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Abstract

Theoretical seismology, which is the subject of the thesis, could be viewed as a

subject of continuum mechanics, whose mathematical structure relies on tensors. For

instance, Hooke’s Law, which underlies the theory of elasticity—a branch of contin-

uum mechanics—is a tensorial equation. A generally anisotropic tensor, obtained

from physical measurements, can be approximated by another tensor belonging to a

particular material-symmetry class. This tensor is referred to as the effective tensor;

among all tensors in a particular symmetry class, it is the closest to the given an-

isotropic tensor. This ‘closeness’ that we refer to, draws upon the notion of a norm.

In this thesis, we compare the effective tensors belonging to the isotropic symmetry

class obtained using three different norms—the Frobenius-36, the Frobenius-21, and

the operator norms. Furthermore, we utilize another method—a ‘L2 slowness-curve

fit’ method—and compare the results herein. Finally, we explore the associated errors

and analyze the relationship between the mathematical and physical models.
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Review of Pertinent Literature

In the last century, scientists were interested in how to express a generally an-

isotropic tensor by its closest isotropic counterpart. This means, given anisotropic

seismic data in tensor form, we can approximate this tensor to its “closest” isotropic

counterpart using a distance or length function that measures the difference between

the elastic moduli of two materials. The work of Voigt (1910) provided a method that

became a standard to a point that many are not even aware of other approaches. How-

ever, the concept of “closeness” is norm-dependent; meaning, the ‘closest’ isotropic

counterpart may differ using different mathematical norms. Voigt a priori assumed a

pythagorean norm known as a Frobenius norm1. For an explanation of the Frobenius

norm, refer to Section (2.1.1). In this thesis, we compare the Voigt (1910) approach—

the Frobenius-36 norm—with other norms. More specifically, the Frobenius-21 and

operator norms.

Voigt (1910) introduced the concept of the nearest isotropic tensor, using the

Frobenius-36 norm, to a given anisotropic tensor. From here, research in this area of

mathematical physics began to move forward.

Preliminary work in the area of tensor analysis had begun and Gazis et al. (1963)

put forth a paper on the elastic tensor of given symmetry nearest to an anisotropic

elastic tensor. They produce some general theorems concerning tensors of any rank

in an n-dimensional Euclidean space2. They construct the nearest isotropic tensor

1The Frobenius norm, which is also called Euclidean norm, provides a natural definition for

distance, and using it one can find the elastic tensor of a given symmetry nearest to an anisotropic

elastic tensor.

2Euclidean n-space, sometimes called Cartesian space or simply n-space, is the space of all n-

x



to a given anisotropic elastic tensor as well as to the nearest cubic tensor. They

also discuss how the theorems presented can be applied to other symmetry groups of

crystals.

Norris (2006) states in his paper that the isotropic elastic moduli closest to a given

anisotropic elasticity tensor can be defined using the Frobenius norm, the Riemannian

distance for tensors, and the log-Euclidean metric3. He concludes that the closest

moduli are unique for both the Riemannian and log-Euclidean norms.

Moakher and Norris (2006) put forth a paper discussing solutions for the Frobe-

nius, Riemannian, and log-Euclidean distance functions. They pay particular atten-

tion to the Riemannian and log-Euclidean functions as their solutions are invariant

under inversion, where the Frobenius distance is not. They investigate the three

metrics at a level greater than Norris (2006).

Kotchetov and Slawinski (2009) investigate obtaining effective transversely isotropic

elasticity tensors. They use the Frobenius norm and formulate a method for finding

the optimal orientation of the coordinate system, which is the one that produces the

shortest distance.

Danek and Slawinski (2014) investigate another norm—the “operator” norm—to

view how effective it is in finding the effective transversely isotropic tensor from a

tuples of real numbers—(x1, x2, ..., xn). The term “Euclidean” distinguishes these spaces from

other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher

dimensions. (High-dimensional spaces frequently occur in mathematics and the sciences. They may

be parameter spaces or configuration spaces such as in Lagrangian or Hamiltonian mechanics; these

are abstract spaces, independent of the physical space we live in.)

3For further reading on the Riemannian distance and the log-Euclidean metric, see Arsingy et

al. (2006)).
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given anisotropic tensor. In this paper, they compare the effective tensors belonging

to the transversely isotropic class obtained using two different norms: the Frobenius-

36 and the operator norm.

Bos and Slawinski (2014) investigate the same two norms described previously—

the Frobenius-36 and operator norms—and use them to measure distances between

a given anisotropic tensor and its closest effective isotropic counterparts.

The concept of a norm is a standard subject in mathematics. In light of this,

certain technical details used in this thesis originate from mathematical textbooks.

In this thesis, we make use of Horn and Johnson (2013) in their discussion on matrix

norms. Also, we use Lancaster and Tismenetsky (1985), particularly their discus-

sion on induced matrix norms, as well as Wilkinson’s (1965) ideas on eigenvalues of

matrices of condensed forms.
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Preface

Introduction

The symmetry class of an elasticity tensor is a property of a Hookean solid, de-

fined by that tensor. Such a solid might serve as a mathematical analogy of a physical

material. An elasticity tensor obtained from seismic measurements subject to exper-

imental errors, and without an a priori assumed material symmetry, is anisotropic.

The inference of properties of a physical material requires further interpretation of

this generally anisotropic elasticity tensor. Among these properties are its symme-

tries. In particular, it is useful to compute an isotropic counterpart of the obtained

tensor, which might be sufficiently accurate for seismic interpretations, while offer-

ing a significant mathematical convenience. The decision then lies in choosing an

appropriate norm to compute such a counterpart, which is the crux of this study.

An examination of several norms to obtain an isotropic counterpart is presented by

Norris (2006). Herein, we numerically compare isotropic counterparts according to

the Frobenius-36 norm, Frobenius-21 norm, which we refer to as F36 and F21, re-

spectively, as well as according to the operator norm and the L2 slowness-curve fit,

which we refer to as λ and L2, respectively. Also, we use perturbation techniques

to examine the effect of errors on isotropic counterparts. We finish the investigation

by discussing the satisfaction of stability conditions or, more generally, the relation

between the mathematical and physical models.
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Rudiments

This study is set up in such a fashion where we begin with discussions of the

pertinent physical basics — balance principles, deformations and material symme-

try. To further that, we have discussions of the pertinent mathematical basics —

different types of norms, and the concept of slowness curve L2 fit. We then intro-

duce numerical models, applying the prior discussed notions, and compare the results.

Furthermore, we investigate the related error propagation and, finally, the relation

between the mathematical and physical models. As the reader moves through this

study, it should be noted that boldface terms are emphasized and are discussed fur-

ther in the glossary. Italicized terms are other concepts that are pertinent to this

study and may be elaborated on in the provided footnotes.
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Chapter 1

Continuum Mechanics

1.1 Introduction

Continuum mechanics is a branch of mechanics that pertains to the study of

deformations. As stated by the qualifier continuum, the study disregards the discrete

atoms of matter. This approximation allows us to remain within the concept of

continuity, allowing for the application of calculus. As a result, continuum mechanics

is able to model physical phenomena with great success. Among other applications,

we may study the field of quantitative seismology using continuum mechanics.

Such an approximation may be thought of as unwise, especially where adjacent ele-

ments are not perceptibly different from each other, due to boundaries. However, such

approximations have proven useful in scientific study and have allowed for the appli-

cation of mathematical physics to the study of physical phenomena. On length-scales,

much greater than that of inter-atomic distances, such models are highly accurate.

This approximation opens many avenues of computation and application to models
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of solids, liquids, and gases.

The concept of a continuous function allows differentiability. More specifically, we

can define stress and strain at given points and can apply methods of calculus to the

study of forces and their interactions.

1.2 Material Symmetry

1.2.1 Introductory Remarks

The concept of symmetry is an integral part of both mathematics and physics. In

this section, we focus on rotational symmetries of Hookean solids, which is part of

the subject of anisotropy. A Hookean solid, cijkℓ , is a mathematical entity. It relates

stress, σij , and strain, εkℓ , in a linear fashion. This linear relationship is known as

Hooke’s Law and is described as

σij =
3

∑

k=1

3
∑

ℓ=1

cijkℓεkℓ , i, j ∈ {1, 2, 3} . (1.1)

Since these solids can be described as mathematical entities, we describe such a

symmetry as a mathematical concept. Heuristically, mathematical symmetries mean

that we can perform operations on an object without modifying its appearance. For

example, a sphere may be rotated about any axis by any amount and its appearance

will stay the same. Similarly, within an isotropic Hookean solid, wave-propagation

properties are independent of its orientation, thus giving them symmetry that is syn-

omous to that of a sphere. This invariance to the orientation of the coordinate system

is called material symmetry. To forward this notion to physical phenomena, such a

2



behavior is a good analogy for granites, as they show a randomized arrangement of

quartz, mica, and feldspar. Shales, however, are different in the sense that properties

of disturbances propagating along laminations might be quite different from proper-

ties of disturbances propagating obliquely to laminations. Hence, physical materials

exhibit differing symmetries.

Herein, cijkℓ are the components of an elasticity tensor; a 6 × 6 symmetric1,

positive-definite matrix, belonging to a particular symmetry class. For the purpose of

this study, the components of an elasticity tensor belong to one of the three symmetry

classes described in section (1.2.3).

1.2.2 Symmetry Conditions

Material symmetries can be studied using a transformation of an orthonormal

coordinate system in the x1x2x3-space. We are specifically interested in distance-

preserving transformations, as these transformations allow us to change the orienta-

tion of the continuum without deforming it.

The invariance to an orthogonal transformation imposes certain conditions on the

elasticity matrix. For the transformed and the original matrices to be identical to

one another, they must possess a particular form. Here, we study a method where,

given an orthogonal transformation, we can find the elasticity matrix that is invariant

under this transformation, and hence, describe the material symmetry exhibited by

1Refer to section 3.2.2 of Slawinski, 2015, for an explanation of how the elasticity tensor, cijkℓ ,

is invariant under permutations in the first pair of subscripts, as well as under permutations in the

second pair of subscripts, thus giving the number of independent components of the elasticity tensor,

cijkℓ , to be thirty-six.

3



a particular continuum. This method is stated in the theorem that follows.

Theorem 1. The elastic properties of a continuum are invariant under an orthogonal

transformation, given by matrix A, if and only if

C = MT
A CMA , (1.2)

where C is the elasticity matrix and MA is the transformation matrix.

For a complete proof of this theorem, refer to Slawinski (2015, page 144). The

topic of material symmetries and their classes will be expanded in section (3.1).

1.2.3 Tensor Forms

Due to the existence of the strain-energy function and under the assumption of

the equality of mixed partial derivatives

cijkℓ = ckℓij , i, j, k, ℓ ∈ {1, 2, 3} , (1.3)

where cijkℓ are entries of elasticity tensor C from equation (1.2). Expression (1.3) re-

duces the thirty-six components of a 6×6 elasticity matrix to twenty-one independent

components2. They can be written—in Kelvin’s, as opposed to Voigt’s, notation—as

entries cijkℓ of a 6× 6 symmetric second-rank tensor in R
6 .

A generally anisotropic tensor is the most general tensor described by stress-

strain equations3 and is denoted as

2For further insight into the strain-energy function, refer to Slawinski (2015, page 116).

3For further insight into the formulation of stress-strain equations, refer to Slawinski (2015,

page 90).
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


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


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
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Using matrix (1.4), equation (1.1) can be rewritten as









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√
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
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(1.5)

For a transversely isotropic tensor—within a system whose x3 axis is parallel to

the rotation symmetry axis—the components of Caniso become

CTI =












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
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A continuum whose symmetry group contains all orthogonal transformations is said

to be isotropic. The arrangement of the zero entries and values of the nonzero

entries remain the same for all orientations of an orthonormal coordinate system4.

Comparatively, the elasticity matrix of an isotropic tensor has the simplest form of

all tensors. For isotropy, the components of Caniso become

C iso =





































ciso
1111

ciso
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− 2ciso
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ciso
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− 2ciso
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0 0 0

ciso
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− 2ciso
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ciso
1111

ciso
1111

− 2ciso
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0 0 0

ciso
1111

− 2ciso
2323

ciso
1111

− 2ciso
2323

ciso
1111

0 0 0

0 0 0 2ciso
2323

0 0

0 0 0 0 2ciso
2323

0

0 0 0 0 0 2ciso
2323





































, (1.7)

and expression (1.1) can be written as

σij = (c1111 − 2c2323) δij

3
∑

k=1

εkk + 2 c2323 εij , i, j ∈ {1, 2, 3} ,

which is a simpler, two-parameter form of Hooke’s Law.

4Normalized orthogonal coordinate system, where the planes meet at right angles to one another.
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Chapter 2

Mathematical Norms as Physical

Analogies

When computing an elasticity tensor based on empirical information, we must keep

in mind that the symmetry class is a property of a Hookean solid, not a property of the

physical material in question. A Hookean solid is a mathematical representation of the

physical material. To consider a model for the mechanical properties of a material, it is

useful to compute the distance between the obtained tensor and isotropy, as it provides

a measure of accuracy for the model being used. Relations between such physical

phenomena and mathematical structures are mediated by certain criteria, such as

norms. The decision then lies in which norm is useful to compute this distance. In the

following sections (2.1.1) and (2.1.2), we describe three norms—the Frobenius-36, the

Frobenius-21 and operator norms—that are pertinent to use in such an approximation.

In addition, we introduce a curve-fitting method, as it is also a relevant method to

the approximations at hand.

7



2.1 Norms

To examine the “closeness” between the measured elasticity tensor and the reduced

elasticity tensor, as discussed by Bos and Slawinski (2013) and by Danek et al. (2013,

2015), we consider possible norms of tensor (1.4).

A norm of a mathematical object is a quantity that in some possibly abstract

sense, describes the length, size or magnitude of the object. It can be described as

a function that takes a vector and gives it a real valued length. Norms exist for

complex numbers, Gaussian integers, quaternions, vectors and matrices. One may be

accustomed to a standard way of measuring Euclidean length, using the Euclidean

norm (also known as the Frobenius norm), which can be expressed as

||x||F =

√

√

√

√

m
∑

i=1

|xi|2 . (2.1)

However, the above expression is actually one type of norm and, in fact, there are

many different “ways” of measuring this magnitude and, hence, there are many dif-

ferent types of norms—Frobenius norms, Lp norms, logarithmic norm, matrix norm,

natural norm, polynomial norm, quaternion norm, Riemannian norm, spectral norm,

and vector norm, just to name some.

In order for a function to be considered a norm, there are three axioms, or condi-

tions, that the function must satisfy. These axioms are nonnegativity (also contains

the sub-axiom of positivity), homogeneity, and the triangle inequality. They can be

described as:

8



1. ||x|| ≥ 0, ||x|| = 0 if and only if x = 0 Nonegativity, Positivity

2. ||αx|| = |α| ||x|| Homogeneity

3. ||x+ y|| ≤ ||x||+ ||y|| Triangle Inequality

The first axiom states that the length of a given vector, x , must be greater than

or equal to zero. Furthermore, its sub-axiom states that the length of a given vector,

x, will equal zero only if x itself is equal to zero. The second axiom states that if a

vector is scaled by some α , its length is equal to the absolute value of α multiplied

by the length of x. The third axiom states that the length of the sum of two vectors,

x and y , must be less than or equal to the length of x summed with the length of y.

Mentioned in the given list of norms is the Frobenius norm.

Let us show how the Frobenius norm meets the three conditions required to be

a norm. Recall axiom (1). Considering this axiom, one can say that |xi| ≥ 0 , and

squaring/square-rooting will not change the sign. Therefore, the only way that ||x|| =

0 is if all xi = 0. Secondly, consider axiom (2), the axiom of homogeneity. In linear

algebra, an inner-product space is a vector space with an additional structure provided

by an inner-product. This additional structure associates each pair of vectors in the

space with a scalar quantity known as the inner product of the vectors. Therefore,

for the second axiom, as it pertains to the Frobenius norms, we demonstrate the

following proof:
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Proof. Consider a vector x scaled by some magnitude, α:

||αx|| =
√

α2〈x; x〉

= |α|
√

〈x; x〉

= |α| ||x|| .

Finally, considering the third axiom—the triangle inequality—and its relation to the

Frobenius norms, one can prove its validity in the following way:

Proof. Consider two vectors, x and y:

||x|| =
√

〈x; x〉

||x+ y||2 = 〈x+ y; x+ y〉

≤ 〈x; x〉+ 〈y; y〉+ 2
√

〈x; x〉〈y; y〉 ≤ (||x||+ ||y||)2 .

As one can see from the three statements above, the Frobenius norms do, indeed,

meet the criteria required of being a distance function.

In mathematics, a matrix norm extends the notion of a vector norm to matrices.

If given an m× n matrix Amn , one can think of it as a vector with mn entries, and

apply any mn-dimensional vector norm. Any vector norm can be used as a matrix

norm if you treat it as a large vector of numbers. Thus, the matrix norm is induced

by the vector norm. If we think of A as an orthogonal transformation, then its norm

is a measure of how much A can scale vectors. More specifically, let us focus on the

group of Lp norms1. The induced matrix norm ||A||p is defined by

1In mathematics, the Lp spaces are function spaces defined using a natural generalization of the

p-norm for finite-dimensional vector spaces.
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||A||p = sup
x∈Cn,x 6=0

||Ax||p
||x||p

= sup
x∈Cn,||x||p=1

||Ax||p

= max
x

||Ax||
||x||

= max
||x||p=1

||Ax|| .

If given a matrix A, when p = 1 , the L1 norm (or 1-norm) can be described as the

maximum column sum of A , such that

||A||1 = max
1≤h≤n

n
∑

i=1

|aih| .

Similarly, when p = ∞ the L∞ norm (or ∞-norm) can be described as the maximum

row sum of a given matrix, A, such that

||A||∞ = max
1≤h≤n

n
∑

j=1

|ahj| .

In the special case when p = 2 , and one has square matrices (m = n), the induced

matrix norm is the spectral norm, and also sometimes called the 2-norm or operator

norm. The operator norm is defined on vector space R
n by

||A||2 = λ1(A), the largest eigenvalue of A . (2.2)

Operator || · ||2 is induced by the Frobenius norms on R
n and, as a result, is a matrix

norm. Generally, we are interested in a matrix norm that is invariant under orthogonal

transformations. Consider the proof below. One can show that

Proof. Let A = V UW be a singular value decomposition of A, in which V and W
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are unitary, U = diag(λ1, · · · , λn), and λ1 ≥ · · · ≥ λn ≥ 0. We then have

max
||x||2=1

||Ax||2 = max
||x||2=1

||V UW ∗ x||2

= max
||x||2=1

||UW ∗ x||2

= max
||Wy||2=1

||Uy||2

= max
||y||2=1

||Uy||2

≤ max
||y||2=1

||λ1y||2

= λ1 max
||y||2=1

||y||2

= λ1 .

(2.3)

Therefore, ||A||2 = λ1(A) , the largest singular value of A.

2.1.1 Frobenius Norms

The Frobenius norm treats a matrix in R
n×n as an Euclidean vector in R

n2

. There

are two types of Frobenius norms that we make use of in our study—the Frobenius-36

norm and the Frobenius-21 norm.

2.1.1.1 Frobenius-36 norm (F36)

In the case of a symmetric 6 × 6 matrix, where Cmn = Cnm , we can use the F36

norm:

||C||F36
=

√

√

√

√

6
∑

m=1

6
∑

n=1

C 2
mn ,
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which is the Frobenius norm using thirty-six components of expression (1.4), including

their coefficients of
√
2 and 2.

2.1.1.2 Frobenius-21 norm (F21)

In light of Cmn = Cnm , the F36 norm allows for a weight-doubling for some off-

diagonal entries. As a result, we might consider the F21 norm, which takes into

account only the independent entries:

||C||F21
=

√

√

√

√

6
∑

m=1

m
∑

n=1

C 2
mn .

As we can see, the above expression uses only the twenty-one independent com-

ponents of expression (1.4), including their coefficients of
√
2 and 2 .

2.1.2 Operator Norm

As discussed by Bos and Slawinski (2015), by treating a matrix as a vector, the

Frobenius norms ignore the fact that a matrix is a representation of a linear map

from R
n to R

n. In view of equation (1.1), the elasticity tensor represents a linear map

between the strain tensor, whose components can be expressed as a symmetric 3×3

matrix, εkℓ, and the stress tensor, whose components can be expressed as a symmetric

3×3 matrix, σij. Furthering equation (2.2), the operator norm of the elasticity tensor

considered as a mapping from R
3×3 to R

3×3, where both the stress and strain tensors

are endowed with the F36 norm, is precisely the operator norm of matrix C ∈ R
6×6.

Given a norm on R
n, the associated operator norm of matrix A ∈ R

n×n is

||A|| := max
||x||=1

||Ax||. (2.4)
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An example of such a norm is the Euclidean operator norm which—for symmetric

matrices—becomes

||A||2 := max {|λ| : λ an eigenvalue of A}. (2.5)

The operator norm of an elasticity tensor—whose components in a given coordi-

nate system can be expressed as a symmetric 6× 6 matrix—is

||C||λ = max |λi| (2.6)

where λi ∈ {λ1, · · · , λ6} is an eigenvalue of C.

2.2 Slowness Curve L2 Fit

In a manner similar to the F36 norm, F21 norm and operator norm, the slowness-

curve L2 fit is used to find an isotropic counterpart of an anisotropic Hookean solid.

However, in contrast to these norms, which rely on finding the smallest distance

between tensors, the L2 fit relies on finding the best fit of circles—according to a

chosen criterion—to noncircular wavefronts.

When using this approach, in a manner similar to the operator norm, we do not

invoke explicit expressions for the components of the closest elasticity tensor, but we

examine the effect of these components on certain quantities. For the operator norm,

this quantity consists of eigenvalues; for the slowness-curve fit, this quantity consists

of wavefront slownesses.

The direct results of the norms are the components of the corresponding isotropic

tensors, and the wavefront-slowness circles are their consequences. The direct result
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of the slowness-curve fit are slowness circles, and the components of the corresponding

isotropic tensor are their consequence.

The best fit, in the L2 sense, is the radius, r , that minimizes

S =
n

∑

i=1

(si − ri)
2 , (2.7)

where si are n discretized values along the slowness curve, and si − ri is measured in

the radial direction. Hence, r is the radius of the slowness circle; it corresponds to

isotropy, as isotropy is a spherical, two-parameter approximation.
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Chapter 3

Tensor C and its Closest

Symmetric Counterparts

3.1 Introduction

To study material symmetries, we wish to use the transformation of an orthonor-

mal coordinate system in the x1x2x3-space. A change of an orthonormal coordinate

system in our three-dimensional space is given by

x̂ = Ax , (3.1)

where x = [x1, x2, x3]
T and x̂ = [x̂1, x̂2, x̂3]

T are the original and transformed

coordinate systems, respectively, and A is the transformation matrix. Equation (3.1)

is the matrix form of

x̂i =
3

∑

j=1

aijxj , i ∈ {1, 2, 3} .
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We are interested in transformations that allow us to change the orientation of

the continuum without deforming it. These transformations are distance-preserving

transformations—rotations and reflections. They are represented by orthogonal ma-

trices, that is, by square matrices given by

A =















A11 A12 A13

A21 A22 A23

A31 A32 A33















, (3.2)

that satisfy the orthogonality condition, namely, ATA = I, which is equivalent to

AT = A−1, where T denotes transform.

There are eight classes of material symmetry. These classes, which range from

low symmetry to high symmetry, are termed anisotropic, monoclinic, orthotropic,

trigonal, tetragonal, cubic, transversely isotropic, and isotropic. For the purposes

of this study, we will be focusing only on anisotropic, transversely isotropic, and

isotropic symmetry classes. Their tensor forms are described in section (1.2.3), in

expressions (1.4), (1.6), and (1.7), respectively.

Consider a trigonal continuum. Although the trigonal symmetry class is not preva-

lently used in this study, a special case of it is. It is a continuum whose symmetry

group contains rotations about an axis by θ, where θ = 2π
3

and θ = 4π
3

. To obtain the

elasticity matrix for this continuum, we consider the orthogonal transformation that

is represented by matrix (3.2) in the form given by
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Ax3θ =















cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1















, (3.3)

that corresponds to rotation by angle θ about the x3 axis. Now consider another

case. Suppose that a continuum is invariant with respect to a single rotation given by

matrix (3.3), where θ is smaller than π
2
. Consider, for example, θ = 2π

5
, and, hence,

assume that the symmetry group contains

Ax3θ =















cos(2π
5
) sin(2π

5
) 0

− sin(2π
5
) cos(2π

5
) 0

0 0 1















. (3.4)

Following condition (1.2), the elasticity matrix, C, satisfies the equation given by

C = MT
Ax3

2π
5

CMAx3
2π
5

. (3.5)

Equation (3.5) can be solved directly to give relations among the entries of C.

The solution to condition (3.5) is the transversely isotropic tensor given by expres-

sion (1.6). 1

In order to obtain such a tensor when given a generally anisotropic tensor, namely

expression (1.4), we can analytically obtain components of the Frobenius-36 norm ef-

fective transversely isotropic tensor. They are (Moakher and Norris (2006), Bucataru

and Slawinski (2009)):

1For further insight, refer to Slawinski (2015, page 162).
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cTI

1111
=

1

8
(3c1111 + 3c2222 + 2c1122 + 4c1212) , (3.6)

cTI

1122
=

1

8
(c1111 + c2222 + 6c1122 − 4c1212) , (3.7)

cTI

1133
=

1

2
(c1133 + c2233) , (3.8)

cTI

2323
=

1

2
(c2323 + c1313) , (3.9)

cTI

3333
= c3333 , (3.10)

where cijkℓ are the components of the generally anisotropic tensor (1.4). In these

expressions we assume that both the generally anisotropic and transversely isotropic

tensors are expressed with respect to the coordinate systems of the same orientation.

No analytic form of the operator-norm effective tensor is known.

3.2 Tensor C

In this section, we investigate isotropic counterparts, of a given generally aniso-

tropic tensor, for the three norms introduced in section 2.1. To consider a case that is

pertinent to seismological studies, we use a transversely isotropic tensor derived from

a generally anisotropic tensor obtained from the measurements of vertical seismic
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profiling (VSP) by Dewangan and Grechka (2003),

C =





























7.8195 3.4495 2.5667
√
2(0.1374)

√
2(0.0558)

√
2(0.1239)

3.4495 8.1284 2.3589
√
2(0.0812)

√
2(0.0735)

√
2(0.1692)

2.5667 2.3589 7.0908
√
2(−0.0092)

√
2(0.0286)

√
2(0.1655)

√
2(0.1374)

√
2(0.0812)

√
2(−0.0092) 2(1.6636) 2(−0.0787) 2(0.1053)

√
2(0.0558)

√
2(0.0735)

√
2(0.0286) 2(−0.0787) 2(2.0660) 2(−0.1517)

√
2(0.1239)

√
2(0.1692)

√
2(0.1655) 2(0.1053) 2(−0.1517) 2(2.4270)





























.

(3.11)

Its components are density-scaled elasticity parameters with units of km2/s2. In other

words, the Hookean solid in question is completely described by tensor (3.11).

3.3 Tensor C
TI

a

Let us consider a transversely isotropic tensor (Danek et al. 2013), which is the

closest—in the F36 sense—counterpart of tensor (3.11),

CTI

a =





























8.0641 3.3720 2.4588 0 0 0

3.3720 8.0641 2.4588 0 0 0

2.4588 2.4588 7.0817 0 0 0

0 0 0 2(1.8625) 0 0

0 0 0 0 2(1.8625) 0

0 0 0 0 0 2(2.3460)





























. (3.12)

Tensor (3.3) is obtained by minimizing the distance using expressions (3.6)-(3.10).

Isotropic tensors discussed herein are counterparts of this tensor. The slowness

curves for tensor (3.12) and its isotropic counterpart circles are shown in Figure 3.1;

these counterparts nearly coincide with each other.

One could use another norm to obtain a transversely isotropic tensor for the pur-
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Figure 3.1: Slowness curves for tensor (3.12): solid lines represent the qP , qSV and SH

waves; dashed lines represent the P and S waves according to F36 norm; dashed-

dotted lines represent the P and S waves according to F21 norm; the results of

these norms almost coincide; dotted lines represent the P and S waves according

to λ norm.

pose of this study. Also—for the purpose of this study—one could use an anisotropic

tensor to find its isotropic counterparts. We chose to consider the isotropic counter-

parts of a transversely isotropic tensor to be able to illustrate them graphically, as

shown in Figures (4.3) and (4.4) in the next chapter, where we compare the norms

used. The examination commencing from a generally anisotropic tensor is discussed

by Danek et. al in ‘Effects of norms on general Hookean solids for their isotropic

counterparts.’
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3.4 Tensor C
iso

a

3.4.1 C
isoF36

a

Let us consider the Frobenius norm using the thirty-six components (F36). The

analytical formulæ to calculate—from a generally anisotropic tensor—the two param-

eters of its closest isotropic tensor are given by Voigt (1910). From a transversely

isotropic tensor, these parameters are

c
isoF36

1111
=

1

15
(8cTI

1111
+ 4cTI

1133
+ 8cTI

2323
+ 3cTI

3333
)

and

c
isoF36

2323
=

1

15
(cTI

1111
− 2cTI

1133
+ 5cTI

1212
+ 6cTI

2323
+ cTI

3333
) .

Using the above formulæ, the closest isotropic counterpart of tensor (3.12) is

C
isoF36

a =





























7.3662 2.9484 2.9484 0 0 0

2.9484 7.3662 2.9484 0 0 0

2.9484 2.9484 7.3662 0 0 0

0 0 0 2(2.2089) 0 0

0 0 0 0 2(2.2089) 0

0 0 0 0 0 2(2.2089)





























. (3.13)

3.4.2 C
isoF21

a

Let us consider the Frobenius norm using the twenty-one independent components

(F21). The analytical formulæ to calculate the two parameters of its closest isotropic

tensor (Slawinski, 2016) are

c
isoF21

1111
=

1

9
(−cTI

1122
+ 2(3cTI

2222
+ cTI

2233
+ 2cTI

2323
+ cTI

3333
))
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and

c
isoF21

2323
=

1

18
(−5cTI

1122
+ 6cTI

2222
− 2cTI

2233
+ 8cTI

2323
+ cTI

3333
) .

Similarly, we obtain

C
isoF21

a =





























7.4279 3.0716 3.0716 0 0 0

3.0716 7.4279 3.0716 0 0 0

3.0716 3.0716 7.4279 0 0 0

0 0 0 2(2.1781) 0 0

0 0 0 0 2(2.1781) 0

0 0 0 0 0 2(2.1781)





























. (3.14)

3.4.3 C
isoλ

a

Unlike the Frobenius norms, the operator norm has no analytical formulæ for cisoλ
1111

and cisoλ
2323

. They must be obtained numerically. The largest eigenvalues are obtained

using a standard numerical procedure of the Singular Value Decomposition and then

optimized over a two-dimensional solution space using a similar procedure to the one

described in Danek et al. (2013). For tensor (3.12), we obtain

C isoλ
a =





























7.7562 3.0053 3.0053 0 0 0

3.0053 7.7562 3.0053 0 0 0

3.0053 3.0053 7.7562 0 0 0

0 0 0 2(2.3755) 0 0

0 0 0 0 2(2.3755) 0

0 0 0 0 0 2(2.3755)





























. (3.15)

3.4.4 Distances Among Tensors

To gain insight into different isotropic counterparts of tensor (3.12), we calculate

the F36 distance between tensors (3.13) and (3.15), which is 0.8993 . The F36 distance
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between tensors (3.12) and (3.13) is 1.8461 . The F36 distance between tensors (3.12)

and (3.15) is 2.0535 , where we note that tensor (3.15) is the closest isotropic tensor

according to the operator—not the F36—norm. Thus, in spite of similarities between

the isotropic tensors, the distance between them is large in comparison to their dis-

tances to tensor (3.12).

This is an illustration of abstractness of the concept of distances in the space

of elasticity tensors. A concrete evaluation is provided by comparing the results

obtained by minimizing these distances. Such results are tensors (3.13), (3.14), (3.15),

and their wavefront-slowness circles in Figure 3.1. This figure illustrates a similarity

among these circles, which is a realm in which the isotropic tensors can be compared.
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Chapter 4

Comparison of Norms

When comparing tensors (3.13), (3.14) and (3.15), we see that the parameters of

the closest isotropic tensor depend on the norm used. Given two anisotropic tensors,

we might be interested to know which of them is closer to isotropy. For a given

norm, a unique answer is obtained by a straightforward calculation. In general, for

different norms, there is no absolute answer: the sequence in closeness to isotropy can

be reversed between two tensors; it depends on the norms.

4.1 F36 versus F21

Using a numerical search based on a single random walk through a solution space

with the target function being a difference between the minimized F21 distance and

the maximized F36 distance, an elasticity tensor is generated that is further from

isotropy than tensor (3.12) according to the F36 norm, but closer to isotropy than

tensor (3.12) according to the F21 norm. The search results in a transversely isotropic
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tensor, different from that of CTI

a

CTI

b
=





























7.3091 4.5882 2.9970 0 0 0

4.5882 7.3091 2.9970 0 0 0

2.9970 2.9970 6.6604 0 0 0

0 0 0 2(1.5631) 0 0

0 0 0 0 2(1.5631) 0

0 0 0 0 0 2(1.3605)





























, (4.1)

with its corresponding F36 and F21 isotropic counterparts,

C
isoF36

b
=





























6.8631 3.6422 3.6422 0 0 0

3.6422 6.8631 3.6422 0 0 0

3.6422 3.6422 6.8631 0 0 0

0 0 0 2(1.6104) 0 0

0 0 0 0 2(1.6104) 0

0 0 0 0 0 2(1.6104)





























(4.2)

and

C
isoF21

b
=





























6.9014 3.7188 3.7188 0 0 0

3.7188 6.9014 3.7188 0 0 0

3.7188 3.7188 6.9014 0 0 0

0 0 0 2(1.5913) 0 0

0 0 0 0 2(1.5913) 0

0 0 0 0 0 2(1.5913)





























, (4.3)

respectively.

The distances from CTI

a
and CTI

b
to isotropy—stated, respectively, in expres-

sions (3.12) and (4.1)—using the F36 and F21 norms, are calculated using the following

expressions

da =
∣

∣

∣
||CTI

a || − ||C iso

a ||
∣

∣

∣
and db =

∣

∣

∣
||CTI

b || − ||C iso

b ||
∣

∣

∣
.
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Figure 4.1: Slowness curves for tensor (4.1): solid lines represent the qP , qSV and SH waves;

dashed lines represent the P and S waves according to F36 norm; dotted lines

represent the P and S waves according to F21 norm.

From here, we obtain values where

da21
= 1.6372 > db21

= 1.5517 ,

da36
= 1.8460 < db36

= 2.0400 .

The slowness curves for tensor (4.1) and its isotropic counterparts are shown in Fig-

ure 4.1.

4.2 F36 versus λ

The second comparison is between the F36 norm and the λ norm. We obtain

CTI

bb
=





























6.8639 3.3046 2.8770 0 0 0

3.3046 6.8639 2.8770 0 0 0

2.8770 2.8770 8.3825 0 0 0

0 0 0 2(2.7744) 0 0

0 0 0 0 2(2.7744) 0

0 0 0 0 0 2(1.7797)





























, (4.4)
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which is further from isotropy according to the F36 norm and closer to isotropy ac-

cording to the λ norm. Its isotropic counterparts in the sense of the F36 and λ norms

are

C
isoF36

bb
=





























7.5842 2.9125 2.9125 0 0 0

2.9125 7.5842 2.9125 0 0 0

2.9125 2.9125 7.5842 0 0 0

0 0 0 2(2.3358) 0 0

0 0 0 0 2(2.3358) 0

0 0 0 0 0 2(2.3358)





























(4.5)

and

C isoλ

bb
=





























7.4712 2.9171 2.9171 0 0 0

2.9171 7.4712 2.9171 0 0 0

2.9171 2.9171 7.4712 0 0 0

0 0 0 2(2.7704) 0 0

0 0 0 0 2(2.7704) 0

0 0 0 0 0 2(2.7704)





























, (4.6)

respectively. The distances to isotropy for CTI

a
and CTI

bb
, using the F36 and λ norms,

are

da36
= 1.8460 < dbb36

= 2.1825 ,

daλ
= 1.0259 > dbbλ

= 0.9947 .

The slowness curves for tensor (4.4) and its isotropic counterparts are shown in Fig-

ure 4.2.
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Figure 4.2: Slowness curves for tensor (4.4): solid lines represent the qP , qSV and SH waves;

dotted lines represent its P and S waves according to F36 norm; dashed lines

represent its P and S waves according to λ norm.

4.3 F21 versus λ

The third comparison is between the F21 norm and the λ norm. The resulting

tensor is

CTI

bbb
=





























4.5706 2.6852 2.9075 0 0 0

2.6852 4.5706 2.9075 0 0 0

2.9075 2.9075 5.2705 0 0 0

0 0 0 2(1.9145) 0 0

0 0 0 0 2(1.9145) 0

0 0 0 0 0 2(0.9427)





























, (4.7)

with isotropic counterparts according to the F21 norm and the λ norm,

C
isoF21

bbb
=





























5.2074 2.4297 2.4297 0 0 0

2.4297 5.2074 2.4297 0 0 0

2.4297 2.4297 5.2074 0 0 0

0 0 0 2(1.3889) 0 0

0 0 0 0 2(1.3889) 0

0 0 0 0 0 2(1.3889)





























(4.8)
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Figure 4.3: Slowness curves for tensor (4.7): solid lines represent the qP , qSV and SH waves;

dotted lines represent its P and S waves according to F21 norm; dashed lines

represent its P and S waves according to λ norm.

and

C isoλ

bbb
=





























5.2926 2.4354 2.4354 0 0 0

2.4354 5.2926 2.4354 0 0 0

2.4354 2.4354 5.2926 0 0 0

0 0 0 2(1.4286) 0 0

0 0 0 0 2(1.4286) 0

0 0 0 0 0 2(1.4286)





























, (4.9)

respectively. The distances to isotropy for both CTI

a
and CTI

bbb
using the F21 and

λ norms are

da21
= 1.6372 < dbbb21

= 2.0842 ,

daλ
= 1.0259 > dbbbλ

= 0.9719 .

The slowness curves for tensor (4.7) and its isotropic counterparts are shown in Fig-

ure 4.3.
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4.4 Slowness Curve L2 Fit

Considering tensor (3.12) and applying a minimization for the qP wave, using

formula (2.7), we find S = 0.0886 with r = 0.3770 . Following the same procedure

for the qSV and SH waves, we find S = 0.2973 , with r = 0.6832 , and S = 0.2169 ,

with r = 0.6831 , respectively. Combining these results, we obtain S = 0.6029 , with

rP = 0.3770 and rS = 0.6831 , which are the slownesses of the P and S waves, respec-

tively. Note that—since the slowness curves of the qP waves are detached from the

curves for the qSV and SH waves—the value of r for the P waves does not change by

combining the results.

Since vP =
√
c1111 and vS =

√
c2323 are the P-wave and S-wave speeds, respectively,

it follows that c1111 = 1/r2P and c2323 = 1/r2S . Hence, we obtain

C
isoL2

a =





























7.0341 2.7485 2.7485 0 0 0

2.7485 7.0341 2.7485 0 0 0

2.7485 2.7485 7.0341 0 0 0

0 0 0 2(2.1428) 0 0

0 0 0 0 2(2.1428) 0

0 0 0 0 0 2(2.1428)





























. (4.10)

The slowness curves for tensor (4.10) and its isotropic counterparts are shown in

Figure 4.4.
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Figure 4.4: Slowness curves for tensor (4.10): solid lines represent the qP , qSV and SH waves;

dotted lines represent its P and S waves according to the slowness-curve L2 fit.

32



Chapter 5

Error Propagation

Components of an anisotropic tensor obtained from experimental measurements

exhibit uncertainties due to measurement errors. These uncertainties are carried to

its symmetric counterparts. In-depth studies of probability laws for the stiffness com-

ponents was a subject of a paper by Guilleminot and Soize (2013). In general, the off-

diagonal terms may be safely assumed to be a Gaussian, but the diagonal ones are the

Gamma-random variables. The statistical dependence structure for the six strongest

symmetry classes, namely, isotropic, transversely isotropic, cubic, tetragonal, trigonal

and orthotropic, is presented in Table (1) of Guilleminot and Soize (2013). From the

practical point of view of seismic observations, this problem was analyzed by Rusman-

ugroho and McMechan (2012). In this case, normality—expressed as a large-shape

parameter of the Gamma variables—and the independence assumptions are good

analogies for real observations, even though certain components, such as c1212 and

c1223 , have the values of the crosscorrelation matrix significantly higher than others,

due to the relation between their horizontal and vertical stress, and horizontally polar-
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ized strain. These assumptions, namely independence of components and normality

of their distributions, were the gist of the approach presented in Danek et al. (2015).

They are also—at least partially—required to obtain matrix (5.1) through numerical

simulations performed by Dewangan and Grechka (2003). Let us examine the error

propagation between the transversely isotropic tensor and its isotropic counterparts.

Apart from inferring the stability of these counterparts, such an examination allows

us to generalize our conclusions to a range of tensors whose values are pertinent to

seismological studies. Even though our conclusions stem from a single transversely

isotropic tensor, the perturbation of it components is akin to considering a multitude

of such tensors. The standard deviations of components of tensor (3.11) (Grechka,

pers. comm., 2007) are

±





























0.1656 0.1122 0.1216 0.1176 0.0774 0.0741

0.1122 0.1862 0.1551 0.0797 0.1137 0.0832

0.1216 0.1551 0.1439 0.0856 0.0662 0.1010

0.1176 0.0797 0.0856 0.0714 0.0496 0.0542

0.0774 0.1137 0.0662 0.0496 0.0626 0.0621

0.0741 0.0832 0.1010 0.0542 0.0621 0.0802





























. (5.1)

Considering these standard deviations, we view the parameters of the effective tensors

not as specific values but as ranges within which lie the best-fit values. These values

do not constitute components of a tensor. Hence, they are valid only in the coor-

dinate system of measurements, since rotations are not allowed. Thus, to consider

error propagation from tensor (3.11) to tensor (3.12), with tensor (3.12) being the

F36 closest TI counterpart, there is a need for a simulation. Probability distributions

of the values of the components of tensor (3.12)—obtained by a Monte-Carlo simu-

lation (Danek et al. 2013)—are shown in Figures 5.1a, 5.1b, 5.1c, 5.2, 5.3. Different
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histograms have different horizontal scales. The probability distributions of the two

7.50 8.50

(a)

3.00 3.50

(b)

2.00 2.80

(c)

Figure 5.1: Elasticity parameters of tensor (3.12); c1111 depicted in subfigure (5.1a), c1122

depicted in subfigure (5.1b), c1133 depicted in subfigure (5.1c).

parameters for its isotropic F36 counterpart are obtained in the same manner and

shown in Figure 5.4. Their mean values are given in tensor (3.13). The probability

distributions of parameters for its F21 counterpart are also shown in Figure 5.4, as

well are the probability distributions of parameters for its λ counterpart.

Performing a simple error-propagation analysis, we observe that—for Frobenius

norms—probability distributions of the corresponding parameters are very similar to

one another. For the operator norm, however, the c2323 distributions differ signifi-

cantly. This result might be a consequence of the properties of the operator norm,

where only the largest among six eigenvalues is taken into consideration.

Let us consider the highest symmetry—isotropy—for which the effective tensor
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1.70 2.00

Figure 5.2: Elasticity parameter

c2323 of tensor (3.12)

6.50 7.50

Figure 5.3: Elasticity parameter

c3333 of tensor (3.12)

Figure 5.4: Elasticity parameters c1111 (left panel) and c2323 (right panel) of F21 (light grey),

F36 (dark grey) and λ (black) isotropic counterparts of tensor (3.12)

is independent of orientation, and—unlike for other symmetry classes—for all ori-

entations, all cisoijkℓ = 0 , except ciso
1111

= ciso
2222

= ciso
3333

, ciso
1122

= ciso
1133

= ciso
2233

and

ciso
1212

= ciso
1313

= ciso
2323

. Using the twenty-one parameters obtained by Dewangan and
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Grechka (2003), we can find the closest isotropic tensor by invoking Voigt’s (1910) for-

mulae. The question, however, remains—is it a good enough analogy for the physical

material being considered? To investigate, let us consider entries that are zero. The

entry at the first row and fourth column is 0.1374 ± 0.1176 , which means that zero

is more than one standard deviation away. It follows from properties of the Gaussian

distribution that probability of the required zero is less than 30% . For the entry at

the second row and the sixth column we have 0.1692 ± 0.0832 , where the required

zero is more than two standard deviations away and gives a probability of less than

5% . Therefore, conditions for isotropy are not likely to be satisfied.

Since, in seismology, we use remote measurements, such as geophones on the

surface responding to interior disturbances, the inferences between the measurements

and the properties of the interior must be mediated by a theory. For seismology, this

theory is continuum mechanics. Unfortunately, seismologists are limited to having

an intermediate step between measurements and information about properties of the

materials of interest. When inferring material properties from mathematical models,

the best we can do is achieve consistency between observations and model predictions.

The focus of this paper entails three major points. First, anisotropy considered in

the context of seismic measurements is a mathematical analogy for physical properties

of materials. It deals directly with the symmetry of tensors and only indirectly with

material properties of rocks. Second, the interpretation begins with the choice of an

analogy, where the choice depends on the concept of sufficient accuracy with which a

symmetric tensor represents the generally anisotropic one at hand. Finally, once the

‘best-fit’ analogy is decided upon, there are many physical situations that can account

for that analogy. Anisotropy of a Hookean solid implies, analogically, a directional
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pattern within a material, as opposed to a random arrangement. However, it does not

provide explicit information about the causes for a given pattern or, in contrast, its

absence. Transverse isotropy, for example, might be an analogy for parallel layers in

a sedimentary basin or for the preferred orientation of olivine crystals in the Earth’s

mantle.

Therefore, the relations between anisotropy and fractures, while containing in-

sights into material properties, must be applied with awareness of their limitations.

There should be an inquiry into criteria for the choice of a model. For example, is the

model with the transverse isotropy, whose symmetry axis is vertical, imposed before-

hand and, if so, have the observations been forced into a model that is not the optimal

choice? In general, many physical scenarios can be proposed to accommodate a given

model and, in contrast, many models can be proposed to accommodate experimental

data, particularly, if errors are taken into account. The awareness of the necessity for

a theory to mediate between measurements and interpretations—and, hence, the un-

avoidable presence of abstract concepts, such as the symmetry of tensors for analysis

of physical properties, such as fractures—is crucial for applied geophysics, as it is for

any general theory to interpret or predict physical phenomena.
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Chapter 6

Relation Between Mathematical

and Physical Models

6.1 Stability Conditions

When mathematically modeling physical phenomena, stability conditions play an

important role. They pertain to the necessity for a theory to mediate between mea-

surements and interpretations and, as a result, are crucial to analogies representing

physical media.

6.1.1 Physical Motivation

The strain-energy function is formulated in terms of parameters cijkℓ , where

i, j, k, ℓ ∈ {1, 2, 3}. This function provides the sole fundamental constraints on these

parameters. These constraints are called stability conditions since they constitute a

mathematical statement of the fact that it is necessary to expend energy to deform
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a material. In other words, if energy is not expended, the material remains stable

in its undeformed state. As a result, the strain-energy function of an undeformed

continuum is zero. Therefore, since energy is a positive quantity, the strain-energy

function must be a positive quantity that disappears only in the undeformed state of

the continuum.

6.1.2 Mathematical Analogy

In a mathematical sense, the stability conditions are equivalent to the positive-

definiteness of the elasticity matrix. To formulate the conditions of positive-definiteness

of the elasticity matrix, we can use one of the following theorems from linear algebra:

Theorem 2. A real symmetric matrix is positive-definite if and only if the deter-

minants of all its leading principal minors, including the determinant of the matrix

itself, are positive.

or

Theorem 3. A real symmetric matrix is positive-definite if and only if all its eigen-

values are positive.

Since the matrix in question, (1.4), is symmetric, the stability conditions can be

conveniently formulated based on Theorems (2) and (3). Among these conditions we

find that

cijij > 0, i, j ∈ {1, ..., 3} , (6.1)

which implies that all the main-diagonal entries of the elasticity matrix must be

positive.
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Consider matrix (1.6). The stability conditions require that matrix (1.6) be

positive-definite. Recalling equations (6.1), we obtain

c1111 > 0 , (6.2)

c3333 > 0 , (6.3)

c2323 > 0 , (6.4)

c1111 > c1122 . (6.5)

We notice that matrix (1.6) is a direct sum of two submatrices given by

C1 =















c1111 c1122 c1133

c1122 c1111 c1133

c1133 c1133 c3333















, (6.6)

and

C2 =















c2323 0 0

0 c2323 0

0 0 c1111−c1122
2















. (6.7)

Conditions (6.4) and (6.5) ensure that matrix C2 is positive-definite. In view of

condition (6.2), the remaining conditions for the positive-definiteness of matrix C1

are

det







c111 c1122

c1122 c1111






> 0 , (6.8)

and
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det















c1111 c1122 c1133

c1122 c1111 c1133

c1133 c1133 c3333















> 0 . (6.9)

The condition resulting from determinant (6.8) is

c1111 > |c1122| , (6.10)

while the condition resulting from determinant (6.9) is

c3333(c1111 − c1122)(c1111 + c1122) > 2c2
1133

(c1111 − c1122) . (6.11)

In view of expression (6.5), we can rewrite the latter condition as

c3333(c1111 + c1122) > 2c2
1133

. (6.12)

Also, in view of condition (6.3), we have c1111 + c1122 > 0. Consequently, con-

dition (6.10) follows from conditions (6.3), (6.5) and (6.12). Thus, all the stability

conditions for a transversely isotropic continuum are given by expressions (6.2), (6.3),

(6.4), (6.5) and (6.12) (Slawinski, 2015). In addition, it is important to note that all

transversely isotropic tensors used in this study—(3.12), (4.1), (4.4), and (4.7)—

satisfy the stability conditions and, thus, are good mathematical analogies.

6.2 Strength of Anisotropy

Elasticity theory opens an avenue that allows for applications to problems in

petroleum geophysics. In doing so, the elastic medium in question is assumed to be

isotropic. However, most crustal rocks are found to be anisotropic. Consequently,
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there is an inconsistency between practice and reality. We, however, still accept the

existence of this inconsistency due to the fact that, in vertical reflection profiling, the

most commonly occurring type of anisotropy—transverse isotropy—can be mistaken

for isotropy as a result of its disguised angular dependence. In addition to that,

the mathematical expressions used in representing anisotropic wave propagation can

be cumbersome. However, in most cases that are of interest to geophysicists, the

anisotropy is weak—10% to 20% (Thomsen, 1986). As a result we can, satisfactorily,

simplify equations considerably.

In Thomsen’s 1986 study on weak elastic anisotropy, he shows that the relation

given in expression (1.1) may be used in the equation of motion, which yields a wave

equation. This wave equation gives three independent solutions for each direction of

wave propagation—one quasi-longitudinal, one transverse, and one quasi-transverse.

Daley and Hron (1977) offer expressions to model the three phase velocities. They

can be expressed as

ρv2P (θ) =
1

2
[c3333 + c2323 + (c1111 − c3333) sin

2 θ +D(θ)] ,

ρv2SV (θ) =
1

2
[c3333 + c2323 + (c1111 − c3333) sin

2 θ −D(θ)] ,

ρv2SH(θ) = c1212 sin
2 θ + c2323 cos

2 θ ,

where ρ is density and θ is a phase angle between the wavefront normal and the

vertical axis, and D(θ) can be described as

D(θ) = {c3333 − c2
2323

+ 2[2(c1133 + c2323)
2 − (c3333 − c2323)(c1111 + c3333 − 2c2323] sin

2 θ

+ [(c1111 + c3333 − 2c2323)
2 − 4(c1133 + c2323)

2] sin4 θ} 1

2 .

(6.13)
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The above equations involve five elastic moduli. It may be useful to recast those

equations using notation involving only two elastic moduli which would be, equiv-

alently, vertical P−wave and S−wave velocities, plus three measures of anisotropy.

These three anisotropies should be appropriate combinations of elastic moduli which

(1) are nondimensional; (2) simplify the above equations; and (3) reduce to zero in the

case of isotropy, so that materials with values of ≪ 1 of anisotropy may be considered

to be weakly anisotropic (Thomsen, 1986).

Tensors (3.12), (4.1), (4.4) and (4.7) exhibit the strength of anisotropy that is con-

sistent with cases of interest to geophysicists. To show this consistency, we calculate

the Thomsen (1986) parameters,

α =
√

cTI
3333

,

β =
√

cTI
2323

,

γ =
cTI

1212
− cTI

2323

2cTI
2323

,

δ =
(cTI

1133
+ cTI

2323
)2 − (cTI

3333
− cTI

2323
)2

2cTI
3333

(cTI
3333

− cTI
2323

)
,

ǫ =
cTI

1111
− cTI

3333

2cTI
3333

.

As said above, the first two of the parameters, α and β, are measures of vertical P-

wave and S-wave velocities, respectively. The last three of the parameters, γ, δ, and

ε, are three measures of anisotropy. The values of these parameters for tensors (3.12),

(4.1), (4.4) and (4.7) are shown in Table 6.1. Comparing results of this table to data

of Auld (1973) and Thomsen (1986), we see that these tensors can represent common

geological materials, and are good mathematical analogies for physical phenomena.
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Table 6.1: Thomsen parameters for tensors (3.12), (4.1), (4.4) and (4.7)

Tensor α β γ δ ε

CTI

a 2.6612 1.2986 0.1956 -0.1561 0.0694

CTI

b 2.5808 1.2503 -0.6483 -0.0764 0.0487

CTI

bb 2.2958 1.3837 -0.2538 0.3389 -0.6640

CTI

bbb 2.8953 1.6657 -0.1793 0.0052 -0.0906
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Discussions and conclusions

In Section 2.1, we consider several types of norms, and later we use them in

Chapter 3 for obtaining—for a transversely anisotropic tensor—its closest isotropic

counterpart. We examine the Frobenius norms and the operator norm. In Section 2.2,

we consider the slowness-curve L2 fit to obtain such a counterpart, and implement in

Section 4.4.

As shown in Sections 4.1, 4.2 and 4.3, given tensor (3.12), we can find another

transversely isotropic tensor—representative of common geological materials—such

that one of them is closer to isotropy according to one norm and the other closer to

isotropy according to another norm. At first sight, such a result might emphasize the

importance of the choice of a norm.

However, in view of Chapter 5, we conclude that the results of the three norms

and the slowness-curve fit are so similar to each other that their corresponding values

might be indistinguishable in the context of measurement errors, perhaps with the

exception of the operator norm for c2323, as discussed on page 35. Thus, the choice of

the norm might be of secondary importance. Pragmatically, for a tensor obtained from

seismic measurements, we might choose a Frobenius norm, since it offers analytical

formulæ to obtain an isotropic counterpart. Both Frobenius norms result in similar
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effective isotropic tensors, since they differ only by a weight doubling of the off-

diagonal components, whose values are small. Also, in view of this similarity, the

preference of norms used to measure closeness to isotropy for the pairs of tensors

discussed in Chapter 4 might yield results that are indistinguishable from that of

other norms.

Performing an error propagation, we observe that–for Frobenius norms–probability

distributions of the corresponding parameters are very similar to one another. For the

operator norm, however, the c2323 distributions differ more significantly. This result

might be a consequence of the properties of the operator norm, where only the largest

among six eigenvalues is taken into consideration.

Therefore, the generally anisotropic tensor obtained from physical measurements,

is approximated to its closest effective isotropic tensor. The distance between these

two tensors is commonly measured using the Frobenius-36 norm. This thesis entails

an exploration of distance results of other norms—the Frobenius-21 and operator

norms—as well as a slowness-curve L2 fit. Such comparisons result in solutions and

probability distributions that are very similar to one another. As a result, depending

on criteria, one may choose to use one norm over another.

To ensure a realistic approach, Thomsen’s parameters are calculated based on the

four transversely isotropic tensors (3.12), (4.1), (4.4), (4.7) that are generated. They

offer practical, numerical values for both the vertical P-wave and S-wave velocities,

as well as the three measures of anisotropy. The transversely isotropic tensors satisfy

the stability conditions described in Chapter 6 and exhibit weak anisotropy, according

to Thomsen’s parameters, thus providing adequate mathematical models for physical

phenomena.
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Moreover, we wish to state that a statistical study of reducing a generally an-

isotropic elasticity tensor to its counterparts of higher symmetry as a function of

different norms is an interesting problem, but beyond the scope of this thesis. In this

study, we examine consequences of the choice of a norm in reducing a typical tensor

obtained from seismic measurements, subject to experimental errors, to its isotropic

counterparts. Examples of tensors and the behaviour of their norms illustrated herein

are insightful for both theoretical and empirical aspects of seismology.
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