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Abstract

Ultrasound is becoming increasingly important in medicine, both as a diagnostic tool

and as a therapeutic modality. At present, experienced sonographers observe trainees

as they generate hundreds of images, constantly providing them feedback and eventu-

ally deciding if they have the appropriate skills and knowledge to perform ultrasound

independently.

This research seeks to advance towards developing an automated system capable of

assessing the motion of an ultrasound transducer and differentiate between a novice,

an intermediate and an expert sonographer. The research in this thesis synchronizes

the ultrasound images with three depth sensors (Microsoft Kinect) placed on the top,

left and right side of the patient to ensure the visibility of the ultrasound probe.

Videos obtained from the three categories of sonographers are manually labeled and

compared using Studiocode Development Environment to complete the items on the

medical form checklist.

Next, this thesis investigates and applies well known techniques used to smooth and

suppress speckle noise in ultrasound images by using quality metrics to test their

performance and show the benefits each one can contribute. Finally, this thesis in-

vestigates the problem of shadow detection in ultrasound imaging and proposes to
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detect shadows automatically with an ultrasound confidence map using a random

walks algorithm. The results show that the proposed algorithm achieves an accu-

racy of automatic detection of up to 85%, based on both the expert and manual

segmentation.
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Chapter 1

Introduction and Overview

1.1 Introduction

Ultrasound imaging is being widely used for many clinical applications in a rapid,

inexpensive, non-ionizing, and non-invasive manner. Since the ultrasound has be-

come increasingly important in medicine, both as a diagnostic tool and a therapeutic

modality, using the ultrasound provides interactive and timely information during

surgical procedures. Detailed images of a variety of organs can be obtained when

ultrasound waves are directed towards the organ while in contact with the skin. Ul-

trasound waves can not travel through bone or air in general. However, image quality

and interpretation is highly dependent on the operator’s skill.

In this research, several depth sensors are used to track the ultrasound transducer

during image generation. Kinect’s were placed on the top, left and right side of the

patient to ensure the visibility of the ultrasound probe (See Fig 1.1). The Kinect is a

motion sensing input device by Microsoft, made for the Xbox 360 video game console

and Windows PCs. Based on a webcam-style add-on peripheral for the Xbox 360
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Figure 1.1: An overview of experimental design.

Figure 1.2: Left: Kinect v1, Right: Kinect v2.

console, it gives users control and interacts with the Xbox 360 without the need to

touch a game controller, through a natural user interface using gestures and spoken

commands (See Fig 1.2) [23].

In addition, one of the major factors limiting visual perception and processing in the

ultrasound image is a speckle noise. These noises can cause signal and image degra-

dation, not only in an ultrasound image but also in many medical image modalities

[28]. Some of the filtering techniques are used to suppress and smooth speckle noise

in ultrasound images by using quality metrics to test their performance and show the

benefits each one can contribute.

Furthermore, when the ultrasound hits an object such as bone or air, the energy is

completely forming an acoustic shadow deep to the highly reflective surface. Shadow-
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ing is normally pronounced in ultrasound images, contributes to diagnosis and can be

helpful in grading image quality. Therefore, the detection of these shadow regions is of

high importance. In this thesis, automatic shadow detection in ultrasound images is

carried out using a confidence map with random walks. Consequently it is compared

with manual shadow identification to estimate the accuracy of the algorithm.
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1.2 Research Motivation

The quality of collecting data inside operating room impacts every decision made to

evaluate the skills of the person doing the scan. Consequently, there is a need for so-

lutions to facilitate data collection and evaluate scanning skills for research studying

and analysis. The demand for accurate and reliable data has been more important.

Using ultrasound provides interactive and timely information during surgical proce-

dures. In addition, depth sensors (Microsoft Kinect) interpret body movements into

a language the computer understands, removing the need for a remote control. This

is perfect for the operating room because it means surgeons don’t have to leave the

sterile field to check scans of the patient. In short, it becomes a hands-free GPS sys-

tem in surgery. Subsequently, this research seeks to advance towards developing an

automated system capable of assessing the motion of an ultrasound transducer and

differentiate between a novice, an intermediate and an expert sonographer.
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1.3 Thesis Contributions

This thesis can be roughly contributed into three parts:

• Data Collection and Synchronization: The first part represents collecting

and synchronizing data from three kinects capable of tracking the ultrasound

transducer during image generation. The videos obtained from the three cat-

egories of sonographers are manually labeled and compared using Studiocode

Development Environment with a performance checklist.

• Speckle Noise Reduction: The second part investigates noise reduction on

ultrasound images. During the image acquisition and transmission process,

noise was observed to be one of the more important factors affecting ultrasound

images. In this thesis, we discuss six filters namely, Median, Gaussian, Average,

Log, Wiener and N-D filter for speckle noise reduction and suppression. We

calculate image quality metrics to evaluate which filter can contribute.

• Shadows Detection The third part addresses an automatic shadow detection

method based on ultrasound confidence map using a random walks algorithm.

Shadowing is normally pronounced in ultrasound images, contributes to diagno-

sis and can be helpful in grading image quality. Consequently, detection these

shadows can help with low quality image acquisitions due to large shadowing

artifacts. For qualitative evaluation, the comparison between automatic detec-

tion and manual segmentation is proposed to demonstrate the accuracy of the

algorithm.
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1.4 Thesis Organization

The thesis is organized as follows:

• Chapter two provides some background information on basic ultrasound physics

and a review of the literature on ultrasound image analysis.

• Chapter three demonstrates the method of study ultrasound imaging operation

capture and image analysis for speckle noise reduction and detection of shadows.

• Chapter four explains and discusses the experimental results. We obtained

the solution of data collection by synchronized system inside operating room.

Applying multiple filters and using confidence maps can be solved the problem

of ultrasound imaging quality.

• Chapter five draws the conclusion and recommends future work.
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Chapter 2

Background and Literature Review
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PartI:

Basic physics of the kinect and ultrasound
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Figure 2.1: The Kinect has two cameras in the middle, a special light source on the
left and four microphones are arranged along the bottom of the sensor bar [4].

2.1 Kinect Camera Sensor

The Kinect sensor bar holds two cameras, an infrared light source, and four micro-

phones [23]. It also holds a stack of signal processing hardware with the skill to

confirm all the data produced by the cameras infrared source, and microphones. By

combining the output from these sensors, a program can track and recognize objects

in front of it, determine the direction of sound signals, and isolate them from back-

ground noise (See Fig 2.1).

Recently, Microsoft has introduced Kinect v2, which has much enhanced the depth

measurement accuracy. Regarding the depth sensing principle, Kinect v1 assumes a

structured light method, which projects patterns consisting of many stripes at once,

or of arbitrary fingers, and enables the acquisition of a multitude of samples simul-

taneously [8]. While RGB cameras capture the color information, depth cameras

compute the range information between the camera and the object, which presents a

more convenient method for three dimensional (3D) model construction and object

tracking movement detection.

9



Figure 2.2: Typical ultrasound machine [1].

2.2 Ultrasound Theory

Ultrasound is an imaging method that uses high-frequency sound waves to produce

images of structures within the body. The images can provide valuable information

for diagnosing and treating a variety of diseases and conditions [1].

2.3 Diagnostic Medical Sonography

DMS is an imaging technique in which high frequency acoustic energy is transmit-

ted into the body using an ultrasound transducer in contact with the skin, mucous

membrane or organ of the patient. The ultrasound waves reflect from tissue inter-

faces and organs and from regions of differing tissue density. The returning echoes

are picked up by the transducer elements and the data generated is used to create an

image of the structures and internal organs in different display modes (See Fig 2.2) [1].
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Figure 2.3: B-mode image of the left upper quadrant [49].

2.4 B-Mode Imaging

B-Mode Imaging is termed “brightness mode scanning”; it is known as a 2-D mode

or real time gray scale imaging. The 2-D image displayed on the monitor consists of

an array of pixels arranged within a linear or sector format. The format depends on

the type of transducer used. The intensity of echoes returning to the transducer from

the location of a reflective surface is displayed on the image as a level of brightness in

a corresponding pixel or group of pixels. The various levels of brightness make up a

spectrum of shades of gray that taken together from the image (See Fig 2.3) [49].

11



PartII:

Literature review
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In recent years, many researchers have been interested in the work of ultrasound imag-

ing analysis for different aims and with varying techniques [15][16]. Many applications

demonstrated how ultrasound has been developed, not only as a diagnostic imaging

modality but as a therapeutic modality, in which energy is deposited in tissue to in-

duce various biological effects. Some techniques that are used in ultrasound imaging

are presented later in this thesis.

2.5 Speckle Noise

Medical imaging suffers the interference of locally correlated multiplicative noises from

small scatterers which corrupt the ultrasound image. These noises are commonly

called “speckles”. In many cases, the speckle noise degrades the fine details and edge

definition, limits the contrast resolution and limits the detectability of small, low con-

trast lesions in a body and should be filtered out(See Fig 2.4). The multiplicative

speckle is converted into additive noise after logarithm compression; the noise is spa-

tially correlated, and has a Rayleigh amplitude propability density function (PDF):

[21].

PA (a) = a
σ2 exp

(
− a2

2σ2

)
, a > 0 (2.1)

For fully developed speckle magnitude, the mean to standard deviation-pointwise is

signal to noise ratio (SNR)=1.9 (5.58 dB).
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Figure 2.4: Four simulated phantoms with different contrast (a) 10dB, (b) 5dB, (c)
-5dB, (d) -10dB [21].
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In [21], the authors have implemented four filtering methods:

(1)- Wiener Filter.

(2)- Anisotropic Diffusion Filter.

(3)- Wavelet Filter.

(4)- Adaptive Filter.

The best two images are obtained with Wiener Filter and Anisotropic Diffusion Filter.

2.5.1 Wiener Filter

Since the input filter g=1 in the frequency domain, the Wiener filter is:

W = Sss
S ss + Sww

(2.2)

The power spectrum of the underlying image is modeled as:

Sss = σ2
s(√

µ2
x + µ2

y

)2 (2.3)

where σ2
s can be replaced by the mean variance of the noised image σ2

x. µx and µy

are frequency coordinators; the range is [−π, π]. Figure 2.5 shows that most speckles

are removed and that inclusions are clearly seen; even for 5dB contrast cases the

background is uniform as simulated.
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Figure 2.5: Four Wiener filter restored images for simulated phantoms with different
contrasts (a)10dB, (b)5dB, (c)-5dB, (d)-10dB [21].
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2.5.2 Anisotropic Diffusion Filter

Anisotropic diffusion is an efficient nonlinear technique for simultaneously performing

contrast enhancement and noise reduction. It smooths homogeneous image regions

and retains image edges. 
∂I
∂t

= div [c (|OI|) .OI]

I (t = 0) = I0

The main concept of Anisotropic diffusion is the diffusion coefficient. Perona and

Malik proposed 2 options:[22]

c (x) = 1
1 + (x/k)2

or

c (x) = exp
⌊
−
(
x/k2

)⌋
(2.4)

The anisotropic diffusion method can be iteratively applied to the output image:

I(n+1) = I(n) + λ× [c
(∣∣∣ONorthI

(n)
∣∣∣) .ONorthI

(n) + c
(∣∣∣OEastI

(n)
∣∣∣) .OEastI

(n)

+c
(∣∣∣OWestI

(n)
∣∣∣) .OWestI

(n) + c
(∣∣∣OSouthI

(n)
∣∣∣) .OSouthI

(n)] (2.5)

This filter method can restore a noised image well and gives better contrast while

removing speckles effectively (See Fig 2.6). In point of fact, because the parameters

in an anisotropic diffusion method are adjustable, parameters can be controlled and

the best image chosen. Figure 2.7 shows the comparison of image profile before and

after filtering, which obtained smoother images.
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Figure 2.6: Four Anisotropic diffusion filter restored images for simulated phantoms
with different contrasts (a) 10dB, (b) 5dB, (c) -5dB, (d) -10dB [21].

Figure 2.7: The profile before and after filtering [21].
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2.6 Shadow Detection

A strong reflector of sound casts an acoustic shadow; there is little energy left to

visualize the tissue behind the objects, such as bones and gallstones. The detection of

these shadows is useful for diagnosis. There limited literature on automatic methods

to detect shadows in medical imaging. Methods can be defined in two ways: Intensity

based methods [24][25] and Geometric methods [26] [27]. Intensity based methods rely

on a direct analysis of the intensities to detect dark regions. Geometric methods take

into account the probe’s geometry and analyze intensity profiles along the lines that

compose the B-scan. [13] introduced an automatic 2D ultrasound shadow detection

method that employs scan line energy and local image entropy information.

2.6.1 Extraction of scan lines

It is necessary to separate the image and the background in ultrasound imaging. [13]

has given a sequence of 2D ultrasound images. This amounts to computing a 2D mask

given the 2D + t sequence. To do so, maps of longitudinal mean and variance are

computed, and multiplied pixelwise to compute a feature map. For a given point, the

longitudinal mean is defined as the mean at a 2D pixel location over time. Background

pixels are dark and have low (or zero) variance. Points in the image foreground have

the highest values of the feature map (compared to the background). Then, points

with the highest values of the feature map are retained. Some false detections exist,

mainly due to textual data and complementary image information presented on the

ultrasound machine display. To extract scan lines of ultrasound images: first, find the

left and right boundaries of the trapezoid by thresholding and morphological image

opening. Then, fit two straight lines to the left and right borders by minimizing of
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mean square error. The probe coordination is derived from the intersection of these

two lines. Then, arbitrary scan lines can be drawn at different ultrasound propagation

directions, thereby simulating transducer beams.

2.6.2 Line rupture detection

It is required to sample line profiles according to the scan lines drawn and for each line,

K samples are computed. For each ultrasound image, an arbitrary number of scan

lines can be considered, as more scan lines provide more shadow details. The shadow

is defined as a signal rupture along the line, followed by a low signal. Therefore, signal

ruptures are detected first. Then, a local symmetric entropy criterion is computed.

For each point P of the line signal S , a sliding window of size n = 5 is used to

compute the rupture criterion R [13] :

R =
i=n∑
i=1

(
S (p− i) log S (p− i)

S (p+ i) + S (p+ i) log S (p+ i)
S (p− i)

)
(2.6)

The first term is the relative entropy of the "past"(the signal before the rupture)

knowing the "future"(the signal after the rupture) which can also be viewed as the

divergence of the past distribution given a reference signal (the future). In order to

symmetrize the criterion, the second term is added and expresses the relative entropy

of the future knowing the past. The loci where R is maximal indicate a signal rupture.

The rupture criterion R is quite general since it relies on the statistical dependency

between the future and the past samples in a sliding window. Rupture positions are

determined as zero-crossings of the gradient of R. Figure 2.8 illustrates the rupture

detection on a synthetic example.
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Figure 2.8: Illustration of the line processing on a synthetic signal [13].

2.6.3 Shadow detection

It is generally assumed that acoustic shadows are areas where the ultrasound signal

is relatively low. In [13], authors assumed that acoustic shadows are areas where the

noise is low. Since noise is modulated by signal intensity in ultrasound images, this is

not a strong assumption. When a rupture is detected and tested as a candidate for a

shadow, denote E(uf)(respectively V (uf)) and the mean (respectively the variance)

of the signal after the rupture. Figure 2.9 shows the recorded ultrasound that is the

input for the shadow detection algorithm and represents the shadow detection result

employing the method without and with regularization respectively.
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Figure 2.9: (a) Initial B-scan, (b) Raw estimation, (c) Regularized [13].
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Figure 2.10: (a) An ultrasound acquisition, (b) The XY image direction of a 3D
ultrasound [54].

In [54], the authors have proposed a shadow detection method using the previous

method [13] but on 3D ultrasound imaging to enhance the accuracy results of shad-

owing. Figure 2.10 shows a scan line simulation. However, applying this method to

3d US imaging has some weakness, because some scan line signals do not contain any

further tissue information that confirm that the shadow detection fails. An example

of this behavior can be seen in figure 2.11.
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Figure 2.11: (a) Rib shadow occurring in a renal scan, (b) Smoothed rupture cri-
terion calculated for 150 simulated scan lines, (c) Detected shadow mask applying
the adopted shadow detection approach [13], (d) Local entropy feature image, (e)
Maximum scan line energy image, derived from the accumulated scan line intensities,
(f) Improved shadow detection mask of the proposed method with gray values being
newly detected shadow regions [54].

Some of the shadow characteristics have been added to the approach to enhance the

results of shadows on a 3d ultrasound acquisition as follows:

(•)- Introduced a new value (127), which marks a possible shadow candidate.

(•)- Used a neighborhood radius of 3 pixels and a Rayleigh probability distribution

function.

(•)- Calculated the maximum possible entropy value to obtain percentage entropy

thresholds.
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(•)- calculated the accumulated intensity profile for each scan line.

Figure 2.12 shows the result of the shadow detection method applied on 3d ultra-

sound images. The enhancement algorithm presented all gray (127) mask values that

presented a new shadow information (See fig 2.12 (d)-(f). The previous method only

detected tissue values (255) (See Fig 4.12 (c) and (f))[13]. In [54], the authors achieved

a significantly improved shadow detection that outperforms the adopted literature ap-

proach.
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Figure 2.12: Detection matrix with the input ultrasound (a)–(c) and the detection
results (d)–(f) of the proposed method for minor, medium and severe shadow artifacts
[54].

.
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2.7 Automatic Shadow Detection in IVUI

In another work, an automated algorithm for shadow region detection in Intra Vas-

cular Ultrasound images was described using an adaptive threshold method [17]. The

algorithm investigated three aspects in IVUS: (1) Catheter zone, (2) Calcification re-

gion, (3) The border of shadow. The catheter zone and calcification region consist

of high gray levels in IVUS images. However, some bright regions such as parts of

catheters may be wrongly detected. Use of a Circle Hough Transform can avoid this

problem, to detect the catheters zone. The calcification region was segmented by the

Otsu method. Finally, an active contour is used to detect the border of shadow [40].

2.7.1 A. Preprocessing

The catheter artifact must be removed as a first step. The Circle Hough Transform

(CHT)can be used. The area of the circle must be identified by applying CHT to speed

up the calculations. In the next step, the Otus method is utilized to automatically

find the optimal level for the threshold and to detect the catheter zone.

(1). Otsu Threshold Method

An automatic global threshold method has been developed by the author in

[41]. His technique calculates the optimum threshold separation based on the

global property of the histogram. Only the zero and the first order cumulative

moments of the gray-level histogram are used. The total number of pixels in

the image is denoted by N and the number of pixels at with gray level is shown

by ni :

N = V1 + V2 + ...+ Vn (2.7)
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The gray-level histogram is normalized and regarded as a probability distribu-

tion:

Pi = ni
N
,Pi ≥ 0,

L∑
i=1

Pi = 1 (2.8)

The pixels are divided into classes C0 and C1 (background and object, or vice

versa) by a threshold at the gray level k; C0 denotes pixels with gray levels

[1, ..., K], and C1 denotes pixels with levels [K + 1, ..., L]. Then the probabilities

of class and the class mean gray levels, respectively, are given by:

w0 = Pr (C0) =
k∑
i=1

Pi = w (K) (2.9)

w1 = Pr (C1) =
L∑
i=k

Pi = 1− w (K) (2.10)

and

µ0 =
K∑
i=1

iPr (i|C0) =
K∑
i=1

iPi
w0

= µ (K)
w (K) (2.11)

µ1 =
L∑

K+1
iPr (i|C1) =

L∑
i+K

iPi

w1
= µT − µ (K)

1− w (K) (2.12)

where A (K) and µ (K) are the zero-th and first order cumulative moments of

the histogram up to the k-th level:

w (K) =
K∑
i=1

Pi (2.13)

and

µ (K) =
K∑
i=1

iPi (2.14)
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and µT is the total mean level of the original image.

µT =
L∑
i=1

= iPi (2.15)

The optimal threshold is determined by the value that maximizes the between-

class variance:[41]

σ2
B (K) = [µTw (K)− µ (K)]2

w (K) [1− w (K)] (2.16)

Therefore, the optimal threshold K∗ is defined by:

σ2
B (K∗) = max0≤K<Lσ

2
B (K∗) (2.17)

The catheter zone is detected by thresholding with K∗ value.

(2). The Circle Hough Transform

One of the most common algorithms to detect circle shape is CHT [40]. The

transform is computed by using the features of edges in the image, and the

peaks in the transformed image correspond to the centers of circular features

of the image. A circle with radius R and center (a, b) can be described by the

parametric equations.

(XP − a)2 + (YP − b)2 = R2 (2.18)

where XP and YP are the coordinates of the pixel of edges, “a” and “b” are the

coordinates of the center of the circle which is also the center of the image in

this data and R is the radius of the circle.
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Figure 2.13: (a) A typical intravascular ultrasound image, (b) An example of catheter
zone detection by CHT [17].

(3). Catheter Artifact Removal

A constant radius and the full circle are obtained using the Circle Hough Trans-

form, but the size of the catheter zone varies in each image. Therefore, a partial

circle with a large radius in the parameter space produces a larger number than

a complete circle with a small radius. To solve this problem, the number of

pixels in each detected circular object is divided by the number of pixels in the

full circle with the same radius. This provide a rate of circularity of the object:

Rateofcircularity = Npd

Npc
(2.19)

where Npd is the number of pixels of the detected circular object and Npc is

the number of pixels of a complete circle with the same radius. The maximum

number in the “rate of circularity” parameter gives the maximum radius of

catheter as in figure 2.13.
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2.7.2 B. Calcification region detection

Applying threshold methods can be detected the calcification regions which have a

high gray level in IVUS images. However, the level of the threshold is different for

each image, so an adaptive threshold has been used. [33] has developed a multi scale

segmentation method for calcification detection.

2.7.3 C. Detection of acoustic shadow

The acoustic shadow presents a low value of median while the shadow region appears

as a dark region. The following algorithm was applied:

(1). Determining rightmost and leftmost points of segmented objects.

(2). Determining the lowest points of segmented objects.

(3). Determining the center of segmented objects.

(4). Calculating the median gray level value of a square from the rightmost to left-

most point and from the lowest points of segmented objects to the bottom of

the image (See Fig 2.14).

(5). Calculating maximum gray level value in 7× 7 window surrounded centroids.

(6). If med
maxcen

≤ Th , then classify the segmented object as a calcification accompa-

nied by an acoustic shadow.
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Figure 2.14: Example of detection of calcification due to acoustic shadow [17].

2.7.4 D. Shadow border detection

It is very common to apply active contour models to solve computer vision problems,

including image segmentation, edge detection and visual tracking [50] [52]. In con-

trast, [53] has applied an active contour without an edge model to identify the shadow

region. The idea is to choose an initial curve(a square or a circle)and then deform this

edge to get the object’s edge. In order to detect the border of the acoustic shadow, the

active contour has been initialized by a 5 × 5 window in the middle of the hachured

area as shown in figure 2.15.

32



Figure 2.15: Example of initialization window of active contour in shadow border
detection [17].

Figure 2.16 shows the shadow regions as automatically segmented and compared with

experts’ results. The results of the test are summarized in table 2.1.
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Figure 2.16: Example of detecting border of shadow in intravascular image. (a,b) are
the original images, (c,d) are the corresponding automatically segmented images, (e,f)
are the corresponding manually segmented images [17].
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Table 2.1: Table of results
Number of data Regions cor-

rectly classified
Regions incor-
rectly classified

Shadow region 15 14 1
Normal tissue 15 13 2
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Chapter 3

Experimental Setup and Proposed

Methods

3.1 Data Collection and Synchronization

In this step of the research thesis, ultrasound images and depth images from three

sides of the patient are collected and synchronized to ensure the visibility of the US

probe. Ultrasound and color images are used for both medical evaluation and move-

ment analysis, while depth images are dedicated to movement analysis. The overview

of this step is illustrated in figure 3.1. Two Kinects 2 are placed on both sides of the

patient and another Kinect is mounted above the patient. Because of the USB band-

width limitations, only one Kinect was connected to each laptop. Thus, a distributed

network is built to enable data collection from multiple high-bandwidth devices.
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Figure 3.1: System design
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The computers used are classified into two classes: collecting nodes and control nodes;

collecting nodes wait for commands from a control node at the same time to ensure

the data collections are started and stopped at the same time. Collected data are

written to collecting nodes’ local hard disk drivers. These files are named with the

UNIX timestamp. To make sure the timestamps consist of all collecting nodes, NTP

(Network Time Protocol) is used to synchronize the RTC (Real-time clock) of all

nodes. The format of saved data is motion JPEG. Each frame is saved as an indepen-

dent JPEG file on disk and named with the current timestamp. Two collecting nodes

control two Kinect2 because each Kinect2 consumes approximately 50% of the USB

3.0 bandwidth. The remaining devices (US and Kinect) are controlled by another

collecting node. The control node program also runs on that computer. When an

experiment begins, the control node sends a ‘start’ command to all collecting nodes.

Collecting nodes show ‘recording’ on screen indicating the recording has begun. A

folder is created on each collecting node and all frames are saved into that folder. The

control node sends a ‘stop’ command to each collecting node when the experiment is

finished. Another program converts these frames into a video file with interpolation

to ensure the consistency of the frame-per-second parameter. The videos will be used

for further analysis.
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3.2 Studiocode Development Environment

Studiocode is a much improved way of reviewing and analyzing role play of a simu-

lation’s recorded video. It is video coding software that allows the use of either live

stream video or pre-recorded video. In addition, Studiocode enables the playing of

multiple different videos side by side for comparison during coding. This is particu-

larly useful if different vantage points or angles of the same event are being coded.

The key benefits of studiocode video analysis software are as follows:

• Increases the accuracy of observations,

• Improves the quality of feedback,

• Reinforces the training,

• Provides a permanent record and

• Demonstrates improvements.

In this work, it is outlined more fully in a later chapter how studiocode is used to

analyze video data of sonographers inside an operating room to complete the items

of the training checklist.
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3.3 Speckle Noise Reduction

In the last few decades, several techniques for speckle noise reduction and suppression

have been developed. In 2006, research produced speckle reduction with using two

approaches:

(1) the compounding approach, (2) the post processing approach [29]. The com-

pounding approach includes methods in which the data acquisition procedure has

been modified to produce several images of the same region and combine them to

form a single image [30]. The post-processing approach includes many different fil-

tering techniques that are implemented on the B-mode images after they have been

generated. They are divided mainly into two classes:[31]

(i) Techniques that are applied directly in the original image

(ii) Techniques that are applied in the frequency domain.

Latterly, the post formation filtering methods applied directly to the original image

have been the focus of much research. Techniques in this approach include many fixed

and adaptive filters,such as adaptive filter reduction (AFR),an adaptive weighted me-

dian filter (AWMF) and nonlinear diffusion.[32] [34] [35]

One of the main problems when employing an image processing technique is assessing

its performance. The quality of a reconstructed image could be measured by the tra-

ditional distortion measures such as mean-square error (MSE), peak signal-to-noise

ratio (PSNR), and correlation coefficients between the original and reconstructed im-

ages [36]. [29] evaluate the effectiveness of speckle reduction in the ultrasound images

for each simulated image, by statistically estimating three image quality parameters,

contrast to noise ratio (CNR), lesion signal to noise ratio (LSNR) and signal to noise
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ratio (SNR), as defined in [37]. The parameter SNR is used to evaluate the im-

provements in smoothing, as observed in homogeneous regions of an image (speckle

region).

Well known techniques of speckle noise in the smoothing or suppression are applied

directly in the noise image. A comparison of the methods studied is based on an

experiment using quality metrics to test their performance and show the benefits

each one can contribute.

In the following subsection, the different types of noise in ultrasound images and the

techniques used in this thesis to remove them are described.

3.3.1 Types of noise

There are different types of noise present in the image.

• Gaussian noise: shows little variation in the image for reasons such as different

sensor gain, quantization errors in digitization, etc. At first sight, a noisy image

appears to be the same as the original one but is very different.

• Multiplicative or Speckle noise: the result of the multiplication of two signals.

In all cases, noise always implies a sudden change in an image’s intensity level;

thus, noise is considered an image’s high frequency component.

• Poisson noise: is a basic form of uncertainty associated with the measurement of

light, inherent to the quantized nature of light and the independence of Pois-

son detections. Its expected magnitude is signal-dependent and constitutes the

dominant source of image noise, except in low-light conditions.

• Salt & Pepper noise: is also known as Impulse noise and can appear when the

sensor that picks up the image is saturated and the value of the pixel shows a
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high value or when the signal is lost and the pixel shows a low value. In this

case, the image has too high or too low pixel values.

3.3.2 Types of filters

A filtering method should be used to remove the unwanted noise. Some types of filters

are studied in this thesis.

1. Median filter is a nonlinear digital filtering technique, often used to remove

noise. Median filtering is very widely used in digital image processing because it

preserves edges while removing noise.[37] used the median intensity in a suitably

sized and shaped regionWij surrounding the pixel (i, j) of interest as the output

pixel value, therefore, eliminating any impulsive artifacts with an area (in pixels)

of less than half the region size ‖Wij‖.

2. Gaussian filter is implemented to remove the Speckle Noise present in ultra-

sound images. In this technique, the average value of the surrounding pixels or

neighboring pixels replaces the noisy pixel present in the image, which is based

on Gaussian distribution.

3. Average filter is a linear filter and a very useful filter for removing certain

types of noise. It can remove grain noise from a photograph. Because each pixel

is set to the average of the pixels in its neighborhood, local variations caused

by grain are reduced [55].

4. Log filter is a laplacian filter with a Gaussian filter used to find areas of rapid

change. It is commonly used to smooth the image. However, this filter does not

acceptably affect noise.

5. Wiener filter is a low pass filter that filters images which have been degraded

42



by constant power additive noise. It helps in inverting the blur and executes the

deconvolution with a high pass filter and removes the noise with a compression

operation [43].

6. N-D filter The imfilter function is used to perform filtering of multidimensional

images. It computes each element of the output using a double-precision floating

point. It shortens the output element that exceeds certain types of ranges and

rounds the fractional value if the original image is an integer or logical array.

3.3.3 Performance analysis

In this subsection, the performance analysis techniques for each filter have been stud-

ied using image quality metrics. The metrics used to experiment with images are the

well-known mean-square error (MSE), signal-to-noise ratio (SNR) and peak signal-to-

noise ratio (PSNR)(See Fig 3.2). The MSE, SNR and PSNR metrics are defined in

the following expressions:

MSE = 1
M.N

M−1∑
m=0

N−1∑
n=0

[
I(m,n)− Î(m,n)

]2
(3.1)

SNR = 10. log10

1
M.N

∑M−1
m=0

∑N−1
n=0 I

2(m,n)
MSE

(3.2)

PSNR = 10. log10
2552

MSE
(3.3)

In these expressions, I is the original image and Î is the estimation of the original

image obtained from a noisy image. The images measurements are M.N .
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Figure 3.2: Perform work sequence

.
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3.4 Ultrasound Shadowing

An utomatic shadow detection in ultrasound images is carried out using a confidence

map with random walks. Consequently it is compared with manual shadow identifi-

cation to estimate the accuracy of the algorithm. The work presented in this section

is beyond on the paper by [47] with the following contributions on new novelties:

3.4.1 Temporal compression

Temporal compression takes advantage of areas of the image that remain unchanged

from frame to frame, throwing out data for repeated pixels.

• The goal of this approach is to separate the shadows areas and the unreliable

information on images.

• While images obtained from confidence map has different appearances of white, gray

and black colors, those colors need to be more obvious to find shadows regions.

Based on that, using temporal compression can find the shadow segmentation

on images clearly.

3.4.2 Thresholding operation

Thersholding is a widely used technique for image segmentation. It is useful in discrim-

inating forgrround from the background. Thresholding operation is used to convert

multilevel gray scale image into a binary image. The advantage of obtaining first

binary image is that it reduces the complexity of the data and simplifies the process

of recognition and classification.
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Here, the threshold determines shadow regions based on confidence map:

g (x, y) =


0 if f (x, y) < T

1 if f (x, y) ≥ T

Where T represents threshold value, f(x, y) represents confidence map image pixels,

and g(x, y) represents threshold image.

3.4.3 Comparison between automatic and manual detection

Accuracy is needed for automatic shadows detection algorithm. Consequently, the

dice coefficient between automatic detection and manual segmentation is computing

to demonstrate the accuracy of the results. It is often used to quantify the perfor-

mance of image segmentation methods. Chapter 4 will describe the formula used and

thus final results.

3.4.4 Random walks

Random walk is a widely used algorithm for image segmentation in the computer vi-

sion and medical image segmentation community [44] [42] [39] [45] [38]. In this thesis,

a technique for detecting shadows in ultrasound images by calculating a per pixel con-

fidence map which is employed within a random walks framework is proposed. The

random walks algorithm was originally introduced for K-label image segmentation.

The image is defined as an undirected weighted graph G = (V,E) with an edge e

spanning two vertices vi and vj denoted by eij . The weight of an edge eij is denoted

by w = (eij) or wij that represents the likelihood of a random walk crossing that

edge and the degree of a vertex i is di = ∑
w (eij). The probability of a random

walk starting at a pixel to reach the first K seed point is computed from the graph
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Laplacian matrix, which is defined as:

Lij =


di if i = j

−wij if viand vj are adjacent nodes

0 otherwise

(3.4)

where Lij is indexed by vertices vi and vj. Different choices can be made for the

weighting function wij, including the commonly applied Gaussian weighting wij =

exp
(
−β (gi − gj)2

)
, where gi is the pixel intensity at node i and β is a free parameter.

Alternatively, the Laplacian matrix can also be constructed from the graph incidence

matrix A and the diagonal matrix of edge weights C by L = ATCA. Note that L is

a sparse, symmetric, and semi-definite matrix.

An important matrix for describing graph problems is the Graph Laplacian, defined

as:

L = ATCA = D −W (3.5)

D and W are defined as:

D =



2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2


W =



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


(3.6)

The D matrix is referred to as the degree matrix and has the number of edges meeting

at the node; i.e, the matrix is n by n and rows and columns represent the graph nodes.

The matrix W is referred to as the adjacency matrix. The non-zero matrix entries

describe which nodes in the n by n matrix share an edge. The diagonal is zero, as

nodes are not adjacent to themselves. The resulting Weighted Graph Laplacian is
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defined as:

L = ATCA =



−1 −1 0 0

0 1 0 −1

1 0 −1 0

0 0 1 1





c1 0 0 0

0 c2 0 0

0 0 c3 0

0 0 0 c4





−1 0 1 0

−1 1 0 0

0 0 −1 1

0 −1 0 1


(3.7)

where c1, c2, c3 and c4 are the weights for the corresponding edges. Both the inci-

dence and Laplacian matrix are highly interesting and have various properties. Sub-

sequently, L is re-ordered and decomposed into blocks of marked M and unmarked

nodes U :

L =

LM B

BT LU

 (3.8)

The explanation for the desired probabilities is obtained by solving the system of

linear equations:

LUxU = −BTxM (3.9)

where xu represents the unknown probabilities for the unmarked nodes and xm the

known unit probabilities at the seed nodes. For multiple labels the previous equation

becomes:

LUX = −BTM (3.10)

The matrix sizes provide further intuition as:

Ln×n =

LM(K×K) BK×q

BT
q×K LU(q×q)

 , LU(q×q)Xq×l = −βTq×KMK×l (3.11)

where n is the number of nodes, k is the number of marked nodes, q is the number of

unmarked nodes, and l is the number of labels. The system is solved for l − 1 labels

48



as ∑i x
l
i = 1.

3.5 Ultrasound confidence map

The confidence map is a probability density function on the new image, assigning

each pixel of the new image a probability, which is the probability of the pixel color

occurring in the object in the previous image [47]. Here, the random walk provides

the desired solution to find the probability of the first pixel of reaching each of the

virtual transducer elements, starting with the required seed placement procedure.

Two constraints are integrated into the random walks framework with a new weighting

function given by:

Wij =



WH
ij if i, j adjacent and eijεEH

W V
ij if i, j adjacent and eijεEV

WD
ij if i, j adjacent and eijεED

0 otherwise

(3.12)

WH
ij = exp (−β (|ci − cj|+ γ)) (3.13)

W V
ij = exp (−β (|ci − cj|)) (3.14)

WD
ij = exp

(
−β

(
|ci − cj|+

√
2.γ

))
(3.15)

ci = gi exp (−αli) (3.16)

Where EH , EV , and ED are the edge along the horizontal, vertical and diagonal

graph direction respectively. Figure 3.3 is an illustration of the seed placement. The

first row resembles the virtual transducer elements with the probabilities set to unity
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Figure 3.3: Random walks framework
[47]

(shaded dark gray). The last row resembles the ’no signal’ region , i.e., the necessary

boundary condition, with the probabilities set to zero (shaded bright gray). For all

the nodes between the probability that a random walk starting from each node would

first reach one of the virtual transducer elements is computed.
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3.5.1 Confidence in shadow regions

Scanline integration is chosen, as it is a simple and commonly applied approach in ul-

trasound image processing for detecting shadow areas in the images [48]. The scanline

integrated image S is given by

S (p, s) = SM −
∫ p

0
GQ ∗ I(p, s)dx (3.17)

where I (p, s) is the image intensity at position p along the s scanline and GQ is

a Gaussian kernel of size 5; σ = 2.0, and SM = max (S), to evaluate the shadow

detection capabilities of the confidence maps with a simple approach that only utilizes

the maps and no further information. More specifically, shadow regions are defined

by merely thresholding the confidence map for each image with:

Si =


1 ifCi ≤ T

0 otherwise
(3.18)

where Ci ∈ [0..1] is the confidence value at pixel/node vi and T = 0.1 is a heuristic

threshold for determining the shadow region S. This simple approach has been cho-

sen in order to evaluate the direct applicability of the confidence maps for shadow

detection.
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Algorithm 1 Random Walk
1: Input: An image represented G = (V,E), as an undirected weighted graph,

with edge e, spanning two vertices vi and vj.
2: Calculate the degree of a vertex i;

di = ∑
w (eij).

3: Calculate the graph Laplacian matrix;

Lij=


di
−wij

0
.

4: Use Gaussian weighting function;
wij = exp

(
−β (gi − gj)

2)
.

5: Solve the system of linear equations;
LUXU = −BXM

6: Output: Random walks framework
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Algorithm 2 The Prposed Method
1: Input: B-mode image ultrasound.
2: Compute attenuation weighting [47];

A: image
alpha: Attenuation coefficient.

3: Compute probabilities of confidence estimation with;
seeds,labels: Seeds,labels for the random walks framework
β : Random walks parameter
γ : Horizontal penalty factor.

4: Index matrix with boundary padding.
5: Compute Laplacian matrix.
6: Select marked columns from Laplacian.
7: Select marked nodes.
8: Index of unmarked nodes.
9: Remove marked nodes from Laplacian by deleting rows and cols.

10: Adjust labels.
11: Find number of labels (K).
12: Define M matirx.
13: Compute confidence map with;

data: Ultrasound data (one scanline per column)
mode: ’B’ mode data.

14: Default parameter settings.
15: Apply weighting directly to image.
16: Find confidence values.
17: Choose scanline integrated.
18: Apply temporal compression.
19: Use threshold operation.
20: Compare between automatic detection and manual segmentation approaches.
21: Output: Automatic shadows detection in ultrasound imaging.
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Chapter 4

Experimental Results and

Discussion

In this thesis, improving technology in ultrasound devices has made an essential con-

tribution to the development of an emergency ultrasound program. The stationary

and operationally complex devices historically associated with ultrasound have been

replaced by a variety of highly portable and more intuitive machines. Hardware im-

provements have been accompanied by software enhancements, resulting in increased

speed, flexibility, image quality and ease of use. These technological advancements

have increased the practical utility of ultrasound and have allowed the movement of

this technology from the laboratory to the bedside. As shown in figure 4.1, the system

used here facilities the use of multiple Kinects for the purposes of motion and per-

formance capturing. It can capture data from different viewpoints. Although a joint

may be hidden from one Kinect, multiple Kinects provide a clear view by merging the

RGB data and depth data received from different Kinects.
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Figure 4.1: (a) RGB, (b) Depth data, (c) US images

The system designed shows evaluation of the motion tracking of the ultrasound trans-

ducer. Based on the synchronized ultrasound images with three Kinects, the perfor-

mances of a novice, an intermediate and an expert sonographer inside an operating

room can be differentiated. This is done by examining the ultrasound images in terms

of noise and shadow detection.
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4.1 Video Analysis

The following section outlines how studiocode is used to analyze video data of a

sonographer inside an operating room. Many applications have used Studiocode De-

velopment Environment in medical research. In this project, Studiocode software is

used because it is a really straightforward, easy to use data capture software, with a

flexible style so it can be designed and used in any alignment with the performance

and type of outcomes. In this work, multiple videos captured simultaneously are an-

alyzed to see the probe movement in different angles, because although simulation is

useful, it must show improvements in critical thinking and performance. Outcomes

are needed and the studiocode software allows objective analysis of data so that the

video file can be erased. This occurs after the data points of what occurred in specific

measured behaviors are dropped. These can be displayed in an Excel spreadsheet

which allows the important data to be kept while protecting the identity of the sono-

graphers. The identifying video data can thus be securely stored as the pertinent

information has already been extracted from the video.

4.1.1 Medical Checklist

FAST exam

The focused assessment with sonography for trauma FAST is one of the earliest ap-

plications of bedside sonography. This has been widely investigated and continues to

be extremely useful, especially in the blunt abdominal and in certain instances it can

be helpful in penetrating trauma as well as finding the key concepts in the fast exam

[46]. More specifically, the FAST exam is positive or negative based on the presence

of free fluid in abnormal locations, so the sonographer focuses on the potential spaces

in the body where free fluid tends to accumulate.
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Figure 4.2: (a)RUQ, LUQ, RLQ, LLQ (b)Subxiphoid area, (c) Subrapubic area

As a part of the FAST exam, the doctors evaluate potential spaces as follows (See Fig

4.2):

• The right upper quadrant (RUQ),

• The left upper quadrant (LUQ),

• The subxiphoid area and

• The suprapubic area.
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The video data was reviewed using Studiocode to identify specific tasks in the checklist

with the objective of grading trainee performance. Figure 4.3 shows an example of four

images extracted from synchronized video designed to highlight transducer movement

throughout performance of the FAST exam. The coding input window enables the

items on the checklist to be observed when the doctor performs the FAST exam (See

Fig 4.4) with the code buttons used to mark points in the timeline based on the

location in the video. One of the most important components of this video analysis

software is the timeline (See Fig 4.5). The timeline highlights the tagging of specific

checklist items enabling assessment of sonographer performance.
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Figure 4.3: Stacked timeline

.
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Figure 4.4: Coding input window

Figure 4.5: Timeline
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As mentioned previously, it is demonstrated how these video data have been studied.

Figure 4.5 observes the timeline instances. Each instance has a video of the doctors’

scanning action, and based on that it can be decided if the checklist is completed or

not. Consequently, use a Studiocode software helps to differentiate between a novice,

an intermediate and an expert sonographer based on their scanning.
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In order to collect synchronized data, a system to sync three multiple cameras was

developed. In addition to the Studiocode analysis described above, the ultrasound

image data was studied in two aspects:

(1) Speckle noise reduction.

(2) Automatic detection of shadows.

The approach used to investigate these topics is discussed in the following sections.

4.2 Image Filtering

The purpose of applying multiple filters on the image is to compare and investigate

the algorithms to illustrate which one is appropriate. Using an ultrasound image of

the neck vessels (See Fig 4.6), noise images have been generated.

4.2.1 Median filter

A 3× 3 window size is used for this algorithm. As shown in figure 4.7, a median filter

excludes noise for a better quality image. To be exact, the noise disappears without

losing important details when a median filter in a Poisson noise image is applied.

However, the damaging effects are more visible with Gaussian and Salt & Pepper and

Speckle noise.
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4.2.2 Gaussian filter

The Gaussian filter behaves quite similarly to a median filter with the same window

size. However, the MSE was low between the noisy image and the filtered image

suggesting that no significant improvement was made, as shown in figure 4.8.

4.2.3 Average filter

The Average filter was observed to remove Speckle and Poisson noise from images

successfully. Its performance was unsatisfactory on both the Salt & Pepper and

speckle noise images (See Fig 4.9). According to the MSE, the Average filter has good

results to eliminate the noise on both the speckle and Poisson noise images [51].

4.2.4 Log filter

A log filter was shown to be unsuitable in these different types of noise images, with

the images clearly being demonstrated to be worse visually and the resultant MSE as

shown in Figure 4.10.

4.2.5 Wiener filter

No meaningful improvement was noted with the application of the Wiener filter.

Figure 4.11 shows the resultant images. The MSE for the Wiener filter was the

highest when compared to other filters explored in this research.

4.2.6 N-D filter

The results of the N-D filter are clearly seen in Figure 4.12. This filter does eliminate

noise. However, results in a blurring of the image features.
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Image quality metrics

Tables 4.1, 4.2, 4.3 and 4.4 indicate the performance of the filters under various noise

conditions. In the image quality metrics, the lowest mean-squared error (MSE) means

the performance of an image is the best, signifying a high quality of image. In con-

trast, the highest peak signal-to-noise ratio (PSNR), and signal to noise ratio (SNR)

indicate the best performance of an image which leads to the best image quality. In

this study, it is confirmed that Median and Average filters can be used and improved

for ultrasound images. Developing the combination of these two filters to enhance

the images can be taken into consideration for future research. However, the Log and

Wiener filter did not produce acceptable results during our study.
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Figure 4.6: (a) Reference image, (b) Salt & Pepper noise, (c) Gaussian noise, (d)
Speckle noise, (e) Poisson noise

.
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Figure 4.7: Images after applying Median filter with different noises (a) Salt & Pepper
noise, (b) Gaussian noise , (c) Speckle noise(d) Poisson noise

.

Table 4.1: Metrics values of image quality parameters by filters with Salt & Pepper
noise applied on the cell image.
Filter types MSE SNR PSNR
Median 8.5371 225.5441 250.8055
Gaussian 0.0820 166.0247 191.2861
Average 0.0096 193.9681 219.2295
Log 182.6346 65.5973 90.8587
Wiener 256.4563 61.1743 86.4357
N-D 0.0104 192.9801 218.2415
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Figure 4.8: Images after applying Gaussian filter with different noises (a) Salt &
Pepper noise, (b) Gaussian noise , (c) Speckle noise(d) Poisson noise

Table 4.2: Metrics values of image quality parameters by filters with Gaussian noise
applied on the cell image.
Filter types MSE SNR PSNR
Median 0.0062 199.6332 224.8946
Gaussian 0.0308 178.7955 204.0569
Average 0.0048 203.0969 228.3583
Log 65.9092 78.8763 104.1377
Wiener 192.7809 64.8933 90.1547
N-D 0.0073 197.4776 222.7390
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Figure 4.9: Images after applying Average filter with different noises (a) Salt & Pepper
noise, (b) Gaussian noise , (c) Speckle noise(d) Poisson noise

Table 4.3: Metrics values of image quality parameters by filters with Multiplicative
noise applied on the cell image.
Filter types MSE SNR PSNR
Median 3.8182 235.9911 261.2525
Gaussian 0.0013 220.0353 245.2967
Average 2.6053 240.9694 266.2308
Log 3.7188 116.3326 141.5940
Wiener 119.6964 71.1022 96.3636
N-D 0.0039 205.5763 230.8377
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Figure 4.10: Images after applying Log filter with different noises (a) Salt & Pepper
noise, (b) Gaussian noise , (c) Speckle noise(d) Poisson noise

Table 4.4: Metrics values of image quality parameters by filters with Poisson noise
applied on the cell image.
Filter types MSE SNR PSNR
Median 2.3757e-05 272.1706 297.4320
Gaussian 1.2615e-13 520.4180 545.6794
Average 2.0890e-04 243.8463 269.1077
Log 0.6090 139.9060 165.1674
Wiener 119.4731 71.1265 96.3879
N-D 0.0039 205.6322 230.8936
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Figure 4.11: Images after applying Wiener filter with different noises (a) Salt & Pepper
noise, (b) Gaussian noise , (c) Speckle noise(d) Poisson noise
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Figure 4.12: Images after applying N-D filter with different noises (a) Salt & Pepper
noise, (b) Gaussian noise , (c) Speckle noise(d) Poisson noise
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4.3 Shadow detection regions

This section presents the results of the research into confidence maps used for auto-

matic shadow detection in ultrasound images (See Fig 4.13). Three parameters, alpha

α, beta β and gamma γ are defined as follows.

• α affects the likelihood of vertical random walks. It effectively scales the confidence

along the vertical graph direction in random walks formulation. Figure 4.14

shows an example of the effect of alpha on estimating a confidence map. In this

experiment, a constant value of α = 2 is set, achieving good qualitative and

quantitative results.

• β affects on the robustness and accuracy of the segmentation; a constant value of

β = 90 is set for this experiment. Figure 4.15 shows an example of the effect

that beta has on estimating a confidence map.

• γ penalizes horizontal and diagonal random walks. The effective of gamma values

in figures 4.16 is determined, it can be confirmed that Gamma’s value can affect

the estimation of images in a confidence map.
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Figure 4.13: (a) B-mode image, (b) The corresponding confidence map

Figure 4.14: Different values of α can affect the confidence map (a) US image, (b)
α = 2 ,(c) α = 6

73



Figure 4.15: (a) US image, (b) β = 90, (c) β = 120

Figure 4.16: (a) US image, Different values of gammas effective: (b) γ = 0.05, (c)
γ = 0.09
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Figure 4.17: Boxes in the images indicate regions of high and low confidence

In this thesis, a confidence estimation method is proposed to emphasize the uncer-

tainty of shadowed regions. Consequently, the method is evaluated by assessing its

reliability in estimating low confidence for regions that are known to be of low confi-

dence, which has been indicated by shadow regions, as shown in figure 4.17.

More specifically, the very dark depiction of low confidence in this method indicates

shadows are detected. Figure 4.18 shows the results of the confidence map and the

threshold determines the shadow regions. The algorithm works fully automatically as

can be indicated by the low confidence map and high confidence map (shadow regions

and unreliable image information) as shown in figure 4.19.
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Figure 4.18: (a) US images with shadowed area below dot stars include red lines ,
(b)The corresponding confidence maps for detecting shadows automatically, (c) The
threshold determines shadow regions based on the confidence map

Figure 4.19: Confidence maps for US images indicated between shadow regions (LC)
which are the very dark black regions and unreliable image information (HC)

.
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Figure 4.20: Expert manual shadow segmentation
.

For a quantitative evaluation, an expert was asked to manually segment the shadow

regions in ultrasound images as shown in figure 4.20. The Dice coefficient between

manual and confidence segmentations was computed. The Dice coefficient is defined

by:

DICE = 2TP
2TP + FP + FN

(4.1)

where the three cardinalities are defined as follows:

• True positive (TP ) presents pixels of shadow areas for both manual and automatic

detection.

• False positive (FP ) presents pixels of shadow areas with manual detection.

• False negative (FN) presents pixels for incorrect shadow areas that are not indi-

cated by manual and automatic detection.
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Table 4.5: Dice coefficient results of shadows between manual and automatic segmen-
tation
Data γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9
PTP 1 1 1 0.9996 0.9978 0.9953 0.9945 0.9934
PFP 0.1247 0.1405 0.1446 0.1481 0.1512 0.1476 0.1417 0.1359
PFN 0 0.11 0.12 0.14 0.19 0.10 0.11 0.17

Table 4.6: Dice coefficient results of shadows between manual and automatic segmen-
tation
Data γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9
PTP 0.8461 0.8454 0.8439 0.8596 0.8641 0.9061 0.9265 0.9628
PFP 0.1692 0.1730 0.1771 0.1742 0.1738 0.1750 0.1711 0.1692
PFN 0.22 0.22 0.21 0.22 0.16 0.15 014 0.18

Based on the results in tables 4.5 and 4.6, in general, the random walks algorithm

obtained good results for automatic shadow detection. To be exact, it is suggested

that for γ = 0.9 the confidence map quite effective at shadow detection for the images

evaluated. Consequently, the values of probability of true positive and probability of

false positive provide a good quality score which indicates a confidence map system

works very well with shadowing in ultrasound images. By comparing the expert and

automatic method, it is suggested that the confidence map can be useful for automatic

shadow detection.
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Chapter 5

Conclusions and Future Work

The aim of the current study was to develop a methodology to collect data inside an

operating room to assess sonographers skill have the appropriate to perform point of

care ultrasound. An automated system to sync multiple depth cameras with ultra-

sound imaging is proposed in this thesis.

In the proposed methodology, the receiving data from depth cameras have been an-

alyzed by using studiocode to differentiate between novice, immediate and expert

sonographers using a checklist.

Next, my efforts focused on the assessment of speckle noise reduction and shadow

detection as a further means to assess ultrasound image quality.

Some techniques that can deal with suppression of speckle noise in US imaging have

been presented. In addition, several methods for smoothing were compared to deter-

mine which one was more appropriate. Subsequently, the image used quality metrics

to test the methods’ performance and demonstrate the benefits of each one.
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Furthermore, an automated method to detect shadows in US images by a confidence

map using random walks has been studied. By computing the Dice coefficient, auto-

matic and manual shadow segmentation based on results have been compared.

5.1 Future Work

The current study can be further extended to work with and track ultrasound videos

for further analysis in different studies. Tracking the object and detecting important

details in US images will assist for patient diagnostics. Selecting a constant value of

Gamma parameter requires a balance between having distinct confidence and having

minimal discontinuities in the horizontal direction.

Simulation studies performed in this study show a good prospect of proposed ul-

trasound imaging analysis. Consequently, the method requires more experimental

validation to increase and improve the output of the ultrasound imaging quality.
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