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Abstract

The fundamental task of human genetics is to detect genetic variations that pri-

marily contribute to a disease phenotype. The most popular method for understand-

ing etiology of human inheritable diseases (e.g., cancer) is to utilize genome-wide

association studies (GWAS). Colorectal cancer (CRC) is a common cause of deaths

in developed countries; specifically, it has a high incidence rate in the province of New-

foundland and Labrador. Therefore, finding the affecting genetic factors associated

with CRC can help better understand the disease in order to more effectively treat

and prevent it. This study seeks to identify genetic variations associated with CRC

using machine learning including feature selection and ensemble learning algorithms.

In this study, we analyze a GWAS dataset on CRC collected from Newfoundland pop-

ulation. First, we perform quality control steps on the raw genetic data and prepare it

for the machine learning methods. Second, we investigate six feature selection meth-

ods through a comparative study by applying them to a simulated dataset and CRC

GWAS data. The best feature selection method, in terms of gene-gene interactions,

is then used to choose a subset of more relevant features for the next step analy-

sis. Subsequently, two ensemble algorithms, Random Forests and Gradient Boosting

machine, are applied to the reduced data to identify significant interacting genetic

markers associated with CRC. Last, the findings from machine learning methods are

biologically validated using online databases and enrichment analysis tools. From

the results of the ensemble algorithms, 44 significant genetic markers are detected

in which 29 of them have corresponding genes in DNA. Among them, genes DCC,

ALK and ITGA1 are previously found to be associated with CRC. In addition, there
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are genes E2F3 and NID2, which have the potential of having association with CRC,

because of their already known associations with other types of cancer. Moreover,

the biological interpretations of these genes reveal biological pathways that may help

predict the risk of the disease and better understand the etiology of the disease.

Keywords: machine learning, gene-gene interactions, colorectal cancer, feature

selection, random forests, gradient boosting machine, GWAS, ensemble algorithms.
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Chapter 1

Introduction

The fundamental task of human genetics is to detect genetic variations that primarily

contribute to a disease phenotype. In these studies, the identification of genetic risk

factors in inheritable and common diseases is the central goal [11]. There are two

types of genetic inheritance: single gene inheritance also known as Mendelian inher-

itance, which is caused by mutations of DNA in a single gene, e.g., Cystic Fibrosis,

and multi-factorial inheritance which is also called complex inheritance and caused

by combination of environmental factors and multiple genes, e.g., heart disease and

cancer.

In contrast to single-gene disorders, the approaches of study for complex or com-

mon diseases are not straightforward. Prior to the beginning of genomic studies, most

of the experiments were performed based on familial linkage analysis on Mendelian

diseases. However, this approach fails to reproduce for common diseases like hepati-

tis and cancer because of differences in the genetic architecture of common diseases

and rare disorders [37, 44, 81]. To accomplish this purpose for common diseases,
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researchers began to investigate a new research area: population-based genetic asso-

ciation studies, which deal with the investigation of the underlying genetic factors in

a population to identify patterns of polymorphisms that vary systematically between

individuals with different disease states [24]. In these studies, clinical genetic data of

many individuals are collected and prepared for genotyping. Consecutively, a good

deal of efforts are conducted to find the associations between genetic polymorphisms

in the population and a measured trait or phenotype.

The naming convention for the population-based genetic association studies comes

from the type of these studies. The term population refers to the individuals (or

subjects) in the study who have no familial kinship. The term association refers

to the mapping relationship between genetic variants and a trait (i.e., any effect

or interaction between genetic variants an a trait.) The term phenotype is defined

formally as a physical attribute or indicator of an individual’s disease status (e.g.,

having or not having a disease). The terms trait, phenotype, and outcome are used

broadly to refer to the same thing.

1.1 Genome-Wide Association Studies

The most promising type of population-based genetic association studies on common

diseases is genome-wide association studies (GWAS or GWA studies) [24]. Based on

the National Institutes of Health1, a GWA study is defined as a study of common

genetic variation across the entire human genome designed to identify genetic associ-

ations with observable traits [54]. The GWAS approach is an association study that

1https://www.nih.gov/
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surveys most of the genome for identifying causal genetic variants in complex genetic

diseases or traits [14, 36, 37].

In GWAS, the variations in DNA sequence from across the human genome are

measured and analyzed using a sequencing technology such as next generation se-

quencing. The most common type of genetic variations in human genome are single

nucleotide polymorphisms (SNPs, pronounced “snips”) which are single variations in

the DNA nucleotides among the population. GWAS are typically performed accord-

ing to a case-control study design in which the cases are diseased and the controls

are healthy individuals. In GWAS, the SNPs among a population of individuals

(cases and controls) are genotyped and the corresponding genetic dataset is created

[11]. GWAS data require large sample sizes and a large panel of genetic markers

[11]. However, because of the costs associated with the data collection, GWAS data

usually consists of hundreds of thousands of SNPs genotyped from hundreds to a few

thousands of individuals. The dataset is then used by association analysis tools for

investigating the relationship between genetic variants and disease trait.

1.2 Tools and Approaches in GWAS

Once a well-defined phenotype has been selected for a study population, and the

genotypes are collected using an appropriate technique, the analysis of genetic data

can begin [11]. Different approaches in GWAS are used to reveal the genetic risk

factors in a disease. These approaches can be roughly divided into two categories:

univariate analysis, and multivariate analysis.
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1.2.1 Single-Locus Analysis

Most of the research in GWAS have been based on univariate techniques in which

the relationship of one genetic factor to the disease phenotype is considered. These

single-locus tests examine each SNP independently for association with the phenotype

[11, 62]. The effect size (or penetrance) for any one variant is calculated and scored

based on their significance of association with the disease phenotype. An example of

a single-variable method is the chi-square test of independence, which measures the

deviation from independence of genotypes and a phenotype under the null hypothesis.

The first successful single-variable study in GWAS was published in 2005 by Klein

et. al. [44]. This case-control association study was designed for detecting genes

involved in age-related macular degeneration (AMD). They performed single-maker

associations testing and the results were two SNPs in gene CFH identified to be

strongly associated with the disease.

Many single-SNP-based methods were used for some time, but had little success

in detecting genetic risk factors [4, 81]. Single-variable methods produce some signif-

icant SNPs as primary contributors to disease state, but these SNPs only explain a

small proportion of disease heritability and etiology [37, 81]. Moreover, single-variable

methods and marginal testing analyses are less successful in finding associations be-

cause the causal SNPs are involved in an unknown genetic model (such as additive,

dominant, or recessive), or may have epistatic interaction with other SNPs [4, 35].

The reason lies deep in the architecture of complex diseases, which are known to

be caused by nonadditive interactions of multiple genetic variants or interaction of

environmental factors and genetic variants that single-variable methods fail to detect.
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1.2.2 Multi-Locus Analysis

Due to little success by utilizing the single-locus analysis methods [61], and because

identified genetic variants from these methods explain only a small proportion of

disease heritability, recent research have inclined toward using or developing multi-

variate approaches that examine interactions among genetic variants [4, 11, 25, 27].

It has been shown that it is not one genetic factor, rather interactions of multiple

factors that contribute to susceptibility in complex diseases [62]. These interacting

factors can be joint effect of multiple SNPs/genes, epistasis effect (e.g., SNP-SNP

interactions and gene-gene interactions), and gene-environment interactions [41, 57].

Epistasis is an ubiquitous component of the genetic architecture of common hu-

man diseases [57]. It has been historically used to describe the phenomenon that

the effect of a given gene on a phenotype can be dependent on one or more other

genes. Indeed, it is an essential element for understanding the association between

genetic and phenotypic variations [38, 62]. However, quantifying higher order epis-

tasis is a challenging task due to both the computational complexity of enumerating

all possible combinations in genome-wide data and the lack of efficient and effec-

tive methodologies. Epistasis, gene-gene interactions, and SNP-SNP interactions all

convey the same concept in genome studies and they may be used interchangeably.

Multi-locus analysis methods are designed to find significant interactions among

SNPs in GWAS data. However, the multi-locus analysis methods present numerous

challenges regarding detecting interactions among SNPs. These challenges include:

developing powerful statistical and computational methods to analyze genetic data,

selecting appropriate genetic variables, and interpreting gene-gene interactions mod-
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els [59].

1.2.3 Multi-Variate Analysis Approaches

There are three different approaches for doing a multi-locus analysis for variable

interactions in GWAS data [94]. The first approach is exhaustive search methods e.g.,

multifactor-dimensionality reduction (MDR) which search through all combinations

of underlying genetic factors [69]. Since most GWAS data have about one million

genotyped SNPs, examining all pair-wise (or higher order) interactions between SNPs

is a cost-prohibitive approach by most of the algorithms (even MDR). To resolve this

issue, one approach is to use filtering methods to select only a subset of the most

significant SNPs. MDR is preferable when the size of the feature set is relatively

small (e.g., a few hundred).

A second approach is greedy search methods e.g., classification and regression trees

(CART) [7]. These kinds of methods are able to detect interactions among variables

and they are somehow preferable to exhaustive search methods, however, because of

the greediness they may miss significant interactions among variables. An example

of this approach is Random Forests (RF), which are composed of numerous CARTs

built on the basis of random selection of variables [8]. The RF algorithm is capable

of detecting interactions and has been used in many successful studies [81, 100].

A third approach is stochastic search methods e.g, evolutionary computing (EA)

algorithms. These algorithms work based on the idea of natural selection and use

a fitness (i.e., objective) function to find the optimum solution. Genetic algorithm

(GA) is an example of EA algorithm which has been used in studies for dimensionality
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reduction and multi-variate interaction detection [93].

1.2.4 Machine Learning

A machine learning (ML) algorithm learns through data to create a model that is used

for future predictions [27]. Figure 1.1 shows diagram of a typical learning model in

which the algorithm is trained based on training data and evaluated based on testing

(or new) data. ML algorithms are capable of classification, regression, clustering,

and feature ranking. ML methods have been the most commonly used approach in

GWAS. Different ML approaches have been proposed and applied to GWAS data in

order to model the relationship between SNPs and environmental factors to disease

susceptibility for certain complex diseases [81]. Examples of ML methods which

also been used in GWAS include: RF, Support Vector Machine (SVM), Naive Bayes

classifier (NB), and Artificial Neural Networks (ANNs) [83].

Figure 1.1: Diagram of a typical learning problem
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1.3 Research Objectives

We report a whole-genome case-control association study for SNPs involved in col-

orectal cancer (CRC). What is unique about this study is the genetic data on which

no gene-gene interaction analysis has been performed so far. Identifying gene-gene

interactions in a genetic dataset is important because causality of common diseases,

to a great extent, relies on the interactions among genetic variants. Thus, revealing

interactions among genetic variants can help understand the etiology of the disease

of interest.

We conduct a GWA study based on the workflow shown in Figure 1.2 [58]. In

the beginning, we prepare the dataset by performing quality control on the genetic

data to remove substandard samples, the ones with less genotypic information, and

error-prone genetic variants, which contain erroneous genotypes. Subsequently, sta-

tistical analysis is conducted to evaluate the significance of the variants that might be

used for dimensionality reduction. Simultaneously, we use dimensionality reduction

methods such as filtering algorithms to reduce the size of the dataset to a moderate

size which is applicable by computational methods. We then apply two ensemble

algorithms, RF and Gradient Boosting Machine (GBM), to the reduced dataset to

reveal interactions between SNPs. The ensemble methods have benefits over other

methods because of their intrinsic multi-variable characteristics and their ability to

detect interactions among variables. Subsequently, the results of computational/ML

methods are interpreted to discover the most significant genetic factors in the disease.

These significant genetic factors are biologically evaluated using genome knowledge

databases in order to interpret as new discoveries.
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Figure 1.2: Workflow of this thesis research

Generally, conducting a GWA study involves four main steps as shown in the Fig-

ure 1.2. Data preparation and quality control, dimensionality reduction and feature

selection, identifying significant genetic variants and/or detecting gene-gene interac-

tions using computational methods, and conducting biological interpretations on the

results of computational methods. All of the steps which have been conducted for

the CRC dataset are explained in more detail in the below sections.
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Chapter 2

Genome-Wide Association Studies

for Colorectal Cancer

2.1 Background

Genomics is the study of genes and their functions. The objectives of genomic stud-

ies are to explore human genome to determine the functions of genes, find genetic

variations and their significance in Deoxyribonucleic acid (DNA) sequence in devel-

opment of diseases, and reveal the interactions of DNA and proteins. The first step

in understanding human genome and how instructions are encoded in DNA (which

lead to functions in humans) was the discovery of the sequence of the human genome

accomplished at 2003 [87]. There are new technologies known as next-generation se-

quencing which have sped up the sequencing of all of a person’s DNA. One method of

next-generation sequencing is whole genome sequencing which determines the order

of all the nucleotides (i.e., DNA building blocks) in an individual’s DNA and can
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determine variations in any part of the genome.

Human Genome Project (HGP) was an international research effort to sequence

and map all of the genes - together known as the genome - of members of our species,

Homo sapiens. Completed in April 2003, the HGP gave us the ability, for the first

time, to read nature’s complete genetic blueprint for building a human being.

2.1.1 International HapMap Project

Based on the common variant/common disease hypothesis, it is known that common

diseases are caused by genetic variants that are common among people [11, 66]. That

is, the heritability of common diseases can be explained to some extent by common

genetic variations in the population. In this regard, the International HapMap Project

was defined to describe and capture common genetic variations that are present in

different human populations. In this project, the common genetic variations, or SNPs,

across human genome are identified using different DNA sequencing techniques [30].

The SNP data are then used by researchers to reveal the relationship of the genetic

variants and human diseases.

2.1.2 Genome-Wide Association Studies

In 2000, prior to the introduction of GWAS, the primary method of investigation for

genotype-disease associations was through inheritance studies of genetic linkage in

families. Linkage analysis is the attempt to statistically relate a transmission of an

allele within families to the inheritance of a disease. This approach was proven to

be highly useful towards single gene disorders or ‘Mendelian’ diseases. However, for
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common and complex diseases, genetic linkage studies failed to produce good results

[11, 37].

The completion of human genome sequence, which helps in SNP genotyping, and

initiation of International HapMap Project have set stage for GWAS [37]. The cur-

rent strategy for revealing the genetic basis of disease susceptibility is to carry out

a GWA study [37, 58, 89]. GWAS are a new way of understanding human diseases.

GWAS investigate genetic variation in human DNA to pinpoint genes that contribute

to a particular disease risk. They are a promising approach to study complex and

common diseases in which numerous genetic variations contribute to the disease sta-

tus [14, 36, 37]. The goal of GWAS is to identify variants associated with the trait

of interest using statistical and bioinformatic techniques [89]. This approach has

been successful in identifying genetic variants that influence risks of complex diseases

including cardiovascular [13, 56], autoimmune diseases [72], and cancer [22, 47, 55].

The chip-based microarray technology and, recently, next-generation sequencing

have made it possible for GWAS to genotype > one million SNPs [11]. Two primary

platforms of SNP genotyping in GWAS are Illumina and Affymetrix, which utilize

different underlying algorithms. After genotyping DNA sequences of individuals, the

common genetic variants among them are determined. These common variations are

known as SNPs, which are the most common type of genetic variation among people

and occur more frequently in people with a particular disease than in people without

a disease.

DNA is composed of building blocks called nucleotide (i.e., allele), of which there

are four {A, T, C, G}. An SNP represents a difference in a single nucleotide and

typically has two alleles demonstrating the possibilities of a base-pair at an SNP
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locus [11]. There are three billion nucleotides within human DNA. SNPs occur once

in every 300 nucleotides on average along the DNA sequence, meaning there are 10

million SNPs in the human genome. Most commonly, these variations are found in

the DNA between genes and scarcely within genes. The small differences of SNPs may

help predict a person’s risk of particular diseases and response to certain medications.

Before SNP genotyping, the phenotype of interest (e.g., the type of disease) should

be specified. Two groups of people, affected and unaffected, are then selected for

genotyping. The affected are individuals having the disease (of interest) known as

cases and the unaffected are healthy individuals known as controls. After preparing

the SNP data of individuals, the genetic dataset of at least 1 million SNPs for about

1000 individuals is created. Subsequently, the dataset is analyzed by statistical or

computational methods to unravel the most significant SNPs that contribute to the

disease.

One main point to consider when doing a case-control association study is popu-

lation stratification. The population stratification exists when the cases and controls

are drawn from populations of different ancestry with different allele frequencies. It

is important because it can result in false-positive results, because we might detect

the population differences instead of loci associated with the disease [44]. Therefore,

efforts need to be conducted to remove population stratification in the dataset.

2.1.3 Genome-Wide Association Studies Catalog

The National Human Genome Institute (NHGI) and European Bioinformatics Insti-

tute (EMBL-EBI) have been producing a catalog of all the eligible GWAS publications
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since 2005 (http://www.ebi.ac.uk/gwas). For studies to be included in the GWAS

catalog, certain criteria must be met. That is, the studies must include an analy-

sis of > 100, 000 SNPs, and SNP-trait associations must have a significance p-value

< 1.0× 10−5. As of November 13th 2017, the GWAS catalog contains 53,020 unique

SNP-trait associations from 3,197 publications [53].

2.1.4 Colorectal Cancer

As stated in Chapter 1, we are conducting a GWA study on the CRC genetic data.

CRC is the cancer of the large intestine (colon), which is 90% preventable if detected

early. Factors that may increase the risk of colon cancer include: older age, family

history of colon cancer, diabetes, obesity, smoking, and heavy use of alcohol. To

prevent the risk of colorectal cancer there are recommendations such as: drinking

milk, eating fruits, vegetables, and whole grains, exercising regularly, and stopping

smoking1.

CRC is the third most common type of cancer, which accounts for ∼10% of all

cases of cancer [76]. CRC is a common cause of cancer deaths in developed countries

with a high incidence rate in North America [98]. According to the Canadian Cancer

Society (http://www.cancer.ca/), CRC is the second most commonly diagnosed

cancer in Canada. It is the second leading cause of deaths from cancer in men and

the third leading cause of deaths from cancer in women in Canada2. Estimations of

Canadian colorectal cancer statistics for 2017 show that there would be approximately

14,900 male and 11,900 female cases, in which 5,100 of the male cases and 4,300 of

1https://www.mayoclinic.org/diseases-conditions/colon-cancer/symptoms-causes/syc-20353669
2http://www.cancer.ca/en/cancer-information/cancer-type/colorectal/statistics
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the female cases result in deaths.

Based on Canadian Cancer Statistics, prostate cancer is the most frequently di-

agnosed type of cancer for men and breast cancer is the most frequent type of cancer

in women in Newfoundland and Labrador. Newfoundland and Labrador also has the

highest incidence rate of colorectal cancer for women as well. From 2017 statistics,

360 men and 270 women are estimated to be diagnosed with CRC. Moreover, 20.2%

of the deaths from CRC will be individuals between the ages of 60-69 years and 27.7%

of the deaths from CRC will be individuals between the ages of 70-79 years3.

2.2 Methods

2.2.1 Dataset

For this study the CRC genetic data are collected from subjects within the province of

Newfoundland and Labrador. The Colorectal Cancer Transdisciplinary (CORECT)

consortium coordinated genotyping of data. Genotyping as part of the CORECT was

conducted using a custom Affymetrix genome-wide platform (the Axiom CORECT

Set) on two physical genotyping chips (pegs) for two datasets with ∼1.2 and ∼1.1

million SNPs [73]. The first dataset has 1,236,084 SNPs and 696 people with 200 cases

and 496 controls in which the genotyping rate is 0.997134. The second dataset has

1,134,514 SNPs and 656 people with all cases and no controls with the genotyping rate

of 0.888449. The genotyped SNPs in the datasets are not completely the same, rather,

they have a small proportion of common SNPs and a high potential of overlap between

subjects. Using PLINK[65], we merge these two datasets based on their common SNPs

3http://www.colorectal-cancer.ca/en/just-the-facts/colorectal/
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resulting in the number of 265,195 variants and 1152 unique individuals. Among

remaining phenotypes, 656 are cases and 496 are controls.

2.2.2 Quality Control

As for most population-based studies, the data need to be preprocessed before un-

dergoing any further investigations. The preprocessing, which is performed as data

quality assessments and control steps, is typically carried out during case-control asso-

ciation studies. Indeed, these steps are quite significant in the success of a case-control

study and necessary before statistically testing for associations [3].

One important reason for the necessity of preprocessing is due to errors in geno-

type calling. During the genotyping of data (which is done by genotype calling al-

gorithms) there is a possibility of occurring errors and missing values in the data.

These errors could lead to an increase in false-positive and false-negative associations

in case-control association studies [3]. In order to eliminate these issues and remove

substandard samples and genetic markers, those assessments should be performed

prior to any association analysis. Hence, quality control (QC) and missing value

imputation (explained in next section) processes are conducted to prepare the data.

Using PLINK, a tool for handling genetic data [65], we perform quality assessments

and control steps on the CRC data. PLINK provides commands for investigating the

genetic data and performing the quality control steps. We undertake several quality

control steps to remove individuals and markers with particularly high error rates.

We take most of the steps from [3]. The detailed information on how to use PLINK

can be accessed in [65]. There are usually two primary steps in QC: sample quality
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and marker quality. Two main QC steps that were performed on the data are as

follows:

1) Per-individual QC: per-individual QC or sample quality is a procedure to re-

move individuals with low-quality of genetic data. In this procedure, the individuals

call rate, sample relatedness, and population stratification are investigated. Sample

relatedness refers to the kinship of individuals in the population. It investigates if

two individuals have a kinship relationship. Therefore, it computes the similarities

between two individuals. Identical by descent (IBD) means that one individuals is

identical to the other because they share the same DNA segment that they received

through a parent. In other words, the proportion of loci where two individuals share

zero, one or two alleles are referred as IBD.

The first step of QC is to remove samples with low-quality genotype information.

The steps are consecutive such that each step uses the output data from the previous

step. The steps are performed as follows:

a) First, we do a sex-check to identify individuals with problematic sex information.

plink --bfile raw-GWA-data --check-sex --out raw-GWA-data

The raw-GWA-data is the PLINK’s binary file of CRC data. This command produces

sex information of individuals. We then find sex-discordant individuals and save them

in the fail-sexcheck-qc.txt file. The command for removing those samples is:

plink --bfile raw-GWA-data --remove fail-sexcheck-qc.txt --make-bed

--out clean-sexcheck-GWA-data↪→

which removes individuals in the fail-sexcheck-qc.txt file and saves the result in

the clean-sexcheck-GWA-data bed file.
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b) The second step is removing sex chromosomes; that is, only chromosomes 1–22 are

kept:

plink --bfile clean-sexcheck-GWA-data --chr 1-22 --make-bed --out

clean-nosexchr-GWA-data↪→

in which sex chromosomes are removed and the result is saved into the clean-nosexchr-GWA-data

bed file.

c) The third step is removing samples with outlier missing genotypes. We use below

command to produce missing genotype rate of samples:

plink --bfile clean-nosexchr-GWA-data --missing --out

clean-nosexchr-GWA-data↪→

then, the heterozygosity rate of samples are specified with the command below:

plink --bfile clean-nosexchr-GWA-data --het --out

clean-nosexchr-GWA-data↪→

Then, the samples with a missing genotype rate higher than 0.01 and a heterozy-

gosity rate beyond mean ± 3sd (standard deviation) are identified and stored in

fail-imisshet-qc.txt file. The following command removes these failing samples:

plink --bfile clean-nosexchr-GWA-data --remove fail-imisshet-qc.txt

--make-bed --out clean-imisshet-GWA-data↪→

Finally, those failing samples are removed and the result is saved into a bed file. So

far, almost all of the error-prone samples are removed.

d) The fourth step is removing related individuals.

2) Per-marker QC: after removing low-quality samples, it is also important to

remove sub-standard markers. The steps are performed in this regard are as follows:

a) The first step is removing low-quality markers using the following command:
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plink --bfile clean-imisshet-GWA-data --geno 0.05 --maf 0.05 --hwe

0.0001 --make-bed --out clean-snp-GWA-data↪→

in which SNPs with missing call rates exceeding 5%, a minor allele frequency (MAF)

less than 5%, and with a Hardy-Weinberg equilibrium (HWE) greater than 0.0001

are removed.

b) The second step is removing markers with significant differences in the missing data

rate between cases and controls. We identify missing data rates using the following

command:

plink --bfile clean-snp-GWA-data --test-missing --out

clean-snp-GWA-data↪→

and then identify those SNPs with significant differences in the missing data and

save them in the fail-diffmiss-qc.txt file. We then exclude those SNPs from the

dataset using the following command:

plink --bfile clean-snp-GWA-data --exclude fail-diffmiss-qc.txt

--make-bed --out clean-diffmiss-GWA-data↪→

c) The third step is completed through linkage disequilibrium (LD) pruning, using

the following command:

plink --bfile clean-diffmiss-GWA-data --indep-pairwise 2000 200 0.6

--out ld-clean↪→

which does a pairwise LD with window size of 2000 and r2 of 0.6 and save those which

pass the criteria in the ld-clean.prune.in file. We then only extract SNPs which

are pruned in by LD using the following command:
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plink --bfile clean-diffmiss-GWA-data --extract ld-clean.prune.in

--make-bed --out clean-ld-GWA-data↪→

d) The fourth step is creating a statistical recode dataset (0/1/2) using the following

command:

plink --bfile clean-GWA-data --recode A --out clean-GWA-data

Allelic data are then recoded into genotype format, producing three categories for

each SNP (0, 1 and 2 copies of the minor allele). Each SNP can be regarded as a

bi-allelic variable, i.e., it has two different variations, with the common allele among

a population called the reference and the other called variant. Given the fact that

human chromosomes are paired, three categorical values are usually used to code

for each SNP, i.e., 0 for homozygous reference, 1 for heterozygous variant, and 2 for

homozygous variant. The controls and cases are assigned to class labels to 1 and

2 respectively. The final dataset is created and stored in the clean-GWA-data file

which would be used hereafter for subsequent analysis.

2.2.3 Imputation

One important note we notice about the cleaned CRC dataset is the imbalanced class

labels. When building ML models, imbalanced class labels in the dataset usually in-

ject a bias into the model. That is, machine learning models tend to make predictions

toward the class with higher frequency. In the cleaned CRC dataset, the number of

626 cases is high in comparison to the 472 controls. These imbalanced labels cause

the prediction models to predict all of the labels of test data as one class –which is

case in this situation. Therefore, we make the dataset balanced by removing cases
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with numerous missing values rather than removing (more) low-quality SNPs. We

count the number of missing values for each case and remove the ones which have

10% missing values. In this way, we would have a clean dataset with the balanced

class labels.

After balancing the dataset, we impute the missing values that are not too many

with an algorithm. The imputation algorithm replaces missing values with the most

appropriate values from the dataset. That is, the most frequent value in each SNP

is found and put into the missing places. The reason for choosing this imputation

method is that the CRC dataset after QC and balancing do not have enormous missing

values. In contrast, the frequency of missing values in SNPs are less than 10% which

is not significant.

2.3 Results

The consecutive runs of the PLINK commands remove low-quality SNPs and samples

from the CRC dataset. From the per-individual QC steps, in the execution of step (a)

11 samples with inconsistent of sex information, in step (b) no samples, and in step

(c) 26 samples with outlier missing genotypes are removed from the dataset. From

the per-marker QC steps, in the execution of step (a) 20,693 low-quality SNPs with

a genotype rate less than 5%, a minor allele frequency less than 5%, and a Hardy-

Weinberg equilibrium greater than 0.0001, in step (b) 1,257 SNPs with significant

differences in the missing data rate between cases and controls, and in step (c) 47,046

SNPs which are in linkage disequilibrium with each other are removed. The quality

control steps resulted in a dataset with 190,142 SNPs for 1,098 individuals.
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As stated in the imputation section, the cases with more than 10% missing values

are removed, that result in the number of 944 samples with 472 cases and 472 controls.

Subsequently, we again remove low-quality SNPs based on a threshold by counting

the number of missing values for each SNP. We remove SNPs which have more than

about 1% (10 out of 944 samples) missing values in the samples. Table 2.1 shows

summary information of original and clean CRC dataset after all quality control

steps and imputation. At the last stage, we replace the missing values with the most

frequent value for each SNP. The final dataset would have 186,251 SNPs for each 944

samples.

Table 2.1: CRC dataset information

Stage SNPs Samples Cases Controls

Before QC 265,195 1,152 656 496

After QC 190,142 1,098 626 472

After Imputation 186,251 944 472 472
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Chapter 3

Feature Selection

3.1 Background

It is a challenging task to analyze high dimensional SNP data for GWAS. The number

of variables, i.e., SNPs, brings an extensive computational burden for informatics

methods [58]. Moreover, in the studies of common human diseases, it has been

accepted that the non-additive effects of multiple interacting genetic variables play

an important role explaining the risk of a disease [16]. The traditional one-gene-

at-a time strategies likely overlook important interacting genes that have moderate

individual effects. Therefore, powerful data mining and machine learning methods are

needed in order to examine multiple variables at a time and to search for gene-gene

interactions that contribute to a disease. A GWAS dataset with a million variables can

be prohibitive for the application of any machine learning algorithms for detecting

gene-gene interactions, since enumerating all possible combinations of variables is

impossible. In addition, many of those variables can be redundant or irrelevant for the
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disease under consideration. Thus the selection of a subset of relevant and potential

variables to be included in the subsequent analysis, i.e., feature selection, is usually

needed [58].

Feature selection (FS) is frequently used as a pre-processing step in machine learn-

ing when the original data contain noisy or irrelevant features that could compromise

the prediction power of learning algorithms [97]. FS methods choose only a sub-

set of the most important features, and thus reduce the dimensionality of the data,

speed up the learning process, simplify the learned model, and improve the prediction

performance [19, 33].

3.1.1 What is Feature Selection?

Feature selection is referred to as the process of selecting a subset of features from a

feature set in a dataset [71]. This process is usually performed before classification

modeling. Actually, it is an important scientific requirement for a classifier when

the number of variables is large compared with the number of subjects [27]. Dimen-

sionality reduction or FS is worthy in the sense that they reduce the computational

complexity of future classification models by providing a fewer number of features.

Sometimes, it provides more reliable data by removing noise variables [71, 33]. Fea-

ture selection involves two main objectives, i.e., to maximize the prediction accuracy

and to minimize the number of features.

There are four basic criteria that should be considered when designing an FS

method [5]. Direction of search is the determination of starting point from which

to start searching. The examples are forward selection or backward elimination.
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Search space specifies the organization of the search. One way is exhaustive search

of all 2a possible subsets of a attributes. Another wise approach is greedy search

to traverse the space. Evaluation of subset of features is also important in assessing

the significance of selected features. This can be done by measuring accuracy on the

training or test sets. Halting of search is the determination of a termination criterion

to decided when to stop the search. This criterion could be a specified number of

attributes, the accuracy of classifier or combination of both.

3.1.2 Types of Feature Selection

Generally, FS methods can be divided into three categories. Filter approach separates

feature selection from classifier such that at first a subset of features are filtered in

and then fed into the classifier. In other words, the learning algorithm plays no

role in selecting attributes. This approach could also rank attributes based on their

significance. Moreover, in comparison to its companions this method is relatively

fast. However, the downside of this approach is the accuracy because it is not being

evaluated by classifier [26]. An example of this approach is Kira and Rendell’s Relief

algorithm which uses a complex feature evaluation function [43].

Wrapper approach iteratively evaluates performance of selected features until cer-

tain accuracy is reached. In other words, a wrapper algorithm searches through the

feature space using a filter method, but feature evaluation is performed via a classifier.

The accuracy of classifier on some training data is used as the metric of evaluation.

This approach is more useful when the size of dataset is small and classification is

of great importance. The major disadvantage of wrapper algorithm is computational
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cost because it has to call the classifier whenever evaluating the feature set. There-

fore, improvements on speeding evaluation is needed in this method such as using

greedy or stochastic search rather than deterministic search [5, 26, 33, 71].

Embedded approach embeds feature selection within classifier. These methods

could be helpful in detecting correlation among variables. Examples of embedded

algorithms are Decision trees, Naive Bayes, and penalized methods having penalty

functions such as Lasso and Elastic Net [52, 71].

Of those three, filter approaches are often used in bioinformatics studies given the

fact that they can easily scale to very high-dimensional data, that they are compu-

tationally simple and fast, and that they are independent of the classification algo-

rithm [71]. In addition, most of the used FS algorithms in GWAS are filter-based

methods, since filtering methods outperform other methods in large-scale problems

[39].

There are other dimensionality reduction techniques such as principal components

analysis and partial least squares in which the original input variables are transformed

into a new input variables. This could be helpful for classification problems but not

useful in biomedical implications, since the original input variables are deformed and

not easily accessible [52]. Therefore, we will not include these methods in our study.

Furthermore, there is another type of feature selection or dimensionality reduction

methods called hybrid methods such as sparse principal component analysis which is

combination of feature selection and dimensionality reduction. However, we will not

be using these methods as well. Feature selection methods are preferable to dimen-

sionality reduction methods in bioinformatics because FS methods do not change the

behavior of genetic variants.

26



3.1.3 Feature Selection in Bioinformatics

There have been studies investigating the performance of FS methods on high di-

mensional datasets in bioinformatics. Hua et al. [39] evaluated the performance of

several filter and wrapper feature selection methods on both synthetic and real gene-

expression microarrays data. The size of datasets was 20,000 features (i.e. genes)

and the largest sample size was 180. They used a two-stage feature selection strat-

egy where filter methods were applied before training the classifier to remove non-

informative attributes and then wrapper methods were used to refine feature set.

Shah and Kusiak [75] used genetic algorithms (GA) to search for the best subset

of SNPs in a dataset with 172 SNPs. After selecting the best subset of SNPs by

GA, the subset is evaluated by a baseline classifier to compare the performance when

whole feature set is used.

Wu et al. proposed an SNP selection and classification approach on GWAS data

based on RF. In the proposed stratified random forest (SRF) method, SNPs are

spread into groups based on the significance of their informativeness computed based

on information gain. Then, using resampled data, the CART trees are grown by

selection of a number of SNPs from each group. The method has been tested on

Parkinson and Alzheimer case-control data and compared to other methods such as

original RF (with different parameter values), and SVM.

Bermingham et al. investigated performance of five feature selection methods (4

supervised and 1 unsupervised) on two classification methods: a mixed model (G-

BLUP) and a Bayesian (Bayes C). Three of the supervised feature selection methods

were based on p-value rankings of SNPs associations in dataset, and the fourth one
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was based on partitioning the SNPs into haplotype blocks and the p-value of intra-

block SNPs covariates. The unsupervised feature selection method was based on

random selection of different number of SNPs that are evenly spaced from each other.

The methods were tested on two genome-wide SNP datasets, Croatian and UK, with

2,186 and 810 individuals respectively.

Numerous mutual information (MI) feature selection methods have been proposed

in the last 20 years. MI is a measure of statistical independence between two random

variables. It is a measure of the amount of information that one random variable has

about another variable. Brown et al. proposed a framework for information-theoretic

feature selection methods in which to select the smallest feature subset having the

highest MI [9].

3.2 Methods

Most existing studies used the classification accuracy as the indicator for feature

selection performance. The contribution of a feature to a phenotypic outcome could

be its individual main effect or its interacting effect combined with other features.

Using the overall classification accuracy was not able to distinguish the interaction

effects of multiple variables and the individual main effects.

In our study, we focus on searching for features (SNPs) that have strong associa-

tions with the disease outcome in terms of gene-gene interactions. This differentiates

our work from many existing studies that mostly focus on SNPs with high main-

effects. We apply information gain to quantify the pair-wise synergy of SNPs and

use that to evaluate various feature selection methods in order to identify the ones
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that can find subsets of SNPs with high synergistic effects on the disease status. We

investigate six most popular filter algorithms, and test them on both simulated and

real GWAS datasets. Our findings can be helpful for the recommendation of feature

selection methods for detecting gene-gene interactions in GWAS.

In this section, we first discuss the data that will be used in this study, which

include a simulated and a real population-based GWAS datasets. Then we introduce

the information gain measure that will be employed as the quantification of the syn-

ergistic interaction effect of pairs of SNPs. Last, we present the six feature selection

algorithms that will be investigated and compared.

3.2.1 Simulated Data

Having an understanding of performance of FS and statistical methods on real genetic

data is not straightforward. In some studies, the performance of FS methods is

evaluated on a simulated data to have a grasp on capability of these methods in

identifying important SNPs. For this purpose, we created a simulated data of SNPs

with the genetic characteristics similar to the CRC data.

For this study, we use a simulated genetic association dataset generated by the ge-

netic architecture model emulator for testing and evaluating software (GAMETES) [85,

84]. GAMETES is a fast algorithm for generating simulation data of complex genetic

models. Particularly, in addition to additive models, GAMETES is specialized for

generating pure interaction models, i.e., interacting features without the existence of

any main effects. Each n-locus model is generated deterministically, based on a set of

random parameters and specified values of heritability, minor allele frequencies, and
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population disease prevalence. Since we focus on pairwise SNP interactions, we use

GAMETES to generate a population of 500 samples with half being cases and half

being controls. The dataset has 1000 SNPs, where 15 pairs are two-locus interacting

models with a minor allele frequency of 0.2 and another 970 are random SNPs. We

set the heritability to 0.2 and population prevalence to 0.5.

3.2.2 Quantification of Interactions Using Information Gain

Information theoretic measures such as entropy and mutual information [17] quantify

the uncertainty of single random variables and the dependence of two variables, and

have seen increasing applications in genetic association studies [23, 48, 38]. In such

a context, the entropy H(C) of the disease class C measures the unpredictability

of the disease, and the conditional entropy H(C|A) measures the uncertainty of C

given the knowledge of SNP A. Subtracting H(C|A) from H(C) gives the mutual

information of A and C, and is the reduction in the uncertainty of the class C due

to the knowledge about SNP A’s genotype, defined as

I(A;C) = H(C)−H(C|A). (3.1)

Mutual information I(A;C) essentially captures the main effect of SNP A on the

disease status C.

When two SNPs, A and B, are considered, mutual information I(A,B;C) mea-

sures how much the disease status C can be explained by combining both A and B.

The information gain IG(A;B;C), calculated as

IG(A;B;C) = I(A,B;C)− I(A;C)− I(B;C), (3.2)
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is the information gained about the class C from the genotypes of SNPs A and B

considered together minus that from each of these SNPs considered separately. In

brief, IG(A;B;C) measures the amount of synergetic influence SNPs A and B have on

class C. Thus, information gain IG can be used to evaluate the pairwise interaction

effect between two SNPs in association with the disease.

3.2.3 Feature Selection Methods

We choose six most widely used feature selection algorithms in our comparative study,

and investigate their performance on searching variables that contribute to the disease

in terms of gene-gene interactions. These six feature selection algorithms include

three uni-variate approaches, chi-square, logistic regression, and odds ratio, and three

Relief-based algorithms, ReliefF, TuRF, and SURF. They will be applied to both

simulated and real GWAS datasets and provide rankings of all the SNPs in the data.

Chi-square: The chi-square (χ2) test of independence [96] is commonly used in

human genetics and genetic epidemiology [58] for categorical data. A χ2 test estimates

how likely different alleles of a SNP can differentiate the disease status. It is a very

efficient filtering method for assessing the independent effect of individual SNPs on

disease susceptibility.

Logistic regression: Logistic regression measures the relationship between the

categorical outcome and multiple independent variables by estimating probabilities

using a logistic function. A linear relationship between variables and the categorical

outcome is usually assumed, and a coefficient is estimated for each variable when such

a linear relationship is trained to best predict the outcome. The variable coefficient
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can then be used as a quantification of the importance of each variable.

Odds-ratio: Odds ratio (OR) is the most commonly used statistic in case-control

studies. It measures the association between an exposure (e.g., health characteristic)

and an outcome (e.g., disease status). The OR represents the odds that a disease

status will occur given a particular exposure, compared to the odds of the outcome

occurring in the absence of that exposure [80].

ReliefF: Relief is able to detect complex attribute dependencies even in the ab-

sence of main effects [43]. It estimates the quality of attributes using a nearest-

neighbor algorithm. While Relief uses, for each individual, a single nearest neighbor

in each class, ReliefF, a variant of Relief, uses multiple, usually 10, nearest neigh-

bors, and thus is more robust when a dataset contains noise [45, 70]. The basic idea

of Relief-based algorithms is to draw instances at random, compute their nearest

neighbors, and adjust a feature weighting vector to give more weights to features

that discriminate the instance from its neighbors of different classes. Comparing to

uni-variate feature selection algorithms, ReliefF is able to capture attribute interac-

tions because it selects nearest neighbors using the entire vector of values across all

attributes [58, 70].

Tuned ReliefF (TuRF): It is an extension of ReliefF specifically for large-scale

genetics data [60]. This method systematically and iteratively removes attributes

that have low-quality estimates so that the remaining attributes can be re-estimated

more accurately. It improves the estimation of weights in noisy data but does not

fundamentally change the underlying ReliefF algorithm. It is useful when data contain

a large number of non-relevant SNPs. It is also more computationally intense because

of the iterative process of removing attributes.
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Spatially Uniform ReliefF (SURF): SURF is also an extension of the ReliefF

algorithm [32]. It incorporates the spatial information when assesses neighbors. In-

stead of using a fixed number of neighbors as the threshold in ReliefF, SURF uses a

fixed distance threshold for choosing neighbors. It is reported to be able to improve

the sensitivity detecting small interaction effects.

3.3 Results

3.3.1 Feature Selection Algorithms on the Simulated Data

First, we apply all six feature selection algorithms to the simulated dataset that

contains 30 known SNPs with pairwise interactions and 970 random SNPs. The

chi-square, odd-ratio, ReliefF, TuRF, and SURF algorithms are implemented us-

ing the multifactor dimensionality reduction (MDR) software with default parameter

settings [69]. Logistic regression is implemented using the Python scikit-learn pack-

age [64].

Each algorithm yields a ranking of all 1000 SNPs. Table 3.1 shows the statistics of

the ranking scores of those 30 known SNPs by each feature selection algorithm. We

see that TuRF has both the best mean and median rankings among all the methods,

and the differences are significant. ReliefF performs the second best, followed by

SURF.
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Table 3.1: Ranking of the 30 known interacting SNPs by feature selection algorithms.

Logit χ2 OR ReliefF TuRF SURF

Mean 549.16 548.30 444.10 202.63 166.96 233.16

SD 277.99 267.18 287.04 201.74 259.74 212.13

Median 617.50 536.50 346.50 130.00 21.50 183.50

Figure 3.1 shows the recall-at-k for all six feature selection algorithms. The y-axis

shows the fraction of those 30 known SNPs detected by the top k SNPs ranked by

each feature selection algorithm. We can see that for all values of k, TuRF has the

highest recalls. In addition, all three Relief-based algorithms outperform the other

methods.

Figure 3.2 shows the distributions of the ranking of those 30 known interacting

SNPs using different feature selection algorithms. The x-axis is the rank of SNPs and

the y-axis is the density. Again, TuRF has the highest density around high ranks,

meaning that it produces the highest ranks for those 30 known SNPs. SURF and

ReliefF also have better ranking performance comparing to the other three methods.

Odds-ratio, logistic regression, and chi-square have flat distributions across the entire

rank range, which indicates their inability to identify those 30 interacting SNPs.
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Figure 3.1: Diagram of recall-at-k for six feature selection algorithms applied to

the simulated dataset. Recall-at-k is the fraction of the 30 known interacting SNPs

detected by the top k ranked SNPs using each feature selection algorithm.
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Figure 3.2: Density of the rankings of the 30 known interaction SNPs using different

feature selection algorithms on the simulated dataset.

3.3.2 Feature Selection Algorithms on the CRC Data

We then compare the performance of those six feature selection algorithms using

the CRC GWAS dataset. The CRC GWAS dataset is processed using PLINK soft-

ware [65]. PLINK can conduct some fundamental association tests by compar-

ing allele frequencies of SNPs between cases and controls. We use the command

--assoc to compute chi-square and odds-ratio scores for each SNP, and the command

36



--logistic for logistic regression analysis. Again, we used the MDR software [69]

to implement ReliefF, TuRF, and SURF algorithms.

Each feature selection algorithm generates a ranking of all the 186,251 SNPs in the

dataset. For detecting gene-gene interactions, exhaustive enumeration of all possible

combinations of SNPs is usually considered. Even for pairwise interactions, the total

number of possible pairs
(
n
2

)
grows fast with the number of SNPs n. Therefore, we

can only consider a moderate subset of SNPs for interaction analysis, and we use

the rankings estimated using feature selection algorithms to filter those potentially

more important SNPs. We choose the subset of the top 10,000 SNPs by each feature

selection algorithm. Then, for the six subsets of filtered 10,000 SNPs, we evaluate

their pairwise interactions separately using the information gain (IG) measure.

Table 3.2 shows the maximum, minimum, mean, standard deviation, and median

values of the information gain calculated using all
(
10,000

2

)
pairs of the 10,000 SNPs

filtered by the six feature selection algorithms. As we can see, ReliefF finds the SNP

pair with the highest interaction strength, and TuRF has the best overall distribution.
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Table 3.2: Statistics of the information gain values of all
(
10,000

2

)
SNP pairs filtered

by each feature selection algorithm (×10−3).

Logit χ2 OR ReliefF TuRF SURF

Max 27.4 27.6 27.4 30.2 28.9 28.2

Min -4 -5.1 -4 -3.2 -2.9 -5.7

Mean 2.760 3.047 2.776 3.190 3.191 3.056

SD 2.117 2.221 2.120 2.243 2.251 2.224

Median 2.3 2.6 2.3 2.7 2.7 2.6

Fig. 3.3 shows the distribution of the interaction strength IG of all
(
10,000

2

)
pairs

of SNPs selected by each feature selection algorithm. We see that the distributions

of ReliefF and TuRF have overall more SNP pairs with higher IG values. The dis-

tributions of SURF and chi-square are comparable, and logistic regression and odds

ratio have the lowest overall IG values.

The significance of the IG value of each pair of SNPs can be assessed using permu-

tation testing. For each permutation, we randomly shuffle the case/control labels of

all the samples in the data in order to remove the association between the genotypes of

SNPs and the disease status. Repeating such a permutation multiple times generates

a null distribution of what can be observed by chance. For each permuted dataset,

we compute the IG value of each pair of SNPs. In this study, we perform a 100-fold

permutation test rather than 1000 permutations because of the computational (space

and time) complexity imposed by calculating higher order permutations. The signifi-

cance level (p-value) of the IG of each SNP pair can be assessed by comparing the IG
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value of the pair calculated using the real dataset to the IG values calculated using

the 100 permuted datasets (see Algorithm 1).

Algorithm 1 Permutation testing algorithm

1: procedure ComputePvalue

2: D ← original dataset

3: n← number of permutations

4: m← number of SNP pairs

5: C ← counter for each SNP pair

6: i← 1

7: j ← 1

8: while i < n do

9: permute the dataset D

10: while j < m do

11: calculate IGpermute
i for the j-th SNP pair

12: increase Cj by 1 if IGpermute
i is greater than the observed IGj

13: calculate the significance level pj for each SNP pair j as
Cj

n

We apply permutation testing to all six subsets of
(
10,000

2

)
pairs of SNPs selected

by each feature selection algorithm, such that their significance level p-values can be

assessed. Fig. 3.4 shows the number of SNP pairs that pass two different p-value

thresholds, 0.01 and 0.05. TuRF has more SNP pairs with significant interaction

strength using both thresholds. All three Relief-based algorithms have higher numbers

of significant SNP pairs than the other three methods. Logistic regression and odds
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ratio find the least numbers of significant interacting SNP pairs.
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Figure 3.3: Distribution of the information gain (IG) values of all pairs of filtered

10,000 SNPs by each feature selection algorithm.
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show the results with cutoff p ≤ 0.05.

3.3.3 Applying TuRF Feature Selection Method

TuRF feature selection outperformed other FS methods in terms of detecting signifi-

cant interactions among SNPs. Therefore, we use the TuRF feature selection method

to give scores to SNPs based on their significance in associating with the disease

status. The next step is then to choose a reasonable threshold to filter in the most

significant SNPs produced by the TuRF method. We specify a threshold, which
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gives an appropriate number of the most significant SNPs, as long as the dataset cre-

ated from those SNPs would not produce computational burden for the ML methods.

Based on the histogram of SNPs’ score shown in Figure 3.5, the threshold mean+3sd

is chosen, in which mean is the average and sd is the standard deviation of all of the

SNP scores, to obtain the most significant SNPs. A total number of 2,798 SNPs are

selected for the subsequent machine learning analysis.
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Figure 3.5: Histogram of SNP scores by the TuRF method
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3.3.4 Discussion

In this chapter, we investigated the performance of six widely used feature selec-

tion algorithms for detecting potentially interacting single nucleotide polymorphisms

(SNPs) for GWAS. We used both a simulated and real genetic datasets. We adopted

information gain as a measure for quantifying pairwise interaction strength of SNPs

in order to evaluate the filtering performance of those six feature selection algorithms.

Among the investigated feature selection methods, three are single variable feature

scoring methods. That is, they only consider individual main effects of SNP on the

disease status. Three other methods are extensions of the Relief algorithm which is

a multivariate feature selection algorithm.

For the simulated dataset, we generated a population-based dataset with 1000

SNPs including 15 pairs of interacting SNPs and 970 random ones. We applied all

six feature selection algorithms to rank those 1000 SNPs and look into the recall-at-k

of detecting those 30 known interacting SNPs. The TuRF algorithm has the highest

recall-at-k for all k values, followed by ReliefF and SURF. All three Relief-based

algorithms perform better than odds ratio, logistic regression, and chi-square.

We also tested the feature selection algorithms using a real GWAS dataset on

colorectal cancer (CRC). We used information gain to quantify pairwise interaction

strength of SNPs in order to evaluate the filtering performance of the feature selection

algorithms. We chose 10,000 top-ranked SNPs by each feature selection algorithm and

applied information gain measure and permutation testing to compute the interaction

strengths and their significance levels of all pairs of SNPs. We found that TuRF

again was able to filter more significant interacting SNPs than the rest of the feature
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selection algorithms. All three Relief-based algorithms outperformed the other three

methods.

TuRF and ReliefF had comparable performance on the application to the real CRC

dataset. By looking at their top 10,000 SNPs, we saw that only 1474 were overlapped.

That is, only 14% of their top 10K SNPs are the same. This is interesting that they

seemed to be able to find different sets of interacting SNPs.

There is no general rule for selecting the best feature selection method in machine

learning studies. The decision mostly depends on the data and research question of

the investigation. For the purpose of detecting gene-gene interactions, Relief-based

methods were shown to have better performance than the common univariate meth-

ods. Gene-gene interactions can be very challenging to detect by univariate methods

since individual genetic factors may not show significant main effects. By comparing

samples using all genetic attributes, Relief-base algorithms are able to capture the

non-addition interaction effects among multiple attributes, and are recommended for

detecting gene-gene interactions for GWAS.
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Chapter 4

Ensemble Learning for Biomarker

Discovery

4.1 Background

After reducing the size of the dataset using FS methods, two ensemble learning al-

gorithms are used to model the genetic behaviors in the reduced genetic dataset.

ML methods are applied to the dataset to detect either interactions among SNPs or

identify variables with high marginal effects. ML methods are known to be the most

widely used approaches in GWAS. Many successful studies in GWAS reported signifi-

cance of ML methods in revealing the causal genetic variants in disease datasets [81].

ML methods are capable of regression and classification that are useful when there are

quantitative and categorical phenotypes. In addition, these methods are promising

complements to standard single-SNP tests and appropriate alternatives for multi-SNP

analyses [81]. For example, nonparametric approaches such as ensemble methods can
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be used to model complex interacting relationships among multiple SNPs.

4.1.1 Machine Learning Methods

The parametric linear statistical models have limitations for detecting non-linear pat-

terns of interactions [58]. Likewise, most of the ML methods are single-variable ap-

proaches in which interactions between multiple variables are not investigated, rather,

the main effect of one variable is considered [59]. It is discussed by Moore et al. that

the data mining and machine learning methods can reveal numerous significant inter-

actions and other complex genotype–phenotype relationships when they are widely

applied to GWAS data [58]. In addition, these computational approaches make fewer

assumptions about the data and functional form of the model.

There are other categories of ML algorithms such as: instance-based (e.g., KNN),

rule system (e.g., Cubist), regularization (e.g., ridge regression), neural networks (e.g.,

back-propagation neural networks), and clustering (e.g., k-Means) which are not con-

sidered in this study. The reason is that these methods are not suitable for the CRC

dataset, in spite of the ensemble methods. The instance-based and regularization

methods are simple linear methods which seem inappropriate for genomic studies

[81]. In addition, clustering algorithms are not helpful in this situation because in

this study, the focus is classification.

4.1.2 Ensemble Methods

Ensemble methods use a set of predictors known as base learners. To produce a final

prediction, the predictions of the base learners are weighted and the overall predic-
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tions are decided as majority voting, i.e., the most voted class label, (for classification)

or the average of fitted values (for regression). It has been shown that the ensem-

ble methods perform better than other approaches under certain circumstances [21].

Firstly, the components of ensemble methods should be weak learners such as clas-

sification and regression trees (CART) [7]. Secondly, the base learners have to be

different from each other, meaning a reasonable variance should exist among them.

One popular method is bagging (short for bootstrap aggregating) that works based

on bootstrapped samples of the original data [7]. Bagging is a technique for reducing

the variance of an estimated prediction function. It seems to work especially well for

high-variance, low-bias procedures, such as trees [27].

Random Forests (RF) are a special case of bagging in which more randomness is

added such that the variables are randomly selected to determine the optimal split

at each node of the tree [8]. The trees in RF are uncorrelated. The RF algorithm is

an effective prediction tool which can uncover interactions among genes that do not

exhibit strong main effects [58]. RF have been utilized in various studies including: to

predict rheumatoid arthritis status using SNPs [78], to rank SNP predictors [74, 77],

and to identify the epistatic effects related to human diseases [29].

Another method to generate an ensemble is boosting in which, in contrast to

bagging, the weak learners evolve over time and make weighted votes [27]. Here,

each weak learner is weighted based on the result from the previous base learner. An

example a boosting algorithm is the gradient boosting machine (GBM) which uses

trees as base learners and minimizes the loss function using gradient descent [28]. The

RF and GBM approaches provide variable importance measures that can be used to

select the most relevant predictors [8, 28, 81].
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4.1.3 Previous Works

Szymczak et al. reviewed applications of several ML methods (penalized regression,

ensemble, and network-based) on three GWAS datasets [81]. The Ridge regression

method was used to detect SNPs associated with the rheumatoid arthritis (RA) phe-

notype and resulted in identifying an SNP near the HLA-B gene [79]. D’Angelo et

al. combined the least absolute shrinkage and selection operator (LASSO) with the

principal component analysis (PCA) which detected two significant gene-gene inter-

actions in RA data [18]. These studies showed that the penalized regression methods

are not computationally feasible to be applied to GWA data simultaneously, rather,

they require improved implementations or a reduced size of the data [81].

Further on, the RF ensemble method was applied to the RA data and identified

many known and several new SNPs contributing to the phenotype risk [82, 88]. In

another study, it was shown that RF can better identify and rank the causal SNPs

and important interacting covariates when the Gini index (GI) variable importance

measure is used for evaluating feature significance [42]. Bayesian network analysis

(BNT) is a network-based approach which is used to detect relationships between

predictor variables and the binary coronary artery calcification (CAC) phenotype in

a simulated dataset. The results showed that only some of the known relationships

were recovered in the BNT analysis [95].

Goldstein et al. recommended that using RF with default settings of hyper-

parameters would not yield appropriate results for large GWA datasets. In contrast,

tuning of different values of the RF hyper-parameters, mtry or random number of

variables, and ntree or number of trees, specifically using higher values, work well for
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large GWAS datasets [31]. In a recent study, Wright et al. investigated ability of RF

in detecting gene-gene interactions in a simulated data [92]. In their extensive simu-

lations, many factors such as interaction models, varying marginal- and interaction-

effect sizes, minor allele frequencies (MAF) and mtry were considered when creating

a simulated data. Two single and three pairwise variable importance measures were

investigated on five interaction models. Results of the simulations showed that single

variable importance measures could capture the main effects but failed in detecting

interactions. The results of pairwise variable importance measures indicated that

they cannot detect the interaction in the presence of marginal effects. With all mea-

sures, marginal effects were detected as interaction effects and true interactions were

not found. The reason for all of these is that current variable importance measures

in RF cannot differentiate between marginal and interaction effects.

A data driven study by Olsen et al. revealed that tree-based ensemble ML methods

outperform other methods such as Support Vector Machine (SVM) and Naive Bayes

methods in the classifications of bioinformatics data [63]. Thirteen ML methods were

compared on 165 bioinformatics datasets based on their performance producing higher

classification accuracy, i.e., 10-fold cross-validation (CV) accuracy. The comparison

of these ML methods on 165 different datasets demonstrated that Gradient Tree

Boosting and subsequently RF outperformed other methods in terms of performing

classifications in bioinformatics data.
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4.2 Methods

Overall, due to their intrinsic multivariate and non-linear properties, tree-based en-

semble methods prove to be a powerful analysis tool in the context of GWAS. In

terms of risk prediction, tree-based methods are shown to be very effective in classi-

fying individuals given their genotypes, while in terms of loci identification they are

confirmed to be a well-suited alternative to standard approaches [58, 83].

An advantage of the RF approach is that the final decision trees may reveal

interactions among SNPs that do not exhibit strong main effects [15, 16, 58]. The RF

method is a non-parametric approach and is able to model the non-linear relationships

among attributes [100]. RF are robust in the presence of noisy or potential false

positive SNPs [10]. The primary limitation of tree-based methods is that they take

marginal effects of variables into account. That is, the RF algorithm finds the best

single variable for the root node before adding additional variables as nodes in the

model.

GBM is a statistical learning method that can capture SNP-SNP and SNP-

covariate interactions. In each split of a tree, all variables are considered jointly

for associations with the phenotype and the variable that best increases classifica-

tion accuracy is selected for that split. Depending on the depth of the tree in GBM

method, the higher order interactions can be detected by the model. In addition,

no specific genetic model (e.g., additive, dominant, recessive) is specified a priori,

rather GBM models are built in a data-driven basis. It has a much lower computa-

tional burden compared to RF and even performed as well or better than RF in a

study [34, 51].
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Important note to consider when performing ML modeling is the determination

of the significance of a variable. Significance of a variable in a model is implied if

the inclusion of that variable in a given model leads to better modeling (i.e., higher

prediction accuracy) of the given dependent variable, compared to when it is left out.

Depending on the algorithm being used, some of them detect interactions and some

of them only quantify the significance of variables in a dataset. Therefore, a variable

is considered significant if its inclusion improve the performance (e.g., prediction

accuracy) of the model.

The essential part of the RF and GBM ensemble methods is parameter tuning.

We perform different runs of these algorithms with different parameter values. The

dataset is randomly partitioned into 10 folds. Each time an ML model is trained on 9

folds and evaluated on the other fold. This is repeated for all 10 folds, resulting in 10

different models. The accuracy is then calculated as the averaged accuracy of these

10 models. Since randomness may affect the results of predictions, we repeat each

round (of 10-fold CV) 10 times. That is, each ML model (with a specific parameter

settings) is repeated 100 times and the accuracy is averaged over these 100 times.

In addition, since an SNP has categorical values {0,1,2}, we convert these values to

factors so that ML methods treat them as categorical values.

The most significant SNPs of the ML methods are compared to determine if they

have intersections. If these ML methods give similar top variables we can state that

those variables are of great importance, or that maybe they are the causal factors of

the disease. For validation, the results are compared to the findings from other studies

or online databases which describe biological characteristics of CRC. The algorithm

and implementation details of these two ML methods are explained as follows.
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4.2.1 Random Forests

Random Forests (RF) are shown to be a very powerful regression and classification

method which are created from a large collection of possibly uncorrelated decision

trees [8, 81, 100]. Each tree is grown using the CART methodology [7]. The most

significant feature in the RF is that for the kth tree, a random vector Θk is generated,

independent of the past random vectors Θ1, ...,Θk−1 but with the same distribution. If

the input vector in the original data has M variables, then Θk would have a randomly

selected number of m < M variables. These m variables are used to make the best

split at each node of the tree. The tree is then grown using a training set x (which

is sampled at random with replacement) and Θk resulting in a classifier h(x,Θk).

Each tree is grown to maximum size without pruning. Intuitively, reducing m will

reduce the correlation between any pair of trees in the ensemble. For classification,

the default value of m is b
√
Mc; however, the best value for this parameter will depend

on the problem, and it should be treated as a tuning parameter [8, 27].

Figure 4.1 shows the procedures of creating a decision tree in RF. RF uses boot-

strapping to grow trees. Using the bootstrapping technique, usually one third of the

training set is not present in growing trees. This left over data is known as the out-

of-bag (OOB) data. The OOB data, which are not present in the training set, are

replaced with duplicate samples to rectify the size of the data. After the development

of trees, the OOB samples are used to test the individual trees as well as the entire

forest. The average misclassification error over all trees is known as the OOB error

estimate. Accuracy of RF depends on the strength of the individual tree classifiers

and also the lack of correlation between trees.
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After a large number of trees are generated, RF vote for the most popular class

as the result of classification. That is, after creating all trees, the new entry goes

down from all of the trees to obtain a class (case or control) vote for each tree. From

the result of the classifications, the class with the highest vote (among all trees) is

considered as the prediction for that entry.

Figure 4.1: Overview of the RF algorithm, adopted from [67].

Another important feature of the RF algorithm is the variable importance cal-
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culation. This algorithm analyzes each attribute and reveals the importance of the

attribute in predicting the correct classification in each tree. RF gives estimates of

variables’ significance in the classification using the permutation or Gini importance

measures. In the permutation importance, the values of the jth variable are randomly

permuted in the OOB samples, and then samples are reclassified using these new val-

ues. The number of correct classifications with the permuted values is compared with

the number of correct classifications in the original data. The decrease in accuracy

as a result of this permuting is averaged over all trees, and is used as a measure of

the importance of variable j in the random forest [27]. That is, if randomly permut-

ing values of variable j does not affect the predictive ability of trees on out-of-bag

samples, that attribute is assigned a low importance score [10]. The drawback of

permutation importance is the computational burden when the number of variables

is huge, which is the case for GWAS data.

In the calculation of the Gini importance, in every split of a node on the jth

variable, the Gini impurity criterion over all trees is calculated as denoting the im-

portance measure of that variable. In this measure, the Gini index from a single tree

is generalized to a forest [100]. Let pk be the proportion of observations of outcome

class k at a node. The Gini index of node Sk is a measure of impurity i and is then

given by i(Sm) = 1 −
∑

k pk
2 =

∑
k;l;k 6=l pkpl. The impurity of a tree t, i.e., the Gini

index is the sum over all terminal nodes Sm of the impurity of a node i(Sm) mul-

tiplied by the proportion pm of subjects that reach that node of the tree Gini(t) =∑
m pm.i(Sm). This measure is extended for all trees, which more explanation can be

acced in [8, 100].

We use a very fast implementation of RF provided in an R package named
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‘ranger’ [91]. The ‘ranger’ package provides all functionalities similar to the ‘Ran-

domForest’ package in R with much faster implementation speed. Therefore, we

can use it for the GWAS datasets with a large number of SNPs. As for Brie-

man’s random forests, ‘ranger’ accepts two main parameters: ntree, the number

of trees; and mtry, the number of random features at each node. Expert knowl-

edge was used to choose ranges of values for these parameters. For mtry these val-

ues were selected as: mtry = {100, 200, 300, 500, 1000, 2000}. Values for ntree are:

ntree = {500, 1000, 2000}. Other parameter values remained as package default.

There are 18 different configurations of mtry and ntree in which each combination

is repeated 10 times. That is, RF is run 180 times (or 1800 times when 10 runs of

cross-validation are included.)

4.2.2 Gradient Boosting Machine

At first, in a boosting algorithm, many weak learners are built and the new learners

focus on improving the previous ones. Based on the definition by Hastie et. al [27],

a weak classifier is one whose error rate is only slightly better than random guess-

ing. The learners are trained sequentially, which result in building a “committee” of

complex predictors [27, 28]. GBM is a boosting ML algorithm in which a weighted

combination of predictors are used to make the final prediction [28].

Using numerous base learners, a set of approximations Fm(x);m = 1, 2, ...,M

is created. The “error” in the predictions is calculated based on a loss function

L(y, F (x)) such as squared-error SE =
∑

(y − F )2. The F is then adjusted to

F (x) = F (x) + ρ × h in which ρ is a regularization parameter (or coefficient) and
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h is base learner with parameters optimized from the gradient of the loss function

∇L(y, F ).

The listing 2 shows the description of the GBM algorithm [28]. In this algorithm,

M is the number of base learners (i.e., trees), N is the number of training samples, F

is the approximation function, L is the loss function, h(x; a) is the base learner that

fits training data x with a set of parameters a = {a1, a2, ...}, ρ is the set of coefficients

for base learners, and β is coefficient for base learners when optimizing parameters a.

Algorithm 2 Gradient boosting algorithm

1: procedure Gradient Boost

2: F0(x) = argminρ
∑N

i=1 L(yi, ρ)

3: for m = 1 to M do:

4: ỹi = −[∂L(yi,F (xi))
∂F (xi)

]F (x)=Fm−1(x) , i = 1, N

5: am = argmina,β
∑N

i=1[ỹi − βh(xi; am)]2

6: ρm = argminρ
∑N

i=1 L(yi, Fm−1(xi) + ρh(xi; am))

7: Fm(x) = Fm−1(x) + ρmh(xi; am)

8: endFor

9: end Algorithm

At line 2, an initial guess F0(x) is made on the training data, and then from

line 3 the models for M iterations are built. Starting from line 4, for each step m,

first the negative gradient of loss function ỹi over all training samples is calculated.

Second, the optimal parameters am are found such that the least-squares of ỹi and

base learner is minimized. Third, given the h(x; a), the optimal value of the coefficient
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ρm for model m is determined. Last, the approximation Fm(x) is updated as shown

at line 7. This procedure is repeated for all learners until the final prediction FM is

obtained.

GBM can also be used to rank-order SNPs according to their cumulative predictive

performance. The variable importance measure used in GBM is similar to the Gini

importance commonly used in Random Forests [8, 28]. Therefore, the measure of

importance can be used to identify significant SNPs in the GWAS dataset.

We use an R package called ‘gbm’ for performing classifications based on GBM [68].

Similar to the RF, the range of values for hyper-parameters are chosen based on expert

knowledge. GBM has three main parameters: n.trees, the number of trees; interac-

tion.depth, the complexity of interactions between nodes (i.e. features); and shrink-

age, the learning rate or step-size reduction in the GBM algorithm. The values of

these parameters are as follows: n.trees = {100, 500, 1000, 2000}, interaction.depth =

{1, 2, 10}, and shrinkage = {0.001, 0.01, 0.1}. There are 36 different configurations

of these three parameters in which each combination is repeated 10 times. That is,

GBM is run 360 times (or 3600 times when 10 runs of CV are included). Other pa-

rameters of GBM such as n.minobsinnode, bag.fraction, and train.fraction remained

default to 10, 0.5, and 0.5 respectively.

4.3 Results

In this section, we explain the results of applying ML methods to the CRC dataset.

The ensemble algorithms are applied to the reduced dataset and their classification

accuracy for different parameter settings are recoded.
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4.3.1 Applying Random Forests to CRC Dataset

We apply RF to the CRC dataset with a reduced feature set of 2,798 SNPs as a result

of the TuRF feature selection algorithm. Figure 4.2 shows the average accuracy and

the area under the ROC curve (AUC) for 18 runs of RF with different combinations

of parameters. The x-axes are ntree, i.e., the number of trees, and the y-axes are the

average accuracy and AUC. The different lines connect values of accuracy and AUC

for different mtry values. The measures of accuracy and AUC for each configuration

of mtry and ntree are averaged over 10 different runs. From this plot, we see that

the highest accuracy of 75% and AUC of 0.84 are obtained when mtry = 100 and

ntree = 2000. The best accuracy is obtained when ntree has the maximum value and

mtry has minimum value. Increasing ntree consequently increases accuracy, while

increasing mtry decreases the accuracy. That is, for RF, the higher values of ntree

and lower values of mtry are preferable in the context of GWAS data (at least for the

CRC data).
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Figure 4.2: Parameter comparison for RF. a) shows the average accuracy of RF for

different parameter values. b) shows the average AUC of RF for those parameter

values.

The RF method would also give importance score to features based on their signif-

icance of effect on the class labels. In the ‘ranger’ package we choose the ‘impurity’ as

the measure of importance score. Therefore, SNPs are assigned an importance score

(of between 0 and 1) for a run of the RF model. We run the RF method 10 times with

the hyper-parameters mtry = 100 and ntree = 2000. The SNPs’ importance score

are added up for all 10 runs of the RF model (or 100 runs when the runs of 10-fold CV

are included). At the end, each SNP would be assigned an average importance score

which is the significance of that SNP over all runs of the RF implementation. The

distribution of the average significance score of SNPs is shown in Figure 4.3. From
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the plot, we see that a high proportion of SNPs have a low average score, and only a

small proportion of SNPs have a high average score.

Average score

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.3: Plot of SNPs’ average score by RF

4.3.2 Applying Gradient Boosting Machine to CRC Dataset

We then apply GBM to the CRC dataset with selected 2,798 SNPs. Figure 4.4

shows the average accuracy and the area under the ROC curve (AUC) for 36 runs

of the GBM with different combinations of parameters. In this figure, the x-axes

of subplots show the n.trees, i.e., the number of trees, and y-axes of subplots show

the average accuracy and AUC for different interaction.depth values. Each row in
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this plot shows the average accuracy and AUC for a value shrinkage parameter while

interaction.depth values differ.

From this figure, we see that the highest average accuracy is 74% and AUC is 0.82,

which are obtained when n.trees = 2000, interaction.depth = 10, and shrinkage =

0.1. GBM performs weakly with lower values of n.trees while increasing the iterations

results in better predictions. As the number of iterations (i.e., number of trees)

increases, the accuracy gets higher. In addition, the interaction.depth = 10 has the

highest accuracy, meaning that the more complex interactions among SNPs result in

better performance by the GBM. For all of the GBM models, as interaction.depth

increases, the accuracy gets increased. Similar to the interaction.depth, increasing

shrinkage also improves the accuracy of GBM models. That is, shrinkage of 0.1

gives better predictive accuracy than lower values such as 0.01 and 0.001. For GBM,

the higher values of hyper-parameters of n.trees, interaction.depth, and shrinkage are

preferable in the context of GWAS data (at least for the CRC data).
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Figure 4.4: Parameter comparison for GBM. a) c) e) show the average accuracy for

shrinkage of 0.001, 0.01, 0.1. b) d) f) show the average AUC for shrinkage of 0.001,

0.01, 0.1 respectively.
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Figure 4.5: Plot of SNPs’ average score by GBM

Similar to RF, GBM also gives an importance score to features based on their

significance of effect on the class labels. SNPs which have high effects on the class

label, would be assigned a high score. For a run of the GBM model, SNPs are given

an importance score that in contrast to RF can be more than 1. We use the best

configuration of GBM hyper-parameters to detect the most important SNPs in the

dataset. We repeat GBM with hyper-parameters of the best model, with hyper-

parameter values n.trees = 2000, interaction.depth = 10, and shrinkage = 0.1, for
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10 times and record the significance score of every SNP. The SNPs’ importance score

are added up for all 10 runs of the RF model (or 100 runs when the runs of 10-fold

CV are included). At the end, each SNP would be assigned an average importance

score which is the significance of that SNP over all runs of the GBM model. The

distribution of the average significance score of SNPs are shown in Figure 4.5. From

the plot, we see that a high proportion of SNPs have a low average score.

4.3.3 Key Genetic Markers Discovered by RF and GBM

We applied two ensemble algorithms to the reduced CRC dataset with 2,798 SNPs to

identify the most significant variants associated with the disease phenotype. Conse-

quently, GBM and RF methods produced significance score for SNPs. After obtaining

scores for SNPs by the ensemble methods, we compare the most important SNPs by

these methods and choose the ones which are considered as important by both of

them. Figure 4.6 shows the plot of SNPs in which the x-axis is the average impor-

tance score by GBM and the y-axis is the average significance score by RF. Therefore,

the SNPs which are in the top-right corner of the plot are found to be important by

both methods. These SNPs have a high significance score by both RF and GBM

methods. We see that there are almost two clusters of SNPs. The first cluster is in

the bottom-left corner of the plot where most of them have very similar scores. The

other cluster is in the top-right part of the plot, which could be grouped together.

Therefore, a separating line is drawn to separate SNPs into two clusters. The SNPs

on the right side of the line are the most significant SNPs which have the highest score

by both RF and GBM methods. Moreover, SNP rs3760948 T is the Pareto-Front
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of this plot because it has the highest score in both RF and GBM. At the end, based

on the specified threshold, the 44 most significant SNPs which are detected by both

methods are selected. Table 4.1 shows these 44 SNPs and their average scores by the

RF and GBM methods.
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Figure 4.6: Scatter plot of SNP scores by the two ensemble learning algorithms. The

x-axis shows the GBM importance scores and the y-axis shows the RF importance

scores.
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Table 4.1: The 44 most important SNPs from the ensemble learning algorithms

Name RF score GBM score Name RF score GBM score

rs3760948 T 0.7095 7.1059 rs4625115 T 0.3505 2.1938

rs7594717 G 0.5402 4.1339 rs3844138 A 0.3505 2.6331

rs12407198 G 0.4656 4.1847 rs17379465 A 0.3503 2.0094

rs9688110 A 0.4609 4.6431 rs1212694 A 0.3489 2.715

rs2571219 G 0.4496 3.933 rs10016091 G 0.3464 2.4935

rs2386946 A 0.4384 4.6075 rs1991915 T 0.3392 2.4759

rs344570 T 0.4328 4.318 rs13263313 T 0.3353 2.9202

rs8022574 A 0.4291 4.1497 rs11610311 C 0.3253 2.4885

rs10814848 G 0.4287 3.3928 rs6578849 G 0.3232 2.1192

rs2179321 T 0.4227 3.3535 rs17831158 A 0.3202 2.3514

rs3912454 C 0.4201 3.6651 rs2010907 G 0.3174 2.4778

rs6782709 G 0.3858 3.0446 rs11783793 T 0.3128 2.4392

rs898438 G 0.3802 3.3224 rs17162736 A 0.3005 2.7131

rs2645737 C 0.3774 3.4745 rs11185516 A 0.2984 2.182

rs647831 G 0.3766 2.5022 rs11985944 T 0.2983 2.4779

rs658836 C 0.3727 2.8659 rs1816647 T 0.2974 2.3314

rs7747931 A 0.363 2.7031 rs2736486 C 0.2954 2.3167

rs4961513 A 0.3621 3.8827 rs721619 G 0.2886 2.3056

rs1495008 C 0.3567 3.1697 rs12695485 T 0.2724 2.3389

rs2406370 G 0.3518 2.5797 rs952880 C 0.2712 2.3221

rs9288684 T 0.3517 3.6207 rs1367128 G 0.2625 2.3595

rs1505229 T 0.3512 2.3319 rs3842986 T 0.2558 2.3955
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4.4 Biological Interpretation

Finding the genetic risk factors in the CRC dataset is just one step toward revealing

the etiology of the disease. The next step after finding the most significant genetic

variants via ML methods in GWAS is to conduct a biological validation on the findings

using online databases. Online biological databases contain genetic information about

SNPs and describe the functions of the corresponding gene regarding a genetic variant

in DNA sequence. By exploring these sources, more information can be acquired

about SNPs and the association of the genes with disease phenotypes.

Table 4.2 shows more information about the most important SNPs found by the

ensemble algorithms. In this table, CHR represents the chromosome number; SNP is

the id of SNP; A1 is the minor allele of SNP; MAF is the frequency of minor allele; and

P-value is the p-value of the association of the SNP with the disease (which is obtained

with PLINK). We see that most of the SNPs have a very low p-value indicating the

significance of their association with the disease. We explore the ENSEMBL1 and

National Center for Biotechnology Information (NCBI)2 databases to find the genes

associated with these significant SNPs. The corresponding genes of these SNPs are

shown in the seventh column of Table 4.2. We see from Table 4.2 that 15 (out of 44)

SNPs are in non-coding regions and the remaining 29 SNPs, which most of them have

intron functional class, are in the protein coding regions of DNA. These 29 genes are

of great importance, because in the pathway they are transcribed to RNA and result

in producing proteins may lead to causing CRC.

1http://www.ensembl.org
2https://www.ncbi.nlm.nih.gov/
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Table 4.2: List of the 44 identified SNP markers

CHR SNP A1 MAF P-value Gene

1 rs647831 G 0.345 0.01041 -

1 rs12407198 G 0.3376 0.005675 C1orf101

2 rs1816647 T 0.3906 0.03521 -

2 rs7594717 G 0.3347 4.632e-05 ALK

2 rs1505229 T 0.3912 0.0009559 LRRTM4

2 rs1367128 G 0.1925 0.003527 THSD7B

2 rs9288684 T 0.07827 0.0001041 INPP5D

3 rs12695485 T 0.111 0.02966 LOC107986044

3 rs6782709 G 0.345 0.01885 LOC105374217

3 rs11185516 A 0.4273 0.6691 ZDHHC19

4 rs1991915 T 0.3658 0.006061 OTOP1

4 rs10016091 G 0.4641 0.002475 SCFD2

4 rs2736486 C 0.3259 0.01471 -

4 rs2010907 G 0.2764 0.0008263 -

5 rs2406370 G 0.4361 0.163 ITGA1

5 rs9688110 A 0.3562 0.0009197 FAT2

6 rs7747931 A 0.4329 0.04637 E2F3

6 rs952880 C 0.4848 0.2318 KCNQ5

7 rs17379465 A 0.3155 0.1253 -

7 rs17162736 A 0.1398 0.01466 STEAP2-AS1

8 rs11985944 T 0.2692 0.001981 -
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8 rs11783793 T 0.4169 0.0006035 -

8 rs721619 G 0.3352 0.1755 EPHX2

8 rs17831158 A 0.3896 0.001942 LINC00968

8 rs1495008 C 0.1701 0.00374 LOC101929628

8 rs13263313 T 0.3472 0.008509 JPH1

9 rs10814848 G 0.5072 0.001 GLIS3

9 rs3912454 C 0.4712 0.03876 -

9 rs4961513 A 0.2907 0.0003435 -

9 rs4625115 T 0.4018 0.0006728 -

11 rs6578849 G 0.3794 0.000583 SYT9

12 rs11610311 C 0.2652 0.002581 -

14 rs8022574 A 0.4058 0.002786 -

14 rs2645737 C 0.4497 0.01135 NID2

14 rs1212694 A 0.234 0.00103 ACTR10

18 rs658836 C 0.2109 0.0004416 -

18 rs898438 G 0.3658 0.0009927 DCC

18 rs2571219 G 0.3866 0.001339 ATP8B1

18 rs3844138 A 0.2504 0.0112 -

19 rs3760948 T 0.3714 0.0002007 ARRDC5

19 rs344570 T 0.08866 0.0002718 TNFSF14

20 rs2179321 T 0.5128 0.04872 PLCB4

20 rs2386946 A 0.2101 0.005192 CDH4

21 rs3842986 T 0.2244 0.04063 -
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Figure 4.7 shows the distribution of SNPs and the number of genes in the chro-

mosomes. In this plot, the coding and non-coding genes in all of the chromosomes

are shown. We see that there are no SNPs in the chromosomes {10,13,15,16,17,22}

and the chromosome 8 contains 6 SNPs in which 4 of them belong to coding regions.

Similarly, for chromosome 2, 4 out of 5 SNPs belong to the coding regions of DNA.
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Figure 4.7: Number of coding and non-coding SNPs in each chromosome

The homogeneity and heterogeneity of SNPs can reveal important information.

The distribution of SNPs’ value among the 472 cases indicates that most of these

SNPs are heterogeneous as shown in the Figure 4.8. That is, they have values of 1

and 2. The x-axis is the SNP name and the y-axis is the number of cases. Each

bar in this plot shows the distribution of SNP values {1,2} among cases. From the
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figure, we see that SNPs have more value of 1 than 2, meaning that they are mostly

heterogeneous. This heterogeneity is important since it may be interpreted as the

primary cause of the disease.
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Figure 4.8: SNPs heterogeneity and homogeneity among cases
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4.4.1 Detailed Information on the Genes

Even though expert knowledge is needed to investigate the functions of the above

genes, their existing associations with the disease can be determined through bio-

logical databases. Therefore, we explore detail information of these genes using the

ENSEMBL database which provides information about genes and their associated

diseases.

Among the above 29 genes, there are a few genes which are known to be associated

with the disease phenotype including: DCC, ALK, ITGA1, E2F3, and NID2. The

most important gene is DCC which is known to be directly associated with colorectal

cancer based on the ENSEMBL database3. The gene expression, function, biological

features, and molecular genetics of DCC show associations with colorectal cancer4.

It was shown by Castets et al. that DCC functions as a tumor suppressor in the

colorectal cancer [12].

Gene ALK is directly related to the phenotype colorectal adenocarcinoma sample

based on a number of studies. Pietrantonio et al. discussed that gene ALK may

prevents the effects of other treatments for advanced colorectal cancer. Fusions of

genes ROS1 and ALK occur in colorectal cancer and may have substantial impact

in the treatment of the disease [1]. In addition, Lipson et al. investigated 145 genes

related to colorectal cancer in 40 tissues. They identified a gene fusion of ALK and

another gene from colorectal samples which have major therapeutic relevance [50].

There is also a study performed in a Japanese population showing the association of

ALK with schizophrenia [46]. Findings from a study by Slambrouck et al. showed

3http://www.ensembl.org/Homos sapiens/Gene/Phenotype?db=core;g=ENSG00000187323
4https://www.omim.org/entry/120470
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that the α1-integrin (i.e., ITGA1) is relevant to the prevention of tumor progres-

sion in colon cancer patients [86]. In addition, Boudjadi et al. analyzed the tissue

microarrays from 65 patients revealing a clear correlation of ITGA1 expression in

72% of the colorectal cancer patients [6]. Akao et al. showed that E2F3 is involved

in the prevention of colorectal cancer [2]. A GWAS study on a Chinese population

shows that variants of the gene NID2 are associated with the phenotype lung cancer

(smoking interaction) [99].

4.4.2 Enrichment Analysis

After finding genes related to the disease, it is important to identify pathways and

genetic ontologies (GO) leading to the causes of the disease. There are numerous

enrichment analysis tools which are differently categorized based on their background

algorithms, different enrichment analysis methods, and correction testings. Some

of these tools include: Onto-express, FunSpec, GeneMerge, MAPPFinder, GoMiner,

GARBAN, FuncAssociate, EASE, and DAVID [40]. In this study we use the Database

for Annotation, Visualization and Integrated Discovery (DAVID) [20], because it is

widely used for enrichment analysis, specifically for exploring the functions of genes.

It is a web-based tool which takes a list of genes as an input and produces many

annotation tables and charts, based on the functional annotation clustering, gene

functional classification, and gene name batch viewing algorithms. These algorithms

are useful for identifying the disease and relevant GO terms associated with a given

list of genes.

We feed the above 29 genes to DAVID and it converts them to 3,873 DAVID
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IDs which are the other names for these genes (obtained from different databases)

or the genes known to be related to them. Then, we use these 3,873 genes for fur-

ther analyses by DAVID. From the DAVID user interface, the annotations of Dis-

ease, Gene Ontology, and Pathway are selected for performing combined functional

analysis. From disease category all disease databases are selected: GAD DISEASE,

GAD DISEASE CLASS, and OMIM DISEASE. Similarly, for pathway annotation all

databases are selected and from the gene ontology category six databases: GOTERM BP DIRECT,

GOTERM BP FAT, GOTERM CC

DIRECT, GOTERM CC FAT, GOTERM MF DIRECT, and GOTERM MF FAT.

The functional annotation chart in DAVID shows all of the GO Terms related

to the given list of genes based on the selected annotation categories and databases

(which we selected as above). The threshold of 5 genes out of 29 genes is set to remove

Terms which have less associated genes. The combined view for selected annotations

are shown in Table 4.3. In this table, the column ‘Category’ shows the database; the

column ‘Term’ is the GO term associated to the genes; ‘Count’ shows the number of

genes (out of 29) included in that GO Term; and P-value indicates the permutation

test of significance of the association.

All of the detected biological pathways have a p-value of less than 5%, even though

most of them are general Terms that may apply for any disease. Nevertheless, there

are 14 genes associated with the Term ‘tobacco use disorder’ with a p-value of 3.9×

10−5, which is highly significant. In a study, Watson et al. investigated the effect

of tobacco use on increasing the risk of CRC using a retrospective cohort study of

germline mutation, which showed that the tobacco use is significantly associated with

increased risk of CRC [90].
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Table 4.3: The functional annotation chart of the given gene list

Category Term Count P-value

GAD DISEASE tobacco use disorder 14 3.9E-5

GAD DISEASE CLASS chemdependency 14 3.0E-4

GAD DISEASE CLASS metabolic 15 3.6E-3

GOTERM MF DIRECT calcium ion binding 5 6.1E-3

GAD DISEASE CLASS cardiovascular 13 6.5E-3

GOTERM MF FAT calcium ion binding 5 6.7E-3

GOTERM BP FAT movement of cell 7 1.2E-2

GOTERM CC DIRECT integral component of membrane 12 1.7E-2

GOTERM MF FAT metal ion binding 10 2.0E-2

GOTERM BP FAT neuron development 5 2.2E-2

GOTERM MF FAT cation binding 10 2.2E-2

GOTERM BP FAT locomotion 6 2.5E-2

GOTERM MF FAT ion binding 10 2.8E-2

GOTERM CC DIRECT plasma membrane 10 3.1E-2

GOTERM BP FAT cell migration 5 4.2E-2

GOTERM BP FAT neuron differentiation 5 4.7E-2

Cell migration is another important GO term in Table 4.3, which is involved in

association with cancers. When there are some tumor cells, some of them obtain the

ability to get rid of tissue and immigrate; this is called metastasis. The tumor cells

migrate and enter the blood and will go to other tissues and separate the cancer.
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Metastatic cancer is cancer that has spread to other parts of the body. When colon

or rectal cancer spreads, it most often spreads to the liver. Colorectal cancer hap-

pens when cells that are not normal grow in your colon or rectum. Therefore, ’cell

migration’ GO term has the potential of having association with CRC. Even though,

further investigations accompanying with expert knowledge are required to study the

revealed biological pathways and determine their associations with the CRC, to some

extent, the detected pathways explain the relationship of those 29 genes with the

disease.

4.4.3 Interaction Analysis

The ensemble learning methods detected 44 most significant SNPs and the biological

interpretations revealed associations of these SNPs and their corresponding genes

with CRC. Consecutively, we extend our exploration by analyzing pairwise and three-

way interactions between those SNPs in association with the disease. The 44 most

significant SNPs from the results of ensemble algorithms are used to investigate the

pairwise interactions based on IG. We create the dataset of 44 SNPs for 944 samples

and calculate the pairwise IG between all
(
44
2

)
pairs of SNPs. We set the (optional)

threshold of p < 0.02, i.e., 20 times out of 1000 permutations, to only keep interactions

with significant p-value, which result in 17 pairs of interactions. Table 4.4 shows the

SNPs, IG value, and p-value (which is the significance of IG comparing to 1000 times

of permutation) for these 17 significant pairs.

From the Table 4.4, the maximum IG value is 1.3% for interaction between SNPs

rs2010907 and rs3760948 with significance p-value of 0.002. There are six pairs of cod-
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ing SNPs, i.e., SNPs with genes, having interactions in which of greatest importance is

the interaction between SNPs in genes LOC107986044 from chromosome 3 and DCC

from chromosome 18, mostly because DCC is previously known to be associated with

CRC. In addition, gene INPP5D has three significant interactions with other genes

such as PLCB4 and CDH4 that can be a sign of association of the gene INPP5D with

CRC. However, no previous study has shown the association of INPP5D with CRC

yet, which in the other hand, necessitates further exploration of that gene.
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Table 4.4: Pairwise interactions between 44 significant SNPs

SNP1 (Gene1) SNP2 (Gene2) IG (%) P-value

rs2010907 rs3760948 (ARRDC5) 1.30 0.002

rs4625115 rs344570 (TNFSF14) 1.07 0.004

rs9688110 (FAT2) rs658836 1.12 0.005

rs11185516 (ZDHHC19) rs344570 (TNFSF14) 1.15 0.008

rs10814848 (GLIS3) rs6578849 (SYT9) 0.98 0.008

rs11185516 (ZDHHC19) rs3842986 1.01 0.010

rs1505229 (LRRTM4) rs952880 (KCNQ5) 0.98 0.011

rs11783793 rs11610311 0.93 0.012

rs1505229 (LRRTM4) rs11610311 0.98 0.013

rs9288684 (INPP5D) rs11985944 0.70 0.015

rs9288684 (INPP5D) rs2179321 (PLCB4) 1.04 0.015

rs1367128 (THSD7B) rs8022574 1.02 0.016

rs12695485 (LOC107986044) rs898438 (DCC) 0.79 0.016

rs721619 (EPHX2) rs4961513 0.92 0.017

rs4625115 rs2571219 (ATP8B1) 0.91 0.017

rs9288684 (INPP5D) rs2386946 (CDH4) 0.96 0.018

rs1991915 (OTOP1) rs3842986 0.95 0.019

Moreover, we also calculate three-way IG between the 44 SNPs for
(
44
3

)
times.

This time, we set the (optional) threshold of p < 0.001, i.e., 1 time out of 1000

permutations, to only keep interactions with significant p-value, that result in 16
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significant three-way interactions. Table 4.5 shows the SNPs, IG value, and p-value

(which is the significance of IG comparing to 1000 times of permutation) for these 16

pairs. Next to each SNP its corresponding gene is shown to indicate the interactions

among the genes. In Table 4.5 we see that genes ALK, DCC, FAT2, and NID2 appear

to have significant three-way interactions in association with CRC. In particular, the

three-way interaction of ALK, JPH1, and DCC, with IG of 1.93% and p-value of 0.001,

more than ever concedes the significance of genes ALK and DCC to be associated

with CRC.
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Table 4.5: Three-way interactions between 44 significant SNPs

SNP1 (Gene1) SNP2 (Gene2) SNP3 (Gene3) IG (%) P-value

rs647831 rs2736486 rs952880 (KCNQ5) 2.23 0

rs1816647 rs10814848 (GLIS3) rs3760948 (ARRDC5) 2.43 0

rs7594717 (ALK) rs721619 (EPHX2) rs3760948 (ARRDC5) 2.25 0

rs12695485 (LOC107) rs17831158 (LINC) rs13263313 (JPH1) 2.25 0

rs11185516 (ZDHHC) rs2736486 rs10814848 (GLIS3) 2.11 0

rs11185516 (ZDHHC) rs11985944 rs3844138 2.41 0

rs1991915 (OTOP1) rs721619 (EPHX2) rs17831158 (LINC) 2.55 0

rs1991915 (OTOP1) rs8022574 rs2571219 (ATP8B1) 2.22 0

rs2010907 rs9688110 (FAT2) rs4625115 2.27 0

rs12407198 (C1orf101) rs10016091 (SCFD2) rs2010907 1.86 0.001

rs1816647 rs6782709 (LOC105) rs4961513 1.82 0.001

rs7594717 (ALK) rs13263313 (JPH1) rs898438 (DCC) 1.93 0.001

rs1367128 (THSD7B) rs17831158 (LINC) rs2386946 (CDH4) 1.89 0.001

rs1367128 (THSD7B) rs6578849 (SYT9) rs344570 (TNFSF14) 1.40 0.001

rs17379465 rs2645737 (NID2) rs658836 1.90 0.001

rs4961513 rs11610311 rs3842986 1.82 0.001

4.4.4 Discussion

As discussed before, revealing causality of inheritable diseases through detecting in-

teractions between genetic markers and phenotypes is a difficult task. In addition,

the genetic variants discovered in GWAS account for only a small fraction of the
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phenotypic variations due to the fact that most effects are expected to be small [49].

Given this fact, the exploration of the inherited genetic variants in common diseases

using machine learning methods is the current best approach.

In this regard, we utilized two ensemble learning algorithms, which are known to be

able to detect interactions between variables, in order to detect significant interacting

genetic markers. Different parameter settings of RF and GBM methods were applied

to the CRC dataset in order to find the setting, which produce highest classification

accuracy. The best parameter setting was then used to detect the most important

SNPs affecting the disease status. From the comparison of the results of the ensemble

methods, 44 most significant SNPs, which considered important by both algorithms,

were selected for further analysis. The biological interpretations of these SNPs using

online databases found 29 corresponding genes. Amongst these genes, DCC and

ALK have been shown to have association with CRC based on numerous studies.

Consecutively, the enrichment analysis of the genes revealed biological pathways such

as ‘tobacco use disorder’ and ’cell migration’.

Moreover, pairwise and three-way interaction analysis between 44 important SNPs

revealed significant interactions between those SNPs, specifically the interaction of

DCC and LOC107986044, which can be quite significant. Gene DCC appeared three

times as significantly having association with CRC: from the results of ensemble

learning method as having significant main effect on disease status, and from the

interaction analysis in the pairwise and three-way interactions having significant IG

and p-value.

The results of this study showed that ensemble algorithms are powerful approaches

for analyzing GWAS data. As illustration, the gene DCC which was shown to be
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greatly associated with CRC. However, the ensemble methods have drawbacks in

the sense that they cannot handle GWAS high dimensional data containing huge

number of genetic markers. Another shortcoming posed to this study is the small size

of samples in the dataset, which can produce unreliable results when conducting a

GWA study. We resolved these issues by reducing the size of feature set using feature

selection methods.
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Chapter 5

Discussion

5.1 Summary

The goal of GWAS is to identify genetic markers that can explain complex human

diseases. Most existing analyses for GWAS look at one gene at time due to the

limitation of analytical methodologies and computational resources. Such a strategy

very likely overlook potentially important genetic attributes that have low main effects

but contribute to a disease outcome through multifactorial interactions. Detecting

such non-additive gene-gene interactions help us better understand the underlying

genetic background of common diseases and effectively develop new strategies to

treat, diagnose, and prevent them.

Detecting gene-gene interactions for GWAS imposes computational challenges

since enumerating combinations of genetic attributes becomes inhibitive when up

to a million variables are under consideration. Thus, feature selection becomes a ne-

cessity for the task. In addition, utilizing appropriate computational methods capable
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of detecting those interactions is another need for a GWA study.

In this thesis, we did a whole genome study in which a GWAS dataset was un-

dergone quality control steps, reduced in size by feature selection methods, and in-

vestigated by computational methods to detect significant variations associating with

the CRC disease. The results were then validated through biological databases. We

performed four primary steps in order to accomplish a GWA study on the CRC data.

Numerous quality control steps were applied to the raw CRC genetic dataset to

remove sub-standard samples and low-quality genetic variants. All of the QC steps

were conducted using PLINK command-line tool. The original CRC dataset before

QC had more than 250 thousands SNPs for 1152 samples. After QC and removing

inconsistency in the dataset, the size of the dataset was reduced to 186,151 SNPs for

944 samples.

Even though QC refined the dataset to some extent, this size of feature set still

imposed burden for the computational methods. However, some ML methods may

be able to handle this size, but the results of these methods would not be reliable

and robust because of the curse of dimensionality. Therefore, we did a thorough com-

parison of six feature selection methods to determine the method which can better

detect significant SNPs in the dataset in term of interactions among SNPs. Three

univariate feature selection methods (logistic regression, chi-square, odds-ratio) and

three multi-variate feature selection methods (ReliefF, TuRF, SURF) were applied to

a simulated dataset and the CRC dataset. In the simulated dataset, the performance

of FS methods were compared based on their ability to identify and rank the existing

interacting SNPs. In the CRC dataset, the methods which detected SNPs demon-

strating higher values of interactions (information gain) considered most significant
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than the others. The comparison of these methods showed that TuRF outperformed

other methods both in simulated and real dataset.

Subsequently, TuRF feature selection method was applied to reduce the size of the

dataset to 2,798 most significant SNPs. Two ensemble algorithms, Random Forests

and Gradient Boosting Machine, were applied to detect significant main effects and

interactions among SNPs. Different configurations of the hyper-parameters of these

two methods were applied to identify the parameters setting which produce the high-

est performance evaluation. The best values for hyper-parameters of the ensemble

methods were used to identify the significant SNPs contributing to the disease status.

Only the common SNPs from the results of these two methods were extracted for

further investigation because of their significance by both methods.

From the results of computational analysis, 44 SNPs were detected as the most

significant genetic markers in the CRC dataset. These SNPs were explored in the

biological databases for identifying the corresponding genes associated with them.

Out of 44 SNPs, 29 genes were found to be associated with these SNPs in which of

greatest importance are genes DCC, ALK, ITGA1, E2F3, and NID2 that are known

to be associated with CRC based on numerous studies. Enrichment analysis of these

29 genes showed biological pathways such as tobacco disorder disease associating with

the CRC disease. Furthermore, the pairwise and three-order interaction analysis of

the 44 SNPs revealed significant interactions in association with CRC such as the

interaction between ALK, JPH1, and DCC.
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5.2 Impact

The results of this study showed that the ensemble algorithms are a powerful tool for

detecting interactions between SNPs in a genetic dataset. In addition, the detected

genetic markers from the results of these methods can be investigated and used in

order to prevent or treat the disease. From the analysis of the 44 most significant

detected SNPs, 29 associating genes were found to be related to the CRC. Amongst

them, five genes are already known to be associated with CRC while others still need

further investigations.

5.3 Future Work

In future studies, we expect to explore more sophisticated feature selection algorithms,

especially wrapper and embedded methods, and test their utilities in genetic associ-

ation and bioinformatics studies. In addition, a comparative study can be conducted

by including more ML methods in order to obtain robust and reasonable conclusions.

Furthermore, network-based analysis which is a novel approach in GWAS can be used

for the investigation of the CRC genetic data. For the identified genes, or for the re-

gions of chromosomes 2 and 8 that found to be important (based on Figure 4.7), a

candidate gene (association) study, which serve to validate findings from GWAS as

well as further explore the biological and clinical interactions between genes, can be

conducted to gain deep understanding of their association with the disease pheno-

type. Moreover, we can develop an application with graphical user interface (GUI)

for other researchers to adopt the methods used in this study.
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5.4 Conclusion

We conducted a thorough GWA study in which all of the required steps were in-

vestigated and performed on a real dataset. We used feature selection methods to

reduce the size of the CRC dataset and utilized ensemble algorithms to detect signifi-

cant interactions between SNPs. The ensemble methods successfully detected strong

interacting SNPs which resulted in identifying 44 significant SNPs. The biological

interpretation of these 44 SNPs found 29 genes to be associated with the CRC. More-

over, the enrichment analysis of these genes revealed a biological pathway associated

with the CRC phenotype. Contributions of this study are manifold such that impor-

tant genetic variants, associating genes, and biological pathways relating to CRC were

detected. Moreover, the capability of ensemble algorithms in the context of GWAS

in analyzing bioinformatics data for association studies was elucidated.
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