Felicia Phei Lin Lim, Anton V. Dolzhenko, Nathan R. Halcovitch and Edward R.T. Tiekink*

Crystal structure of 7-(4-methylphenyl)imidazo [1,2-a][1, 3, 5]triazin-4-amine, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5}$

https://doi.org/10.1515/ncrs-2017-0371
Received November 27, 2017; accepted February 24, 2018; available online March 15, 2018

Abstract

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5}$, monoclinic, $\quad P 2_{1} / n \quad$ (no. 14), $\quad a=7.3455(1) \AA$, $b=12.2470(1) \AA, \quad c=12.1689(1) \AA, \quad \beta=103.505(1)^{\circ}$, $V=1064.45(2) \AA^{3}, Z=4, R_{\mathrm{gt}}(F)=0.0365, w R_{\text {ref }}\left(F^{2}\right)=0.0987$, $T=100 \mathrm{~K}$.

CCDC no.: 1825596

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The compound was prepared and characterised as described in the literature [5]. Crystals for the crystallographic study were obtained from the slow evaporation of a very dilute methanol solution.

Experimental details

The C-bound H atoms were geometrically placed (C -$\mathrm{H}=0.98-0.99 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(\mathrm{C})$. The N -bound hydrogen atoms were located in difference Fourier maps, but were refined with a distance

[^0]Table 1: Data collection and handling.

Crystal:	Block, colourless
Size:	$0.44 \times 0.16 \times 0.09 \mathrm{~mm}$
Wavelength:	Cu $K \alpha$ radiation $(1.54184 \AA)$
$\mu:$	$0.73 \mathrm{~mm}^{-1}$
Diffractometer, scan mode:	SuperNova, φ and ω-scans
$\theta_{\text {max }}$, completeness:	$76.5^{\circ},>99 \%$
$N(h k l)_{\text {measured }}, N(h k l)_{\text {unique }}, R_{\text {int }}:$	$18249,2225,0.026$
Criterion for $I_{\text {obs }}, N\left(h k l_{\text {gt }}:\right.$	$I_{\text {obs }}>2 \sigma\left(I_{\text {obs }}\right), 2132$
$N(\text { param })_{\text {refined }}:$	163
Programs:	CrysAlis $^{\text {PRO }}$ [1], SHELX [2, 3],
	WinGX and ORTEP [4]

restraint of $\mathrm{N}-\mathrm{H}=0.88 \pm 0.01 \AA$, and with unconstrained $U_{\text {iso }}(\mathrm{H})$.

Discussion

The 5-aza-7-deaza-isostere (imidazo[1,2-a][1, 3, 5]triazine) of the purine system is an important scaffold for the construction of various drugs. Such compounds have been developed as inhibitors for enzymes, e.g. focal adhesion kinase [6]. Further, these compounds display anti-viral activity [7], are agonists of opioid m-receptors [8] and function as ligands for adenosine receptors [9]. A hindrance to the embellishment of this class of compound has been the difficulty in their synthesis. Very recently, a new procedure for the synthesis of 5-aza-7-deaza-isosteres was developed, i.e. through the reaction of 2aminoimidazoles, triethylorthoformate and cyanamide under microwave irradiation [5]. The title compound was one of the new compounds synthesised in the course of that study.

The title molecule is shown in the figure (70% displacement ellipsoids) and comprises a six- and five-membered fused ring system connected to the 4-methylphenyl group at C4. The r.m.s. deviation of the nine atoms of the imidazotriazine group is 0.0218 Å with the maximum deviations being $0.0399(7) \AA$ for the C2 atom and to the other side of the leastsquares plane, $0.0273(7) \AA$ for the C3 atom. The amino-N5 atom lies $0.1258(13) \AA$ out of the plane in the direction of the C 2 atom. There is a twist between this plane and that through the appended 4-methylphenyl group as seen in the dihedral angle of $12.39(4)^{\circ}$ formed between them. The overall molecular geometry resembles that reported for the 4-methoxyphenyl derivative [5].

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}).

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}_{\text {iso }}{ }^{*} / \boldsymbol{U}_{\text {eq }}$
N1	$0.65755(12)$	$0.76747(7)$	$0.76013(7)$	$0.0160(2)$
N2	$0.56271(12)$	$0.90789(7)$	$0.62085(7)$	$0.0152(2)$
N3	$0.43165(12)$	$0.73441(7)$	$0.58693(7)$	$0.0135(2)$
N4	$0.51177(12)$	$0.59379(7)$	$0.70583(7)$	$0.0153(2)$
N5	$0.35748(13)$	$0.86947(7)$	$0.44944(7)$	$0.0167(2)$
H1N	$0.2954(19)$	$0.8213(10)$	$0.4000(11)$	$0.027(4)^{*}$
H2N	$0.382(2)$	$0.9366(8)$	$0.4286(12)$	$0.026(4)^{*}$
C1	$0.65857(14)$	$0.86774(8)$	$0.72106(8)$	$0.0158(2)$
H1	0.7367	0.9183	0.7696	0.019^{*}
C2	$0.45045(14)$	$0.83930(8)$	$0.55095(8)$	$0.0137(2)$
C3	$0.32629(14)$	$0.64623(8)$	$0.53665(8)$	$0.0145(2)$
H3	0.2379	0.6448	0.4659	0.017^{*}
C4	$0.37712(14)$	$0.56166(8)$	$0.61100(8)$	$0.0143(2)$
C5	$0.54085(14)$	$0.69780(8)$	$0.68995(8)$	$0.0139(2)$
C6	$0.30889(14)$	$0.44836(8)$	$0.59856(8)$	$0.0147(2)$
C7	$0.20768(15)$	$0.40938(9)$	$0.49422(9)$	$0.0175(2)$
H7	0.1760	0.4576	0.4315	0.021^{*}
C8	$0.15305(15)$	$0.30053(9)$	$0.48163(9)$	$0.0184(2)$
H8	0.0847	0.2754	0.4100	0.022^{*}
C9	$0.19638(14)$	$0.22754(8)$	$0.57174(9)$	$0.0172(2)$
C10	$0.29339(15)$	$0.26757(8)$	$0.67647(9)$	$0.0186(2)$
H10	0.3222	0.2196	0.7395	0.022^{*}
C11	$0.34874(15)$	$0.37631(8)$	$0.69031(9)$	$0.0172(2)$
H11	0.4140	0.4018	0.7625	0.021^{*}
C12	$0.14124(16)$	$0.10914(9)$	$0.55662(9)$	$0.0212(2)$
H12A	0.0357	0.0951	0.5912	0.032^{*}
H12B	0.2476	0.0633	0.5930	0.032^{*}
H12C	0.1045	0.0919	0.4758	0.032^{*}
L15				

As anticipated, the molecular packing features a number of conventional hydrogen-bonding interactions. Thus, centrosymmetricaly related molecules associate via amine-$\mathrm{N}-\mathrm{H} \cdots \mathrm{N}($ triazine $)$ hydrogen bonds and eight-membered $\{\cdots \mathrm{HNCN}\}_{2}$ synthons [N5-H2n $\cdots \mathrm{N} 2:$ 2.066(11) \AA and $179.6(17)^{\circ}$ for symmetry operation $\left.1-x, 2-y, 1-z\right]$. The dimeric aggregates are connected into twisted, one-dimensional supramolecular chains, parallel to $\left[\begin{array}{lll}1 & 0 & \overline{1}\end{array}\right]$, via amine$\mathrm{H} \cdots$ amine $-\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (triazine) hydrogen bonds, involving the other amine-H and triazine-N atoms [N5-H1n $\cdots \mathrm{N} 1$:
2.074(13) \AA and $168.2(12)^{\circ}$ for symmetry operation $-1 / 2+x$, $3 / 2-y,-1 / 2+z]$.

Acknowledgements: This work is supported by the Ministry of Higher Education, Malaysia under the Fundamental Research Grant Scheme (FRGS).

References

1. Rigaku/Oxford Diffraction: CrysAlisPro. Rigaku Corporation, The Woodlands, TX, USA (2015).
2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849-854.
5. Lim, F. P. L.; Low, S. T.; Ho, E. L. K.; Halcovitch, N. R.; Tiekink, E. R. T.; Dolzhenko, A. V.: A multicomponent reaction of 2-aminoimidazoles: microwave-assisted synthesis of novel 5-aza-7-deaza-adenines. RSC Adv. 7 (2017) 51062-51068.
6. Dao, P.; Smith, N.; Tomkiewicz-Raulet, C.; Yen-Pon, E.; Camacho-Artacho, M.; Lietha, D.; Herbeuval, J.-P.; Coumoul, X.; Garbay, C.; Chen, H.: Design, synthesis, and evaluation of novel imidazo[1,2-a][1, 3, 5]triazines and their derivatives as focal adhesion kinase inhibitors with antitumor activity. J. Med. Chem. 58 (2015) 237-251.
7. Dukhan, D.; Leroy, F.; Peyronnet, J.; Bosc, E.; Chaves, D.; Durka, M.; Storer, R.; La Colla, P.; Seela, F.; Gosselin, G.: Synthesis of 5-aza-7-deazaguanine nucleoside derivatives as potential anti-flavivirus agents. Nucleosides Nucleotides Nucleic Acids 24 (2005) 671-674.
8. Matosiuk, D.; Fidecka, S.; Antkiewicz-Michaluk, L.; Lipkowski, J.; Dybala, I.; Koziol, A. E.: Synthesis and pharmacological activity of new carbonyl derivatives of 1-aryl-2-iminoimidazolidine: Part 2. Synthesis and pharmacological activity of 1,6-diaryl-5,7(1H)dioxo-2,3-dihydroimidazo[1,2-a][1, 3, 5]triazines. Eur. J. Med. Chem. 37 (2002) 761-772.
9. Da Settimo, F.; Primofiore, G.; Taliani, S.; La Motta, C.; Novellino, E.; Greco, G.; Lavecchia, A.; Cosimelli, B.; Iadanza, M.; Klotz, K.-N.; Tuscano, D.; Trincavelli, M. L.; Martini, C.: A1 adenosine receptor antagonists, 3-aryl[1, 2, 4]triazino[4,3-a]benzimidazol-4-(10H)-ones (ATBIs) and N-alkyl and N-acyl-(7-substituted-2-phenylimidazo[1,2-a][1, 3, 5]triazin $-4-\mathrm{yl}$)amines (ITAs): different recognition of bovine and human binding sites. Drug Dev. Res. 63 (2004) 1-7.

[^0]: *Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my
 Felicia Phei Lin Lim and Anton V. Dolzhenko: School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
 Nathan R. Halcovitch: Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK

