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ABSTRACT 

Process engineering systems have become increasingly complex and more vulnerable to potential 

accidents. The risks posed by these systems are alarming and worrisome. The operation of these 

complex process engineering systems requires a high level of understanding both from the 

operational as well as the safety perspective. This study focuses on dynamic risk assessment and 

management of complex process engineering systems’ operations. To reduce risk posed by process 

systems, there is a need to develop process accident models capable of capturing system dynamics 

in real-time. This thesis presents a set of predictive process accident models developed over four 

years. It is prepared in manuscript style and consists of nine chapters, five of which are published 

in peer reviewed journals.  A dynamic operational risk management tool for process systems is 

developed, considering evolving process conditions. The obvious advantage of the developed 

methodologies is that it dynamically captures the real time changes occurring in the process 

operations. The real time risk profile provided by the methodologies developed serve as 

performance indicator for operational decision making.  

The research has made contributions on the following topics: (a) process accident model 

considering dependency among contributory factors, (b) dynamic safety analysis of process 

systems using a nonlinear and non-sequential accident model, (c) dynamic failure analysis of 

process systems using principal component analysis and a Bayesian network, (d) dynamic failure 

analysis of process systems using a neural network and (e) an integrated approach for dynamic 

economic risk assessment of process systems. 
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Chapter 1 

1.0 Introduction 
 

1.1. Process Accident Modelling in the Process Industries 

 In recent decades, chemical process industries (CPI) have been dealing with several hazardous 

chemicals in various storage units, reactor systems and in other process operations. The complex 

and nonlinear interactions of process systems, which include equipment, operators, management 

and organization decisions, operating conditions, and external environmental conditions are the 

principal causes of accidents in chemical process industries. In most cases, these complex and 

nonlinear interactions are due to abnormal events and have caused devastating consequences, 

referred to as accidents (Meel & Seider 2006; Adedigba et al. 2016). This development led 

engineers to seek a more robust way of incorporating safety into the systems being built and the 

risk assessment of chemical process industries. Accident models are theoretical frameworks which 

typically show the relationship between causes and consequences and vividly explain why and 

how accidents occurred. Accident models are mainly used as techniques for risk assessment during 

the system development stage and for subsequent use as post hoc accident investigation tools to 

analyse the root causes of an accident (Qureshi 2008).  

1.2. Element of Risk Analysis 

Risk is defined as “a measure of the potential loss occurring due to natural or human activities. 

Potential losses are the adverse consequences of such activities in form of loss of human life, 

adverse effect, loss of property, and damage to the natural environment” (Modarres 2006). 

Risk analysis is defined as “the process of characterizing, managing and informing others about 

the existence, nature, magnitude, prevalence, contributing factors, and uncertainties of the 
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potential losses”(Modarres 2006). In other words, risk analysis is a methodical and scientific 

technique to predict and prevent the occurrence of an accident in a system. Its primary purpose is 

to avoid risk in a system. Risk analysis can be applied at different stages: design, development and 

construction and operation stages. The three principal elements of risk analysis are: risk 

assessment, risk management and risk communication. Interaction and overlap among the main 

elements of risk analysis are revealed by Figure 1.1. It is obvious that elements of risk analysis are 

intertwined and synergize one another. This synergy must be maintained for effective risk analysis. 

   

Risk 

Assessment Risk Management

Risk  

Communication

 

Figure 1.1. Elements of Risk analysis. 
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1.2.1. Risk Assessment 

Risk assessment is a process or technique by which the probability of a loss in an engineering 

system is predicted and the magnitude (consequences) of the loss is also estimated. In broad terms, 

risk assessment addresses three main questions; (1) what can go wrong? (2) how likely is it? and 

(3) what are the losses (consequences)? The entire process of risk assessment involves incident 

identification and consequence analysis. Incident identification defines in detail how an accident 

process occurs and analyzes the probabilities. Consequence analysis expressly describes the 

expected damage. In general, risk assessment involves identification of potential scenarios, 

computing of their individual occurrence probabilities and explanation of the consequences that 

originated from each scenario. A risk assessment  technique that estimates only probability is  

referred to as a probabilistic risk assessment (PRA), while the risk assessment process that 

estimates probabilities alongside with the consequences is termed  quantitative risk analysis (QRA) 

(Crowl & Louvar 2001; Modarres 2006). Risk assessment is of paramount importance in 

estimating  the safety, reliability and effectiveness of an engineering system (Khan et al. 2015; 

Villa et al. 2016). 

1.2.2. Risk Management 

Risk management is the procedure by which the likelihood of the magnitude and various risk 

contributors are predicted, appraised, minimized and controlled. It is a systematically coordinated 

procedure to avert, regulate, and minimize losses suffered as the result of risk exposure, weighing 

options and choosing suitable actions by taking into account risk values, legal and political issues 

and economic and technological constraints (Modarres 2006).  In summary, in engineering terms, 

risk management should be considered as a “ a control function focused on maintaining a particular 

hazardous, productive process within the boundaries of safe operation” (Rasmussen 1997). 
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Different types of risk management techniques have been developed and used to ensure the safety 

of chemical process systems. The main objective of these techniques is to identify process hazards, 

assess them, control the hazard and ultimately mitigate the residual risk at both the design and 

operational phases (Aven 2016). The main objective of risk management during the entire life 

cycle of a complex engineering system entails proactive decision making to: 

 Frequently  assess the risk 

 Select  which risks are significant  

 Provide  strategies to prevent or control the risks 

 Frequently evaluate the efficiency  of the strategies and review them, when necessary 

(Modarres 2006). 

1.2.3. Risk Communication  

Risk communication is defined as “the flow of information and risk evaluation back and forth 

between academic experts, regulatory practitioners, interest groups and the general public”(Leiss 

1996). Risk communication basically updates, exchanges and transfers information and knowledge 

about risk, risk assessment outcomes and various risk management alternatives among analysts, 

decision makers and other stakeholders. Depending on the targeted audience, risk communications 

usually provide adequate information on the following specific areas: the nature of the risk, the 

nature of the benefits, risk management options and uncertainties in risk assessment (Modarres 

2006). 

Risk communication comprises perceptions of the risk and depends on the targeted audience; 

therefore, risk communications can be broadly classified into public, media and engineering 

community risk communications (Ayyub 2003).  
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1.3. Accident models  

Accident models are theoretical frameworks which typically show the relationship between causes 

and consequences and explain in detail why and how accidents occurred. Accident models are 

mainly used as techniques for risk assessment during the system development stage and for 

subsequent use as a post hoc accident investigation to analyse the root causes of an accident 

(Qureshi 2008). Accident models systematically relate causes and consequences of the events and 

play a significant role in accident investigation and analysis. They tend to primarily address two 

major broad questions: (i) why accidents occur and (ii) how accidents occur. Classification of 

accident models can be done in several ways. Accident models are broadly categorized as either 

traditional or modern accident models. Traditional accident models are further sub grouped into 

sequential and epidemiological models. They are primarily descriptive models that lack predictive 

capacity and emphasize mainly human, organizational and management factors. Modern accident 

models can be sub classified into three sub categories: systematic, formal and dynamic accident 

models ( Al-shanini et al. 2014; Qureshi 2008).  

Existing accident models have their own strengths and weaknesses and these depend mainly on 

the areas of their application, purpose and focus. The majority of the existing accident models are 

sequential accident models where accident processes from initiation to termination are considered 

as chains of independent events that occurred in a definite particular order. The severity of effects 

is presumed to progress through the sequential failure of independent events. These traditional 

models use a fault and event trees sequential approach to predict the cause-consequence 

relationship, which provides a sequential explanatory mechanism of accident propagation. 

However, in a real life situation, this may not be true. 
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Also, existing models are not capable of modelling multiple risk factors in process systems where 

interactions among systems are nonlinear and extremely complex, and they are not capable of 

using accident precursor data to evaluate risk and develop accident prevention strategies (Tan et 

al. 2013; Rathnayaka et al. 2011).  

A thorough review of existing accident models reveals that the majority of the models belong to 

the class of sequential accident models, where the accident process is described as a chain of 

independent events that take place sequentially. Hence, the study is presenting dynamic accident 

model. A comprehensive review of the existing chemical process accident models shows that the 

current process accident models exhibit obvious weaknesses. These weaknesses are: (1) External 

hazards are not considered in the model. (2) The model presumes the causes of failure within safety 

barriers are independent, although in reality they are interdependent and this could significantly 

affect the results. (3) Provision is not made for other factors not accounted for in the fault tree 

model of prevention barriers. (4) Nonlinear interaction of various factors are not considered. (5) 

They do not capture evolving operational conditions, the time variant behaviour of process 

parameters and their dependent relationships. 

The current study is an attempt to address some of these gaps and to contribute appreciable 

knowledge to this area of research. 

1.4.   Objectives of the Research 

The primary objective of this research is to develop an integrated dynamic operational risk 

management tool for process operations. This key objective is divided into five sub-objectives: 

 To develop an innovative predictive probabilistic model to assess hazardous process 

operation accident likelihood, such that accident occurrence probability bounds will be 
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predicted. This will serve as an effective tool to facilitate risk assessment and management 

of process operations. 

 To develop a dynamic nonlinear and non-sequential Bayesian network based process 

accident causation model for chemical process operations. 

 To develop a dynamic Bayesian nonlinear model capable of predicting inter-dependency 

among process operations variables and subsequently predict and update risk profile 

dynamically, using Bayesian TAN algorithms. 

 To developed a dynamic ANN model that is capable of predicting the risk profile from 

process monitoring data empirically and subsequently generalizing the ANN model 

developed to predict risk profile for chemical process operations.  

 To develop an integrated approach for dynamic economic risk assessment of process 

systems.  

 To test and verify the models developed with real life case studies. 

1.5. Organization of the Thesis 

 Manuscript (paper) format is used in writing this thesis. The outlines of each chapter are presented 

below: 

Chapter 2 presents the innovations and major contributions of this thesis to the dynamic risk 

assessment of chemical process operations.  

Chapter 3 presents a thorough literature review relevant to the research. This includes a brief 

description of different accident models and risk assessment techniques. 
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Chapter 4 presents an innovative predictive probabilistic model to assess hazardous process 

operation accident likelihood such that accident occurrence probability bounds are predicted using 

a new non-sequential barrier-based process accident model. 

 This chapter is published in the Journal of Process Safety and Environmental Protection 2016; 

102: 633-647. 

Chapter 5 present a dynamic nonlinear and non-sequential Bayesian network based process 

accident causation model for dynamic risk prediction of chemical process operations. 

This chapter is published in the Journal of Chemical Engineering Research and Design 2016; 111: 

169-183. 

Chapter 6 presents an integrated dynamic failure prediction analysis approach using principal 

components analysis (PCA) and Bayesian TAN algorithms. 

This chapter is published in the Journal of Industrial and Engineering Chemistry Research 2017; 

56: 2094-2106. 

Chapter 7 presents an integrated ANN probabilistic approach capable of predicting the risk profile 

from process monitoring data empirically and subsequently generalizing the ANN model 

developed to predict risk profile for chemical process operations. This chapter is published in the 

Journal of Process Safety and Environmental Protection 2017; 111: 529-542. 

Chapter 8 presents a dynamic economic risk assessment framework which integrates probability 

with consequences assessment. This model establishes the link between the process deviation with 

not only the probability estimation but also the potential loss prediction due to such deviations.  
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This chapter is published in the Journal of Process Safety and Environmental Protection 2018; 

116:312-325 

 

The logical relationship and progression among the chapters is represented by Figure 1.2. 
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Figure 1.2.  Dynamic Operational Risk Management Tool for Process Systems. 
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Chapter 2 

2.0. Novelty and Contribution 
 

The novelties and main contributions of this doctoral research is in the area of dynamic safety 

and risk assessment of chemical process operations. The highlights of these contributions are 

stated below: 

 An innovative probabilistic model to assess hazardous process operation accident 

likelihood. This work proposed a novel non sequential barrier based accident model, in 

which interdependency and nonlinear interaction among accident contributory factors 

within safety barriers are modelled for process accidents. This novel probabilistic approach 

is an effective tool to facilitate risk assessment and management of process hazards. This 

contribution is presented in chapter 4. 

 An innovative predictive non sequential barrier based process model. The model account 

for non-linear interaction of accident contributory factors within safety barrier and 

subsequently allow the non-sequential failure of safety barriers to cause adverse event 

randomly. The model developed takes into consideration the complexity of process's 

operations and high level of interaction among sub-systems, thus accident causation is 

function of nonlinear interaction of various factors. This contribution is presented in 

Chapter 5. 

 A novel probabilistic methodology that integrates principal Component analysis (PCA) and 

the Bayesian networks to detect fault and predict the probability of failure using real time 

process data. The key process variables that contribute the most to process performance 

variations are detected with PCA, while Bayesian network is adopted to model the 
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interactions among process variables to detect faults and predict time the time dependent 

probability of system failure. This contribution is presented in Chapter 6. 

 An innovative Artificial neural network (ANN) data driven model. The model developed 

used a multi-layer perceptron (MLP) to define the relationship among process variables. 

The defined relationship is used to model a process accident considering logical and causal 

dependence of the variables. The predicted accident probability is subsequently used to 

estimate the likelihood of failure to the process unit. The model provide an efficient and 

effective way to estimate process accident probability as function of time and thus risks. 

This contribution is presented in Chapter 7. 

 An innovative dynamic economic risk assessment framework which integrates probability 

with consequences assessment. The model developed link process deviation to accident 

probability and potential losses. The Bayesian Tree Augmented Naïve Bayes (TAN) 

algorithm is applied to model the precise and concise probabilistic dependencies that exist 

among key operational process variables to detect faults and predict the time dependent 

probability of system deviation. Loss function is used to define system economic losses as 

a function of process deviation. The time dependent probability of system deviation owing 

to an abnormal event is constantly updated based on the present state of the relevant process 

variables.  This innovative contribution is presented in Chapter 8. 
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Chapter 3 

 3.0. Literature Review  

3.1. Chemical Process Industry (CPI) 

The chemical process industry (CPI) uses extremely complex technological systems consisting of 

various equipment, operating procedures and control schemes. The plants in the chemical industry 

handle vast quantities of hazardous chemicals. The dynamic interactions among these various 

components: equipment, management and organizational (M&O) and human factors make CPI 

vulnerable to process deviations, which might eventually lead to failures if not correctly tackled 

(Al-shanini et al. 2014). In recent decades, notable devastating accidents such as  the Piper and 

Alpha tragedy, the  Bhopal toxic gas release disaster, the Nypro factory explosion at Flixborough, 

the Imperial sugar refinery dust explosion, BP’s Texas city refinery explosion, and BP’s 

Deepwater Horizon offshore drilling rig explosion  are notable examples of complex system failure 

that caused  devastating  losses of human lives and properties (Rathnayaka et al. 2011). 

Probabilistic Safety Assessment is a standard technique for safety assessment of complex and 

critical engineering systems. This technique is applicable to all phases of the engineering system 

life cycle: design, start up and different modes of operations. The primary objective of safety 

assessment techniques is identification of all potential hazards to prevent them and subsequently 

mitigate the residual risk. It is of paramount important to integrate management oversight and 

engineering analyses to formulate a comprehensive and systematic approach to effectively manage 

system risk (Cepin & Mavko 1997; Bahr 1977). 

 Process safety primarily focuses on prevention and mitigation of major process accidents such as 

toxic releases, fire, and explosions. The key steps in process safety assessment and management 
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are hazard identification, risk assessment and management (Khan et al. 2015). Hazard 

identification steps primarily identify all potential process hazards and may analyze how these 

hazards can combine to cause accidents (Rathnayaka et al. 2010). Risk can be used as a parameter 

to measure process safety and it is quantitatively expressed as a product of probability and its 

consequences (Modarres 2006; Khan et al. 2015). Risk management involves systematic 

techniques to prevent, control and minimize losses suffered due to a risk exposure through the 

process of risk estimation, risk evaluation, risk based decision making and design improvement 

(Modarres 2006; Khan et al. 2015).  

An effective means of combating process accidents is to develop an appropriate preventive 

measure focusing on the correct process plant components. Such approaches lie within the realm 

of accident modelling. 

Accident models give detailed conceptualization of the characteristic accident, and essentially 

display the relationship between causes and effects. They are risk assessment technique to explain 

the causes of accidents (Qureshi 2007). 

3.2. Classification of Accident models 

Generally, accident models can be classified into two broad categories: traditional and modern 

accident models. 

3.3. Traditional Accident models 

Traditional accident models are broadly classified into sequential models and epidemiological 

models. 

3.3.1. Sequential models 

Sequential accident models are the most simplified types of accident models. They explain 

accident causation as the result of a chain of events that occurs in a definite order (Hollnagel 2002). 
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This models are not usually restricted to a single chain of events, and  may be denoted in the form   

of hierarchies such as :petri networks, traditional event trees, Bayesian networks, fault trees and 

critical path models (Hollnagel & Goteman 1982). One famous sequential accident model is 

Domino theory, proposed by Heinrich in the 1940s. Domino theory describes an accident as a 

sequence of discrete events which occurred in a define temporal order, ending in an injury. Domino 

theory emphasizes that an accident can be prevented by eliminating any single factor from the 

accident sequence (Qureshi 2007; Rathnayaka et al. 2011). It has been modified by the 

International Loss Control Institute into a loss causation model (ILCI model) to predict how unsafe 

acts and conditions originate. The ILCI model shows a broader representation of accident 

propagation. Analysis in the ILCI model starts with the loss to people, property and the 

environment and propagate backwards through the chain of events that contributes to the loss 

individually. The immediate and the root cause of accidents in the ILCI model are described as 

personnel and job factors, management deficiencies and unsafe acts and conditions. However one 

disadvantage of Domino theory and  the ILCI model is that the cause-consequence relationship 

among management, organization and the  human level is not properly defined (Rathnayaka et al. 

2011). Domino theory was widely adopted in various industries; however, many industrial 

accidents that occurred in the 1970s cannot be sufficiently described using a simple cause-

consequence relationship. In general, sequential accident models are not capable of modeling 

nonlinear interaction among system components (Hollnagel & Goteman 1982; Qureshi 2007). 

3.3.2. Epidemiological models 

Epidemiological models try to describe causes of accidents in complex systems.  As the name 

suggests, the model describes accident causation as analogous to the spreading of a disease, i.e., 

the result of a combination of both manifest and hidden factors that occur simultaneously in space 
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and time. This terminology is defined as “ the unexpected, unavoidable unintentional act resulting 

from the interaction of host, agent and environmental factors within situations which involves risk 

taking and perception of danger”(Hollnagel 2002; Hollnagel & Goteman 1982). The view of 

epidemiological models is that an accident occurs due to a combination of “agents” and 

environmental factors that initiate an “unhappy setting”. Epidemiological models are important 

because they give the foundation for deliberating the complexity of accidents’ processes, making  

epidemiological models more advantageous than sequential models  (Hollnagel 2002). One major 

epidemiological model is the Swiss cheese model proposed by Reason. The Swiss cheese model 

highlights how both human and organization failures initiate the accident process independently, 

taking the multi-causality of the accident into consideration (Underwood & Waterson 2014). 

The Swiss cheese model has been adopted in many process industries to avert accidents due to 

human error. The Swiss cheese model places principal cheese slices sequentially along the accident 

path. The cheese slices represent the relevant safety barriers, while the holes denote the latent 

errors. The cheese slices act as protective (defensive) barriers against an incident or accident, while 

the holes are subjected to variation (change) based on the failure types. Once the holes are lined 

up, all safety barriers have failed; therefore, an accident will occur. The series of holes in the first 

cheese slice denote the hidden or latent failures. Unsafe acts are typically located in the last slices, 

while latent conditions are the holes through the cheese.( Katsakiori et al. 2009; Qureshi 2007; 

Rathnayaka et al. 2011). 
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3.4. Modern Accident models 

Modern  accident models are broadly classified into systemic models, formal models and 

dynamic sequential models (Al-shanini et al. 2014). 

3.4.1. Systematic models 

 Systematic models explains the characteristic performance of the system as a whole rather than 

on the basis of the precise causes, the consequence mechanism or epidemiological factors. These 

models view accidents as emergent phenomena due to variability of the system (Stroeve et al. 

2009).  Systematic models have their origins in system theory, which comprises control theory, 

chaos models, coincidence models and stochastic resonance. All these models and theories are 

used to understand and predict complex interrelationships and interdependencies among system 

components, including human, technical, organizational and management factors (Hollnagel 2002; 

Qureshi 2007). Systematic accident models are broadly divided into theory system models and 

cognitive system models (Al-shanini et al. 2014). In `applying a systems theory approach to model 

an accident, the systems are viewed as comprising various interacting components which keep 

equilibrium by the use of feedback loops of information and control.  The system theory approach 

sees the system as a dynamic process that is frequently adjusting to attain it primary objectives and 

responding to its changes and those in the environment. The design of the system imposes 

constraints on its performance characteristics for safe operation and at the same time must adjust 

to dynamic changes to preserve safety. In a systemic approach, accidents occur due to flawed 

processes involving complex interactions among engineering activities, people, organizational 

structure  and physical and  software system components  (Hollnagel 2002; Qureshi 2007). Quite 

a number of systemic accident models have been developed. Two famous systemic accident 

models are Rasmussen's (1997) hierarchical  socio-technical framework and Leveson's (2004) 
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STAMP (Systems Theoretic Accident Model and Processes). The STAMP model accidents occur 

as a result of inadequate control or inadequate implementation of safety associated constraints at 

the development, design and operation phases of the system and not because of independent 

component failures (Rathnayaka et al. 2011). 

 The cognitive system approach models the performance behaviour of a human-machine system 

from the perspective of the environment in which the work is taking place. Cognitive system 

models propose that we cannot comprehend what happens when thing go wrong without 

comprehending what happens when thing go well (Hollnagel & Wood 2005). The Joint cognitive 

systems explain “how humans and technology functions as a joint system rather than how humans 

interact with machines. Efforts to make work safe  should start from an understanding of the 

normal variability  of human and  joint cognitive system performance  rather than  assumptions 

about particular  but highly speculative  error mechanism” (Qureshi 2007). Quite a few systemic 

accident models are based on the principles of Cognitive system engineering and include: 

Cognitive Reliability and Error and Analysis Method (CREAM), Functional Resonance Accident 

Model (FRAM) and Drivers Reliability and Error and Analysis Method (DREAM). CREAM 

models the cognitive features of human performance for the purpose of assessing the consequences 

of human error on system safety. FRAM describes in detail how components of the system may 

resonate and initiate hazards that can cascade into accidents. DREAM is another version of 

CREAM that is applied for analysis of traffic accidents (Hollnagel 2004; Hollnagel 1988). 

Contrary to sequential and epidemiological accident models, the systemic models do not depend 

on static cause - consequence relationships. Systemic models account for the dynamic, non-linear 

and  perhaps the  resonance resembling interactions that may likely cause accidents (Stroeve et al. 

2009). 
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3.4.2. Formal models 

Formal modes are built using mathematical techniques that offer a laborious and logical framework 

for design, specification and authentication of a computer system, including software and 

hardware. Fundamentally, formal methods of accident analysis use formal specification language 

consisting of three principal components: procedures for defining the syntax (grammatical well-

formedness of sentences); rules for interpreting the semantics and subsequently rules for deducing 

important information from the proof theorems. This approach substantiates that the system has 

been designed correctly and demonstrates the features of the system without necessarily operating 

the system to know its behaviour (Van Lamsweerde 2000). Formal methods provide improvements 

to accident analyses by highlighting the significance of precision and in definitions and 

explanations, and subsequently giving symbols to explain certain parts of accidents (Qureshi 

2007). Two famous formal models approach are: Why Because Analysis (WBA) and the 

probabilistic model of causality (Qureshi 2007). Detailed application of formal methods in both 

industry and research can be found in (Hinchey & Bowen 1995). WBA is built using formal 

semantics and logic. It applies deontic action logic as language for the construction of a formal 

model and is primarily focused on analyzing causality, subsequently permitting the unbiased 

evaluation of the events and conditions as causal factors. WBA starts with the reconstruction 

phase, where graphical formal notations are used to model the chains of events causing the 

accident. The important events and states are derived from accident investigation reports in their 

stint order. The event sequences are denoted in a logical form and are analyzed to find the reason 

for the accident using a graph called a WB graph. The WB graph is thoroughly examined to 

ascertain that causal relations in the graph satisfy the semantic causation relationship defined. The 
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WBA method has been adopted on a number of occasion to analyse aircraft and train accidents 

(Qureshi 2007). 

Probabilistic causality models consider the relationship between cause and effect using probability 

theories. Many different methods have been adopted by various authors to develop probabilistic 

theories of causality. One principal contribution is the mathematical theory of causality 

propounded by ( Pearl 2000). This applies a structural causal model semantic and subsequently 

describes a probabilistic causal model as a pair. Figure 3.1 shows the classification of accident 

models. 
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Figure 3.1. Classification of accident models. 
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The existing accident models belong to the class of sequential accident models, where the accident 

process is described as a chain of independent events that take place sequentially. They do not 

capture evolving operational conditions, the time variant behaviour of process parameters and their 

dependent relationships. The current study present dynamic accident models to address some of 

the gaps of sequential models.  

3.5.  Quantitative Risk Analysis 

 

Risk is defined as a “measure of human injury, environmental damage, or economic loss in terms 

of both the incident likelihood and the magnitude of the loss or injury” (CCPS 1999). 

 Quantitative Risk Analysis (QRA) deals with the quantitative estimate of risk using mathematical 

techniques based on engineering evaluations for combining estimates of incident consequences 

and frequencies (CCPS, 1999). The most widely used techniques are fault tree analysis, event tree 

analysis and  a combination of both fault tree and event tree analysis, which is known as the Bow- 

tie technique. Nevertheless, these conventional risk assessment methods are static in nature, failing 

to capture the variation of risks as an operation fluctuates (Ferdous et al. 2011; Khakzad et al. 

2012). 

Recently, BNs have gained much attention because they can accommodate different kinds of 

statistical dependencies that cannot be easily included in other accident analysis techniques.  A 

brief description of these conventional risk analysis techniques is given below. 

3.5.1. Fault Trees 

A fault tree is a deductive, graphic methodology used to determine failure probability of a complex 

system. The top event in the fault tree represents a major accident initiating hazard. The top event 

is placed at the top of the fault tree and the fault tree is graphically modelled downward to allow 
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the visualization of all possible combinations of malfunctions and wrong actions that could initiate 

the top event. Fault trees are usually constructed from events and logic gates (Khakzad et al. 2011). 

The underlying technical failures that lead to accidents are usually denoted as basic events. The 

logic gates in the fault tree represent numerous ways by which machines and human error interact 

to cause the accident. AND and OR gates are the commonly used logic gates in the fault tree. 

Analysis using  the fault tree can proceed both qualitatively and quantitatively (Nivolianitou et al. 

2004). In the AND gate, process components interact in parallel structure and process failure 

requires the simultaneous failure of all components in parallel. The failure probability of the top 

event in parallel structure (AND gate) is calculated by equation 3.1. Also, in the OR gate, process 

components interact in a series structure and failure of any single component in the series leads to 

failure of the process. The failure probability of the top event in a series structure (OR gate) is 

calculated by equation 3. 2. 

𝑷 = ∏ 𝑷𝒊

𝒏

𝒊=𝟏

                                                                                                                           (𝟑. 𝟏) 

 

𝑷 = ∏(𝟏 − 𝑷𝒊)

𝒏

𝒊=𝟏

                                                                                                                      (𝟑. 𝟐) 

 

3.5.2. Event Trees 

 The event tree is an inductive systematic technique that starts with a specified accident initiating 

event and terminates with all the feasible consequences, normally called the “end state 

consequences” of the event tree. Event tree techniques are widely used to denote incident 

scenarios. They describe a probable sequence related to an accident initiating event that transits 



24 
 

through successive prevention barriers and terminates with ultimate consequences (Nývlt & 

Rausand 2012). The likelihoods (probabilities) of end state consequences P(Ck) are quantify by 

equation 3.3. 

𝐏(𝐂𝐊) =  ∏ 𝐱𝐢

𝛉𝐢,𝐤  (𝟏 −  𝐱𝐢 )
𝟏−𝛉𝐢,𝐤

𝐣 𝛜 𝐒𝐁𝐤

                                                                                               (𝟑. 𝟑)      

 

where SBk  represents  the prevention barrier related to level k; and  𝜃𝑖,𝑘 = 1 whenever  a level k 

failure transits through the  failure branch of  safety ( prevention) barrier i; 𝜃𝑖,𝑘 = 0  whenever  a 

level k  failure transits  through the success branch of safety( prevention)  barrier i. 𝑥𝑖 is the  failure 

probability  of  prevention (safety) barriers (Adedigba et al. 2016; Rathnayaka et al. 2010). 

3.5.3.  Bow-Tie (BT) Analysis 

Bow-tie analysis (BT) is a technique that combines fault tree analysis and event tree analysis. In 

this approach, the top event in the fault tree analysis serves as an initiating event of the event tree 

analysis. This technique clearly analyzes root causes and resultant consequences of an accident 

process. A BT is graphical logical relationship among several causes, denoted as basic events on 

one side and potential consequences on the other side, via prevention barriers (safety barriers). 

Bow-tie analysis combines the advantages of FT and ET and has been widely applied in various   

fields of science.  The BT risk analysis technique has been applied to a dust explosion accident in 

a sugar refinery (Khakzad et al. 2012). BT, like Fault tree and event tree analysis, shows similar 

limitations and deficiencies of independency assumptions and is extremely difficult to apply for 

complex system analysis. 
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3.5.4.  Bayesian Network 

The Bayesian network (BN) is a graphical technique; it provides a robust probabilistic technique 

of reasoning under uncertainty. BN techniques have been extensively used in risk and safety 

analysis based on probabilistic and uncertain knowledge. BN (also known as a probabilistic 

dependence graph) is a direct acyclic graph with numerous nodes representing variables and arcs 

signifying direct causal relationships among the linked nodes. A conditional probability table 

(CPT) is assigned to the various nodes to denote conditional dependencies among the linked nodes 

(Bobbio et al. 2001; Khakzad et al. 2013). Based on both conditional independence and the chain 

rule, the BN represents the joint probability distribution P(U) of a set of discrete random variables, 

U= {A1…,An}, incorporated in the network as: 

P(U) = ∏ P(Ai|

n

i=1

 Pa(Ai 
))                                                                                                   (3.4) 

where Pa (Ai) is the parent of variable Ai and P (U) is the joint probability distribution of variables 

(Pearl 1998; Jensen & Nielsen 2007). 

The BN makes use of Bayes theorem to update the prior occurrence probability of events to give 

consequence probability (posterior) provided that new information called evidence is given. The 

following equation is used to estimate posterior probability: 

𝑃(U|E) =
P(U, E)

P(E)
=  

P(U, E)

∑ P(U, E)U
                                                                                      (3.5) 
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Chapter 4 

4.0 Process accident model considering dependency among contributory  

factors 

Preface 

A version of this chapter has been published in the Journal of Process Safety and Environmental 

Protection 2016; 102: 633-647. I am the primary author. Co-author Faisal Khan provided 

fundamental understanding, assisted in developing the conceptual model and subsequently 

translated this to the numerical model. Co-author Ming Yang provided much needed support in 

implementing the concept and testing the model. I carried out most of the data collection and 

analysis. I prepared the first draft of the manuscript and subsequently revised the manuscript, 

based on the feedback from co-authors and also a peer review process. The two co-authors 

assisted in developing the concept and testing the model, reviewed and corrected the model and 

results. They also contributed to the review and revision of the manuscript.  

Abstract 

With the increasing complexity of the hazardous process operation, potential accident modeling is 

becoming challenging. In process operation accidents, causation is a function of nonlinear 

interactions of various factors. Traditional accident models such as the fault tree represent cause 

and effect relationships without considering the dependency and nonlinear interaction of the causal 

factors. 

This paper presents a new non-sequential barrier-based process accident model. The model uses 

both fault and event tree analysis to study the cause-consequence relationship. The dependencies 

and nonlinear interaction among failure causes are modelled using a Bayesian network (BN) with 
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various relaxation strategies. The proposed model considers six prevention barriers in the accident 

causation process: design error, operational failure, equipment failure, human failure and external 

factor prevention barriers. Each barrier is modeled using BN and the interactions within the barrier 

are also modeled using BN. The proposed model estimates the lower and upper bounds of 

prevention barriers failure probabilities, considering dependencies and non-linear interaction 

among causal factors. Based on these failure probabilities, the model predicts the lower and upper 

bounds of the process accident causation probability. The proposed accident model is tested on a 

real life case study. 

Keywords: Accident Modelling, Risk Assessment, Accident prediction, Bayesian network 

analysis 

4.1.  Introduction  

In recent times, chemical process industries (CPI) are dealing with highly hazardous chemicals at 

different stages of their process operations. The dynamic technological complexity of process 

systems which include equipment, management and organisation decisions, operators, operating 

conditions, external environmental conditions and their various interactions are major causes of 

accidents in process industries. This complexity has numerous dimensions; interactive complexity 

is on the increase in systems currently being built. Process systems now contain large amounts of 

dynamically interacting components. In the current complex system, humans interact with 

technology and produce an outcome due to their collaboration which cannot be accomplished 

either by technology or humans operating independently. Therefore, safe operation of  the modern 

complex system demands a thorough understanding of interactions and interrelationships between, 

human, technical, environmental and organizational phases of the system  (Qureshi 2008; Leveson 

2004b). 
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 Recent  analysis of  CPI accidents has  shown  an increase  in the frequency of accidents  in most  

regions of the world, probably due to these complex interactions (Kidam et al. 2014; Khan & 

Abbasi 1999). Process accidents are normally due to a chain or sequence of failure of events caused 

by failure of one or several physical components and abnormalities of process parameters (Tan et 

al. 2013).  

Process accident models give detailed features of accidents and clearly express the relationship 

between causes and effects. They provide an adequate explanation of why accidents occur and 

they are a very useful technique for process risk assessment. Process accidents normally follow 

three steps: initiation, propagation and termination (Crowl & Louvar 2001) and any of these steps 

could lead to hazardous events.  

Accident models systematically relate causes and consequences of the events and play a significant 

role in accident investigation and analysis. Accident models primarily tend to answer two major 

broad questions: (i) why accidents occur and (ii) how accidents occur. Classification of accident 

models can be done in several ways. Accident models are broadly categorised as either traditional 

or modern accident models. Traditional accident models are further sub-grouped into sequential 

and epidemiological models. They are primarily descriptive models that lack predictive capacity 

and emphasize mainly human, organisational and management factors. Modern accident models 

can be sub classified into three sub- categories: systematic, formal, and dynamic accident models 

( Al-shanini et al. 2014; Qureshi 2008). 

One principal limitation of these accident models is that they are usually case-specific, commonly 

descriptive, qualitative and merely conventional models that cannot utilize accident precursor data 

to develop prevention strategies. Those that have quantitative units had limitations of data scarcity 
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and uncertainty. However, dynamic accident models have a great benefit of simplicity because of 

their sequential arrangement or layout and because non-linear interactions can be represented 

within the main framework. The dynamic accident model is predictive and uses real time precursor 

data to evaluate the likelihood of all available end- states (Al-shanini et al. 2014). 

Kujath et al (2010) developed a process accident model for offshore oil production to prevent 

offshore process accidents using the concept of safety barriers. Five major prevention barriers were 

connected alongside the accident propagation path to prevent and mitigate the consequences of 

hydrocarbon release. Fault tree analysis was used to analyse the failure of prevention barriers, and 

consequences were analyzed using an event tree. The end state precursor data in the event tree 

analysis were used to update the failure probabilities of safety barriers via the Bayesian theorem. 

Despite the application of this model to the Piper Alpha (1988) and BP’s Texas city refinery (2005) 

the model still exhibits some limitations, which  are : (1) There  is only provision for  operational 

and  technical failures; all other accident contributory  factors such as  human and organisational 

errors were not part of the model; and (2) Other accident initiating events such as an  explosion 

were not considered (Rathnayaka et al. 2011).  

In order to overcome the weakness in Kujath’s model, Rathnayaka et al. (2011) provided an 

extension of this model by incorporating other factors ( i.e., management and organisational 

factors) that were neglected by Kujath into a new accident model called System Hazard 

Identification, Prediction and Prevention (SHIPP) methodology. All accident contributory factors 

were modeled into seven prevention barriers. In this model, accident precursor data were used to 

update the failure probabilities of every barrier with the Bayesian updating technique. The SHIPP 

model was validated for two LNG facilities effectively and the results obtained were highly 

promising  (Rathnayaka et al. 2012; Rathnayaka et al. 2010).  
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However, in spite of the promising results obtained with the use of SHIPP methodology, the model 

still has some weaknesses that may affect the accuracy of the results obtained. These weakness 

are: (1) External hazards are not considered in the model. (2) The model presumed the causes of 

failure within safety barriers were independent, although in reality they are interdependent and this 

could grossly affect the results. (3) Provision was not made for other factors that were not 

accounted for in the fault tree model of prevention barriers. (4) Nonlinear interaction of various 

factors were not considered. 

 This paper proposes a novel non sequential barrier based accident model, in which 

interdependency and nonlinear interaction among accident contributory factors within safety 

barriers are modelled for process accidents. This work also proposes major influencing factors of 

process accidents. Considering dependencies and non-linear interaction among causal factors, the 

proposed model is capable of estimating the lower and upper boundary of prevention barrier failure 

probabilities.  The remaining parts of this paper are organised as follows. Section 4.2 provides a 

brief description of basic characteristic of BNs. Section 4. 3 presents canonical models based on 

the assumption of independence of causal influence. Section 4. 4 presents the proposed accident 

model. Section 4. 5 demonstrates the application of the proposed model using the Richmond 

refinery accident. Section 4.6 presents the results and discussion. Finally, Section 4.7 provides the 

conclusion. 

4.2. Bayesian Network 

Bayesian networks (BN) are direct acyclic graph (DAG) with various nodes representing variables 

and arcs which represent direct dependencies among the variables. A BN usually consists of both 

qualitative and quantitative parts. The qualitative part is an acyclic directed graph naturally 

showing the causal structure of the domain; the other quantitative part denotes the joint probability 
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distribution of its variables. All variables in a BN are adequately represented in a conditional 

probability table (CPT). A CTP provides complete specification of probabilistic interaction that 

has the capability to model any type of probabilistic dependence between a discrete node and its 

parents. The probabilities in the CTP denote the probabilities of each state given the state of the 

parent variable. However, if a variable in BN does not have parent variables, the CPT denotes the 

prior probability variable (Kraaijeveld & Druzdzel 2005). 

A Bayesian network represents the joint probability distributions for a set of discrete random 

variables X, where X is given as  

                                                                                                                     (4.1) 

where n is finite in this case. Equation (4.1) can be decomposed into products of conditional 

probability distributions for each of the variables provided their parent is known. In the case of a 

root node with no parents, prior probability is used instead. The joint probability distribution for a 

set of discrete random variables  can be calculated  by taking the product of 

all the priors and their conditional probability distribution (Kraaijeveld & Druzdzel 2005). 

Mathematically this is given by  

𝑃(𝑥1, 𝑥2, … , 𝑥 𝑛) =  ∏ 𝑃(𝑥𝑖|𝑝𝑎(𝑥𝑖))

𝑛

𝑖=1

                                                                                                 (4.2) 

4.3. Canonical Probabilistic Models 

Canonical models are advantageous because they make the construction of a probabilistic model 

easy and also reduce the computation time. One foremost challenge in using the BN model to 

model practical problems is the difficulty that arises in obtaining the numerical parameters that are 

 1 2, ,..., nX X X X

 1 2, ,..., nX X X X
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required to fully quantify it. Discrete joint probability distributions are generally represented as 

CTPs, which are a collection of discrete probability distributions of a variable conditional on its 

given parents in the BN. The size of CPTs increases exponentially with the number of parents in 

a BN. Therefore, it is extremely difficult to build CTPs for variables having many parents. This is 

because these numerical parameters in CPTs are obtained from a data base or from human 

expertise (Oniśko et al. 2001; Diez & Druzdzel 2007). 

One way of overcoming the challenge of obtaining these numerical probabilities is to apply the 

canonical models. Canonical models permit building of probability distribution from a fewer 

number of parameters (Bobbio et al. 2001). Noisy-OR and Leaky Noisy-OR are typical examples 

of a canonical model. 

4.3.1. NOISY-OR GATE 

The Noisy-OR gate belongs to the family of models widely referred to as independent of causal 

influences (ICI).  A Noisy-OR gate is one form of canonical interaction that is extensively used in 

Bayesian networks.  

 The Noisy-OR gate is applicable when there are numerous possible causes X1, X2, X3…, Xn of an 

effect variable Y. The model has two assumptions: (1) Each of the causes Xi has a probability pi 

strong enough to cause Y, when other causes are absent. (2) Each of the causes Xi influences Y 

independently from each other. The noisy model requires specification of n parameters p1, p2…, 

pn.  pi is the probability that  effect Y is true given  that cause Xi   is true  and all other causes Xj, j ≠ 

i, are false (Oniśko et al. 2001). Therefore, 

                                                                                             (4.3) 
 1 2 1Pr , ,..., ,..., ,n nii y x x x x x

p
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The two outcomes of variable X are represented by  𝑥 and  �̅� . The probability of  y provided a 

subset Xp  of the Xis that are true is given by the following formula, from which the complete CPT 

of Y conditional on its parents X1, X2…., Xn can be derived. 

                                                                                                                         (4.4) 

The use of the model results in a substantial reduction in the number of probabilities needed to 

quantify the cause-effect interaction. The model only needs “n” probabilities whereas the 

unrestricted model needs 2n probabilities (Heckerman & Breese 1996). 

4.3.2. Leaky Noisy-OR 

The Noisy-OR gate does not consider the situation where a subsystem could fail though all of its 

components are functional. Leaky Noisy-OR considers a situation where the effect variable can be 

true though all of its causes are false. The Leaky model presumes a positive probability called 

leaky probability (l). Leaky probability is the probability that effect Y will occur spontaneously 

though all its causes are false. The model is applicable where it is impossible to capture all potential 

causes that could make effect Y occur. The effect of leaky probability could be  easily modeled by  

the influence between 𝑋𝑖 and Y  that has changed due to  the addition of an unknown Parent  F 

(Bobbio et al. 2001; Wasyluk 2001; Zagorecki & Druzdzel 2004). Therefore, the leaky Noisy-OR 

gate formula that can be used to calculate the probability of Y given the subset  𝑋𝑃 of the 𝑋𝑖  which 

are true is 

                                                                                                   (4.5) 

 

   
:

Pr 1 1
i P

P i

i X X

y X p


  

     
:

Pr 1 1 1
i P

P i

i X X

Y X l p


 
    

 




36 
 

4.4. The Proposed Accident Model methodology 

This section describes vividly each step of the proposed accident model. Figure 4.1 presents the 

flow chart of the model.  

Identify accident contributory factors and 
develop a model to represent their 

interdependencies

Quantify  probabilities of failures of 
prevention barriers through fault tree 

analysis

Develop event tree  for accident 
contributory factors model

Compute probabilities of different accident 
scenarios

Conduct sensitivity analysis to identify most 
contributory causal factors

Define the logic  sequence of prevention 
barriers

Map  fault tree into BN to show the 
dependency of accident contributory 
factors within all prevention barriers 

through different logic gates

 

 Figure 4. 1.  Flow chart for the proposed accident modeling steps.  
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4.4.1.   Accident contributory factors in the model 

Generally, process accidents contributors can be categorised as human, management, technical 

(equipment), design and external factors (Kidam et al. 2014). 

  4 .4.1.1.   Design error 

One of the most common causes of accidents in process industries is design error. Evidence of this 

can be seen in different statistical studies of accident reports. Design error contributed 79% of 

accident cases that were analysed by Kidam & Hurme (2012). Normally, design error could  be 

defined as features of a design which make it incapable of functioning according to its specification  

(Taylor 2007).  A more applicable definition of design error for process accidents analysis is  given 

by Kidam & Hurme (2012) : “… a design error is deemed  to have occurred, if the design or  

operating  procedures  are changed after  an  incident has occurred.’’ This definition encompasses 

both design and operating procedure changes after an accident has occurred. 

4. 4.1.2.   Process equipment failure 

Process equipment failures are responsible for most process incidents. The deviations of process 

equipment from their original design objectives and normal operating conditions may result in 

catastrophic consequences (Mohammadfam et al. 2013; Khan & Abbasi 1999). Previous reviews 

of equipment failure related accidents show that the most common equipment to cause accidents  

in process industries are: reactors, storage tanks, pressure vessels, boilers and piping (Kidam & 

Hurme 2013). 
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 4.4.1. 3.   Operational failure  

Operational failures are common in process industries. They  entail all “disruptions and errors in   

materials, information and equipment’’ (Adler-milstein et al. 2009)  that originated from  diverse 

causes including improper equipment maintenance, inspection, repair, and inadequate 

coordination among staff and management. The aftermath effect of an operational error could 

range from minor injuries to devastating catastrophes (Adler-milstein et al. 2009). Minor laxity of 

personnel during operation or maintenance could lead to an accident. For process accident analysis, 

a good working definition of operational failure is  “ any operational practice flaw that, if corrected, 

could have prevented the incident from occurring or would have significantly mitigated its 

consequences.’’ (Bullemer & Laberge 2010) . 

4.4.1.4.   Human failure  

 Major accidents that have occurred in various process industries have been due to incorrect 

operation and maintenance errors. The  Bhopal gas accident in 1984 and  the Texas city refinery 

explosion are very good examples of major accidents that occurred as a result of human errors 

(Okoh & Haugen 2014).  

Human error depends on several factors which are termed performance shaping factors (PSFs). 

These PSFs are classified into different categories: external, internal, psychological and 

physiological factors. External PSFs are factors related to the situation equipment characteristics 

and quality of the working conditions. Internal PSF factors are uniquely related to individual 

characteristics like skills, experience, motivation and mental capability. Psychological PSFs are 

factors which directly cause mental stress such as, task speed, task load and task type. 

Physiological factors are factors that cause physical stress such as hunger, extreme temperature, 

discomfort, thirst etc. (Abbassi et al. 2015). 
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4.4.1.5.   Organizational failure  

 Organizational failure in most cases, is a result of organisational misalignment to realities 

(Sheppard & Chowdhury 2005). Organizational failure always contributes to accidents in process 

industries. The majority of technical failures can be traced back to organizational error 

(Rathnayaka et al. 2013).   

4.4.1.6.   External factors  

External factors such as an earthquake, storm or lightning are potential sources of hazards for 

process industries. Hence there is a need for these factors to be adequately considered in process 

accident modelling ( Al-shanini et al. 2014). The interdependency of all these accident contributory 

factors is presented in Figure 4. 2.  

Design error

Operational

failure

Equipment

failure

Accident

External factor

Organization failure

Human failure

External factor

Organization failure

Human failure

 

Figure 4. 2.  Interdependency of accident contributory factors in the main model. 
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In this model, there are dependent relationships among design error, operational failure and 

equipment failure. Design error can lead to both operational and equipment failures. Operational 

failure can cause equipment failure. Similarly, design error, operational and equipment failures 

may result in a process accident independently. The other accident contributory factors in the 

model that could lead to an accident are: human failure, organisational failure and external factors. 

4.4.2. Developing prevention barriers for the model  

Prevention barriers play a significant role in mitigating the effect of any error that will result in an 

accident. The accident contributory factors are logically arranged into different prevention barriers 

along the accident pathway to avert or control the effects of a process accident. Fault tree and event 

tree analyses are used to represent the cause-consequence relationship for each of the prevention 

barriers.  

4.4.3.   Quantifying probabilities of failures of prevention barriers through fault tree 

analysis 

Fault tree analysis (FTA) is a well-developed tool for quantitative reliability and safety analysis of 

a complex system. FTA is a deductive graphical technique for detecting the possible causes of 

undesired events, popularly referred to as a top event. The top event normally denotes the main 

accident causing safety hazard (Khakzad et al. 2011).  

Fault tree construction begins by placing the top event at the top of the tree. Every other possible 

way for this top event to occur is systematically constructed downwards until the primary events 

(root causes) causing the top event to occur are detected. The most commonly used gates are the 

AND-gate and OR-gate. FTA can be carried out in two basic ways: qualitatively and 
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quantitatively. In qualitative analysis, a Boolean algebra expression of the top event is derived in 

terms of minimal cut-sets. 

In quantitative analysis, the probability of occurrence of the  top event in the fault tree is calculated 

based on the failure probabilities of basic events (Bobbio et al. 2001; Durga Rao et al. 2009; 

Khakzad et al. 2011).  

Figure 4.3a gives an example of the fault tree that presents the causes of mechanical failure of a 

system. Based on failure probabilities given by Table 4.1, the failure probability of mechanical 

failure is calculated as follows: 

1 - ( 1 – 0.001)(1- 0.025)( 1- 0.003)( 1- 0.1667) =  0.1907 

 

 

 

           

Mechanical  failure

High stress Welding defect Vibration Misalignment

 

(a)                                                                       (b) 

Figure 4. 3. Fault tree and Bayesian network for causes of mechanical failure. 
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Table 4. 1. Safe and failure probabilities of causes of mechanical failure. 
 

 

 

 

4.4.4 Mapping of the fault tree into the Bayesian network 

 The Fault tree (FT) can be mapped into the Bayesian network (BN) and the analysis performed 

with the FT can also be done with the BN, by using the inference in the BN. The mapping algorithm 

consists of both graphical and numerical tasks. In graphical mapping, the basic events, 

intermediate events and top event of the FT are converted respectively to, root nodes, intermediate 

nodes and the leaf node of the corresponding BN. The connections between the nodes in the BN 

remains the same as that of the corresponding FT. In numerical mapping, each root node is 

assigned the same prior probability as the corresponding basic event in the FT. The CPTs are 

formulated for both leaf and intermediate nodes. The CPTs need to be  developed  according to 

the logic gates used in the FT (Bobbio et al. 2001; Khakzad et al. 2011; Lampis & Andrews 2009). 

The purpose of mapping the fault tree into the BN is to allow the usage of different logic gates in 

the model: OR, Noisy-OR and Leaky Noisy-OR gates. The fault tree shown in Figure 4.3a was 

mapped into a Bayesian network given by Figure 4.3b.  

It is common to use the OR-gate in BN models; therefore, its computational process is not 

discussed here. The following provides the procedure, based on which the probability of a top 

event (e.g., mechanical failure in Figure 4.3b) is computed when the Noisy-OR logic gate is 

applied in the BN model. 

 
No Causes of  mechanical failure Failure probability 

 
Safe probability 

1 High stress 0.001 0.999 

2 Welding defect 0.025 0.975 

3 Vibration 0.003 0.997 

4 Misalignment 0.1667 0.8333 
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(1) Computing  the safe (non-occurrence)  probability of  all parent nodes  in the BN model 

(2) Assigning the non-causation probability of all parent nodes in the CPT, based on expert 

opinion or data. 

(3) Computing the conditional probabilities table. 

(4) Using a conditional probability table with probabilities of the state of parent nodes 

(safe/false or failure/true) depending on the state involved, compute the probability of 

a top event. 

Still following the previous example, based on step (1) to step (4), the probability of mechanical 

failure was calculated as shown in Table 4.2.
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Table 4. 2. Probability of mechanical failure for Noisy- OR gate. 
 

 

 

 

 

 

 

 

State
High  

Stress

Welding 

defect
Vibration

Wrong 

specification

1 F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T

0.0875 = 0.35*0.25

0.0175 = 0.35*0.25*0.2

0.979

0.9215

0.9825

Non causation probability 

of mechanical failure

1

0.2

0.3

0.06 = 0.3*0.2

0.25

0.05 = 0.25*0.2

0.075 = 0.25*0.3

0.015 = 0.25*0.3*0.2

0.35

0.07 = 0.35 *0.2

0.105 = 0.35 *0.2

0.021 = 0.35*0.3*0.2

0.925

0.985

0.65

0.93

0.895

The probability of mechanical failure is the sum of all states  = 

0.15194

0.65          * 0.001         * 0.975     * 0.997        * 0.8333       =   5.2652E- 04

0.93          * 0.001         * 0.975     * 0.997        * 0.1667      =   1.50702E- 04

0.895      *   0.001         * 0.975     * 0.003       * 0.8333        =  2.18148E-06

0.979        * 0.001         *  0.975    * 0.003        *  0.1667     =   4.77358 E-07

0.9215      * 0.001        *  0.025     * 0.997        * 0.8333     =   1.9139 6E-05

0.9825      * 0.001        * 0.025      * 0.997        * 0.1667     =   4.08229 E-06

0.9737      * 0.001        * 0.025      * 0.003        * 0.8333     =   6.08538 E-08

0.9947      * 0.001        * 0.025      *0.003         * 0.1667     =   1.24362 E-08

0.9737

0.9947

0.02625 = 0.35*0.25*0.3

5.25E-3 = 0.35*0.25*0.3*0.2

0.985        * 0.999         * 0.025     * 0.003        * 0.1667      =   1.23026E-05

0.7             * 0.999        * 0.975       * 0.003      * 0.8333      =   1.70447E-03

0.94           * 0.999        * 0.975       * 0.003     * 0.1667       =   4.57883E-04

0.75           * 0.999        * 0.025       * 0.997      * 0.8333      =   1.55619E-02

0.925        * 0.999         * 0.025      * 0.003       * 0.8330      =   5.77524E-05

Conditional probability of mechanical failue for different states

0                 *0.999         * 0.975       *0.997       * 0.8333      =    0

0.8             * 0.999        * 0.975       * 0.997      * 0.8333      =   1.29506E-01

0.95           * 0.999        * 0.025       * 0.997      * 0.1667      =   3.9433E-03

Causation 

probability  of 

mechanical 

0

0.8

0.7

0.94

0.75

0.95
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The following steps can be used to calculate the probability of top events when the Leaky Noisy-

OR gate is used in a BN model. 

(1) Assigning a leak probability.  

(2) Computing the safe (non-occurrence) probability of all parent nodes in the BN. 

(3) Assigning the non-causation probabilities of all parent nodes in the CPT, based on 

expert opinion or data. 

(4) Computing the conditional probabilities table. 

(5) Using the conditional probability table with probabilities of the state of parent nodes 

(safe/false or failure/true) depending on the state involved, compute the probability of 

a top event.  

Still using the previous example for the purpose of illustration (the leak probability used here is 

0.01). Based on the process described above, the probability of mechanical failure was calculated 

as shown in Table 4.3. 
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 Table 4 .3. Probability of mechanical failure for Leak Noisy- OR gate. 

  

 

 

 

 

 

 

 

 

State
High  

stress

Welding 

defect
Vibration Misalignment Conditonal Probability of mechanical failure   for different states

1 F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T

The probabiity of mechanical failure  is  sum of all states = 0.16042

0.9948

0.974

0.9826

0.3465 = 0.35 * 0.99

0.0693 = 0.35*0.2*0.99

0.1039 = 0.35*0.3*0.99

0.0207 = 0.35*0.3*0.2*0.99

0.0866 = 0.35*0.25*0.99

0.6535

0.9307

0.89605

0.9792

0.9133

0.9740     *     0.001    * 0.025     *    0.003    *   0.8333         =   6.08725 E-08

0.9948     *     0.001    *  0.025     *   0.003    *   0.1667         =   1.24374 E-08

5.94 E-02 = 0.3*0.2*0.99

0.2475 = 0.25 *0.99

4.95E-02 = 0.25*0.2*0.99

7.43E-02 = 0.25*0.3*0.99

1.485E-02 = 0.25*0.3*0.2*0.99

0.9792    *       0.001   * 0.975    *   0.003      *   0.1667        =   4.77455 E-07

0.9133    *       0.001   *  0.025    *   0.997     *   0.8333        =  1.89692E-05

0.9826    *       0.001   * 0.025    *    0.997     *   0.1667         =   4.08270E-06

Causation probability 

of mechanical failure

Non causation probabilty of mehanical 

failure

0.01

0.802

0.703

0.99

0.198 = 0.2 *0.99

0.297 = 0.3 * 0.99

0.9406

0.7525

0.9505

0.9257

0.9851

0 .01     *        0.999     * 0.975    *   0.997     *   0.8333      =    8.09220E-03

0.802    *        0.999     * 0.975    *   0.997     *   0.1667       =   1.29830E-01

0.703    *        0.999     * 0.975    *   0.003      *  0.8333       =   1.71178E-03

0.9406  *        0.999     * 0.975    *   0.003      *  0.1667       =   4.58175E-04

0.0173 = 0.35*0.25*0.2*0.99

0.02598 = 0.35*0.25*0.3*0.99

5.1975E-03 = 0.35*0.25*0.3*0.2*0.99

0.7525   *       0.999    * 0.025    *   0.997      *   0.8333       =   1.56137E-02

0.9505   *       0.999    * 0.025    *   0.997      *   0.1667       =   3.94537E-03

0.9257   *       0.999    * 0.025    *   0.003      *   0.8333       =   5.77960E-05

0.9851   *       0.999    * 0.025    *   0.003      *   0.1667       =   1.23038E-05

0.6535   *       0.001    * 0.975    *   0.997      *   0.8333       =   5.29354E- 04

0.9307    *       0.001   * 0.975    *   0.997      *   0.1667        =   1.50815E- 04

0.89605  *       0.001   * 0.975    *   0.003      *   0.8333        =  2.18403E-06
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4.4.5. Mapping a fault tree into a BN to represent the dependency of accident 

contributory   factors within all prevention barriers     

Any particular form of failure in any of the prevention barriers in the accident model is due to 

complex interactions of various factors. In most cases, some of these factors interact with one 

another in a complex manner. The dependency of these factors within each of the prevention 

barriers is represented by the BN in Figures 4. 4 - 4.9. Firstly, the failure probabilities of each 

factor (node) within each prevention barrier in the BN were evaluated without considering the 

dependencies within these factors using a fault tree, BN(Noisy-OR) and BN(Leaky noisy-OR ) 

logics. 

 

 
 
 
 
Figure 4 .4. Interdependency of accident contributory factors in design preventive 
barrier. 

Design error
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Figure 4.5. Interdependency of accident contributory factors in operational 
prevention barrier. 
 

 

Figure 4.6. Interdependency of accident contributory factors in Equipment failure 
prevention barrier. 

Operational error
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Management error 
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Maintenance error 
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Human factor

Knowledge error 
factor

Skill error factor

Management error 
factor

 

Figure 4.7. Interdependency of accident contributory factors in human factor 
prevention barrier. 
 

Organization failure

Knowledge error 
factor

Communication error 
factor

Management error 
factor

 

Figure 4. 8.  Interdependency of accident contributory factors in organisational 
failure prevention barrier. 
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Figure 4.9.  Interdependency of accident contributory factors in external factor 
prevention barrier. 
 

Secondly, considering the dependencies of factors within each prevention barrier,  different logic 

gates (OR, Noisy-OR, Leaky noisy-OR) are used in the BN to evaluate the failure probabilities of 

each prevention barrier using different failure probabilities of factors (nodes) within each 

prevention barrier calculated independently by different logics. The failure probabilities of each 

factor node (except root node) are used as a leaky probability when the leaky Noisy-OR gate is 

applied to the BN. The leaky probability of the top event in all barrier is 0.01. Failure probabilities 

of all factors (nodes) were used to evaluate the failure probability of prevention barriers when the 

leaky Noisy-OR gate was applied to the BN model. This overcomes the setback encountered in 

applying both OR and Noisy-OR logic in the BN, where only failure probabilities of root nodes 

are used to evaluate the failure probability of prevention barriers. 

External factor

Earthquake Weather
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4.4.6.  Developing an event tree for the accident contributory factor model 

Event tree analysis is an inductive method that is mostly used in process industries accident 

analysis to represent the incident scenarios. Event tree analysis begins with a definite initiating 

event and ends up with all the possible consequences of the initiating event, normally referred to 

as the end state consequences of the event tree. An  Event tree clearly displays the probabilities of 

success and failure of safety barriers and the progression of a specified initiating event to numerous 

potential scenarios (Nývlt & Rausand 2012). The various barriers in the event tree are represented 

by two distinct branches, one representing success and the other representing failure of that 

particular barrier. 

The event tree model for the proposed accident model is shown in Figure 4.10.  
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Figure 4.10. Event tree for the accident model. 
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After the design prevention barrier is triggered by a specified initiating event, the event sequence 

is propagated through success or failure branches of the operational, equipment, human, 

organisational and external factors prevention barriers. The event sequence leads to all possible 

end-state consequences in the event tree. Five major end state consequences have been identified: 

safe, near miss, mishap, incident and accident. Four of these end states are abnormal events and 

their description is given by Rathnayaka et al. (2011). 

4.5.  Case study 

In this section, the Richmond refinery accident in the U.S is systematically analyzed using the 

proposed model. The model subsequently reveals how the accident could have been averted, 

supposing the relevant prevention barriers were kept safe. 

The Chevron Richmond refinery in the United States of America experienced an appalling pipe 

rupture in the # 4 crude unit on August 6, 2012. The accident resulted from one of numerous 

process streams popularly known as a “4-sidecut” exiting the refinery’s C-1100 Crude Unit 

atmospheric column. The pipe rupture occurred on a 52- inch long component of the 4- sidecut 8- 

inch line. 

The rupture pipe released flammable, high temperature light oil gas that was flowing through it at 

a rate of approximately 10800 barrels per day. The released process fluid ignited two minutes after 

the release (CSB 2015). The schematic diagram of the C-1100 Crude unit atmospheric column and 

upstream process equipment is shown in Figure 4.11. 
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Figure 4.11. Schematic of diagram of C-1100 Crude unit atmospheric column and 
upstream process equipment. (CSB 2015). 
 

The U.S Chemical Safety Board (CSB) carried out an extensive investigation of the incident. The 

CSB highlighted different technical issues and safety system deficiencies in their report. Based on 

information available in the CSB report, this accident has been modelled using the proposed 

methodology. 
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 The design error prevention barrier was analysed first, in the proposed model. Various events that 

contributed to the failure of the design error prevention barrier were analysed with the fault tree.  

Subsequently, the operational failure prevention barrier, equipment failure prevention barrier, 

human failure prevention barrier, organisational failure prevention barrier and external factor 

prevention barrier were analyzed to identify the events that lead to failure of these barriers. Table 

4.4 shows the event description and failure probabilities of the basic events for the design error 

prevention barrier in the model. The reliability data used in fault tree analysis were obtained from 

various journals ( Al-shanini et al. 2014; Rathnayaka et al. 2010; Abimbola et al. 2014; Rathnayaka 

et al. 2013; Rathnayaka et al. 2012) ,  Bercba's work( 1978) and expert opinions where the data is 

not available.  

Table 4. 4. Basic event failure probability for Design error prevention barrier. 

 

 

Event    Event Description Assigned probability 

1 High operating temperature 2.50 x 10 -2 

2 Wrong construction material for pipe (carbon) 1.00 x 10 -2 

3 Poor  design  for Sulfidic corrosion  1.00 x 10 -1 

4 Un even flow in the pipe 1.00 x 10 -3 

5 Wrong pipe fittings 1.00 x 10 -3 

6 Non explosion proof 5.00 x 10 -3 

7 Inadequate management practice 2.50 x 10 -2 

8 Insufficient funding 3.00 x 10 -4 

9 Wrong work culture 1.00 x 10 -3 

10 Welding defect on  Pipe 6.60 x 10 -2 

11 Pipe erosion  and cracking 1.00 x 10 -3 

12 Wrong  chemical resistant specification 1.00 x 10 -4 

13 Wrong piping thickness  1.00 x 10 -3 

14 Operating conditions not specified 5.00 x 10 -2 

15 Improper labelling 5.00 x 10 -4 

16 Power failure 1.5. x 10 -5 

17 Working conditions 1.00 x 10 -4 
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The fault tree for the design error prevention barrier in the model is shown in Figure 4.12. 

 

 

 

Figure 4.12.  Fault tree analysis of Design error prevention barrier. 

To reduce the number of figures and tables in this paper, reliability data of basic events and 

associated fault trees for other prevention barriers are not shown. 

4.6. Results and discussion 

The failure probabilities of all prevention barriers estimated using fault tree analysis without 

considering the dependency among the contributory factors that lead to failure of particular barriers 

are shown in Table 4. 5. 

 

 

 

 

Design error

Knowledge
Error
factor

Management
Error factor

Mechanical
Error factor

Communication
Error factor

External
Factor

14 15
7 98

11 131210
4 65321

16 17
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Table 4. 5.  Failure probability of prevention barriers from fault tree calculations. 

 

 

From the analysis of failure probabilities of these prevention barriers, it can be deduced that it is 

the active failure of these relevant preventive barriers combined with latent conditions and 

concurrent management failures that led to the accident. In the Richmond refinery accident, all 

prevention barriers proposed in this model failed except the external factor barrier. The safety of 

these prevention barriers had been seriously compromised at the Richmond Refinery over time. It 

is the simultaneous failure of these barriers that ultimately led to the accident. If these prevention 

barriers had been kept intact by the management of Richmond refinery, the accident would have 

been prevented or mitigated. It was observed that organisational; human and operational failure 

prevention barriers have high failure probabilities respectively; the acute failure of these barriers 

contributed significantly to the accident.  

The failure probabilities of different factors within the prevention barriers that contribute to the 

failure of these prevention barriers were estimated independently using  different logic gates. 

The computational process has been describd in Sections 4.3-4.5. Table 4.6  shows these failure 

proababities. 

Prevention  barrier Failure probability 

Design error prevention  barrier (DPB) 0.2567 

Operational failure prevention  barrier (OPB) 0.2700 

Equipment failure prevention barrier (EPB) 0.2628 

Human failure  prevention barrier (HPB)  0.2870 

Organisational failure prevention  barrier (OrPB) 0.2959 

External factor prevention barrier (ExPB) 0.0171  
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However, when dependency among various factors that lead to the failure of a particular barrier is 

modelled in the BN using different logic gates (OR, Noisy-OR and Leaky Noisy-OR), it is possible 

to determine both lower and upper failure probability bounds for each of the prevention barriers. 

The failure probabilities of different factors given in Table 4. 6 were used to compute the failure 

probabilities of the BN for different prevention barriers using different logic gates. 

Table 4.6. Failure probability of factors contributing to failure of all prevention barriers, 

using different logic dependency. 
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From Table 4.7, it can be seen that the lower bound failure probability for all prevention barriers exists, when the Noisy-OR logic gate 

was applied in the BN. 

Table 4.7.  BN dependency failure probabilities of prevention barriers using different logic dependency. 

 

 

 

 
 

*The probabilities shown in the column named OR, Noisy and Leaky were computed when the OR, Noisy-OR and leaky Noisy-OR gates were used in the BN. 

The row named fault tree values, BN (Noisy-OR), BN(Leaky Noisy-OR) are failure probabilities values given in table 4.6, which are substituted respectively based 

on the logic being considered in the BN. 

 

 

 

OR Noisy Leaky OR Noisy Leaky OR Noisy Leaky OR Noisy Leaky OR Noisy Leaky OR Noisy

Fault tree (values) 0.0501 0.0264 0.0921 0.1114 0.0790 0.1435 0.0050 0.0021 0.1152 0.1630 0.1177 0.1746 0.0040 0.0022 0.0790 0.0170 0.0120

BN(Noisy OR values) 0.0330 0.0174 0.0590 0.0727 0.0520 0.0992 0.0030 0.0012 0.0818 0.1060 0.0766 0.1195 0.0020 0.0011 0.0541 0.0059 0.0042

BN(Leaky Noisy OR values) 0.0518 0.0264 0.0746 0.1000 0.0663 0.1224 0.0130 0.0055 0.0957 0.1150 0.0831 0.1342 0.0120 0.0068 0.0658 0.0158 0.0111

Huaman failure (HPB) Organisational failure(OrPB) External factor(ExPB)Design error (DPB) Operational failure (OPB) Equipment failure (EPB)



60 
 

This is because uncertainty of the conditional dependency between the linked nodes in the BN was 

considered so that lower conditional probabilities were assigned compared to the case in which the 

OR gate was used. The upper bound failure probability of all the prevention barrier exists when 

the Leaky Noisy-OR gate was applied in the BN. 

The lower and upper bounds accident occurrence probability obtained from the event tree for the 

accident model are shown in Table 4. 8.  

Table 4. 8. Accident occurrence probability. 

 

*The probabilities shown in the column named lower and upper bounds were computed using the probabilities 

shown in the column named Noisy and leaky condition in Table 4.7. 

 

To compute both the lower and upper bounds of accident probabilities, the lower and upper bounds 

of prevention barrier failure probabilities were used in the event tree to compute the consequences. 

Table 4.8 shows that a narrower span of probability estimation was obtained when dependency 

among causal factors was considered. This indicates the importance of modeling of these 

dependencies in an accident modelling approach and highlights the advantage of using BN instead 

of the fault tree. Table 4.8 also shows that the estimated range of accident probability changed 

significantly when the leaky Noisy-OR gate was used instead of the Noisy-OR. This demonstrates 

the importance of choosing an appropriate logic dependency to represent the actual causal 

relationship between two factors.  

This would become even more important when insufficient or scarce data or information is 

available for the accident analysis. The accident occurrence probability of an accident in each case 

Logic  

Accident occurrence probability   

Lower bound Upper bound 

Fault tree  6.93E-07 5.19E-04 

BN (Noisy-OR ) 5.83E-08 1.00E-04 

BN (Leaky Noisy-OR ) 1.37E-06 2.45E-04 
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is the summation of all accident occurrence probabilities in the event tree. To evaluate accident 

occurrence probability, when the leaky noisy gate was applied among the causal factors of each 

barrier. The failure probability of OR gate values was used for  the external barrier due to  the lack 

of dependency relationships among the causal factors in this barrier and so the  leaky Noisy-OR 

gate could not  be applied to this barrier. 

The sensitivity analysis for the design error prevention barrier in the model is shown in Figure 

4.13.  

 

 

Figure 4. 13. Sensitivity analysis of design error prevention barrier (Causal factors 
are defined as shown in Table 4.4). 
  

The causal factors are represented with numbers as defined in Table 4.4. It is observed that virtually 

all the causal factors in the DPB except two factors (i.e., wrong chemical resistant specification 

and wrong working conditions) are significant contributors to the failure of design error prevention 

barrier. Preventive actions must be placed on all these causal factors in order to eliminate or reduce 
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drastically the negative influence of all these causal factors on these barriers. Systematic and timely 

analysis of these causal factors is of paramount importance to enhance the reliability of these 

prevention barriers and subsequently prevent the re- occurrence of the accident. 

 This analysis has demonstrated that BN is an effective technique for estimating the contribution 

of different conditional dependencies and nonlinear interaction among accident contributory 

factors within safety barriers. Conditional dependencies can be accurately modelled in the BN by 

means of a direct causal arc among various dependent variables with various relaxation strategies. 

The modelling of nonlinear interactions and dependencies with the BN using relaxation strategies 

has provided the opportunity to estimate accident probability considering the uncertainty 

dependency among the contributory factors of a prevention barrier. The predicted accident 

occurrence probabilities based on this model will provide valuable information in the development 

of accident prevention strategies based on an interval estimation of the risk. 

4.7. Conclusions 

This paper presented a new process accident model with emphasis on interdependency of 

contributory factors that lead to the failure of a particular prevention barrier. Six barriers were 

defined to prevent process accidents before they escalate into catastrophic events. The 

effectiveness of the proposed model was partially validated through the application of the model 

to the Richmond refinery accident. The BN model is capable of modelling the dependencies among 

these accident contributory factors. The application of Noisy-OR and leaky Noisy-OR gates helps 

to represent the uncertainties of the probabilities that are used in the CPTs of the BN model. 

Consequently, the proposed model is able to provide the lower and upper boundary of the failure 

probability of a process accident. The accident model provides a mechanism for predicting a 

process accident based on the interdependency and nonlinear interaction of contributory factors. 



63 
 

Process monitoring data is needed to effectively implement this accident model; with process 

monitoring data, the model can quantitatively estimate the dynamic risk profile that will greatly 

guide dynamic decision making. The use of predicted accident probabilities based on this model 

will help to take early corrective actions to prevent process accidents and developed effective 

process safety management plan. 
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Chapter 5 

5.0 Dynamic safety analysis of process system using nonlinear and 

non – sequential accident model  

Preface 

A version of this chapter has been published in the Journal of Chemical Engineering Research 

and Design 2016; 111:169-183. I am the primary author. Co-author Faisal Khan provided 

fundamental understanding, assisted in developing the conceptual model and subsequently 

translated this to the numerical model. Co-author Ming Yang provided much needed support in 

implementing the concept and testing the model. I carried out most of the data collection and 

analysis. I prepared the first draft of the manuscript and subsequently revised the manuscript, 

based on the feedback from co-authors and also a peer review process. The two co-authors 

assisted in developing the concept and testing the model, reviewed and corrected the model and 

results. They also contributed to the review and revision of the manuscript.  

Abstract 

Analysis of the safety and reliability of complex engineering systems is becoming challenging and 

highly demanding. In complex engineering systems, accident causation is a function of nonlinear 

interactions of several accident contributory factors. Traditional accident models normally use a 

fault and event trees sequential approach to predict cause-consequence relationships, which unable 

to capture real interaction thus have limited predictability of accident.  

This paper presents a new non-sequential barrier-based process accident model. The conditional 

dependencies among accident contributory factors within prevention barriers are modelled using 

the Bayesian network with various relaxation strategies, and non-sequential failure of prevention 

(safety) barriers. The modelling of non-linear interactions in the model led to significant 
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improvement of the predicted probability of an accident when compared with that of sequential 

technique. This renders valuable information for process safety management. The proposed 

accident model is tested on a real life case study from the U.S Chemical Safety Board. 

Keywords: Sequential accident model, Non-sequential accident model, Accident prediction, 

Bayesian network analysis, Leaky Noisy-OR Gate 

5.1. Introduction   

Due to the complexity of modern industrial technological systems, the risk posed by accidents in 

such systems is becoming more worrisome. Operating modern process plants demands high levels 

of safety and reliability. Process accidents occur due to chains of abnormal events instigated by 

human error, technical failure, external causes and deviation from process parameters. The 

majority of devastating accidents in process plants such as toxic release, fire and explosion are 

initiated by process hazards. A vital part of the safety system is to identify hazards associated with 

a process system and estimate the probability of occurrence and the subsequent consequences 

involved. Comprehensive analysis of how an accident process evolves from initiation to the 

termination stage is of paramount importance in designing safety into process systems to avoid 

accidents (Rathnayaka et al. 2010; Tan et al. 2013). 

Accident models are theoretical frameworks which typically show the relationship between causes 

and consequences and vividly explain why and how accidents occurred. Accident models are used 

as techniques for risk assessment during the system development stage and for subsequent use as 

post hoc accident investigation to analyse the root causes of an accident (Qureshi 2008). Quite a 

number of accident models and numerous methods of accident modelling (FMEA, ETA, FTA and 

MORT) have been developed in the last few decades (Katsakiori et al. 2009). Detailed descriptions 

of these accident models and their applications can be can be found in literature (Attwood et al. 
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2006; Rathnayaka et al. 2011;  Rasmussen 1997; Heinrich 1941; Kujath et al. 2010; Qureshi 2008). 

A detailed review of accident models that have been developed for the chemical process industry 

with a detailed analysis of  the class of accident model known as the dynamic sequential accident 

model can be found in  Al-shanini et al. (2014). Existing accident models have their own strengths 

and weakness and they depend mainly on the areas of their application, purpose and focus. The 

majority of the existing accident models are sequential accident models where an accident 

processes from initiation to termination and are considered as a chain of independent events that 

occurred in a definite particular order. The severity of effects is presumed to progress through the 

sequential failure of independent events. These traditional models use a fault and event trees 

sequential approach to predict the cause-consequence relationship, which provides a sequential 

explanatory mechanism of accident propagation. However, in a real life situation, this need not be 

true. 

Also, existing models are not capable of modelling multiple risk factors in process systems where 

interactions among sub systems are nonlinear and extremely complex, and they are not capable of 

using accident precursor data to evaluate risk and develop accident prevention strategies (Tan et 

al. 2013; Rathnayaka et al. 2011). Recently, Baksh et al. (2015) allowed  random failure of safety 

barriers in their predictive accident modelling but nonlinear interactions of accident contributory 

factors within the safety barriers were ignored in their model. 

Due to the complexity of process’s operations and the high level of interaction among sub-systems, 

accident causation is a function of nonlinear interaction of various factors. A thorough review of 

existing accident models reveals that the majority of the models belong to the class of sequential 

accident models, where the accident process is described as a chain of independent events that take 

place sequentially.  
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The modelling flexibility of the BN structure can accommodate various kinds of conditional 

dependencies that cannot be readily included in FTA and ETA. Application of Bayesian network 

to accident model analysis is of great advantage and hence non-linear interaction among accident 

contributory factors can be easily modelled and predicted with various relaxation strategies.  

The major objective of this study is to model the nonlinear interaction of accident contributory 

factors within the safety barriers under relaxation strategies and subsequently allow the non-

sequential failure of safety barriers to cause adverse events randomly. The accident processes from 

initiation to termination are viewed as non-sequential processes and modeled using BN in this 

study. The non-sequential accident model is a relatively new concept. 

The remaining parts of this paper are organised as follows. Section 5.2 presents a brief description 

of failure analysis techniques. Section 5.3 presents the comparison of sequential and non-

sequential techniques with a case study. Section 5.4 presents the results and discussion. Finally, 

Section 5.5 provides the conclusion. 

5.2. Failure Analysis Techniques 

Quite a number of methodologies have been developed for accident analysis; the most widely used 

technique is fault tree analysis. Recently BNs have gained much attention because they can 

accommodate different kinds of statistical dependencies that cannot be easily included in other 

accident analysis techniques. 

5.2.1. Fault tree 

A fault tree is a deductive, graphic methodology used to determine failure probability of a complex 

system. The top event in the fault tree represents a major accident initiating hazard. The top event 

is placed at the top of the fault tree and the fault tree is graphically modelled downward to allow 
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the visualization of all possible combinations of malfunctions and wrong actions that could initiate 

the top event. Fault trees are usually constructed from events and logic gates (Khakzad et al. 2011). 

The underlying technical failures that lead to accidents are usually represented by basic events. 

The logic gates in the fault tree represent numerous ways by which machines and human error 

interact to cause the accident. AND and OR gates are the commonly used logic gates in the fault 

tree. Analysis in  the fault tree can proceed both qualitatively and quantitatively (Nivolianitou et 

al. 2004). In AND gate, process components interact in parallel structure and process failure 

requires the simultaneous failure of all components in parallel. The failure probability of the top 

event in parallel structure (AND gate) is calculated by equation 5.1. Also in OR gate, process 

components interact in series structure and failure of any single components in series leads to 

failure of the process. The failure probability of the top event in series structure (OR gate) is 

calculated by equation 5.2. 

P =  ∏ Pi

n

i=1

                                                                                                                                                  (5.1) 

 

P = 1 − ∏(1 − Pi 

n

i=1

)                                                                                                                                (5.2) 

                                                                                 

5.2.2.  Event tree 

Event tree analysis is a systematic method for studying an accident scenario in complex systems. 

It is an inductive/forward looking analysis that is used to analyse event sequence, after an initiating 

event. It normally starts with a specific initiating event and usually ends with the possible 

consequences referred to as end states. The safety barriers or functions in an event tree are usually 

arranged in chronological order, meaning the events are considered in the same sequence they are 
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expected to happen during an accident sequence. It is a proactive risk analysis methodology used 

to identify and illustrate a potential event sequence to obtain both qualitative and quantitative 

representation and assessment (Sklet 2004; Nivolianitou et al. 2004). 

The occurrence probabilities of end state consequences P(Ck) in the event tree is calculated by 

equation 5.3. 

P(CK) =  ∏ x
i

θi,k  (1 −  xi )
1−θi,k

j ϵ SBk

                                                                                         (5.3)             

Where SBk   represents prevention barrier related to level k; and  𝜃𝑖,𝑘 = 1 when level k failure 

passes  through the  failure branch of  prevention  barrier i; 𝜃𝑖,𝑘 = 0  when level k  failure passes  

through the success branch of  prevention  barrier i. 𝑥𝑖 is the  failure probabilities  of  prevention 

barriers. 

5.2.3. Bayesian network 

 The Bayesian network is a graphical technique; it provides a robust probabilistic technique of 

reasoning under uncertainty. BN techniques have been extensively used in risk and safety analysis 

based on probabilistic and uncertain knowledge. BN (also known as a probabilistic dependence 

graph) is a direct acyclic graph with numerous nodes representing variables and arcs signifying 

direct causal relationships among the linked nodes. A conditional probability table (CPT) is 

assigned to the various nodes to denote conditional dependencies among the linked nodes (Bobbio 

et al. 2001; Khakzad et al. 2013). Based on both conditional independence and the chain rule, the 

BN represents the joint probability distribution P(U) of a set of discrete random variables U= 

{A1…,An}, incorporated in the network as: 
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where Pa (Ai) is the parent of variable Ai and P (U) is the joint probability distribution of variables 

(Pearl 1998; Jensen & Nielsen 2007). 

 

P(U) = ∏ P(Ai|

n

i=1

 Pa(Ai 
))                                                                                                   (5.4) 

The BN makes use of Bayes theorem to update prior occurrence probability of events to give 

consequence probability (posterior) provided new information called evidence is given. The 

following equation is used to estimate posterior probability. 

𝑃(U|E) =
P(U, E)

P(E)
=  

P(U, E)

∑ P(U, E)U
                                                                                      (5.5) 

Canonical probabilistic models are of paramount importance because they make the construction 

of a probabilistic model very easy and drastically reduce the computation time required. Canonical 

models are increasingly used in probabilistic systems and different canonical models could coexist 

in any probabilistic network. One way of minimizing the complexity of elicitation of numerical 

probabilities is to depend on canonical probabilistic models which provide the opportunity of 

building probability distribution from a small number of parameters (Diez & Druzdzel 2007). The 

Common type of canonical interactions famously used in the Bayesian network are known as 

Noisy-OR and Leaky Noisy-OR gates. The application of canonical interactions in BN provides 

an effective technique for modeling various kinds of statistical dependencies and nonlinear 

interactions. 
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 5.2.3.1.    Noisy-OR Gate 

The Noisy-OR gate canonical model assumes that causes and effects are binary with two unique 

states: true and false. A Noisy-OR model is normally used to describe various interactions between 

n causes X1, X2… Xn and their common effect Y. The model assumes that causes Xi   influence Y 

independently from each other and that causes Xi have a probability Pi strong enough to produce 

effect Y if all other causes are false. These assumptions offer the opportunity to completely specify 

the conditional probability distribution with n parameters p1,..., pn.   Pi  denotes the  probability that 

effect Y will be true if the cause Xi  is true and  all other causes Xj ,  j ≠ i  is false (Oniśko et al. 

2001). This can be mathematically expressed as: 

Pi = Pr(y|x̅1, x̅2, … , xi, … , x̅n−1, x̅n)                                                                                (5.6) 

Therefore, the probability of y given a subset of Xp of the Xis that are true is given by the following 

formula: 

Pr(Y|XP) = 1 − ∏ (1 − Pi)                                                                                           (5.7)

i:Xi ϵ Xp

 

The Noisy-OR model adopts an independent mechanism, and application of the model results in a 

substantial reduction in the number of probabilities needed to quantify the cause-effect interaction. 

The model requires n probabilities while the unrestricted model needs 2n probabilities (Heckerman 

& Breese 1996). 

5.2.3.2. Leaky Noisy-OR 

Leaky Noisy-OR is an extension of the binary Noisy-OR gate for the situation where a subsystem 

could fail though all of its components are functional. The Leaky Noisy-OR gate is normally 

applicable to a situation where a model does not capture all potential causes of effect Y (Bobbio 

et al. 2001). Invariably virtually all situations encountered in practice fit this class. In this model, 
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the combined effect of all unmolded causes of effect Y is called the leak probability l. The leak 

probability (l) is the probability that effect Y will happen spontaneously (True) though all its causes 

are absent (False) (Zagorecki & Druzdzel 2004; Oniśko et al. 2001). The leaky Noisy-OR formula 

that can be used to estimate the probability of effect Y given the subset Xp of Xi which are true is 

given by: 

Pr(Y|XP) = 1 − ⟦(1 − 𝑙) ∏ (1 − Pi)

i:Xi ϵ Xp

⟧                                                                                         (5.8) 

 

5. 3. Safety analysis 

 

5.3.1. Case study: The Tesoro Anacortes Refinery accident. 

The Tesoro Anacortes Refinery in United States of America experienced an appalling rupture of a 

heat exchanger in the catalytic Reformer/ Naphtha Hydro treater unit on April 2, 2010. The rupture 

occurred on the E-6600E heat exchanger as a result of a high temperature hydrogen attack 

(HTHA). The ruptured heat exchanger released highly flammable hydrogen and naphtha at more 

than 500oF. The flammable hydrogen and naphtha were ignited, causing an explosion and severe 

fire that lasted for more than three hours. Till now, this is the largest devastating incident at a US 

petroleum refinery after the BP Texas city accident in March 2005 (U.S. Chemical Safety and 

Hazard Investigation Board 2014). 

The U.S Chemical Safety Board (CSB) investigated the incident extensively. CSB highlighted 

various safety and technical laxities in their report. Based on the information made available in the 

CSB report, this accident has been modelled using the proposed methodology. The accident 

contributory factors highlighted are systematically arranged into seven prevention barriers along 
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the accident pathway to prevent the effects of the accident. A brief description of various 

prevention barriers in this model is given below. 

Release prevention barrier (RPB): The release of material is mainly responsible for the loss of 

containment that initiates the accident process. It has been identified that operational error, 

inspection error, maintenance error and design error are the major factors that influence the failure 

of the release prevention barrier. 

Dispersion prevention barrier (DPB): The primary function of this barrier is to minimize the extent 

of a hazardous event to prevent the further spreading of material and energy. The major factors 

that are responsible for the failure of this barrier are safety system failure, operational error and 

communication error. 

Ignition prevention barrier (IPB): Ignition prevention is of paramount importance in process 

facilities that handle and process diverse flammable materials. To prevent an outburst of fire and 

explosion in process facilities, a safety barrier must be installed to focus on all potential sources 

of ignition in the process facilities to prevent the outburst of fire and explosion. The major factors 

that influence the failure of this barrier are: hot work failure, heat exchanger failure and operator’s 

error. 

Escalation prevention barrier (EPB): The primary function of this barrier is to isolate the 

surroundings to avoid domino accident scenarios once ignition has occurred in process facilities. 

It minimizes the extent and duration of ignition. The major factors that are responsible for the 

failure of this barrier are: fire detection system failure, operator error and emergency shutdown 

failure. 
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Emergency management failure prevention barrier (EMFPB): This barrier is installed to control 

the extent of hazardous events as much as possible, or to drastically reduce their consequences. 

The main reason why this barrier is installed is to prevent fatalities. Factors that mainly influence 

the failure of this barrier are: evacuation error, communication error and emergency preparedness 

failure. 

Human factor prevention barrier (HFPB): Recently, human error has contributed significantly to 

the major accidents that have occurred in various process industries. Good examples of accidents 

that occurred due to human error are the Bhopal gas accident and the Texas City refinery accident 

(Okoh & Haugen 2014). Factors that are mostly responsible for human error are: knowledge error, 

skill error and management error. 

Organization failure prevention barrier (OrFPB): Organisation failure contributes significantly to 

accidents in process industries. In most cases, the underlying causes for accidents are management 

and organizational factors (Rathnayaka et al. 2013).  

5.3.2. Sequential accident analysis (sequential cause-consequence relationship) 
 

5.3.2.1.   Fault tree analysis  

Fault tree analysis (FTA) which is deterministic is used to quantify the failure probabilities of all 

prevention barriers. The prevention barriers in this accident model were systematically analysed 

with FTA to establish a sequential causal relationship. The top event in the fault tree represents 

the failure of the prevention barrier. The second layer of the fault tree represents all accident 

contributory factors for each prevention barrier; their failure will induce the failure of the top event. 

The third layer represents the causes of accident contributory factors. A combination of AND and 
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OR logics was used to evaluate the failure probability of the top event. Table 5.1 presents the event 

description and failure probabilities of the basic events for RPB for the case study in the model.  

Table 5.1.  Basic event failure probability for Release prevention barrier. 

 

 

The reliability data used  in fault tree analysis  were sourced from several  journals  (Rathnayaka 

et al. 2010; Rathnayaka et al. 2012; Rathnayaka et al. 2013; Tan et al. 2013;  A. Al-shanini et al. 

2014) and used expert judgement where the data was not readily available . The fault tree analysis 

for RPB in the model is shown in Figure 5. 1.  

 

Event    Event Description Assigned 
probability 

1  High temperature hydrogen attack 2.50 x 10 -2 

2 Difficulty with  valve operation during start up 1.50 x 10 -2 

3 Leaks from heat exchanger during start up  not reported 5.00 x 10 -2 

4                             Hydrogen induced cold cracking 1.00 x 10 -3 

5 Inexperience 1.00 x 10 -2 

6 Job carried out without permit to work 1.00 x 10 -2 

7 External supervision failure 8.30 x 10 -2 

8 Wrong procedure 5.00 x 10 -3 

9 Poor construction material for NHT heat exchanger 1.00 x 10 -2 

10 High mechanical stress 1.00 x 10 -2 

11 Insufficient instrumentation to measure process conditions 1.00 x 10 -3 

12  Long delay in inspection schedule  5.00 x 10 -2 

13 Inadequate methods for detecting HTHA 9.00 x 10 -2 

14 Inadequate training of the  inspectors to detect HTHA easily 2.50 x 10 -2 

15 Failure of HTHA inspection on heat exchanger 5.50 x 10 -2 

16 Failure to detect leaks from heat exchanger flanges                                                      5.00 x 10 -2 

17 Failed to  detect minor release 5.00 x 10 -2 

18 Wrong maintenance procedure (Nelson curve   

Methodology 

5.00 x 10 -3 

19     Delay maintenance  operations 5.00 x 10 -2 

20 HTHA degradation  monitoring  performed but failed to detect 6.60 x 10 -2 

21 HTHA degradation monitoring specified but not performed 5.00 x 10 -2 
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Figure 5.1.  Fault tree analysis of Release prevention barrier. 
 
The top event in the fault tree of RPB represents the failure of this prevention barrier. The second 

layer of the RPB fault tree represents all accident contributory factors; their failure will induce the 

failure of the RPB. The third layer denoted by circles represents the basic events (causes) of 

accident contributory factors.  

It is common to use AND and OR logics in fault tree analysis; therefore, its computational 

procedure is not discussed here. In order to minimize the number of figures and tables in this paper, 

the reliability data of basic events and accompanying fault trees for other prevention barriers are 

not shown. The failure probabilities of all prevention barriers through FT analysis is given in Table 

5.6. 
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5.3.2.2.     Sequential estimation of consequences occurrence probabilities 

The occurrence probability of consequences for sequential cause-consequence relationships is 

estimated with the combination of fault tree and event tree analysis. The occurrence probability of 

consequences is estimated by propagating failure probabilities (obtained from FTA) through 

successive success or failure branches of an event tree. The event sequence leads to all potential 

consequences in the event tree. Six major consequences have been identified: safe, near miss, 

mishap, incident, accident and catastrophe. Figure 5.2 shows the event tree in the model. 
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Figure 5. 2.  Event tree for the accident model. 
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5. 3.3. Non sequential accident analysis (Non sequential cause-sequential 

consequence relationship) 

 

5.3.3.1.   Quantifying failure probabilities of all accident contributory factors within 

safety barriers using BN 

The failure probabilities of all accident contributory factors within each prevention barrier are 

quantified with BN using different logic gates (Noisy-OR and Leaky Noisy-OR gates). The failure 

probabilities estimated here will subsequently be used to estimate the failure probabilities of all 

prevention barriers when the non-linear interaction of accident contributory factors is considered, 

using BN in Figures 5.4-5.10. The following procedures are followed in quantifying failure 

probabilities of all accident contributory factors using BN, when Noisy-OR and Leaky Noisy-OR 

gates are applied to the BN respectively. 

(1) Calculating the safe (non-occurrence) probability of all parent nodes in the BN 

(2) Assigning the non-causation probability of all parent nodes in the conditional probability 

table (CTP) based on expert judgement or data. When the Leaky Noisy-OR gate is 

considered in the BN, leak probability will be assigned prior to this step. 

(3) Computing the CTP 

(4) Applying the CTP with probabilities of the state of the parent nodes (safe/false or 

failure/true) conditional to the state involved, compute the probability of a top event. 

The BN in Figure 5.3 shows causes of mechanical failure in a process system. 
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Mechanical  failure

High stress Welding defect Vibration Misalignment

 

 

Figure 5.3.  Bayesian network for causes of mechanical failure. 
 

The probability of mechanical failure, using the Noisy-OR gate in the BN is calculated as follows. 

Using Step (1), based on the failure probabilities given in Table 5. 2, the safe probabilities of causes 

of mechanical failure are computed as shown in Table 5.2.  

Table 5.2. Failure and safe probabilities of causes of mechanical failure in process system. 

 

 

 

 

Based on step (2) to step (4), the probability of mechanical failure is computed as shown in Table 

5.3. 

 

 
No Causes of  mechanical failure Failure probability 

 
Safe probability 

1 High stress 0.001 0.999 

2 Welding defect 0.025 0.975 

3 Vibration 0.003 0.997 

4 Misalignment 0.1667 0.8333 
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Table 5.3.  Probability of mechanical failure for Noisy-OR gate. 

 

 

 

 

 

 

 

State
High  

stress

Welding 

defect

Misalign

ment
Conditonal Probability of mechanical failure   for different states

1 F F F 0              *      0.999     * 0.975    *   0.997     *   0.8333      =    0

2 F F T 0.75        *       0.999     * 0.975    *   0.997     *  0.1667       =   0.121412

3 F F F 0.65        *      0.999     * 0.975    *   0.003      *  0.8333       =   1.582E-03

4 F F T 0.9125    *      0.999     * 0.975    *   0.003      *  0.1667       =   4.58175E-04

5 F T F 0.7          *     0.999    * 0.025    *   0.997      *   0.8333       =   1.45244E-02

6 F T T 0.925      *     0.999    * 0.025    *   0.997      *   0.1667       =   3.839529E-03

7 F T F 0.895      *    0.999    * 0.025    *   0.003      *   0.8333       =   5.58592E-05

8 F T T 0.97375  *   0.999    * 0.025    *   0.003      *   0.1667        =   1.21621E-05

9 T F F 0.6          *   0.001    * 0.975    *   0.997      *   0.8333        =   4.86E- 04

10 T F T 0.9          *   0.001   * 0.975    *   0.997      *   0.1667         =   1.4584E-04

11 T F F 0.86        *  0.001    *  0.975    *   0.003      *   0.8333        =   2.096E-06

12 T F T 0.965      *   0.001   *  0.975     *   0.003      *   0.1667        =   4.7053E-07

13 T T F 0.88        *  0.001   *  0.025    *   0.997     *    0.8333        =  1.8277E-05

14 T T T 0.97         *  0.001   * 0.025    *    0.997     *   0.1667         =   4.0303E-06

15 T T F 0.958      *  0.001    * 0.025     *   0.003    *   0.8333          =  5.98726E-08

16 T T T 0.9895     * 0.001    *  0.025     *  0.003    *   0.1667           =   1.23712E-08

The probabiity of mechanical failure  is  sum of all states = 0.1425

3.0E-2 = 0.4*0.3*0.25

4.2E-2= 0.4*0.3*0.35

1.05E-2 = 0.4*0.3*0.35*0.25

8.75 E-02 = 0.35*0.25

0.3

7.5E-02 = 0.3*0.25

1.05E-01 = 0.3*0.35

2.625E-02 = 0.3*0.35*0.25

0.9125

0.7

0.925

0.895

0.97375

Causation 

probability of 

Non causation probability of mehanical 

failure

0

0.75

0.65

1

0.25

0.35

0.9895

0.958

0.97

0.4

0.1 = 0.4*0.25

0.14= 0.4*0.35

3.5E-2 = 0.4*0.35*0.25

0.12 = 0.4*0.3

0.6

0.9

0.86

0.965

0.88
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Still following the previous example, based on step (1) to step (4), the probability of mechanical failure using the Leaky Noisy-OR gate 

was computed as shown in Table 5.4. 

Table 5. 4.  Probability of mechanical failure for Leaky Noisy-OR gate. 
 
 
 

 
 

State High  stress
Welding 

defect
Vibration Misalignment

1 F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T

0.7525    *        0.999     * 0.975    *   0.997     *   0.1667       =   1.2182E-01

0.6535    *        0.999     * 0.975    *   0.003      *  0.8333       =   1.5912E-03

0.913375 *        0.999     * 0.975    *   0.003      *  0.1667       =   4.4491E-04

Causation probability 

of mechanical failure

0 .01       *        0.999     * 0.975    *   0.997     *    0.8333      =    8.0922E-03

Non causation probabilty of mehanical 

failure

0.01

Conditonal Probability of mechanical failure   for different states

0.0297 = 0.4*0.3*0.25*0.99

0.04158 = 0.4*0.3*0.35*0.99

0.010395 = 0.4*0.3*0.35*0.25*0.99

0.703       *       0.999    *   0.025    *   0.997      *   0.8333      =   1.4587E-02

0.92575   *       0.999    *   0.025    *   0.997      *   0.1667      =   3.8426E-03

0.89605   *       0.999    *   0.025    *   0.003      *   0.8333       =   5.5925E-05

0.9740125 *       0.999   *   0.025    *   0.003     *   0.1667       =   1.2165E-05

0.604         *       0.001    *   0.975    *   0.997      *   0.8333     =   4.8926E- 04

0.901         *       0.001   *    0.975    *   0.997      *   0.1667      =   1.4600E- 04

0.8614       *        0.001   *   0.975    *   0.003      *   0.8333      =   2.0996E-06

0.9635       *       0.001   *    0.975    *    0.003     *  0.1667        =   4.6980E-07

0.8812       *       0.001   *     0.025   *     0.997    *   0.8333       =   1.8303E-05

0.9703       *       0.001   *      0.025    *    0.997    *   0.1667       =   4.0316E-06

0.7525

0.6535

0.99

0.2475 = 0.25 *0.99

0.3465 = 0.35 * 0.99

0.913375

0.703

0.92575

0.89605

0.9740125

8.6625 E-02 = 0.35*0.25*0.99

0.297 = 0.3 *0.99

7.425E-02 = 0.3*0.25*0.99

1.0395E-01 = 0.3*0.35*0.99

2.59875E-02 = 0.3*0.35*0.25*0.99

The probabiity of mechanical failure  is  sum of all states  = 0.15110

0.989605

0.95842

0.9703

0.396 = 0.4 * 0.99

0.099= 0.4*0.25*0.99

0.1386 = 0.4*0.35*0.99

0.0 3465 0.4*0.35*0.25*0.99

0.1188 = 0.4*0.3*0.99

0.604

0.901

0.8614

0.9635

0.8812

0.95842     *        0.001    *    0.025     *  0.003    *     0.8333      =   5.9899 E-08

0.989605    *       0.001    *    0.025     *   0.003    *   0.1667        =   1.24373 E-08
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Following this procedure, the failure probability of factors contributing to the failure of all 

prevention barriers in the model is given by Table 5.5. 

Table 5.5.  Failure probability of factors contributing to failure of all prevention barrier, 

using different logic gates. 

 

 

Prevention barrier Operational 

error factor

Inspection error 

factor

Maintenance 

error factor

BN(Noisy-OR) 0.061 0.084 0.047

BN(Leaky-Noisy-OR) 0.071 0.093 0.057

0.083 0.133 0.116

0.093 0.141 0.125

Heat exchnger 

failure  factor

Operator error 

factor

Hot work  

failure factor

BN(Noisy-OR) 0.036 0.116 0.081

BN(Leaky-Noisy-OR) 0.046 0.125 0.090

 Fire detection 

system   failure 

factor

operator  error 

factor

Emergency 

detection  

system failure 

factor

BN(Noisy-OR) 0.097 0.044 0.078

BN(Leaky-Noisy-OR) 0.106 0.053 0.088

Communication  

error factor

Evacuation error 

factor

Emergency 

response 

failure factor

BN(Noisy-OR) 0.130 0.109 0.110

BN(Leaky-Noisy-OR) 0.141 0.118 0.119

Knowledge error 

factor

Skill  error factor Management 

error factor

BN(Noisy-OR) 0.047 0.012 0.044

BN(Leaky-Noisy-OR) 0.057 0.022 0.054

Knowledge error  

factor

Communication  

error factor

Management 

error factor

BN(Noisy-OR) 0.052 0.066 0.068

BN(Leaky-Noisy-OR) 0.062 0.077 0.076

Design error factor

0.006

0.016

DPB
BN(Noisy-OR)

BN(Leaky-Noisy-OR

Safety system 

failure factor

Operator error 

factor

RPB

Logic Gate

IPB

Communication 

error factor

HFPB

OrFPB

EPB

EMPB
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In a complex engineering system, accident causation is a function of nonlinear interactions of 

various factors and accident progression could be viewed as complex interactions of diverse 

factors. The dependency of accident contributory factors and nonlinear interaction within each of 

the prevention barriers is represented by the BNs in Figures 5.4- 5.10. 

 

Release prevention barrierRelease prevention barrier

wordword

Operational error 

factor
Inspection error factor

Maintenance error 

factor

wordword
Design error 

factor

 

Figure 5.4.  Interdependency of accident contributory factors in Release prevention 
barrier. 
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Dispersion prevention 

barrier

Dispersion prevention 

barrier

wordword

Safety system failure 

factor

Communication error 

factor

wordword
Operator error 

factor

 
 

Figure 5.5.  Interdependency of accident contributory factors in Dispersion prevention 

barrier. 
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Ignition   prevention  

barrier

Heat exchanger 

failure factor Operators error 

factor

Hot work  failure 

factor

 

 

Figure 5.6 .  Interdependency of accident contributory factors in Ignition prevention 
barrier. 
 
 
 
 

Escalation   

prevention  barrier

Fire detection 

system failure 

factor
Operators error 

factor

Emergency  

shutdown 

system failure 

factor

 

Figure 5.7.  Interdependency of accident contributory factors in Escalation 
prevention barrier. 
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Emergency management

 failure prevention barrier

Communication error  factor

Evacuation error factor

 emergency response failure factor

 

 

 

Figure 5. 8.  Interdependency of accident contributory factors in Emergency 
management failure prevention barrier. 
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Human factor 

prevention barrier

Knowledge error 

factor

Skill error factor

Management error 

factor

 

Figure 5.9.  Interdependency of accident contributory factors in Human factor 
prevention barrier. 
 

Organization 
failurePrevention 

barrier

Knowledge error 
factor

Communication error 
factor

Management error 
factor

 

 

 

Figure 5.10. Interdependency of accident contributory factors in Organization failure 
prevention barrier. 
 

5.3.3.3. Quantifying failure probabilities of all prevention barriers via BN 

The BN approach was used to quantify failure probabilities of prevention barriers. The BN 

approach captured the dependency and nonlinear interaction of various factors that lead to the 
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failure of a particular barrier. This approach overcomes the weakness of sequential causal 

relationships predicted in fault tree analysis. Two different logic gates (Noisy-OR and Leaky 

Noisy-OR) are used respectively in the BN of Figures 5.4-5.10 to evaluate failure probabilities of 

each prevention barrier. 

 Firstly, the failure probabilities of each factor (node) within each prevention barrier evaluated 

independently using Noisy-OR logic in section 5.3.3.1 were used to evaluate the failure 

probabilities of all prevention barriers when Noisy-OR and Leaky Noisy -OR logic were applied 

to the BNs (barriers) respectively. Secondly, the failure probabilities of each factor (node) within 

each prevention barrier evaluated independently using Leaky Noisy-OR logic in section 5.3.3.1 

were used to evaluate the failure probabilities of all prevention barriers when Noisy-OR and Leaky 

Noisy-OR logic were applied to the BNs (barriers) respectively. For instance, to evaluate failure 

probability of RPB when Noisy-OR is applied to the BN (barrier), the following failure 

probabilities of different accident contributory factors (0.061, 0.084, 0.047 and 0.006) from Table 

5.5 are substituted in the BN of Figure 5. 4 and the failure probability of the BN (RPB) is evaluated 

using Noisy-OR logic. The procedure is repeated by evaluating the failure probability of the BN 

(RPB) using Leaky Noisy-OR logic with the same failure probabilities of different factors (0.061, 

0.084, 0.04 and 0.006). The two step procedure above is repeated with failure probabilities of 

accident contributory factors in RPB quantified with Leaky Noisy-OR logic given by Table 5.5. 

The failure probability of each factor node (except the root node) is used as a leaky probability 

when the Leaky Noisy-OR gate is applied to the BN (barrier). The leaky probability of a top event 

in all barriers is 0.01. Following the procedures in this section, the failure probabilities of all 

prevention barriers using BN analysis is given in Table 5. 6. 
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5.3.3.4.   Estimation of consequences occurrence probabilities  
The occurrence probability of non-sequential cause-sequential consequences is predicted by 

propagating the failure probabilities of prevention barriers obtained through BN analysis given in 

Table 5.6, through successive success or failure branches of the event tree of Figure 5. 2. 

5.3.4. Non Sequential accident analysis (Non sequential cause- consequence 

relationship) 

 

5.3.4.1.   Non sequential estimation of consequences occurrence probabilities  

An event tree normally models an accident as a sequence of events with the underlying belief that 

the severity of the adverse events increases only through sequential failure of prevention barriers 

considered. However, this need not be true in a real life situation. To mitigate this weakness in the 

event tree, the BN is used to allow non sequential failure of prevention barriers to cause adverse 

events randomly. The failure probabilities of prevention barriers obtained through BN analysis 

given by Table 5.6 were substituted into the BN of Figure 5.11 and subsequently, occurrence 

probabilities of consequences were evaluated.  

Table 5. 6. Failure probabilities of prevention barrier obtained through fault tree and BN 

analysis. 

 
*Noisy-OR values are failure probabilities of different factors that contributed to the failure of prevention barriers obtained independently by 

using Noisy-OR logic.  Leaky Noisy-OR values are failure probabilities of different factors that contributed to the failure of prevention barriers 

obtained independently by using Leaky Noisy-OR logics. Noisy-OR and Leaky Noisy-OR are logic gates used in the BN (barriers) respectively 
 

Prevention 
barriers 

Fault tree 
analysis 

BN Analysis 

Noisy -OR values Leaky Noisy-OR values 

Noisy-OR Leaky Noisy-OR Noisy-OR Leaky Noisy-OR 

RPB 0.0842 0.052 0.098 0.063 0.114 

DPB 0.0025 0.041 0.121 0.046 0.13 

IPB 0.026 0.07 0.113 0.075 0.124 

EPB 0.0286 0.027 0.082 0.032 0.092 

EMFPB 0.0229 0.071 0.145 0.077 0.155 

HFPB 0.00145 0.024 0.046 0.029 0.057 

OrFPB 0.0069 0.029 0.069 0.034 0.079 
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Figure 5.11.  GeNIe output of conditional event occurrence probability for non-
sequential cause consequence relationship in the model.  
 

Table 5.7 provides the conditional probability table that is used in the BN of Figure 5.11. 
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Table 5.7. Conditional probability table. 
 

 

 Following the entire procedure in section 5.3., Table 5.8 shows the occurrence probability of 

consequences as the accident modelling scenario moves gradually from a sequential to a non-

sequential approach. 

 

 

 

HFPB 0rFPB RPB DPB IPB EPB EMB

Success Success Success       -     -    -     -

Fail Success Success       -     -    -     -

Success Success Fail Success     -    -     -

Fail Success Fail Success     -    -     -

Success Fail Fail Success     -    -     -

Fail Fail Fail Success     -    -     -

Success Success Fail Fail Success    -     -

Fail Success Fail Fail Success    -     -

Success Fail Fail Fail Success    -     -

Fail Fail Fail Fail Success    -     -

Success Success Fail Fail Fail Success     -

Fail Success Fail Fail Fail Success     -

Success Fail Fail Fail Fail Success     -

Fail Fail Fail Fail Fail Success     -

Success Success Fail Fail Fail Fail Success

Fail Success Fail Fail Fail Fail Success

Success Fail Fail Fail Fail Fail Success

Fail Fail Fail Fail Fail Fail Success

Success Success Fail Fail Fail Fail Fail

Fail Success Fail Fail Fail Fail Fail

Success Fail Fail Fail Fail Fail Fail

Fail Fail Fail Fail Fail Fail Fail

Mishap

Incident

Accident

Catastrophe

Safety   barrier

Consequences

Safe

Nearmiss
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5. 4.    Result and discussion 

The failure probabilities of prevention barriers obtained through fault tree and BN analysis are 

presented in Table 5.6.  

From fault tree analysis of the prevention barrier, it can be deduced that release, escalation, 

ignition, and dispersion prevention barriers have relatively high failure probabilities; it is the active 

failure of these prevention barriers that greatly contributed to the accident. The management of the 

Tesoro Anacortes Refinery had seriously compromised the safety of these prevention barriers, 

especially the release prevention barrier. If the management had used standard inspection and 

maintenance procedures, preventive measures could have been applied to prevent the release and 

further escalation. 

The occurrence probability of the consequences for the accident model is shown in Table 5.8. 
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Table 5. 8.  Occurrence probability of different level of consequences. 

 

 

The numbering below each column in Table 5.8 (1 - 9) is used to define relationships that exist in the accident modelling scenario 

described in Table 5.9. 

Noisy-OR Leaky-Noisy-OR Noisy-OR Leaky-Noisy-OR Noisy-OR Leaky Noisy-OR Noisy-OR Leaky-Noisy-OR

Safe 9.09E-01 9.21E-01 8.40E-01 9.05E-01 8.16E-01 9.21E-01 8.40E-01 9.05E-01 8.16E-01

Nearmiss 8.97E-02 7.59E-02 1.42E-01 8.99E-02 1.61E-01 7.62E-02 1.41E-01 9.05E-02 1.60E-01

Mishap 7.83E-04 3.37E-03 1.57E-02 4.63E-03 1.98E-02 3.03E-03 1.72E-02 4.00E-03 2.10E-02

Incident 6.69E-06 1.98E-04 1.87E-03 2.94E-04 2.56E-03 2.21E-04 2.00E-03 3.16E-04 2.69E-03

Accident 1.89E-07 7.85E-06 1.72E-04 1.34E-05 2.65E-04 5.72E-06 1.54E-04 9.67E-06 2.30E-04

Catastrophe 3.14E-11 1.76E-08 2.08E-06 3.95E-08 4.13E-06 4.44E-07 2.61E-05 8.06E-07 4.23E-05

1 2 3 4 5 6 7 8 9

Consequences

Noisy-OR values Noisy-OR values    Leaky Noisy-OR values   Leaky Noisy-OR values

 BN  with event tree  (Non sequential cause-sequential consequence 

relationship)  BN withh BN (Non sequential cause- consequence relation ship)Fault tree with  event tree 

(Sequential cause-consequence 

relationship )
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Table 5.9. Relationships that exist in accident modelling scenario of Table 5.8. 

 

The plots of the data in Table 5.8 are shown in Figure 5.12.  

 

Accident 

modeling 

scenario 

 

Relationship 

 

Data 

 

Dependency 

1 Sequential  Deterministic Independent barrier 

Independent causal factor 

2 Sequential  Probabilistic (Noisy-OR) Independent barrier 

Conditional dependent causal  

factor (Noisy-OR) 

3 Sequential  Probabilistic (Noisy-OR) Independent barrier 

Conditional dependent  causal 

factor ( Leaky-Noisy-OR) 

4 Sequential  Probabilistic (Leaky Noisy-OR) Independent barrier 

Conditional dependency causal 

factor (Noisy-OR) 

 

5 Sequential  Probabilistic (Leaky Noisy-OR) Independent barrier 

Conditional dependent causal 

factor (Leaky Noisy-OR) 

6 Non-

Sequential  

Probabilistic (Noisy-OR) Dependent barrier 

Conditional dependent causal 

factor (Leaky Noisy-OR) 

7 Non-

Sequential 

Probabilistic (Noisy-OR) Dependent barrier 

Conditional dependent causal 

factor (Leaky Noisy-OR) 

8 Non-

Sequential 

Probabilistic ( Leaky Noisy-OR) Dependent barrier 

Conditional dependent causal 

factor (Noisy-OR) 

9 Non-

Sequential 

Probabilistic ( Leaky Noisy-OR) Dependent barrier 

Conditional dependent causal 

factor (Leaky Noisy-OR) 
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Figure 5. 12. Plot of  Consequence occurrence probabilities versus accident 
modelling scenario. 
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In Figure 5.12, it is worth observing that, as the accident modeling scenario changes gradually 

from a sequential approach to a non-sequential approach, there is about a 10% change in 

occurrence probability of “safe” to that of a sequential approach. Also, the estimated range of 

occurrence probability of catastrophe changes significantly up to the order of 105 which 

significantly increases the risk involved. This indicates the importance of modeling non sequential 

cause-consequence relationships in the accident modelling process and highlights the importance 

of using BN to evaluate non sequential cause-consequence relationships in the accident modeling 

process. The following are some observations derived from Figure 5.12.  

• There is a significant difference between the results of accident modeling scenario #1 and #9. 

This highlights the importance of considering dependency among causal factors and the non-

sequential nature of an accident process.  

• There is a significant difference between the results of accident modeling scenario #8 and #9. 

This indicates the importance of defining a proper dependency among causal factors.  

• There is little difference between the results of accident modeling scenario #7 and #9. This 

shows that the quality of data may not have a significant impact on the model outcomes given that 

the dependency among causal factors is considered and the model is developed based on a non-

sequential structure.  

This present study has illustrated that BN is an effective technique for modeling various nonlinear 

interactions within prevention barriers and non-sequential failure of safety barriers to cause 

adverse events. Relaxation strategies can be accurately used to model conditional dependencies in 

the BN.  
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5. 5. Conclusions  

This present study has demonstrated the use of BN in modelling conditional dependencies among 

accident contributory factors within safety barriers and non-sequential failure of safety barriers to 

cause adverse events. In general, the modelling flexibility of the BN structure can accommodate 

various kind of conditional dependencies that cannot be readily included in FT structure. The 

effectiveness of the proposed non-sequential causes-consequence barrier-based process accident 

model was partially validated through the application of the model to the Tesoro Anacortes 

Refinery accident. The main source of uncertainty in accident models (such as FT, ET) is the 

ignorance of interdependency among accident contributory factors and the assumption of linear 

event sequence. Additionally, the uncertainty is also caused by the inappropriate use of logic gates 

in the accident models. This paper attempts to highlight the importance of modelling the 

interdependency of accident contributory factors, nonlinear event sequence, and the selection of 

appropriate logic gates to the reduction of the above-mentioned uncertainty. BN is more 

appropriate to represent complex dependencies among prevention barriers and to include 

uncertainty in modelling. BN has high capability for abductive reasoning and the ability to handle 

uncertainty makes it a more appropriate technique for analysing accidents. This accident model 

provides methodology for predicting a process accident based on nonlinear interactions within 

prevention barriers and non-sequential failure of prevention barriers to cause adverse events. 

Application of this in models in predicting accident occurrence probability will help to take early 

remedial actions to prevent process accidents and this consequently provides additional valuable 

information for process safety management.  
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 Chapter 6 

6.0 Dynamic Failure Analysis of Process Systems Using Principal 

Component Analysis and Bayesian Network 

Preface 

A version of this chapter has been published in the Journal of Industrial &Engineering 

Chemistry Research 2017; 56:2094-2106. I am the primary author. Co-author Faisal Khan 

provided fundamental understanding, assisted in developing the conceptual model and 

subsequently translated this to the numerical model. Co-author Ming Yang provided much needed 

support in implementing the concept and testing the model. I carried out most of the data collection 

and analysis. I prepared the first draft of the manuscript and subsequently revised the manuscript, 

based on the feedback from co-authors and also a peer review process. The two co-authors 

assisted in developing the concept and testing the model, reviewed and corrected the model and 

results. They also contributed to the review and revision of the manuscript.  

Abstract  

Modern industrial processes are highly instrumented with more frequent recording of data. This 

provides abundant data for safety analysis; however, these data resources have not been well used. 

This paper presents an integrated dynamic failure prediction analysis approach using principal 

component analysis (PCA) and the Bayesian network (BN). The key process variables that 

contribute the most to process performance variations are detected with PCA; while the Bayesian 

network is adopted to model the interactions among these variables to detect faults and predict the 

time-dependent probability of system failure. The proposed integrated approach uses big data 

analysis. The structure of BN is learned using past historical data. The developed BN is used to 

detect faults and estimate system failure risk. The risk is updated subsequently as new process 



104 
 

information is collected. The updated risk is used as a decision-making parameter. The proposed 

approach is validated through a case of a crude oil distillation unit operation. 

Keywords: Principal components analysis, Bayesian network, Process safety, Accident 

probability estimation, Dynamic failure prediction 

6.1. Introduction 

The sudden surge in complexity of modern process systems greatly improves the versatility and 

productivity of systems and also poses a challenge in ensuring safe operation of these process 

systems. This sudden surge in complexity is proportionally connected to the enormous number of 

variables on which the system depends. To guarantee safe and optimal operation of the system, it 

is of paramount importance that the states of these variables be monitored in real time. Real time 

process variables monitoring gives rise to a generation of enormously high dimensional data 

vector. Due to the increase in dimensionality, the relationship among system variables becomes 

extremely complex and non-linear. To guarantee the safety of the system, identification of these 

non-linear relationships that exist among the monitored variables is of paramount importance. 

Faults (abnormal behaviours) arises as a result of disturbances in the relationships among system 

variables. The progression of the fault decreases the safety of the process systems (Yu et al. 2015a; 

Yu et al. 2015b). 

A dimensionality reduction technique is normally used in the monitoring of complex systems. 

Generally, Process parameters that vividly described the maximum variances of the system are 

collected to create a new set of variables and usually parameters denoting least variance are often 

ignored. The system performance is monitored using the variables that possess fewer 

dimensionality (Yu et al. 2015c). The transformed historical process data can be used as “priori 

knowledge to a diagnostic system” in various ways. This process is referred to as feature extraction 
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(Venkatasubramanian et al. 2003). Feature extraction can be done by qualitative and quantitative 

approaches. The two main techniques that extract information qualitatively from process history 

are the trend and expert modelling techniques (Venkatasubramanian et al. 2003). Also, the two 

Principal techniques that quantitatively extract information are: statistical and non-statistical 

techniques. The most widely used statistical feature extraction techniques for process monitoring 

are partial least square (PLS) and Principal Component analysis (PCA). Good examples of non-

statistical classifiers are neutral networks (Venkatasubramanian et al. 2003). Principal component 

analysis (PCA) is used as an appropriate technique for data compression and information 

extraction in process monitoring data (Li & Qin 2001; Wise & Gallagher 1996). 

Recently, PCA is one of the famously used data driven techniques to detect instant fault in 

chemical process industries it has been used in wide range of applications (He et al. 2006; Yu et 

al. 2015c). Zadakbar et al. (2012) used PCA in dynamic risk assessment of distillation column and 

dissolution tank. A robust PCA technique is used for fault detection of the Tennessee Eastman 

chemical process (Pan et al. 2016). A new process monitoring technique that detects fault 

automatically in a process system using dynamic weighted principal component analysis was 

recently proposed. The approach was demonstrated on the Tennessee Eastman chemical process 

(Fei & Liu 2016). PCA has been applied to propose a novel sensor selection technique for 

monitoring the performance of wind turbines (Wang et al. 2016). Similarly, Recursive Kernel 

principal components analysis (RKPCA) has been applied to monitor time –varying system. The 

approach  is validated  on  Penicillin fermentation process (Zhang et al. 2012). 

Databases are increasing rapidly in many modern industrial processes. There are many potential 

opportunities for using databases to assist the construction of probabilistic networks. The 

probabilistic network structure generated from databases will provide a precise and concise 
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representation of probabilistic dependencies that exist among variables (Cooper & Herskovits 

1991). The subjectivity in the development of the Bayesian network is eliminated, if the structure 

is learn from databases. 

 One of the Bayesian score techniques that has been widely used to learn structure of Bayesian 

network is Tree Augmented Naïve Bayes (TAN). This technique has been widely used in different 

disciplines to construct probabilistic network from data. TAN Bayes classifier has been used to 

construct Bayesian network structure from data and subsequently the probability of rock burst is 

predicted from the Bayesian network (Li et al. 2017). The technique of structure learning has been 

implemented to develop early warning system for chemical process operations (Wang et al. 2015). 

Probabilistic Risk assessment (PRA) has been widely used for failure prediction of the process 

system (Khan et al. 2015) ,Probabilistic Risk assessment (PRA) is the numerical study of the risk. 

It assesses the most significant risk contributors to the risk of the process system. It gives an 

accurate numerical assessment for good understanding of the system. PRA is used as a decision 

making parameter. In this approach, probabilities of series of events leading to hazards are 

estimated and the corresponding consequences are predicted. The risk (expected loss) is measured 

as the product of frequency and it consequences (Khan et al. 2015; Mohammad 2006). 

This paper aim to propose a new methodology that integrates PCA and the Bayesian network to 

detect faults and predict the probability of failure using real-time process data. The methodology 

developed analyzes an accident and its associated consequences in real time. This paper is 

organized as follows. Section 6. 2 presents a brief description of PCA and its application in process 

data analysis. Section 6.3 describes how a Bayesian network structure can be derived from the 

data. The proposed methodology is presented in Section 6.4. In Section 6.5, a case study of a crude 
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distillation unit is used to show the application of the proposed approach. Finally, Section 6.7 

provides the conclusion. 

6.2. The Theory of Principal Component Analysis (PCA) 

PCA has been extensively applied as a technique for finding faults. PCA is used in processing 

extremely correlated process variables data with high dimensionality. PCA lessens the 

dimensionality of the raw data set by subjecting the data set unto a subspace of smaller 

dimensionality including specifying a series of new variables to retain or protect the main original 

data information (He et al. 2006; Yu et al. 2014). PCA theorem is based on singular value 

decomposition (SVD) of the covariance matrix of the process variables in the direction that 

describes the highest variation of data (Venkatasubramanian et al. 2003). PCA provides a 

mechanism to reduce a complex data set to a smaller dimension to show the sometimes concealed 

basic structures that often under lie it (Shlens 2014). 

Lately, original process variables data can be vividly described using fewer factors than original 

process data and vital information will still be retained. Consequently, the data overload that is 

normally encountered in industrial process monitoring is resolved. Similarly, PCA gives linear set 

of process variables that give detail performance description of the process. The integrations of 

these process variables are used as strong indicator of process performance than any individual 

process variable (Wise & Gallagher 1996). PCA gives a superior performance compared to other 

statistical process monitoring techniques for analyzing raw historical plant data (Joe Qin 2003; 

MacGregor & Kourti 1995). 

Consider a process data matrix Mn x p. Let p represent the total number of process variable being 

monitored and n the represent the total number of samples. All the columns of process data matrix 



108 
 

M is a mean centered and at the same time scaled process variable with a covariance matrix of ∑.  

The rows in the matrix M, m1, m2,..Mn are p vectors equivalent to samples. Likewise, the columns 

are n vectors equivalent to variable.  Applying Singular value decomposition to ∑, the covariance 

matrix is decomposed to a diagonal matrix K through a definite orthonormal p x p matrix U, i.e., 

∑ =UKUT . The column of matrix U are usually referred to as “principal component loading 

vectors” The diagonal elements of K are named the eigenvalue of covariance matrix. 

The scores T are expressed as 

𝐓 = 𝐌𝐔                                                                                                                         (𝟔. 𝟏) 

Equally, PCA decomposed M as:  

𝐌 = 𝐓𝐔𝐓                                                                                                                          (𝟔. 𝟐)  

The n x p matrix T = (θ1, θ2… θp) contains the scores of principal components (PCs) that define 

all n observations. In n process monitoring, PCs are monitored instead of monitoring individual 

variables (Venkatasubramanian et al. 2003; Zadakbar et al. 2012). 

 6.3.   Structure-learning of Bayesian network  

A Bayesian network (BN) is an extensively used graphical structure that encodes probabilistic 

dependencies among a collection of variables of interest. The BN has been used extensively to 

represent accident scenarios in offshore and maritime systems, beginning from initiating factors 

and ending with potential consequences (Baksh et al. 2015; Khakzad et al. 2013). The BNs are 

acyclic graphs, where the nodes signifying the variables are linked to each other by arcs that 

indicate causal or dependent interactions among the connected nodes. If a causative probabilistic 

relationship exists among variables of  interest, then the nodes are linked  together by a direct arc 
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(Baksh et al. 2015). A conditional probability table (CPT) is allotted to all nodes to signify 

conditional interactions among the nodes connected.  (Bobbio et al. 2001; Khakzad et al. 2013) 

The joint probability distribution P (U) of a collection of discrete random variables U= {A1…,An}, 

integrated in as: 

                   𝐏(𝐔) = ∏ 𝐏(𝐀𝐢|
𝐧
𝐢=𝟏  𝐏𝐚(𝐀𝐢 

))                                                                                      (𝟔. 𝟑)                                                                                       

where Pa (Ai) is the parent of variable Ai and P (U) is the joint probability distribution of variables 

(Adedigba et al. 2016; Jensen & Nielsen 2007; Pearl 1998). 

Formerly, the conditional probabilities table (CTP) in BN were assessed by expert judgement and 

the direct acyclic graphs (DAG) in BN were usually hand-constructed by a domain expert.  

Eliciting BN from a domain expert can be an extremely difficult task for large networks 

(Neapolitan 2004). Consequently, researchers have developed methods that can both learn DAG 

(structure) and CPT (parameter) from directly observed data. The methods for learning the 

structure of Bayesian networks are: constraint-based and Bayesian score- based methods (Dash & 

Druzdzel 1999; Jensen & Nielsen 2007). 

6.3.1. Constraint-based Learning Methods 

The constraint based methods scrutinise the data for a set of conditional independence relations. 

The collection of the conditional independence relations are used to infer the Markov equivalent 

class of an underlying graph (Dash & Druzdzel 1999). 

The constraint based approaches are beneficial because they are moderately fast and possess a 

good capability to handle latent variables. However, the weaknesses of these methods are: 

(1)  They use random significance level to determine independencies. 
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(2) They are unstable: error generated in the search process could result in a significantly 

different graph (Dash & Druzdzel 1999). 

Two famous constraint based algorithms are the PC and FCI algorithms. The PC algorithm is based 

on the assumption that no hidden variables exist and the FCI algorithm has the capability of 

learning the underlying relationships, by assuming that latent variables are present in the data 

(Spirtes et al. 1993; Dash & Druzdzel 1999) . 

6.3.2. Bayesian score- based methods 

The Bayesian score methods apply a search and score technique to search the space of DAG, to 

produce a series of candidate Bayesian networks. They use the posterior density as the scoring 

function to find a candidate with the highest score (Jensen & Nielsen 2007; Dash & Druzdzel 

1999). The score reflects the likelihood of using the structure to generate the data at hand(Jensen 

& Nielsen 2007),  These methods exhibit the following advantages:  

(1) They are applicable with very small data, where conditional independence tests might not 

hold. 

(2) They have capability of handling incomplete data in the database (Dash & Druzdzel 1999).  

Tree Augmented Naïve Bayes (TAN) is principally a modification of the Naïve Bayes classifier 

(Dash & Druzdzel 1999; Dash & Druzdzel 2002). The Naïve Bayes classifier has performed 

extremely well on both small and relatively large data. The fundamental assumption made by 

Naïve Bayes is that all the essential features in the dataset are conditionally independent as long 

as the value of the class is known (Cerquides & Lopez De Antaras 2003).This strong underlying 

assumption is very likely not to be fulfilled; nevertheless, the Naïve Bayes classifier performs 

excellently in practice when strong dependencies hold in the dataset. TAN relaxes this assumption 
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made by Naïve Bayes and keeps the same way of reasoning. TAN has demonstrated excellent 

performance irrespective of its simplicity and strong independence assumptions. TAN is more 

coherent and has a better performance than Naïve Bayes (Cerquides & Lopez De Antaras 2003) . 

In TAN model, class nodes are openly linked to all the attribute nodes with the directed edges. 

Each attribute node has maximum of one parent node from other attribute nodes. Directed cycle is 

not permitted  among the attribute nodes (Jiang et al. 2012). Figure 6.1 shows a TAN Bayes model.  

 

Y

X1
X2 X3 X4 Xn

 

 

Figure 6.1.  An example of Tree Augmented Naïve (TAN) Bayes model(BenaditP & 
FrancisF 2015). 
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Let𝑋1,𝑋2,…,𝑋𝑛 denotes n attributes and Y represents the class variable. The Conditional mutual 

information (Ip) is used in in building TAN model. The conditional mutual information is 

calculated using the formula below (BenaditP & FrancisF 2015). 

𝐼𝑃(𝑋, 𝑌|𝑍)= ∑ 𝑃

𝑥,𝑦,𝑧

(𝑥, 𝑦, 𝑧)𝑙𝑜𝑔 (
𝑃(𝑥, 𝑦|𝑧)

𝑃(𝑥|𝑧)𝑃(𝑦|𝑧)
)                                                 (6.4)       

The TAN algorithm procedure consists of the following steps (Friedman et al. 1997; Jensen & 

Nielsen 2007; Jiang et al. 2012; BenaditP & FrancisF 2015). These steps are: 

 Input the training data set Z 

 Calculate the conditional mutual information Ip(𝑋𝑖, 𝑋𝑗|𝐶) between each pair of attributes, 

i ≠ j. 

 Construct the complete undirected graphs in which the vertices are the attributes n 

variables. The edges are weighted based on the pairwise mutual information, 𝑋𝑖 𝑡𝑜𝑋𝑗 

by Ip(𝑋𝑖, 𝑋𝑗|𝐶). 

 Construct the highest weight spanning tree. 

 Change the undirected graph to a direct graph by selecting the class variable as the root 

node and setting the direction of the links to be outwards from it. 

 Build a TAN model by drawing an arc from the class variable to all other variables. 

6. 4. The proposed methodology 
 

6.4.1. Projecting historical process data into PCA Space 

Historical analysis of past real time data is important because it gives detailed information about 

past plant performance. Detailed analysis of plant history information can be used as prior 
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information to predict how the plant will operate in its current state.  PCA is a commonly used 

statistical process control technique for monitoring a huge number of process variables in process 

industries. PCA has the capability of compressing the data into low dimensional spaces which 

retain most of the vital information in the data set (He et al. 2006; Yu et al. 2014). The goal of 

projecting past real time data into PCA space is to find the principal components of the numerous 

process variables data monitored. PCA gives the principal components (PCs) that fully describe 

the highest variation of the data (Venkatasubramanian et al. 2003). Operating personnel can use 

the PCs to monitor plant performance instead of using all the monitored process variables. 

6.4.2 Construction of probabilistic network structure from analysis of historical 

process database 
 

In spite of the enormous amount of process data stored in databases for most modern industrial 

processes,  little analysis and interpretation of these data are taking place (Kresta et al. 1991; Wise 

& Gallagher 1996). Historical real time data of the plant could be systematically analysed and 

critical points set for each of the process variables in the database to obtain their states. In the 

present study, the states of historical real time data are used to construct a probabilistic network 

using the Tree Augmented Naïve Bayes algorithm. The probabilistic network structure constructed 

from databases will provide an exact depiction of probabilistic dependencies that is present among 

variables (Cooper & Herskovits 1991). 

The probabilistic network structure generated based on historical real time data is used as a model 

to predict the real time probability of failure based on the current operating state of the operation. 

Each of the process variable nodes in the probabilistic network is linked to a failure node using the 

logic gate AND. The AND logic is used because faults in principal components (variables) will be 
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propagated to all other components (process variables) based on the conditional probabilistic 

dependencies among the process variables in the network. Hence, real time probability of failure 

is estimated based on the resultant conditional probabilistic dependency effect of all process 

variables in the probabilistic networks structure. The essence of determining the principal 

components using PCA is that, PCA gives the principal components (PCs) that fully describe the 

highest variation of the data (Venkatasubramanian et al. 2003). Operating personnel can use the 

PCs to monitor plant performance instead of using all the monitored process variables. 

The principal components (PCs) determined in the probabilistic network through PCA analysis are 

continuously monitored at each time interval. The state of the PCs and their probability are 

continuously evaluated. The current probability of the PCs’ state obtained is fed back into the 

probabilistic network to update it and subsequently real time probability of failure is predicted.  

The following gives the procedure used to predict the real time probability of failure. 

(1) Constructing the probabilistic network structure from historical data using TAN algorithm. 

TAN algorithm give both structure and the conditional dependencies among process 

variables. 

(2) Computing the principal components (PCs) from historical data using principal component 

analysis (PCA). 

(3) Computing the failure probability of PCs from process monitoring data. 

(4) Computing the safe probabilities of the PCs. 

(5) Linking all the nodes in the probabilistic network structure to failure node. 

(6) Assigning an appropriate logic gate to failure node. AND logic gate is assigned in this case 

study. 
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(7) Computing the Conditional probability table (CPT) for different states of the failure node. 

(8) Plugging back the computed probabilities of PCs computed in steps 3 and 4 into the 

probabilistic network structure. 

(9) Evaluating the probabilistic network structure using both the CPTs and the probabilities of 

state of the failure node (True/false and Success/ failure) based on the state under 

consideration. 

The real time probability of failure (R) is obtained using the equation below. 

𝑹 = ∑ 𝑪𝒊                                                                                                                                                                                   (𝟔.𝟓)

𝒊=𝒏

𝒊=𝟏

 

Where R is the real time probability, i is the state of the failure node, and 𝐶𝑖 is the conditional 

probability for different states of failure node. 

For illustration purpose, Figure 6.2 provides an example of probabilistic network structure 

generated from the historical data.  

 

Real time probability of 

mmechanical  failure

Corrosion Mechanical wear
Surface 

degradation
Stress

 

Figure 6. 2. Probabilistic networks structure of causes of mechanical failure generated from 
historical data. 



116 
 

The probabilistic networks structure represents the causes of mechanical failure of process 

equipment. Table 6.1 gives the failure probabilities of the mechanical failure. Based on the steps 

given above, the real time failure probability of mechanical failure is computed as shown in Table 

6.2 

Table 6. 1.  Failure and Safe probabilities of causes of mechanical failure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
No Causes of  mechanical failure Failure probability 

 
Safe probability 

1 Corrosion  0.2550 0.7450 

2 Mechanical wear 0.0270 0.9730 

3 Surface degradation  0.1250 0.8750 

4  Stress 0.1330 0.8670 
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Table 6.2 - Real time probability of mechanical failure. 

 

 

 

 

 
 

 

* F, mean False, T mean True, Success means no mechanical failure, Failure, means mechanical failure. 

 

 

 

 

State (i) Corrosion
Mechanical 

wear

Surface 

degradation
Stress

1 F F F F

2 F F F T

3 F F T F

4 F F T T

5 F T F F

6 F T F T

7 F T T F

8 F T T T

9 T F F F

10 T F F T

11 T F T F

12 T F T T

13 T T F F

14 T T F T

15 T T T F

16 T T T T

0        *     0.2550    * 0.9730    *   0.1250  *   0.8670     =   0

0        *     0.2550   *  0.9730    *   0.8750  *   0.1330      =  0

0        *      0.2550   * 0.9730    *    0.8750  *   0.8670      =   0

0

0

0

0

0

1       *     0.2550  *  0.0270    * 0.1250   *   0.1330      =   1.14463E-04

0       *      0.2550  *  0.0270    * 0.1250  *   0.8670       =   0

0       *      0.2550  *  0.0270    *  0.8750  *  0.1330       =   0

0       *      0.2550   *  0.0270  *   0.8750  *   0.8670      =   0

0        *     0.2550   *  0.9730   *   0.1250  *   0.1330      =  0

0

0

1

1

1

1

1

Success Failure

0

1

1

1

0

0

1

0        *      0.7450   *  0.9730    *   0.8750   *   0.1330        =  0

0        *      0.7450   *  0.9730     *  0.8750   *   0.8670         =   0

0        *      0.7450   *  0.0270     *   0.1250  *   0.1330    =   0

0         *      0.7450   *  0.0270    *   0.1250   *   0.8670    =  0

0        *      0.7450    *  0.0270   *   0.8750     *  0.1330    =   0

0      *        0.7450   *  0.0270    *   0.8750     *   0.8670     =   0

0       *       0.7450  *   0.9730    *   0.1250     *   0.1330      =  0

0        *      0.7450  *   0.9730     *   0.1250    *   0.8670     =   00

Conditonal Probability of mechanical failure   for different states ( C )

The real time  probabiity of mechanical failure  is  sum of all states = 1.14463E-04

1

1

1

0

0

0

0

0

1

1

1

1
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6.4.3.  Hazard identification and analysis 

The primary objective of this stage is to find the likely process hazards and subsequently analyse 

how the process hazards will occur. A detailed review of these techniques with their strengths and 

weaknesses is given by Khan et al .  (1998) .When the process hazards and their underlying factors 

have been known, it is of paramount importance to assess accident pathway (sequences) and their 

corresponding consequences. The prevention barriers identified is placed alongside the accident 

path (sequence) to avoid and mitigate the effect of the accident. Accidents occur because of failure 

of significant prevention barriers (Rathnayaka et al. 2011). A detailed hazard analysis and 

thorough identification of relevant prevention barriers for a crude oil distillation unit (CDU) has 

been done in previous work. Comprehensive description of the prevention barriers can be found 

in  Adedigba et al. (2016). 

6.4.3.1.        Failure probability assessment of prevention (safety) barriers 

Fault tree analysis (FTA) is a reliable tool that is widely used to predict the likelihood of a hazard, 

as a result of failure events.  Fault trees are both graphical and logical vivid explanation of several 

categories of failure events. To draw fault trees, hazards are foremost determined and the series 

of events causing the hazard are identified. The topmost event in the fault tree denotes a main 

accident instigating hazard. FTA depend on both Boolean algebra and probability theory 

(Khakzad et al. 2011; Rajakarunakaran et al. 2015). A fault tree analysis could be quantitative, 

qualitative or a combination of both ( Adedigba et al. 2016; Khakzad et al. 2011).The prevention 

barriers identified in the model are systematically analyzed with fault tree to represent a causative 

relationship and subsequently there failure probabilities estimated.   
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6.4.3. 2. Event tree construction 

Event tree is an inductive systematic technique that starts with a specified accident initiating event 

and terminates with all the feasible consequences normally called the “end state consequences” of 

the event tree. Event tree techniques are widely used to denote incident scenarios. It represents a 

probable sequence related with an accident initiating events that transit through successive 

prevention barriers and terminating with ultimate consequences (Nývlt & Rausand 2012).  

The likelihoods (probabilities) of end state consequences P(Ck) are quantify by equation 6.6. 

𝐏(𝐂𝐊) =  ∏ 𝐱𝐢

𝛉𝐢,𝐤  (𝟏 −  𝐱𝐢 )
𝟏−𝛉𝐢,𝐤

𝐣 𝛜 𝐒𝐁𝐤

                                                                                               (𝟔. 𝟔)      

 

where SBk  represents  the prevention barrier related to level k; and  𝜃𝑖,𝑘 = 1 whenever  a level k 

failure transits through the  failure branch of  safety ( prevention) barrier i; 𝜃𝑖,𝑘 = 0  whenever  a 

level k  failure transits  through the success branch of safety( prevention)  barrier i. 𝑥𝑖 is the  failure 

probability  of  prevention (safety) barriers ( Adedigba et al. 2016; Rathnayaka et al. 2010). 

The proposed methodology incorporates BN structure from dataset, fault and event trees analysis 

to denote causes and consequences. The initiating event in the model is the real time probability 

of failure predicted from the probabilistic network structure. The proposed methodology is 

represented by the flowchart given in Figure 6. 3. The event tree for the model is presented in 

Figure 6.4. 
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operation. The states of the PCs are 
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Figure 6. 3. Proposed accident modelling methodology flowchart. 
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Figure 6. 4.  Revised Event tree for the accident modelling methodology (Adedigba et 
al. 2016). 
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6.4.3.3. Real time updating of occurrence probabilities of consequences 

In the last phase, the real time updating of consequence occurrence probability is executed. The 

real time probability of failure obtained in section 6.4.2 on a time interval basis are fed back into 

the process accident model frame work and subsequently, the real time occurrence probability of 

specific consequences is obtained.  

6.5. Case study 

6.5.1. Description of a crude distillation unit and related safety issues 

 
 The Crude distillation unit (CDU) is the principal fractionation unit and one of the most significant 

processes in the refinery. Among the various units in the refinery, the crude distillation unit is of 

primary concern because it defines the possible quantities of products directly (Al-Mayyahi et al. 

2014; Yang & Barton 2015). The size of the refinery is measured by the capacity of the crude 

distillation unit (Wolf 2009). Hence, safe operation of the CDU is of paramount concern. The 

crude oil is processed in two units in most distillation plants. The first is the atmospheric distillation 

unit; it separates light hydrocarbons. The second is the vacuum distillation unit; it separates heavy 

hydrocarbons (Waheed & Oni 2015; Waheed et al. 2014) . 

Figure 6.5 shows the schematic process flow diagram of a typical atmospheric distillation unit.  
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Figure 6. 5. Process flow diagram of the crude distillation unit. (Al-Mayyahi et al. 
2014). 
 

The crude oil is initially heated up by heat exchangers using the hot column products prior to their 

entering the desalting unit. The desalter unit installed in the preheat train reduces the crude salt 

content drastically by means of electrical desalination mechanism. The temperature of the crude is 

raised to 120 0C and water is mixed with it prior to being routed to the Desalter. The temperature 

of the resulting crude oil is raised to 200 0C. The function of the flash-vessel is to separate vapour 

content from the liquid  content (Al-Mayyahi et al. 2014).  The temperature of the resulting liquid 

is raised to range of 200-280 0C by train of heat exchangers. The fire heater raised the temperature 

of the resulting liquid to about 400 0C. Light hydrocarbon are separated as a result of abrupt change 

in the column volume. 
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Light vapours move to the column top while liquid hydrocarbons fall to the bottom of the column. 

Hydrocarbons fractions are withdrawn from the column based on the specific boiling temperatures. 

Naphtha exists as vapour and is subsequently condensed by the overhead condenser. Other 

hydrocarbon products are collected as side-streams (Al-Mayyahi et al. 2014). 

The different hydrocarbon products are subsequently processed in downstream units to market 

requirement and the atmospheric residue is directed to the vacuum distillation unit, where 

separation occurs under a vacuum at lower temperatures into distinct cuts (Al-Mayyahi et al. 2014; 

Waheed & Oni 2015). 

Quite a number of CDU failures have been reported in various accident databases. A good recent 

example is the CDU failure of the Chevron Richmond refinery that occurred on August 6, 2012. 

(CSB 2015) Safety of a CDU is critical and extremely sensitive because loss of control of a CDU 

can lead to devastating and cascading consequences beyond the plant boundaries. Therefore, it is 

crucial that refinery plants have a high level of safety and reliability. One of the challenges 

confronting the refinery industry today is the safety of its operations (Shaluf et al. 2003; Bertolini 

et al. 2009). The world has witnessed numerous accidents in refineries as a result of leakages, fire 

and explosion. The compendium of accident data in refineries from 1972 – 2011 with the 

associated insured losses in each case is given by  Thomson (2013). 

Since the real process data is not accessible, the CDU operation was simulated using Aspen 

HYSYS (8.8). The process variables including the feed temperature, feed pressure, condenser 

temperature and reboiler temperature were monitored and the data obtained were systematically 

analysed using the proposed methodology. The computational procedure of the methodology has 

been thoroughly explained in section 6.4. 
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6.6. Results and discussions 

The simulated historical data of a CDU was projected into a PCA space. Table 6.3 shows 

percentage variance of the process variables; hence, the principal components among the process 

variables that explained the highest variation of the data were determined.  

Table 6.3. Principal Component Analysis of historical data.  
 

 

 

 

 

The principal components are feed temperature and pressure. Table 6.4 shows the state of 

simulated historical process variables.  

 

 

 

 

 

 

 

 

No Process Variables 
 
 % variance captured 

 
  
 % variance captured total 

1 Feed Temperature 53.30 53.30 

2 Pressure 30.15 83.45 

3 Condenser Temperature 11.36 94.81 

4 Reboiler Temperature 5.19 100.00 
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Table 6. 4. The state of the historical process data. 

Observation Feed Temperature Pressure 
Condenser 

Temperature 
Reboiler 

Temperature 

1 Absent Absent Absent Absent 

2 Absent Absent Absent Absent 

3 Absent Absent Absent Absent 

4 Absent Present Present Present 

5 Present Absent Absent Absent 

6 Absent Present Absent Absent 

7 Present Absent Present Absent 

8 Absent Present Absent Present 

9 Absent Absent Absent Absent 

10 Absent Absent Absent Absent 

11 Absent Absent Absent Absent 

12 Absent Absent Present Absent 

13 Present Present Absent Absent 

14 Present Absent Absent Absent 

15 Absent Absent Absent Absent 

16 Absent Absent Absent Absent 

17 Absent Absent Absent Absent 

18 Absent Absent Absent Present 

19 Absent Absent Absent Absent 

20 Absent Absent Absent Absent 

21 Absent Absent Absent Absent 

22 Absent Absent Present Absent 

23 Absent Present Absent Absent 

24 Absent Absent Absent Absent 

25 Absent Present Absent Absent 

. . . . . 

. . . . . 

. . . . . 

1000 Present Present Absent Present 

 

* Present signifies process variable set point is exceeded 

* Absent indicates process variable set point is not exceeded 
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The states of historical real time data were used to construct probabilistic networks using TAN 

Bayes algorithm. The Bayesian network structure (Figure 6. 6) generated from these data provides 

a concise depiction of probabilistic dependencies that is present among process variables. 

 

 

Figure 6. 6. Probabilistic networks structure generated from historical data. 
 
 

 



128 
 

The dynamic failure probability of the CDU was estimated using the generated BN in the following 

way. The probability of a fault, given that the temperature exceeded the set point, was evaluated 

and fed back into the Bayesian network. On every occasion pressure exceeded the set point, the 

evidence was set in the Bayesian network and subsequently, the probability of failure was 

predicted. This process was repeated to get a real time probability profile of CDU failure (shown 

in Table 6.5). This was used as the probability of an accident initiating event in the event tree 

(Figure 6.4) 

Table 6.5.  Real time probability of failure. 
 

 

 

 

 

 

 

 

 

 

 

 

The failure probabilities of safety (prevention) barriers by FT analysis of a CDU unit in  previous 

work  Adedigba et al. (2016)  are given in Table 6. 6. The probability data of the basic events and 

associated fault trees for all safety (prevention) barriers are not presented in this paper, this is to 

decrease the number of tables and figures.  

 

Time (minutes) Real time probability failure 

30 0.068 

60 0.1333 

90 0.028 

120 0.039 

150 0.022 

180 0.049 

210 0.012 

240 0.019 

270 0.018 

300 0.01 

330 0.015 

360 0.044 

390 0.014 

420 0.028 

450 0.057 

480 0.061 
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Table 6. 6. Failure probabilities of prevention through fault tree analysis ( Adedigba et al. 

2016). 

 

 

 

 

 

 

 

 

 

 

The real time end state probability of the consequences for the proposed accident model is 

presented in Table 6. 7.  

 Table 6. 7. Real time occurrence probability of the consequences. 

Prevention barriers  Failure probability 

RPB 0.0842 

DPB 0.0025 

IPB 0.026 

EPB 0.0286 

EMFPB 0.0229 

HFPB 0.00145 

OrFPB 0.0069 

Time( minutes) Safe Near miss Mishap Incident Accident Catastrophe 

30 6.18E-02 6.10E-03 5.33E-05 4.55E-07 1.28E-08 2.14E-12 

60 1.21E-01 1.20E-02 1.04E-04 8.92E-07 2.51E-08 4.19E-12 

90 2.55E-02 2.51E-03 2.19E-05 1.87E-07 5.28E-09 8.80E-13 

120 3.55E-02 3.50E-03 3.05E-05 2.61E-07 7.35E-09 1.23E-12 

150 2.00E-02 1.97E-03 1.72E-05 1.47E-07 4.15E-09 6.91E-13 

180 4.46E-02 4.40E-03 3.84E-05 3.28E-07 9.24E-09 1.54E-12 

210 1.09E-02 1.08E-03 9.40E-06 8.03E-08 2.26E-09 3.77E-13 

240 1.73E-02 1.70E-03 1.49E-05 1.27E-07 3.58E-09 5.97E-13 

270 1.64E-02 1.62E-03 1.41E-05 1.21E-07 3.39E-09 5.66E-13 

300 9.09E-03 8.97E-04 7.83E-06 6.69E-08 1.89E-09 3.14E-13 

330 1.36E-02 1.35E-03 1.17E-05 1.00E-07 2.83E-09 4.71E-13 

360 4.00E-02 3.95E-03 3.45E-05 2.95E-07 8.30E-09 1.38E-12 

390 1.27E-02 1.26E-03 1.10E-05 9.37E-08 2.64E-09 4.40E-13 

420 2.55E-02 2.51E-03 2.19E-05 1.87E-07 5.28E-09 8.80E-13 

450 5.18E-02 5.11E-03 4.46E-05 3.82E-07 1.07E-08 1.79E-12 

480 5.55E-02 5.47E-03 4.78E-05 4.08E-07 1.15E-08 1.92E-12 
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It is worth observing that when the conditional dependencies and Bayesian network structure 

generated from a database are used to predict real time probability of failure, the significantly 

affects the real time probability of consequences, which highlights the significance of considering 

conditional dependency that is present among process variables in  the historical database. The 

real time occurrence probability for accident and catastrophe is shown in Figure 6.7.  

 

 

Figure 6. 7a.  Real time occurrence probability of Accident. 
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Figure 6. 7b. Real time occurrence probability of Catastrophe. 
 

The results indicate that the proposed approach is capable to capture the dynamic effect of process 

variable deviations on the predicted occurrence probability of a process accident. This provide 

valuable information for operators to decide when and what process variables to control in order 

to lower the predicted accident probability to an acceptable level. For example, in this case study, 

the root causes of abnormal deviation of the feed temperature need to be identified and controlled 

to prevent the system failure leading to a process accident.  

Application of this proposed accident model provides real time early warning and subsequent 

safety systems can be activated, before the progression of the fault increases the potential 

devastating impact on the safety of the systems: when occurrence probability of abnormal events 

in the process exceeds the acceptable threshold limit. This current study has illustrated the 

importance of BN in modelling the conditional dependencies and probabilistic networks structures 

that exist among process variables in the database for process accident modeling. The use of 
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predicted time dependent occurrence probabilities of consequences in this methodology will help 

efficiently to take timely remedial action to avert accidents and guide to develop an effective safety 

process management plan. Consequently, safe process operation is ensured. 

6. 7.    Conclusions  

The application of proposed the PCA-BN based process failure predictive model offers a technique 

for a predicting real time failure probability profile of a process system. The proposed model has 

the following strengths: 

 The integration of PCA and BN enables the dynamic assessment of the failure probability of a 

process system completely based on historical and present process operational data.  

 The use of PCA provides the capability to identify the key process variables that describe the 

most variance in process systems and utilize the process data in an efficient way.  

 The model is capable of predicting and assessing the real time risk of a process unit by 

monitoring the deviation of its main variables.  

This study has established the usefulness of BN and PCA in modelling the conditional 

dependencies and probabilistic network structure of historical process variables using the database. 

There are many potential prospects for using databases to assist constructing probabilistic 

networks. The probabilistic networks structure generated from databases will provide an exact 

depiction of probabilistic interaction and dependencies that is present among process variables. 

The usefulness of the proposed accident model is demonstrated on a simulated system. PCA in 

conjunction with the TAN algorithm offer an efficient approach to predicting real time probability 

of failure. Consequently, the real time dynamic risk profile computed based on the proposed 

process accident model renders valuable guidance in dynamic decision making for process safety 
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management. Adequate process monitoring data are required to efficiently implement this 

proposed methodology; the model can quantitatively predict a real time dynamic risk profile that 

will help as a guide for dynamic decision making, before fault devastatingly increasing the 

potential impact on the safety of the systems. This present study has analyzed accidents and their 

associated consequences in real time. This provides valuable evidence to support decision making 

during process safety management. To further improve the model, the following future work has 

been planned: 

(1) Validate the proposed model through real process data; and  

(2) Establish the link between process variations and potential loss.  
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Appendix 
 

Orthogonality is a feature of the raw variables and it clearly indicates that the raw data (variables) 

are perpendicular. The zero correlation (uncorrelated) is a feature of the centered variables, which 

evidently indicates that they (centered variables) are perpendicular. The concept of orthogonal and 

uncorrelated variables can be vividly explained as follows.  

Suppose Y and Z are vector observations of the process variables Y and Z. Algebraically, the 

following equations are used to describe orthogonal and uncorrelated relationship between Y and 

Z. 

(1)  Orthogonal relationship exists between Y and Z if and only if  𝑌′𝑍 = 0 

 

(2)  Y and Z process variables are said to be uncorrelated if and only if  

                           (𝑌 −  �̅�1)′(𝑍 −  �̅�1) = 0 

 The means of Y and Z are denoted as  �̅� and �̅�  respectively, while 1 represents vector of ones 

(Rodgers & Nicewander 1984). 

Orthogonal validation of the case study  

The data matrix for the case study is given below.  Matrix Y denotes the scores for Feed 

temperature and Matrix Z denotes the scores for pressure. It can be observed that  𝑌′𝑍 = 0 and 

(𝑌 −  �̅�1)′(𝑍 −  �̅�1) = 0 . Therefore, the two principal components (Feed temperature and 

pressure) are orthogonal and uncorrelated. 
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Chapter 7 

7.0 Dynamic Failure Analysis of Process Systems Using Neural Network 

Preface 

A version of this chapter has been published in the Journal of Process Safety and Environmental 

Protection 2017; 111: 529-543. I am the primary author. Co-author Faisal Khan provided 

fundamental understanding, assisted in developing the conceptual model and subsequently 

translated this to the numerical model. Co-author Ming Yang provided much needed support in 

implementing the concept and testing the model. I carried out most of the data collection and 

analysis. I prepared the first draft of the manuscript and subsequently revised the manuscript, 

based on the feedback from co-authors and also a peer review process. The two co-authors 

assisted in developing the concept and testing the model, reviewed and corrected the model and 

results. They also contributed to the review and revision of the manuscript.  

Abstract 

Complex and non-linear relationships exist among process variables in a process operation. Owing 

to these complex and non-linear relationships potential accident modelling using an analytical 

technique is proving to be not very effective. The artificial neural network (ANN) is a powerful 

computational tool that assists in modelling complex and nonlinear relationships. This relationship 

has good potential to be generalized and used for subsequent failure analysis.  

This paper integrates ANNs with probabilistic analysis to model a process accident.  A Multi-layer 

perceptron (MLP) is used to define the relationship among process variables. The defined 

relationship is used to model a process accident considering logical and casual dependence of the 

variables. The predicted accident probability is subsequently used to estimate the likelihoods of 
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failure to the process unit. A backward propagation technique is used to dynamically update the 

variable states and the failure probabilities accordingly.  

Integrating ANN with a probabilistic approach provides an efficient and effective way to estimate 

process accident probability as a function of time and thus the risk can be easily predicted upon 

quantifying the damage. The updating mechanism of the approach makes the model adaptive and 

captures evolving process conditions. The proposed integrated approach is applied to the 

Tennessee process system as a case study. 

Keywords: Artificial neural network (ANN) analysis; Sequential accident model; Accident 

prediction; Reliability Analysis; System Safety. 

7.1. Introduction   

In contemporary decades, the complexity and advancement in modern process systems is rapidly 

increasing. The complexity in the systems being built is directly associated with the number of 

process variables the system comprises  (Yu et al. 2015; Adedigba et al. 2017). This sophistication 

presents substantial risk of failure. Due to this development, it is of paramount importance to study 

these systems thoroughly to create a  failure forecasting mechanism and to provide early warnings 

to keep the operations of  these systems safe (Zhong et al. 2016). Recently,  risk assessment 

techniques and application in chemical process industries have metamorphosed into dynamic risk 

analysis (Villa et al. 2016). Dynamic risk techniques present a framework that explicitly captures 

the impact of time and chemical process dynamics for all scenarios (Labeau et al. 2000). Khan  et 

al. (2016) defined dynamic risk assessment “as a method that updates estimated risk of a 

deteriorating process according to the performance of the control system, safety barriers, 

inspection and maintenance activities, the human factors, and procedure”  Different techniques 
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have been applied in dynamic risk assessment of chemical process industries. Detail of these 

technique can be found in (Al-shanini et al. 2014;   Khan & Abbasi 1998;  Khan et al. 2016; Khan 

et al. 2015; Meel & Seider 2006; Villa et al. 2016). However, most of the approaches applied in 

dynamic risks assessment of chemical operations are analytical models which are less effective 

due to complex and non-linear relationship that exist among process variables ( Adedigba et al. 

2016).  

Process accident models are frameworks that express the relationship between causes and effects 

of accidents. Process accident models provide well detailed explanations about how and why 

accidents happen and they are adopted as tools for process risk assessment (Qureshi 2008;  

Adedigba et al. 2016). Different types of process accident models have been developed, details of 

these are given by (Al-shanini et al. 2014; Attwood et al. 2006; Qureshi 2007; Rathnayaka et al. 

2011). The strengths and weakness of several dynamic risk assessment techniques developed over 

the years are presented in ( Khan, et al. 2016). Recently, Adedigba et al. (2016) presented a 

dynamic safety analysis methodology that “modelled dependency relationships among accident 

contributory factors within prevention or safety barriers”.  Afterward permit non sequential failure 

of the barriers. However, this methodology still suffers a major limitation: it does not account for 

dependencies among process variables. Process accidents usually occur due to failure of events 

induced by failure of physical components and abnormalities of process variables (Tan et al. 2013;  

Adedigba et al. 2016). 

Quite recently, artificial neural networks (ANNs) have found wide application as a new 

computational technique in various fields of studies due to the remarkable characteristics 

possessed by ANNs. These features are: noise tolerance, high parallelism, nonlinearity and 
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learning and generalization ability (Basheer & Hajmeer 2000; Azizi et al. 2016; Chitsazan et al. 

2015). 

Artificial neural networks are  powerful computational tools for modelling complex  and nonlinear  

relationships that lack  mathematical models (Azizi et al. 2016; Ashtiani & Shahsavari 2016). 

ANNs have  the strong ability to map the probability distribution even when the training data is 

small (Świetlicka et al. 2017). 

The  ANN model has been used for real time process monitoring of a polymerization plant 

(Gonzaga et al. 2009). The ANN technique has been  applied to learn the correlation between 

molecular  and electrochemical properties (Chen et al. 2016). The ANN has been used  to predict 

the  void fraction  for a  gas-liquid flow (Azizi et al. 2016).The ANN model has been used to 

monitor  deformation behaviour of a metal alloy (Ashtiani & Shahsavari 2016) and  the ANN 

model has been found to be the best to predict the degradation of total petroleum  hydrocarbon 

(TPH) (Sanusi et al. 2016). 

Artificial neural network (ANN) regression models have been widely applied in various process 

control applications for detecting and controlling nonlinear dynamic systems that might not be 

easily detected and control by conventional controllers. The performance of  the controller with 

respect to nonlinear system dynamics has been modelled with  an artificial neural network (Lee et 

al. 1992). The recurrent neural network is applied in the development of multi-step ahead 

prediction model for the nonlinear process plant. The model developed proved to be extremely 

accurate (Zhang & Morris 1995). Neural networks have been applied for the adaptive control of 

nonlinear process systems. The nonlinear model developed using neural networks is used to 

calculate the parameters of the adaptive controllers (Yu & Annaswamy 1997). ANNs have been 
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used to give a more precise process model of a vitrification Process based on nonlinear system 

characteristic. Subsequently, the residual of the model are systematically monitored to identify 

signs of imminent vessel failure of the vessel used in the vittrificaition  process (Lennox & 

Montague 1997). Table 1 presents the differences between the current work and the following 

ANNs articles. 
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Table 7.1.  The differences between the current work and the following ANNs articles. 

 

 

 

 

Process risk 

Assessments

Process risk 

Assessments

Yu & Annaswamy ( 

1997)

Lee et al.( 1992)

 Adedigba et al. 

(2016)

Current work

Process control 

and Automation

It predict probability of 

process accidents based on  

nonlinear interaction  of  

process variables 

It uses fault tree to model 

linear  interactions within 

safety barriers and predict 

failure probability of safety 

barriers based on the linear 

relationships

It permit  

sequential    

failure of safety 

barriers

No  risk prediction

It offer opportunity 

for quantifying risk 

when the damages 

are quantified

It offer opportunity 

for quantifying risk 

when the damages 

are quantified

It can be used for 

fault detection 

and diagnosis

It has no valuable 

information to design 

process controller

it does not predict probability 

of process deviation based  

non linear relationship among  

key process variable

Lennox & 

Montague (1997)

Area of  

Application

Process control 

and Automation

Process control 

and Automation

Process control 

and Automation

Risk  

No  risk prediction

No  risk prediction

No  risk prediction
No event tree 

analysis
System data

Corrections in 

the controller 

parameters

Adaptive control of 

nonlinear  system 

dynamic

It can be used for 

fault detection 

and diagnosis

The controller 

structure is 

determined by the 

nonlinear model.

It can be used for 

fault detection 

and diagnosis

It uses fault tree to model 

linear  and nonlinear  

interactions within safety 

barriers and predict failure 

probability of safety barriers 

based on this relationships

It permit both 

sequential  and 

non sequential  

failure of safety 

barriers

Cumulative 

probabilities of  

key process  

variables

Probability of 

system deviation 

based on 

nonlinear 

relationship 

among process 

variables

Automatic  safety  

control  can be 

activated , when the 

predicted probability 

exceed normal range

It can be used for 

fault detection 

and diagnosis

It has no valuable 

information to design 

process controller

ANN is not 

applied

ANN is not 

applied

Automatic safety  

control  can be 

activated , when the 

predicted probability  

exceed normal range

System data
Reference input 

to the controller

 Control of  nonlinear 

system dynamic

It can be used for 

fault detection 

and diagnosis

The model 

developed  provides 

effective structure for  

neural controllers

It does not predict probability 

of process deviation based  

non linear relationship among  

key process variables

No fault tree analysis 
No event tree 

analysis

It does not predict probability 

of process deviation based  

non linear relationship among  

key process variables

No fault tree analysis 
No event tree 

analysis

It does not predict probability 

of process deviation based  

non linear relationship among  

key process variables

No fault tree analysis 

Multiple step ahead 

prediction &  control 

based on nonlinear 

system dynamic

It can be used for 

fault detection 

and diagnosis

The  multiple step 

ahead prediction are 

used to design 

process controller

Power supplied 

to  the induction 

coil and  the 

level of waste in 

the melter vessel

Temperature of 

the melter

The model developed 

can be used to control 

vitrification process

Zhang & Morris          

( 1995)

Event tree 

analysis
Process controlANN OutputANN InputArticles

Fault 

diagnosis 

Controller 

design
Probability prediction Fault tree analysis

The PLC controller is 

design by the 

nonlinear process 

model.

It does not predict probability 

of process deviation based  

non linear relationship among  

key process variables

No fault tree analysis 
No event tree 

analysis

Process data 

y(k) is used
To predict y(k+1)
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Complex and non-linear interaction relationships exist among process variables, so that a fault in 

a particular component can be hidden by this complex variation and rapidly propagate to multiple 

upsets. If this multiple upset is not addressed, it could result in devastating consequences that will 

significantly affect the safety of  the entire system (Yu et al., 2014). A vast volume of data is being 

generated in complex modern industrial systems without appropriate physical models that can be 

analysed to interpret the data generated for failure analysis and decision making (Xu & Hou, 2009). 

Due to this development, the authors proposed the application of ANNs for dynamic failure 

assessment of complex and non-linear relationships that exist among process variables in   

chemical process operations. 

The main contribution of this work is to present a data driven dynamic failure assessment 

methodology which overcomes the weakness in dynamic safety analysis presented by Adedigba 

et al. (2016). The probability of process deviation will be predicted from the nonlinear relationship 

that exists among the real time process monitoring data. This work integrates an ANN- data driven 

model with a process accident model to form a hybrid model that can be used for fault diagnoses, 

failure assessments, risk assessment and decision making. 

This paper is organized as follows. Section 7.2 presents a brief description of ANNs and its 

application in different disciplines. The proposed methodology is presented in Section 7.3. In 

Section 7.4, the Tennessee Eastman Chemical process is used as a case study to demonstrate the 

application of the proposed methodology. Finally, Section 7. 6 provides the conclusion. 

7.2.      Artificial Neural Network (ANNs) 

Artificial neural networks are computational techniques that have a robust capability to detect 

nonlinear relationships among input and output data without the need for a detailed understanding 
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of the physical systems. ANNs have been widely used as a technique for modelling and forecasting 

in various disciplines (Chitsazan et al. 2015).  The ANN structure consists of tightly interconnected 

artificial neurons that have a strong capability to execute wide ranging parallel calculations for 

data processing and adequate knowledge representation. They have been widely used as 

computational tools in various disciplines because they are more effective than other 

computational techniques. ANNs learn from example and subsequently capture the functional 

relationships among the data when the original relationships are unknown or are extremely difficult 

to describe (Ashtiani & Shahsavari 2016; Zhang et al. 1998). 

 ANNs give superior prediction accuracy with respect to statistical regression techniques. They 

have been applied  in modelling intricate real world  problems in  different categories: Clustering, 

pattern classification, functional approximation, forecasting, optimization, association and control 

(Basheer & Hajmeer 2000).  Different ANN models  have been proposed; the most widely used  

is  the multi-layer perceptron (MLP) (Świetlicka et al. 2017; Zhang et al. 1998). An example is 

shown below to illustrate how ANN can be used to predict the real-time state of a process variable. 

Consider a simplified flow system of a tank as shown in Figure 7.1. The flow rate of the liquid 

into the tank is A m3/s and the flow rate of the liquid out of the tank is B m3/s. The primary interest 

is to determine the liquid level (C) in the tank at any instant. Mathematically, the liquid level (C) 

can be expressed as: 

𝐶
𝜕𝑉

𝜕𝑡
= 𝐴 − 𝐵                                                                                                                                7.  1 

Where, V is the total volume of the tank.  
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Flowrate B

Flowrate A

Level C

 

Figure 7. 1. Simplified flow system of a tank.  
 

ANN can be used to predict the liquid level (C) at any instant. The following steps summarize the 

procedure involve in using ANN to predict the liquid level (C) (Gardner & Dorling 1998). The 

detail calculation for each step is given in the appendix. 

1. Initialisation of the networks weights: The values of weights and biases used in this 

example is given by Table 7. 2. These values of initial weights and biases are assumed. 

Table 7.2. The values of weights, input and biases used in the example demonstrated. 

 

 

2. Developing ANN architecture: The ANN architecture of the flow system of a tank is given 

by figure 7. 2 

Input Values Target value 
(T) 

Assumed weights Biases 

A(i1) B(i2) w1 w2 w3 w4 w5 w6 b1 b2 

10.0000 8.0000 2.000 0.7000 0.6000 0.5000 0.1000 2.2500 0.4000 0.7500 0.6500 
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INPUT LAYER
HIDDEN LAYER

OUTPUT LAYER

W1

w2

W3

W4

b1
b2

h1

h2

Level C

w6

w5

Flow rate 

of  B (i2)

Flowrate of A(i1)

1 1

 

Figure 7. 2 – Schematic diagram of ANN architecture of flow system of a tank.  
 

3. Present a part of training data as an input vector to the network and specify the target 

values: The input and target data for this example is presented by Table 7.2. 

4. Calculating the actual output by propagating the input vector through networks (Forward 

pass): Comprehensive procedure of this step is given in the appendix 

5. Computing the error term by finding the difference between the target values and the output 

values: Detail of this step given in the appendix 

6. Propagate the error term back to the network( Backward pass): Comprehensive procedure 

of this step is given in the appendix 

7. Change (update) the weight to decrease overall error term: The updated weight is given by 

Table 7. 3 
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               Table 7.3. The updated weights, of the example demonstrated. 
 

Updated weights 

w1 w2 w3 w4 w5 w6 

0.7000 0.6000 0.5001 0.1001 2.2677 0.4177 

 

8. The entire steps in this procedure is repeated cyclically with all the training input until the 

overall error term is reasonably small.  

 

7.2.1 Multi-layer Perceptron (MLP) using Backpropagation algorithm 

The multilayer perceptron is a feedforward neural network. It is comprised of three distinct 

principal layers: an input layer, one  hidden layer or series of hidden layer, and lastly an output 

layers (Chen et al. 2017; Chitsazan et al. 2015; Azizi et al. 2016). MLP are usually regarded as 

universal approximators, it has capability to approximate all forms of arbitrary functions to 

highest degree of accuracy.  Function approximation (modelling) in ANN are normally applied to 

complex real world problems in situation where no definite theoretical model exist (Azizi et al. 

2016). 

 Interconnectivity within a layer do not exist and every neuron in each layer are totally joined  to 

the next layer neurons (Riedmiller 1994).  

The input variables are received by the input layer to the network and transfers it through weighted 

connection to the first neuron in the hidden layer. The first neuron in the hidden layer computes 

their respective activations and serially passes them to the next neurons respectively. The hidden 

layer uses activation function for transforming the network input variables to output variables 

(dependent variables). Activation function are usually bounded and continuous nonlinear 

functions. Typical examples of activation function are logarithm-sigmoid (logsig) and hyperbolic-



151 
 

tangent-sigmoid (Tansig) (Chitsazan et al. 2015; Riedmiller 1994). The hidden layer do not relate 

with the external environment and it empowers MLP with the capability to handle nonlinear 

classification problems which a simple perceptron cannot handle (Basheer & Hajmeer 2000). The 

output function in the output layer is normally a linear function that sums the input signals of the 

output layer (Chitsazan et al. 2015; Chen et al. 2016).  

 The prediction in feedforward ANN is represented mathematically by equations 7.2 and 7.3 

(Chitsazan et al. 2015). 

Qjk =  f1 (bj + ∑ Wij

i

Iik)                                                                                                (7.2)       

Qk = b + ∑ Wj

j

Qjk                                                                                                       (7.3) 

Where  𝑓1 is the hidden layer activation function, 𝑏𝑗 bias for the hidden layer, 𝑏  is the bias for the 

output layer, 𝐼𝑖𝑘 is the  𝑖𝑡ℎ  input for the kth input vector,𝑄𝑗𝑘  is the hidden layer output of the  𝑗𝑡ℎ 

node, 𝑊𝑖𝑗 and 𝑊𝑗 are interconnection weight between the layers and  𝑄𝑘 is the  𝑘𝑡ℎ predicted  

probability of failure (Chitsazan et al. 2015). Multi-layer perceptron with backpropagation is used 

to predict the liquid level (C) in the example considered in section 7. 2. 

7.2.2.    Training algorithm 

Normally MLP training is supervised learning, where the target values for the input variables are 

known. (Chen et al. 2017; Ashtiani & Shahsavari 2016). Neural network training is a systematic 

unrestrained nonlinear minimization process where the arc weight of the networks are repeatedly 

modified  through iteration process to reduce  the overall squared error between the target values 

and the actual output values for every output nodes over every  input variable vectors (Chitsazan 
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et al. 2015; Chen et al. 2016; Zhang et al. 1998).  The knowledge that is learnt by the neural 

network is preserved in both the arcs and nodes as arc weight and node biases  (Chen et al. 2016; 

Zhang et al. 1998). 

The widely used training algorithm for MLP is the backpropagation algorithm (BP).The 

backpropagation algorithm essentially uses gradient steepest method to find global minimum error 

surface. This algorithm computes the local gradient of the error surface and subsequently update 

the weight along the direction of the steepest local gradient. This permit the weight to converge 

to the global error of the minimum surface (Chen et al. 2016; Gardner & Dorling 1998). 

 Each iteration in BP is made of two sweeps: forward and backward sweeps. Forward sweep 

produce the output and backward sweep propagation calculated the error term to adjust the weight. 

Both forward and Backward sweep are  done  repeatedly until the  ANN output  is the same with 

the Target value within  permissible   pre-determined tolerance level (Basheer & Hajmeer 2000). 

Several performance functions such as ,sum square error (SSE),  mean squared error (MSE) ,  and 

mean  absolute deviation (MAD) are  used to determine the weight  that decrease the overall error 

measure (Zhang et al. 1998). To minimise the overall squared error between the target values and 

output values from ANN model, the MSE performance function is widely used.  The equation for 

MSE performance function is given by equation 7.4. 

MSE =  
1

n 
∑ (YT −  Ypred

n

m=1

)2                                                                                        (7.4) 

Back propagation algorithm is very versatile and efficient and it can be generally be used for 

pattern recognition, data modelling, data and image compression, control, classification and 

forecasting. The training the example considered in section 7.2 is a supervised training, because 
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the target value for the input variables is known. Detailed computation for both forward and 

backward passes are given in the appendix. 

7.3.  Proposed Methodology 

The flow chart for the proposed methodology is given in Figure 7. 3 

start

Step1. Collect historical  process data of the system 

selected

Step 2. For each process variable derive its  probability         

    distributions for normal operation condition

Step 4.Develop ANN architecture based on expert 

      opinion to predict failure of the selected 

system

 Step 3. For each process variable, convert data into 

probabilities of  deviated condition

Accident modelling process

Step 7. Compute  failure probabilities of 

       safety or prevention barriers

Step 8. Model the accident scenarios

       using Event tree analysis

Step 9. Predict accident probability using real time data

Step 5.Project the probabilities into

    ANN space for training

Step 6.Determine probability of  the system  

failure based on real time data

End  
 

Figure 7. 3.  Proposed accident modelling methodology flowchart. 
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7.3.1.  Historical data collection and determination of probability distribution 

The historical data for the plant are acquired or simulated with an appropriate software. An 

appropriate probability distribution is derived from the process data collected or simulated.  The 

procedure for deriving probability distribution from data is not discussed in this work. The 

historical process data used in this work perfectly fit into normal distribution. The probability 

distribution curve of the historical data is generated using the normal distribution. The cumulative 

probability F (t) of each value of the process variables to it set point (normal operating condition) 

in the historical data is estimated from the cumulative distribution curve after the set point for each 

variable has been fixed. This process normalised the input data within the range of 0-1. This 

method of input normalisation is refer to as external normalisation (Zhang et al. 1998). Equation 

7.5 is used for estimating the F (t) from CDF of the all process variables. Cumulative probability 

estimated is the probability of deviation from normal operation. 

𝐹(𝑡) =  𝜑 (
𝑡 − 𝜇

𝜎
)                                                                                                           (7.5) 

Where t is the value of the monitor process variable, µ is the mean the set point,  𝜎 is the standard 

deviation. 

7.3.2. ANN model and architecture 

The neural network model used for prediction in this study is the three layer feedforward 

backpropagation neural networks (FNNs).  The ANN model consist of three layers: Input, hidden 

and output layers respectively. The Levenberg- Marquardt optimization algorithm is used for 

training  alongside with cross validation that applied the principle of early stopping to prevent over 

fitting (Gonzaga et al. 2009). Levenberg- Marquardt optimization algorithm is selected because is 

most efficient and gives fast convergence and stability in the course of training (Azizi et al. 2016). 
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The sigmoidal function used as activation function is hyperbolic tangent function, while the 

performance function selected is the Mean square error (MSE). Table 7.4 present the main features 

of ANN architecture model developed for the case study 

Table: 7.4. Main features of ANN model developed. 

 

7.3.3.  Learning and training using Multi-layer perceptron (MLP) 

Training is a repetitive iterations process of estimating the arcs weights of artificial neural network. 

The arc weight are the major elements of artificial neural network. Training in an MLP is a 

supervised training. A supervised training is a training that has a target value for all input vectors 

(Ashtiani & Shahsavari 2016; Chen et al. 2017; Zhang et al. 1998).The training input data is the 

cumulative probabilities  values of each process variable to its set point in the historical data that 

is estimated from the cumulative distribution curve. The target values are a set of acceptable 

probability of deviation for normal process operation of the plant under consideration.  

The total input data is subdivided into training set, test set, validation set. The arc weight is 

computed using the training set and the test set is used to determine the generalization capability 

    ANN model Parameters 

Network  architecture Feed- forward back propagation 

Input data Cumulative probability of deviation 

 Number of hidden neurons 10 

Output data Probability of process deviation 

Training algorithm Levenberg- Marquardt 

Training function Tangsig 

 performance function MSE 
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of the network. The validation set is used to prevent overfitting or to determine when the training 

process should end (Chen et al. 2016; Zhang et al. 1998; Basheer & Hajmeer 2000). 70% of input 

data is used for training, 15% of input data is used for testing and 15% of input data is used for 

validation. Both the forward and backward sweeps are carried out repetitively until the ANN 

output is the same with the target value within initially specify tolerance level. The criteria used to 

end training is the coefficient of determination (R2).  The coefficient of determination (R2) is 

predicted by the equation 6. 

𝑹𝟐  = 𝟏 − {
∑ (𝒀𝒋

𝑨𝒄𝒕𝒖𝒂𝒍−    𝒀𝒋
𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅  ) 𝟐𝒏

𝒋

∑ ( 𝒀𝒋
𝑨𝒄𝒕𝒖𝒂𝒍𝒏

𝒋 −   �̅�𝒋
𝑨𝒄𝒕𝒖𝒂𝒍  ) 𝟐

}                                                                                  (𝟕. 𝟔)  

Where  𝑅2 is the coefficient of determination, 𝑌𝑗
𝐴𝑐𝑡𝑢𝑎𝑙 and  𝑌𝑗

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are the actual and 

predicted values respectively, �̅�𝑗
𝐴𝑐𝑡𝑢𝑎𝑙 is the mean actual value, n is the number of the actual 

value; the ordinal is represent by subscript j (Chen et al. 2017). 

7.3.4. Generalisation using real time process monitoring data 

ANNs have strong capability to generalize after learning from the sample presented to the network. 

The real time process monitoring data (current data) is collected from the plant and procedure in 

3.1 is repeated on the real time process data. The cumulative probabilities obtained are 

subsequently used as the new input to the artificial neural network to predict the probabilities of 

deviation of the plant from normal operation.  

7.3.5.       Hazard identification and analysis 

Earlier to the development of process accident model, there is a need for detail hazard evaluation 

studies. The hazard evaluation studies are performed based on the accessible process information 

of the plant. Such accessible process information include: flow sheet sketches, data sheet and 

procedure and piping and instrumentation diagrams (Rathnayaka et al. 2012). Hazard and 

operability Analysis (HAZOP) is a famously used qualitative hazard identification technique to 
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detect and evaluate equipment failure that could result into accidents and including  identification 

of operability problem (Khan et al. 2015). There are numerous methods that can be used to perform 

hazard evaluation studies, comprehensive review of these methods including their advantage and 

disadvantage  is given by  (Khan &  Abbasi 1998). Process accident scenarios are subsequently 

developed based on hazard evaluation studies performed. Each of process accident scenarios 

consist of two principal components: initiating event (accident instigating sequence) and 

consequences (Final effect of accident sequence). The primary reason of scenarios development is 

to identify principal relevant barriers to be placed along the accident sequences to avert or alleviate 

the consequences of the accident since accident occurs because of failure of relevant prevention or 

safety barriers (Rathnayaka et al. 2012).  A comprehensive hazard analysis of a process system 

has been done in previous works. Seven principal prevention barriers has been determined based 

on hazard analysis. The prevention or safety barrier are define accordingly by (Adedigba et al. 

2016)  namely: Release prevention barrier (RPB), Dispersion prevention barrier (DPB), Ignition 

prevention barrier (IPB), Escalation prevention barrier (EPB), Emergency management failure 

prevention barrier (EMFPB), Human factor prevention barrier (HFPB) and Organization failure 

prevention barrier (OrFPB). Comprehensive explanation of the barriers and how they are 

methodically set alongside accident path can be found in (Adedigba et al. 2016). 

7.3.5.1.    Assessment of failure probability of prevention barriers. 

Fault tree analysis has been widely used as technique for safety analysis and quantitative reliability 

of process systems. It give a structural (graphical) representation of several combination of basic 

failure that could result into the occurrence of top event (undesirable top event)  (Tan et al. 2013) 

Fault tree is a deductive technique for recognising ways in which hazards can combine to cause an 

accident. The methodology begins with top event (accident instigating event) and systematically 



158 
 

works backward toward different scenario that can lead to the accident(Crowl & Louvar 2001). 

Fault tree analysis could be performed using two basic techniques: qualitative techniques and 

quantitative techniques. In qualitative technique logical expression is used to derive minimal cut 

set for the top event while in quantitative technique failure probability of basic event are assigned 

and they are used to estimate failure probability of top event. Commonly used logic gates in fault 

trees are AND and OR logics (Tan et al. 2013). Fault tree analysis is used to assess the failure 

probabilities of the prevention barriers. 

The failure probabilities of prevention barriers used in this work is given in Table 7.5. To lessen 

the number of tables and figures the failure probability of basic event and corresponding fault trees 

are not shown in this work. 

Table 7.5. Failure probabilities of prevention through fault tree analysis (Adedigba et al. 

2016). 

 

 

 

 

 

 

 

 

 

 

 

 

Prevention barriers  

 

Failure probability 

RPB 0.0842 

DPB 0.0025 

IPB 0.0260 

EPB 0.0286 

EMFPB 0.0229 

HFPB 0.0015 

OrFPB 0.0069 
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7.3.5. 2. Event tree construction 

Event tree starts with a major accident initiating event and systematically work forwardly towards 

final consequence. Event tree methodology is inductive in nature. It provides a comprehensive 

information of how failure of the system occur and subsequently evaluate the occurrence 

probability of the consequence (Crowl & Louvar 2001). Therefore, and event tree denote a 

structural logic arrangement of several events that might result from a particular initiating event. 

The initiating event is methodologically branch into success or failure to propagate event 

consequence in various branches of the event tree. The path of various branches in the event tree 

eventually lead to a possible outcome (consequence). Analysis in the event tree can be performed 

qualitatively and quantitatively. Qualitative analysis merely finds the probable consequence of 

initiating event, while the quantitative analysis estimate the occurrence probability of 

consequences (Ferdous et al. 2009). 

The occurrence probabilities of consequences P(Ck) in the event tree is estimated  by equation 7. 

 

𝐏(𝐂𝐊) =  ∏ 𝐱𝐢

𝛉𝐢,𝐤  (𝟏 −  𝐱𝐢 )
𝟏−𝛉𝐢,𝐤

𝐣 𝛜 𝐒𝐁𝐤

                                                                                                     (𝟕. 𝟕)      

 

Where SBk   signifies prevention barrier associated to level k; and  𝜃𝑖,𝑘 = 1 when level k failure 

moves  through the  failure branch of  prevention  barrier i; 𝜃𝑖,𝑘 = 0  when level k  failure moves  

through the success branch of  prevention  barrier i. 𝑥𝑖 is the  failure probabilities  of  prevention 

barriers (Adedigba et al. 2016; Rathnayaka et al. 2010). The event tree for the proposed accident 

modelling methodology is given in Figure 7. 4. 
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Figure 7. 4. Event tree for the proposed accident modelling methodology. 
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7.4. Case study: Tennessee Eastman Chemical process 

The proposed methodology is applied to the Tennessee Eastman Chemical Process by monitoring 

the process variables in the process. There are five principal operating units in the process flow 

diagram: reactor,  product condenser,  vapour vapour–liquid separator, a recycle compressor and 

the product stripper (Downs & Vogel 1993; Yu et al. 2014).  Figure 7.5 shows the process flow 

diagram of the plant. 
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Figure 7 .5.  Flowchart of the Tennessee Eastern chemical process problem. (source (J. J. 

Downs & Vogel 1993). 
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All the reactants (feeds) which are gaseous in nature flow to the catalytic reactor where they react 

to produce a liquid product. The liquid products leave the reactor in the form of vapour; the 

condenser condenses the resultant vapour. 

 The products from the condenser flow to the vapour-liquid separator where the products are 

separated into condensed and non - condensed products. (Yu et al. 2014). The non-condensed 

components at this point are recycled to the reactor with a centrifugal compressor.  Additionally, 

both inert products and by-products are purged as vapour from the system in the vapour –liquid 

separator.  Finally, the condensed components pass through the strippers where they are stripped 

with stream 4 to eliminate the residual reactants. Further refinement of the products takes place in 

the downstream section (Downs & Vogel 1993; Yu et al. 2014).  

The simulation program applies a decentralized control approach to build a closed loop simulation 

of the Tennessee Eastman chemical process. 20 fault conditions have been deliberately 

programmed into the Tennessee Eastman chemical process simulation for the purpose of 

generating data for process monitoring. A detailed description of how the process dysfunction is 

created and  manipulated for the purpose of generating process monitoring data for the Tennessee 

Eastman chemical process is provided by (J. J. Downs & Vogel 1993). 

Process data about the plant is obtained from the website of the Chemical Engineering Department, 

at the Massachusetts Institute of Technology: http://web.mit.edu/braatzgroup/links.html .Due to 

copy right issues, the data is not provided here. Interested readers can access the data on the 

university website. There are 22 process variables in the Tennessee Eastman Chemical process. 

All 22 process variables have been classified into two distinct classes: 5 key state variables and 17 

manipulate variables by (Khan et al. 2016). The five key state variables data are used for the 

http://web.mit.edu/braatzgroup/links.html
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prediction in this work. Table 7. 6 describes key state process variables with their unit. The 

proposed methodology is applied to the case study.  

Table 7.6.  Key state variables of the Tennessee Eastern chemical process (Khan et al. 

2016). 
 

 

 

 

 

 

 

 

 The computational procedure of ANN using the backpropagation algorithm has been 

demonstrated with a simplified example. Comprehensive computation is given in the appendix. 

The computation technique used in this case study is given in the appendix.  In the case study, the 

training input data is the cumulative probability value for each process variable. The target values 

are sets of acceptable probability of deviation for normal operation given by experts. The software 

used for the ANN training and prediction is the Mat lab R2014b program.  

 7.5. Result and discussion 
 

The complex non-linear relationship that exists among process variables in a chemical process 

operation justifies the application of the ANN model for predicting the probability of deviations. 

The ANN-based failure prediction technique is proposed to eliminate or reduce subjectivity, using 

a Bayesian network structure to represent dependency among process variables. ANN empirically 

gives precise and concise probabilistic dependencies that exist among process variables. The 

Variable  no.  Process variable Set point  unit 

X7 Reactor pressure 2705 KPa 

X8 Reactor level 75 % 

X9 Reactor Temperature 120.4 0C 

X12  separator level 50 % 

X15 Stripper base level 50 % 
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nonlinear correlation structure among process variables is used to predict the probability of 

deviation and subsequently the likelihoods of failure. Integration of the ANN with a quantitative 

failure assessment technique enhances accuracy and quantitative power and at the same time 

reduces uncertainty drastically. The developed model facilitates the dynamic failure quantification 

of a process operation. The model provides a robust optimization technique for proactively 

assessing and managing failure in the chemical process operation, when the relationships among 

process variables are uncertain or ambiguous. The proposed ANN-based failure prediction 

technique is fast, computationally more efficient and it can be generalized compared with other 

analytical accident modelling techniques that have been developed. With this developed technique, 

process dynamics can be satisfactorily monitored at any instant. Due to the dynamic nature of the 

model, the process operation dynamic is effectively captured and any process upset that can cause 

a serious safety issue is quickly recognised before affecting the system with consequences. The 

model exhibit unique advantage over other analytical accident modelling techniques, in that it 

make use of  a  vast volume of process monitoring data generated for failure prediction. 

The model has strong a capability of diagnosing the related process variables that are responsible 

for the deviation. The model prediction is able to adequately account for non-linearity and process 

operational uncertainty. The primary objective of developing an ANN model for a process 

operation is to have a tool at hand that permits fast and reliable prediction of the probability of 

process deviation from unlearned process monitoring data, after the model has being trained with 

historical data. 

The input data to the ANN network are cumulative probabilities of 5 key process variables 

obtained by following the procedure in section 7. 3. The target values are a set of acceptable 
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probabilities of deviation of the process under Consideration. Table 7.7 presents the probabilities 

of deviations predicted from the ANN model developed. 

Table 7.7.  Predicted probabilities of deviation from ANN model developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 The predicted probabilities in Table 7.7 are real time probabilities of deviation predicted from the 

training of unlearned process monitoring data in the ANN model developed, after the model has 

being trained with process historical data. 

The values of Table 7.7 were used as the input to the event tree of Figure7. 4.  Table 7.8 provides 

the occurrence probability of the consequences. The predicted probability of the consequences in 

Table 7. 8 are real time probabilities predicted from the proposed accident model.  Application of 

the proposed model provides real time probabilities and subsequently real time prompt warning is 

also provided. When the real time probability predicted surpasses the tolerable threshold limit, 

ANN Output  No 

Predicted probability of  

failure 

1 2.35E-03 

               2 2.10E-3 

3 1.64E-03 

4 1.15E-03 

5 6.61E-04 

6 2.18E-4 

7 1.37E-04 

8 3.68-04 

9 4.47E-04 

10 3.43E-04 

11 9.51E-06 

12 6.05E-04 

13 4.25E-03 

14 3.50E-03 

15 1.28E-03 

16 1.70E-04 
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safety systems can be promptly activated before a process upset (fault) causes devastating 

consequences that will significantly affect the safety of the process plant.  

One major setback of backpropagation algorithm is overfitting. The ANN model in this case 

(overfitting) presents a well fitted model for training data set only, however  it fails to predict the  

Table 7.8.  Occurrence probability of the consequences. 

 

ANN model 
output  number Safe Near miss Mishap Incident Accident Catastrophe 

1 2.14E-03 2.11E-04 1.84E-06 1.57E-08 4.43E-10 7.39E-14 

2 1.91E-03 1.88E-04 1.64E-06 1.41E-08 3.96E-10 6.60E-14 

3 1.49E-03 1.47E-04 1.28E-06 1.10E-08 3.09E-10 5.15E-14 

4 1.05E-03 1.03E-04 9.01E-07 7.70E-09 2.17E-10 3.61E-14 

5 6.00E-04 5.92E-05 5.17E-07 4.42E-09 1.24E-10 2.07E-14 

6 1.98E-04 1.96E-05 1.71E-07 1.46E-09 4.11E-11 6.85E-15 

7 1.25E-04 1.23E-05 1.07E-07 9.17E-10 2.58E-11 4.31E-15 

8 3.35E-04 3.30E-05 2.88E-07 2.46E-09 6.94E-11 1.16E-14 

9 4.07E-04 4.01E-05 3.50E-07 2.99E-09 8.43E-11 1.40E-14 

10 3.12E-04 3.08E-05 2.69E-07 2.30E-09 6.47E-11 1.08E-14 

11 8.65E-06 8.53E-07 7.45E-09 6.37E-11 1.79E-12 2.99E-16 

12 5.50E-04 5.43E-05 4.74E-07 4.05E-09 1.14E-10 1.90E-14 

13 3.87E-03 3.81E-04 3.33E-06 2.85E-08 8.01E-10 1.34E-13 

14 3.18E-03 3.14E-04 2.74E-06 2.34E-08 6.60E-10 1.10E-13 

15 1.16E-03 1.15E-04 1.00E-06 8.57E-09 2.41E-10 4.02E-14 

16 1.55E-04 1.53E-05 1.33E-07 1.14E-09 3.21E-11 5.34E-15 

 

main feature of the  entire data set. This set back of over fitting generally reduces generalization 

capability of the network (Azizi et al. 2016). Three basic techniques are normally used to prevent 

over fitting. These techniques are: early stopping, regularization and cross validation (Chen et al. 

2017). 

In this current work, an early stopping technique is used to prevent overfitting and subsequently 

the generalization capability of the ANN network is improved. In this approach, the data set is 
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divided into three main categories: training, validation and testing sets. The computation of the 

gradient and subsequent changing of the weight values and biases are done with the training set. 

The validation set is used to ensure the precision and generalization capability of the network in 

the course of the training process. The final performance of the developed network is verified with 

the testing set. The test set is not used for training  and the validation set is used to end the training 

process of the network (Azizi et al. 2016). 

The application of the proposed methodology on the Tennessee process system is declared as an 

academic analysis which is in need of further investigation. To the best of the author’s knowledge, 

the bow-tie failure analysis of Tennessee process system is not available. Most available 

publications on Tennessee chemical plant are in the area of fault diagnosis and process control not 

in the area of failure assessment. Due to this, the results obtained could not be compared. The 

Tennessee process system is chosen primarily because of availability of data, which is extremely 

difficult to access for other process systems. 

The integration of an ANN based process accident modeling approach is promising and empirical 

in nature; however, it is important to state categorially the limitations of ANN which can grossly 

affect the output of ANN. These limitation are: (1) The quantity and quality of data affect the 

output of the ANNs (2) There are no clear rules for the best ANN architecture design (3) Different  

training method used  (Chen et al. 2017; Basheer & Hajmeer 2000; Zhang et al. 1998). Also, ANN 

does not consider physical modelling or physical constraints. ANNs are not suited to make 

predictions outside the range they have been trained for. The data used in ANN prediction need to 

be very similar to the set of data used in training stage. ANN output is useful in term of statistical 

estimation on an ensemble of events, not in terms of deterministic estimation of a single even 
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7.6.    Conclusions  

The artificial neural network is a data driven nonlinear modelling technique with a strong 

capability to model nonlinear relationships among process variables. In the present study, ANN is 

used as a tool to define complex non-linear relationships among process variables. These 

relationships are critical to model the probability of process failure (considered here as a process 

accident). The probability of a process accident can be subsequently transformed to risk 

considering the impact of the accident. The proposed methodology has the following strengths and 

provides unique opportunity to study process behaviour and avoid unwanted condition:  

 The ANN based model offers the unique strength of using real time operation data to model 

process behaviour.  

 The probabilistic approach enables consideration of uncertainty in the data and the model 

for the prediction of accident scenarios.  

 The integrated model provide fasts and reliable generalization of the process data. 

 The model uses the strength of both data modelling and the physical behaviour of the 

process. 

The proposed process accident model offers a mechanism to study the dynamic failure profile of 

a process system. Predictive analysis can be performed on the process accident model.  

This study has highlighted the effectiveness of the ANN in modelling the conditional relationships 

that exist among process variables and subsequently predicting the probability of failure 

empirically. This approach is highly effective and recommended when physical models that 

represent such dynamic relationships are not available. Integration of an ANN in a process accident 

model offers a dynamic approach in predicting the probability of fault from database. The dynamic 
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failure profile estimated using the proposed methodology is used as a dynamic decision making 

parameter for process safety management.  

This work could be further improved by: i) considering the performance of different ANNs 

architectures, ii)   analyzing  the performance of   ANNs compared with other mathematical data 

driven models,  and iii) validating  the proposed model with real industrial data, iv) Providing 

advanced approach to overcome shortcomings of ANNs beyond already known standard 

approaches and v) modelling dependencies among accident contributory factors within the safety 

barriers and allowing non- sequential failure of all safety barriers involved  to activate end state   

adverse events randomly. 

Appendix 
 

Backpropagation algorithm detail procedure 

The primary objective of back propagation is to optimize different weights so that the neural 

network can learn how to correctly map arbitrary inputs to output. The mathematical procedure is 

given as follows (Mazur & Marry 2015). 

Forward pass procedure: 

Refer to Figure 2 and Table2.  

Starting with hidden layer. 

Firstly, estimating the total net input to each hidden layer of neurons: 

𝑛𝑒𝑡ℎ1
=  𝑤1 ∗ 𝑖1 + 𝑤2 ∗ 𝑖2 + 𝑏1 ∗ 1                                                                                                      𝐴 − 1 

𝑛𝑒𝑡ℎ1
=     12.5500                                                     

The activation function chosen is a logistic function. Squashing the total net input with th activation 



170 
 

function chosen to estimate output of hidden neuron ℎ1    

𝑜𝑢𝑡ℎ1
=

1

1 + 𝑒−𝑛𝑒𝑡ℎ1
                                                                                                                             𝐴 − 2 

 

 𝑜𝑢𝑡ℎ1
= 0.9999 

Similarly, considering hidden neuron ℎ2    

 

𝑛𝑒𝑡ℎ2
=  𝑤3 ∗ 𝑖1 + 𝑤4 ∗ 𝑖2 + 𝑏1 ∗ 1                                                                                                     𝐴 − 3 

𝑛𝑒𝑡ℎ2
=  6.5500 

𝑜𝑢𝑡ℎ2
=

1

1 + 𝑒−𝑛𝑒𝑡ℎ2
                                                                                                                              𝐴  − 4 

𝑜𝑢𝑡ℎ2
= 0.9985 

Considering the output layer, this procedure is repeated for the neuron in the output layer. In this 

case, the output of hidden layer neurons serves as the input to the output layer neuron. 

𝑛𝑒𝑡𝐶 = 𝑤5 ∗ 𝑜𝑢𝑡ℎ1
+ 𝑤6 ∗ 𝑜𝑢𝑡ℎ2

+ 𝑏2 ∗ 1                                                                                        𝐴 −  5 

𝑛𝑒𝑡𝐶 = 3.2994 

𝑂𝑢𝑡𝑝𝑢𝑡𝐶 =
1

1 + 𝑒−𝑛𝑒𝑡𝐶
                                                                                                                        𝐴 −  6 

𝑂𝑢𝑡𝑝𝑢𝑡𝐶 = 0.9644 

 Computing the total error  

  The squared error function is used to estimate the total error. The total error for the output neuron 

is computed thus, 

𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙 =
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡(𝑇) − 𝑜𝑢𝑡𝑝𝑢𝑡𝐶)2                                                                                           𝐴 − 7 
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𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙 = 0.5362 

 Backward pass procedure: 

The primary objective of the phase is to update all the weights so that, they influence the actual 

output of the ANN to be closer to the target value. 

Output layer 

Considering the output layer, chain rule can be applied to estimate the gradient with respect to w5: 

 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑤5
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶
∗

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶

𝜕𝑛𝑒𝑡𝐶
∗

𝜕𝑛𝑒𝑡𝐶

𝜕𝑤5
                                                                                     𝐴 − 8      

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶
= 𝑜𝑢𝑡𝑝𝑢𝑡𝐶 − (𝑡𝑎𝑟𝑔𝑒𝑡(𝑇)                                                                                             𝐴 − 9  

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶
=  −1.0355  

Computing how 𝑜𝑢𝑡𝑝𝑢𝑡𝐶 change with respect to its net input from equation 6: 

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶

𝜕𝑛𝑒𝑡𝐶
= 𝑜𝑢𝑡𝑝𝑢𝑡𝐶(1 − 𝑜𝑢𝑡𝑝𝑢𝑡𝐶)                                                                                            𝐴  − 10  

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶

𝜕𝑛𝑒𝑡𝐶
= 0.0343 

Computing how does 𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑡 𝑖𝑛𝑝𝑢𝑡𝐶  change with respect to 𝑤5  from equation 5: 

𝜕𝑛𝑒𝑡𝐶

𝜕𝑤5
=  𝑜𝑢𝑡ℎ1 = 0.9999                                                                                                                  𝐴 − 11 

Computing change in total error with respect to 𝑤5 
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𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
=  

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶
∗

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶

𝜕𝑛𝑒𝑡𝐶
∗

𝜕𝑛𝑒𝑡𝐶

𝜕𝑤5
                                                                                   𝐴  − 12 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
=  −0.0355 

Updating 𝑤5, 

Let the learning rate (𝜂) = 0.5 

𝑤5
+ = 𝑤5 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
                                                                                                                       𝐴  − 13 

𝑤5
+ = 2.2677 

 

Computing how does 𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑡 𝑖𝑛𝑝𝑢𝑡𝐶  change with respect to 𝑤6  from equation 5: 

 

𝜕𝑛𝑒𝑡𝐶

𝜕𝑤6
=  𝑜𝑢𝑡ℎ2 = 0.9985                                                                                                                𝐴 −  14 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤6
=  

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶
∗

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶

𝜕𝑛𝑒𝑡𝐶
∗

𝜕𝑛𝑒𝑡𝐶

𝜕𝑤6
                                                                                    𝐴   − 15 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤6
=  −0.0354 

Updating 𝑤6, 

𝑤6
+ = 𝑤5 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤6
                                                                                                                   𝐴   −  16   

𝑤6
+ = 0.4177 

Hidden layer 

The process of backward continue in the hidden layer. There is a modification to the approach 

adopted here. The process put into consideration the fact that, the output of each of the two hidden 
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neuron contribute significant to the output layer neuron and also the output layer neuron error.The 

main objective here is to update 𝑊1,   𝑊2,  𝑊3  and  𝑊4  

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ1
∗

𝜕𝑜𝑢𝑡ℎ1

𝜕𝑛𝑒𝑡ℎ1
∗

𝜕𝑛𝑒𝑡ℎ1   

𝜕𝑤1
                                                                                         𝐴 −  17 

Computing change in total error with respect with change in ℎ1 

 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ1
=

𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ1
                                                                                                                              𝐴 − 18  

Re writing 
𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ1
    mathematically, 

𝜕𝐸𝑟𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ1
=

𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑛𝑒𝑡𝐶
∗

𝜕𝑛𝑒𝑡𝐶

𝜕𝑜𝑢𝑡ℎ1
                                                                                                       𝐴 − 19 

Computing 
𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑛𝑒𝑡𝐶
    from previously calculated values in equations 9 and 10: 

 
𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑛𝑒𝑡𝐶
=  

𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶
∗

𝜕𝑜𝑢𝑡𝑝𝑢𝑡𝐶

𝜕𝑛𝑒𝑡𝐶
                                                                                                                𝐴  − 20 

𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑛𝑒𝑡𝐶
=  −0.0355 

Computing how does 𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑡 𝑖𝑛𝑝𝑢𝑡𝐶  change with respect 𝜕𝑜𝑢𝑡ℎ1from equation 5: 

𝜕𝑛𝑒𝑡𝐶

𝜕𝑜𝑢𝑡ℎ1
= 𝑤5                                                                                                                                         𝐴 − 21 

𝜕𝑛𝑒𝑡𝐶

𝜕𝑜𝑢𝑡ℎ1
= 2.2500                                                                                                                                                  

Evaluating equation 19 by substituting the values of equations 20 and 21: 

 

𝜕𝐸𝑟𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ1
= −0.0799                                                                                                                        𝐴 − 22  
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Evaluating derivative of  
𝜕𝑜𝑢𝑡ℎ1

𝜕𝑛𝑒𝑡ℎ1
  from equation 2 

𝜕𝑜𝑢𝑡 ℎ1

𝜕𝑛𝑒𝑡 ℎ1
= 𝑜𝑢𝑡 ℎ1(1 − 𝑜𝑢𝑡 ℎ1)                                                                                                        𝐴 − 23 

𝜕𝑜𝑢𝑡 ℎ1

𝜕𝑛𝑒𝑡 ℎ1
= 3.544𝐸 − 06 

Evaluating derivative of  
𝜕𝑛𝑒𝑡 ℎ1

𝜕𝑊1
  from equation 1: 

𝜕𝑛𝑒𝑡 ℎ1

𝜕𝑊1
= 𝑖1 = 10                                                                                                                                𝐴 − 24 

Substituting all values calculated in equation 22, 23 and 24 into equation 17: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
= −2.83E − 06                                                                                                                           

 

Updating 𝑤1 

𝑤1
+ = 𝑤1 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
                                                                                                                      𝐴 −  25    

𝑤1
+ = 0.7000    

Similarly for 𝑤2, evaluating derivative of  
𝜕𝑛𝑒𝑡 ℎ1

𝜕𝑊2
  from equation 1: 

𝜕𝑛𝑒𝑡 ℎ1

𝜕𝑊2
= 𝑖2 = 8                                                                                                                                  𝐴 − 26 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤2
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ1
∗

𝜕𝑜𝑢𝑡ℎ1

𝜕𝑛𝑒𝑡ℎ1
∗

𝜕𝑛𝑒𝑡ℎ1   

𝜕𝑤2
                                                                                          𝐴 − 27 

Substituting all values calculated in equation 22, 23 and 26 into equation 27: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤2
= −2.26E − 06 

Updating 𝑤2 

𝑤2
+ = 𝑤2 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤2
                                                                                                                      𝐴 − 28    

𝑤2
+ = 0.6000 

Repeating   similar process for the second hidden neuron    ℎ2 
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𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤3
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ2
∗

𝜕𝑜𝑢𝑡ℎ2

𝜕𝑛𝑒𝑡ℎ2
∗

𝜕𝑛𝑒𝑡ℎ2   

𝜕𝑤3
                                                                                         𝐴 − 29 

Computing change in total error with respect with change in ℎ2 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ2
=

𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ2
                                                                                                                             𝐴 − 30  

Re writing 
𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ2
    mathematically, 

𝜕𝐸𝑟𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ2
=

𝜕𝐸𝑟𝑟𝑜𝑟𝐶

𝜕𝑛𝑒𝑡𝐶
∗

𝜕𝑛𝑒𝑡𝐶

𝜕𝑜𝑢𝑡ℎ2
                                                                                                        𝐴 − 31 

Computing how does 𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑡 𝑖𝑛𝑝𝑢𝑡𝐶  change with respect 𝜕𝑜𝑢𝑡ℎ2from equation 5: 

𝜕𝑛𝑒𝑡𝐶

𝜕𝑜𝑢𝑡ℎ2
= 𝑤6                                                                                                                                          𝐴 − 32 

𝜕𝑛𝑒𝑡𝐶

𝜕𝑜𝑢𝑡ℎ2
= 0.4                                                                                                                                                  

Evaluating equation 31 by substituting the values of equations 20 and 32: 

𝜕𝐸𝑟𝑟𝑟𝑜𝑟𝐶

𝜕𝑜𝑢𝑡ℎ2
= −0.0142 

Evaluating derivative of  
𝜕𝑜𝑢𝑡ℎ2

𝜕𝑛𝑒𝑡ℎ2
  from equation 4: 

𝜕𝑜𝑢𝑡 ℎ2

𝜕𝑛𝑒𝑡 ℎ2
= 𝑜𝑢𝑡 ℎ2(1 − 𝑜𝑢𝑡 ℎ2)                                                                                                       𝐴 − 33 

𝜕𝑜𝑢𝑡 ℎ2

𝜕𝑛𝑒𝑡 ℎ2
= 1.43𝐸 − 03 

Evaluating derivative of  
𝜕𝑛𝑒𝑡 ℎ2

𝜕𝑊3
  from equation 3 

𝜕𝑛𝑒𝑡 ℎ2

𝜕𝑊3
= 𝑖1 = 10                                                                                                                              𝐴 − 34     

Substituting all values calculated in equation 31, 33 and 34 into equation 29: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤3
= −2.03E − 04                                                                                                                          
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Updating 𝑤3 

𝑤3
+ = 𝑤3 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤3
                                                                                                                     𝐴 − 35    

𝑤3
+ = 0.5001 

Similarly for𝑤4, evaluating derivative of  
𝜕𝑛𝑒𝑡 ℎ2

𝜕𝑊4
  from equation 3: 

𝜕𝑛𝑒𝑡 ℎ2

𝜕𝑊4
= 𝑖2 = 8                                                                                                                                 𝐴 − 36 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤4
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡ℎ2
∗

𝜕𝑜𝑢𝑡ℎ2

𝜕𝑛𝑒𝑡ℎ2
∗

𝜕𝑛𝑒𝑡ℎ2   

𝜕𝑤4
                                                                                         𝐴 − 37 

Substituting all values calculated in equation 31, 33 and 36 into equation 37: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤4
= −0.0002 

Updating 𝑤4 

𝑤4
+ = 𝑤4 − 𝜂 ∗

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤4
                                                                                                                      𝐴 − 38    

𝑤4
+ = 0.1000 

 

*Each of the weights has now been updated. These updated weights are feedback to the ANN 

architecture. This process is repeated continuously until the error is exceedingly small (within the 

tolerance limit).  The learning rate could be varied to accelerate training. 
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Chapter 8 

8.0 An Integrated Approach for Dynamic Economic Risk Assessment of 

Process  System 

Preface 

A version of this chapter has been published in Journal of Process Safety and Environmental 

Protection 2018; 116:312-323. I am the primary author. Co-author Faisal Khan provided 

fundamental understanding, assisted in developing the conceptual model and subsequently 

translated this to the numerical model. Co-author Ming Yang provided much needed support in 

implementing the concept and testing the model. I carried out most of the data collection and 

analysis. I prepared the first draft of the manuscript and subsequently revised the manuscript, 

based on the feedback from co-authors and also a peer review process. The two co-authors 

assisted in developing the concept and testing the model, reviewed and corrected the model and 

results. They also contributed to the review and revision of the manuscript.  

Abstract  

This paper proposes a dynamic economic risk analysis methodology for process systems. The 

Bayesian Tree Augmented Naïve Bayes (TAN) algorithm is applied to model the precise and 

concise probabilistic dependencies that exist among key operational process variables to detect 

faults and predict the time dependent probability of system deviation. The modified inverted 

normal loss function is used to define system economic losses as a function of process deviation. 

The time dependent probability of system deviation owing to an abnormal event is constantly 

updated based on the present state of the relevant process variables. The integration of real time 

probability of system deviation with potential losses provides the risk profile of the system at any 

instant. This risk profile can be used as the basis for operational decision making and also to 
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activate the emergency safety system. The proposed methodology is tested and verified using the 

Richmond refinery accident. 

Keywords: Dynamic failure prediction, Loss functions, economic consequences, Process safety, 

Structure learning of Bayesian network from data and Risk analysis. 

 

8.1. Introduction   
 

Recently, industrial technological systems have become extremely complex and more susceptible 

to process accidents. The risk posed by these systems is alarming and more worrisome. Operating 

modern industrial technological systems requires high levels of safety and reliability. Realising a 

high level of safety and reliability calls for effective management of these industrial technological 

systems’ performance alongside management of process safety (Al-shanini et al. 2014;  Adedigba 

et al. 2016). This development justifies the need for efficient and effective process safety and risk 

management techniques that will drastically reduce both the chance (probability) and the severity 

(consequences) of process accidents. Major research has been conducted on how to better monitor 

chemical process operations, evaluating risk and subsequently the development of safety systems 

for chemical process operations (Khan et al. 2015). A vital part of a safety system is the 

identification of possible hazards related to a process and the evaluation of both the likelihood of 

their occurrence and the associated consequences. This method is referred to as quantitative risk 

assessment (QRA) (Kalantarnia et al. 2010). 

QRA is a widely used technique that provides dependable quantitative information on risk initiated 

by conventional accidents in a chemical process operation. It vividly describes the best available 

analytic predictive data to compute the risk of a chemical process.  The QRA technique consists 

of various steps: hazard identification, frequency estimation, and consequence analysis and risk 
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quantification. The foremost step of QRA techniques is hazard identification, which is of 

paramount importance because it highlights potential faults of the system, identifies undesired top 

events and finally explains possible scenarios related to the top events (Villa et al. 2016). Quite a 

few methods have been developed for hazard identification. Details of these methods and their 

description is given by ( Khan & Abbasi 1998). 

Risk analysis is defined as the “ the development  of a quantitative estimate of risk based on an 

engineering evaluation and mathematical techniques for combining estimates of incident 

consequences and frequencies”  (Crowl & Louvar 2011). Two principal parts of risk assessment 

are incident identification and consequence analysis. A vivid explanation of exactly how and why 

an accident occurs is established by incident identification. In most cases, it involves estimating 

occurrence probabilities. Consequences analysis explains and quantifies the expected damages. 

Over past decades, numerous techniques have been proposed and developed for quantitative risk 

assessment in chemical process industries ( Khan & Abbasi 1998). However,  the majority of the 

methodologies developed over the past decades focuses mainly on estimation or prediction of 

occurrence probabilities (CCPS 1999; Crowl & Louvar 2011;  Khan & Abbasi 1998; Khan et al. 

2015).  While significant advancement has been made in assessing abnormal process conditions, 

fewer efforts have been made to analyze the economic impact of these abnormal conditions. This 

study attempts to fill the gap.  

The primary objective of the study is to develop a dynamic economic risk assessment framework 

which integrates probability with consequences assessment. The proposed approach links process 

deviations (from target/normal operation conditions) to accident probability and potential losses.  

This paper is organised as follows. Section 8.2 discusses the effectiveness of assessing process 

operational risk based on process deviations and briefly reviews loss functions. Section 8. 3 
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presents the proposed methodology. Section 8.4 provides the validation of the proposed 

methodology with a case study of the Richmond refinery accident with the results and discussion. 

Lastly, the conclusion is given in Section 8.5. 

8.2.  Process deviation, risk assessment and loss functions   

Modern industrial technological systems are exceptionally complex and consist of several dynamic 

process variables for their operations. Process safety management includes thorough identification 

of all abnormal process conditions and subsequent application of corrective actions prior to the 

time  the abnormal conditions lead to devastating consequences (Khan, et al. 2016). Risk analysis 

is an appropriate technique to evaluate the performance of process safety management. Process 

safety measures manage risk associated with a system through risk evaluation, design 

improvement and risk based decision making.  (Khakzad et al. 2013). 

Process deviations combined with failure of protection layers and control systems induce failures 

that increase the likelihood of an accident and subsequently increase the operational risk associated 

with  process systems (Hashemi, et al. 2014). The effectiveness of assessing process operational 

risk based on process deviations needs serious consideration. Conventional risk assessment 

techniques lack the capability to account for risk variations due to process deviations because  the 

conventional methods are static in nature (Wang et al. 2016; Khan, et al. 2016). 

In reality, there is a relationship between process deviation with both accident probability and 

consequence assessment. Deviations are needed to cause violations or disruptions of safety 

objectives. Process deviation causes failure of safety barriers which affects both accident 

probability and the impact of the consequences (Khorsandi & Aven 2017).  Therefore, the impact 

of process deviations on both the accident occurrence probability and associated economic 
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consequence is of paramount importance in risk assessment of process systems. This approach 

provides variation in risk due to process deviations.  

8.2.1. A Brief Review of loss functions 

Loss functions (LFs) are commonly used to compute losses related to deviation of a product from 

optimal value. Quite recently, loss functions have gained wide acceptance among researchers and 

quality assurance practitioners due to Taguchi’s philosophy and his quality improvement strategies 

(Zadakbar et al. 2015; Spiring 1993). Several types of loss functions have been discussed in the 

literature. Below is a brief review of some types of loss functions. 

8.2.1.1.   Quadratic loss function 
 

The quadratic loss function was proposed by Taguchi (Taguchi 1986). It has been extensively used 

to compute losses connected with deviation of products from their optimal value. Mathematically, 

the quadratic loss function is represented as: 

𝐿(𝑦) = 𝐵(𝑦 − 𝑇)2                                                                                                                              (8.1 ) 

L(y) represents the actual loss at y, T represents the desired target value and B is the proportionality 

constant (Khan, et al. 2016; Hashemi, et al  2014). However, the quadratic loss function exhibits 

some weaknesses and has been severely criticized by researchers and quality assurance 

practitioners. The weaknesses include: (1) the  inability to give quantifiable maximum loss 

(unbounded nature) (2) the symmetric nature of  the quadratic loss function, making it impossible 

to predict the magnitude of losses connected with extreme departures from  the target (Zadakbar 

et al. 2015). Because of these weaknesses, the quadratic loss function has been improved or revised 

to give quantifiable maximum loss by truncating the quadratic loss function at the point at which 
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it intersects the maximum loss. The mathematical representation of this modified quadratic loss 

function is: 

𝐿(𝑦) =         {
 𝐵((𝑦 − 𝑇)2,     |𝑦 − 𝑇| ≤  √𝐾/𝐵,

  𝐾,                       |𝑦 − 𝑇|  >  √𝐾/𝐵,
                                                                        (8.2)      

where L(y) represents the actual loss at y, T represents the desired target value, B is the 

proportionality constant,  K denotes maximum loss and  ∆= √𝐾/𝐵  represents the total distance 

from T (Target)  to the point where K (maximum  loss) first occurs (Khan, Wang, et al. 2016; 

Spiring 1993). 

8.2.1.2.   Quartic loss function 

Due to  the  weaknesses exhibited by the quadratic loss function: its symmetric nature and lack of 

a specific functional profile (Khan, et al. 2016), quartic loss function was proposed by Fathi and  

Poonthanomsook (2007) to denote  continuous loss functions. The quartic loss function shape is 

either symmetric or asymmetric within the specification limit, by applying Taylor series expansion 

and its parameters. Mathematically, quartic loss function can be represented as: 

𝐿(𝑦) = 𝐾2(𝑦 − 𝑇)2 + 𝐾3(𝑦 − 𝑇)3 + 𝐾4(𝑦 − 𝑇)4                                                               (8.3)   

 The second, third and fourth order loss coefficients are represented as: 𝑘2, 𝑘3, and 𝑘4  respectively. 

Interestingly, both the quartic loss and quadratic  functions lack the  capability to adequately 

account for  the nonlinear nature of chemical process operations  (Khan, et al. 2016).   

 8.2.1.3. Inverted normal loss function  

Normal distribution is normally used to describe random variables operations (Khan,  et al. 2016). 

The inverted normal loss function (INLF)  is  proposed  by Spiring (1993) to overcome the obvious 
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weakness of quadratic loss functions. A transformation or simple modification of the normal 

density function give an alternative that permits a single function to define the loss. The inverted 

or reflected normal loss function can be mathematically represented as: 

𝐿(𝑦) = 𝐾 {1 − 𝑒𝑥𝑝 (−
(𝑦 − 𝑇)2

2𝛾2
)}                                                                                                (8.4) 

 

where, y denotes the quality, K represents the maximum loss, 𝛾 represents a shape parameter and 

T represent the target value. The shape parameter is normally used to modify or alter the general 

form of INLF. The shape parameter is mathematically defined as: 

𝛾 =
∆

4
                                                                                                                                   (8.5) 

where ∆ represents the total distance from T (Target) to the point where K (maximum loss) first 

takes place. The curve produced or generated with the inverted normal loss function is smooth; it 

gives a minimum of zero at the target and subsequently gives a quantifiable maximum. It 

satisfactorily meets the basic requirements of the loss function: (1) decreasing at the interval (- ∞, 

T] and also increasing at [T,∞); (2) it gives a specific minimum; and finally (3) it gives general 

shapes that can be changed or altered. Additionally, the INLF can be adopted to a situation of 

asymmetric loss around the target and can also be used to denote the  quadratic loss function over 

a defined region (Spiring 1993). The shape parameter alongside the maximum loss permits the 

modification of the loss function to accommodate various incremental losses that occur for various 

processes and therefore makes it more flexible, and giving a more realistic assessment of losses 
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associated with the departures from optima value or  the target. The inverted normal loss function 

offers a better alternative to  the  modified quadratic function (Zadakbar et al. 2015; Spiring 1993). 

8.2.1.4.   Modified inverted normal loss function (MINLF) 

Sun et al. (1996) carried out the modification of INLF to a modified inverted normal loss function 

(MINLF). MINLF offered a more reasonable loss representation and at the same time presented a 

technique for revising the modified inverted normal loss function graph to replicate the operator’s 

actual loss. The MINLF adopts a nonlinear least squares technique for computing the shape of the 

MINLF. The shape parameter 𝛾  is determined by the user; the value of this shape parameter 

decides the slope of the function around  the optimal or desired value (Hashemi, et al  2014; Khan, 

et al. 2016). The MINLF can be mathematically represented as: 

𝐿(𝑦) = 𝐸𝑀𝐿
1

1 − 𝑒−∆
2

2𝛾2

(1 − 𝑒−(𝑦−𝑇)

2

2𝛾2

)                                                                (8.6) 

where y represents the quality measurement, L(y) represents the actual loss at y, T represents the 

optimal value (target) and EML is  the estimated maximum loss. ∆  represents the total distance 

from T (Target) to the point where K (maximum loss) first takes place and 𝛾 represents the shape 

parameter (Khan, et al. 2016). 

The MINLF gives more flexibility in demonstrating symmetric loss situations by specifying their 

shape parameters. This parametrization of MINLF aids its comparison with the quadratic loss 

function (Sun et al. 1996). 

8.2.1.5. Inverted Beta loss function (IBLF) 

A class of symmetric and asymmetric loss is developed  by Leung & Spiring (2002)  using an 

inverted beta probability distribution function. The IBLF can be mathematically represented as: 
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𝐿(𝑦) = 𝐸𝑀𝐿(1 − (𝑇(1 − 𝑇)
1−𝑇

𝑇 )1−𝛼(𝑦(1 − 𝑦)
1−𝑇

𝑇 )𝛼−1)                                (8.7) 

where y denotes the quality measurement, L(y) represents the actual loss at y, T represents the 

desired value, and EML represents the estimated maximum loss.  𝛼 and   𝛽  represent the shape 

parameters that are quantified for the IBLF. The  𝛽 in IBLF is denoted by 𝛼 and T respectively. 

The mathematical relationship between 𝛼 and T is given below (Khan, Wang, et al. 2016). 

𝛽 = 1 +
(𝛼 − 1)(1 − 𝑇)

𝑇
                                                                                              (8.8) 

The family of  the Inverted Beta loss function (IBLF) provides flexibility to the shape their  loss 

functions can reach and provides an  adequate technique for designing the IBLF to show  the  actual 

loss suffered (Leung & Spiring 2002). IBLF provides both the traditional (basic) features of  loss 

functions and  asymmetrical loss situations (Hashemi, Ahmed & F. Khan 2014). 

8.2.1.6.    Inverted Gamma loss function (IGLF) 
 

The inverted gamma loss function (IGLF) provides the base for a classification of loss functions 

that is used to describe process operations with asymmetric loss. The shape of the IGLF is 

asymmetric around the target (Spiring & Yeung 1998; Leung & Spiring 2004). The IGLF is 

mathematically represented as: 

𝐿(𝑦) = 𝐸𝑀𝐿 (1 − (
𝑦𝑒1−(𝑦/𝑇)

𝑇
)

𝛼−1

)                                                                                       (8.9)           

where EML is the estimated maximum loss, y represents the process measurement, T denotes the 

desired value, and 𝛼 is the shape parameter. The shape parameter 𝛼 permits practitioners to modify 
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the Inverted gamma loss function to precisely reflect losses connected with the deviations from 

the target (Spiring & Yeung 1998). 

 Hashemi et al. (2014) thoroughly reviewed the applicability of various kinds of loss functions to 

process operation safety assessment and deduced that; MINLF and IBLF are more flexible 

(adaptable) to represent losses connected with process deviations. However, Hashemi et al. (2014) 

emphasied that MINLF is better compared to IBLF because it is simple to formulate and at the 

same time gives a  more robust perfomance during sensitivity analysis; consequently  the MINLF 

function   is highly endorsed for  predicting loss associated  with process accidents. 

The choice  of which loss function to select  to  translate the process deviation into real time 

economic loss depend on the prevailing  process conditions and the users’ objectives. 

Characteristics of various loss functions alongside their sensitivity analysis can be adopted in 

selection of  appropriate loss functions  (Hashemi et al. 2014). 

8.3 The proposed methodology 

The flowchart for the proposed methodology is given in Figure 8.1. 
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Figure 8 .1.The flowchart for the proposed methodology. 
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8.3.1 Hazard identification and analysis 

The main aim of this phase is identification of potential hazards and the underlying initiating 

factors that may be responsible for the hazards. Various hazard identification techniques can be 

applied at this phase. Different techniques for hazard identification such as the hazard operability 

study (HAZOP) and failure mode and effect analysis (FMEA) can be applied at this stage. A 

thorough review of the hazard identification technique is given by Khan et al.( 1998). The accident 

sequence pattern also needs to be determined; it helps to identify the necessary safety barriers that 

are needed to be placed along the accident path to inhibit the initiation and progression of the 

accident process. Accidents usually happen due to failure of relevant safety barriers (Rathnayaka 

et al. 2011). One common process hazard is process deviations which include high pressure, high 

temperature and steam hammering (Rathnayaka et al. 2011; Adedigba et al. 2017a) 

8.3.2. Failure probability assessment of safety barriers. 

Fault tree analysis (FTA) is a very reliable technique to predict the probability of a hazard due to 

sequences of failure events. Fault tree analysis has been widely used for both quantitative 

reliability and safety analysis (Durga Rao et al. 2009). A fault tree is a logical graphical model 

representing various combinations of sequential and/or parallel faults events that could cause the 

occurrence of the pre-determined undesired top event. It vividly represents logical connections 

among basic events to the topmost undesired event. Normally, Boolean gates are used to represent 

the relationship between the basic events and the top event. The occurrence probability of the 

topmost unwanted event of the fault tree depends strongly on the reliability data of the causative 

events. A fault tree analysis could be carried out in various ways: qualitatively, quantitatively and 

with a combination of both qualitative and quantitative techniques (Adedigba et al. 2016; Khakzad 
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et al. 2011). Fault tree analysis is carried out quantitatively in the proposed approach and failure 

probability data of the basic event are sourced from several journals and expert opinions. 

The safety barriers identified during hazards identification analysis are methodically analyzed 

with the fault tree to denote causative relationships. Subsequently, the occurrence probability of 

the uppermost unwanted event is predicted from the reliability data of the causative events.  

8.3.3.  Analysis of potential scenario using event tree analysis 

The event tree offers a systematic technique for thoroughly investigating all potential accident 

scenarios involving a complex system. Event tree analysis is an inductive technique that begins 

with a specified initiating event (Nivolianitou et al. 2004). An event tree describes a logical 

combination of several events that may follow after initiation of an accident sequence. The event 

sequence in the event tree is influenced by either success or failure of various prevention or safety 

barriers placed along the accident path (Ferdous et al. 2009). The event sequences in the event 

tree eventually lead to a set of possible outcomes generally called the consequences. In the present 

case study, the initiating event is the process deviation. 

8.3.4.   Collecting historical process data of relevant key process variables 

In this phase, the relevant key process variables are selected. The historical process data of key 

process variables are methodologically analysed and set points are fixed for each of the key process 

variables to determine their state. The states of the historical data of relevant process variables are 

used to learn the Bayesian network structure. The detailed procedure is given in Adedigba et al.( 

2017b). 
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8.3.5.  Structure learning of Bayesian network using state operational historical data 

A Bayesian network (BN) is a graphical modelling and inferencing technique for problems 

involving uncertainty. Bayesian networks vividly model the probabilistic relationships among a 

group of variables (Heckerman 1997). A Bayesian network consists of directed acyclic graphs 

with a group of conditional probability tables (CTPs) related to them. Usually CTPs are allotted 

to the numerous nodes to indicate probabilistic relations among the linked nodes. 

The joint probability distribution P (U) of a collection of random variables U= {A1…,An},  is 

integrated  as: 

                   𝐏(𝐔) = ∏ 𝐏(𝐀𝐢|
𝐧
𝐢=𝟏  𝐏𝐚(𝐀𝐢 

))                                                                                              (𝟖. 𝟏𝟎)                                                                                       

where Pa (Ai) is the parent of variable Ai and P (U) is the joint probability distribution of variables 

(Jensen & Nielsen 2007). 

 The Bayesian probability theorem offers a unifying methodology for data modelling. A Bayesian 

data modeller’s offers a unique opportunity to develop probabilistic models that adequately fit the 

data presented to them (Mackay 1995). Formerly, the direct acyclic graph (DAG) of the BN was 

normally hand-constructed by the experts and the conditional probabilities table (CTP) was 

provided based on expert opinions. However, recently researchers have developed methods that 

can both learn DAG (structure) and provide the CPT from data. The methods are classified into 

two categories: constraint based methods and  Bayesian based methods (Jensen & Nielsen 2007). 

The detailed procedure involved in generating both the structure and the CTP of BN using one of 

the Bayesian score methods, called the tree augmented  naïve Bayes algorithm, is presented in 

Adedigba et al.( 2017b). To avoid duplication of information, the detailed methodology is not 

presented here. The probabilistic network’s structure generated from operational process data will 
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give an exact representation of probabilistic dependencies that exist among process operational 

data. The primary reason to use operational process data to construct a probabilistic networks 

structure is to predict the probability of process deviation based on deviation of process variables 

from their optimal values. 

8.3.6. Computing the probability of end state event consequence at time (t) 

The time dependent probabilities of system deviation predicted from the learned structure of the 

BN are used as an input to the event to compute the time dependent probability of end state 

consequences. 

The probability of end state consequences in the event tree P (Ck) is computed by equation 11. 

𝐏(𝐂𝐊) =  ∏ 𝐱𝐢

𝛉𝐢,𝐤  (𝟏 −  𝐱𝐢 )
𝟏−𝛉𝐢,𝐤

𝐣 𝛜 𝐒𝐁𝐤

                                                                                                           (𝟖. 𝟏𝟏)      

 

where SBk  signifies  the safety barrier linked to level k; and  𝜃𝑖,𝑘 = 1 every time  a level k failure 

travels through the  failure branch of  safety  barrier i; 𝜃𝑖,𝑘 = 0  every time  a level k  failure goes 

through the success branch of safety barrier i. 𝑥𝑖 denotes the  failure probability  of  safety 

barriers.(Adedigba et al. 2016; Rathnayaka et al. 2010). 

8.3.7.  Consequence assessment using loss functions 

Loss functions have been adopted to predict losses connected with the deviation of operational 

variables. Quite recently, the application of inverted probability distributions for quantifying 

losses is gaining wide acceptance among researcher and practitioners.  Hashemi et al. (2014) 

thoroughly reviewed the applicability of various kinds of loss functions to process operation safety 

assessment and deduced that MINLF and IBLF are more flexible (adaptable) to represent losses 

connected with process deviations. However, Hashemi et al. (2014) emphasised that MINLF is 
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better compared to IBLF because it is very simple to formulate and at the same time gives a more 

robust performance  during sensitivity analysis; consequently, the MINLF loss function is used  

for predicting loss associated with accidents in the proposed methodology. The following  

procedures are proposed  for loss modelling  of a process unit. 

 (1) Identification of key process variables 

In loss modelling of a process unit, there is a need to identify key process variable/variables that 

might be responsible for undesired events among all process variables peculiar to the process unit 

under consideration. Common examples of process variables are; temperature, pressure and 

concentration.  A process variable or variables with a direct bearing on the undesired events should 

be chosen as key variable/variables in loss modelling. 

(2) Identification of loss categories and computing loss for various categories of losses  

Generally, for any incident scenario in a process operation, four basic categories of losses can be 

established.  The four categories of loss  are  well defined  in (Khan & Amyotte 2005). The 

following equations are used to predict each category of loss. 

Production loss (PL) 

𝐶𝑃𝐿 = 𝐿𝑖𝑘𝑒𝑙𝑦 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠) 𝑋 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 (
$

ℎ𝑜𝑢𝑟𝑠
)                                         (8.12) 

Asset loss (AL) 

𝐶𝐴𝐿 = 𝐴𝑠𝑠𝑒𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (
$

𝑎𝑟𝑒𝑎
) 𝑋 𝐷𝑎𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎                                                                            (8.13) 

Human health loss (HHL) 
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𝐶𝐻𝐻𝐿 = 𝐷𝑎𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 𝑋 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑝𝑒𝑜𝑝𝑙𝑒

𝑎𝑟𝑒𝑎
) 𝑋 𝐶𝑜𝑠𝑡 𝑜𝑓

𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑦

𝑖𝑛𝑗𝑢𝑟𝑦
 ($)             (8.14) 

Environmental cleanup cost (ECC) 

𝐶𝐸𝐶𝐶 =  𝐶𝑆𝑜𝑖𝑙 + 𝐶𝑊𝑎𝑡𝑒𝑟 + 𝐶𝐴𝑖𝑟                                                                                                           (8.15) 

where each category of cleanup cost is predicted as: 

𝐶𝑆𝑜𝑖𝑙 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑖𝑙 𝑋 𝐶𝑙𝑒𝑎𝑛𝑢𝑝 𝑐𝑜𝑠𝑡 (
$

𝑚𝑎𝑠𝑠
) 𝑋 𝑁𝐻                                   (8.16) 

𝐶𝑊𝑎𝑡𝑒𝑟 = 𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑤𝑎𝑡𝑒𝑟𝑋 𝐶𝑙𝑒𝑎𝑛𝑢𝑝 𝑐𝑜𝑠𝑡 (
$

𝑣𝑜𝑙𝑢𝑚𝑒
) 𝑋 𝑁𝐻                 (8.17) 

𝐶𝐴𝑖𝑟 = 𝑉𝑜𝑙𝑢𝑚𝑒  𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑎𝑖𝑟 𝑋 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑟 𝑐𝑙𝑒𝑎𝑛𝑢𝑝 𝑐𝑜𝑠𝑡 (
$

𝑣𝑜𝑙𝑢𝑚𝑒
) 𝑋 𝑁𝐻     (8.18) 

The symbol NH denotes the NFPA ranking of chemicals (Khan & Amyotte 2005). The fire 

explosion index methodology is applied to compute the damage radius and damage area. The 

damage radius is computed using  equation 19 (Jafari et al. 2012). 

𝑅 = 0.256 𝑋 𝐹𝐸𝐼                                                                                                                            (8.19) 

where FEI is the fire explosion index 

(3) Estimation of maximum loss. 

Estimated maximum loss (EML) is defined as “ the loss  that could be sustained under  an abnormal 

condition  with the failure  of all protective systems” (Marsh Risk 2011). Therefore, the estimated 

maximum loss is the summation of all these loss. 

𝐸𝑀𝐿 =  𝐶𝑃𝐿 + 𝐶𝐴𝐿 +  𝐶𝐻𝐻𝐿 + 𝐶𝐸𝐶𝐶                                                                                      (8.20) 
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 (4) Selecting an appropriate type of loss function and determination of its shape 

parameter 

An appropriate loss function is selected to quantify each category of losses associated with any 

given incident scenario. Upon selection of the desired type of loss function there is a need to 

determine its shape parameter. Usually regression techniques that adopt non- linear search 

approaches are used to find the shape parameters. A good example of these techniques is the least 

square technique. 

8.3.8.  Risk Estimation 

The time dependent risk profile is developed by combining the real time occurrence probability of 

consequences predicted from process variables deviation with the loss associated with an accident 

at any time (t). Plant operators can easily access the risk associated with the process operations at 

any given time. The acceptable risk of the process operations should be bounded: acceptable risk 

should have lower and upper limits. The operators will be able to alert the decision maker 

whenever the upper bound of the acceptable risk is exceeded. This will enable the decision maker 

to take remedial action before the process deviation results in devastating losses. 

8.4.    Case study:  Richmond refinery accident 

8.4.1. Description of the case  
 

The Richmond refinery occupies nearly 2900 acres of the San Pablo Peninsula in the U.S.A. The 

refinery processed 250,000 barrels of crude oil per day and nearly 1200 people were employees of 

the refinery (CSB 2015). 

On August 6, 2012, the Richmond refinery suffered a disastrous accident due to a pipe rupture in 

the crude distillation unit. The accident originated from one of many process streams commonly 

called the “4 - side cut” leaving the Richmond refinery’s C- 1100 Crude unit atmospheric column.  
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Very flammable, high temperature light oil at the rate of 10,800 barrels per day was released in 

the course of the incident. The released light oil  kindled into flame approximately two minutes 

later (CSB 2015). The process flow diagram of the Richmond refinery crude unit and its associated 

up stream process is shown Figure in 8.2.  
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Figure 8.2.  The process flow diagram of Richmond refinery crude unit and it 
associated up stream equipment( Adedigba et al. 2016; CSB 2015). 
 
 
This incident was comprehensively investigated by the Chemical Safety Board (CSB). The CSB 

clearly emphasized several technical issues and safety system deficiencies that were responsible 
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for the accident. Using the information made available by the CSB with the simulated operational 

process variables, the Richmond refinery accident is modeled using the proposed methodology. 

Detailed hazards analysis of the Richmond refinery crude oil distillation unit (CDU) and associated 

accident scenarios has been previously undertaken by the authors. The relevant prevention barriers 

needed to be placed along the accident pathway have also been identified.  A detailed description 

of these prevention barriers  is  given by (Adedigba et al. 2016). 

Based on hazard analysis of the Richmond refinery, six consecutive safety barriers have been 

identified and placed in the accident path to inhibit or mitigate the effects of the accident. These 

barrier are: “Design error prevention barrier (DPB), Operational failure prevention barrier (OPB), 

Equipment failure prevention barrier (EPB), Human failure prevention barrier (HPB), 

Organisation failure prevention barrier (OrPB) and External factor prevention barrier (ExPB)” 

(Adedigba et al. 2016). Based on available information, different events that caused the failure of 

the safety or prevention barriers were adequately investigated using fault tree analysis 

8.4.2. Results and discussions 

 The proposed methodology can be effectively demonstrated on a CDU unit. The CDU incident 

that nearly have total representativeness of the proposed model is the Richmond refinery accident. 

Due to lack of real life process monitoring data from the industry, the operation of CDU unit was 

simulated using Aspen HYSYS (8.8).  The following key process variables were monitored: Feed 

pressure, feed temperature, reboiler temperature and condenser temperature. The process 

monitoring data generated were thoroughly analyzed using the proposed methodology. The 

organizational and technical causes of the accident were thoroughly analyzed using fault and event 

tree analysis. The authors assumed that Richmond refinery accident have environmental impact to 

effectively demonstrate this model on the accident. 
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The failure probability of prevention barriers using fault tree analysis of the Richmond refinery 

crude unit accident is shown Table 8.1. Fault tree construction is common; therefore, the failure 

probability of the basic event and associated fault trees are not displayed for all the prevention 

barriers. This minimized the numbers of figures and tables in this work.  

 

Table 8.1. Failure probability of prevention  barriers ( Adedigba et al. 2016). 

 

 

 

 

 

 

The states of historical operational data were used to build a probabilistic network structure among 

the main operational process variables, applying the Bayesian Tree Augmented Naïve Bayes 

(TAN) algorithm. This algorithm models the precise and concise probabilistic dependencies that 

exist among key operational process variables. The probabilistic structure generated using the 

Bayesian Tree Augmented Naïve Bayes (TAN) algorithm is used to detect faults and predict the 

time dependent probability of system deviation. The detailed methodology for  the  use of  the 

Bayesian Tree Augmented Naïve Bayes (TAN) algorithm to generate a probabilistic network is 

clearly presented by (Adedigba et al. 2017b). To avoid replication of information, the detailed 

methodology for using the Bayesian Tree Augmented Naïve Bayes (TAN) algorithm to generate 

probabilistic network is not presented here. Following the methodology given by Adedigba et al. 

(2017b), the Bayeseian network structure of  Figure 8.3 is generated. Also, the  dynamic failure 

probability of deviation of the Richmond  crude distilation unit is preicted using  Figure 8. 3 

Prevention  barrier Failure probability 

Design error prevention  barrier (DPB) 0.2567 

Operational failure prevention  barrier (OPB) 0.2700 

Equipment failure prevention barrier (EPB) 0.2628 

Human failure  prevention barrier (HPB)  0.2870 

Organisational failure prevention  barrier (OrPB) 0.2959 

External factor prevention barrier (ExPB) 0.0171  
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Figure 8. 3.  Probabilistic networks structure generated from operational historical 
data (Adedigba et al. 2017). 
 
The predicted real time dependent probability of devaiton of  the Richmond CDU unit is  given in 

Table 8. 2. The time dependent probability of deviation predicted by this methodology can be 

adopted to support automatic process control or activation of a layer of protections as soon as the 

predicted probability of deviation exceeds the acceptable range.The event tree for the case study 

is presented in Figure 8. 4. The values of real time probability of deviation given by Table 8.2 are 

used as an input to the event tree of Figure 8.4. The time dependent probability of deviation 
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predicted by this methodology can be adopted to support automatic process control or activation 

of a layer of protections as soon as the predicted probability of deviation exceeds the acceptable 

range. 

Table 8. 2. Real time probability of deviation (Adedigba et al. 2017). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (minutes) Real time probability of  failure 

30 0.068 

60 0.1333 

90 0.028 

120 0.039 

150 0.022 

180 0.049 

210 0.012 

240 0.019 

270 0.018 

300 0.01 

330 0.015 

360 0.044 

390 0.014 

420 0.028 

450 0.057 

480 0.061 
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Figure 8.4.  Revised event tree for the proposed methodology ( Adedigba et al. 2016). 

safe

Near miss

Near miss

Mishap

Near miss

Mishap

Mishap

Incident

Near miss

Mishap

Mishap

Incident

Mishap

Incident

Incident 

Accident

Near miss

Mishap

Mishap

Incident

Mishap

Incident

Incident

Accident

Mishap

Incident

Incident

Accident

Incident

Accident

Real time probability of deivaition

Accident 

Accident

Near miss

Mishap

Mishap

Incident

Mishap

Incident

Incident

Accident

Mishap

Incident

Incident 

Accident

Incident

Accident

Accident

Accident

Design error
Prevention
barrier

Operational
failure  
Preventtion 
barrier

Equpment

failure
Prevention 
barrier

Human 
failure 
prevention 
barrier

Organization 
failure 
prevention 
barrier

External 
factor 
prevention 
barrier

Consequences



204 
 

Five principal end state consequences are considered in the event tree of Figure 8. 4. The real time 

occurrence probabilities of the end state consequences are given in Table 8.3.  

Table 8.3. Real-time occurrence probability of Consequence. 
 

 

 

 

Time (Minutes) Safe Near miss Mishap Incident Accident 

30 1.34E-02 2.74E-02 2.00E-02 6.38E-03 7.99E-04 

60 2.63E-02 5.35E-02 3.92E-02 1.25E-02 1.53E-03 

90 5.53E-03 1.13E-02 8.24E-03 2.63E-03 3.29E-04 

120 7.70E-03 1.57E-02 1.15E-02 3.66E-03 4.58E-04 

150 4.34E-03 8.86E-03 6.48E-03 2.06E-03 2.59E-04 

180 9.67E-03 1.97E-02 1.44E-02 4.60E-03 5.76E-04 

210 2.37E-03 4.83E-03 3.53E-03 1.13E-03 1.41E-04 

240 3.75E-03 7.65E-03 5.59E-03 1.78E-03 2.23E-04 

270 3.55E-03 7.25E-03 5.30E-03 1.69E-03 2.12E-04 

300 1.97E-03 4.03E-03 2.94E-03 9.39E-04 1.18E-04 

330 2.96E-03 6.04E-03 4.42E-03 1.41E-03 1.76E-04 

360 8.68E-03 1.77E-02 1.30E-02 4.13E-03 5.17E-04 

390 2.76E-03 5.64E-03 4.12E-03 1.31E-03 1.65E-04 

420 5.53E-03 1.13E-02 8.24E-03 2.63E-03 3.29E-04 

450 1.13E-02 2.29E-02 1.68E-02 5.35E-03 6.70E-04 

480 1.20E-02 2.46E-02 1.80E-02 5.72E-03 7.17E-04 
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 Different categories of loss are calculated independently using equations 8.12-8.20. The exact 

parameters used in predicting various category of loss are given in Table 8. 4. It is important to 

state that some of these parameters are estimated from available information provided in CSB 

report. The other parameters are sourced from expert opinion where  the data is not available and 

various journals (Khan & Amyotte 2005; Zadakbar et al. 2015; Jafari et al. 2012; Yang et al. 2015; 

Yang & Barton 2015; CSB 2015). 

Table 8.4.  Exact parameters used in estimating different categories of loss (Khan & 

Amyotte 2005; Zadakbar et al. 2015; Jafari et al. 2012; Yang et al. 2015; Yang & Barton 2015; 

CSB 2015). 
 

No Parameter Assigned value 

1 Likely downtime (hr) 168 

2 Production value  ($/hr) 1,041666.7 

3 Asset density  ($) 500,000 

4 Damage radius (m) 25.088 

5 Population density per metre square 8 

6 Cost of  fatality ($) 1,000000 

7 Clean up cost of soil ($) 480,000 

8 Clean up cost of water ($) 12,000000 

9 Clean up cost of  air ($) 9,000000 

10 NFPA ranking of chemical (NH) 2 

11 Fire explosion  index (FEI) 98 
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 Table 8.5 presents the values for each category of loss. Estimated maximum loss is the sum of all 

the categories of loss. For the case study, the quality loss is $0.1million, the production loss is 

$175million, the asset loss is $12.5 million, the environmental loss is $21.5million and human 

health loss is $201million. Different end state consequences are considered with respect to their 

associated losses. Zero loss is associated with safe (normal operation). Quality loss, the cost of 

replacement and repair, is associated with a process near miss, which is assumed based on expert 

opinion. Production loss is associated with process mishap. Production, asset, and environmental 

losses are associated with the incident. For an accident, all categories of losses are assumed to be 

associated. 

Table 8. 5. Value of each category of loss. 
 

 

 

 

 

 

 

 

 

Categories of  losses Value of  losses in  (USD) 

Quality loss $0.1Million 

Production loss $175 Million 

Asset loss $12.5 Million 

Environmental loss $21.5Million 

Human health loss $201 Million 

 Estimated maximum loss   = $ 401 Million 
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Table 8. 6 shows the end state consequences of the event tree and the associated losses. The real 

time economic risk associated with the Richmond refinery Crude distillation unit are determined 

by combining the time dependent probabilities of end state consequence and their respective 

associated losses respectively. 

This work assigns a univariate key process characteristic to the system. Sulfidation corrosion is 

responsible for the pipe rupture of the C-1100 Crude unit of the Richmond refinery. Sulfidation is 

a reaction that occurs at high temperature. Consequently, feed temperature is considered the critical 

variable in loss modelling. In a situation where there are several critical process variables to a 

system operation, this model can still be applied to accurately analyse the system risk. In this 

situation, principal component analysis (PCA) can be used to determine the process variable that 

most significantly affect process performance variation (Adedigba et al. 2017b). Multivariate loss 

function is used in this case to translate the process deviation into real time economic loss. Detailed 

information about multi variate loss functions is given by (Suhr & Batson 2001; Hsu 2001; Chan 

& Ibrahim 2004). 
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Table 8. 6.  End state consequences and associated losses. (Hashemi et al 2014). 

 

End state 

consequences  

Definition Associated loss Value of  losses 

in  (USD) 

Safe  Normal operation  No loss $0.000 

Near miss  Events  that do not lead to  an 

actual loss however has  the 

possibility to cause the actual 

loss 

Quality loss $0.1Million 

Mishap  Events that could result into 

slight asset and environment 

losses 

Production loss $175Million 

Incident  Events that can result to 

significant harm or loss property, 

people and environment. 

Production loss, asset 

loss, and  

Environmental loss 

$209Millon 

Accident An incident that lead to 

devastating consequences on 

people and asset. It normally 

receives publicity from national 

media   

Production loss, asset 

loss, environmental 

loss and  

human health loss  

 

$410 Million 

 

 

This work assigns a univariate key process characteristic to the system. Sulfidation corrosion is 

responsible for the pipe rupture of the C-1100 Crude unit of the Richmond refinery. Sulfidation is 

a reaction that occurs at high temperature. Consequently, temperature is considered the critical 

variable in loss modelling. 

The loss associated with temperature deviation in the CDU is estimated using the Modified 

inverted normal loss function and the estimated maximum loss (EML) alongside other parameters 

and user defined values given by Table 8.7. Figure 8.5 shows the CDU loss using modified inverted 

loss function.  
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The economic loss associated with feed temperature deviation in the Richmond crude distillation 

unit is estimated using the Modified inverted normal loss function and the estimated maximum 

loss (EML) alongside other parameters and user defined values given by Table 8.7. 

Table 8.7. Process information of CDU used to develop MINLF. 
 

Symbol Description  Values 

T The target  temperature in the CDU 350 0C 

TS Set point for  high temperature  360 0C 

USL Upper specified limit  for high  
temperature in the CDU 

380 0C 

LSL Lower specified limit for low temperature  
in the CDU 

330 0C 

Tmax Maximum tolerable temperature in the 
CDU. It is presumed that the CDU fails 
catastrophically at this temperature. 

420 0C 

Tmin Minimum tolerable temperature in the  
CDU 

310 0C 

EMLUSL Loss connected with upper specified limit 
temperature in the CDU 

4000000 

EMLLSL Loss connected with lower specified limit 
temperature in the CDU 

2000000 

EML1 Estimated maximum loss as a result of 
high  temperature in the CDU including  
all losses categories (quality ,asset, 
production, environmental  cleanup and  
human health) 

410,000000 

EML2 Estimated maximum loss as a result of low   
temperature in the  CDU 

82,00000 
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Figure 8.5 shows the Richmond CDU loss using modified inverted loss function. It show the losses 

related with the progression of the process deviation (high temperature) in Richmond refinery 

crude distillation unit.  Figure 8.5 clearly shown that zero loss is associated with Richmond refinery 

crude distillation unit at 350 oC.  Beyond this temperature, the loss associated with the progression 

of the deviation of the CDU unit progressively increases.  

 

 
 

 

Figure 8.5.  CDU loss using MINLF. 
The real time risk associated with the incident and accident end state is shown in Figure 8.6. Figure 

8.6b, shows that the economic risk at any instant due to deviations is beyond $10million. Also, 

different acceptable risk levels can be assigned to different end state events. The acceptable risk 

level for different end states can be used for decision making and the activation of layer of 

protections by the operators.  
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The real time economic risk (the combination of the consequences with associated losses) 

associated with the incident and accident end state for Richmond refinery crude distillation unit is 

shown in Figure 8.6 

(a) 

 

(b) 

                   

Figure 8. 6.  Real time risk of the Richmond refinery CDU. 
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Figure 8.6b, shows that the economic risk at any instant due to deviations in Richmond refinery 

CDU is less than $10million. However, the risk association with the operation of Richmond 

refinery CDU at 60 minute is significantly high. This indicate that the probability of the system 

deviation is significantly high at 60 minutes. The Crude distillation unit need to be properly 

diagnosed to detect the root cause of the deviation at this time. The real time risk associated with 

the Richmond refinery CDU fluctuates progressively between the 90-480 minutes. This notified 

the operators of the abnormality of the CDU operation and also known the risk of the system as 

function of time as the operation progresses.  Also, different acceptable risk levels can be assigned 

to different end state events. The acceptable risk level for different end states can be used for 

decision making and the activation of layer of protections by the operators.     

Using the Richmond refinery accident to validate the proposed methodology has demonstrated that 

the proposed methodology has a strong capability to detect dynamic consequences of process 

variables’ deviations from the optimum condition. This methodology provides risk profiles 

connected to various process end state consequences. This offers timely and valuable risk 

information for the operators and decision makers to decide when the operation of the plant will 

be shut down when the real time risk predicted exceeds the acceptable level. The methodology 

also provides an opportunity for root cause diagnosis of the deviations, since the dependability of 

the main key operational variables is used to predict the probability of deviation. The operator 

could take correct action by manipulating these variables with a basic control system to curtail the 

deviations. One obvious advantage of this developed methodology is that it dynamically captures 

the real time changes occurring in the process unit. The real time risk profile provided by the 

proposed methodology serves as a performance indicator for operational decision making. Each 

category of loss can also be updated whenever new information is available. 
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8.5. Conclusion 

The economic risk model proposed in this work vividly relates economic risk (losses incurred) to 

main operational variables’ deviation. It adequately computes economic risk connected with the 

probability of system deviation predicted using the performance variation of the characteristic 

system variables. The methodology proposed reflects dynamic variations of economic risk or loss 

for various kinds of abnormal events. The proposed methodology has the following features: 

 The proposed methodology establishes the link between the process deviations with not 

only the probability estimation but also the potential loss prediction due to such deviations.   

 Time dependent probability of system deviation is predicted based on exact representation 

of probabilistic dependencies among the process variables and makes use of both historical 

and present system operational data. 

 The real time risk profile is predicted by monitoring the deviation of its key process 

variables. 

 The methodology demonstrates the importance of using a loss function model to relate 

economic losses to process deviation. 

 The real time economic consequences of process operation are predicted. 

The methodology developed has a strong capability of generating a real time risk profile based 

on main operational process variables. Valuable performance information could be extracted 

from the risk profile generated. Also, the risk profile generated by the application of this 

methodology can serve as a performance indicator guide for daily operational decision making 

to prevent accidents, before the deviation devastatingly affects the system and the environment, 

resulting in great economic loss.  
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The proposed methodology is tested and verified with the Richmond refinery accident case 

study. 
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Chapter 9 

9.0 Summary, Conclusions and Recommendations 
 

9.1. Summary 

This present work has demonstrated the use of a Bayesian network, Principal Component Analysis, 

artificial neural networks and loss function in the dynamic risk assessment of complex process 

systems.  The majority of risk assessment techniques for process systems adopt traditional logic- 

based sequential techniques which are static and unable to cover an evolving process dynamic in 

real time. Dynamic risk analysis techniques for process operations have been developed to 

integrate advanced technique, addressing the knowledge gap and incorporating dynamic nature of 

the process. 

This thesis presents an innovative predictive probabilistic model to assess hazardous processes 

operation accident likelihood. The model accounts for inter dependency of accident contributory 

factors within a safety barrier and also accounts for other contributory factors that have not  been 

accounted for  in the fault tree models of  prevention barriers using both  Noisy –OR and Leaky 

Noisy –OR gates. This serves as an effective tool to facilitate risk assessment and management of 

dynamic process operations. 

Also, a new predictive nonlinear and non-sequential Bayesian network is introduced, based on the 

process accident causation model. This model effectively captures the non-sequential sequence of 

accident progression. 

 A novel integrated dynamic failure prediction model using principal component analysis (PCA) 

and the Bayesian TAN algorithm has been developed for process operation. This model is capable 

of predicting probabilistic relationships among process monitoring data and subsequently 
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predicting and updating the risk profile dynamically, using real time process information.  

Similarly, an innovative ANN based model capable of predicting a risk profile empirically from 

process monitoring data has been proposed and tested as part of this work.  

Finally, an integrated approach for dynamic economic risk assessment for a process system is 

developed. The model relates economic losses with process variable deviation. It helps to quantify 

economic loss under different abnormal conditions, which will be very useful for developing risk 

minimization strategies.  

9.2. Conclusions 

The major conclusions of this study are: 

9.2.1. Development of an innovative predictive probabilistic model: 

This study presented a new process accident model with emphasis on interdependency of 

contributory factors that lead to the failure of a particular prevention barrier. Six barriers were 

defined to prevent process accidents before they escalate into catastrophic events. The 

effectiveness of the proposed model was partially validated through the application of the model 

to the Richmond refinery accident. The BN model is capable of modelling the dependencies among 

these accident contributory factors. The application of Noisy-OR and leaky Noisy-OR gates helps 

to represent the uncertainties of the probabilities that are used in the CPTs of the BN model. 

Consequently, the proposed model is able to provide the lower and upper boundaries of the failure 

probability of a process accident. The accident model provides a mechanism for predicting a 

process accident based on the interdependency and nonlinear interaction of contributory factors. 

Process monitoring data is needed to effectively implement this accident model; with process 

monitoring data, the model can quantitatively estimate the dynamic risk profile that will greatly 
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guide dynamic decision making. The use of predicted accident probabilities based on this model 

will help to take early corrective actions to prevent process accidents and developed an effective 

process safety management plan. 

9.2.2.  Development of a new predictive nonlinear and non-sequential Bayesian 

network based process accident model: 

This present study has demonstrated the use of BN in modelling conditional dependencies among 

accident contributory factors within safety barriers and non-sequential failure of safety barriers 

which cause adverse events. This model highlights the importance of modelling the 

interdependency of accident contributory factors, nonlinear event sequences, and the selection of 

appropriate logic gates to the reduce uncertainty. BN is more appropriate to represent complex 

dependencies among prevention barriers and to include uncertainty in modelling. The BN has high 

a capability of abductive reasoning and the ability to handle uncertainty makes it a more 

appropriate technique for analyzing accidents. This accident model provides methodology for 

predicting a process accident based on nonlinear interactions within prevention barriers and non-

sequential failure of prevention barriers which cause adverse events. Application of this method 

in models to predict accident occurrence probability will enable early remedial actions to prevent 

process accidents and consequently provide additional valuable information for process safety 

management.  

9.2.3.  Development of dynamic failure prediction model using Bayesian TAN 

algorithm:  

This study has developed a risk assessment methodology based on the Bayesian TAN algorithm 

for safety analysis of the process system. The PCA-BN based process failure predictive model 

offers a technique for a predicting the real time failure probability profile of a process system. The 
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model provides the capability to identify the key process variables that describe the most variance 

in process systems. The model is capable of predicting and assessing the real time risk of a process 

unit by monitoring the deviation of its main variables. 

9.2.4. Development of dynamic failure prediction model using ANN:  

This study has developed a failure prediction model for analyzing a process operation using an 

artificial neural network. Artificial neural networks are data driven nonlinear modelling techniques 

with the strong capability to model nonlinear relationships among process variables. In the study, 

ANN is used as a tool to define complex non-linear relationships among process variables 

This study integrates ANNs with probabilistic analysis to model the process accident. Multi-layer 

perceptron (MLP) is used to define the relationship among process variables. The defined 

relationship is used to model a process accident considering logical and causal dependence of the 

variables. The predicted accident probability is subsequently used to estimate the risk of the 

process unit. A backward propagation technique is used to dynamically update the variable states 

and the risk accordingly. The updating mechanism of the approach makes the model adaptive and 

captures evolving process conditions. 

9.2.5. Development of dynamic economic risk model for a process system: 

This study developed a dynamic economic risk analysis methodology for a process system.  The 

Bayesian Tree Augmented Naïve Bayes (TAN) algorithm is applied to model the precise and 

concise probabilistic dependencies that exist among key operational process variables, to detect 

faults and predict the time dependent probability of system deviation. The modified inverted 

normal loss function is used to relate system deviations in any given scenario to economic 

consequences (losses) from system deviation. The time dependent probability of system deviation 
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due to abnormal event is continuously updated based on the current state of the characteristic 

variable of the process system. 

9.3. Recommendations  

This study has endeavored to introduce innovative concepts to the dynamic safety analysis of 

process systems. Nevertheless, many knowledge gaps and scope of the work could be further 

addressed. These include, though are not limited to: 

  Techniques for capturing uncertainty in the safety analysis of a process system should be 

vigorously explored. Hierarchical Bayesian networks and fuzzy Bayesian network may be 

explored for dynamic safety analysis of the process system to minimize uncertainties in the 

input data. 

 Model uncertainty should also be closely investigated.  Uncertainty plays an important role 

and may affect results significantly. Advance data-driven models will help to better assess 

and manage model uncertainty.  

 The performance of constraint and Bayesian score methods of learning the structure of a 

Bayesian network from historical data should be investigated for safety analysis purposes.  

  The performance of different ANNs architectures for safety analysis of a process operation 

should be investigated and compare with other mathematical data driven model. 

 Validation of the developed models with real industrial data is of paramount importance. 

The methods proposed in this thesis may be further tested and validated using real-life case 

studies. 

 

 

  


