0.32 mmol) and 2.1 mol equivalent of MeOC(=S)N(H)Ph [5] (0.11 g, 0.67 mmol), each in chloroform (10 mL), were mixed and stirred at 323 K for 3 h. The resulting mixture was left for evaporation at room temperature after which colourless blocks were deposited. Elem. Anal. Calc. for C₁₈H₁₇N₃OS: C, 63.39; H, 5.73; N, 11.37%. Found: C, 63.12; H, 5.37; N, 11.17%. **IR** (cm⁻¹): 3178 (br) ν(N–H); 1593 (s) ν(C=C; bpy); 1447 (s) ν(C-N); 1411 (m) ν(C-N, bpy); 1205 (s) v(C=S); 1059 (vs = very strong) v(C=O).

Experimental details

The C-bound H atoms were geometrically placed (C-H =0.95–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5$ $U_{eq}(C)$. The N-bound H-atom was refined with a distance restraint of N–H = 0.88 ± 0.01 Å, and $U_{iso}(H) = 1.2 U_{eq}(N)$.

Comment

In the known co-crystals of alkoxycarbothioamides, i.e. molecules of the general formula ROC(=S)N(H)R', for R, R' = alkyl/aryl, with bipyridyl-type molecules, e.g. 4,4'bipyridine (bpy), thioamide-N-H···N(pyridyl) hydrogen bonds have proven to be a reliable supramolecular synthon [6-8]. This synthon serves to link molecules in their 2:1 co-crystals, $[ROC(=S)N(H)R]_2$ (bipyridyl-type molecule) into three-molecule aggregates. In continuation of these studies, it was of some surprise that despite being co-crystallized

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my

Chien Ing Yeo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

a Open Access. © 2018 Chien Ing Yeo et al., published by De Gruyter. CO BY-NC-ND This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Table 2: Fractional atomic coordinates and isotropic or equivalentisotropic displacement parameters ($Å^2$).

Atom	x	у	z	U _{iso} */U _{eq}
S1	0.67921(3)	1.01618(2)	0.31033(2)	0.02535(11)
01	0.66639(8)	0.87788(7)	0.40900(5)	0.0211(2)
N1	0.65785(9)	0.82439(8)	0.29330(7)	0.0188(2)
H1N	0.6581(13)	0.7693(14)	0.3162(10)	0.024(4)*
C1	0.66688(10)	0.90365(10)	0.33706(8)	0.0186(3)
C2	0.65421(10)	0.82017(9)	0.21395(8)	0.0179(3)
C3	0.70866(11)	0.74577(10)	0.19136(8)	0.0196(3)
H3	0.7498	0.7029	0.2292	0.024*
C4	0.70268(11)	0.73438(10)	0.11340(8)	0.0215(3)
H4	0.7393	0.6834	0.0980	0.026*
C5	0.64337(11)	0.79728(10)	0.05817(8)	0.0225(3)
H5	0.6400	0.7901	0.0051	0.027*
C6	0.58893(11)	0.87097(10)	0.08097(8)	0.0220(3)
H6	0.5481	0.9138	0.0431	0.026*
C7	0.59355(10)	0.88269(10)	0.15838(8)	0.0199(3)
H7	0.5557	0.9329	0.1734	0.024*
C8	0.67688(13)	0.95279(11)	0.46615(8)	0.0265(3)
H8A	0.6668	0.9255	0.5135	0.040*
H8B	0.6246	1.0027	0.4456	0.040*
H8C	0.7464	0.9811	0.4782	0.040*
N2	0.62886(9)	0.63529(9)	0.34710(7)	0.0216(2)
N3	0.40921(9)	0.18236(9)	0.39977(7)	0.0253(3)
C9	0.67538(11)	0.55211(10)	0.33986(8)	0.0218(3)
H9	0.7391	0.5546	0.3274	0.026*
C10	0.63555(11)	0.46253(10)	0.34956(8)	0.0204(3)
H10	0.6719	0.4057	0.3441	0.025*
C11	0.54178(10)	0.45626(10)	0.36740(8)	0.0189(3)
C12	0.49238(11)	0.54286(11)	0.37386(9)	0.0252(3)
H12	0.4278	0.5426	0.3851	0.030*
C13	0.53828(11)	0.62903(10)	0.36371(9)	0.0251(3)
H13	0.5037	0.6871	0.3688	0.030*
C14	0.49654(10)	0.36184(10)	0.37897(8)	0.0193(3)
C15	0.52092(11)	0.27751(10)	0.34610(8)	0.0212(3)
H15	0.5684	0.2792	0.3163	0.025*
C16	0.47558(11)	0.19112(10)	0.35717(8)	0.0237(3)
H16	0.4924	0.1350	0.3333	0.028*
C17	0.38787(12)	0.26308(11)	0.43226(9)	0.0270(3)
H17	0.3422	0.2587	0.4635	0.032*
C18	0.42801(11)	0.35302(11)	0.42343(9)	0.0242(3)
H18	0.4090	0.4080	0.4474	0.029*

under analogous conditions as for previous experiments [6-8], the title 1:1 co-crystal, $[MeOC(=S)N(H)Ph]_2(bpy)$, was isolated instead of the anticipated 2:1 co-crystal.

The Figure (70% displacement ellipsoids) shows the asymmetric unit, comprising one full molecule each of MeOC(=S)N(H)Ph and bpy, linked by a thioamide-N- $H \cdots N(pyridyl)$ hydrogen bond. The bpy molecule is significantly twisted as seen in the dihedral angle of 24.36(7)° between the pyridyl rings. The central CNOS chromophore in

the alkoxycarbothioamide molecule is planar as is expected, but what was not expected is the anti-disposition of the thioamide-N—H and thione-S atoms. The alkoxycarbothioamide molecule is twisted with the dihedral angle between the central residue and the pendent phenyl group being 43.46(4)°.

A comparison of the MeOC(=S)N(H)Ph molecule in the present report with those in its pure form [5] and in its (centrosymmetric) co-crystal with trans-1,2-bis(4-pyridyl)ethylene [6] shows the MeOC(=S)N(H)Ph molecules to be also twisted with dihedral angles of 60.92(4) and 31.40(6)°, respectively, between the least-squares planes through the CNOS and phenyl residues. The key difference between the new and literature structures is in the relative orientations of the thioamide-N-H and thione-S atoms. Indeed, the overwhelming majority of alkoxycarbothioamide molecules [9], including those functioning as coformers in co-crystals have a syn-arrangement of thioamide-N-H and thione-S atoms [6-8], there being only three exceptional structures. Thus, in MeOC(=S)N(H)(4-C(=O)Me)Ph) [5], owing to the dictates of thioamide-N-H···O(carbonyl) hydrogen bonding, and in each of (4-pyridyl)-CH₂OC(=S)N(H)Ph [10] and $(cinchonan-9-yl)OC(=S)N(H)(2,4-MeO)_2Ph$ [11], owing to the dictates of thioamide-N-H···N(pyridyl) hydrogen bonding, anti-dispositions of the thioamide-N-H and thione-S atoms are observed. Calculations [5], showed the energy differences between syn- and anti-conformations in these molecules differed by as little as 4–8 kJ mol⁻¹. Thus, the surprising observation is the predominance of the *svn*-conformation.

In the molecular packing, both thione-S and pyridyl-N atoms are available for forming supramolecular aggregation via weak hydrogen bonds and it is the latter that does so. Thus, methyl-C-H···N(pyridyl) contacts are noted [C8–H8a···N3ⁱ = 2.59 Å and 159° for 1 - x, 1 - y, 1 - z] leading to centrosymmetric, four-molecule supramolecular aggregates in the crystal.

Acknowledgements: Sunway University is thanked for support of biological and crystal engineering studies of metal thiocarbamides.

References

- 1. Agilent Technologies. CrysAlis^{PRO}. Agilent Technologies, Santa Clara, CA, USA (2013).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.

- Ho, S. Y.; Bettens, R. P. A.; Dakternieks, D.; Duthie, A.; Tiekink, E. R. T.: Prevalence of the thioamide {···H-N-C=S}₂ synthon-solid-state (X-ray crystallography), solution (NMR) and gas-phase (theoretical) structures of O-methyl-N-arylthiocarbamides. CrystEngComm 7 (2005) 682–689.
- Ellis, C. A.; Miller, M. A.; Spencer, J.; Zukerman-Schpector, J.; Tiekink, E. R. T.: Co-crystallization experiments of thiocarbamides with bipyridine-type molecules. CrystEngComm 11 (2009) 1352–1361.
- Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of the co-crystal *O*-isopropyl phenylcarbamothioate – 4,4'bipyridine (2/1), C₁₅H₁₇N₂OS. Z. Kristallogr. –NCS 233 (2018) 491–492.
- Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of the bis((*E*)-O-ethyl-*N*-phenylthiocarbamate) – 4,4'-bipyridine co-crystal (2/1), C₂₈H₃₀N₄O₂S₂. Z. Kristallogr. –NCS 233 (2018) 499–501.
- Jotani, M. M.; Yeo, C. I.; Tiekink, E. R. T.: A new monoclinic polymorph of *N*-(3-methylphenyl) ethoxycarbothioamide: crystal structure and Hirshfeld surface analysis. Acta Crystallogr. **E73** (2017) 1889–1897.
- 10. Xiao, H.-L.; Wang, K.-F.; Jian, F. F.: (4-Pyridyl)methyl N-phenylthiocarbamate. Acta Crystallogr. **E62** (2006) o2852–o853.
- Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y.: Asymmetric bromolactonization using amino-thiocarbamate catalyst. J. Am. Chem. Soc. **132** (2010) 15474–15476.