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ABSTRACT 
 

The offshore oil and gas industry functions in a team work culture in which operations 

depend not only on individuals’ competency, but also on team skills. Team skills are even 

more necessary when it comes to handling emergency conditions. Emergency conditions 

are dynamic in nature and personnel on board are challenged with evolving high-risk 

situations, time pressure, and uncertainty. One way to effectively handle emergencies is to 

train personnel to a competency level, both individually and as a part of a team. This would 

increase the chance of achieving safety in a timely manner using the available resources 

such as information, equipment, and people. Such training involves enhancing team 

members' understanding of human performance, in particular, the social and cognitive 

aspects of effective teamwork and good decision making. Post-accident analysis of offshore 

accidents shows that conventional training programs are often too generic, and that they 

are not designed to identify and tackle the human factors that are critical for evolving 

offshore emergency situations. 

 

Recognition of the importance of human factors on operator performance raises the need 

for training that goes beyond conventional training programs and incorporates non-

technical training focusing on leadership, command, decision making, communication, and 

teamwork. A major difficulty to design such training is that it involves practicing 

emergency exercises with a potentially large number of participants, each playing the 

appropriate role in a given scenario. Such large-scale team exercises suffer from both 

organizational and educational drawbacks. The amount of human and financial resources 
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needed for such a training exercise is difficult to organize. Furthermore, it is very hard, if 

not impossible, to get all team members together at the same time and location. Also, the 

team members may have variability in the competency levels (novice versus advanced 

trainees) and hence different training needs. One effective and flexible solution to this 

problem is to use intelligent artificial agents, or ‘virtual workers’, in a virtual environment 

(VE) to play different roles in the team. Virtual workers are artificially intelligent agents 

that can reproduce behaviors that are similar to or compatible with those of a real worker. 

This research proposes to develop a human behavior simulation model (HBM) that can be 

used to create such virtual workers in the context of offshore emergency egress.  

 

The goal of this research is to develop a human behavior model that can simulate offshore 

workers’ emergency response under the influence of performance influencing factors 

(PIFs). The first part of the work focuses on understanding human behavior during offshore 

emergency situations. A two level, three factor experiment was conducted in a virtual 

environment (VE) to investigate the relationships between the PIFs and human behavior. 

Influence of both internal and external PIFs were investigated. Knowledge acquisition and 

inference processes of individuals were also investigated in the experimental study. In the 

second part, a computational model was developed to capture the across-subject variability 

observed during the experiment. Interviews with subject matter experts (SME) were 

conducted at this step to ensure that the model is able to produce a realistic range of human 

behaviors. The final step was to validate the developed behavior model. All high-level tasks 

to validate the HBM were performed. Special emphasis was given on acceptability criteria 
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testing to ensure that the integrated HBM performs adequately under different operating 

conditions. 
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1. INTRODUCTION 

1.1 Problem statement 

The offshore oil and gas industry functions in a team work culture and operations usually 

involve a group of people working together. This makes teamwork an essential component 

of effective emergency responses. Members of a team need to understand their own roles 

and responsibilities, as well as have a clear understanding of the roles and responsibilities 

of the other team members. Such understanding is critical for emergency situations, as most 

of the members will have different roles and responsibilities than their everyday duties 

(Flin, 1997). Traditional training programs are often generic and are not designed to provide 

trainees with the understanding of social and cognitive aspects of effective team work. 

 

O'Connor & Flin (2003) discuss the possibility of adopting the crew resource management 

technique, pioneered in the aviation industry, in offshore oil industries to enhance team 

performance. Crew resource management (CRM) is defined as “using all the available 

resources – information, equipment, and people – to achieve safe and efficient flight 

operations” (Moffat & Crichton, 2015). A significant part of the CRM training requires the 

trainees to participate in team training exercises using simulator flights. Organizing such 

team exercises for offshore industries may suffer from both organizational and educational 

drawbacks (Van Diggelen et al., 2010). Gathering all the team members at the same time 

and at the same location itself is a challenge. Even when it is possible, the financial 

requirement is high. Also, the members often have different training needs based on their 
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competency levels. One solution to this problem is to develop a team training platform in 

a simulator where the roles of some of members are played by humans, while roles of others 

are played by artificial intelligent agents (Van Diggelen et al., 2010). This research aims to 

develop computational behavior simulation models that can be used to create such 

intelligent agents for an offshore emergency training simulator. 

 

The purpose of the behavior simulation model is to reproduce the behavior of offshore 

workers, general personnel in particular, during offshore emergency situations. Compared 

to traditional human behavior models, the proposed model considers a larger fraction of the 

possible behavior space, which includes both correct and incorrect behaviors (Wray & 

Laird, 2003). To model the variability across behavior space, performance influencing 

factors (PIFs) are used in this research. PIFs are factors that can specifically decrement or 

improve human performance during a task (Blackman et al., 2008).  In the first part of the 

work, emphasis is given to understanding human behavior variability during offshore 

emergency situations. A two-level, three factor experiment is conducted in a virtual 

environment (VE) to observe the influence of different PIFs on human emergency 

responses. The influence of both internal and external PIFs is investigated during the 

experiment. Knowledge acquisition and inference of individuals are also investigated in the 

experiment. In the second part of the research, a computational model is developed that 

capture the observed variability and are able to produce realistic human behavior. Finally, 

a validation experiment is designed and conducted to make sure that the model can simulate 

realistic human behavior in offshore emergency situations. 
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The rest of this chapter is organized as follows. As the experimental study and data 

collection in this research is centered around a VE for offshore emergency preparedness 

training, an introduction to the VE is presented in Section 1.2. Section 1.3 summarizes the 

works currently available in the behavior modeling domain, and identifies the knowledge 

and technological gaps. Section 1.4 defines the scope of work and objectives. Section 1.5 

discusses approaches taken in this research to overcome the identified gaps. It also lists the 

novelty and expected contribution of the research. Section 1.6 presents the organization of 

the thesis. 

1.2 Overview of the virtual environment (VE) 

A VE is a computer aided simulation environment that allows trainees to gain artificial 

experience, including in dangerous scenarios. VE training can act as an enhancement to 

conventional training since training for emergency situations in the real world is not always 

ethically, logistically or financially feasible (Veitch et al., 2008). Besides facilitating 

emergency preparedness training, VE can also be used as a tool to observe human 

performance in emergency conditions and collect data for assessing human reliability (Lois 

et al., 2009; Bye et al., 2011; Monferini et al., 2013). The VE used in the experimental 

study done in this research is called the all-hands virtual emergency response trainer 

(AVERT) and was developed at Memorial University. AVERT was designed to enhance 

offshore emergency response training. The VE is modeled after an offshore oil installation 

platform with high levels of detail. It is capable of creating credible emergency scenarios 

by introducing hazards such as blackouts, fires, and explosions. For the experimental study 

done during this research, the offshore emergency scenarios covered a range of activities, 
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from muster drills that required the participant to go to their primary muster station, to more 

complex emergency evacuation scenarios that required the participant to avoid hazards 

blocking their egress routes and muster at their lifeboat stations (House et al., 2014). Figure 

1.1 shows a few instances of the AVERT emergency preparedness scenarios. 

 

 

Figure 1.1: Screen capture of the virtual training environment - AVERT 

1.3 Knowledge and technological gaps 

Software agents, or computer generated forces (CGFs), are extensively used in a wide range 

of military applications, including training and rehearsal for combat situations (Karr et al., 

1997). The use of virtual crew is also common in aviation and nuclear power plant 

simulation training (Chang & Mosleh, 2007a). Realism of agents in any platform largely 

depends on the sophistication of the underlying human behavior simulation models (HBM) 
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(Smith, 1998). This is why a significant amount of research has been done to develop 

computational models that can generate realistic human behavior. 

 

Models of human behavior treat the human as a dynamic system that reacts to observed 

input from the environment (Huitt, 2009). Behavior simulation models can be qualitative 

or quantitative. Qualitative models focus on describing the evolution of the human 

cognition process upon receiving an external stimulus from the environment. This involves 

details of the cognitive functions – perception, interpretation, decision making, and 

execution (Thow-Yick, 1994; Trucco & Leva, 2007). Quantitative models are based on the 

structure of the qualitative ones, but have added computational functionalities. Quantitative 

models can probabilistically predict human response for a given circumstance.  

 

Operator plant simulation (OPSIM), Cognitive Environment Simulation (CES), Cognitive 

Simulation Model (COSIMO), Information, Decision, and Action in Crew context (IDAC) 

are all examples of quantitative behavior models for nuclear power plant simulation. 

OPSIM models operator behavior and identifies possible human errors that might happen 

while following procedural instructions, but the probability of erroneous behavior is not 

incorporated in the model (Dang, 1996).  CES and COSIMO aim to estimate operator 

behavior during power plant emergencies (Woods, 1987 and Cacciabue et al., 1992). CES 

uses a data base that represents operator knowledge. The content of the database, and the 

relationships between different knowledge units, are specified by knowledge engineers 

prior to the simulation. During simulation, the most likely crew response is calculated using 
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artificial intelligence techniques that link various segments of the data base for a given 

situation. COSIMO shares the concept of using a data base to represent operator 

knowledge. However, the cognitive architecture is based on a stronger theoretical ground 

– the Fallible Machine model by Reason (1990). The cognitive architecture consists of two 

parts: the working memory and the knowledge base. The knowledge base is a virtually 

limitless repository of information that contains both declarative and procedural knowledge 

structures. The working memory is a limited, serial working area, and is the temporary 

storage of data required by the cognitive process. COSIMO focuses on the two 

fundamentals of cognition - similarity matching, and frequency gambling. During the 

similarity matching stage, attribute values of a given situation are compared to attribute 

values stored in the data base to find a match. If there is a conflict (i.e. more than one match 

found for the given situation), frequency gambling is used for conflict resolution by 

favoring the match that occurs most frequently. COSIMO also introduces the concept of 

using behavioral moderators to encode variability in the generated behavior. It does not 

include details on the behavioral moderator selection process, or the relationship between 

a moderator and human behavior. IDAC introduces the foundation of using PIFs as 

behavioral moderators (Chang & Mosleh, 2007b). In IDAC, operators’ behaviors are 

probabilistically simulated under the influence of a number of explicitly modeled PIFs. 

Special attention has been paid to identify external, internal, static, and dynamic PIFs 

relevant to nuclear power plant accident scenarios. A set of rules-of-behavior is then 

developed that take the PIFs as input and generate behavior as output. As suggested by the 

authors, the rules-of-behavior used in IDAC are sufficient for demonstration of the 
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methodology, but need further revisions for realistic and justifiable modeling (Chang & 

Mosleh, 2007c). 

 

TacAir-Soar, Military Operations on Urbanized Terrain (MOUT), Air-to-Ground Linked 

Environment Simulation (EAAGLES), and AvatarSim are examples of military and air 

craft simulations that have made significant contribution to the development of realistic 

HBMs. TacAir-Soar is a model of expert human pilots flying tactical air mission (Jones et 

al., 1999). MOUT is an urban combat simulation used for building-clearing combat training 

(Sampson & Ripingill Jr, 2003). In a MOUT simulation, agents are used as both command 

team mates and opponents and are known as MOUTBots. Both TacAir-Soar and 

MOUTBots use the Soar architecture for cognition (Wray & Laird, 2003). The basic units 

of knowledge in Soar are production rules. These rules are used for defining goals and 

proposing, selecting, and applying actions for a given situation. Rules are collected from 

interviews with subject matter experts (SMEs) and are put in the knowledge base prior to 

simulation. TacAir-Soar focuses only on rules that generate correct behavior and ignores 

the possibility of erroneous behavior. MOUT offers incorporation of some erroneous 

behavior through behavioral moderators, but does not provide a reliable mathematical 

model that defines the relationship between the behavioral moderators and the choice of 

production rules. EAAGLES incorporate two mental models – the Situational Assessment 

Model of Pilot in the Loop Evaluation (SAMPLE) and Soar – to represent realistic combat 

behavior. Though different qualitative aspects of EAAGLES have been discussed in the 

literature, a reliable computational model is missing (McNally, 2005).  
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AvatarSim models and simulates human behavior in aircraft evacuations (Sharma, 2009). 

It uses psychological, environmental, and physical parameters that are natural in emergency 

evacuations. The psychological factors include stress, anger, and panic. Smoke, terrain, and 

smoothness are considered in the environmental category. Visibility, agility, and fitness are 

included as physical parameters. To model the uncertainty in behavior that results from the 

behavioral parameters, a fuzzy logic approach is used (i.e. IF Stress is of high intensity 

THEN speed is slow). Even though the use of behavioral parameters makes responses of 

AvatarSim naturalistic, it is limited in the sense that it only focuses on the effect of the 

parameters on agents’ speed and wait time. It does not consider a broader range of behaviors 

that might be observed in real life emergency situations. 

 

Once an HBM is developed, it needs to be validated to ensure that the model represents 

human behavior accurately. Compared to physics based simulation models, validating 

HBMs is much more difficult. Human behavior is complex and depends on a large number 

of PIFs. The PIFs can vary over many orders of magnitude and can have highly complex 

dependency relationships. Even small situation changes within the same system may cause 

different human responses. This makes HBM validation extremely difficult since the 

validation would require the exploration of a very large number of behavioral paths. 

Balancing the variability and the validation is identified as one of the most challenging 

problems in the domain of behavior simulation (Wray & Laird, 2003).   
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Because of the difficulty, so far, the most common validation technique for HBM is face 

validation (Goerger, 2004). In the face validation technique, an SME drives through the 

scenario space by issuing commands or changing the simulating situation, observes the 

resulting behavior, and determines, often qualitatively, whether the simulation meets a 

user’s requirements for realism. Despite its wide application, Recommended Practices 

Guide on Validation of Human Behavior Representations (2001), describes face validation 

as the least reliable and least complete HBM validation. It discusses that, most of the time, 

SMEs’ judgments are drawn from their own experience and can be biased. Face validation 

raises the possibility of conflict among multiple SMEs. It is also hard to ensure the level of 

consistency and accuracy of SMEs when evaluating human performance versus simulated 

human behavior.  

 

Based on the literature review, following gaps between the existing methods and 

requirements are identified. 

• Though extensive research has been done to develop HBMs for creating artificial 

intelligent agents in military applications, the aviation industry, and nuclear power 

plants, no such model is available to date for offshore emergency training simulators. 

• Many HBMs focus only on the ideal human behavior and hence the success region of 

the total behavior space (McNally, 2005). 

• HBMs that take erroneous behavior into consideration often lack a reliable modeling 

approach. Models often do not account for the potential dependencies among different 

PIFs and associated actions. Also, effects of PIFs on human behavior are often defined 
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using SMEs’ opinions. Expert judgment can be vague and suffer from uncertainty, 

incomplete knowledge, and conflicts between multiple experts.  Also, use of expert 

opinion relies on the underlying assumption that the PIFs affect all individuals in the 

same way (Joea & Boringa, 2014). Thus, expert opinion fails to account for the inherent 

variability in human nature. 

• In most HBM systems, knowledge placed in the knowledge base is derived from 

interviews with SMEs. This fails to capture the variability in human learning and 

inference processes. Given the same training, people may learn and infer things 

differently and can have different approaches to solve the same problem.  

• Though significant research is available on the development of HBMs, work done to 

validate the models is rare. A few attempts to validate HBMs use SMEs as referents 

(Harmon et al., 2002). Referent refers to a codified body of knowledge about a thing 

being simulated (Recommended practice guide (RPG): Special Topic - Validation of 

Human Behavior Representations, 2001). During validation, a referent provides the 

information to which the simulation outcomes are compared. As stated above, using 

SMEs as referents can make the validation biased and inconsistent. 

1.4 Scope of work and objectives 

The primary goal of this research is to develop HBMs that can simulate the behavior of 

offshore workers under the influence of different PIFs that are present in emergency 

situations. The work done toward this aim can be divided into three parts.  
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The first part focuses on understanding human behavior by observing people’s performance 

in a VE. External PIFs that can influence people’s performance during offshore emergency 

conditions were first selected. Credible emergency scenarios were then designed in the VE 

by varying the selected PIFs into different levels. An experiment was conducted to observe 

people’s performance in the scenarios and collect human performance data. The collected 

data were divided into training and testing data sets. Figure 1.2 summarizes the purpose of 

the data sets. 

 

 

Figure 1.2: Use of training and testing data sets 

 

As shown in Figure 1.2, in the second part of the research, the training data set was used to 

develop an integrated HBM to reproduce the behavior of a general personnel. First, the 

basic task sequence of offshore general personnel was identified. Four types of cognitive 

tasks were considered during the task analysis – perception, interpretation, decision 

making, and execution (Edwards & Lees, 1974). Errors can happen while performing any 

of these tasks (Rasmussen, 1976). The probability of such error depends on the state of 

different PIFs and memorized information. A Bayesian network (BN) approach was used 
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to model the impact of PIFs on human error. The training data set was used to quantify the 

BN model. Evidence collected during the experiment was also used to model the 

memorized information. The knowledge individuals gained from the training tutorials and 

scenarios was presented in the form of a knowledge matrix. An inductive reasoning 

algorithm – decision tree – was then used to identify the general principles or problem-

solving strategies based on the individual cases in the knowledge matrix. The knowledge 

matrix and the decision trees together define the memorized information. 

 

The third part of the research is focused on validating the HBMs using the testing data set. 

As listed in Defense Modeling and Simulation Office's (DMSO) Recommended Practices 

Guide (RPG), any HBM validation process needs to perform a few high-level tasks. The 

first task was to collect a set of requirements and acceptability criteria that set the 

foundation of the validation. Next, referents were to be identified to assess the credibility 

of the HBM. As mentioned earlier, both SMEs and empirical evidence were used as 

referents during the validation process. The conceptual model and the knowledge base were 

then validated using the referents and the defined requirements. During the validation of 

the conceptual model and the knowledge base, complex behavior areas of the model were 

identified for future validation activities. The final step was to validate the integrated HBM 

model using referents and requirements. This is called result validation and involves 

acceptability criteria testing by exercising testing scenarios to ensure that the integrated 

HBM performs adequately under different operating conditions. To perform this step, the 

HBM was integrated into AVERT to create software agents performing as general 
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personnel. The complex areas identified in the previous step were used at the result 

validation step to design credible test scenarios.  

 

Having the above scope of work, the objectives and associated tasks of this research can be 

listed as shown in Figure 1.3. 

 

 

Figure 1.3: Objectives and associated tasks of this research 

 

 



14 

 

 

1.5 Novelty and contribution 

This research attempts to overcome the gaps identified in Section 1.3 by taking the 

following steps: 

• In this research, HBMs representing behavior of offshore workers during emergencies 

are developed. The goal of the research is to develop HBMs that can reproduce realistic 

human behavior for general personnel working offshore. To make the behavior 

naturalistic, both successful and erroneous behaviors are considered. The behavior 

paths generated by the HBM represent both success and failure regions of the total 

behavior space. Variability in behavior is encoded using internal and external PIFs. 

• To model the effect of PIFs on human behavior, a BN approach is used. BNs have 

proven to be a powerful modeling tool due to their capability to 1) consider dependency 

among PIFs and associated actions, 2) quantify the impact of different PIFs on 

successful or erroneous behavior, and 3) update success or failure likelihood each time 

new evidence is available (Fenton & Neil, 2012; Podofillini & Dang, 2013; 

Sundaramurthi & Smidts, 2013). BNs have been widely used to model the impact of 

different PIFs on human performance or human error (Baraldi, et al., 2009; Dang & 

Stempfel, 2012). Kim & Seong (2006), Cai et al. (2013) and Martins & Maturana 

(2013) show examples of using the evidential reasoning aspect of BN to find the 

underlying causes of human error. Also, the BN model allows the incorporation of 

multiple sources of data into a single predictive HRA model (Groth & Mosleh, 2012). 

This research uses BN to model the effect of PIFs on task performance during offshore 
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emergency situations. Instead of using expert judgement, data required to quantify BNs 

are collected by conducting experiments in the virtual environment AVERT. 

• This research acknowledges the fact that unlike machines, each human is different. 

Effects of different PIFs can vary from individual to individual. The virtual 

experimental data collection technique enables the consideration of individual 

differences while assessing and modeling people’s success or failure likelihood. 

• Special attention has been paid in this research to model the decision making of general 

personnel during an emergency. A data informed modeling approach is used. Data 

collected using the VE has been used to define the memorized information in the HBM. 

An inductive reasoning approach - decision tree - is then used to model the evolution 

of general understanding of emergency situations through training and experience (Han 

et al., 2011). Decision tree offers a visual representation of the reasoning process and 

has valuable diagnostic capabilities. Compared to other methods, such as artificial 

neural networks, or support vector machines, decision trees can be constructed 

relatively quickly. Another benefit of decision tree that is particularly important for this 

research is that it does not require any prior assumptions about the data and can work 

with limited data compared to other techniques (Duffy, 2008). Given a collection of 

training examples (condition 𝑥, action 𝑓(𝑥)) the decision tree generates a hypothesis ℎ 

that approximates the action 𝑓(𝑥). The aim of the reasoning process is to find a 

hypothesis that fits well with the training examples (Shaw et al., 1990). In this research, 

decision tree induction is used to generate a hypothesis based on the matrix of training 
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examples. Use of experimental data, rather than SMEs’ opinions, allows capturing the 

actual observed variability in people’s learning and decision making process. 

• Special attention has been paid in this research to validate the developed HBM. All 

high-level tasks of HBM validation are performed. Special emphasis given on the 

acceptability criteria testing to make sure that the integrated HBM performs adequately 

under different operating conditions. Besides SMEs’ opinions, empirical evidence has 

been used during the validation process. The outcomes of HBM are tested against the 

acceptability criteria established from the observations of human behavior in an 

experimental setup. 

 

The expected contribution of the research includes: 

• Primary contribution of this research is to enable offshore emergency preparedness 

team training. The HBM developed in this research is integrated into AVERT to create 

intelligent software agents that can play the role of general personnel with different 

levels of skill. Three types of agents – naïve, ideal, and in-between – are created to 

facilitate the team training process. This will give the opportunity to train personnel in 

a team environment to understand team roles, communicate effectively, gain 

assertiveness and leadership qualities, manage stress, and make group decisions. 

Training such non-technical skills, which are critical for successful emergency 

handling, will increase competency and enhance safety of the personnel working in 

offshore industries.  
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• The BN developed in this research can be used to assess people’s reliability during 

emergency situations. These results can be used to assess if someone is competent or 

reliable enough to handle emergency situations. 

• Though the primary purpose of BN models developed in this research is to assess 

people’s response during emergency situations, they can also be used as a diagnostic 

tool. The BN model can quantify people’s sensitivity to different PIFs and identify their 

strengths and weaknesses. For example, if a participant is found to be more sensitive to 

a PIF, then training scenarios with different variations of that PIF can be provided to 

the participant until an accepted level of competency is reached. This kind of adaptive 

training can help individuals to obtain competency faster. 

• Besides assessing the effect of external PIFs on human behavior, the research also looks 

into the effects of internal PIFs, such as bias, compliance, prioritization, and efficacy 

of information use. Conventionally, assessment of internal PIFs is done using a safety 

compliance questionnaire. Though questionnaires are sufficient to ensure that people 

have necessary knowledge about the safety procedures, they cannot ensure people will 

be able to apply that knowledge under the pressure of an emergency. In addition to 

questionnaires, this research uses virtual scenarios to assess internal PIFs. Assessment 

of internal PIFs using virtual scenarios can help to ensure that people not only know 

the safety procedures, but are also able to apply that knowledge during emergency 

situations. 
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• Sensitivity analysis done for the internal PIFs can be useful in the personnel selection 

process. Knowing if someone is compliant or a risk taker can help identify into which 

role they would best fit. 

• The decision trees represent the behavioral pattern of individuals. Recognizing such 

patterns can be useful to predict what decision an individual might make for a given 

emergency situation. This can be extremely helpful in designing adaptive training so 

that individuals can reach competency faster.  

• The decision trees also reflect the learning and inference of individuals given the 

training. The problem-solving strategies identified using decision trees can be used to 

assess the efficacy of the training curriculum and/or pedagogical approach. It is 

expected that a sound training process would ensure convergence amongst trainees to 

strategies that lead to success. A systemic exception might be an indication of weakness 

of the training approach itself. Identification of such weakness can help design better 

training curricula or pedagogy. 

• The research demonstrates how use of empirical evidence along with SMEs’ opinion 

can facilitate the HBM validation process. 

1.6 Organization of the thesis 

The thesis is written in manuscript format, including six journal papers as chapters. Table 

1.1 shows the papers written during the course of this research and establishes their 

connection to the overall objectives and associated tasks listed in Figure 1.3.
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Table 1.1: Papers and connection to the research objectives and associated tasks 

Papers as chapters Research objectives Associated tasks 

Chapter 2: Incorporating individual 

differences in human reliability 

analysis: an extension to the virtual 

experimental technique 

 

• To understand human behavior 

under influence of PIFs 

• To develop an integrated HBM to 

reproduce the behavior 

• Identify the cognitive tasks 

• Select appropriate external PIFs for offshore 

emergency situations 

• Create credible scenarios in VE by varying 

the level of PIFs 

• Observe people’s performance in the 

scenarios and collect data 

• Develop a BN to model the effect external 

PIFs on human performance 

• Incorporate individual differences while 

assessing the effect of external PIFs 

Chapter 3: Assessing offshore 

emergency evacuation behavior in a 

virtual environment using a 

Bayesian Network approach 

• To understand human behavior 

under influence of PIFs 

• To develop an integrated HBM to 

reproduce the behavior 

• Select appropriate internal PIFs 

• Develop a BN model to assess the effect of 

internal PIFs on human performance 

• Incorporate individual differences while 

assessing the effect of internal PIFs 

 

Chapter 4:  Identifying route 

selection strategies in offshore 

emergency situations using 

Decision Trees: A step towards 

adaptive training 

• To understand human behavior 

under influence of PIFs 

• To develop an integrated HBM to 

reproduce the behavior 

• Populate content of knowledge matrix 

• Identify people’s problem-solving strategies 

using a reasoning algorithm (i.e. decision 

tree algorithm) 

Chapter 5: Modeling and 

simulation of personnel response 

during offshore emergency 

situations 

• To develop an integrated HBM to 

reproduce the behavior 

• Integrate the BN model and reasoning 

structure to develop an HBM to reproduce 

the behavior of general personnel 
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Papers as chapters Research objectives Associated tasks 

Chapter 6: Validating human 

behavior representation model of 

general personnel during offshore 

emergency situations 

• To validate the HBM 

• Develop a set of requirements and 

acceptability criteria using SMEs opinion 

and empirical evidence 

• Validate the conceptual model  

• Validate the Knowledge base  

• Design test scenarios that examines both 

success and failure regions 

• Perform result validation 

Chapter 7: Human performance 

data collected in a virtual 

environment 

• To provide data availability and 

direction towards future work 

• Share the data collected during this research  

• Describe the data to facilitate reproduction 

if necessary 

• Discuss value of the data to help identify 

opportunities of future research 

collaboration 
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An outline of each chapter is presented below. 

 

Chapter 2 describes the experimental study done in this research to collect human 

performance data. The PIFs varied to create virtual emergency scenarios are described in 

detail. The chapter then discusses the integration of the collected data into a BN to assess 

reliability of individuals. The chapter also demonstrates how use of the virtual experimental 

technique allows one to account for individual differences during reliability assessment. 

 

Chapter 3 provides some more details on the experimental study. The focus of Chapter 3 is 

to investigate the effect of internal PIFs. The chapter shows how evidence collected from a 

virtual environment can be used to assess the internal PIFs. 

 

Chapter 4 focuses on the decision making process of the general personnel during offshore 

emergency evacuation. Data collected during the experimental study is used to populate the 

knowledge matrix of the participants. An inductive reasoning technique – decision tree – is 

then used to identify the problem-solving strategies of the participants. The paper shows 

that given the same training, people may learn and develop the general understanding of 

emergency situations differently. This results in different problem-solving strategies (i.e. 

route selection strategies) across participants. 

 

Chapter 5 describes how works done in Chapter 2 to 4 can be integrated to develop an HBM 

that reproduces the behavior of general personnel. The dynamic response model presented 
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in this chapter consists of four component models - an environment model, an operator 

model, a performance shaping model, and a task network model. Understanding from 

Chapter 2 has been used to develop the environment model, understanding from Chapter 3 

is used in the development of the operator model. The performance model uses the 

understanding from Chapter 2 to 4. The task network model was primarily based on 

(DiMattia, Khan, & Amyotte, 2005) with additional modification done according to SMEs’ 

suggestions. 

 

Chapter 6 focuses on the validation of the developed HBM. The chapter discusses the high-

level tasks performed during the validation of an HBM. It starts by listing a set of 

requirements and acceptability criteria. It then discusses the conceptual model validation 

and knowledge base validation in detail. The complex behavior regions identified during 

conceptual model and knowledge base validation are used to design test scenarios for the 

result validation. Performance of the HBM is then tested in the designed scenarios and 

compared to the acceptability criteria established earlier using empirical evidence. 

 

The aim of Chapter 7 is to make the data collected during the research publicly available 

for potential reuse. The data are described in detail to facilitate reproduction if necessary. 

The value of the data is discussed to help identify opportunities for future research 

collaboration. 
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Chapter 8 summarizes and concludes the thesis. It discusses the challenges faced during 

the research and provides recommendations to overcome them. The chapter also discusses 

potential future works. 

 

A co-authorship statement is provided at the beginning of each chapter. The statement 

describes the contribution of each author in different stages of the research. 

References 

Baraldi, P., Conti, M., Librizzi, M., Zio, E., Podofillini, L., & Dang, V. (2009). A Bayesian 

network model for dependence assessment in human reliability analysis. Proceedings 

of the Annual European Safety and Reliability Conference (ESREL), (pp. 223-230). 

Prague. 

 

Blackman, H. S., Gertman, D. I., & Boring, R. L. (2008). Human error quantification using 

performance shaping factors in the SPAR-H method. Proceedings of the human factors 

and ergonomics society annual meeting (pp. 1733-1737). Sage CA: Los Angeles: CA: 

SAGE Publications. 

 

Bye, A., Lois, E., Dang, V., Parry, G., Forester, J., Massaiu, S., Boring, R., Braarud, P.Ø., 

Broberg, H., Julius, J. and Männistö, I. (2011). International HRA Empirical Study - 

Phase 2 Report. Washington: U.S. Nuclear Regulatory Commission. 

 



24 

 

 

Cacciabue, P. C., Decortis, F., Drozdowicz, B., Masson, M., & Nordvik, J. P. (1992). 

COSIMO: a cognitive simulation model of human decision making and behavior in 

accident management of complex plants. Systems, Man and Cybernetics, IEEE 

Transactions, 22(5), 1058-1074. 

 

Cai, B., Liu, Y., Zhang, Y., Fan, Q., Liu, Z., & Tian, X. (2013). A dynamic Bayesian 

networks modeling of human factors on offshore blowouts. Journal of Loss Prevention 

in the Process Industries, 26(4), 639-649. 

 

Chang, Y. H., & Mosleh, A. (2007a). Cognitive modeling and dynamic probabilistic 

simulation of operating crew response to complex system accidents: Part 1: Overview 

of the IDAC Model. Reliability Engineering & System Safety, 92(8), 997-1013. 

 

Chang, Y. H., & Mosleh, A. (2007b). Cognitive modeling and dynamic probabilistic 

simulation of operating crew response to complex system accidents. Part 2: IDAC 

performance influencing factors model. Reliability Engineering & System Safety, 92(8), 

1014-1040. 

 

Chang, Y. H., & Mosleh, A. (2007c). Cognitive modeling and dynamic probabilistic 

simulation of operating crew response to complex system accidents: Part 5: Dynamic 

probabilistic simulation of the IDAC model. Reliability Engineering and System Safety, 

92(8), 1076-1101. 



25 

 

 

Dang, V. N. (1996). Modeling operator cognition for accident sequence analysis: 

development of an operator-plant simulation. Doctoral dissertation, Massachusetts 

Institute of Technology. 

 

Dang, V., & Stempfel, Y. (2012). Evaluating the Bayesian belief network as a human 

reliability model - the effect of unreliable data. Proceedings of the international 

conference on probabilistic safety assessment and management and the European 

safety and reliability conference PSAM 11 & ESREL 2012. Helsinki, Finland. 

 

DiMattia, D. G., Khan, F. I., & Amyotte, P. R. (2005). Determination of human error 

probabilities for offshore platform musters. Journal of loss prevention in the process 

industries, 18(4), 488-501. 

 

Duffy, V. G. (2008). Handbook of digital human modeling: research for applied 

ergonomics and human factors engineering. CRC press Taylor & Francis Group. 

 

Edwards, E., & Lees, F. P. (1974). The human operator in process control. London: Taylor 

& Francis. 

 

Fenton, N., & Neil, M. (2012). Risk assessment and decision analysis with Bayesian 

networks. CRC Press. 

 



26 

 

 

Flin, R. (1997). Crew resource management for teams in the offshore oil industry. Team 

Performance Management, 3(2), 121-129. 

 

Goerger, S. R. (2004). Validating human behavioral models for combat simulations using 

techniques for the evaluation of human performance. MONTEREY, CA: NAVAL 

POSTGRADUATE SCHOOL. 

 

Groth, K. M., & Mosleh, A. (2012). Deriving causal Bayesian networks from human 

reliability analysis data: A methodology and example model. Proceedings of the 

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226(4), 

361-379. 

 

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Elsevier. 

 

Harmon, S. Y., Hoffman, C. W., Gonzalez, A. J., Knauf, R., & Barr, V. B. (2002). 

Validation of human behavior representations. Foundations for V&V in the 21st 

Century Workshop. 

 

House, A. W., Smith, J., MacKinnon, S., & Veitch, B. (2014). Interactive simulation for 

training offshore workers. Oceans'14 MTS/IEEE Conference (pp. 1-6). St. John's, NL: 

IEEE. 

 



27 

 

 

Huitt, W. (2009). Humanism and open education. Educational psychology interactive. 

 

Joea, J. C., & Boringa, R. L. (2014). Individual Differences in Human Reliability Analysis. 

12th Bi-Annual International Meeting of the Probabilistic Safety Assessment and 

Management (PSAM) Conference.  

 

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). 

Automated intelligent pilots for combat flight simulation. AI magazine. AI magazine, 

20(1), 27. 

 

Karr, C. R., Reece, D., & Franceschini, R. (1997). Synthetic soldiers [military training 

simulators. IEEE spectrum, 34(3), 39-45. 

 

Lois, E., Dang, V.N., Forester, J., Broberg, H., Massaiu, S., Hildebrandt, M., Braarud, P., 

Parry, G., Julius, J., Boring, R. and Mannisto, I. (2009). International HRA Empirical 

Study - Phase 1 Report. Washington: U.S. Nuclear Regulatory Commission. 

 

Martins, M. R., & Maturana, M. C. (2013). Application of Bayesian Belief networks to the 

human reliability analysis of an oil tanker operation focusing on collision accidents. 

Reliability Engineering & System Safety, 110, 89-109. 

 



28 

 

 

McNally, B. H. (2005). An approach to human behavior modeling in an air force 

simulation. Proceedings of the 37th conference on Winter simulation (pp. 1118-1122). 

Winter Simulation Conference. 

 

Moffat, S., & Crichton, M. (2015). Investigating non-technical skills through team 

behavioral markers in oil and gas simulation-based exercises. Procedia Manufacturing, 

3, 1241-1247. 

 

Monferini, A., Konstandinidou, M., Nivolianitou, Z., Weber, S., Kontogiannis, T., Kafka, 

P., Kay, A.M., Leva, M.C. and Demichela, M. (2013). A compound methodology to 

assess the impact of human and organizational factors impact on the risk level of 

hazardous industrial plants. Reliability Engineering & System Safety, 119, 280-289. 

 

O'Connor, P., & Flin, R. (2003). Crew resource management training for offshore oil 

production teams. Safety Science, 41(7), 591-609. 

 

Podofillini, L., & Dang, V. N. (2013). A Bayesian approach to treat expert-elicited 

probabilities in human reliability analysis model construction. Reliability Engineering 

& System Safety, 117, 52-64. 

 

Rasmussen, J. (1976). Outlines of a hybrid model of the process plant operator. In 

Monitoring behavior and supervisory control (pp. 371-383). Springer US. 



29 

 

 

Reason, J. (1990). Human Error. New York: Cambridge University Press. 

 

Sampson, S. R., & Ripingill Jr, A. E. (2003). System and method for training in military 

operations in urban terrain. Washington, DC: U.S. Patent and Trademark Office. 

 

Sharma, S. (2009). Avatarsim: A multi-agent system for emergency evacuation simulation. 

Journal of Computational Methods in Sciences and Engineering, 9(1, 2S1), 13-22. 

 

Smith, R. D. (1998). Essential techniques for military modeling and simulation. 

Proceedings of the 30th conference on winter simulation (pp. 805-812). IEEE 

Computer Society Press. 

 

Sundaramurthi, R., & Smidts, C. (2013). Human reliability modeling for the Next 

Generation System Code. Annals of Nuclear Energy, 52, 137-156. 

 

Thow-Yick, L. (1994). The basic entity model: A fundamental theoretical model of 

information and information processing. Information Processing & Management, 

30(5), 647-661. 

 

Trucco, P., & Leva, M. C. (2007). A probabilistic cognitive simulator for HRA studies 

(PROCOS). Reliability Engineering & System Safety, 92(8), 1117-1130. 



30 

 

 

Van Diggelen, J., Muller, T., & Van den Bosch, K. (2010). Using artificial team members 

for team training in virtual environments. In Intelligent Virtual Agents (pp. 28-34). 

Springer Berlin Heidelberg. 

 

Veitch, B., Billard, R., & Patterson, A. (2008). Emergency Response Training Using 

Simulators. Offshore Technology Conference. 

 

Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide 

(RPG): Special Topic - Validation of Human Behavior Representations (2001). 

Department of Defense Modeling and Simulation Office (DMSO). Retrieved from 

http://www.msiac.dmso.mil/vva/Special_topics/hbr-Validation/default.htm 

 

Woods, D. D. (1987). Cognitive environment simulation: an artificial intelligence system 

for human performance assessment. NUREG/CR-4862, 1-3. 

 

Wray, R. E., & Laird, J. E. (2003). Variability in human behavior modeling for military 

simulations. Proceedings of Behavior Representation in Modeling and Simulation 

Conference (BRIMS). 

 

 

 

http://www.msiac.dmso.mil/vva/Special_topics/hbr-Validation/default.htm


31 

 

 

2. INCORPORATING INDIVIDUAL DIFFERENCES IN HUMAN 

RELIABILITY ANALYSIS: AN EXTENSION TO THE 

VIRTUAL EXPERIMENTAL TECHNIQUE 

Mashrura Musharraf, Jennifer Smith, Faisal Khan**, Brian Veitch, Scott MacKinnon* 

Centre for Risk, Integrity and Safety Engineering (C-RISE), 

Faculty of Engineering & Applied Science, 

Memorial University of Newfoundland, 

St John’s, Newfoundland and Labrador, Canada A1B 3X5 

*Department of Mechanics and Maritime Sciences,  

Chalmers University, Gothenburg, Sweden 

** Correspondence author: Tel: + 1 709 864 8939; Email: fikhan@mun.ca 

Co-authorship statement 

A version of this manuscript has been accepted for publication in the Journal of Safety 

Science. Authors Mashrura Musharraf and Jennifer Smith designed the experiment, 

conducted the experiment, and performed necessary data collection. The lead author 

Mashrura Musharraf performed the literature review, developed the Bayesian network for 

human reliability assessment, performed the data integration, generated the results, and 

prepared the draft of the manuscript. Co-authors Faisal Khan, Brian Veitch, and Scott 

MacKinnon supervised the experimental study. Faisal khan and Brian Veitch reviewed and 

corrected the Bayesian network model and results. All co-authors reviewed and provided 



32 

 

 

feedback on the manuscript. Mashrura Musharraf revised the manuscript based on the co-

authors’ feedback and during the peer review process. 

Abstract 

Predicting human behavior and assessing human performance in offshore emergency 

conditions is a challenge. There are many human reliability analysis (HRA) methods 

available today, however none of these methods are applicable in the context of offshore 

emergencies. The data required to perform HRA for emergency conditions are not readily 

available and are difficult to retrieve from accident investigations. In the absence of 

emergency conditions data, the conventional approach of gathering data for HRA is using 

expert judgment. Expert judgment often suffers from uncertainty, subjectivity, and 

incompleteness which makes the reliability of this data collection technique questionable. 

Moreover, the technique has an underlying assumption that the influence of different 

factors on human performance is the same for all individuals. A more recent approach is to 

collect data by conducting experiment in virtual environments with human subjects. 

Though virtual experimental technique addresses the issues of uncertainty, subjectivity, and 

incompleteness, it still does not consider individual differences while assigning the 

influence of different factors on human performance. Unlike machines, each human is 

different and the influence of factors on performance may vary from individual to 

individual. This paper proposes to advance the virtual experimental technique by enabling 

the consideration of individual differences. An experiment using virtual environment was 

done to observe performances of 36 individuals during offshore emergency evacuation. By 

integrating the data collected from the virtual environment into an HRA model, the 
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reliability of each individual was assessed. Sensitivity analysis was then performed to 

identify the most influential factors that contributed to failure in emergency conditions. 

This analysis can help identify specific weaknesses that a participant might have. For 

example, if a participant is found to be more sensitive to a particular factor, then training 

scenarios with different variations of the factor can be provided to the participant until an 

accepted level of competency is reached. Identification of a weakness can be combined 

with adaptive human factor training so that each individual can obtain competence more 

quickly. 

2.1 Introduction 

Human reliability is defined as the probability that a person correctly performs system-

required activities in a designated time period (Swain & Guttmann, 1983). There are many 

human reliability quantification techniques available today to assess how reliable humans 

are in different contexts.  Examples include: Success Likelihood Index Methodology 

(SLIM), Technique for Human Error Rate Prediction (THERP), and A Technique for 

Human Error Analysis (ATHENA) (Kirwan, 1994; Cooper et al., 1996). The Bayesian 

network (BN) approach has also been applied to human reliability analysis (HRA) (Baraldi 

et al., 2009). Most of the human reliability quantification techniques involve the calculation 

of human error probability (HEP), which is the probability that a person will fail to carry 

out a task as required (Kirwan, 1994). Performance influencing factors (PIFs) are often 

used to calculate HEP (Blackman et al., 2008). Human performance, and hence error, is 

influenced by PIFs, and therefore the relationship between PIFs and human errors must be 

defined to calculate HEP. Due to lack of real or ecologically-valid data, the majority of the 
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human error prediction techniques (i.e. SLIM, THERP, BN) often use expert judgment to 

define this relationship. Though expert judgement is a valuable technique, it can suffer from 

uncertainty, subjectivity, and incompleteness. Significant conflict among judgements may 

also arise when collected from multiple experts. Recent works (Musharraf et al., 2014) have 

proposed the use of virtual experimental technique as an alternative to expert judgement. 

This technique collects empirical evidences required to perform a human reliablity 

assessment by conducting experiments in virtual environments with human subjects. 

However, this work does not account for individual differences  when it comes to the 

influence or importance of PIFs on human errors. Humans are inherently different and 

therefore the role that different PIFs play on performance may vary from individual to 

individual. For example, consider a case where complexity and visibility are two different 

PIFs that can influence one's performance during an evacuation. While complexity can play 

a more important role than visibility for one individual, it can be the other way around for 

another individual. This paper proposes an expansion of the virtual experimental technique 

to account for individual differences during the HRA process. In this paper, the term 

individual difference refers to the difference between the sensitivity of two individuals to 

external PIFs. It does not cover the more general aspects that might differ between 

individuals such as gender, education, and physical characteristics. 

 

The HRA technique used in this paper is the BN approach. BNs have proven to be a 

powerful tool for HRA for the following reasons: 1) this approach can consider the 

dependencies among PIFs and the associated actions, 2) it can incorporate new evidence 
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and update the HEP, and 3) it can support the root-cause analysis of human error 

(Podofillini & Dang, 2013; Sundaramurthi & Smidts, 2013). BNs have been widely used 

to model the impact of different PIFs on human performance or human error (Baraldi, et 

al., 2009; Dang & Stempfel, 2012). Kim & Seong (2006), Cai et al. (2013) and Martins & 

Maturana (2013) show examples of using the evidential reasoning aspect of BN to find the 

underlying causes of human error. Also, the BN model allows the incorporation of multiple 

sources of data into a single predictive HRA model (Groth & Mosleh, 2012b). A more 

comprehensive list of the demonstrated benefits of BN for HRA in different domains can 

be found in Groth & Swiler (2013) and Mkrtchyan et al. (2015).  

 

In this paper, a BN model is developed to observe the impact of two PIFs (complexity and 

visibility) on human error during an offshore emergency evacuation. In this model, PIFs 

and errors are all random variables, and the probability of an error occurring is conditionally 

dependent on the PIFs. To define conditional dependencies in the BN, necessary data were 

collected from a study conducted in a virtual environment with 36 participants. At the 

beginning of the study each participant was assigned to one of two training groups: 1) G1: 

high level training and 2) G2: low level training. The training level assigned to each 

participant remained unchanged for the rest of the experiment. Virtual emergency scenarios 

were created with different levels of visibility (clearly visible versus blackout conditions) 

and complexity (low complexity, such as a muster drill vs. high complexity, such as a 

dynamic emergency situation).  Participants’ performance in the series of virtual 

emergency scenarios were observed. By integrating the performance data into the BN, the 
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reliability of each subject was assessed. Next, sensitivity analysis was performed to find 

the relative contribution of the PIFs to failure.  

 

Section 2.2 gives an overview of the BN approach to HRA and the virtual environment 

used in the experiment. Section 2.3 describes the methodology, data collection and 

integration using a case study of offshore emergency evacuation. Section 2.4 presents and 

explains the results. The limitation of the study and future works are discussed in Section 

2.5. Section 2.6 summarizes and concludes the paper. 

2.2 Background 

2.2.1 Bayesian network (BN) approach to HRA 

A BN approach was used to calculate the HEP. According to Pearl (1988), BNs are acyclic 

directed graphical models that represent conditional dependencies among a set of random 

variables. While performing a task or exercise, errors can occur at different steps of the 

process. Each error is regarded as the outcome of the joint influence of different PIFs (as 

depicted in Figure 2.1). In the BN approach to HRA, error is the critical node which 

depends on several PIFs that can influence the occurrence of the error. For example, in an 

offshore emergency evacuation situation, interacting with hazards (e.g. smoke or fire) is an 

error that may occur because the visibility is compromised (PIF1), or the operator is not 

familiar with the complexity of the situation (PIF2), or both. Figure 2.1 shows the 

relationship between human error and PIFs. This paper investigates the impact of only two 
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PIFs (visibility and complexity) on human error. A comprehensive list of PIFs can be found 

in Groth & Mosleh (2012a) and Mearns et al. (2001). 

 

 

Figure 2.1: Relationship between PIFs and human error. Error is the outcome of joint influence of 

PIF1 to PIFn. 

 

To define the relationship between a human error and PIFs, two parameters are needed: 1) 

the prior belief (in terms of probabilities) of the PIFs and 2) the conditional belief (in terms 

of probability distribution) of the human error. In this case, prior probabilities of all possible 

states of a PIF are assumed equal (50% if the PIF is binary). The difficult part is to define 

the conditional probabilities, which represent the conditional dependency of human error 

on PIFs. This paper uses data collected in a virtual environment to define these conditional 

dependencies. Conditional dependencies are defined separately for each individual to 

reflect the fact that influence of PIFs on error may vary from individual to individual. 

Section 2.3 illustrates the approach in detail. 
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Once the probabilities of different errors during a task are calculated, they can be combined 

using the definitional/synthesis idiom, rather than a causal relationship, to achieve an 

overall failure probability for the task (Fenton & Neil, 2012). For example, in an offshore 

emergency evacuation situation, if an operator is interacting with a smoke hazard (Error1) 

while keeping all fire doors open throughout the evacuation process (Error2), then these 

errors can be combined to get an overall failure probability of the operator for the task 

evacuation. To reduce the computational complexity, errors (Error1-n) are first classified 

into categories (CT1-m) and then combined to get an overall failure (F) probability. The 

different categories of error considered in this paper are as follows: perception error, 

recognition error, procedural error, and lack of situational awareness. Each error can be 

classified into one or more categories. For example, interaction with a hazard can be 

categorized as a failure to perceive the severity of the hazard (perception error) and keeping 

fire doors open can be categorized as a procedural error. Figure 2.2 shows how error 

probabilities in different categories can be combined to quantify the overall failure 

probability. 

 

As shown in Figure 2.2, there are two relationships that need to be defined: 1) the 

relationship between the errors (Error1-n) and different categories (CT1-n) and 2) the 

relationship between different categories (CT1-n) and overall failure (F). Two parameters 

are needed to define these relationships: 1) the conditional belief (in terms of probability 

distribution) of the categories (CT), and 2) the conditional belief (in terms of probability 

distribution) of the overall failure (F).  
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Figure 2.2: Combining Error1 to Errorn to get an overall failure probability. Error1 to Errorn are 

first combined according to categories (CTs), the categories are then combined to get overall failure 

(F) probability. 

 

To demonstrate how conditional probability distribution of CTs can be defined, a simple 

case is considered where the category variable CT1 is binary and can have two possible 

states: acceptable and not acceptable. CT1 is assumed to be dependent on Error1 and 

Error2. Table 2.1 shows the conditional probability table for CT1. As shown in the table, 

P(CT1=Acceptable) becomes zero if either Error1 or Error2 occurs. The only case when 

P(CT1=Acceptable) becomes one is when none of the errors have occurred. 

 

The conditional probability table for the failure node F can be defined in the same way. A 

simple case can be considered where F is binary and can have two possible states: Yes and 

Error1

Error2

Error3

Errorn

CTm

CT1

F



40 

 

 

No. Table 2.2 shows the conditional probability table for F when it is dependent on CT1 

and CT2. As shown in Table 2.2, if either CT1 or CT2 is not acceptable, P(F=Yes) becomes 

one. P(F=Yes) becomes zero when both CT1 and CT2 are acceptable. 

 

Table 2.1: Conditional probability table for category (CT1) 

Error1 Error2 P(CT1=Acceptable|Error1,Error2) 

No No 1 

Yes No 0 

No Yes 0 

Yes Yes 0 

 

Table 2.2: Conditional probability table for failure (F) 

CT1 CT2 P(F=Yes|CT1, CT2) 

Acceptable Acceptable 0 

Not acceptable Acceptable 1 

Acceptable Not acceptable 1 

Not acceptable Not acceptable 1 

 

It has to be noted that, the relationships shown in Table 2.1 & 2.2 are defined by the analyst 

and are not dependent on the collected data. These relationships are context sensitive and 

may need to be redefined by the analyst for a given situation. Also, category variables are 

considered binary in this example only to simplify the illustration. In reality, the category 

variables can have two or more possible states depending on the context. 

 

Using the relationships shown in Figure 2.1 & 2.2, the final network can be developed (as 

shown in Figure 2.3). 
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Figure 2.3: BN to show causal dependency between PIFs, errors, and overall failure. 

 

2.2.2 Overview of virtual environment 

A virtual environment is a computer aided simulation environment that allows trainees to 

gain artificial experience including performing in dangerous scenarios. Virtual 

environment training can act as an enhancement to conventional training since training for 

emergency situations in the real world is ethically, logistically or financially unfeasible 

(Veitch et al., 2008). Besides facilitating emergency preparedness training, virtual 

environments can also be used as a tool to observe human performance in emergency 

conditions and collect data for HRA (Lois et al., 2009; Bye et al., 2011; Monferini et al., 

2013). The virtual environment used in the case study is called the all-hands virtual 

emergency response trainer (AVERT) and was developed at Memorial University. AVERT 

was designed to enhance offshore emergency response training. The virtual environment is 
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modeled after an offshore oil installation platform with high levels of detail. It is capable 

of creating credible emergency scenarios by introducing hazards such as blackouts, fires 

and explosions. For the case study, the offshore emergency scenarios covered a range of 

activities, from muster drills that required the participant to go to their primary muster 

station, to more complex emergency evacuation scenarios that required the participant to 

avoid hazards blocking their egress routes and muster at their lifeboat stations (House et 

al., 2014). The scenarios in the case study were designed using AVERT to observe the 

effect of the PIFs visibility and complexity on individuals’ performance during offshore 

emergency evacuation. Details of the case study are presented in the next section. 

2.3 Case study: Offshore emergency evacuation in a virtual environment 

2.3.1 Experimental setup 

The data used in this paper were originally collected during an experimental study 

presented in Smith (2015) and Musharraf et al. (2016). This paper uses the data collected 

during the study to demonstrate the incorporation of individual differences in HRA. 

 

A total of 36 participants took part in the study with a goal to learn how to perform a 

successful offshore emergency evacuation. The participants were naïve concerning any 

detail of the experimental design, they were not employed in the offshore oil and gas 

industry, and therefore they were not familiar with the offshore platform. Each participant 

was assigned to one of two groups for training: 1) G1: high level training and 2) G2: low 

level training.  Participants in both groups attended 3 sessions. The content of each session 
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was different between the two groups. In the first session, both groups received a basic 

offshore emergency preparedness tutorial. G1 then received 4 training scenarios, a multiple 

choice test and 4 testing scenarios. G2 only received the multiple choice test and 4 testing 

scenarios after the tutorial.  In both Session 2 and Session 3, G1 received an advanced 

training tutorial about alarms and hazards respectively, 4 additional training scenarios, a 

multiple choice test, and 4 testing scenarios. G2 received no advanced training tutorial and 

only received a multiple choice test and 4 testing scenarios in Sessions 2 and 3. Both groups 

were provided with feedback on their performance in the multiple choice test and virtual 

environment testing scenarios in each session.  

2.3.2 Design of the experiment 

Once a participant was assigned to a group, his/her training level remained static (either 

low or high) for the rest of the study. The other two PIFs: visibility and complexity, on the 

other hand, were set to different levels to investigate how these PIFs influence each 

participant.  

 

Visibility refers to the amount of ambient light available while performing a specific task. 

This PIFs was varied at two different levels: clearly visible and blackout. In clearly visible 

conditions, there was enough ambient light to perform the assigned task. In the blackout 

conditions, the visibility was reduced by reducing the available ambient light. However, 

the participants were allowed to use a virtual flashlight in the blackout conditions. The 

flashlight allowed participants to have a limited but functional visibility. 
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Complexity in this context refers to the difficulty of any given situation and the degree of 

responsibilities of an individual in that situation. The more difficult the situation is, the 

higher is the chances of human error. Similarly, higher responsibilities also imply higher 

chances of human error. Two levels of complexity were considered in this experiment: low 

and high. In low complexity conditions, there was no obstacle in the egress route, and the 

responsibility assigned to the participant was minimal. High complexity situations were 

created by blocking the escape routes with hazards (i.e. smoke, fire, and explosion), and 

assigning more responsibilities to the participants. 

 

Training and testing scenarios were designed with different levels of visibility and 

complexity. Several performance metrics of the participants were recorded during each 

scenario. The following are the performance metrics that are most relevant to this paper: 

time to muster, time spent running, interaction with fire doors and watertight doors, 

interaction with hazards, and reporting at muster stations. Replay videos of participants’ 

performance in the scenarios were also recorded for further analysis. For HRA purposes, 

only the performance metrics collected during the testing scenarios were used. Figure 2.4 

presents a schematic diagram of the experimental design. 

 

There were 4 testing scenarios in each session. For demonstration purposes, only the testing 

scenarios in Session 3 will be used in this paper. Table 2.3 gives an overview of the 4 testing 

scenarios in session 3. 
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Figure 2.4: Schematic diagram of the experimental design 

Table 2.3: Testing scenarios created in AVERT varying the state of the PIFs (for session 3) 

Scenario 

Name 

PIF1: 

Visibility 

PIF2: 

Complexity 

Context 

Scn1 Normal Low 

A fire and explosion on the helideck signal a GPA. High 

winds cause the smoke to engulf a portion of the platform 

exterior. The participant must go to muster station, but re-

route to lifeboat station due to the increase in emergency 

severity and the alarm change to PAPA. Complexity is 

low as the hazards do not block the primary route through 

the main stairwell. 

Scn2 Normal High 

Fire erupts in the galley signaling a GPA. The participant 

must go to the muster station but re-route to the lifeboat 

station due to the fire and smoke spreading to the adjacent 

muster station. Complexity is high as the primary egress 

route and the muster station are compromised by the 

hazards. 

Scn3 Blackout Low 

An electrical fire and dense smoke fill a portion of the 

engine room. The GPA sounds. The participant must go 

to muster station but re-route to lifeboat station due to the 

increase in situation severity and alarm change to PAPA. 

Complexity is low as the participant was assigned to only 

one task: evacuate successfully. 
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Scenario 

Name 

PIF1: 

Visibility 

PIF2: 

Complexity 

Context 

Scn4 Blackout High 

A fire and explosion occur in the main engine and result 

in a vessel-wide blackout. The alarm is not immediately 

triggered. The fire blocks access to the secondary egress 

routes. The participant must raise the alarm and go to the 

muster station but re-route to lifeboat station due to the 

increase in situation severity and alarm change to PAPA. 

Complexity is high as the participant had an additional 

responsibility of raising the alarm before evacuation. 

 

 

2.3.3 Bayesian Network (BN) for the case study: Data collection and integration 

The primary interest of the case study was to account for the difference between individuals 

while defining a relationship between the PIFs (visibility and complexity) and human error 

during offshore emergency evacuation. For this purpose, a set of possible errors during an 

offshore emergency evacuation was defined. Table 2.4 shows a list of possible errors and 

different error categories during an offshore emergency evacuation. For a BN approach to 

HRA, all listed errors are critical nodes and depend on the states of the PIFs. The prior 

probabilities of each state of the PIFs (visibility and complexity) are assumed 50%. The 

next step is to define the conditional probability distribution of each error. Table 2.5 shows 

an example conditional probability table for the error "Wrong muster station". 
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Table 2.4: List of possible errors during offshore emergency evacuation and their corresponding 

category 

Error Category Possible errors 

Perception of hazard 
Interacting with fire 

Interacting with smoke 

Situational awareness 
Taking more time to muster than necessary 

Going to wrong muster location 

Recognition of alarm 
Failing to follow alarm and going to wrong muster 

location 

Compliance with basic safety 

procedures 

Running on the platform 

Leaving fire doors and/or watertight doors open 

 

Table 2.5: Conditional probability table for error “wrong muster station” 

Visibility Complexity P(Wrong muster station 

= Yes) 

P(Wrong muster 

station = No) 

Normal Low 

These conditional probabilities were defined using 

the data collected during the experiment. 

Normal High 

Blackout condition Low 

Blackout condition High 

 

 

As shown in Table 2.5, there are eight conditional probabilities that need to be defined. 

Data collected from virtual environment scenarios were used in this paper to obtain these 

probabilities. Each participant was tested in 4 testing scenarios during each session: Scn1 

(visibility=normal, complexity=low), Scn2 (visibility=normal, complexity=high), Scn3 

(visibility=blackout condition, complexity=low) and Scn4 (visibility=blackout condition, 

complexity= high). For instance, in Scn1, if the participant went to the wrong muster 

station, P(wrong muster station=Yes| visibility=normal, complexity=low) = 1 and hence 

P(wrong muster station=No| visibility=normal, complexity=low) = 0. The other conditional 
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probabilities were defined the same way. Table 2.6 shows the conditional probability table 

for the error “wrong muster station” after the data were collected for one participant. It 

should to be noted that, unlike the conventional approaches, these conditional probabilities 

are defined for each individual and may vary from participant to participant. Figure 2.5 

shows the total probability of “wrong muster station” after the collected data were 

integrated. 

 

Table 2.6: Conditional probability table for the error “wrong muster station” after collecting data for 

one participant 

Visibility Complexity P(Wrong muster station 

= Yes) 

P(Wrong muster station 

= No) 

Normal Low 0 1 

Normal High 0 1 

Blackout condition Low 0 1 

Blackout condition High 0 1 

 

 

Figure 2.5: Total probability of “wrong muster location” after integrating the data collected for the 

participant in Table 2.6 
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The data were collected and integrated similarly for all the errors listed in Table 2.4. The 

errors were combined as presented in Figure 2.3, to get probabilities for the different error 

categories. Finally, the different categories of error were combined to get the overall failure 

probability for one participant. The conditional probabilities of the error categories and 

failure were defined using the same approach shown in Table 2.1 and Table 2.2. Figure 2.6 

shows the final BN for the participant.  
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Figure 2.6: Final BN for one sample participant
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2.4 Results and discussion 

2.4.1 Results of complete study 

Section 2.3.3 explained the failure probability calculation for one sample participant in 

detail. The failure probability was calculated for all 36 participants in the same way. Figure 

2.7 shows the histogram of failure probability for all participants. As shown in the figure, 

almost 83% of the participants had a failure probability of 50% or higher.  

 

 

Figure 2.7: Histogram of percent failure probability for 36 participants in Session 3 

 

As stated in Section 2.3.1, the participants were divided into two groups and G1 had a more 

advanced level of training than G2. A comparison between the failure probability of G1 
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and G2 shows that the average failure probability of G2 was much higher (63.5%) 

compared to G1 (43.2%). This is consistent with the expectation that advanced training can 

reduce the likelihood of failure in emergency conditions.  

2.4.2 Sensitivity analysis: which PIF contributes most to failure? 

Once the failure probability of a participant was calculated, sensitivity analysis was 

performed to determine which PIF (visibility or complexity) contributed most to failure for 

the given participant. Figure 2.8 shows the tornado graph (Fenton & Neil, 2012) of 

sensitivity analysis for the same participant as in section 2.3.2. As shown in Figure 2.8, the 

probability of failure given complexity went from 0.375 to 0.75 (when changing 

complexity from low to high). Similarly, probability of failure given visibility went from 

0.5 to 0.625 (when changing visibility from a blackout to normal conditions). For the 

participant under consideration, complexity is the node that has the highest contribution to 

failure. 

 

 

Figure 2.8: Tornado graph showing which node most impact failure (for one sample participant) 
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Sensitivity analysis was done similarly for all participants, and Figure 2.9 summarizes the 

results of this analysis. 19% of the participants were found to be more sensitive to 

complexity and 11% were found to be more sensitive to visibility. The rest of the 

participants were equally sensitive to both complexity and visibility. 

 

 

Figure 2.9: Sensitivity of 36 participants 

 

In a comparison between G1 and G2, both of the PIFs were equally important for 70% of 

the participants in G1 and 68% of the participants in G2. Among the remaining participants 

in G1, 25% were more sensitive to complexity, and only 5% were more sensitive to 

visibility. In G2 16% of the remaining participants were found to be more sensitive to 

complexity, and 16% were more sensitive to visibility. 
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The results support the fact that sensitivity to PIFs may vary from participant to participant. 

Sensitivity analysis can be extremely helpful in personalizing training. For example, if a 

participant is found to be more sensitive to high complexity, training exercises with high 

complexity situations can be provided to better prepare for those situations and reduce the 

probability of failure. Such adaptive training will help to reach competency faster than with 

conventional training.  

2.5 Limitations of the study 

There are a few limitations with the current study that need to be considered. First of all, it 

has to be considered that virtual environments can provide a certain degree of realism and 

should not be expected to be an exact counterpart to real life emergency situations. Testing 

the validity of the achieved outcomes in a real world operational environment is out of the 

scope of this paper and is considered as a future research study. Secondly, since the work 

presented in this paper was done retrospectively, the experimental settings were not ideal 

for this particular work. For example, testing scenarios in each session were not randomized 

as they should have been for the purpose of this paper. Finally, to keep the experiment 

feasible in a laboratory setting, the effect of only two PIFs (complexity and visibility) were 

examined in the presented work. A more comprehensive set of PIFs will be used in future 

studies based on the context and associated priorities. 

 

It must be noted that incorporation of individual differences presents new challenges in the 

conventional verification and validation paradigm. Since conditional probabilities in the 

BN can be different for each individual, quantification of parameterization confidence 
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suggested in a conventional validity framework is nearly impossible (Pitchforth & 

Mengersen, 2013). However, BNs developed in this paper are integrated into human 

behavior models (HBMs) in later work (Musharraf et al., 2017). The authors are currently 

working on the validation of the HBM with the underlying belief that the uncertainty 

involved in the BN structure is negligible. 

2.6 Conclusion 

Reliability analysis of operators during offshore emergency conditions has always been a 

challenge due to the lack of data. The virtual experimental technique proposes to use virtual 

environments as a data source for the reliability analysis. This paper proposes an extension 

of the virtual experimental technique by incorporating individual differences. Performance 

data for each individual is first collected by conducting an experiment in a virtual 

environment. By integrating the collected data into a BN model, the reliability of any 

individual during an offshore emergency evacuation can be assessed. The model can also 

be used to perform a sensitivity analysis to determine if the individual is sensitive to any 

specific PIF. Though the case study presented in this paper suffers from a few limitations, 

it successfully demonstrates how individual differences can be taken into account while 

calculating human reliability. It also presents the way of identifying individuals’ sensitivity 

to any external PIF. Future work involves using the results of the sensitivity analysis to 

help designing adaptive training for individuals. Adaptive training applied to virtual 

environments can help overcome any weakness an individual might have and assist them 

in achieving competence more quickly. Authors also plan to use a more comprehensive and 

informative list of PIFs in future studies. Though validation of the BN models presented in 
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this paper will not be done separately, validation of the integrated HBM model is 

considered as a future work. 
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Abstract 

In the performance influencing factor (PIF) hierarchy, person-based influencing factors 

reside in the top level along with machine-based, team-based, organization-based and 

situation/stressor-based factors. Though person-based PIFs like morale, motivation, and 

attitude (MMA) play an important role in shaping performance, it is nearly impossible to 

assess such PIFs directly. However, it is possible to measure behavioral indicators (e.g. 

compliance, use of information) that can provide insight regarding the state of the 

unobservable person-based PIFs. One common approach to measuring these indicators is 

to carry out a self-reported questionnaire survey. Significant work has been done to make 

such questionnaires reliable, but the potential validity problem associated with any 

questionnaire is that the data are subjective and thus may bear a limited relationship to 

reality. This paper describes the use of a virtual environment to measure behavioral 

indicators, which in turn can be used as proxies to assess otherwise unobservable PIFs like 

MMA. A Bayesian Network (BN) model is first developed to define the relationship 

between person-based PIFs and measurable behavioral indicators. The paper then shows 

how these indicators can be measured using evidence collected from a virtual environment 

of an offshore petroleum installation. A study that focused on emergency evacuation 

scenarios was done with 36 participants. The participants were first assessed using a 

multiple choice test. They were then assessed based on their observed performance during 

simulated offshore emergency evacuation conditions. A comparison of the two assessments 

demonstrates the potential benefits and challenges of using virtual environments to assess 

behavioral indicators, and thus the person-based PIFs. 
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3.1 Introduction 

Since its introduction in 1960, more than a dozen Human Reliability Analysis (HRA) 

methods have been proposed to identify, model and quantify the probability of human 

errors. Most HRA methods involve the use of performance influencing factors (PIFs) to 

qualify and quantify human error probability (HEP). To ensure consistency across different 

HRA methods, Groth & Mosleh (2012) presented a standard set of PIFs and a PIF 

hierarchy. According to this hierarchy, all PIFs can be categorized in five categories: 

organization-based, team-based, person-based, situation/stressor-based, and machine-

based. PIFs in these five categories can be observable, partially observable, or unobservable 

depending on how the states of the PIFs are assessed. If the state of a PIF can be assessed 

through direct measurement, then it is considered observable. Tool availability is an 

organization-based PIF that is directly observable: either the tool is available or it is not. 

An example of a partially observable PIF is the situation/stressor-based PIF complexity. 

The level of complexity depends on the perception of the individual and it cannot be 

directly measured. Complexity can be partially observed in terms of the number of assigned 

tasks at a given time: more tasks indicate at least nominally higher complexity. Finally, 

there are PIFs that are nearly impossible to measure and hence are called unobservable 

PIFs. Examples include person-based PIFs like moral, motivation, and attitude (MMA). 

Though most of the HRA methods provide guidelines about how to assess the state of 

observable and partially observable PIFs, there is a lack of specific guidelines regarding 

assessing the state of unobservable PIFs. One possible solution is to associate the 

unobservable PIFs with specific indicators or metrics that are measurable and indicate the 
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state of the unobservable PIFs. For example, a person’s attitude towards safety is 

unobservable, but it is possible to measure if the person complies with safety rules, so 

compliance is an indicator that can be used to assess safety attitude. 

 

Studies have been done to measure these indicators by a subjective analysis (Rundmo et 

al., 1998; Rundmo, 2000; Adie et al., 2005). In these studies, a self-assessment 

questionnaire survey is conducted among personnel on offshore installations to gain insight 

into unobservable PIFs like safety attitude.  Though significant work has been done to make 

self-assessment questionnaires reliable (Mearns & Flin, 1995; Flin et al., 2000), it is still 

questionable if self-assessment is a true reflection of the way an operator will behave in 

real emergencies. Questionnaires have the inherent risk of representing one’s knowledge 

about safety and/or one’s willingness to behave safely, rather than representing one’s actual 

behavior in emergency situations (Breitsprecher et al., 2007). This paper describes the use 

of a virtual environment to measure indicators that can provide insight into unobservable 

PIFs like MMA. A Bayesian network (BN) was developed to define relationships among 

unobservable PIFs and associated indicators. The network was then extended by 

associating the measurable indicators with evidence that can be collected using a virtual 

environment. An experimental study of offshore emergency evacuation in a virtual 

environment was done with 36 human subjects. Behavioral indicators of the participants 

were assessed using both a multiple choice test and the performance evidence collected 

from the virtual environment. A comparison of the two approaches demonstrates the 
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potential benefits and challenges of using virtual environments to assess behavioral 

indicators. 

 

Section 3.2 gives an overview of the virtual environment used in the paper and explains the 

fundamentals of BN. Section 3.3 describes a BN approach to quantify unobservable PIFs. 

Sections 3.4 and 3.5 demonstrate the application of the proposed approach to a case study 

of offshore emergency evacuation. Results are presented in Section 3.6. Section 3.7 lists 

the limitations of the study. Section 3.8 summarizes and concludes the paper. 

3.2 Background 

3.2.1 Overview of virtual environment 

A virtual environment is a computer aided simulation environment that allows trainees to 

gain artificial experience, including performing in dangerous scenarios. Virtual 

environment training can act as an enhancement to conventional training since training for 

emergency situations in the real world is ethically, logistically or financially unfeasible 

(Veitch et al., 2008). Besides facilitating emergency preparedness training, virtual 

environments can also be used as a tool to observe human performance in emergency 

conditions (Lois et al., 2009; Bye et al., 2011; Monferini et al., 2013). The virtual 

environment used in the case study is called the all-hands virtual emergency response 

trainer (AVERT) and was developed at Memorial University. AVERT was designed to 

enhance offshore emergency response training. The virtual environment is modeled after 

an offshore oil installation platform with high levels of detail. It is capable of creating 
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credible emergency scenarios by introducing hazards such as blackouts, fires and 

explosions. For the case study, the offshore emergency scenarios covered a range of 

activities, from muster drills that required the participant to go to their primary muster 

station, to more complex emergency evacuation scenarios that required the participant to 

avoid hazards blocking their egress routes and muster at their lifeboat stations (House et 

al., 2014). 

3.2.2 Bayesian network fundamentals 

BNs are probabilistic models representing interaction of parameters through directed 

acyclic graph and Conditional Probability Tables (CPTs) (Pearl, 1988). The networks are 

composed of nodes and links. Nodes represent the variables of interest whereas links 

joining the nodes represent causal relations among the variables. Nodes and links together 

define the qualitative part of the network. The quantitative part is constituted by the 

conditional probabilities associated with the variables. Conditional probabilities specify the 

probability of each dependent variable (also called child node) for every possible 

combination of the states of the variables it is directly dependent on (also called parent 

node).  The probabilities of the independent variables, i.e., nodes with no predecessor (also 

called root nodes) are also given. Given the probabilities associated with each root node 

and the conditional probability table associated with each child node, the probabilities of 

child node can be calculated (Fenton & Neil, 2012). If there are 𝑛 variables 𝑋1, 𝑋2, … , 𝑋𝑛 

in the network and 𝑃𝑎(𝑋𝑖) represents the set of parents of each 𝑋𝑖, then the joint probability 

distribution for the entire network can be defined as: 
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𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =  ∏ 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))                                                   (3.1)

𝑛

𝑖=1

 

where 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)) is the discrete conditional probability distributions of  𝑋𝑖  given its 

parents. 

Therefore, the following need to be specified to define a BN:  

1) the set of variables (nodes): 𝑋1, 𝑋2, … , 𝑋𝑛, 

2) the interaction (links) between variables, and 

3) the conditional probability distribution 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)) for each variable  𝑋𝑖. 

This paper presents a BN model to quantify unobservable PIFs. Section 3.3 illustrates how 

the BN model is defined. 

3.3 Quantifying unobservable PIFs: A Bayesian network (BN) approach 

This section presents the BN model to quantify unobservable PIFs. First, a set of necessary 

variables is defined. Having defined the variables, the relationship between variables (both 

links and conditional dependency) are specified. 

3.3.1 Variables 

Two types of variables compose the proposed BN model: variables to measure the 

unobservable PIFs, and variables to collect evidence. 

3.3.1.1 Variables to measure unobservable PIFs 

Unobservable PIFs are impossible to measure directly. There are several PIFs in the 

standard set that are unobservable, but the focus of this paper is on the person-based PIFs 

bias and MMA. Both bias and MMA are internal characteristics of an individual and are not 
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directly observable, but internal characteristics of individuals manifest themselves in the 

way they behave, and behaviors are observable (Groth & Mosleh, 2012). Hence the 

unobservable PIFs have been associated with measurable behavioral indicators in this 

paper. 

 

Groth et al. (2012) define bias as "the tendency of a human to make conclusions based on 

selected pieces of information while excluding information that does not agree with the 

conclusion." It is impossible to directly measure if an individual has a bias and the degree 

to which the bias is present. In this paper, bias is associated with behavioral indicators 

inclination to previous experience and information use, which are measurable and can help 

to define the state of bias at a given time. It can be tested if in any given situation an 

individual disregards valuable information in order to come to a conclusion that has worked 

well for him/her on previous occasions. Thus, inclination to previous experience and 

information use are indicators of bias. An expanded list of biases and mechanisms can be 

found in (Brewer, 2005). 

 

Morale, motivation, and attitude together refer to the "willingness to complete tasks, the 

amount of effort a person devotes to tasks, and the state of mind of the worker" (Steers & 

Porter, 1979; Triandis, 1971). MMA plays a significant role in shaping the performance of 

an individual, but it is extremely difficult to measure. There are measurable behavioral 

indicators that are associated with MMA: information use, prioritization, and compliance. 

The information use behavior measures an individual’s effectiveness in using information 
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presented to him/her. Individuals may favor some information over others due to bias. 

Prioritization is how an individual orders the tasks assigned to them, or the goals that are 

to be achieved. Compliance refers to an individual’s commitment to follow directions and 

policies established by the organization or the industry.  Information use, prioritization, 

and compliance are behaviors shaped by the MMA of an individual. Additional behaviors 

can be included depending on the context.  

 

Table 3.1 lists the unobservable PIF variables and associated behavior indicator variables 

used in this paper. 

 

Table 3.1: List of unobserved PIF variables and associated behavior indicator variables 

Unobservable PIF variables  Associated behavior indicator variables  

Bias Inclination to previous experience 

Information use 

MMA Information use 

Compliance 

Prioritization 

 

All unobservable PIF variables and associated behavior indicator variables are considered 

to be binary in this paper (i.e. the participant is either compliant or not). 

3.3.1.2 Variables to collect evidence 

Once behavioral indicators associated with each unobservable PIF are identified, the next 

step is to measure these indicators. For this purpose, each behavioral indicator variable is 

associated with evidential variables that are used to collect information relevant to 
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behavioral indicators. One possible source of evidence is multiple choice test items in a 

self-assessment questionnaire (Rundmo, 2000). Using this source, behavioral indicators are 

associated with multiple choice test items and are assessed based on the answers given by 

the participant. The fundamental problem of using multiple choice test items as evidence is 

that the answers individuals choose in the questionnaire often represent their knowledge 

about the safety regulations and/or their desire to act safely, rather than how they will 

actually behave under high risk, time pressure, and complexity of emergency conditions. 

Another problem with multiple choice questionnaires is the high guessing factor, which 

represents the possibility that an individual will guess the right answer to a question by 

chance even when he/she does not know the answer. 

 

In addition to multiple choice questionnaires, this paper uses the performance of 

participants in a virtual environment to collect evidence regarding behavioral indicators. 

The behavioral indicators to be assessed are associated with different tasks and exercises 

that an individual will perform in the virtual emergency scenarios. The indicators can then 

be measured based on how the individual performs the assigned tasks. Unlike 

questionnaires, a virtual environment is capable of simulating the dynamism and urgency 

of emergency scenarios and is expected to be a closer representation of an individual's 

performance in real life emergency. As performing in a virtual environment scenario is an 

open ended problem, the guessing factor is much lower than in the multiple choice 

questionnaire.  
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Thus, evidence variables of the proposed BN model are either multiple choice items (in 

case of self-assessment multiple choice questionnaire), or tasks/exercises (in case of virtual 

environment scenarios). They are considered to be binary in both cases (i.e. the participant 

either answers a question correctly or not). 

3.3.2 Relationships between variables 

Once variables are defined, the next step is to define the relationship between variables. 

This requires that both the links and parameters be specified for each relationship. 

3.3.2.1 Relationships between unobservable PIFs and behavioral indicators 

As discussed in Section 3.3.1.1, unobservable internal characteristics like bias and MMA 

have a causal influence on the way an individual behaves. Adding these dependencies 

between unobservable PIFs and behavioral indicators gives a BN shown in Figure 3.1. 

 

The parameters of the network shown in Figure 3.1 are: 1) the prior belief (in terms of 

probabilities) of the unobservable PIF variables 𝑃(𝑈𝑉), and 2) conditional belief (in terms 

of probability distribution) of indicator variables 𝑃(𝐼𝑉|𝑈𝑉𝑖, 𝑖 = 1,2, … , 𝑛). The prior 

probabilities of the possible states of each unobservable PIF are assumed to be equal (50%). 

The conditional probabilities are approximated by a canonical interaction model: the binary 

Noisy-OR gate (Pearl, 1988). Two assumptions of the Noisy-OR model are: 1) each of the 

unobservable PIFs is sufficient to shape a behavior with a probability of 𝑝𝑖 in the absence 

of all other causes, and 2) the ability of each unobservable PIF being sufficient is 

independent of the presence of other causes. If 𝑝𝑖 represents the probability that a behavior 
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is formed by the unobservable PIF 𝑈𝑉𝑖 when all other causes 𝑈𝑉𝑗, 𝑗 ≠ 𝑖,  are absent, then 

the conditional probability distribution of the behavioral indicator variables can be defined 

as: 

 

𝑃(𝐼𝑉 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒|{𝑈𝑉1, 𝑈𝑉2, … , 𝑈𝑉𝑛}) = 1 −  ∏(1 − 𝑝𝑖)

𝑖∈𝑆

                                   (3.2) 

 

where 𝑆 is a subset of the 𝑈𝑉𝑖𝑠 that are present. 

 

 

Figure 3.1: Causal dependency between the unobservable PIFs and the associated behavioral 

indicators 

 

3.3.2.2 Relationships between behavioral indicators and evidential variables 

Relationships between behavioral indicators and evidential variables are based on the 

causality that behaviors have an influence on how a question will be answered or a situation 

will be solved by an individual (Millán & Pérez-De-La-Cruz, 2002). Figure 3.2 illustrates 
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the causal dependency between the behavioral indicators and collected evidence (EV1 to 

EVn). The probability assignment of the behavioral indicator variables 𝑃(𝐼𝑉) is already 

described in Section 3.3.2.1. The additional parameter for the network shown in Figure 3.2 

is the conditional belief (in terms of probability distribution) of the evidential 

nodes 𝑃(𝐸𝑉|𝐼𝑉𝑖, 𝑖 = 1,2, … , 𝑛). To approximate the conditional probability, again the 

binary Noisy-OR gate is used. If 𝑝𝑖 represents the probability that a behavior 𝐼𝑉𝑖 will 

influence an individual to choose a correct answer to a question, or take a correct action in 

the virtual scenarios when all other causes 𝐼𝑉𝑗 , 𝑗 ≠ 𝑖, are absent, then the conditional 

probability distribution of the evidential variables can be defined as: 

 

𝑃(𝐸𝑉 = 𝑅𝑖𝑔ℎ𝑡|{𝐼𝑉1, 𝐼𝑉2, … , 𝐼𝑉𝑛}) =  1 −  ∏(1 − 𝑝𝑖)

𝑖∈𝑆

                                        (3.3) 

 

where 𝑆 is a subset of the 𝐼𝑉𝑖𝑠 that are present. 

 

Combining the causal dependencies shown in Figures 3.1 and 3.2, a complete causal model 

can be developed as shown in Figure 3.3. Using this model, we can infer what we cannot 

see (unobservable PIF variables) from what we can see (evidence variables). 
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Figure 3.2: Causal dependency model of the behavioral indicators and collected evidence. EV1 to EVn 

represent collected evidence: either a multiple choice test item or a task in a virtual environment 

scenario. The causal dependency is the same in both cases. 

 

 

 

Figure 3.3: Causal dependencies among unobservable PIFs, behavioral indicators and collected 

evidence 
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3.4 Case study: Offshore emergency evacuation 

This paper assesses the behavioral indicators of individuals by using both a multiple choice 

test and virtual environment scenarios. As stated in Section 3.2.1, a virtual environment 

called AVERT was used in this study. An experimental study was designed using AVERT 

with multiple research objectives: 1) assess competency in offshore emergency evacuation 

using virtual environments (Smith et al., 2015), 2) collect data for human reliability 

assessment using virtual environments, and 3) assess behavioral indicators of individuals' 

during offshore emergency evacuation using virtual environments. The focus of this paper 

is to demonstrate the use of virtual environments to assess behavioral indicators and in turn 

assess unobservable PIFs. 

 

A total of 36 participants took part in the study with a goal to learn how to perform a 

successful offshore emergency evacuation. The participants were naïve concerning any 

detail of the experimental design, they were not employed in the offshore oil and gas 

industry, and therefore they were not familiar with the offshore platform. Each participant 

was assigned to one of two groups: 1) G1: high level training and 2) G2: low level training.  

Participants in both groups attended 3 sessions. The content of each session was different 

between the two groups. In the first session, both groups received a basic offshore 

emergency preparedness tutorial. G1 then received 4 training scenarios, a multiple choice 

test and 4 testing scenarios. G2 only received the multiple choice test and 4 testing scenarios 

after the tutorial.  In both Session 2 and Session 3, G1 received an advanced training tutorial 

about alarms and hazards respectively, 4 additional training scenarios, a multiple choice 
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test, and 4 testing scenarios. G2 received no advanced training tutorial and only received a 

multiple choice test and 4 testing scenarios in Sessions 2 and 3. Both groups were provided 

with feedback on their performance in the multiple choice test and virtual environment 

testing scenarios in each session. Figures 3.4 and 3.5 summarize the design of the 

experiment. 

 

Figure 3.4: Experimental design of Session 1 

 

Figure 3.5: Experimental design of Session 2 & 3 
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The training and testing scenarios were designed with varying levels of visibility (clearly 

visible or blackout conditions) and complexity (low complexity with no obstacles on the 

primary evacuation route, high complexity with obstacles on the escape route and increased 

responsibility).  Several performance metrics of the participants were recorded during each 

scenario. The following are the performance metrics that are most relevant to this case 

study: route selected for evacuation, time spent running, interaction with fire doors and 

watertight doors, interaction with hazards, reporting at muster stations, and interaction with 

manual alarm. Replay videos of participants’ performance in scenarios were also recorded 

for further analysis. Performance and behavior of the participants were assessed in the 

multiple choice test and virtual environment testing scenarios. As stated above, there was 

only 1 multiple choice test and 4 virtual environment testing scenarios in each of the 

sessions. For demonstration purposes, only the multiple choice test and virtual environment 

testing scenarios of the last session (Session 3) have been included in this paper. Table 3.2 

shows how the different questions (EV) in the multiple choice test for Session 3 were used 

to assess behavioral indicators (IV). Each question listed in Table 3.2 had multiple options 

to choose from. Table 3.3 gives an overview of the 4 testing scenarios and shows how 

evidence (EV) regarding behavioral indicators (IV) was collected in these scenarios. 
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Table 3.2: Multiple choice questions in Session 3 used to assess the behavioral indicators 

Question 

number 

Question to collect evidence (EV) Behavioral 

indicators 

assessed (IV) 

S3_Q2 The Station Bill provides what information? Information Use 

S3_Q3 What do you do in the event that your primary muster 

station is compromised? 

Compliance 

S3_Q4 If you can't remember how to get to your muster station 

what should you do? 

Information Use 

S3_Q6 What do you do in the event of a minor incident?  Prioritization 

S3_Q7 What would you do in the event of an alarm that wasn't 

followed by a PA announcement? 

Compliance 

S3_Q8 What is the safest exit to take given where the hazard 

is located? [A diagram of the situation was given that 

depicted an explosion and fire in the engine room, 

blocking access to the secondary and tertiary egress 

routes.] 

Compliance 

S3_Q14 What do you do when your primary muster route has 

been blocked? 

Compliance 

S3_Q17 What is the safest exit to take given where the hazard 

is located? 

[A diagram of the situation was given that depicted a 

hallway filling with smoke outside the cabin, blocking 

access to the primary egress route.] 

Compliance 

S3_Q18 What is the safest exit to take given where the hazard 

is located? 

[A diagram of the situation was given that depicted fire 

and smoke in the engine room, blocking access to the 

primary egress route.] 

Compliance 
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Table 3.3: Overview of the virtual environment testing scenarios in Session 3 used to assess 

behavioral indicators 

Scenario 

name 
Context 

Task to collect 

evidence (EV) 

Behavioral 

indicators 

assessed (IV) 

S3_Scn1 

Fire erupts in the gally signaling 

a General Platform Alarm 

(GPA). The participant must go 

to the muster station but re-route 

to the lifeboat station due to the 

fire and smoke spreading to the 

adjacent muster station. 

Follow PA 

announcement 

Compliance, 

Information use 

Follow alarm Compliance, 

Information use 

Avoid running in the 

platform 

Compliance 

Keep fire doors and 

watertight doors closed 

Compliance, 

Information use 

Avoid interaction with 

hazard 

Compliance 

Review feedback 

carefully and learn 

about correct muster 

station so that mistake 

is not repeated 

Information use 

Avoid previously 

explored route if not 

safe 

Inclination to 

previous 

experience 

S3_Scn2 

A fire and explosion on the 

helideck signal a GPA. High 

winds cause the smoke to engulf 

a portion of the platform 

exterior. The participant must 

go to muster station but re-route 

to lifeboat station due to the 

increase in emergency severity 

and the alarm change to Prepare 

to Abandon Platform (PAPA). 

Same as S3_Scn1 
Same as 

S3_Scn1 

S3_Scn3 

An electrical fire and dense 

smoke fill a portion of the 

engine room, blocking access to 

the primary egress route. The 

GPA sounds. The participant 

must go to muster station but re-

route to lifeboat station due to 

the increase in situation severity 

and alarm change to PAPA. 

Same as S3_Scn1 
Same as 

S3_Scn1 
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Scenario 

name 
Context 

Task to collect 

evidence (EV) 

Behavioral 

indicators 

assessed (IV) 

S3_Scn4 

A fire and explosion in the main 

engine result in a vessel-wide 

blackout. The alarm is not 

immediately triggered. The fire 

blocks access to the secondary 

egress routes. The participant 

must raise the alarm and go to 

the muster station but re-route to 

lifeboat station due to the 

increase in situation severity and 

alarm change to PAPA. 

Same as S3_Scn1 with 

the added following 

task: Raise the alarm 

before evacuating if 

first observer of the 

hazard 

Same as 

S3_Scn1 with 

the added 

following 

behavioral 

indicator: 

Prioritization 

 

Association of evidence variables (EV) with behavioral indicators (IV) shown in Tables 

3.2 & 3.3 are defined by the analyst based on the understanding of the context. The next 

section shows how evidence collected from the multiple choice tests and the virtual 

environment scenarios were integrated in the BN developed in Section 3.3 to assess 

behavioral indicators and unobservable PIFs. 

3.5 Integrating evidence in Bayesian network (BN) 

3.5.1 Integrating evidence collected using multiple choice test 

Test questions were the evidence variables in the case of the multiple choice test. 

Integration of the evidence variables (as shown in Table 3.2) in the BN proposed in Section 

3.3 provided the final network shown in Figure 3.6. As stated in Section 3.3, the prior 

probabilities of each possible state of the unobservable PIF variables were assumed to be 

equal (50%). The conditional probability distributions of indicator variables and evidence 

variables were calculated using equations 3.1 and 3.2, respectively. It has to be noted that 
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𝑝𝑖s used in equations 3.1 and 3.2 are defined by the analyst and are not dependent on the 

collected data. Values of 𝑝𝑖s are context sensitive and may need to be redefined for a given 

situation. As discussed in Section 3.3, an individual can guess the right answer to a question 

by chance even when he/she does not know the answer. To address this issue, the 

conditional probability 𝑃(𝐸𝑉 = 𝑅𝑖𝑔ℎ𝑡|{𝐼𝑉1, 𝐼𝑉2, … , 𝐼𝑉𝑛}) is considered to be equal to a 

guess factor when all the 𝐼𝑉𝑖s are absent. If a multiple choice question had 𝑛 possible 

options to choose from, the guess factor would be considered to be 1/𝑛 (Millán et al., 

2013). 

 

The state of the evidence variables was defined based on the answers the participants chose 

in the multiple choice test. Figure 3.7 presents the state of the network after all the questions 

in the multiple choice test were answered (using one participant’s results as an example). 

3.5.2 Integrating evidence collected using virtual environment testing scenarios 

The tasks performed in the virtual environment were the evidence variables in the virtual 

testing scenarios. Integration of the evidence variables in the testing scenarios (as shown in 

Table 3.3) in the BN proposed in Section 3.3 yielded the network shown in Figure 3.8. 

Similar to the multiple choice test, the prior probabilities of each possible state of the 

unobservable PIF variables were assumed to be equal (50%) and the conditional probability 

distributions of indicator variables and evidence variables were calculated using equations 

3.2 and 3.3 respectively. Again the 𝑝𝑖s are defined by the analyst and may need to be 

redefined for a different context. However, unlike the multiple choice test, the guess factor 

was considered to be as low as 5% because of the fact that the test scenarios are open ended 
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problems and the chances that an individual will make a correct decision or take a correct 

action by chance, without knowing, was considered to be low. 

 

The state of the evidence variables was defined based on the decisions and actions of the 

participants in the virtual environment testing scenario. Figure 3.9 shows the state of the 

network as an example after one participant finished the last scenario in Session 3 

(S3_Scn4). 
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Figure 3.6: BN model to assess behavioral indicators and unobservable PIFs using multiple choice test. From bottom to top, the first level 

contains the evidence variables, the second level contains indicator variables and the third level contains unobservable PIF variables. 
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Figure 3.7: State of the network after all questions in the multiple choice test in Session 3 have been answered by a participant. 
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Figure 3.8: BN model to assess behavioral indicators and unobservable PIFs using virtual environment test scenario. From bottom to top, the first 

level contains the evidence variables, the second level contains indicator variables and the third level contains unobservable PIF variables. 
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Figure 3.9: State of the network after a participant finishes the last scenario in Session 3 - S3_Scn4.
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3.6 Result and discussion 

Figures 3.7 and 3.9 show the scores of the same sample participant for the multiple choice 

test and in a virtual environment testing scenario, respectively. The performance of all 36 

participants was assessed using multiple choice tests and virtual environment testing 

scenarios for all 3 sessions, and scores were calculated similarly. Table 3.4 shows a 

comparison between average scores of all participants for the multiple choice test in Session 

3, and in the most complex testing scenario in Session 3 (denoted as S3_Scn4). For both 

compliance and prioritization, the average score for the testing scenario S3_Scn4 was 

below the multiple choice test (57% vs. 97% for compliance, and 57% vs. 94% for 

prioritization). However, participants were able to use information more effectively in the 

virtual environment scenario than the multiple choice test (average score 90% vs. 80% for 

information use). The differences in the scores shows that the participants behaved 

differently than anticipated based on the multiple choice test when put in a highly complex 

virtual emergency situation. Many of the participants who were able to successfully answer 

multiple choice questions related to prioritization and compliance were unable to 

demonstrate these in the virtual environment testing scenario. This is an indication that the 

multiple choice test can be used to diagnose an individual’s knowledge about safety 

regulations and/or their willingness to behave safely. However, the sole use of a multiple 

choice test cannot predict if the individuals will be able to put their knowledge and 

willingness into practice. 
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Table 3.4: Comparison between average scores in the multiple choice test and virtual environment 

testing scenario S3_Scn4 in Session 3 

Behavioral indicators Multiple choice test 

(%) 

Testing scenario (%) 

Information Use (Effective) 80 90 

Compliance (Yes) 97 57 

Prioritization (Right) 94 57 

   

MMA (Good) 96 61 

 

As stated in Section 3.4, participants were divided into two groups: 1) G1: high level 

training or 2) G2: low level training. Table 3.5 shows a comparison between the average 

scores of the two groups. For compliance and prioritization, both of the groups performed 

better in the multiple choice test than in the virtual environment testing scenario. Both 

groups demonstrated better use of information in the testing scenario compared to the 

multiple choice test. In the multiple choice test, G1 demonstrated superior performance in 

terms of information use and compliance (86% vs. 75% for information use, and 99% vs. 

95% for compliance). G1 & G2 showed similar performance in prioritizing tasks (94% vs. 

95% for task prioritization), in the multiple choice test. Similar results were found for the 

virtual environment testing scenario. G1 demonstrated better information using capabilities 

and compliance compared to G2 (93% vs 87% for information use, and 62% vs. 53% for 

compliance) in the virtual environment testing scenario. G1 showed slightly better 

performance in prioritizing for the virtual environment test scenario (58% vs. 56% for task 

prioritization).  
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Table 3.5: Comparison between average scores of G1 and G2 in multiple choice test and virtual 

environment testing scenario S3_Scn4 in Session 3 

Behavioral 

indicators 

Multiple 

choice test 

G1 (%) 

Multiple 

choice test 

G2 (%) 

Testing 

scenario G1 

(%) 

Testing 

scenario G2 

(%) 

Information Use 

(Effective) 
86 75 93 87 

Compliance 

(Yes) 
99 95 62 53 

Prioritization 

(Right) 
94 95 58 56 

     

MMA (Good) 97 95 64 58 

 

Figures 3.10 to 3.12 show a one to one comparison of the multiple choice test scores and 

the virtual environment testing scenario scores for all participants for information use, 

compliance, and prioritization, respectively. The percentages of participants (in the total 

sample size) who achieved good scores in both the multiple choice test and the virtual 

environment testing scenario are 69%, 28% and 14% for information use, compliance and 

prioritization, respectively. There was a significant difference between the scores of the 

multiple choice test and the virtual environment testing scenario for the remaining 

participants. For compliance, 69% of the participants achieved a good score in the multiple 

choice test but failed to demonstrate so in the virtual environment testing scenario. For 

prioritization, this percentage was 78%. For information use, the result was quite the 

contrary. Only 6% of participants achieved a better score in the multiple choice test than in 

the virtual environment testing scenario. However, 22% of the participants achieved a 

better score for information use in the virtual environment testing scenario than in the 

multiple choice test. 
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Figure 3.10: One to one comparison of each participant’s virtual environment testing scenario score 

and their multiple choice test score for the behavioral indicator information use 

 

Figure 3.11: One to one comparison of each participant’s virtual environment testing scenario score 

and their multiple choice test score for the behavioral indicator compliance 
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Figure 3.12: One to one comparison of each participant’s virtual environment testing scenario score 

and their multiple choice test score for the behavioral indicator prioritization 

 

The fact that a substantial number of participants who achieved a high score in the multiple 

choice test failed to demonstrate so in the virtual environment testing scenario indicates 

that a multiple choice test can be used to assess participants’ knowledge and/or their 

willingness to follow instructions, but that it cannot assess whether the participants will be 

able to apply the knowledge and willingness in emergency conditions. Similarly, a 

participant who received a good score in the virtual environment testing scenario and a poor 

score in the multiple choice test may have a sound judgement in a particular situation but 

may lack the knowledge and/or willingness. Rather than using a multiple choice test or a 

virtual environment test as a standalone, a combination of the two techniques can provide 
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a better understanding of individuals’ behavior in emergency conditions and help ensure 

they are better prepared for emergency situations. The multiple choice test can be used 

initially to provide an assessment of individuals’ knowledge about safety regulations and 

their willingness to behave safely. The virtual environment testing scenarios can be used 

next to assess if individuals are able to apply their knowledge and willingness into practice. 

For example, individuals achieving good scores in compliance for the multiple choice test 

are believed to have sufficient knowledge about the rules and regulations. A virtual 

environment can then be used to assess how compliant these individuals are in following 

the rules and regulations in emergency conditions. Once the other behavioral indicators are 

assessed in the same way, unobservable PIFs can be assessed using the behavioral 

indicators. 

3.7 Limitation of the study 

There are a few limitations of the study that should be noted. First of all, it has to be 

considered that the virtual environment can provide a certain degree of realism and should 

not be expected to be an exact counterpart of real life emergency situations. Secondly, the 

evidence (i.e. questions or tasks) was not evenly distributed across behavioral indicators 

and this may have biased some of the results. For example, only one question (S3_Q6) was 

used to assess prioritization in the multiple choice test, whereas there were six questions to 

assess compliance. So, the assessment of prioritization may not be as robust as it should 

be. Having sufficient evidence for each indicator will increase the accuracy of the 

assessment. Thirdly, the study was designed to achieve three different research objectives 

and as a result there were a few constraints that needed to be maintained. The management 
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or controlling of constraints in the study may have conditioned the performance of the 

participants in particular ways. An example could be the order of the multiple choice test 

and the virtual environment testing scenarios in each session. The participants had to 

complete the multiple choice test in advance of the testing scenarios. This order of testing 

meant that the feedback provided after multiple choice test may have influenced the score 

of the virtual environment testing scenario, which was not considered in the experimental 

design. An in-depth analysis was not performed to determine the effect of an individual’s 

prior video gaming experience on their testing scenario performance. The groups were 

balanced in terms of their self-reported video gaming experience, but it was not considered 

if the video gaming experience helped individuals get a better score in the virtual 

environment testing scenarios. Finally, the limited sample size might have imposed some 

constraints on the results and should be taken into consideration in future studies. 

3.8 Conclusion 

Though unobservable PIFs play an important role in shaping human performance, they are 

nearly impossible to measure. However, behavioral indicators associated with the 

unobservable PIFs are measurable and can help define the state of the unobservable PIFs. 

In this paper, a BN was first developed using the causal relationship between behavioral 

indicators and unobservable PIFs. The network was then extended by connecting each 

behavioral indicator with evidence variables. Conventional approaches for collecting this 

form of evidence involve using self-assessment multiple choice questionnaires. However, 

as reliable as these questionnaires may be, there is always the risk that the collected 

responses will only represent an individual’s knowledge and/or willingness to behave 
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safely, instead of their actual behavior in emergency situations. This paper proposes the use 

of virtual environments along with the questionnaires to overcome this problem. 

 

Evidence was collected using both multiple choice tests and virtual environment testing 

scenarios in the experimental study presented in this paper. The comparison of outcomes 

of the two tests shows the difference between the individuals’ expected behavior and their 

actual behavior when placed in an emergency situation. A substantial number of 

participants who achieved a high score in the multiple choice test failed to demonstrate so 

in the virtual environment testing scenario. On the other hand, some participants who did 

not do well in the multiple choice test managed to demonstrate acceptable performance in 

the virtual environment testing scenarios. A combined testing approach including both 

multiple choice test and virtual environment test can help to ensure that participants have 

the required knowledge and the skill to apply the knowledge in emergency situations. A 

comparison between the two groups (G1: high level training and G2: low level training) 

shows that the highly trained group performed either better or equal in both multiple choice 

test and virtual environment testing scenarios. This indicates the benefit of advanced 

training in improving participants’ performance. 

 

Virtual environment scenarios are a closer representation of real life emergency situations 

when compared to a multiple choice test and can provide a better understanding of 

individuals’ behavior. This can be extremely helpful when delivering personalized training 
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to offshore personnel and as a result can ensure better preparedness for personnel in real 

life emergency situations. 
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Abstract 

Offshore emergency conditions are dynamic in nature and personnel on board are 

challenged with high risk, time pressure, uncertainty, and the complexity of the situation. 

This paper investigates how different attributes of emergency scenarios influence people’s 

choice of egress route subsequent to training. An empirical study was carried out in a virtual 

environment (VE) with 17 naïve participants. The participants were trained to muster 

during emergencies using a lecture based training (LBT) approach. Training sessions in 

LBT consisted of computer based training tutorials and simulated training scenarios. 

Participants’ performance was then tested in simulated testing scenarios. It was observed 

that given the same training, people used different sets of attributes to make decisions on 

the egress route. This can help to diagnose causes of poor performance and to design 

adaptive training lessons. Such identification can also help in the assessment of the efficacy 

of the training curriculum, or the pedagogical approach.  

 

To evaluate the prediction accuracy of the decision trees, the outcomes were compared to 

the actual observed outcomes of the participants in scenarios in the testing data set. Results 

show an average of 95% prediction accuracy of the decision trees. 

4.1 Introduction 

Post-accident analyses of disasters like Piper Alpha and BP Deepwater Horizon show that 

the crises might have been managed more effectively if the personnel on board could take 

proper decisions and actions immediately (Flin, 1997). Being able to handle the remoteness 

of the installation, deal with dynamically evolving situations, and effectively use 
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information coming from different sources demand a high level of competency (Flin, 

Slaven, & Stewart, 1996). Virtual environments (VEs) in the offshore and maritime 

industries can help people gain such competency. VEs can be used to create artificial 

emergency scenarios with hazards such as fire, explosion, and blackouts, and to train 

individuals about their roles and responsibilities during an emergency (Veitch et al., 2008). 

During an emergency, the role of general personnel is to choose a tenable route to egress 

and muster at their designated muster stations. The focus of this paper is to discover egress 

strategies of individuals during emergency conditions after they have been trained in a VE 

(Smith et al., 2017). 

 

To this aim, an experimental study was conducted in a VE called All-hands Virtual 

Emergency Response Trainer (AVERT). AVERT is modeled after an offshore oil platform 

with high levels of detail and can create credible emergency scenarios ranging from muster 

drills to more complex scenarios where selected egress routes are blocked with hazards 

(House et al., 2014). 17 participants took part in the study with a goal to learn how to 

successfully muster during an offshore emergency situation. Participants were trained using 

a lecture based training (LBT) approach consisting of interactive video tutorials and 

simulated training scenarios. After training, participants performance’ was tested in 

multiple simulated testing scenarios.  Behavior of the participants were observed during 

both training and testing scenarios, and human performance data were collected. The 

collected data were divided into training and testing data sets. After feeding the training 

data to a decision tree algorithm, a set of decision rules were obtained that describes how 
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people use different attributes of emergency scenarios to choose an egress route. It was 

observed that even though the participants were exposed to the same training scenarios, on 

many occasions, they evidently comprehended the information provided in the scenarios 

differently. Thus, the characteristics of the attributes in a scenario can vary from individual 

to individual, and so can their decision trees (Joea & Boringa, 2014). 

 

Identifying route selection strategies can be useful to: 

• predict whether the participant will be able to successfully egress in a given context. 

• identify holes in the strategies that lead to poor performance (Elkind et al., 2014). 

Comparison of successful versus unsuccessful strategies may help to identify 

weaknesses of certain strategies and uncover ways to improve performance by adaptive 

training. 

• identify weaknesses of different pedagogical approaches and suggest possible 

improvements. Given proper training and repeated exposure to emergency scenarios, it 

is expected that the problem-solving strategies of individuals will converge and lead to 

success. If not, this can be an indication of weaknesses in the training curriculum or 

pedagogy.  

• train software agents or virtual operators so that they can reproduce similar or 

compatible problem-solving strategies (Massaguer et al., 2006). 
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The decision trees were used to predict people’s performance in scenarios in the testing 

data set. Outcomes of the decision trees were compared to the observed outcome of the 

participants, thereby providing a basis to calculate the prediction accuracy of the trees. 

 

As the decision tree is at the core of the work presented in the paper, an overview of decision 

tree induction is presented in Section 4.2. Section 4.3 presents the methodology and covers 

the major work done in the paper. Section 4.4 presents and discusses the results. Section 

4.5 summarizes and concludes the findings.  

4.2 Overview of Decision tree induction 

Induction refers to the process involved in creating generalizations from the observed 

phenomenon (Badino, 2004). In inductive reasoning, inference leads from individual cases 

to general principles. Given a collection of training examples (condition 𝑥, action 𝑓(𝑥)) a 

hypothesis ℎ is generated that approximates the action 𝑓(𝑥) (Shaw et al., 1990). Among 

different induction techniques, decision tree induction is used in this paper. Decision tree 

offers a visual representation of the reasoning process and has valuable diagnostic 

capabilities. Compared to other methods, such as artificial neural networks or support 

vector machines, decision trees can be constructed relatively quickly. Another benefit of 

decision tree, which is particularly important for this paper, is that it does not require any 

prior assumptions about the data and can work with limited data compared to other 

techniques (Duffy, 2008).  

 



104 

 

 

The process of induction involves dividing the data cases into certain groups based on the 

value of a selected attribute, with the goal that the examples in any particular group will 

belong to the same class. One of the critical tasks of developing a tree is to select the best 

attribute to branch. Different decision tree algorithms (i.e. ID3, C4.5, CART) use different 

attribute selection measures such as information gain, gain ratio, and Gini index (Rokach 

& Maimon, 2014). As all attributes are categorical and there is no concern of missing data 

points, the ID3 decision tree algorithm is used in this paper. ID3 uses information gain for 

attribute selection (Han et al., 2011). 

 

Information gain is an attribute selection measure that is based on the concept of 

“information content" or the entropy of a message. The entropy of a random variable 𝑋 

measures the amount of uncertainty of 𝑋.  A small entropy implies low uncertainty. The 

idea is to partition data cases into groups such that entropy, and hence uncertainty, is 

minimized.  

 

Suppose there are 𝑚 distinct class labels, 𝐿1, 𝐿2, … , 𝐿𝑚. A random variable 𝑋 = 𝐿𝑖 if a 

randomly selected object from the entire population has label 𝐿𝑖. Given 𝑆 is the training 

set, and 𝑆𝑖 is the subset of objects in 𝑆 with the label 𝐿𝑖, 𝑃(𝑋 = 𝐿𝑖) can be calculated using 

equation 4.1. 

 

𝑃(𝑋 = 𝐿𝑖) ≈
|𝑆𝑖|

|𝑆|
                                                                          (4.1) 
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Entropy of 𝑋 can then be computed as: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋) =  − ∑ 𝑃(𝑋 = 𝐿𝑖) 𝑙𝑜𝑔2 𝑃(𝑋 = 𝐿𝑖)

𝑚

𝑖=1

=  − ∑
|𝑆𝑖|

|𝑆|

𝑚

𝑖=1

  𝑙𝑜𝑔2  
|𝑆𝑖|

|𝑆|
                (4.2) 

 

Now, suppose a data set 𝑆 is being partitioned using attribute 𝐴. 𝐴 is discrete and has 𝑘 

distinct values 𝑎1, 𝑎2, … , 𝑎𝑘. Partitioning the data set on 𝐴 will result into 𝑘 data subsets, 

𝑆1, 𝑆2, … , 𝑆𝑘 where each 𝑆𝑗 contains data cases that have 𝐴 =  𝑎𝑗. The weighted average 

entropy across all 𝑆𝑗 can be calculated using equation 4.3. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐴) = ∑
|𝑆𝑗|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑗)

𝑘

𝑗=1

                                               (4.3) 

 

Entropy of all attributes can be measured in the same way. Entropy provides a ranking of 

the attributes given the training data cases. At any time, the attribute with the lowest entropy 

is chosen for partitioning. Or equivalently, the information gain of the attribute can be 

calculated as 𝐺𝑎𝑖𝑛 (𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐴), and the attribute with the highest 

gain can be selected for partition. 

 

Algorithm 4.1 summarizes the steps of inducing a decision tree from the training data set 

(Han et al., 2011). 
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Algorithm 4.1: Basic algorithm for inducing a decision tree from a training data set 

Input: Training data set, Attribute list 

Output: A decision tree 

Method: 

Begin 

1. Create a node. 

2. If all examples at the current node are of the same class, then label the node with 

the class   and stop. 

3. If the data subset at the current node is empty, then label the node with the 

majority class label in its parent data set. 

4. If no attributes are left for further classification, then label the node with the 

majority class in the current data subset and stop. 

5. For each remaining attribute 𝐴𝑖, compute the value of information gain 𝐺𝑎𝑖𝑛(𝐴𝑖). 

6. Choose the attribute with the highest gain 𝐺𝑎𝑖𝑛(𝐴𝑖) to branch the current node. 

7. For each branch node, go to step 2. 

End 

 

4.3 Methodology 

Figure 4.1 summarizes the steps followed to discover the route selection strategies of 

individuals in emergency situations. First, an experimental study was conducted in the VE 

with 17 participants. Participants were trained using a LBT approach and their performance 

data were collected during the experiment. The collected data were divided into training 
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and testing data sets. The training data were stored in a data repository in the form of a two-

dimensional matrix. This data matrix was used as input to the decision tree algorithm to 

identify the behavioral patterns of route selection. Section 4.3.1 describes the experimental 

design and data collection in detail. Section 4.3.2 discusses the development of the data 

matrices. Section 4.3.3 illustrates the development of the decision trees using the data 

matrices. The testing data set was used to assess the prediction accuracy of the decision 

trees. This is discussed separately in Section 4.4. 

 

 

Figure 4.1: Steps to identify route selection strategies using experimental data 

4.3.1 Experimental design 

The data used in this paper were originally collected during an experimental study 

presented in Smith (2015). For clarity, only the part of the experimental study that is 
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relevant to this paper is discussed here. More details can be found in Smith (2015) and 

Musharraf et al. (2016). 

 

A total of 36 participants took part in the study with the goal to learn how to muster 

successfully during offshore emergency situations. The participants were naïve concerning 

any detail of the experimental design, they were not employed in the offshore oil and gas 

industry, and therefore they were not familiar with the offshore platform. 17 randomly 

selected participants were given a higher level of training than the others, and only data 

collected from these participants are used in this paper. The participants were trained using 

a LBT approach consisting of 3 sessions. In the first session, they received a basic offshore 

emergency preparedness tutorial, 4 training scenarios, a multiple choice test, and 4 testing 

scenarios. In both Session 2 and Session 3, participants received an advanced training 

tutorial about alarms and hazards respectively, 4 additional training scenarios, a multiple 

choice test, and 4 testing scenarios. So, the participants had to perform in 24 scenarios in 

total. The purpose of the training scenarios was to provide participants exposure to the VE 

and emergency situations so that they could learn to choose an egress route and successfully 

muster at their designated muster stations. After the training phase, their performance was 

assessed in the testing scenarios. Though active feedback was not provided during the 

scenarios, an automated review of the performance was presented to the participants after 

each scenario. The review included several performance metrics, such as route selected for 

evacuation, time spent running, interaction with fire doors and watertight doors, interaction 
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with hazards, and reporting at the muster stations. A total of 12 scenarios are analyzed in 

this paper for which the starting location was the cabin in the accommodation block.  

 

Videos of participants’ performance in the scenarios were recorded during the study for 

later data analysis. Observation logs were also kept by the investigators to record any 

observations about the participants’ behavior that was not captured by the video. The log 

also recorded any questions that participants asked during the study.  

4.3.2 Developing the data matrices 

Among the 12 scenarios, 8 scenarios were used to train the decision tree algorithm. Among 

the 4 remaining scenarios, 3 were used to test the prediction accuracy of the decision tree. 

The other scenario had to be excluded from the testing data set as the attribute values in 

this scenario were very different than the training scenarios and decision trees cannot make 

a prediction for attribute values they have not seen before. 

 

The training data were stored in a repository in the form of a matrix. Figure 4.2 shows an 

instance of the matrix. As shown in the figure, the matrix is two-dimensional, with 

scenarios as row heads (𝑆1, 𝑆2, … , 𝑆𝑛), and attributes (𝐴1, 𝐴2, … , 𝐴𝑛) and associated actions 

(𝐸) as column heads. In general, attributes can be discrete or continuous. All attributes 

considered in this paper are discrete. 
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Figure 4.2: Data stored in the repository in the form of a two-dimensional matrix. 𝑺𝟏, 𝑺𝟐, … , 𝑺𝒏 

represent the scenarios, 𝑬𝟏, 𝑬𝟐, … , 𝑬𝒏 represent the associated actions, 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 represent the 

attributes, 𝑽𝒊𝒋 represents the  𝒋𝒕𝒉 value of the 𝒊𝒕𝒉 attribute (each attribute can take 𝒌 possible values) 

 

The attributes of different scenarios in this study were: Final destination, Lights, Presence 

of hazard, Alarm, Route direction in the PA, and Obstructed route. An additional attribute, 

Route taken in previous scenario, was considered to represent the participant’s chosen route 

in the preceding scenario. Table 4.1 shows the different possible values of each attribute. 

Table 4.1: Possible values of each attribute 

Attribute Possible values 

Final destination Muster station (MS), Lifeboat station (LB) 

Lights On, Off 

Presence of hazard Yes, No 

Alarm None, General platform alarm (GPA), 

Prepare to abandon platform alarm (PAPA) 

Route direction in the public address 

(PA) announcement 

None, Primary route, Secondary route 

Obstructed route None, Primary route, Secondary route 

Route taken in previous scenario None, Primary route, Secondary route 

  

In all of the scenarios, the participants started in their cabin and were asked to muster at 

either the muster station or lifeboat station. There were two routes (primary route and 
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secondary route) to get to the final destination from the cabin. Depending on the values of 

the attributes, participants had to choose a route to egress (i.e. IF obstructed route = primary 

route, THEN the route of choice should be secondary route). 

 

It has to be noted that even though the participants went through the same training and were 

exposed to the same scenarios, their understanding of the situations could be different. This 

means that even for the same scenario, characteristics of scenario attributes may vary from 

individual to individual. For example, suppose in a scenario the PA announcement is 

suggesting to take the primary route. For a participant who understood the PA, the value of 

the attribute Route direction in PA would be Primary route. However, for a participant who 

failed to understand the PA, the value of the same attribute could be None. The video files 

and information recorded in the observation logs were used by the investigators to interpret 

participants’ understanding of a scenario and assign the attribute values. This resulted in 

several different data matrices. Table 4.2 shows the data matrix for one sample participant. 

It includes both the training and testing scenarios from Session 1, and the training scenarios 

from Session 2 for a total of 6 data cases. 

 

Data matrices of other participants can be generated in the same way. 
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Table 4.2: Data matrix at the end of training scenarios in Session 2 

Attributes Action 

Scenario Final Destination Lights Presence of hazard Alarm Route direction 

in PA 

Obstructed 

route 

Previous 

route taken 

Choose route 

to egress 

LE2 MS On No None Primary  None N/A Primary 

LE3 LB Off No None Secondary None Primary Secondary 

TE1 LB On No None None None Secondary Primary 

TE3 MS Off No None None None Primary Primary 

LA2 MS Off No GPA None None Primary Primary 

LA3 LB On No PAPA None None Primary Primary 
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4.3.3 Decision tree development 

Decision tree induction generates a decision tree from the data cases of known classes 

described in terms of a fixed set of attributes (Shaw et al., 1990). Given the data cases 

shown in Figure 4.2, the goal was to classify the cases into groups such that all examples 

in a group have the same choice of egress route. As discussed in Section 4.2, at any time 

‘t’ the classification is done using the attribute with highest information gain. Figure 4.3 

summarizes the process. 

 

 

Figure 4.3: Classifying data cases shown in Figure 4.2 based on the characteristics of the attributes 

The data matrices generated in Section 4.3.2 were used as inputs to the decision tree 

algorithm. Figure 4.4 shows the resulting decision tree for the data matrix presented in 

Table 4.2. 



114 

 

 

 

Figure 4.4: Decision tree developed from the data matrix shown in Table 4.2 

 

As shown in Figure 4.4, the strategy of the participant is to listen to the PA announcement 

for route direction and choose a route accordingly. When no route direction is provided in 

the PA, the participant follows his/her preferred route which is the primary route. Strategies 

of the other participants can be discovered in the same way. 

 

The tree shown in Figure 4.4 can be used to predict the participant's performance in the 

testing scenarios in Session 2. Once a participant finishes performing in the testing 

scenarios, experiences from the scenarios are added to the data matrix for re-training a new 

tree to test the next session’s scenarios. 

 

As the participant moves into Session 3 and finishes performing the training scenarios, 

more content is added to the data matrix. This changes the decision tree as well. Table 4.3 

shows the state of the data matrix for the same participant after training in Session 3. Figure 

4.5 shows the corresponding decision tree. The tree shown in Figure 4.5 can be used to 

predict the participant’s performance in the testing scenarios in Session 3.  More on the 

prediction accuracy will be discussed in Section 4.4.2.
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Table 4.3: Data matrix at the end of training scenarios in Session 3 

Attributes Action 

Scenario Final 

Destination 

Lights Presence of 

hazard 

Alarm Route 

direction in 

PA 

Obstructed 

route 

Previous 

route taken 

Choose route to 

egress 

LE2 MS On No None Primary None N/A Primary 

LE3 LB Off No None Secondary None Primary Secondary 

TE1 LB On No None None None Secondary Primary 

TE3 MS Off No None None None Primary Primary 

LA2 MS Off No GPA None None Primary Primary 

LA3 LB On No PAPA None None Primary Primary 

TA1 MS On No GPA None None Primary Primary 

TA3 LB Off No PAPA None None Primary Primary 

LH3 

(Frame 1) 

MS On No GPA None None Primary Primary 

LH3 

(Frame 2) 

MS On Yes GPA Secondary Primary Primary Secondary 

LH4 

(Frame 1) 

MS On No GPA None None Secondary Primary 

LH4 

(Frame 2) 

LB On Yes GPA None None Secondary Secondary 

LH4 

(Frame 3) 

LB Off Yes PAPA None None Secondary Secondary 
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Figure 4.5: Decision tree developed from the data matrix shown in Table 4.3 

 

It has to be noted that scenarios in Session 3 of the experiment were dynamic, and the value 

of the attributes changed during the scenarios. As shown in Table 4.3, these scenarios (i.e. 

LH3, LH4) were divided into frames such that in each frame the characteristics of the 

attributes remains static. The participant had to choose an egress route based on the value 

of the attributes in each frame. For example, in LH3, the participant started in his/her cabin 

when a GPA sounded and the PA announced that the platform is in alarm status. There was 

no indication of hazard or obstruction of any route in the PA. Based on the value of the 

attributes, the participant chose the primary route to egress at this time. This is the first 

frame of LH3. As the scenario progressed, the PA announced that there is a fire on the 

upper deck and smoke in the main stairwell of the accommodation block. This confirmed 
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the presence of a hazard and indicated that the primary route was obstructed. Based on the 

changed values of the attributes, in Frame 2, the participant re-routed and took the 

secondary route to egress.  

 

This section discussed the data matrix and decision tree generation of one sample 

participant in detail. As discussed earlier in this section, the values of the attributes of the 

data matrix can vary from individual to individual and so can the decision trees. The 

following section shows the decision trees for all 17 participants. 
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4.4 Results and discussion 

4.4.1 Analysis of results 

Table 4.4 shows the different decision trees for all participants in the study. 

 

As shown, for 13 participants out of 17, the general understanding or strategy can be 

identified using a decision tree. For the remaining participants, the decision rules from the 

tree were the same as the ones in the data matrix and no generalization could be made. 

 

Given the training, it was expected that participants would be able to interpret the PA and 

choose an egress route based on the direction provided in the PA. Only 37% of the 

participants in Session 2 chose an egress route based on the route direction in PA. In Session 

3 this declined to 25%. As shown in Table 4.4, participants were using other attributes, 

such as final destination, previous route taken, and obstructed route, to choose an egress 

route. Using such attributes for route selection can lead to failure (i.e. interaction with 

hazard). It is possible to improve the training program so that such failure is eliminated and 

all participants have a route choice strategy that leads to success. 

 

 



119 

 

 

Table 4.4: Decision tree for 17 participants 

Participant 

No 

Decision Tree at the end of training in Session 2  

(No hazard) 

Decision Tree at the end of training in Session 3  

(With Hazard) 

G1-03, 

G1-09, 

G1-10 

 
 

 

G1-01, 

G1-04, 

G1-07, 

G1-08 
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Participant 

No 

Decision Tree at the end of training in Session 2  

(No hazard) 

Decision Tree at the end of training in Session 3  

(With Hazard) 

G1-14 At any condition: Choice of route = Primary route 

 
 

G1-16 

 

 
 

G1-13 At any condition: Choice of route = Secondary route 

 

At any condition: Choice of route = Secondary route  
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Participant 

No 

Decision Tree at the end of training in Session 2  

(No hazard) 

Decision Tree at the end of training in Session 3  

(With Hazard) 

G1-06 

 

 

 

G1-05 

 

As long as the participant understands PA, s/he follows the 

same decision tree. If the participant fails to understand PA, 

then s/he makes a choice based on obstructed route. In case PA 

is not understandable, the decision tree is changed as below: 
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Participant 

No 

Decision Tree at the end of training in Session 2  

(No hazard) 

Decision Tree at the end of training in Session 3  

(With Hazard) 

G1-02 

 

 

G1-15 
Had a hard time with doors, so chose a route with fewer doors. Excluded from data set as the attribute is too specific for 

AVERT and won’t apply in real life. 

G1-17, 

G1-11, 

G1-12 

As the choice of route was random, decision tree does not give any more generalization than the data matrix. The decision 

tree contains the same decision rules as the data matrix, no behavioral pattern or strategy is identified. 
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4.4.2 Prediction accuracy 

The decision trees generated at the end of Session 2 were used to predict participants’ 

performance in the testing scenarios in Session 2. As the participants moved into Session 

3, the data matrices were re-trained and new examples were added. The updated decision 

trees were used to predict performance of the participants in the testing scenarios in Session 

3. The prediction accuracy of the trees was then calculated using equation 4.4. Table 4.5 

summarizes the result. 

 

(%)𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛

𝑁
 × 100                                                    (4.4) 

 

Where 𝑛 = number of test scenarios for which (predicted outcome = observed outcome) 

    and 𝑁 =  total number of test scenarios 

Table 4.5: Classification accuracy of the decision trees 

Participant no (%) prediction accuracy of the decision trees 

G1-01 100 

G1-02 100 

G1-03 100 

G1-04 67 

G1-05 100 

G1-06 67 

G1-07 100 

G1-08 100 

G1-09 100 

G1-10 100 

G1-13 100 

G1-14 100 

G1-16 100 

Average 95 
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As shown in Table 4.5, the prediction accuracy of the decision trees is 95% on average. 

The trees predicted the performance of 11 participants with 100% accuracy (3 out of 3 

testing scenarios), and 2 participants with 67% accuracy (2 out of 3 testing scenarios). 

4.5 Limitations 

There are a few limitations with the study that need to be mentioned. First of all, VE can 

only provide a certain degree of realism and cannot be considered as an exact representation 

of the real world operating conditions. Secondly, the participants of the study were naïve. 

It is anticipated that repetition of the same experiment with real offshore workers would 

result in a different set of route selection strategies. Finally, the training and testing data set 

used in the paper is limited. The small training data set increases the possibility of 

overfitting. Future work will aim for a larger data set with balanced classes to improve the 

prediction accuracy. Another improvement in future works will be to use more advanced 

decision tree algorithms (e.g. C4.5 or C5) that support tree pruning to avoid overfitting. 

Two common approaches of tree pruning are: 1) Stop the growing phase at a certain point 

even if the halting conditions in the growing phase are not met, and 2) Let the tree grow to 

its fullest height in the growing phase but then remove leaves iteratively based on some 

criterion. More details on the pruning process can be found in Han et al. (2011). 

4.6 Conclusion 

Though extensive research has been done on human behavior in some industries, limited 

studies are available on behavioral representation of offshore workers (Sharma et al., 2008, 

Baron et al., 1980, Woods, 1987, Cacciabue et al., 1992, Sasou et al., 1995). This paper 
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presents a study that investigates peoples’ route selection behavior in offshore emergency 

situations after a targeted training program. The decision tree algorithm is used to identify 

peoples’ behavioral patterns during route selection. Results show that the trees can predict 

people’s choice of route in future emergency scenarios with an average of 95% accuracy. 

 

Identification of the route selection strategies can be useful in many ways. First, the 

decision trees can be used to predict the response of general personnel for a given situation. 

This can be extremely helpful in designing adaptive training so that individuals can reach 

competency faster. Next, the range of decision trees can help to detect the most effective 

strategy for a given situation. The ineffective strategies can be analyzed to see how and 

why they lead to poor performance, and find out ways of improvement. The identified 

strategies can also be used to assess the training curriculum and/or pedagogical approach. 

It is expected that a sound training process would ensure convergence to strategies that lead 

to success. Any systemic exception might be an indication of weakness of the training 

approach itself. Identifying and addressing of such weakness can yield better training 

curriculum or pedagogy. Finally, the strategies can be used to train human-like virtual 

operators. Virtual operators with different levels of skills (naïve versus expert) can be 

created by training them with different sets of strategies (successful versus erroneous). 
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Abstract 

The offshore oil industry functions in a team work culture, in which operations depend not 

only on individuals’ competency, but also on team skills. Team skills are even more 

necessary when it comes to handling emergency conditions as they challenge personnel on 

board with high risk, time pressure, and complexity. This raises the need for training that 

goes beyond conventional training programs and incorporates team skills exercises. The 

major difficulty to design such training is that it involves practicing emergency exercises 

with a potentially large number of participants. Such large-scale team exercises suffer from 

both organizational and educational drawbacks. One solution to this problem is to use 

artificial agents that can reproduce the behavior of the team members. This paper presents 

a behavior model that can simulate the response of general personnel during emergency 

situations. The variability in human behavior is modeled using different performance 

influencing factors (PIFs). Empirical evidence is used to identify the sources of variability 

that are encoded in the agents to allow a realistic range of human behaviors. Though 

variability can come from both physical and mental differences, the focus of this paper is 

on the later. Focus is given to across-subject variability rather than within-subject 

variability. 

5.1 Introduction 

The offshore oil industry functions in a team work culture and operations usually involve 

a group of people working together. This makes teamwork an essential component of 

effective emergency responses. Members of a team not only need to understand their own 

roles and responsibilities, but also need to have clear understanding of the roles and 
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responsibilities of the other team members. Such understanding is critical for emergency 

situations as most of the members will have different roles and responsibilities than their 

everyday duties (Flin, 1997). However, traditional training programs are often generic and 

are not designed to provide trainees with the understanding of social and cognitive aspects 

of effective team work. 

 

O'Connor & Flin (2003) discuss the possibility of adopting the crew resource management 

technique, pioneered in the aviation industry, in offshore oil industries to enhance team 

performance. Crew resource management (CRM) is defined as “using all the available 

resources – information, equipment, and people – to achieve safe and efficient flight 

operations” (Moffat & Crichton, 2015). A significant part of the CRM training requires the 

trainees to participate in team training exercises using simulator flights. Organizing such 

team exercises for offshore industries may suffer from both organizational and educational 

drawbacks (Van Diggelen et al., 2010). Gathering all the team members at the same time 

and at the same location itself is a challenge. Even when it is possible, the financial 

requirement is high. Also, the members often have different training needs based on their 

competency levels. One solution to this problem is to develop a team training platform in 

a simulator where the roles of some of members are played by humans, while the roles of 

others are played by artificial intelligent agents (Van Diggelen et al., 2010). Though 

extensive research has been done to create artificial intelligent agents in military (Jones et 

al., 1999; Sampson & Ripingill Jr, 2003; Wray & Laird, 2003), aviation (McNally, 2005; 

Sharma, 2009), and nuclear power plant (Cacciabue et al., 1992; Chang & Mosleh, 2007a; 
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Dang, 1996) training simulators, no such model is available to date for offshore emergency 

training simulators. 

 

This paper presents a computational human behavior simulation model (HBM), which is 

the first step to create such intelligent agents for an offshore emergency training simulator. 

Realism of agents largely depends on their underlying HBMs.  HBMs are computational 

models that probabilistically simulate human behavior in different conditions. The purpose 

of the HBM presented in this paper is to reproduce the behavior of people working on 

offshore petroleum platforms, general personnel in particular, during emergency situations.  

 

Unlike other human behavior models, the proposed model considers a larger fraction of the 

possible behavior space, which includes both correct and incorrect behaviors (Wray & 

Laird, 2003; McNally, 2005). Different performance influencing factors (PIFs) are used to 

model the variability across the behavior space. As use of subject matter experts’ (SMEs’) 

opinion often leads to a less reliable model (Chang & Mosleh, 2007c), empirical evidence 

is used in the development of the HBM. To this end, a two-level, three factor experiment 

was conducted to observe the influence of different PIFs on emergency response. Earlier 

works of the authors have discussed in detail the underlying mathematical models that 

capture the impact of external (Musharraf et al., in press) and internal PIFs (Musharraf et 

al., 2016) on human performance. Details of the learning and decision making process of 

individuals have been discussed in (Musharraf et al., 2017b). The goal of this paper is to 

present an HBM that integrates the different mathematical models and memory structure 
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discussed in previous papers to produce automated probabilistic simulation of offshore 

workers’ response under the pressure of an emergency. Prior to implementing the HBM in 

the actual simulator, it is modeled in the Integrated Performance Modeling Environment 

(IPME) simulation framework to define the implementation work scope and identify the 

technical challenges. Example results generated by the HBM during an IPME scenario 

simulation are discussed in this paper. Implementation of the HBM in the training simulator 

and validation of the HBM are discussed separately in (Musharraf et al., 2017). 

5.2 Overview of the HBM 

Modeling human behavior is a challenging area of research that needs considerations of 

both modeling and simulation, and behavioral and cognitive psychology (Goerger et al., 

2005). There are qualitative models that focus mostly on the behavioral and cognitive 

psychology, and describe in detail the evolution of the human cognition process upon 

receiving an external stimulus from the environment (Trucco & Leva, 2007). Then, there 

are quantitative models that are based on the structure of the qualitative ones, but focus on 

the computational functionalities of modeling and simulation (Chang & Mosleh, 2007a). 

The HBM presented in this paper is a computational behavior simulation model that is a 

simplification of complex environmental settings and complex cognitive processes of 

human operators. 

 

Section 5.2.1 introduces the different components of the HBM model. Section 5.2.2 

describes how knowledge gained from training and experience is stored and retrieved 

during cognitive functions. The reasoning module is also discussed in this section. 
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5.2.1 Dynamic response model 

The dynamic response model consists of four component models – an environment model, 

an operator model, a performance shaping model, and a task network model (after Chang 

& Mosleh, 2007a). The dynamic response model presented in this paper looks at individuals 

in isolation. Collaboration of team members and the concept of shared situation awareness 

is out of scope of this paper. 

 

Environment model: The environment model includes external factors that define the 

circumstances or environment in which the individual is situated. This allows modeling 

human response under different environment conditions. External factors in the 

environment model include team-related factors (e.g. communication availability and 

quality, team composition), organization factors (e.g. safety and quality culture, procedure 

availability, adequacy, and quality), environment factors (e.g. temperatures, visibility), and 

conditioning events (e.g. latent failures) (Chang & Mosleh, 2007b). 

 

Operator model: The operator model defines the characteristics of an operator in terms of 

internal factors. In the context of this paper, operator refers to general personnel working 

on offshore petroleum platforms. Though internal factors include both physical and non-

physical attributes of the operator, this paper focuses on non-physical attributes only. The 

operator model allows modeling operators who may have different responses given the 

same environmental condition. Examples of internal factors used in the operator model 

include attention, bias, compliance, and efficacy of information use. 
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Task networking model: Task network modeling focuses on understanding the tasks that 

need to be simulated. The task network model graphically represents the sequence of tasks 

performed by an operator. Operators’ behavior generally consists of different interrelated 

cognitive functions (Trucco & Leva, 2007). This paper considers four cognitive functions 

performed by the general personnel: perception, interpretation, decision making, and 

execution. Any function is decomposed into a series of sub functions, which in turn are 

decomposed into tasks for the development of the task network. Failure can happen at any 

stage of performing a task. Also, there can be more than one correct behavior or way to 

fail. The task network helps to identify possible deviations from the ideal behavior path(s) 

that may lead to error. 

 

Performance shaping model: This model includes a set of performance shaping functions 

(PSFs). The PSFs generate the rules of behavior that govern the performance of general 

personnel while performing cognitive tasks. The response of general personnel depends on 

the state of the operator (e.g. stress, task related and non-task related load) and the current 

state of knowledge (e.g. scenario based knowledge from training and experience). The PSFs 

take the state of the operator and current state of knowledge into account and generate the 

associated operator response for a given set of PIFs. The PSFs used in the HBM 

development process are defined using a Bayesian Network (BN) approach. BNs have 

proven to be a powerful modeling tool due to their capability to 1) consider dependency 

among PIFs and associated actions, 2) quantify the impact of different PIFs on successful 

or erroneous behavior, and 3) update success or failure likelihood each time new evidence 
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becomes available (Fenton & Neil, 2012; Podofillini & Dang, 2013; Sundaramurthi & 

Smidts, 2013). BNs have been widely used to model the impact of different PIFs on human 

performance or human error (Baraldi et al., 2009; Dang & Stempfel, 2012). Details of the 

PSF development is discussed in Section 5.3. 

 

Figure 5.1 shows the interaction between the external world and the component models. At 

any time ‘t’ the state of PIFs in the environment model and operator model are defined 

based on the events happening in the external world. The state of the internal and external 

factors defines the operator’s state of mind. The PIFs also influence how information is 

memorized from training and experience, and retrieved when necessary. The PSF model 

takes the operator’s state of mind and current state of knowledge into account, and 

generates the behavior rules that govern the operator’s response during cognitive tasks. 
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Figure 5.1: Dynamic response model 

5.2.2. Memory structure and cognitive functions 

This section describes the memory structure and the cognitive functions as part of the HBM. 

The HBM used here simplifies the complex memory and cognitive processes of human 

operators. 

 

 The purpose of the HBM presented in this paper is to create intelligent agents for an 

offshore emergency training simulator. It is assumed that these agents’ response to 

emergency situations depends in part on the knowledge they have stored in their memory. 
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A database representative of human memory is created in the HBM. The two main 

components of the memory structure are knowledge base and working memory, which are 

modeled based on the idea of long-term and short-term memory in the information 

processing model of Atkinson & Shiffrin (1968). According to the information processing 

model, memory consists of several ‘stores’ with different storage capacity. In the proposed 

HBM, the working memory has a finite capacity and stores the information relevant to the 

current cognitive process. The knowledge base has a theoretically infinite capacity and 

stores all the knowledge gained through training and experience.  

 

A reasoning module, or inference engine, is added in the HBM to model the agents’ 

reasoning process (after Li, 2013). Among different reasoning approaches, inductive 

reasoning is used (Li & Mosleh, in press). In inductive reasoning, generalizations are 

created from observed phenomena or principles. Decision tree induction is used in the 

HBM development (Musharraf et al., 2017b). Decision tree offers a visual representation 

of the reasoning process and has useful diagnostic capabilities. Compared to other methods, 

such as artificial neural networks, or support vector machines, decision trees can be 

constructed relatively quickly. Other benefits of decision trees are that they do not require 

any prior assumptions about the data, and can work with limited data compared to other 

techniques (Duffy, 2008). More on decision tree and its benefits can be found in Han et al. 

(2011). To make information retrieval fast and easier, besides reasoning, the inference 

engine in the HBM has the added functionality of storing the created generalizations once 

reasoning is completed.  
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Figure 5.2: HBM main components of memory structure, reasoning module, and their interaction 

during the cognitive process 

 

Figure 5.2 shows the interaction among the components of memory structure and reasoning 

module during the cognitive process. At the beginning of the cognitive process, cues are 

perceived from the environment. The perceived cues are interpreted to form a calling 

condition. A calling condition is a set of variables that takes values from a defined set 

(Thow-Yick, 1994). If a solution to the current calling condition is available in the working 

memory, it is immediately retrieved. Otherwise, the calling condition is transferred to the 

inference engine to find a solution. If a decision rule that matches the current calling 

condition is found, the solution is retrieved and sent to the working memory to act upon. If 

no matching decision rule is found, the calling condition is sent to the knowledge base. 
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Higher level analogy of the calling condition may be used at this stage to find a solution in 

the knowledge matrix. Once a solution is found, the next step is to execute a series of 

actions to implement it. 

5.3 Case study: HBM for general personnel 

This paper aims to develop an HBM for general personnel in the context of offshore 

emergencies. General personnel are individuals whose responsibility during an emergency 

is to follow the alarm(s) and public address (PA) announcement(s), and muster at their 

designated muster stations. As mentioned in Section 5.2.1, the focus of the HBM presented 

in this section is to reproduce behavior of individuals in isolation. Collaboration and shared 

situation awareness among team members are not considered at this stage. 

 

The HBM presented in this paper uses empirical evidence. An experimental study was done 

to 1) populate the knowledge base, 2) define the inference process, and 3) investigate the 

influence of different PIFs on task performance. For clarity, only the part of the 

experimental study that is relevant to this paper will be discussed here. More details can be 

found in Smith (2015) and Musharraf et al. (2016). 

 

The experiment was conducted using a virtual environment. A virtual environment is a 

computer aided simulation environment that allows trainees to gain artificial experience, 

including in dangerous scenarios. The virtual environment used in the case study is called 

the all-hands virtual emergency response trainer (AVERT). AVERT was designed to 

enhance offshore emergency response training. It is modeled after an offshore oil platform 
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with high levels of detail and can create credible emergency scenarios by introducing 

hazards such as blackouts, fires, and explosions.  

 

A total of 36 participants took part in the experimental study with a goal to learn how to 

muster during offshore emergency situations. Samples of convenience method was 

followed for participant recruitment (Ritter et al., 2012). Majority of the participants were 

university students. The participants were naïve concerning any detail of the experimental 

design, they were not employed in the offshore oil industry, and they were not familiar with 

the offshore platform. Among the 36 participants, 27 were males and 9 were females. The 

age range of the participants was 19-39 years, with a mean of 26.5 years and standard 

deviation of 4.4 years. 

 

For the case study, the participants had to go through a range of offshore muster scenarios, 

from drills that required the participants to go to their primary muster station, to more 

complex emergency scenarios that required the participants to avoid hazards blocking their 

egress routes and muster at their lifeboat stations (House et al., 2014). The scenarios did 

not directly induce any operator state. Rather, the scenarios were designed such that the 

effect of different PIFs on individuals’ performance during offshore emergency situations 

can be investigated.  The underlying assumption is that the state of the PIFs implicitly 

induces a certain operator state. For example, consider a highly complex scenario where a 

participant’s preferred route is blocked by a hazard, there is a blackout due to the hazard, 

the alarm changes mid-scenario, and the amount of incoming information through the PA 
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is extensive. It is expected that this situation will induce a stressed state and high mental 

load (both task related and task non-related). More details on the different PIFs are 

discussed in subsections 5.3.2 and 5.3.3. 

 

As stated in section 5.2.1, the four major cognitive functions considered in this paper are 

perception, interpretation, decision making, and execution. During the scenarios, the 

participants had to perceive the audio-visual cues provided through alarms and PA 

announcements. Next, the participants had to analyze the cues and interpret what the alarms 

and PA announcements mean (i.e. which route is obstructed, what is the recommended 

muster location). Once the participants were aware of the situation, they needed to evaluate 

the potential routes and choose a route to egress. Finally, the participants had to move along 

the egress route following all safety procedures (i.e. not running, and closing all 

fire/watertight doors). They needed to reach the muster location in a timely manner and 

muster there. More details on the task performed by general personnel is discussed in 

section 5.3.4. 

 

Several performance metrics of the participants were recorded during each scenario. The 

metrics include: time to muster, time spent running, interaction with fire doors and 

watertight doors, interaction with hazards, and reporting at different muster locations. The 

data collected during the experiment are available in Musharraf et al. (2017a). 
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The following sections illustrate how the HBM presented in section 5.2 can be applied to 

model the behavior of general personnel in offshore emergency situations using the 

experimental data. Section 5.3.1 discusses how knowledge gained from training is stored 

in the memory.  Section 5.3.2 to 5.3.5 discuss the different components of the response 

model. 

5.3.1 Knowledge acquisition and storage 

During the study, all participants were provided with some level of training (different 

training types are discussed in section 5.3.2). The knowledge participants gained from the 

training tutorials and scenarios was stored in the knowledge base in the form of a two-

dimensional matrix. The inference engine used the decision tree induction to identify the 

general principles or problem-solving strategies based on the individual cases in the 

knowledge matrix. The knowledge matrix and the decision rules together form the current 

state of knowledge (Musharraf et al., 2017b). Knowledge acquisition and information 

retrieval are influenced by the state of the PIFs in the environmental model and operator 

model. 

5.3.2 Environmental model 

The environmental model focuses on external factors that define the situation. The external 

factors used in the experiment were training, visibility, and complexity. 

 

A total of 36 participants took part in the study. Each participant was randomly assigned to 

one of two groups for training: 1) G1: high level training and 2) G2: low level training. 
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Both groups received a basic offshore emergency preparedness training. G1 received 

additional training tutorials and simulated training scenarios regarding situational 

awareness, alarms, PA announcements, and hazards. Performance of participants in both 

groups was subsequently tested using simulated testing scenarios. 

 

In the simulated scenarios, visibility was varied at two different levels: clearly visible and 

blackout. In clearly visible conditions, there was enough ambient light to perform the 

assigned task. In the blackout conditions, the visibility was reduced by reducing the 

available ambient light. However, the participants could use a virtual flashlight in the 

blackout conditions to have functional visibility. 

 

Complexity was also varied at two different levels: low and high. In low complexity 

conditions, there was no obstacle in the preferred evacuation route, and the responsibility 

assigned to the participant was minimal. High complexity situations were created by 

blocking the escape routes with hazards (i.e. smoke, fire, and explosion), and assigning 

more responsibilities to the participants. Complexity of the situation was also reflected in 

the alarm (static versus dynamic) and PA (direct versus indirect). To summarize, 

complexity was defined in terms of alarm, PA, presence of hazard, obstruction of routes, 

and amount of responsibility assigned to the participant. For the rest of the paper, these 

terms are used directly instead of complexity. 
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5.3.3 Operator model 

The operator model focuses on the internal PIFs. It was observed during the study that 

given the same environmental conditions, participants’ response to an emergency may vary 

depending on the internal PIFs. The internal PIFs assessed in the experiment were 

knowledge, bias, information use, compliance, and prioritization. 

 

People learn and retain information differently, so given the same training, may have 

differences in knowledge. This difference is reflected in their problem-solving strategies. 

It is observed in the experimental data that even participants in the same training group had 

different knowledge-matrices and hence different strategies for solving problems 

(Musharraf et al., 2017b). 

 

Bias can be defined as “the tendency of a human to make conclusions based on selected 

pieces of information while excluding information that does not agree with the conclusion" 

(Groth & Mosleh, 2012). While some participants were biased and inclined to previous 

experience, some were not. The information use measures an individual’s effectiveness in 

using information presented to him/her. Individuals may favor some information over 

others due to bias. Some participants showed better information use efficacy than others. 

Prioritization is how an individual orders assigned tasks, or the goals that are to be 

achieved. Some participants prioritized personal safety over notifying others about the 

hazard. Compliance refers to an individual’s commitment to follow directions and policies 
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established by the organization or the industry. Some participants were safety compliant 

and followed the regulations. Others failed to follow the safety regulations while mustering. 

 

5.3.4 Task networking model 

Figure 5.3 shows the task network of general personnel during offshore emergency 

situations. To exploit the benefits of standard modeling, the task network is presented in 

the form of an activity diagram in Unified Modeling Language (UML). Activity diagrams 

are graphical representations of workflows of stepwise activities and actions and serve the 

same purpose as task network for the case study (Dumas & Ter Hofstede, 2001). 

 

Figure 5.3 captures the main tasks done by general personnel during offshore emergencies. 

Besides the standard sequence of tasks, erroneous deviations at decision points are shown 

in the figure using dashed lines. In addition to the decision points, errors can also happen 

at the following task nodes: 

a) Identify alarm and interpret PA – Some participants failed to identify the alarm and 

consequently went to the wrong final destination. These participants ended up 

registering at the wrong muster location. Some participants also failed to interpret the 

PA and misunderstood the presence and/or location of the hazard and obstruction of 

routes. 

b) Re-assess situation – The same errors mentioned in (a) can happen at this task node. 
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c) Move along selected egress route – Some participants ran along the egress route instead 

of walking. Participants were trained to close fire/watertight doors while moving along 

the egress route, but some participants failed to close the doors while egressing. 

d) Evaluation of egress paths – In each scenario, participants had to choose an egress route 

from a set of potential routes. Based on the location of the hazard, some routes may not 

be safe and must be avoided. Some participants failed to correctly evaluate the egress 

routes and chose a route that was not tenable. Failure at this node largely depends on 

failure at the interpretation and/or situation assessment nodes.
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Figure 5.3: Activity diagram of general personnel during offshore emergency situations 
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5.3.5 Performance shaping model 

As shown in the task network in Figure 5.3, at some decision nodes there are possible 

deviations from the standard behavior path. PSFs define the probabilities of such erroneous 

deviations. PSFs also define the failure probability at the task nodes mentioned in Section 

5.3.4.  

 

For example, during the training, the participants were trained to identify different alarms. 

Based on the training, the following alarm identification rule will be stored in the memory: 

two tone sound is a General Platform Alarm (GPA); constant tone sound is a Prepare to 

Abandon Platform Alarm (PAPA). During an emergency scenario, based on the state of the 

PIFs, a participant may retrieve and use the alarm identification rule correctly, or can make 

a mistake and misinterpret the alarm. The PSFs compute the probability of making such an 

error. They take the PIFs as inputs and uses a BN approach to compute the human error 

probability. 

 

BNs are acyclic directed graphical models that represent conditional dependencies among 

a set of random variables Pearl (1988). While performing a task or exercise, errors can 

occur at different steps of the process. Each error is regarded as the outcome of the joint 

influence of different PIFs (as depicted in Figure 5.4). In the BN approach, error is the 

critical node, which depends on several PIFs that can influence the occurrence of the error. 

For example, misinterpretation of alarm may happen because the knowledge of the 

personnel is insufficient (PIF1), or the efficacy of information use of the participant is low 
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(PIF2), or both. Figure 5.4 shows the relationship between human error and PIFs. More 

detail on the BN development and probability calculation can be found in Musharraf et al. 

(2016) and Musharraf et al. (in press). 

 

 

Figure 5.4: Human error while performing a task is the outcome of joint influence of PIF1 to PIFn 

(Musharraf et al., in press) 

 

5.4 Simulation of the developed HBM 

The purpose of the proposed HBM is to create human-like agents in the AVERT simulator 

enable team training. Before integrating the HBM into the agents in AVERT, the HBM was 

modeled in the IPME simulation framework to clearly define the implementation work 

scope and identify the technical challenges. During the experimental study, variability 

across participants was observed in terms of behavior (correct versus erroneous). Based on 

the aggregated score participants received in the scenarios, they can be classified into 3 

broad categories: naïve (0-30%), in-between (31-79%), and competent (80-100%). To 
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capture the same variability in agents, 3 types of operators were created using the HBM. 

The internal PIFs were used to encode the across-subject variability. Table 5.1 summarizes 

the internal PIF settings for the different types of operators. 

Table 5.1: Internal PIF settings for the different types of operators 

Operator type Internal PIF settings 

Competent 

operator 

Knowledge = High, Bias = Low, Compliance = High, Efficacy of 

information use = High, Prioritization = Right 

Naïve operator 

Knowledge = Low, Bias = High, Compliance = Low, Efficacy of 

information use = Low, Prioritization = Wrong 

In-between 

operator 

In-between operators are representative of the behavior range 

between the two extremes of competent and naïve, and can be 

created by using different combinations of internal PIF values. 

Since efficacy of information use was found to be one of the most 

influential factors (Musharraf et al., 2016), a sample in-between 

operator was created with efficacy of information use as low and all 

other PIFs in optimal setting. 

Knowledge = High, Bias = Low, Compliance = High, Efficacy of 

information use = Low, Prioritization = Right 

 

Section 5.4.1 discusses the probabilistic response generation for different types of operator 

using an example. Some sample equations, functions, and user interface screens are 

provided in Appendix A. 
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5.4.1 Probabilistic response generation 

During any emergency scenario, the operators would need to perform the tasks summarized 

in Figure 5.3 as required. Depending on the state of the PIFs, the operators would either 

perform the task correctly or make an error. Section 5.3.4 discussed the potential errors. 

Probability of such error happening is calculated using a BN informed by the empirical 

data. To demonstrate the probabilistic response generation, a task node “Move along egress 

route while closing all fire/watertight doors” is used here as an example. In emergency 

situations, competent operators are expected to exhibit safe behavior and close all 

fire/watertight doors, whereas the in-between and naïve operators might deviate from the 

safe behavior and leave fire/watertight doors open. Figure 5.5 shows the BN that captures 

the causal dependency among the internal PIFs (knowledge, compliance) and human error 

(leaving fire/watertight doors open). 

 

 

Figure 5.5: Causal dependency among the internal PIFs (knowledge, compliance) and human error 

(leaving fire/watertight doors open). A comprehensive BN with all PIFs and all potential errors can 

be found in Musharraf et al. (2016) and Musharraf et al. (in press). 
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Empirical data collected during the study were used to assess participants’ internal PIFs. 

The assessment helped to inform the conditional probabilities in Figure 5.5. For example, 

participants with both high knowledge and high compliance had lower error probability 

(25%) than participants who had one (50%) or none (95%).  More details on this can be 

found in Musharraf et al. (2016). The same idea was used to simulate the behaivor of 

different operator types. For the competent operators, the internal PIFs are in ideal settings, 

which means they will have a lower proability of error. For the naïve and in-between 

operators, the internal PIFs are in non-optimal or sub-optimal states and this increases their 

probaiblity of error.  

 

The different types of operators were tested in several scenarios. Simulation results for a 

sample emergency scenario are summarized in the following subsections. In the scenario, 

there is a fire on the helideck that signals an alarm with a flashing green light and a two-

tone sound. The participants must go to their muster station. The PA directs participants to 

use the primary route. None of the egress routes are obstructed. Values of external PIFs are 

set per scenario prior to simulation.  

 

It has to be noted that the HBM is stochastic and even for the same combination of PIFs 

(both external and internal), the behavior of operators may vary across repeated simulation 

runs. The most frequently observed simulated behaviors of a competent operator, a naïve 

operator, and an in-between operator over 30 simulation runs of the same scenario are 

described in sections 5.4.2 to 5.4.4. 
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5.4.2 Competent operator 

It was observed during the simulation that the operator successfully interpreted the audio-

visual cues. The alarm type was correctly identified as the general platform alarm (GPA), 

and final destination was set to muster station. The operator also understood the PA clearly 

and followed the route direction given in the PA, which was the primary route. The operator 

walked while moving along the egress route and closed all fire and watertight doors. 

5.4.3 Naïve operator 

The naïve operator failed to interpret the alarm and the PA. The alarm was mistaken as a 

prepare to abandon platform alarm (PAPA) and the final destination was set as lifeboat 

station, which was incorrect. While choosing an egress route, the operator did not pay 

attention to the PA, rather went with the route s/he was most familiar with, which was the 

secondary route. The operator ran along the egress route and did not close the fire or 

watertight doors. 

5.4.4 In-between operator 

The in-between operator interpreted the alarm and PA correctly and set the final destination 

as the muster station. However, as the operator’s efficacy of information use was low, s/he 

did not choose a route based on the PA. His/her strategy was to choose an egress route 

based on the final destination (take the primary route if the final destination is the muster 

station and try the secondary route in case the final destination is the lifeboat station). 

Though the strategy led the operator to the correct choice of route in this particular scenario, 

this strategy would fail in the case a route is obstructed and understanding the PA is vital. 
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The operator walked while moving along the egress route and closed all fire and watertight 

doors.  

 

Figure 5.6 summarizes the observed erroneous behavior of different operator types over 30 

simulation runs. As shown in Figure 5.6, the naïve operators exhibit the most erroneous 

behavior. The competent operators and in-between operators occasionally commit errors, 

but at a much lower rate compared to the naïve operators. One of the commonly observed 

errors in the ideal operators was leaving fire/watertight doors open under the pressure of 

emergency. This was also one of the most frequent mistakes by participants with high 

performance scores (80-100%). 

 

 

Figure 5.6: Observed erroneous behavior of different operator types over 30 simulation runs 
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As demonstrated by the results, the HBM is capable of modeling the across-subject 

variability, which will enable the creation of a heterogeneous training environment where 

each entity behaves somewhat differently. Training programs in AVERT can benefit from 

this. It will prepare the trainee for the variability that is inherent in human teammates. 

Trainees can gain experience of working with or commanding teams with varying skill 

levels. Variability can also help to keep the trainee more engaged during the simulation 

training by offering novel challenging situations. 

5.5 Conclusion and future work 

This paper presents a computational model of human behavior during offshore emergency 

situations. To understand the emergency response of general personnel, an experimental 

study was conducted using a virtual environment. The variability observed across scenarios 

was captured in the computational model using external PIFs. To encode the variability 

observed across different scenarios, external PIFs were used. To encode the variability 

observed across different subjects given the same scenario, internal PIFs were used. 

Simulation results show that the model can capture human behavior variability given 

different states of PIFs.   

 

 The next step is to integrate the HBM in AVERT to create intelligent agents. Results from 

the IPME simulation framework will guide the integration and implementation process. 

Validation of the HBM is out of the scope of this paper and is presented separately in 

Musharraf et al. (2017). The work on validation illustrates how the simulated behaviors 

correlate to the actual behaviors observed during the experimental study. 
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Abstract 

With the advancement of simulation-based training, intelligent agents that can display 

human-like behavior have become common. From military combat simulations to nuclear 

power plant simulation, agents have been widely used to facilitate team training (as team 

mates, opponents, or both). Credibility of these agents is vital to ensure a sound training 

process. Credibility of the agents largely depends on the credibility of the underlying 

human behavior representation model (HBM). This is why validation of the HBM is 

necessary to ensure realistic agent behavior. However, the non-deterministic nature of the 

HBM and the subjectivity in experts' judgment during the validation process make HBM 

validation more challenging compared to physics based models. This paper presents the 

validation process of an HBM of general personnel created for use in an offshore 

emergency training simulator. Three types of agents (naïve, in-between, and ideal) are 

created in the simulator using the HBM.  The paper discusses the use of empirical evidence 

as referents, along with subject matter experts (SME). A two-level three factor experiment 

was conducted using 36 participants. Several performance metrics were collected during 

the experiment, including route selected for evacuation, time to muster, time spent running, 

interaction with fire doors and watertight doors, interaction with hazards, and reporting to 

the muster station. Data collected during the experimental study have been used in this 

paper to demonstrate how the use of empirical evidence can facilitate HBM validation. 

High-level tasks performed during HBM validation are discussed in detail. Special 

emphasis is given on acceptability criteria testing to ensure that the HBM performs 

adequately under different operating conditions.  Results show that the proposed HBM 



167 

 

 

meets the acceptability criteria requirement for all types of agents. In general, the ideal 

agents exhibited safe behavior during offshore emergency egress, whereas the naïve and 

in-between agents showed erroneous behavior at times. For example, during the simulation 

runs of a critical emergency scenario where the primary egress route was obstructed by a 

hazard, the ideal agents either waited and listened to the public address (PA) announcement 

and followed an alternative egress route (60% cases), or they initially chose their preferred 

route but re-routed immediately after encountering the hazard (40% cases). In all cases, the 

in-between agents started with their preferred route and re-routed after encountering the 

hazard, and the naïve agents proceeded with their preferred route even when the route was 

compromised.  

6.1 Introduction 

Software agents, or computer generated forces (CGFs), are extensively used in a wide range 

of team training simulations. This includes military applications for training and rehearsal 

for combat situations (Karr et al., 1997). The use of virtual crew is also common in aviation 

and nuclear power plant simulation training (Chang & Mosleh, 2007). Realism of agents in 

any platform largely depends on the sophistication of the underlying human behavior 

representation model (HBM) (Smith, 1998). HBMs are computational models that 

probabilistically simulate human behavior in different conditions. To ensure agents have 

an acceptable level of credibility, the underlying HBM must be validated. However, due to 

the non-deterministic nature of the HBM, it is difficult to ensure that the HBM adequately 

represents the behavior it was designed to exhibit, and captures the behavior variability 

expected in the non-linear environment into which it will be integrated. 
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The difficulty has led face validation to become the most common form of validation for 

HBM (Anon., 2001b). Face validation is a method that is widely used to validate interactive 

real-time virtual simulations where user interaction bears significant importance for the 

simulation to be accredited (Sokolowski & Banks, 2010). As defined in the Defense 

Modeling and Simulation Office's (DMSO) Recommended Practices Guide (RPG), “in face 

validation technique, a subject matter expert (SME) drives through the scenario space by 

issuing commands or changing the simulating situation, observes the resulting behavior, 

and determines, often qualitatively, whether that behavior meets a user’s requirements for 

realism”. Face validation is listed as the least reliable and least completed HBM validation 

process (Anon., 2001b). SMEs’ judgments are drawn mostly from their own experience 

and can be biased. It is also hard to ensure their levels of consistency and accuracy when 

evaluating human performance versus simulated human behavior. 

 

This paper presents the HBM validation of general personnel created to be used in an 

offshore emergency preparedness training simulator. The simulator is called the all-hands 

virtual emergency response trainer (AVERT). It is modeled after an offshore oil platform 

with high levels of graphical detail of the environment and can create credible emergency 

scenarios by introducing hazards such as blackouts, fires, and explosions. The current 

configuration of AVERT is intended to train general personnel in safe work practices 

(Smith et al., 2017). As of now, only individual training is enabled in AVERT. The HBM 

of the general personnel is the first step towards creating software agents to enable team 

training (Musharraf et al., 2017). To make sure that the HBM will contribute towards a 
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sound team training process, the model must be validated before use. This paper describes 

the high-level tasks performed to validate the model. Besides SMEs' judgments, empirical 

evidence is used in this paper during the validation process. 

 

Figure 6.1 summarizes the previous work leading to validation. An experimental study was 

conducted in AVERT to gather empirical evidence for – 1) an HBM development and 2) 

the HBM validation. Details of the HBM development have been discussed in Musharraf 

et al. (2017). The focus of the paper is the latter. Before going into the details of the 

validation process, Section 6.2 gives an overview of the experimental study and the HBM. 

Section 6.3 discusses the validation process in detail. Special attention is paid in this paper 

to the result validation. Section 6.4 lists the challenges faced during the validation. Section 

6.5 summarizes and concludes the paper. 

 

 

Figure 6.1: Data collected during an experimental study conducted in AVERT were divided into two 

sets. The training data set was used to develop the HBM, and the testing data set was used to validate 

it. 
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6.2 Overview of the experimental study and HBM  

6.2.1 Experimental study 

This section provides an overview of the experimental study and the HBM of general 

personnel in the context of offshore emergencies. General personnel are individuals whose 

responsibility during an emergency is to muster at their designated muster stations (Smith 

et al., 2017).  

 

The experiment was conducted using the AVERT simulator. A total of 36 participants took 

part in the study, each with the goal to learn how to successfully muster during offshore 

emergency situations. Each participant was randomly assigned to one of the two groups 1) 

G1: high level training, or 2) G2: low level training. The sample size was determined by an 

iterative process using equation 1.  

𝑛 =
(𝑡𝛼/2)2𝜎2

𝐵2
                                                            (1) 

 

Here, 𝑛 is the sample size, 𝑡𝛼/2 is the t-score for a 95% confidence interval, σ is the 

estimated standard deviation informed by a prior study (Bradbury-Squires, 2013), and 𝐵 is 

the acceptable margin of error. Originally, a sample of 40 participants was targeted for a 

confidence interval of 95% where a margin of error of (+/-) 10% was considered acceptable. 

As the study investigated the effect of training, a minimum of 15 participants in each 

training group was required. From the original recruitment, 4 participants withdrew for 

various reasons. This resulted in a sample size of 36 participants, increasing the margin of 
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error to (+/-) 11%. 17 participants were assigned to G1, and 19 participants were assigned 

to G2. A more detailed discussion on the sample size can be found in Smith (2015).  

 

Among the 36 participants, 27 were males and 9 were females. The age range was from 19 

to 39 years. Participants were recruited using samples of convenience (Ritter et al., 2012). 

Naïve participants, mostly university students, were recruited for the study. The 

participants were not aware of any detail of the experimental design, they were not 

employed in the offshore oil industry, and therefore they were not familiar with the offshore 

platform.  

 

Each participant attended 3 sessions on 3 separate days. Both groups received basic 

offshore emergency preparedness training in session 1. G1 then received 4 practice 

scenarios in the same session. In session 2 and session 3, G1 received additional training 

tutorials and practice scenarios (4 scenarios per session) regarding situation awareness, 

alarms, public address (PA) announcements, and hazards. G2 did not receive any further 

training or practice opportunities in session 2 and 3. Performance of participants in both 

groups was tested in each session using 4 test scenarios. In total, participants in G1 

performed in 24 scenarios and participants in G2 performed in 12 scenarios. 

 

 The simulated scenarios ranged from drills that required the participants to go to their 

primary muster station, to more complex emergency scenarios that required the participants 

to avoid hazards blocking their egress routes and muster at their lifeboat stations (House et 
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al., 2014). Appendix B includes the schematic diagrams of different egress routes. The 

scenarios were designed such that the effect of different performance influencing factors 

(PIFs) on individuals’ performance during offshore emergency situations could be 

investigated. PIFs are factors that can specifically decrement or improve human 

performance during a task (e.g. complexity, visibility) (Blackman et al., 2008). PIFs are 

also referred to as behavior moderators. 

 

Besides training, the other two external PIFs investigated in the study are visibility and 

complexity. Both visibility and complexity were varied into two levels across the scenarios 

(more on this is discussed in Section 6.2.2.1). Several performance metrics were collected 

during each scenario for each participant. The metrics included route selected for 

evacuation, time to muster, time spent running, interaction with fire doors and watertight 

doors, interaction with hazards, and reporting to the muster station. Data collected in 

different scenarios were divided into two sets. Data collected in some scenarios (for all 

participants) were used to develop the HBM. Data collected in the remaining scenarios (for 

all participants) were used to validate the HBM. 

 

Section 6.2.2 discusses the dynamic response generation for a given situation. The 

probabilistic aspects of the HBM are described in this section. Section 6.2.3 describes how 

knowledge gained from training and experience form the current state of knowledge. It also 

explains the underlying information processing approach. 
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6.2.2 Dynamic response model 

The dynamic response model has been documented in detail in the authors’ previous work 

(Musharraf et al., 2017). This section presents a brief overview of the model to facilitate 

the understanding of the validation process, which is the focus of this paper. 

 

The dynamic response model consists of four component models: an environment model, 

an operator model, a performance shaping model, and a task network model. The 

environmental model defines the situation, or environment, using external PIFs.  The 

operator model defines the characteristics of the operator using internal PIFs. The task 

network model graphically represents the sequence of tasks performed by the operator. The 

performance shaping model generates the rules of behavior of the operators depending on 

the state of different PIFs and the current state of knowledge. 

 

Figure 6.2 shows the interaction between the external world and the component models. At 

any time ‘t’ the state of PIFs in the environmental model and operator model are defined 

based on the events happening in the external world. The state of the internal and external 

factors defines the operator’s state of mind. The PIFs also define how information is gained 

from training and experience. The performance shaping function (PSF) model takes the 

operator’s state of mind and current state of knowledge into account, and generates the 

behavior rules that govern the operator’s response during tasks. 
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The following subsections introduce the four component models. The process of 

knowledge acquisition and retrieval is modeled based on the idea of knowledge based 

system architecture (Negnevitsky, 2005). This is discussed separately in Section 6.2.3. 

 

 

Figure 6.2: Interaction between the external world and the four component models: operator model, 

environmental model, performance shaping function model, and task networking model (after 

Musharraf et al., 2017). 
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6.2.2.1 Environmental model 

The environmental model includes external PIFs that define the situation or environment 

the individual is in. The external PIFs that were used in the experiment are training, 

visibility, and complexity. 

 

As noted previously, each participant was assigned to either G1 or G2 for training.  During 

the study, G1 received more advanced training compared to G2. 

 

In the simulated scenarios, visibility was varied at two different levels: clearly visible and 

blackout. In clearly visible conditions, there was enough ambient light to perform the 

assigned task. In the blackout conditions, the visibility was reduced by reducing the 

available ambient light. However, the participants could use a virtual flashlight in the 

blackout conditions to have functional visibility. 

 

Complexity was also varied at two different levels: low and high. In low complexity 

conditions, there was no obstacle in the preferred evacuation route, and the responsibility 

assigned to the participant was minimal. High complexity situations were created by 

blocking the escape routes with hazards (i.e. smoke, fire, and explosion), and assigning 

more responsibilities to the participants. Complexity of the situation was also reflected in 

the alarm (static versus dynamic) and PA (direct versus indirect). To summarize, alarm, 

PA, presence of hazard, obstruction of routes, and amount of responsibility assigned to the 

participant, together defined complexity.  
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6.2.2.2 Operator model 

Operator model focuses on the internal PIFs (Groth & Mosleh, 2012). It was observed 

during the study that given the same environmental conditions, participants’ response to an 

emergency may vary depending on the internal PIFs. The internal PIFs investigated in the 

experiment were knowledge, bias, information use, compliance, and prioritization.  

 

It was observed in the experimental data that given the same training, people focus on 

different scenario attributes before making a decision. This resulted in different knowledge-

matrices and hence different problem-solving strategies across participants (Musharraf et 

al., 2017a).  

 

During the study, while some participants were biased (inclined to previous experience), 

some were not. Some participants effectively used the information presented to them, while 

some failed to do so. Some participants prioritized personal safety over notifying others 

about the hazard. Some participants were safety compliant and followed the regulations; 

others failed to follow the safety regulations under the pressure of emergency. 

6.2.2.3 Task networking model  

Task network modeling focuses on understanding the tasks that need to be simulated. The 

task network model graphically represents the sequence of tasks performed by an operator. 

  

Figure 6.3 shows the task network of general personnel during offshore emergency egress. 

Besides the standard sequence of tasks, erroneous deviations at decision points are shown 
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in the figure using dashed lines. Additional to the decision points, errors can also occur 

during the following: identifying the alarm and interpreting the PA, re-assessing the 

situation (i.e. interpreting updated alarm and PA, checking proximity to hazard), moving 

along the selected egress route, and evaluating egress paths. 
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Figure 6.3: Sequence of tasks performed by general personnel during offshore emergency egress. Solid lines represent standard sequence, 

whereas dashed line represent possible erroneous deviation.
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6.2.2.4 Performance shaping model 

This model includes a set of performance shaping functions (PSFs). The PSFs generate the 

rules of behavior that govern the performance of general personnel while performing 

different tasks (Chang & Mosleh, 2007). The response of general personnel depends on the 

state of the operator and the current state of knowledge. The PSFs take the state of the 

operator and current state of knowledge into account and generate the associated operator 

response for a given set of PIFs. 

 

For example, during the training, the participants were trained to identify different alarms. 

Based on the training, the following alarm identification rule will be stored in the memory: 

a two-tone sound is a General platform alarm (GPA); a constant tone sound is a Prepare to 

abandon platform alarm (PAPA). During an emergency scenario, based on the state of the 

PIFs, a participant may retrieve and use the alarm identification rule correctly, or can make 

a mistake and misinterpret the alarm. The PSFs compute the probability of making such an 

error. They take the PIFs as inputs and use a Bayesian network (BN) approach to compute 

the human error probability. 

 

Figure 6.4 shows the relationship between human error and PIFs. Here, error is modeled as 

the outcome of joint influence of PIFs. More detail on the BN development and probability 

calculation can be found in Musharraf et al. (2016) and Musharraf et al. (2017b). 
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Figure 6.4: Human error(𝑬𝒓𝒓𝒐𝒓𝟏 𝒕𝒐 𝑬𝒓𝒓𝒐𝒓𝒎 ) while performing a task is the outcome of joint 

influence of performance influencing factors (𝑷𝑰𝑭𝟏 𝒕𝒐 𝑷𝑰𝑭𝒏). 

 

6.2.3 Memory structure and cognitive functions 

In the HBM, the knowledge-matrices and problem-solving strategies are stored in a 

database representative of human memory. This data base is referred to as the memory 

structure. Organization of information in the memory structure is modeled based on the 

idea of knowledge based system architecture (Kendal & Creen, 2007). The underlying 

assumption is that people’s response to emergency situations depends in part on the 

knowledge they have stored in their memory. The three main components of the memory 

structure are: knowledge base, working memory, and inference engine. The working 

memory has a finite capacity and stores the information relevant to the problem that is 

currently being solved. The knowledge base has a theoretically infinite capacity and stores 

all the knowledge gained through training and experience. The inference engine is an 

intermediate memory space that contains generalized decision rules based on the content 

in the knowledge base.  
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The process involved in creating generalizations from observed phenomena or principles 

is referred to as induction. Among the available induction approaches, decision tree is used 

in the development of the HBM. In decision tree induction, data are divided into certain 

groups based on the information gain of the attributes, with the goal that the examples in 

any particular group will belong to the same class (Han et al., 2011). Decision tree offers a 

visual representation of the reasoning process and has valuable diagnostic capabilities. 

Compared to other methods, such as artificial neural networks or support vector machines, 

decision trees can be constructed relatively quickly. Other benefits of decision tree, which 

are particularly important for this paper, are that it does not require any prior assumptions 

about the data and can work with limited data compared to other techniques (Duffy, 2008). 

More on decision tree induction can be found in Musharraf et al. (2017a).  

 

During information processing to solve the problem at hand, cues are perceived from the 

environment. The perceived cues are interpreted to form a calling condition. A calling 

condition is a set of variables that takes values from a defined set (Thow-Yick, 1994). If a 

solution to the current calling condition is available in the working memory, it is 

immediately retrieved. Otherwise the calling condition is transferred to the inference engine 

to find a solution. If a decision rule that matches the current calling condition is found, the 

solution is retrieved and sent to working memory to act upon. If no matching decision rule 

is found, the calling condition is sent to the knowledge base. More abstract relationships 

between the calling condition and solutions stored in the knowledge matrix may be 
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analyzed at this stage. Once a solution is found, the next step is to execute a series of actions 

to implement it. 

 

6.3 Validation process for the HBM  

As listed in DMSO's "Validation of Human behavior representation", any HBM validation 

process needs to perform the following high-level tasks: 

1. Collect as complete a set of requirements and acceptability criteria as possible.  

2. Identify referent(s) to assess the credibility of the HBM model. 

3. Validate the HBM’s conceptual model using referent and requirements. 

4. Validate the HBM’s knowledge base using referent and requirements. 

5. Analyze the HBM’s conceptual model and knowledge base to identify complex 

areas of the model that need attention in future validation activities. 

6. Validate the integrated HBM using referent and requirements. This is called result 

validation and involves acceptability criteria testing by exercising testing scenarios 

to ensure that the integrated HBM performs adequately under different operating 

conditions. Before the result validation, the HBM must be integrated in the virtual 

environment. In this paper, the model is integrated in AVERT to create software 

agents performing as general personnel. The complex areas identified in the 

previous step are used at the result validation step to design credible test scenarios. 

 

The following subsections will describe each step of the HBM validation in detail. 
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6.3.1 Collect as complete a set of requirements and acceptability criteria as possible 

The first step of validating the HBM was to make a list of requirements that will set the 

foundation of validation. Since listing a complete set of requirements was challenging in 

an early stage, attention was paid to fulfill the minimum requirements first. The minimum 

requirements include a detailed task analysis of the person the HBM is intended to represent 

and the definition of level of skills that the simulation must include. A list of PIFs were 

defined as well.  Fidelity of the simulated behavior largely depends on how well the effect 

of these PIFs are modeled. 

 

Detailed task analysis of general personnel represented by the HBM: A detailed task 

analysis of general personnel during offshore emergency situations was done based on 

(DiMattia, Khan, & Amyotte, 2005). The corresponding activity diagram and possible 

deviations from ideal behavior are presented in Section 6.2.2.3. For an agent to be 

acceptable, it must be able to perform all the tasks outlined in Figure 6.3. Like humans, 

agents can also make mistakes while performing a task. 

 

The AVERT configuration during the experimental study did not allow performing the 

following tasks – returning process equipment to safe state, making workplace as safe as 

possible, and collecting personal survival suit. Though some of these functionalities are in 

the current configuration and hence integrated in the agents, they will not be discussed 

further in this paper since a benchmark empirical evidence is not available for comparison.  
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Level of skills of general personnel:  The HBM was developed to represent three different 

levels of skill: ideal personnel, naïve personnel, and in-between personnel. The levels of 

skill were defined in terms of internal PIFs. The internal PIFs and corresponding states are 

listed in Table 6.1. Details of the internal PIFs were discussed in Section 6.2.2.2.  Different 

levels of skill were achieved by varying the state of the internal PIFs. 

 

Table 6.1: Internal PIFs and corresponding possible states 

Internal PIFs Possible states 

Bias Yes, No 

Compliance High, Low 

Efficacy of information use High, Low 

Knowledge High, Low 

Prioritization Right, Wrong 

Preference of route Primary route, Secondary route 

 

 

Ideal agents were created by setting the internal PIFs in the following way: knowledge as 

high, bias as low, compliance as high, efficacy of information use as high, and prioritization 

as right. To create naïve agents, internal PIFs were set in the exact opposite way: knowledge 

as low, bias as high, compliance as low, efficacy of information use as low, and 

prioritization as wrong. In-between agents are representative of the behavior range between 

the two extremes of ideal and naïve. These agents can be created by using different 

combinations of the internal PIF values. The example in-between agents used in this paper 

were created by setting knowledge as low, bias as low, compliance as high, prioritization 

as right, and efficacy of information use as low. 
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PIFs or behavior moderators: Two kinds of PIFs – internal and external - are used in this 

paper. Internal PIFs were presented in Table 6.1. Besides internal PIFs, a list of external 

PIFs are used to delimit the range of situations in which the HBM is expected to perform. 

Table 6.2 provides a list of external factors and the corresponding possible states. Details 

of the external factors were discussed in Section 6.2.2.1. 

Table 6.2: External PIFs and corresponding possible states 

External PIFs Possible states 

Alarm (Audio & visual 

cues) 

GPA, PAPA 

Route direction in PA None, Primary route, Secondary route 

Obstruction of routes None, Primary route, Secondary route 

Presence of hazard Yes, No 

Visibility High, Low 

 

6.3.2 Identify referent(s) to assess the credibility of the HBM  

Referent refers to a codified body of knowledge about a thing being simulated. During 

validation, referent provides the information with which the simulation outcomes are 

compared. Among the six different model correspondences listed in the “Key concepts of 

VV&A”, domain correspondence is used in this paper (RPG: Reference Document - Key 

Concepts of VV&A, 2001). Two domain referents were used at different steps of the HBM 

validation. At the earlier stage, inputs from SMEs were used to validate the conceptual 

model. As the validation progressed, empirical evidence collected during the experimental 

study discussed in Section 6.2.1 was used for knowledge base validation and integrated 

HBM validation. 
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6.3.3 Validate the HBM’s conceptual model using referent and requirements 

The conceptual model of the HBM of general personnel consists of the followings: 

1. Tasks the HBM must perform: As discussed in Section 6.3.1, a detailed task 

analysis for the general personnel was performed. The analysis resulted in a list of 

tasks that the HBM must perform during offshore emergency situations. The tasks 

are presented in Figure 6.3. 

2. Objects and properties of those objects that the HBM can sense: All the external 

PIFs listed in Table 6.2 fall in this category. 

3. Objects and properties of those objects that the HBM can explicitly change through 

its actions: During a simulated scenario in AVERT, the agent may interact with and 

change the properties of the following objects: Doors, Muster board, T-Card, 

Personal protective equipment (PPE), and Manual alarm call point (MAC).  

4. Effects of the internal factors that can moderate the model’s response: The internal 

PIFs that can moderate the model’s response are listed in Table 6.1. These PIFs 

were used to capture the across subject variability during the same scenario. The 

PSFs discussed in Section 6.2.2.4 were used to model the effects of the internal PIFs 

on response. The PSFs take the internal PIFs as inputs and use a BN to generate a 

dynamic response. 

5. Knowledge that the HBM must possess to manifest the proper responses to the 

proper situations: The rules of behavior integrated in the HBM were generated from 

the same training tutorials and training scenarios used to train the participants in the 

experimental study. The training tutorial was used to generate rules of thumbs that 
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help with platform familiarity, interpretation of the audio-visual cues from the alarm 

and PA, and safety procedures like closing fire/watertight doors and not running. 

The training scenarios were used to generate behavior rules that help the agent in 

choosing the egress route (including possible re-route depending on the situation) 

during an emergency scenario. It must be noted that given the same training, 

participants were observed to learn and infer things differently. Consequently, the 

content of the knowledge base varied from person to person. The same concept was 

followed while developing the knowledge base of the agents. The contents of the 

knowledge base in naïve, ideal, and in-between agents were different, allowing 

behavior variability. 

 

Once the conceptual model was developed, it was checked with the SMEs to make sure of 

the following: 

 

Sets of situations and responses are sufficient to accommodate the scenarios required to 

achieve the purpose: In the experimental study, sets of situations were chosen based on 

SME guidance and industry standards. The same set of situations were used for training 

and testing the agents. The external PIFs listed in Table 6.2 were used to create the range 

of credible situations. This list was reviewed by the SMEs. Though not comprehensive, the 

list was considered sufficient to model a reasonable set of situations. 
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The possible range of responses – both ideal and erroneous – were also reviewed by the 

SMEs. The responses captured by the task network in Figure 6.3 were considered sufficient 

and no further revision was suggested. However, the SMEs suggested the following 

additions to the potential error list:  

• Not securing workspace before mustering 

• Forgetting to register at the final destination – not doing the T-Card 

• Not providing relevant feedback at the final destination 

• Premature evacuation – getting in the lifeboat and driving away 

 

As the current configuration of AVERT could not allow for the suggested additions, these 

additions are considered as future work and are out of scope of this paper. 

 

Influences of internal PIFs or behavior moderators are adequately represented: The list of 

internal PIFs in Table 6.1 was reviewed by the SMEs. The list was considered sufficient to 

model the across subject variability. A BN approach was used to model the influence of the 

PIFs on performance (Musharraf et al., 2016a). The influence of internal PIFs on task 

performance cannot be studied in a controlled experiment. Goerger (2004) identifes this as 

the most complex phase of creating and modifying BN for HBM development. In this 

paper, the influence of internal PIFs is defined by the analyst based on the observations 

during the experimental study. Musharraf et al. (2016a) shows a successful demonstration 

of the BN in assessing the internal PIFs. 
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6.3.4 Validate the HBM’s knowledge base using referent and requirements 

As stated in Section 6.3.3, the rules of behavior were generated from the same training 

content used to train the participants in the experimental study. Decision rules with causal 

if/then association were generated from the observation of participants’ performance during 

the training scenarios. Participants’ performance in test scenarios was then predicted using 

the generated decision rules. The predicted performance was compared to the observed 

performance of the participants in the same scenarios, using data that had been set aside for 

validation. The prediction accuracy of the trees can be calculated using equation 1.  

 

(%)𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛

𝑁
 × 100                                           (1) 

 

where 𝑛 = number of test scenarios for which (predicted outcome = observed outcome) 

and 𝑁 =  total number of test scenarios. 

 

An average of 95% prediction accuracy was achieved for the decision rules in the 

knowledge base. For 85% of participants, the prediction was accurate for all test scenarios 

(i.e. 100% accuracy). More detail on this can be found in Musharraf et al. (2017a). 

6.3.5 Analyze the HBM’s conceptual model and knowledge base to identify complex 

areas of the model that need attention in future validation activities 

The conceptual model helps to define number, ranges, and intersections of the inputs 

(internal and external PIFs) and outputs of the HBM. It also defines the number and 
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intersections of different situations to which the HBM must be able to respond. All this 

information contributes to identifying the complex areas of the HBM. The knowledge base 

validation also contributes by recognizing where the complexities of the knowledge lie. 

 

A few complex areas in the behavior space were identified during conceptual model and 

knowledge base validation. These include coping with alarm changes and PA changes 

during an emergency situation, understanding route obstruction from the PA and using this 

knowledge while evaluating different egress routes, re-routing to avoid potential interaction 

with hazard, and understanding the responsibility to raise the alarm when the first observer 

of any hazard. Identification of the complex areas guided the test scenario design in the 

next step. 

6.3.6 Result validation 

Result validation consists of two steps. The first step is to perform a fundamental testing to 

see if the agent can demonstrate adequate individual skills. In the context of this paper, this 

means the agent must be able to perform the tasks of a general personnel during different 

offshore emergency situations. Since the focus of this step is to make sure that competent 

performance of a general personnel can be achieved by the agent, among the three types of 

the agents (i.e. naïve, ideal, and in-between) only performance of ideal agents will be 

analyzed at this step. The next step is to test that the HBM is able to capture the expected 

range of behaviors under different operating conditions. Besides ideal agents, performance 

of naïve and in-between agents will also be analyzed at this step. At both steps, test results 

will be compared against the acceptability criteria to determine the validity of the HBM. 
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Result validation involves 4 critical steps. Steps of result validation are described in detail 

in the following subsections. 

6.3.6.1 Developing the HBM test plan 

The fundamental steps of developing the test plan were to define the objectives and the type 

of testing that will be done. The objective of the test was to see if the HBM performs 

adequately under different operating conditions. Only aspects of agents related to the HBM 

were investigated. General aspects, such as look and feel of the agents, were out of the 

scope of the result validation. Among different testing approaches, acceptability criteria 

testing was selected as suggested by Anon. (2001a). 

 

Acceptance criteria define the desirable behavior outcomes of the HBM. Defining 

acceptability criteria for an HBM is challenging due to its stochastic nature. Even for the 

same operating conditions and the same set of PIFs, there can be more than one acceptable 

behavior outcome. The behaviors observed during the experimental study were used as a 

benchmark to define an acceptable range. In the original study, participants’ performance 

was tested in a set of testing scenarios. Each participant achieved an aggregated 

performance score at the end of the test scenario (Smith , 2015). The score of a participant 

can be used to classify them into one of the following categories: naïve (0-30%), in-between 

(31-79%), and ideal (80-100%). Behaviors observed in each category were used to define 

the acceptability criteria for naïve, in-between, and ideal agents. 
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The observed behavior of participants across emergency scenarios are listed in Table 6.3. 

As shown in Table 6.3, there are expected ideal behavior outcomes for each task. However, 

erroneous deviations were also observed during scenarios. All these define the acceptable 

behavior range for the HBM.  

 

Behavior of ideal agents is expected to incline towards the ideal behavior outcomes 

observed during the experimental study. Naïve agents are expected to incline more towards 

the erroneous deviations. In-between agents are expected to have a combination of ideal 

and erroneous behavior outcomes. Figure 6.5 summarizes the HBM test plan. 

 

It should be noted that all tasks shown in Figure 6.3 are not listed in Table 6.3 as tasks such 

as perception do not have observable outcomes. 
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Table 6.3: List of observed behavior outcomes during offshore emergency scenarios 

Task Demonstrated 

by 

Acceptable behavior range 

Ideal behavior 

outcome 

Possible deviation 

Identify Alarm Mustering at 

the correct final 

destination 

Muster at the muster 

station in case of GPA 

and the starboard side 

lifeboat station in case 

of PAPA 

Misidentify GPA as 

PAPA or vice versa and 

muster at the incorrect 

location. 

Evaluate 

egress path and 

choose egress 

route 

Moving along a 

chosen egress 

route 

Choose an egress route 

according to the 

direction of the PA. No 

interaction with hazard 

and/or rerouting 

expected if the correct 

route is chosen. 

Choose an incorrect route 

and - 

reroute as soon as hazard 

is observed 

keep following the 

untenable route 

Register at the 

final 

destination  

Mustering at 

the final 

destination 

Same as the task – 

identify alarm 

Same as the task – identify 

alarm. 

Additionally, muster at 

the port side lifeboat 

station instead of 

starboard side lifeboat 

station.   

Following 

safety 

procedure 

while moving 

along the 

egress route 

Walking 

instead of 

running and 

keeping all 

fire/watertight 

doors closed 

Walking and keeping 

all fire/watertight doors 

closed 

Running and keeping 

fire/watertight doors open 

Raising an 

alarm in case 

of first 

observer of a 

hazard 

Activating 

manual alarm 

call points 

(MAC) 

Activating MAC if 

there is a hazard on 

sight and no alarm or 

PA is currently 

activated. 

 

Skip activating MAC and 

muster prematurely. 
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Figure 6.5: Fundamental steps in the HBM test plan. During the test, behavior of all three types of agents is compared to the acceptability criteria 

defined using empirical evidence
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6.3.6.2 Designing the HBM testing scenarios 

Design of test scenarios to validate the HBM was guided by the complex areas identified 

during conceptual model and knowledge base validation. First, a basic static scenario was 

designed. This scenario covered the fundamental task that the agent must be able to 

perform. Next, complexities were added by following means: dynamic changes of alarm 

and PA, obstruction of primary route with hazard, obstruction of secondary route with 

hazard, and introduction of a hazard on sight without any alarm or PA. 

 

Table 6.4 summarizes the test scenarios for the HBM validation exercise. 

Table 6.4: Test scenarios 

Scenario 

Name 

Context 

Scn1 Agent starts in the cabin. A GPA sounds followed by a PA announcement 

notifying of a man overboard (MOB) drill. The agent must go to muster 

station using either primary or secondary egress route. 

Scn2 Agent starts in the cabin. Fire erupts in the galley signaling a GPA. The agent 

must go to the muster station, but re-route to the lifeboat station due to the 

fire and smoke spreading to the adjacent muster station. The primary egress 

route and the muster station are compromised by the hazards. 

Scn3 Agent starts in the cabin. A fire and explosion on the helideck signal a GPA. 

High winds cause the smoke to engulf a portion of the platform exterior. The 

agent must go to the muster station, but re-route to the lifeboat station due to 

the increase in emergency severity and the alarm change to PAPA. The 

hazard blocks the secondary egress route. 

Scn4 Agent starts in the C-Deck Hallway and watches smoke coming out the cabin. 

The alarm is not triggered and no PA is available. Agent must raise the alarm 

and go to muster station using either primary or secondary egress route.  
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6.3.6.3 Conducting the tests and assessing test results against the acceptability criteria 

The three types of agents were tested in the 4 scenarios listed in Table 6.4. As observed in 

the experimental study, agents were allowed to have a preferred egress route. With 3 types 

of agents, 2 possible preferred routes, and 4 different scenarios, a total of 24 combinations 

had to be tested. Figure 6.6 shows the possible combinations. 

 

 

Figure 6.6: Possible combinations for testing and data collection 

10 simulation runs were conducted for each combination, giving a total of 240 simulation 

runs. As the HBM is stochastic, even for the same combination, behavior may vary across 

repeated simulation conditions. The most common behaviors observed for each 

combination are discussed below. 

 

Naïve agents: As stated in Section 6.3.1, naïve agents were created by setting knowledge 

as low, bias as high, compliance as low, efficacy of information use as low, and 

prioritization as wrong. Table 6.5 lists the most common behaviors of naïve agents 

observed in the testing scenarios. 
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Table 6.5: Common behaviors of naïve agents in the testing scenarios 

Scenario 

Observed behavior 

Preference: Primary route Preference: Secondary route 

Scn1 

Agent starts in the cabin. As GPA 

sounds, the agent takes the primary 

route to egress and goes to the mess 

hall. While egressing, the agent 

keeps the fire/watertight doors 

open and runs instead of walks. 

Agent starts in the cabin. As GPA 

sounds, the agent takes the secondary 

route to egress and goes to the mess 

hall through starboard side. While 

egressing, the agent keeps the 

fire/watertight doors open and runs 

instead of walks. 

Scn2 

Agent starts in the cabin. As GPA 

sounds, the agent takes the primary 

egress route and heads toward the 

mess hall. As the agent arrives at 

the mess hall, it finds the muster 

station compromised. The agent 

interacts with the hazard. As the 

alarm changes to PAPA, the agent 

decides to reroute to the lifeboat 

station. The agent mistakenly goes 

to the port side lifeboat instead of 

the starboard side lifeboat. While 

egressing, the agent keeps the 

fire/watertight doors open and runs 

instead of walks. 

Agent starts in the cabin. As GPA 

sounds, the agent takes the secondary 

egress route and heads toward the mess 

hall. On the way to the mess hall, the 

alarm changes to PAPA. The agent 

reroutes to the lifeboat station. The 

agent mistakenly goes to the port side 

lifeboat instead of the starboard side 

lifeboat. While egressing, the agent 

keeps the fire/watertight doors open 

and runs instead of walks. 

Scn3 

Agent starts in the cabin. As GPA 

sounds, the agent takes the primary 

egress route and heads toward the 

mess hall. As the alarm changes to 

PAPA, the agent decides to reroute 

to the lifeboat station. The agent 

mistakenly goes to the port side 

lifeboat instead of the starboard 

side lifeboat. While egressing, the 

agent keeps the fire/watertight 

doors open and runs instead of 

walks. 

Agent starts in the cabin. As GPA 

sounds, the agent takes the secondary 

egress route and heads toward the mess 

hall. On the way, the agent sees the 

smoke, but goes through it anyway. As 

the alarm changes, the agent reroutes to 

the lifeboat station. The agent 

mistakenly goes to the port side 

lifeboat instead of the starboard side 

lifeboat. While egressing, the agent 

keeps the fire/watertight doors open 

and runs instead of walks. 
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Scenario 

Observed behavior 

Preference: Primary route Preference: Secondary route 

Scn4 

Agent starts in the C-Deck 

Hallway (farthest from the cabin). 

The agent considers the danger 

imminent and starts to egress 

without activating the MAC. Agent 

takes the primary egress route to 

the mess hall and musters there. 

While egressing, the agent keeps 

the fire/watertight doors open and 

runs instead of walks. 

Agent starts in the C-Deck Hallway 

(farthest from the cabin). The agent 

considers the danger imminent and 

starts to egress without activating the 

MAC. Agent takes the primary egress 

route to the mess hall and musters 

there. While egressing, the agent keeps 

the fire/watertight doors open and runs 

instead of walks. 

 

As shown in Table 6.5, the naïve agents followed their preferred route irrespective of the 

obstruction of the route with hazard.  This led to interaction with the hazard. The other 

common mistakes were: confusing the portside lifeboat station as the starboard side lifeboat 

station, running, keeping fire/watertight doors open, and not activating the MAC as the first 

observer of the hazard. By comparing the performance of the naïve agents against the 

acceptability criteria listed in Table 6.3, it is found that in most cases the performance 

matches the erroneous behavior outcomes, as expected. 

 

Ideal agents: Ideal agents were created by setting the internal PIFs in the following way: 

knowledge as high, bias as low, compliance as high, efficacy of information use as high, 

and prioritization as right. Table 6.6 lists the most common behaviors of ideal agents 

observed in the testing scenarios. 
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Table 6.6: Common behaviors of ideal agents in the testing scenarios 

Scenario 
Observed behavior 

Preference: Primary route Preference: Secondary route 

Scn1 

Agent starts in the cabin. As GPA 

sounds, the agent takes the 

primary route to egress and goes 

to the mess hall. While egressing, 

the agent closes all fire/watertight 

doors and walks. 

Agent starts in the cabin. As GPA 

sounds, the agent takes the secondary 

route to egress and goes to the mess hall 

through the starboard side. While 

egressing, the agent closes all 

fire/watertight doors and walks. 

Scn2 

Agent starts in the cabin. As GPA 

sounds, it waits and listens to the 

PA. Based on the PA, it takes the 

secondary route and heads toward 

the mess hall. As the alarm 

changes to PAPA, it goes to the 

lifeboat station instead, and 

musters there. While egressing, 

the agent closes all fire/watertight 

doors and walks. 

Agent starts in the cabin. As GPA 

sounds, it waits and listens to the PA. 

Based on the PA, it takes the secondary 

route and heads toward the mess hall. As 

the alarm changes to PAPA, it goes to 

the lifeboat station instead, and musters 

there. While egressing, the agent closes 

all fire/watertight doors and walks. 

Scn3 

Agent starts in the cabin. As GPA 

sounds, it waits and listens to the 

PA. Based on the PA, it takes the 

primary route and heads toward 

mess hall. As alarm changes to 

PAPA, it goes to the lifeboat 

station through the mess hall and 

musters there. While egressing, 

the agent closes all fire/watertight 

doors and walks. 

Agent starts in the cabin. As GPA 

sounds, it waits and listens to the PA. 

Based on the PA, it takes the primary 

route and heads toward the mess hall. As 

alarm changes to PAPA, it goes to the 

lifeboat station and musters there. While 

egressing, the agent closes all 

fire/watertight doors and walks. 

Scn4 

Agent starts in the C-Deck 

Hallway (farthest from the cabin). 

As a first observer of the hazard, 

the agent activates the MAC. It 

takes the primary egress route to 

the mess hall and musters there. 

While egressing, the agent closes 

all fire/watertight doors and 

walks. 

a. Agent starts in the C-Deck Hallway 

(farthest from the cabin). As a first 

observer of the hazard, the agent 

activates the MAC. It takes the 

primary egress route to the mess hall 

and musters there. While egressing, 

the agent closes all fire/watertight 

doors and walks. 
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b. Agent starts in the C-Deck Hallway 

(farthest from the cabin). As a first 

observer of the hazard, the agent 

activates the MAC. It approaches 

the secondary stairwell from a 

different way than usual to avoid the 

hazard. The agent takes the 

secondary route to the mess hall and 

musters there. While egressing, the 

agent closes all fire/watertight doors 

and walks. 

 

The ideal agents were able to perform all the tasks of general personnel during emergency 

situations. Though the probability of the ideal agents making a mistake is non-zero, their 

most common behaviors match the ideal behaviors as defined in Table 6.3. Irrespective of 

their preferred route, ideal agents were able to pick a route to avoid potential interaction 

with hazards. They registered at the correct muster location and followed the safety 

procedures while egressing. They were also able to activate the MAC as the first observer 

of the hazard. The occasional errors made by the ideal agents were running and not closing 

the fire/watertight doors. These were also the most common erroneous behaviors of the 

participants with high scores in the experimental study. 

 

It is also worth noting that unlike naïve agents, the ideal agents did not always prefer one 

route over another. The preference often depended on the final destination or presence of 

hazards. For example, an ideal agent may prefer the primary route when there is no hazard, 

but take the secondary route in the presence of a hazard. 
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In-between agents: As discussed in Section 6.3.1, the example in-between agents used in 

this paper were created by setting knowledge as low, bias as low, compliance as high, 

prioritization as right, and efficacy of information use as low. Table 6.7 lists the most 

common behaviors of in-between agents observed in the testing scenarios. 

Table 6.7: Common behaviors of in-between agents in the testing scenarios 

Scenario 
Observed behavior 

Preference: Primary route Preference: Secondary route 

Scn1 

Agent starts in the cabin. As GPA sounds, 

the agent takes the primary route to egress 

and goes to the mess hall. While egressing, 

the agent keeps all fire/watertight doors 

open but walks. 

Agent starts in the cabin. As 

GPA sounds, the agent takes 

the secondary route to egress 

and goes to the mess hall 

through starboard side. While 

egressing, the agent keeps all 

fire/watertight doors open and 

runs instead of walks. 

Scn2 

Agent starts in the cabin. As GPA sounds, 

the agent takes the primary route to mess 

hall. As it reaches the mess hall, it realizes 

that the mess hall is compromised. The 

agent immediately reroutes. It goes up a 

deck and takes the secondary route to 

egress. In the meantime, alarm changes to 

PAPA and the agent musters at the lifeboat 

station. While egressing, the agent keeps 

all fire/watertight doors open but walks. 

Agent starts in the cabin. As 

GPA sounds, the agent takes 

the secondary route and heads 

towards mess hall. As the alarm 

changes to PAPA on the way, 

the agent musters at the lifeboat 

station instead. While 

egressing, the agent closes all 

fire/watertight doors and walks. 

Scn3 

Agent starts in the cabin. As GPA sounds, 

it waits and listens to the PA. Based on the 

PA, it takes the primary route and heads 

towards mess hall. As alarm changes to 

PAPA, it goes to the lifeboat station 

through mess hall and musters there. 

While egressing, the agent keeps all 

fire/watertight doors open and runs instead 

of walks. 

Agent starts in the cabin. As 

GPA sounds, the agent takes 

the secondary route to egress. It 

reroutes immediately after 

finding out that the route is 

compromised with smoke. It 

takes the primary route and 

goes to starboard side lifeboat 

through mess hall. While 

egressing, the agent closes all 

fire/watertight doors and walks. 
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Scenario Preference: Primary route Preference: Secondary route 

Scn4 

Agent starts in the C-Deck Hallway 

(farthest from the cabin). The agent 

considers the danger imminent and start to 

egress without activating the MAC. Agent 

takes primary egress route to mess hall and 

musters there. While egressing, the agent 

closes all fire/watertight doors and walks. 

Agent starts in the C-Deck 

Hallway (farthest from the 

cabin). The agent considers the 

danger imminent and starts to 

egress without activating the 

MAC. It approaches the 

secondary stairwell from a 

different way than the usual to 

avoid the hazard. The agent 

takes the secondary route to 

mess hall and musters there. 

While egressing, the agent 

closes all fire/watertight doors 

but runs instead of walks. 

 

As shown in Table 6.7, behaviors of in-between agents lie somewhere between the two 

extremes of ideal and naïve agents. The in-between agents may fail to interpret the PA and 

take the ideal route from the beginning. As soon as they realize that the current route is 

untenable, they reroute immediately. The agents may not follow the safety procedure at all 

times, and may forget to activate the MAC. As expected, in all scenarios, the in-between 

agents had a combination of ideal and erroneous behavior outcomes. 

 

A summary of agent behavior in Scn2 is presented in Figures 6.7 and 6.8. Figure 6.7 shows 

the number of erroneous behaviors observed for each type of agent during the 10 simulation 

runs for this scenario. As show in the figure, though ideal agents occasionally commit 

errors, in general they exhibit safer behavior compared to the in-between and naïve agents. 

In all simulation runs, the ideal and in-between agents manage to avoid interaction with 

hazards by either choosing the safest route from the beginning, or by rerouting immediately 
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after encountering the hazard. Figure 6.8 summarizes the route choice of all types of agents 

in Scn2. Behavior of agents in other scenarios can be summarized in the same way.  

 

 

Figure 6.7: Observed erroneous behavior of 3 types of agents in Scn2 (preference = primary route) 

for 10 simulation runs each. 

 

Figure 6.8: Route choice of 3 types of agents in Scn2 (preference = primary route) for 10 simulation 

runs each. 
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6.4 Limitations and future work 

One of the biggest challenges faced during result validation was to determine the number 

of simulation runs. With a deterministic simulation, just one run is enough. The answer is 

not so simple for stochastic simulations. Though some guidelines are available for 

determining the number of runs for quantitative stochastic simulations, such guidelines are 

not available for qualitative simulations like behavior simulation (Byrne, 2013). In this 

paper, a total of 240 runs were conducted simply for feasibility. However, that only allowed 

10 runs for each combination. In future, more runs per combination will be conducted to 

increase the confidence in the results (Ritter et al., 2011). 

 

The testing conducted during result validation did not involve SMEs. It is often 

recommended in literature to involve SMEs in the testing process by either direct 

participation or by review of the testing report. Authors plan to get the test reports reviewed 

by SMEs in future. Authors also plan to extend the behavior spectrum by including worksite 

scenarios and having more than one agent simultaneously. 

 

It must be noted that virtual environments can provide a certain degree of realism and 

should not be expected to be an exact counterpart to real life emergency situations. The 

goal of the validation presented in this paper is to make sure that the agents behave as 

realistically as the participants in the study. More sophisticated behavior of the agents (i.e. 

as in real world settings) is out of the scope of this paper.  
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6.5 Conclusion 

With the advancement of simulators as a training tool, use of software agents to enable 

team training has become quite common. Credibility of these agents is critical to ensure a 

sound training process. Validation of the underlying HBM of these agents is the first step 

to ensure such credibility. This paper presents the validation process of an HBM of general 

personnel, created for an offshore emergency training simulator. Unlike traditional HBM 

validation processes that use experts’ opinion, empirical evidence was used in this paper. 

Use of empirical evidence makes the validation more objective and reliable.  

 

All high-level tasks of validation are discussed in detail with special emphasis given on the 

acceptability criteria testing. Three types of agents – naïve, ideal, and in-between – were 

tested during validation. Results show that the integrated HBM meets the acceptability 

criteria requirement for all types of agents. This indicates that the agents have potential to 

be used as team members for crew training in offshore emergency situations. A 

combination of different types of agents will allow creating a heterogeneous training 

environment, which would be a closer representation of the actual working environment. 

 

Future work includes improving the result validation by conducting more simulation runs 

and getting the test reports reviewed by SMEs. The authors also plan to extend the behavior 

spectrum by including worksite scenarios and team simulation. 
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Abstract 

This data article describes the experimental data used in the research article “Incorporating 

individual differences in human reliability analysis: an extension to the virtual experimental 

technique” (Musharraf et al., in press). The article provides human performance data for 36 

individuals collected using a virtual environment. Each participant was assigned to one of 

two groups for training: 1) G1: high level training and 2) G2: low level training. 

Participants’ performance was tested in 4 different virtual scenarios with different levels of 

visibility and complexity. Several performance metrics of the participants were recorded 

during each scenario. The metrics include: time to muster, time spent running, interaction 

with fire doors and watertight doors, interaction with hazards, and reporting at different 

muster locations 

Specifications Table  

Subject area Engineering, Human factors 

More specific subject area Safety & Risk, Human Reliability Analysis 

Type of data Text files 

How data was acquired Data were collected by conducting an experiment in a 

virtual environment. The virtual environment used is 

called the all-hands virtual emergency response trainer 

(AVERT) and was developed at the Memorial University. 

AVERT was designed to enhance offshore emergency 

response training. The virtual environment is modeled 

after an offshore oil installation platform with high levels 

of detail. It is capable of creating credible emergency 

scenarios by introducing hazards such as blackouts, fires 

and explosions. 

Human performance data of 36 individuals tested in 

simulated emergency scenarios in AVERT were collected. 

Data format Filtered and processed 
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Experimental factors The participants were naïve concerning any detail of the 

experimental design, they were not employed in the 

offshore oil and gas industry, and were not familiar with 

the AVERT simulator prior to the experiment. Their ages 

ranged from 19-39 years. Information regarding 

participants’ gaming and marine experience was collected 

prior to the experiment. This information guided the 

assignment of participants into different training groups. 

Participants were provided with basic offshore emergency 

preparedness training tutorials before performing in any 

simulated emergency scenarios. 

Experimental features Two performance influencing factors (PIFs) – visibility 

and complexity – were each tested at two different levels 

to create 22 = 4 virtual testing scenarios. Participants’ 

performance was tested in the scenarios and the following 

performance metrics were collected: time to muster, time 

spent running, interaction with fire doors and watertight 

doors, interaction with hazards, and reporting at different 

muster locations (i.e. mess hall/muster station, lifeboat 

starboard side, lifeboat port side). 

Data source location Memorial University of Newfoundland, St. John’s, NL, 

Canada 

Data accessibility The data are with this article. 

 

Value of the data  

• The data serve as a benchmark for human performance in emergency situations. 

• The data allow objective assessment of human reliability rather than subjective 

assessments that rely on expert judgement. 

• The data enable investigating the effects of different PIFs on human performance. 

• The data provide the information that each human is different and the effect of PIFs on 

performance can vary from individual to individual. 

• Analysis of the data can provide direction towards adaptive training. 
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7.1 Data 

Human performance data for 36 individuals in 4 testing scenarios are associated with this 

article. The testing scenarios were created in AVERT. Two PIFs – visibility and complexity 

– were varied in the scenarios. Details of the 4 testing scenarios can be found in Table 3 in 

(Musharraf et al., in press). 

 

Performance metrics recorded during the scenarios include: time to muster, time spent 

running, interaction with fire doors and watertight doors, interaction with hazards, and 

reporting at different muster locations. 

 

The 4 supplementary text files summarize the performance metrics of 36 individuals in the 

4 simulated emergency scenarios. 

7.2 Experimental Design, Materials and Methods 

The data presented in this article were originally collected during an experimental study 

presented in (Smith J. , 2015) and (Musharraf et al., 2016). Though a broad range of human 

performance data were collected during the study, this article only presents the data relevant 

to the article “Incorporating individual differences in human reliability analysis: an 

extension to the virtual experimental technique” (Musharraf et al., in press). 

 

A total of 36 participants took part in the study with a goal to learn how to perform a 

successful offshore emergency evacuation. The participants were naïve concerning any 

detail of the experimental design, they were not employed in the offshore oil and gas 
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industry, and therefore they were not familiar with the offshore platform. Each participant 

was assigned to one of two groups for training: 1) G1: high level training and 2) G2: low 

level training. Participants in both groups received basic offshore emergency preparedness 

training. Participants in G1 received additional training tutorials and practice scenarios on 

alarms and hazards. 

 

Once a participant was assigned to a group, his/her training level remained static (either 

low or high) for the rest of the study. The PIFs visibility and complexity, on the other hand, 

were set to different levels to investigate how these PIFs influence each participant. The 

schematic diagram of the experimental design can be found in (Musharraf et al., in press). 
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8. CONCLUSIONS & RECOMMENDATIONS 

8.1 Conclusions 

Post-accident analysis of disasters like Piper-Alpha shows that offshore emergencies are 

uncertain, dynamic, and stressful. Assistance cannot be reached immediately and successful 

handling of emergencies often depends on the competency of the personnel on board. Both 

individual and team competency are essential. The conventional training programs mostly 

focus on increasing individual competency, as organizing large-scale team exercises is 

often a challenge. The organizational and educational drawbacks of such team exercises 

make them unfeasible. This research proposes the use of artificial intelligent agents to 

enable team training in a VE. Computational models of human behavior are developed in 

this research that can be used to create such intelligent agents. Though similar works have 

been done for the military, aviation, and nuclear power plant industries, no such work is 

available to date for the offshore industries. This research will be first of its kind in the 

context of offshore emergencies. 

 

Both SMEs’ opinion and empirical evidence are used during the development and 

validation phases of the HBM. The first part of the research focuses on understanding 

human behavior by conducting an experiment in a VE. A range of emergency scenarios 

was created in the VE by varying the level of different external PIFs. Influence of these 

external PIFs on human performance was investigated during the study. Internal PIFs of 

participants of the experiment were also assessed using the data collected during the 
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experiment. Participants’ knowledge acquisition and inference processes were studied in 

the research. In the second part, understanding from the experimental study was used to 

develop the HBM. A BN approach was used to model the effect of external and internal 

PIFs. Special attention was paid to ensure that the model takes individual differences of 

participants into account while modeling the effect of different PIFs on human 

performance.  The BN models allowed the consideration of dependency among the PIFs 

and associated performance. They also allowed updating prior probabilities with incoming 

new evidence. To model the reasoning processes of participants during emergency 

situations, decision trees were used. The decision trees offer a visual representation of the 

reasoning process, and valuable diagnostic capabilities.  Once the HBM was developed, it 

was used to create agents with varying levels of skill. Three types of agents – naïve, ideal, 

and in-between – were created using the HBM. The third part of the research focused on 

validating the HBM. All high-level tasks of HBM validation were performed with special 

emphasis given on the result validation. Result validation shows that the integrated HBM 

meets the acceptability criteria requirement for all types of agents. 

 

Outcomes of this research may help to advance emergency preparedness training and to 

improve safety. The mathematical models, BNs, and decision trees, developed in this 

research may be used to predict people’s reliability in emergency situations. Diagnostic 

aspects of BN and decision trees may be used to identify the strengths and weakness of 

individuals. Such diagnosis may help design adaptive training to overcome weaknesses and 

reach competency faster. The diagnosis may also help the personnel selection process for 
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different roles. Models like decision trees may be used to assess the efficacy of the training 

curriculum and/or pedagogical approaches. It is expected that a sound training approach 

would result in converging problem-solving strategies that lead to success. Any systemic 

exception might indicate weaknesses in the training approach itself. In addition to 

improving individual training, HBMs developed in this research may be used to facilitate 

team training in a VE. Agents created using the HBM can be used to create a heterogenous 

training environment where trainees can gather experience of working with, or 

commanding, teams with varying skill levels. This may help to keep trainees more focused 

and engaged during the training by providing novel challenges. 

8.2 Technical challenges and recommendations 

A few technical challenges faced during the research and according recommendations are 

presented below: 

• Virtual environments can only provide a certain degree of realism. The work done in 

this research is centered around the virtual environment AVERT. Though AVERT 

represents an offshore oil installation platform with high levels of detail, it can not be 

taken as an exact counterpart to the real world operational environment.  

 

It is not feasible to compare the outcomes achieved in AVERT to outcomes in real 

emergency situations. However, special attention can be paid while designing 

emergency scenarios in VE to make sure they closely represent real life emergencies. 

Facts and findings in the literature and investigation reports of previous accidents can 

be used to create credible emergency scenarios. 
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• Human behavior and cognition processes are extremely complex, and both the number 

and the magnitude of factors that can influence human performance are very high. 

Using a comprehensive list of PIFs while keeping the number of virtual scenarios 

feasible is challenging. As the number of PIFs and associated magnitudes increase, the 

number of virtual scenarios needed to quantify computational models like BN also 

increase exponentially. 

 

Instead of investigating the effect of all possible PIFs at the same time, it is 

recommended to identify the ones that are vital for a given context. This can help to 

keep the number of scenarios manageable. A fractional factorial design can also be used 

instead of a full factorial one when possible. Use of concepts like Noisy OR may help 

minimize the data requirement for quantifying a BN. 

 

• Blocking nuisance factors that have some effect on the response, but are not of 

particular interest to the experimenter is extremely difficult while conducting 

experiments with humans. As stated above, both the number and the magnitude of 

factors that can influence human performance is very high. It is nearly impossible to 

block all nuisance factors using the available blocking techniques while conducting 

experiments with humans (Montgomery, 2017). For example, in the experiment done 

in this research – three controlled factors training, visibility, and complexity – were of 

interest. However, it was observed during the experiment that some participants’ 

performance in the virtual scenarios might be influenced by their gaming experience. 
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Though the two groups were balanced in terms of their self-reported video gaming 

experience, it was not possible to block the effect of such experience at an individual 

level.     

 

While it may be impossible to block all possible nuisance factors during an experiment, 

it is recommended that sufficient research be done prior to experiment to identify these 

factors. This may allow the investigator to design the experiment in a way so that effects 

of nuisance factors are minimized. Even when elimination or reduction of the effect of 

nuisance factors is not possible, being aware of the factors can help interpret the results 

more accurately. 

 

• Having a meaningful sample size can be challenging while conducting experiments 

with humans. Because this research looked into individual differences, rather than 

group statistics, having a meaningful sample size was even harder. Gathering sufficient 

data for training the models (i.e. BN, decision trees) while keeping the number of 

exposures to virtual scenarios manageable for an individual was a challenge. One 

possible improvement could be to allow the participants more time on the scenarios 

rather than lecture based tutorials. More data points in the training data set can help 

increase the prediction accuracy of the computational models. 

 

• Incorporation of individual differences presents new challenges in the conventional 

verification and validation paradigm. Since conditional probabilities in the BN can be 
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different for each individual, quantification of parameterization confidence suggested 

in a conventional validity framework is nearly impossible (Pitchforth & Mengersen, 

2013). Though a validation exercise was not conducted for the BN models developed 

in this research, the models were later integrated into an HBM. The HBM is validated 

with the underlying assumption that the uncertainty involved in the BN is negligible. 

 

• Balancing variation and validation of an HBM is one of the biggest challenges. Due to 

the stochastic nature of the HBM, it is not sufficient to expose the HBM to each scenario 

just one time. The HBM must be tested in the same scenario multiple times. No standard 

guideline is available that defines the number of such exposures. Ritter’s (2011) 

suggestion regarding confidence parameters can be useful when deciding the number 

of required exposures. 

 

It is worth mentioning that the experiments conducted in this research was designed to 

achieve multiple objectives at the same time and as a result there were a few constraints 

that needed to be maintained. For example, Smith (2015) used the collected data to study 

the learning effect of participants across scenarios. This prevented the scenarios to be 

randomized, which would be ideal for this research. Due to the challenges associated with 

experiments with humans (i.e. recruitment, time commitment of participants), it is often 

worth combining multiple research objectives into one experiment. In such cases, it is 

recommended that potential constraints resulting from the merger are analyzed prior to the 

experiment. 
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8.3 Future work 

Some guidance on future works that can help advance the offshore emergency training are 

discussed below. 

• An interesting future work would be investigating the effect of the different types of 

agents on human behavior and training efficacy. 

 

• The external PIFs studied in this research were training, visibility, and complexity. 

Though the PIFs satisfied the intended variability encoding in the agents, a more 

relevant and informative set of PIFs would be useful. The AVERT configuration has 

made significant progress since the time of the study and the additional features have 

relaxed the constraints on the choice of PIFs. Future works should take advantage of 

the additional features to design experiments with more realistic PIFs. Moyle et al. 

(2017) has already conducted an experiment in AVERT with such PIFs (complexity, 

stress, and uncertainty), which are more realistic representatives of offshore emergency 

situations. 

 

• Though PIFs like complexity and stress are more realistic, it is hard to define different 

degrees of these PIFs. Objective measurement of whether a virtual scenario is highly 

stressful or not can be challenging. Moreover, what seems to be a stressful situation for 

one, might not be stressful for others. Future works should look into measurable 

indicators, such as physiological data, to define the different degrees of the PIFs. 
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• This research focused on the casual dependency among the PIFs and human 

performance. The dependency among the PIFs themselves were not investigated in this 

research. Consideration of such dependency may help improve the accuracy of the 

computational models and should be considered in future research. 

 

• This research demonstrates how BN can be used to improve human reliability 

assessment in offshore emergencies. BNs are just one of the many potential Bayesian 

methods that can improve HRA. Groth et al. (2014) discusses the advantages of 

applying other Bayesian methods and associated computational techniques to facilitate 

HRA with special emphasis given on Bayesian inference. Groth’s work demonstrates 

the use of data collected in a nuclear power plant simulator to update the initial human 

error probability assigned by the experts. Similar work can be done using the data 

collected during this study to improve HRA in offshore oil & gas industries. 

 

• Participants of the experimental study done in this research were naïve. They were not 

employed in the offshore oil and gas industry, and therefore they were not familiar with 

the offshore platform. It is anticipated that data collected from real offshore workers 

may provide different results. Since the goal is to use the models to improve safety in 

oil and gas industries, future works should consider participants with relevant 

experience. 

 



225 

 

 

• The focus of the research was on the behavioral outcomes of the agents. General aspects 

such as look and feel were out of the scope of this research. These aspects are very 

important for the agents to be realistic enough to facilitate team training in VEs. Future 

works should pay attention to the details of how behaviors of agents are portrayed in 

the VE. Another essential improvement of the agents is their ability to communicate. 

The range of team training scenarios will heavily depend on the sophistication of the 

communication module of the agents. 

 

• This research focused on the behavior of general personnel working on offshore oil and 

gas installations. Since the motivation behind the research is to enable team training in 

VEs, emergency response behavior of other team members needs to be studied and 

modeled as well. This might require looking into the development and use of a shared 

mental model framework, especially while modeling co-operative decision makings 

(i.e. decisions in emergency co-ordination centre).  
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Appendix A 

 

Figure A.1: IPME network screenshot (based on the task network in Figure 5.3) 



228 

 

 

Sample function AlarmInterpretation() and associated equations 

/* 

Represents agent's interpretation of the alarm and PA 

@modifies PercievedAlarmType, FinalDestination, PercievedObstructedRoute, PercievedPA 

*/ 

void AlarmInterpretation() 

{ 

    double CurrentProb = randInt (0,100);  

    double ProbOfFailure = 100*PSF_InterpretAlarm();  

      

    //if agent is interpreting correctly   

    if (CurrentProb >= ProbOfFailure)  

    {  

        if (VisualForAlarm == "Flashing Green" && AudioForAlarm == "Two tone")  

        {    

               PercievedAlarmType = "GPA";     

               FinalDestination = "Muster station";    

        }    

        else if (VisualForAlarm == "Steady Green" && AudioForAlarm == "Constant tone")    

        {    

               PercievedAlarmType = "PAPA";    

               FinalDestination = "Lifeboat station";    

        }    

         PercievedObstructedRoute = ObstructedRoute;  

         PercievedPA = PA;  

    }   

       

    //if agent is making mistake because of the influence of the PSFs  

    else  

    {    

       if (VisualForAlarm == "Flashing Green" && AudioForAlarm == "Two tone")    

       {    

              PercievedAlarmType = "PAPA";    

              FinalDestination = "Lifeboat station";     

        }   
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        else if (VisualForAlarm == "Steady Green" && AudioForAlarm == "Constant tone")    

        {    

               PercievedAlarmType = "GPA";     

               FinalDestination = "Muster station";     

        } 

       PercievedObstructedRoute = "None";  

       PercievedPA = "None";  

    }  

    if (NewStimuli == "Yes") NewStimuli = "No"; 

         

} 

 

 

/* 

Calculates probability of failure for the task Alarm & PA interpretation based on the state of the PSFs. 

@returns probability of failure for interpret alarm 

*/ 

double PSF_InterpretAlarm() 

{ 

    double ProbOfIntFailure = 0.0;   

    if ((AssignedOp.Knowledge.Value == HiMedLow.High) && (AssignedOp.EfficacyOfInformationUse.Value == 

HiMedLow.High))  

ProbOfIntFailure = 0.25;   

    else if ((AssignedOp.Knowledge.Value == HiMedLow.Low) && (AssignedOp.EfficacyOfInformationUse.Value 

== HiMedLow.High))  

ProbOfIntFailure = 0.5;  

    else if ((AssignedOp.Knowledge.Value == HiMedLow.High) && (AssignedOp.EfficacyOfInformationUse.Value 

== HiMedLow.Low))  

ProbOfIntFailure = 0.5;  

    else if ((AssignedOp.Knowledge.Value == HiMedLow.Low) && (AssignedOp.EfficacyOfInformationUse.Value 

== HiMedLow.Low))  

ProbOfIntFailure = 0.95;     

    return ProbOfIntFailure; 

} 
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Appendix B 

 

Figure B.1: Schematic diagram of primary egress route from cabin to mess hall. 
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Figure B.2: Schematic diagram of secondary egress route from cabin to mess hall. 

 

 


