Chien Ing Yeo and Edward R.T. Tiekink*

Crystal structure of the (E) -O -methyl- N -phenylthiocarbamate - 4,4'-bipyridine (1/1), $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$

https://doi.org/10.1515/ncrs-2017-0401
Received December 12, 2017; accepted February 23, 2018; available online March 16, 2018

Abstract

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$, monoclinic, $\mathrm{C} 2 / c$ (no. 15), $a=13.4754(3) \AA$, $b=13.8997(3) \AA, \quad c=18.0300(4) \AA, \quad \beta=107.202(3)^{\circ}$, $V=3226.03(13) \AA^{3}, Z=8, R_{\mathrm{gt}}(F)=0.0341, w R_{\mathrm{ref}}\left(F^{2}\right)=0.0878$, $T=100(2) \mathrm{K}$.

CCDC no.: 1825491
The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement

[^0]Table 1: Data collection and handling.

Crystal:	Colourless plate
Size:	$0.24 \times 0.20 \times 0.04 \mathrm{~mm}$
Wavelength:	Cu $K \alpha$ radiation $(1.54184 \AA$ A)
$\mu:$	$18.4 \mathrm{~cm}^{-1}$
Diffractometer, scan mode:	SuperNova Dual, ω scans
$2 \theta_{\text {max }}$, completeness:	$150^{\circ}, 98.6 \%$
$N(h k l)_{\text {measured }}, N(h k l)_{\text {unique }}, R_{\text {int }}:$	$6551,3285,0.020$
Criterion for $I_{\text {obs }}, N(h k l)_{\text {gt }}:$	$I_{\text {obs }}>2 \sigma\left(I_{\text {obs }}\right), 2972$
$N(\text { param })_{\text {refined }}:$	213
Programs:	Agilent programs [1], SHELX [2, 3],
	ORTEP [4]

method and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

4,4'-Bipyridine (Merck; bpy; $0.05 \mathrm{~g}, 0.32 \mathrm{mmol}$) and 2.1 mol equivalent of $\operatorname{MeOC}(=S) N(H) P h[5](0.11 \mathrm{~g}, 0.67 \mathrm{mmol})$, each in chloroform (10 mL), were mixed and stirred at 323 K for 3 h . The resulting mixture was left for evaporation at room temperature after which colourless blocks were deposited. Elem. Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 63.39 ; \mathrm{H}, 5.73 ; \mathrm{N}, 11.37 \%$. Found: C, 63.12; H, 5.37; N, 11.17\%. IR (cm ${ }^{-1}$): 3178 (br) v(N-H); 1593 (s) $v(\mathrm{C}=\mathrm{C}$; bpy); 1447 (s) $v(\mathrm{C}-\mathrm{N}) ; 1411$ (m) $v(\mathrm{C}-\mathrm{N}$, bpy); 1205 (s) $v(\mathrm{C}=\mathrm{S}) ; 1059$ (vs $=$ very strong) $v(\mathrm{C}-\mathrm{O})$.

Experimental details

The C-bound H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=$ $0.95-0.98 \AA$ A) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-1.5$ $U_{\text {eq }}(\mathrm{C})$. The N -bound H -atom was refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.88 \pm 0.01 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Comment

In the known co-crystals of alkoxycarbothioamides, i.e. molecules of the general formula $\mathrm{ROC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) R^{\prime}$, for R, $R^{\prime}=\mathrm{alkyl} /$ aryl, with bipyridyl-type molecules, e.g. 4,4'bipyridine (bpy), thioamide- $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (pyridyl) hydrogen bonds have proven to be a reliable supramolecular synthon [6-8]. This synthon serves to link molecules in their 2:1 co-crystals, $[\mathrm{ROC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) R]_{2}$ (bipyridyl-type molecule) into three-molecule aggregates. In continuation of these studies, it was of some surprise that despite being co-crystallized

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}).

Atom	\boldsymbol{X}	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	0.67921(3)	1.01618(2)	0.31033(2)	0.02535(11)
01	0.66639(8)	0.87788(7)	0.40900(5)	0.0211(2)
N1	0.65785(9)	0.82439(8)	0.29330(7)	0.0188(2)
H1N	0.6581(13)	0.7693(14)	0.3162(10)	$0.024(4) *$
C1	0.66688(10)	$0.90365(10)$	0.33706(8)	0.0186(3)
C2	0.65421(10)	0.82017(9)	0.21395(8)	0.0179(3)
C3	0.70866(11)	$0.74577(10)$	0.19136(8)	0.0196(3)
H3	0.7498	0.7029	0.2292	0.024*
C4	0.70268(11)	$0.73438(10)$	0.11340(8)	0.0215(3)
H4	0.7393	0.6834	0.0980	0.026*
C5	0.64337(11)	$0.79728(10)$	0.05817(8)	0.0225(3)
H5	0.6400	0.7901	0.0051	0.027*
C6	0.58893(11)	0.87097(10)	0.08097(8)	0.0220(3)
H6	0.5481	0.9138	0.0431	0.026*
C7	0.59355(10)	0.88269(10)	0.15838(8)	0.0199(3)
H7	0.5557	0.9329	0.1734	0.024*
C8	0.67688(13)	0.95279(11)	0.46615(8)	0.0265(3)
H8A	0.6668	0.9255	0.5135	0.040*
H8B	0.6246	1.0027	0.4456	0.040*
H8C	0.7464	0.9811	0.4782	0.040*
N2	0.62886(9)	0.63529(9)	$0.34710(7)$	0.0216(2)
N3	0.40921(9)	0.18236(9)	$0.39977(7)$	0.0253(3)
C9	$0.67538(11)$	0.55211(10)	0.33986(8)	0.0218(3)
H9	0.7391	0.5546	0.3274	0.026*
C10	$0.63555(11)$	0.46253(10)	0.34956(8)	0.0204(3)
H10	0.6719	0.4057	0.3441	0.025*
C11	0.54178(10)	0.45626(10)	0.36740(8)	0.0189(3)
C12	0.49238(11)	0.54286(11)	0.37386(9)	0.0252(3)
H12	0.4278	0.5426	0.3851	0.030*
C13	0.53828(11)	0.62903(10)	0.36371(9)	0.0251(3)
H13	0.5037	0.6871	0.3688	0.030*
C14	0.49654(10)	$0.36184(10)$	0.37897(8)	0.0193(3)
C15	0.52092(11)	0.27751(10)	0.34610(8)	0.0212(3)
H15	0.5684	0.2792	0.3163	0.025*
C16	0.47558(11)	0.19112(10)	0.35717(8)	0.0237(3)
H16	0.4924	0.1350	0.3333	0.028*
C17	$0.38787(12)$	0.26308(11)	0.43226(9)	0.0270(3)
H17	0.3422	0.2587	0.4635	0.032*
C18	0.42801(11)	$0.35302(11)$	0.42343(9)	0.0242(3)
H18	0.4090	0.4080	0.4474	0.029*

under analogous conditions as for previous experiments [6-8], the title 1:1 co-crystal, $[\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}]_{2}($ bpy $)$, was isolated instead of the anticipated 2:1 co-crystal.

The Figure (70% displacement ellipsoids) shows the asymmetric unit, comprising one full molecule each of $\operatorname{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ and bpy, linked by a thioamide-N$\mathrm{H} \cdots \mathrm{N}$ (pyridyl) hydrogen bond. The bpy molecule is significantly twisted as seen in the dihedral angle of $24.36(7)^{\circ}$ between the pyridyl rings. The central CNOS chromophore in
the alkoxycarbothioamide molecule is planar as is expected, but what was not expected is the anti-disposition of the thioamide- $\mathrm{N}-\mathrm{H}$ and thione-S atoms. The alkoxycarbothioamide molecule is twisted with the dihedral angle between the central residue and the pendent phenyl group being 43.46(4) ${ }^{\circ}$.

A comparison of the $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ molecule in the present report with those in its pure form [5] and in its (centrosymmetric) co-crystal with trans-1,2-bis(4-pyridyl)ethylene [6] shows the $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ molecules to be also twisted with dihedral angles of $60.92(4)$ and $31.40(6)^{\circ}$, respectively, between the least-squares planes through the CNOS and phenyl residues. The key difference between the new and literature structures is in the relative orientations of the thioamide $-\mathrm{N}-\mathrm{H}$ and thione-S atoms. Indeed, the overwhelming majority of alkoxycarbothioamide molecules [9], including those functioning as coformers in co-crystals have a syn-arrangement of thioamide- $\mathrm{N}-\mathrm{H}$ and thione-S atoms [6-8], there being only three exceptional structures. Thus, in $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H})(4-\mathrm{C}(=0) \mathrm{Me}) \mathrm{Ph})$ [5], owing to the dictates of thioamide- $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) hydrogen bonding, and in each of (4-pyridyl)- $\mathrm{CH}_{2} \mathrm{OC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ [10] and (cinchonan-9-yl)OC($=\mathrm{S}$)N(H)(2,4-MeO) ${ }_{2} \mathrm{Ph}$ [11], owing to the dictates of thioamide $-\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (pyridyl) hydrogen bonding, anti-dispositions of the thioamide- $\mathrm{N}-\mathrm{H}$ and thione-S atoms are observed. Calculations [5], showed the energy differences between syn- and anti-conformations in these molecules differed by as little as $4-8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Thus, the surprising observation is the predominance of the syn-conformation.

In the molecular packing, both thione-S and pyridylN atoms are available for forming supramolecular aggregation via weak hydrogen bonds and it is the latter that does so. Thus, methyl-C $-\mathrm{H} \cdots \mathrm{N}$ (pyridyl) contacts are noted [C8H8a $\cdots \mathrm{N} 3^{\mathrm{i}}=2.59 \AA$ and 159° for $\left.1-x, 1-y, 1-z\right]$ leading to centrosymmeric, four-molecule supramolecular aggregates in the crystal.

Acknowledgements: Sunway University is thanked for support of biological and crystal engineering studies of metal thiocarbamides.

References

1. Agilent Technologies. CrysAlis ${ }^{\text {PRO }}$. Agilent Technologies, Santa Clara, CA, USA (2013).
2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849-854.
5. Ho, S. Y.; Bettens, R. P. A.; Dakternieks, D.; Duthie, A.; Tiekink, E. R. T.: Prevalence of the thioamide $\{\cdots \mathrm{H}-\mathrm{N}-\mathrm{C}=\mathrm{S}\}_{2}$ synthon-solid-state (X-ray crystallography), solution (NMR) and gas-phase (theoretical) structures of O-methyl-N-arylthiocarbamides. CrystEngComm 7 (2005) 682-689.
6. Ellis, C. A.; Miller, M. A.; Spencer, J.; Zukerman-Schpector, J.; Tiekink, E. R. T.: Co-crystallization experiments of thiocarbamides with bipyridine-type molecules. CrystEngComm 11 (2009) 1352-1361.
7. Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of the co-crystal O-isopropyl phenylcarbamothioate - 4,4'bipyridine (2/1), $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}$. Z. Kristallogr. -NCS 233 (2018) 491-492.
8. Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of the $\operatorname{bis}((E)-$ O -ethyl- N -phenylthiocarbamate) - 4, $\mathbf{4}^{\prime}$-bipyridine co-crystal (2/1), $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$. Z. Kristallogr. -NCS 233 (2018) 499-501.
9. Jotani, M. M.; Yeo, C. I.; Tiekink, E. R. T.: A new monoclinic polymorph of N -(3-methylphenyl) ethoxycarbothioamide: crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 1889-1897.
10. Xiao, H.-L.; Wang, K.-F.; Jian, F. F.: (4-Pyridyl)methyl N-phenylthiocarbamate. Acta Crystallogr. E62 (2006) 02852-0853.
11. Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y.: Asymmetric bromolactonization using amino-thiocarbamate catalyst. J. Am. Chem. Soc. 132 (2010) 15474-15476.

[^0]: *Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my
 Chien Ing Yeo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

