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ABSTRACT 

Harsh and deep waters create challenging environments for offshore drilling and 

production facilities, resulting in increased chances of failure. This necessitates 

improving the resilience of the engineering system, which is the capability of a system to 

recover its functionality during disturbance and failure. The present work proposes an 

approach to quantify resilience as a function of vulnerability and maintainability. The 

approach assesses proactive and reactive defense mechanisms along with operational 

factors to respond to unwanted disturbances and failures. The proposed approach 

employs a Bayesian network to build two resilience models. Two developed models are 

applied to: 1) a hydrocarbon release scenario during an offloading operation in a remote 

and harsh environment, and 2) the main requirements to improve the resilience of an 

offshore power management system. This study attempts to relate resilience capacity of a 

system to the system’s absorptive, adaptive and restorative capacities. These capacities 

influence pre-disaster and post-disaster strategies that can be mapped to enhance 

resilience of the system. Furthermore, the technique of an object-oriented framework is 

adopted to better structure the resilience model as a function of a system’s adaptability, 

absorptive and restorative capabilities. Sensitivity analysis is also conducted to analyze 

the impact and interdependencies among different variables to enhance resilience. 
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Chapter 1: Introduction 

1.1 Background 

The growing demand for energy has resulted in exploration of new fields in deep waters 

and harsher environments: one such example is the Flemish Pass Basin of Newfoundland, 

where, the exploration and production is mostly feasible using floating drilling vessels 

and Floating Production Storage and Offloading (FPSO). Due to the harsh environment 

and extended distance from shore, robust and resilient systems are needed to perform safe 

drilling and production operations, efficient storage and offloading and safe 

transportation. In these scenarios, the complex offshore infrastructure systems are facing 

a growing number of disruptions due to their environmental conditions and 

interdependence with other infrastructures. The offloading operation between an FPSO 

and a shuttle tanker or carrier is a challenging operation due to the interaction of two 

floating bodies in an uncertain environment. Transferring hydrocarbon from floating 

platforms to shuttle tankers using loading arms, rigid pipes and flexible hoses is a 

challenging operation. Furthermore, a robust and resilient process is a necessity and a 

resilience assessment require anticipating disruption preparation and recoverability with 

an adaption assessment (Bakkensen, Fox-Lent, Read, & Linkov, 2016). A reliable and 

secure operation is a prerequisite for a resilient power system which can survive in 

extreme conditions, maintaining load continuity and withstanding sudden disturbances 

such as the unexpected failure of power system components (Liu, et al., 2016). 
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The resiliency of an infrastructure system with a variety of possible disruptive events and 

resulting consequences has become an increasingly important issue among service 

providers and operators. Due to a harsh environment, the unfavorable condition may be 

seen or unforeseen, so the aim of the resilience system is not only to protect and prevent 

the infrastructure from man-made and natural disaster events, but also to enhance the 

capability of a system to recover from an unfavorable event to a new steady state, and 

finally to its original state. System resilience is defined as the capability of a complex 

system to adjust its operational functionalities during uncertain conditions and keep the 

system operable during disruptions. The difference between resilience and reliability is 

based on the survivability of a system when experiencing extreme events (Liu, et al., 

2016). The resilient system must be designed in a way so that it adapts maximum 

resistance, withstands and recovers quickly from any disruptive events within a defined 

period of time (Hosseini & Barker, 2016). Resilience engineering gives an engineering 

system (using system design and its operation) the ability to withstand adverse conditions 

and to recover capability swiftly after disruptive events. Resilience is recognized as a 

fundamental characteristic requirement of maritime systems operating in harsh and 

remote locations. 

This study designed the model to quantify and improved the system resilience for two 

individual systems which are considered an important for safe and sustainability of oil 

and gas facilities operating in harsh and deep waters environment. To maintain the 

reliable and safe system, we considered hydrocarbon release (major issue in 

Newfoundland offshore) during an offloading operations and resilient power 
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management system (sensitive operation) to interact with other engineered systems to 

maximize the performance and minimize the potential failures to maintain continuous 

operations.  

1.2 Objectives 

The proposed work has three main objectives:   

• To develop a resilience model that captures design and operational characteristics  

• To test the developed model on potential hydrocarbon release scenarios in an 

offloading operation in a harsh environment 

• To study resilience of an offshore power supply. 

1.3 Thesis Outline Organization 

This thesis is compiled in a manuscript format. The outline of each chapter is described 

below:  

Chapter 2 presents the literature review pertinent to this research. This comprises a brief 

background and framework of resilience, strategies and principles of resilience, resilience 

definitions in terms of different disciplines, resilience assessment and risk assessment 

methods. 

Chapter 3 presents the resilience model and its application to potential hydrocarbon 

release during offloading operations from a remote offshore oil and gas facility. This 
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chapter explores the gap between quantitative and qualitative assessment of resilience in 

the domain of a complex engineering system. The developed model explains the 

quantification of resilience relevant to vulnerability and maintainability for hydrocarbon 

release scenarios of offloading between a Floating Production Storage and Offloading 

(FPSO) unit and a shuttle tanker. The design and operational factors are included in the 

risk and resilience analysis, using a Bayesian network model. This model updates failure 

probabilities as new information becomes available. The proposed resilience analysis 

model helps to improve system design and operational activities with a better grasp of the 

weaknesses and recovery from system disruptions induced by adverse failure events. This 

chapter is under review for publication in the journal of Risk Analysis. 

Chapter 4 presents a new resilience assessment model developed using the Object-

oriented Bayesian network (OOBN) framework. This model is used to study the power 

system in an offshore facility. This chapter identifies the main requirements and risk 

factors of the offshore power system, to assess and improve system resilience using 

integrated operations. The OOBN is used to better structure and model a system’s 

adaptability, absorptive capability and restoration or recoverability. A sensitivity analysis 

is also performed to study the interdependencies of the variables and strategies used to 

assess resilience. This chapter is under the review for publication in the journal of Ocean 

Engineering. 

Chapter 5 presents the overall summary of the thesis and includes concluding remarks 

regarding the outcomes of this research along with recommendations for future work. 
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1.4 Co-Authorship Statement 

Dr. Faisal Khan provided background training and supervised the research. The author, 

Adnan Sarwar, developed the model, tested and analyzed the results and prepared the 

manuscript. Dr. Khan provided assistance in developing the model, reviewing the results, 

correcting the analysis and interpreting the model and results. He also reviewed and 

revised the manuscript. The co-supervisor, Dr. Lesley James, reviewed and provided 

detailed knowledge about the application of integrated operations, reviewed the model 

and the interpreted results and provided much needed feedback on the manuscript. Dr. 

Majeed Abimbola contributed to this work by reviewing the manuscript and model 

development. The continuous feedback from these supervisors has been a real 

contribution towards successful completion of this work.  

The author is responsible for composing this thesis. He has conducted the literature 

review and developed the expert-built model and its software implementation. He has 

presented different scenarios performed using the software (GeNIe 2.0 and Hugin), 

collected the results, interpreted them and developed conclusions based on which the 

recommendations are made. 

1.5 Literature Review 

1.5.1 Introduction to Resilience 

Resilience originates from the Latin word Resiliere which means “to bounce back” and 

defines a system property that is characterized by the ability to recover from catastrophic 
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failures, complexities, and vulnerabilities that arise from environmental conditions, to 

maintain or recover system functionality (Hosseini, Barker, & Ramirez-Marquez, 2016). 

The term resilience is used in different disciplines in different ways. In physics, it is the 

ability of a system to return to the original state after its deformation. In medicine, it is 

defined as the ability of individuals to recover from trauma or illness. In the context of an 

ecological system, resilience implies the persistence of systems in relation to external 

influences and their ability to absorb disturbances and adapt their dynamics (Holling, 

1973). Resilience can be defined as the ability of the system to have the competence to 

resist, absorb and accommodate to or recover from the effect of hazards within a defined 

period, including the preservation and restoration of its essential structures and 

functionality after exposure to hazards. Resilience of an engineered system refers to a 

systems ability to continue to function successfully during an adverse event by planning 

to absorb, adapt and recover. According to Haimes (2006), the terms resilience and 

vulnerability are the common parlance of risk analysis, where vulnerability denotes the 

inherent states of a given system (e.g., physical, technical, organizational and cultural) 

that can be exploited by an adversary to adversely affect (cause harm or damage to) that 

system. To design an enhanced resilient system, there is a need to focus on avoiding 

disruptive events which may weaken the system during its operation and adapt the 

capability of recovery, helping to reduce possible damage to the system and to improve 

the availability and accessibility. A resilient system helps to avoid undesirable situations 

by developing an efficient system design with well-planned emergency and control 

measures, making the system capable of functioning and possibly rapidly eliminating the 
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potential hazard (Dinh, Pasman, Gao, & Mannan, 2012). To avoid hazardous scenarios, 

presenting strategies for early detection, interpretation and quick response to unexpected 

variations is very important to make the system robust. Good design principles include 

sustaining resilience with an emphasis on flexibility and coping with unplanned 

situations. They should respond to these types of events with excellent communication 

and mobilization of resources to intervene at critical points. There are three different 

approaches to achieve or assess resilience such as: 1) system should have the capability to 

continue operating, preventing or absorbing upsets or shocks through built-in 

redundancy, 2) repair or restoration through preparation and response measures, and 3) 

anticipating adverse situations, adapting to circumstances and recovering a stable state 

after the major mishap occurs. The different approaches to achieve resilience are shown 

in Fig 1. 
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Figure 1: Resilience assessment framework. Adapted and modified from (Agarwal, 2015) 
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The main emphasis of the resilience operation is crisis management, provided by flexible 

and collaborative modeling of the system to address diverse risks of disruption 

proactively and anticipate upcoming new hazards constantly by evolving the scenarios. 

Resilience engineering enhances the organizational ability to make a robust, flexible 

process and monitors and revises risk models using the available resources proactively 

during disruption and ongoing production with the associated economic pressures. 

Resilience which works as a proactive defense to control the situation by minimizing the 

probability of failure, its consequences and restoration or recovery, is called a triple 

resilience strategy (Dinh, Pasman, Gao, & Mannan, 2012).  

1.5.2 Strategies and Principles of Resilience 

To achieve high resilience of the system, the following proposed strategies need to be 

implemented. 
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Figure 2: Strategies and principles of resilience. Adapted and modified from. Luthar et al. (2000) 

The minimization of failure, principle is to avoid disruptions using preventive measures. 

An inherently safe designed system uses protective equipment and appropriate safety 

management. For example, a preventive measure includes choosing gaskets which help to 

minimize the leakage of hazardous substances. 

Early detection, if the preventive method does not work efficiently to prevent failure, the 

role of autonomous early detection comes into place. For instance, the leak should be 

detected as soon as possible to avoid gas cloud formation, which will lead to worse 

situations. The detection is usually done by gas sensors. 

Flexibility, the performance of the system needs to be maintained within the desired 

range or steady state through the system design and its operation. Input variables or 

parameters can be changed due to a disturbance. The flexibility principle for a resilience 

system is to design a more flexible progression that can operate with various instabilities. 

It is not essential to bring the system into its previous condition; it can remain somewhat 

disturbed as long the constraints and specifications are met. For example, a flexible 

design will allow operations to continue during a gas leak scenario. The leaked 

equipment segment could be by passed or the gas pressure reduced to minimize the leak 

rate while production is maintained online. Both measures can prevent a hazardous 

situation from escalating to cloud formation. 

Controllability, a system can be controllable if the output parameters can be controlled 

and tuned to the target points in an acceptable time when an unexpected input causes the 
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parameters to deviate from the set points. In the gas leak example, the flexible design 

allows the process to operate in bypassed or pressure-reduced conditions. However, 

whether operators can perform the changes and the length of time required depend on 

controllability of the process. The cloud formation can be stopped only when the new 

condition is obtained. The sooner the new condition is reached, the less flammable gas is 

released. 

Limitation of effects, the principle of using protection or mitigation measures is to limit 

the consequences of an upset event. For example, equipment can be designed in a 

distributed way with easy access, so that leakages can be controlled or avoided within a 

short period of time. 

Administrative Controls and Proceduresfor certain unexpected disturbances, a solution 

in the form of a resilient design may be unfeasible. Moreover, not every risk can be 

foreseen by detection; therefore, the resilience principle should involve management 

systems with administrative controls and procedures. For example, proper maintenance 

procedure can even prevent a leak from occurring. Other measures include good 

emergency response plans to help quickly stop the leak, isolate the unit, shut down the 

plant or evacuate the community to minimize the consequences of lethality, injuries, 

harm to the environment and damage to equipment. 
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1.5.3 Resilience Framework 

There are five basic attributes of a resilience framework that need to be considered for 

building a resilience into a system. These include: 1) proactive operational and reactive 

time periods, for different 2) system configurations, 3) events classifications, required 4) 

necessary actions and the necessary predefined 5) quality level needed to achieve a 

resilient system, as shown in Fig. 3:  

System
(Complex engineered System, 

Technical System, Eco System, 

Infrastructure System, and more.) 
Resilience actions/activities

Events
Disruptions, 

failures, accidents 

and more.
Preserved Qualities
(Operating mode, New steady state, 

controllability, acceptable state)

Time duration 

Adaptability, 

withstand, absorb, 

recover, reorganize

Proactive, during, reactive 

 

Figure 3: Resilience Framework. Adapted and modified from (Sheard, 2008) 

Time periodsdifferent studies use terms such as: before, prior, during, while, after, 

proactive, and reactive. The time periods of resilience of a system can be understood in 

terms of system anticipation, including prevention of and preparation for an adverse 

situation before an event occurs. Adaptability and absorptivity help the system to survive 

during the event, with or without achieving the level of operational efficiency. The 
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recoverability of the system’s steady state after disruption or failure occurs whether the 

system returns to its previous state or to a new steady state. The general characteristics of 

a resilience system are defined with five sets of time periods. Based on the given set of 

time periods, different approaches are required to undertake the strategies to achieve high 

resilience. 
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Figure 4: Resilience actions with respect to time periods. Adapted and modified from (Sheard, 2008) 

• Long term prevention, works as a foresight prevention that involves prediction, 

anticipation, and planning for disturbances to prevent disruptions or loss of 

control of system. This is performed by anticipation of the future changes in an 

environment that may affect system stability, and is part of the identification and 

management of risks. 
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• Short term avoidance, this refers to the management of hazards that could affect 

the system quickly, by keeping the safety system updated to avoid system 

disruption. 

• Immediate-term coping, survivability and coping with sudden disruptions. The 

system must respond quickly and efficiently to disruptions and threats, and must 

recover from loss of control, resisting harmful influences. 

• Coping with ongoing trouble, in addition to surviving the events, the resilience 

system requires continuous monitoring for irregularities and threats to endure 

disruptions by implementing different strategies. 

• Long-term recovery, this is defined as recovery from disruptions that have 

occurred. The system must learn from disturbance and build the capability to 

adapt and reduce the harmful influences. 

System that exhibits resilience, the term system generally refers in this research to 

“whatever is resilient”, having constituent components, strategies and emergent 

properties to perform specific purposes. For example, a critical infrastructure can 

continue its operation and functionality during disruptive events through redundant and 

automatic switchover within a specified response time after certain events. 

Events, the challenges in terms of disturbances, perturbations, environmental changes, 

mishaps due to accidents, failures and more to the ongoing well-being of a system are 
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known as events. When resilience in a system is lacking, an event can cause unwanted 

consequences of many types, such as accidents, brittleness, mishaps, and more. 

Required actions to consider a system resilient, the system should have the following 

properties: absorption, adaption, prevention and restoration or recoverability. The system 

can be considered resilient if it survives, sustains and maintains the important qualities. A 

system must be capable of reducing the likelihood of disruptive events with necessary 

actions needed to keep a state of equilibrium. 

Preserved qualities refer to the functionality of the system sustaining its operations, 

objectives and controllability 

1.5.4 Analysis of Resilience Definitions in Terms of Different Discipline Perspectives 

Resilience is defined as the capability of a complex system to recover from severe 

disruptions and damage that have been recognized as significant characteristic dangers 

for critical offshore operations, especially in harsh environments. In recent years, 

research on resilience has been widely conducted for different disciplines such as 

ecology, economics and organizational science, critical infrastructures, psychology and 

more. There are several definitions of resilience offered in terms of different disciplines 

or domains, many of them similar and overlapping with existing concepts such as 

robustness, fault-tolerance, flexibility, survivability and agility, among others. For 

example, according to Webb (2007), ecosystem resilience is defined as “the ability of the 

system to maintain its functionality when faced with a novel disturbance”. According to 
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Sheffi (2005), for economics and organizational science, resilience is defined as the 

“intrinsic ability to keep or recover a stable state, thereby allowing continuous operations 

after a disruption or in the presence of continuous stress”. According to psychology, 

resilience is defined as the dynamic process when individuals exhibit the positive 

behavioral response of adaptability when facing a critical situation (Luthar, Cicchetti, & 

Becker, 2000). According to Hollnagel et al. (2007), resilience is defined as the inherent 

capability of system to adjust its functionalities prior to or following changes and 

disturbances so that it can sustain operations even after a major mishap or in the face of 

continuous disruption or stress. The critical complex system is uncertain; a security 

incident may arise due to vulnerability that induces a certain degree of disruption in the 

system. Resilience can be used as an innovative management strategy to achieve a high 

level of security in an uncertain and dynamic environment (John, Yang, Riahi, & Wang, 

2016). 

Haimes et al. (2006), defined the resilience for system infrastructure as the “ability of the 

system to withstand a major disruption within acceptable degradation parameters and to 

recover within an acceptable time and composite costs and risks”. Allenby and Fink 

(2005) defined social and ecological resilience as “capability of a system to maintain its 

functionalities and structure in the face of internal and external change and to degrade 

gracefully when it must”. Keogh and Cody (2013) defined resilience as “the robustness 

and recovering characteristics of utility infrastructure and operations, which avoid or 

minimize interruptions of service during an extraordinary and hazardous event”. Bruneau 

et al. (2003) defined infrastructural resilience as the “ability of the system to reduce the 
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chances of shock, to absorb a shock if it occurs, and to recover quickly after a shock (re-

establish normal performance)”. Thorisson et al. (2017), proposed the concept of 

achieving high resilience in terms of prioritization of restorative initiatives related to the 

degree of disruption or stressors, to achieve continuous operations. Vugrin et al. (2010) 

defined resilience as “…given the occurrence of a particular disruptive event (or set of 

events), the resilience of a system to that event (or events) is the ability to efficiently 

reduce both the magnitude and duration of the deviation from targeted system 

performance levels”. The concept of organizational resilience is defined by Vogus and 

Sutcliffe (2007) as “the ability of an organization to absorb strain and improve 

functioning despite the presence of adversity”. Static economic resilience is defined by 

Rose (2007) as “the capability of an entity or system to continue its functionality like 

producing when faced with a severe shock, while dynamic economic is defined as the 

speed at which a system recovers from a severe shock to achieve a steady state”. The 

concept of resilience is comparatively new compared to other domains (Hosseini, Barker, 

& Ramirez-Marquez, 2016). According to Hollnagel et al. (2006), engineering resilience 

is defined as “the intrinsic ability of a system to adjust its functionality in the presence of 

a disturbance and unpredicted changes”. The American Society of Mechanical Engineers 

(ASME) (2009) defines resilience as the ability of a system to sustain external and 

internal disruptions without discontinuity of the system’s performance, or, if the function 

is disconnected, to fully recover the function rapidly. A resilient system must have the 

capability of system anticipation (foreseeing the threats or harmful activities), recover 
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capability (robustness to sudden threats with flexibility), clearly monitoring ongoing 

changes and updating the CPT after the previous disruption to recover successfully. 

1.6 Quantitative Risk Assessment 

The quantification of the risk assessment approach uses an efficient probabilistic 

framework for assessing the resilience of a complex engineered system. There are many 

techniques that have found popularity for risk assessment in reliability engineering, 

among which the fault tree (FT), event tree (ET), and Bayesian network (BN) are 

prevalent.  

1.6.1 Bayesian Network 

A Bayesian network (BN) is a directed acyclic graphical probabilistic tool that can be 

used efficiently to represent uncertain information and interdependencies for the 

construction of reliability models. In a graphical probabilistic model, the nodes are used 

as random variables and directed arcs signify probabilistic dependencies and 

independencies among the risk factors. According to Barlow (1987), initially the 

Bayesian framework was introduced for the field of artificial intelligence, has later 

become popular in engineering systems (Langseth & Portinale, 2007) and has been 

promoted in many subfields such as fault finding (Langseth & Jensen, 2003), structural 

and system reliability (Mahadevan, et al., 2001) and risk analysis. BN enables 

probabilistic updating and performance assessment of components and systems having 

uncertain and evolving information, thus providing an effective tool for near-real time 
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and post-event applications (Bensi, et al., 2011). It also allows a wide range of scenarios 

to be explored through the propagation of probabilistic information, making it an 

excellent framework for infrastructure risk assessment and decision support (Straub & 

Kiureghian, 2010). 

In the Bayesian network described in Fig. 5, the initial nodes with no directed arc are 

considered as root nodes, which possess prior probabilities. All other nodes in the 

network are called intermediate nodes and each node is defined with its own conditional 

probability table. The intermediate nodes having arcs directed to them are known as child 

nodes and the nodes that have arcs directed from them are known as parent nodes. Each 

child node is associated with the CPT, given all combinations of the states of its parent 

nodes. The nodes with no further attached nodes are known as leaf nodes.  

 

Figure 5: Typical Bayesian network 
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Bayesian networks use the “d-separation” principle and the chain rule to calculate the 

conditional dependencies among the involved factors or nodes within a network. For 

instance, node X1 d-separates from node X3, where X2 blocks the link between node X1 

and node X3. As a result, Node X1 is conditionally independent of Node X3, given X2, 

which can be presented as: P(X1X2,X3) = P(X1X2). From Fig. 6 (a) and Fig. 6 (b), in the 

scenario of serial and diverging paths, node X1 and X3 are d-separated from each other, if 

node X2 is known, while in a converging path, shown in Fig. 6 (c), node X1 and X3 are 

independent and the state of X2 is unknown. According to the three given conditions, the 

root nodes are independent of each other and the intermediate nodes are conditionally 

dependent on their parent nodes. 

 

Figure 6: D-separation criteria  
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The probability of each node or variable defines the conditional dependency on its parent 

nodes. The joint probability distribution of the network variables in Fig. 5 are specified as 

the product of these conditional probabilities in Eq. (1): (Wilson & Huzurbazar, 2007) 

      P(X1,X2,X3, X4) =  P(X1)  P(X2 X1)  P(X3 X1, X2)  P(X4X3) (1) 

where P(X2 X1), P(X3 X1, X2) and P(X4X3) are conditional probabilities given as 

X1,X2,X3, while P(X1) denotes the prior probability. Moreover, with the assumptions of 

the Markov property and conditional independence (d-separation principle), the joint 

probability distribution for nth variable P (X)  X1,X2,X3,…,Xn is given as Eq. (2): 

P(𝑿) = ∏ P(X𝑖 Pa( X𝑖))

𝑛

𝑖=1

 (2) 

where Pa( X𝑖) is the set of parent nodes X𝑖. One of the main advantages of Bayesian 

networks is the inference ability to calculate the probability of events based on new 

observed evidence. The beliefs (probabilities) are updated in accordance with the 

observations using Bayesian updates. Assume an evidence E is observed, i.e. occurrence 

or non-occurrence of primary events, and then:  

P (X E) = 
P(X,𝐸)

P(𝐸)
 = 

P(X,𝐸)

∑ P(𝑋,𝐸)𝑋
 (3) 

Eq. (3) can be used for prediction of probability or updating. However, computation 

through Eq. (3) can be practical if the available network is small and has few states and 
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therefore requires an efficient algorithm to be adopted to avoid complex computation. In 

resilience assessment, conditional probabilities of the form P(Risk factors  events) or 

P(Disruptions  events) can be calculated as: the effect of a given risk factor with respect 

to the occurrence and non-occurrence of a known event, and the occurrence probability of 

disruption given the occurrence and non-occurrence of a known event. Moreover, in 

updating analysis, P(Events  Disruptions) are evaluated to show the occurrence 

probability of certain events that will cause a certain amount of disruption or losses to the 

system. The effectiveness of the Bayesian networks is mostly dependent on the accuracy 

of the conditional probability tables (CPT). The CPT tables can be estimated from 

different sources, such as statistical databases, experimental data, expert opinions, laws 

and regulatory bodies and more. The validation of the Bayesian network analysis can be 

performed using sensitivity analysis, result comparison and testing and evaluation of 

different scenarios. The Bayesian network is increasingly used in risk assessment and 

overall safety analysis of the engineered system, and helps to achieve the development of 

resilient system design and model a complex system with many variables in a compact 

representation through localized network clusters. Moreover, due to the Bayesian 

updating capability, Bayesian networks integrate expert opinions and new observations to 

handle the situation when there is insufficient data available or whenever new data 

become available for any variable; these can be implemented in the whole network. 

Khakzad et al. (2011) explained the advantage of the Bayesian network over Fault Tree 

Analysis and Event Tree Analysis, in terms of modeling and risk assessment. Bobbio et 

al. (2001) showed that the limitations of fault trees can be overcome by relying on 
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Bayesian networks. There has been plethora of research on the conversion of fault tree 

and event tree analysis to a Bayesian network, with its comprehensive application in the 

field of risk analysis, safety and risk assessment and reliability engineering. This 

demonstrates its usefulness to design and model resilience systems (Montani, Portinale, 

Bobbio, & Codetta-Raiteri, 2008). 

1.6.2 Object Oriented Bayesian Networks (OOBNs) 

An Object-Oriented Bayesian network is a special class of Bayesian network. In addition 

to the usual nodes, an OOBN contains instance nodes (Weidl, Madsen, & Israelson, 

2005). An instance node holds sub-networks to represent another Bayesian network, 

where complex networks of large systems can be divided into hierarchies of sub-

networks with desired levels of abstraction using OOBN. The abstract entity or the 

relationship between two entities are represented as objects. The fundamental unit of the 

OOBN probabilistic graphical model is an object, which characterizes either a node 

(defined variable) or an instantiation of a network class which consists of instance nodes. 

An instance node is an abstraction of different network fragments into a single unit. The 

network of each class allows OOBNs to be more generic and able to be reused in other 

classes to facilitate the hierarchical description of a problem domain. To represent the 

simplified OOBN in Fig. 7, the following notations are commonly used: the instance 

nodes are squares with input and output interfaces; input nodes are separated with 

shadowed dashed line borders and output nodes are shown with shadowed bold line 

borders. 
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Figure 7: Modularization of Bayesian network into OOBN 

The OOBN facilitates the construction of complex models and communication between 

the sub-network models is efficiently performed, avoiding the tedious repetition of 

identical network fragments and reducing the conditional probability tables. As shown in 

Fig. 7, instance nodes are connected with other class nodes through an interface node 

which includes input and output nodes. Input nodes have the same probability as their 

immediate parent node, so the input of each class cannot have more than one parent node. 

In contrast, the output nodes are considered to be ordinary nodes which convey their 

probability to the input nodes or affect the probability of their other usual nodes. Thus, 

each output node can have multiple child nodes (Khakzad, Khan, & Amyyotte, 2013). 

 Fig. 7 illustrates an example of how Bayesian networks can be developed with the 

hierarchy of smaller networks to make an instance node such as: Class A and Class B (in 

the middle), having Node X4 (thick and dashed border) selected as an output node in the 

instance node of Class A and an input node in the instance node of Class B to connect 
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them. Finally, the complex OOBN can be represented by using only instance nodes of 

Class A and Class B (right). 

1.6.3 Fault Tree 

Fault tree analysis is considered to be a widespread failure analysis tool among reliability 

engineers. It uses a top-down approach to determine the potential failure of the system, 

which is referred to as the top event (undesirable event), through the cause and effect 

relationship. The top event usually represents a major accident caused by safety hazards 

and includes loss of life, injury, or economic loss to the system, and more. Inventory 

characteristics and expert judgements are applied to recognize the top event and the 

single event, or combinations of events which could cause a top event are investigated. 

The relationships between events in FT are represented by means of gates, of which 

AND-gates and OR-gates are commonly used. The result of FT can be analyzed 

qualitatively and quantitatively. In qualitative analysis, an expression in terms of a 

combination of primary events is derived for the top event using Boolean algebra. In the 

quantitative evaluation, the terms of occurrence probability of the primary events and or 

minimal cut-sets are used to express the probability of the top event. For analyzing the FT 

result, methods used include the analytical method, Monte Carlo simulation and the 

binary decision diagram. An analytical approach is more frequently used for evaluation 

of FT, due to the limitations of Monte Carlo simulation (e.g., minimal cut-sets 

determination). To minimize the margin of error due to primary events data that are 
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inaccurate and incomplete, fuzzy set theory and evidence theory have recently been used 

for FT analysis (Ferdous, Khan, Veitch, & Amyotte, 2009). 

Fault trees are composed using gates and events. The gates most commonly used in a 

Fault tree are the AND and OR gates. For example, consider the top event (or a system) 

composed of two different events. An AND gate is used for connecting the system if both 

events need to occur to make the top event occur, while the OR gate is used for the 

condition where either of the events cause the occurrence of the top event. In this state, 

the probability of the top event, is equal to the combination probabilities of these two 

events. Fig. 8 below shows the two typical gates, OR (left), and AND (right) and their 

corresponding Boolean algebra. 

OR Gate AND Gate

 AND

X2X1 X3 X2X1 X3

OR

 

Figure 8: Representation of AND gate and OR gate in the Fault tree 

Conventional fault trees presume that the events are considered as independent, because 

they are unable to examine conditional dependencies. Hence the corresponding Boolean 

algebra for AND and OR gates will be: 
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P(AND) = P (X1 ∩ X2 ∩ X3) = P(X1)P(X2)P(X3)                             (4) 

P(OR) = P (X1 ∪ X2 ∪ X3) = 1 – 1 – P(X1) 1 – P(X2) 1 – P(X3) (5) 

In the case of having more than three events, the equation for an OR gate can be written 

as below: 

P (X E) = 
P(X,𝐸)

P(𝐸)
 = 

P(X,𝐸)

∑ P(𝑋,𝐸)𝑋
 (6) 

Since conventional fault trees are unable to examine the conditional dependencies, this 

usually leads to underestimation or overestimation of the probability of the top event. As 

an example, in Fig. 9 the intermediate events E1 and E2 share the root cause event X1. 

Root event X1 is considered as a common-cause failure. 
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Intermediate 

event (E1)

 AND

X1 X2

Intermediate 

event (E2)

 AND

X1 X3

 AND

Top event 

(Te)

 

Figure 9: Fault tree having common cause failure X1 

The probabilities of E1 and E2, according to the logical relationship in the AND gate will 

be: 

𝑃(E1) = 𝑃(X1)𝑃(X2) and 𝑃(E2 ) = 𝑃(X1)𝑃(X3) (7) 

As E1 and E2 are assumed to be independent, the probability of the Top Event (Te) will 

be: 

𝑃(T𝑒) = 𝑃(E1 ∩ E2) = 𝑃(E1)𝑃(E2) = 𝑃(X1)2𝑃(X2)𝑃(X3) (8) 

However, E1 and E2 are not independent because they share the common cause X1. As a 

result: 
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𝑃(T𝑒) = 𝑃(E1 ∩ E2) = 𝑃(E1)𝑃(E2E1) = 𝑃(X1, X2, X3) (9) 

Comparing the probabilities of a top event using Eq. (8) and Eq. (9), the top event of the 

fault tree given in Fig. 9 underestimates the factor of P(X1). Therefore, if E1 and E2 were 

connected to Te using an OR gate, the probability of the respective top event would be 

overestimated instead. Such a limitation can be minimized by using state-dependent 

methods such as Markov chains and a Bayesian network (Khakzad, Khan, & Amyotte, 

2011). 
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Abstract 

Resilience is the capability of a system to adjust its functionality during a disturbance or 

perturbation. The present work attempts to quantify resilience as a function of reliability, 

vulnerability and maintainability. The approach assesses proactive and reactive defense 

mechanisms along with operational factors to respond to unwanted disturbances and 

perturbation. This paper employs a Bayesian network format to build a resilience model. 

The application of the model is tested on hydrocarbon-release scenarios during an 

offloading operation in a remote and harsh environment. The model identifies 

requirements for robust recovery and adaptability during an unplanned scenario related to 

a hydrocarbon release. This study attempts to relate the resilience capacity of a system to 

the system’s absorptive, adaptive and restorative capacities. These factors influence pre-

disaster and post-disaster strategies that can be mapped to enhance the resilience of the 

system. 

Keywords: Resilience; risk management; hydrocarbon release; offloading operation; 

harsh environment and Bayesian network 

2.1 Introduction 

The exploration and production of oil and gas resources are becoming more challenging 

as they move towards deep water and remote harsh locations such as the Flemish Pass 

Basin of Newfoundland and the Barents Sea of the Arctic region. To produce these 

resources in such harsh environments, a combination of a Floating Production Storage 
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and Offloading (FPSO) with shuttle tankers is a more feasible practice for production, 

processing, storage and transportation. Many efforts have been made to make the FPSO-

shuttle tanker offloading system more robust and effective in a hostile environment; 

however, disruptions still occur due to random natural events (wind, sea ice, sea state, 

and more), technical errors and equipment failures (Yeo, et al., 2016). In the offshore oil 

and gas industry, a hydrocarbon release is one of the main precursor events that can 

escalate to catastrophic events which may result in workforce casualties, asset destruction 

and damage to the environment and the coastal marine ecosystem (Baksh, Abbassi, 

Garaniya, & Khan, 2016; 2015). Resilience engineering ensures the design of complex 

systems that can withstand adverse conditions and recover quickly after disruptions 

(Agarwal, 2015). It has been recognized as an important characteristic of maritime 

operations (John, Yang, Riahi, & Wang, 2016). Bakkensen et al. (2016) defined system 

resilience as the ability of a system to continue its functionality and performance 

efficiently over the duration a disruptive event. Guikema et al. (2015) identified 

knowledge gaps related to the vulnerabilities, risk and resilience of modern infrastructure 

systems that are critical for an improved system performance. Alderson et al. (2015) 

introduced the concept of assessing operational resilience by identifying critical 

vulnerabilities and possible disruptions of a continuous operation and encouraging 

policymakers to promote the resilience of an infrastructure system. They model the 

quantification of infrastructural operational resilience by evaluating consequences of 

interconnected components which contribute to the analytical support and enhancement 

of infrastructure protection.  
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Considering the characteristics of a remote and harsh environment, offshore 

infrastructure and associated operations need to be designed so that they are robust, 

capable of resisting failure causing events and able to recover quickly when disrupted. 

The dominant method to prevent failures in complex engineering systems has been risk 

analysis, through risk assessment and management methodologies. The risk analysis 

paradigm starts with hazard identification, which for a complex system is often 

challenging, as emerging threats are usually not fully identified (Park, Seager, Rao, 

Convertino, & Linkov, 2013). This makes risk analysis inadequate to ensure a complete 

complex infrastructure system’s protection. However, the quantification of risk plays a 

key role in developing strategies to prevent accidents and mitigate their consequences if 

they occur. Probabilistic risk analysis methods estimate the probability of an accident 

occurrence in relation to the possible consequences. Furthermore, the concept of 

resilience extends the scope of risk assessment to deal with strategies to address pre- and 

post-failure scenarios through preventive, mitigated and recovery measures (Hosseini, 

Yodo, & Wang, 2014). The difference between resilience and risk approaches is that 

resilience requires preparing for an unforeseen disruptive event while risk analysis 

proceeds from the premises where the hazards are identifiable (Holling, 1973; Holling, 

1996). The resilience capacity of a system is the ability to not only prevent and protect 

the system from a disruption but also to improve the restoration of a safer condition. 

Consequently, resilience assessment thus requires both failure and recovery analysis. A 

network of closely arranged different complex systems in offshore locations makes the 

prevention of hydrocarbon release a greater challenge. Hydrocarbon releases are the 
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primary contributors to major accidents in the oil and gas industry (Øien, 2001; Snorre, 

2006), especially during offloading operations and transportation to onshore 

transshipment terminals. One main advantage of using a FPSO for such operations is the 

capability to store crude oil in cargo tanks and then offload it to shuttle tankers using 

tandem offloading operations (Chen, 2003). 

The objective of this research is to develop a resilience model for an offshore oil and gas 

facility to assess the potential of a hydrocarbon release during offloading operations. The 

resilience model is based on a Bayesian network (BN) format for a probabilistic 

dependability analysis. The model is tested for a hydrocarbon release during offloading 

and transportation operations considering two different scenarios. The frequent 

offloading operations, along with long transportation routes in harsh environments 

characterized by adverse weather conditions, such as sea ice, icebergs, high waves, low 

visibility and very low temperatures, severely affect the safety of the tandem offloading 

system between a FPSO and the shuttle tanker. The risk of a hydrocarbon release in the 

aforementioned circumstances is thus high, considering the impact of environmental 

conditions on the closely positioned floating structures (Yeo, et al., 2016). This research 

work proposes a resilience model as a function of reliability, vulnerability and 

maintainability (explained in Section 4) of an engineered system. The model considers 

the reactive and proactive capabilities of a system and their integration in defining the 

resilience of the system.  
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The paper is structured as follows: Section 3.2 defines the concept of resilience. Section 

3.3 discusses basic BN concepts relevant to resilience assessment. Section 3.4 presents 

the development of the resilience model while in Section 3.5, the implementation of the 

model is demonstrated. Section 3.6 highlights the results of the analysis and discussion, 

including a sensitivity analysis to validate the proposed model. The concluding remarks 

are presented in Section 3.7. 

2.2 The Concept of System Resilience 

System resilience is the ability of a system to efficiently reduce the magnitude and 

duration of deviation during a disruption (Vugrin, Warren, & Ehlen, 2011). The 

Presidential Policy Directive (PPD) (2013) which defines resilience for critical 

infrastructure systems as the ability to predict, withstand or adapt and/or recover 

capability from hazards or disruptive events. This definition was later accepted by the 

National Academy of Sciences (Cutter, et al., 2013) and Ganin et al. (2016). Arsenault 

and Sood (2007) defined the concept of a resilient organization as one that is capable of 

deflecting deliberate attacks and environmental disruptions (or their effects), absorbing 

unavoidable damages and resuming operations to pre-event levels, all with the utmost 

speed. According to Haimes (2009), infrastructural resilience systems withstand major 

disruptions within acceptable degradation parameters and recover them with 

maintainability features within an acceptable time period, composite costs and risks. 

Johnsen et al. (2005) associate resilience with an appropriate strategy to be used in any 

system to follow complex and uncertain induced risk factors. According to Thiago et al. 
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(2006) the main objective of a resilient approach is to identify the disturbances in a 

system that degrade performance level and then study how these degrading factors may 

be mitigated to increase the performance level. Hosseini et al. (2016) discuss resilience as 

the intrinsic ability of a system to adjust its functionality in the presence of disturbances, 

external threats and unpredicted changes, and to withstand internal and external 

disruptive events without letting the system become discontinuous by performing system 

functionalities. If the system is disrupted, it should have the capability to recover its 

functionality within a defined period of time by adapting the available maintainability 

features such as onsite maintenance, management of available resources, standardization 

of the system and more. Maintainability is a measure of how easily the system is restored 

to a specified condition within a defined period of time (Ebeling, 1997). Moreover, 

Keogh and Cody (2013) defined resilience as the robustness and recovering 

characteristics of utility infrastructure and operations that avoid or minimize the 

interruptions of service during an extraordinary and hazardous event. 



36 

 

 (t)

 (t0)

Reliable 

State

Disruptive 

Event

Damage 

Propagation

Disrupted 

State

O
v
e

r
a
ll

 S
y
s
te

m
 P

e
r
fo

r
m

a
n

c
e
 

Time

System 

Restoration

Extremis 

condition

New Steady 

State

Recovered 

State

System MaintainabilityVulnerability

System 

Improvement

Recoverable StateNormal State

 (tns)

 (tds)

t0 tde tds tsr tprtns tn

Reliability

New Steady State

 (t)

 (t0)

Reliable 

State

Disruptive 

Event

Damage 

Propagation

Disrupted 

State

O
v
e

r
a
ll

 S
y
s
te

m
 P

e
r
fo

r
m

a
n

c
e
 

Time

System 

Restoration

Extremis 

condition

New Steady 

State

Recovered 

State

System MaintainabilityVulnerability

System 

Improvement

Recoverable StateNormal State

 (tns)

 (tds)

t0 tde tds tsr tprtns tn

Reliability

New Steady State

 (t)

 (t0)

Reliable 

State

Disruptive 

Event

Damage 

Propagation

Disrupted 

State

O
v
e

r
a
ll

 S
y
s
te

m
 P

e
r
fo

r
m

a
n

c
e
 

Time

System 

Restoration

Extremis 

condition

New Steady 

State

Recovered 

State

System MaintainabilityVulnerability

System 

Improvement

Recoverable StateNormal State

 (tns)

 (tds)

t0 tde tds tsr tprtns tn

Reliability

New Steady State

Figure 10: States and performance (delivery) evolution in time. Adapted and modified 

from (Hosseini & Barker, 2016) 

Figure 10 illustrates the aspects of resilience concept which include: system reliability, 

vulnerability and maintainability. Fig. 10 demonstrates how resilience, (t), as a concept, 

evolves as a function of time given that a disturbance event occurs. Hosseini et al. (2014) 

propose assessing a system’s resilience in the presence of internal and external 

disruptions by exploiting the concepts of reliable state, vulnerable state, new steady state 

and recoverable state. The reliable state is a normal or baseline state where the system 

performs its task normally. The vulnerable state occurs when the system undergoes 

disruptions or failures. The recoverable state is a restoring state that results from 
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restoration by maintenance. The new steady state is the new acceptable performing state 

resulting from the application of enhanced recoverability features.  

Fig. 10 shows how a system goes from the vulnerable state to the disrupted state after it 

undergoes a disruption. In the event of a disruption such as harsh weather, at the time 

(tde), the hydrocarbon offshore offloading system should be able to adapt to the emergent 

conditions. (t0) represents the assessment of resilience at time t0, which is the initial 

reliable state. Resilience demands that the system hold a high value of (t) at t = t0 for 

better adaptability. With an initial failure event at (tde), the resilience decreases 

significantly to (tds). Now, the impact of a failure event can be estimated by the 

difference, (tds) (t0), that helps to determine the appropriate corrective measures 

before applying them at tsr. The initial restoration to state (tns) is an intermediate 

arrangement because, the system may take longer to be fully restored, i.e., (tn  tns) > (tns 

 tsr), to the final recoverable state, (tn). The way (for example, how fast, and how many 

intermediate post-restoration states there might be) a system progresses from state (tns) 

to (tn) depends on various factors, such as the strength of the system to withstand a 

disruptive event, the severity of the disruption, the adaptability of the system and the 

response processes, which are divided into stages, such as (t0 ≤ t ≤ tde), that show 

resilience during normal operations. 
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2.3 Bayesian Network (BN) 

The inference probabilistic technique based on Bayes’ theorem is widely used for safety 

and risk assessment of complex systems having uncertain information. It computes the 

posterior probability of an unobserved dependent variable that is conditionally dependent 

on some observable variables. It illustrates the problem in an abstract form through a 

directed acyclic graphical representation, composed of connected nodes with initial and 

intermediate events, based on the functional decomposition of the system (Weber & 

Jouffe, 2006; Hosseini & Barker, 2016). The BN analysis is not static and has advantages 

compared with other techniques, to overcome their limitations. The principal reason to 

use BN analysis is that it enables the modeling of complex systems by incorporating new 

evidence to reduce parametric uncertainty, which is often difficult with other 

conventional techniques such as a fault tree (FT) and an event tree (ET) (Yeo, et al., 

2016). BN is a useful technique to represent the analysis of data, the testing of expert 

knowledge and its presentation, that are related to the conditional dependencies among 

variables in an uncertainty model (Wiegerinck, Kappen, & Burgers, 2010; Yeo, et al., 

2016). 

Figure 11 illustrates the directed acyclic graphical (DAG) presentation, composed of 

connected nodes with basic events, intermediate events and the top event based on the 

functional decomposition of the system. In Fig. 11, the BN structure for probabilistic 

analysis, RN, represents root nodes which are those nodes without child nodes, (like the 

primary events in FT); IN represents the intermediate nodes (referred to as intermediate 
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events in FT), and PN denotes the pivot node (top event in FT) which shows the possible 

output in terms of resilience through system reliability, vulnerability and maintainability 

(Jensen & Nielsen, 2007). A set of conditional probability tables (CPT) represents the 

dependence relation and the arrow represents the causal relationship and sensitivity link 

amongst variables (Khakzad, Khan, & Amyyotte, 2013; El-Gheriani, Khan, & Zuo, 

2017). 

IN-2

RN-1 RN-2 RN-3 RN-4

IN-2

PN

IN-2

RN-1 RN-2 RN-3 RN-4

IN-2

PN

 

Figure 11: Simplified structure of BN model, arrow represents causal relationship among nodes through 

probability distribution functions 

The quantitative analysis has been performed based on the d-separation principle where 

basic events are conditionally independent and intermediate events are dependent on their 

influenced parent nodes. The BN represents the joint probability distribution of variables 

based on conditional dependencies in the network as: 𝑃(𝑋) = (𝑥1, 𝑥2, … , 𝑥𝑛). 
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P(X) =  ∏ P(xi)Pa(xi)

n

i=1

 (10) 

In Eq. (10), 𝑃𝑎(𝑥𝑖) represents the set of parent nodes of 𝑥𝑖 in the DAG presentation and 

P(X) reflects the properties of BN (Jensen & Nielsen, 2007). The advantage of BNs to 

allow prior probability updates with new information is called evidence, E. Updated or 

posterior probabilities can be calculated as in Eq. (11): 

 
          P(XE) =  

P(U, E)

P(E)
=  

P(U, E)

∑ P(U, E)U
  (11) 

 

 

Equation (11) can be used either for prediction or updating probability. For instance, Eq. 

(11) can be explained in terms of predictive analysis, where the conditional probability, 

P(vulnerabilityevents), indicates that the existence of vulnerability in a system is 

dependent on the occurrence and non-occurrence of disruptive events. Moreover, for 

updating a scenario, P(eventsvulnerability) shows that the occurrence probability of 

certain disruptive events leads to the vulnerability of a system (Khakzad, Khan, & 

Amyotte, 2011; Przytula & Thompson, 2000). 

A BN can be used to perform both predictive (forward) and diagnostic (backward) 

analysis. In predictive analysis, the marginal probabilities of intermediate and pivot nodes 

are computed on the basis of marginal prior probabilities of root nodes and conditional 

probabilities of intermediate nodes. However, for diagnostic analysis, the states of some 

nodes are instantiated, and the updated probabilities of conditionally dependent nodes are 
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calculated (Bobbio, Portinale, Minichino, & Ciancamerla, 2001; Khakzad, Khan, & 

Amyotte, 2013). 

2.4 Resilience Assessment Methodology 

As mentioned earlier, this study model’s resilience as a function of reliability, 

vulnerability and maintainability. Reliability (R) is the probability that a system will 

perform a required function for a given period of time under specific operating conditions 

(Ebeling, 1997). Vulnerability (V) measures the system failures during and after a 

disruption. Maintainability deals with the ease of restoration of the system to a normal 

state within a period of time (Ebeling, 1997). The maintainability (M) of a system is used 

as a key factor to consider when restoring the system to its recoverable state. A system’s 

functionality returning to the normal state requires it keeping a high maintainability value. 

This would, in turn, lower the effect of vulnerability. The effects of vulnerability and 

maintainability are hence inversely proportional to each other. Holling (1973; 1996) 

defined the ecological resilience concept as “the magnitude of disturbance that can be 

absorbed before the system changes its structure by changing variables and processes that 

control behavior”. Deduced from the definition of resilience by Youn et al. (2011), the 

resilience of an engineered system can be expressed as the summation of a system’s 

passive survival rate (i.e. system reliability) and proactive survival rate (i.e. system 

recovery), as represented in Eq. (12).  

 Resilience (𝜑) ≜ Reliability (R)  Recoverability (ƞ)  (12) 
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In Eq. (12), recoverability (ƞ) is a function of vulnerability (V), represented as (1-R) and 

restoration (). Restoration () measures the ability of an engineered system to maintain 

its performance and restorative capacity when subjected to a disruption. The restorative 

capacity of a system is a function of its maintainability (M). By considering the 

recoverability function of a system, the resilience can be formulated as shown in Eq. (13). 

 𝜑 ≜ R +  ƞ[(1 R), M] (13) 

In Fig. 12, a framework describing the relationships among the involved generic variables 

is proposed. Based on these relationships, the proposed base model has resilience (R) as a 

leaf output node, which is dependent on three parent variable nodes, reliability (R), 

vulnerability (V) and maintainability (M), to quantify the overall resilience of the 

designed system. In the model, the main function of maintainability, which is dependent 

on influencing design and operational factors, is to bolster the system’s vulnerability by 

reducing the disruption level through different strategies, such as distribution and 

management of resources, availability of trained staff on site to keep the work strategy 

unified, which will be easily incorporated by workers and the availability of maintenance 

on site, in order to avoid disruption and achieve quick recovery. The influencing design 

factor is divided into two roles: 1) The proactive strategy is meant to achieve higher 

system availability by using strong absorptive and adaptability features before and during 

disruptive events. 2) The reactive design strategy has the capability of adaptability as well 

as restoration during and after a disruption. The advantage of this model is that it can be 

applied to any complex system to analyze and identify resilience. Since there is a general 
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understanding of reliability further detailed discussions are only provided for system 

vulnerability and maintainability. 
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Figure 12: The proposed BN resilience model 

2.4.1 Modeling Vulnerability 

Vulnerability of a system is modeled as the failure state into which the system enters 

when it is no longer in a normal/stable state. This could be due to an error at the design 

level of the system (Sheffi, 2005) or operational failures or errors in the operational state 

of the system. Operational failures may occur irrespective of the existence of design 
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errors. One instance would be the high waves in harsh offshore environments that make it 

difficult to maintain the standard distance keeping and position management that are 

required between a shuttle tanker and FPSO. Johansson et al. (2013) defined the term 

vulnerability as the inability of a system to withstand a failure. Vulnerability analysis is 

performed to identify the major factors that contribute to the cascading failures of 

systems (internally or interdependently). Thorisson et al. (2017) proposed the concept of 

resilience analysis in terms of identifying stressors (single or multiple) that affect the 

overall performance of the system. Khakzad and Reniers (2015) defined the concept of 

vulnerability analysis as an explanation of weakness and critical components failures that 

can affect the system performance, which is different than traditional risk analysis 

because of its ability to identify hazardous events, their possibility and potential 

consequences. Jönsson et al. (2007) defined vulnerability as the extent of damage done 

by the presence of disruptive events to the system which are dependent on the type and 

level of disruption. 

In this study, vulnerability analysis used as a network with two different perspectives: (i) 

influencing design factors and (ii) influencing operational factors. Influencing design 

factors can be interpreted as the consideration of proactive and reactive approaches to 

risk management, and inherent safety design aspects that are able to withstand abnormal 

scenarios. This interpretation of vulnerability modeling can be useful during a system 

design stage to select a robust strategy. The influencing operational factors can enhance 

the system’s operation and performance. Included in these two general factors, several 

technical and design issues may be addressed. This work intends to focus on seven major 
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factors where the design factors are further classified into proactive and reactive design 

strategies. These design strategies serve as the basis for incorporating the notions of 

system adaptability, system absorptive capability and system restoration (Vugrin, 

Warren, & Ehlen, 2011). The operational factors considered here are: adequate training, 

management and resources (Hosseini & Barker, 2016), corrective maintenance (Arora, 

2004; Kumar & Suresh, 2008), and system standardization (Chen & Moan, 2004; 

Bazerman, 1998). The above-mentioned factors affect the vulnerability function, as 

shown in the proposed model. 

2.4.2 Modeling Maintainability 

As discussed earlier, maintainability is the ability of a system to withstand disruptions 

and be restored. It measures the duration of maintenance outages to restore the system 

back to its original position. Maintenance is an essential component of the system and 

needs to be performed within a set amount of time, regardless of the conditions present. 

This can be achieved by providing staff with adequate training, such as specific skills, 

procedures, and resources (Barringer, 1997). System equipment design can also 

determine maintenance procedures and the length of repair time. There are several factors 

to be considered in accounting for a system’s total down time. These include: diagnostic 

process, active repair time, removal/replacement, resource management, standardization 

of equipment, and system absorptive, adaptive and restorative capabilities to avoid 

system failure or to keep repair time short. As shown in Fig. 12, high maintainability 

raises the system's resilience. Consequently, to increase the system’s maintainability 
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design, and operational factors must be considered. These factors must have been 

designed so that the system is protected before, during and after a failure. This will help 

to achieve maximum resilience and recovery, which will be discussed further in the 

following subsections.  

2.4.3 Modeling Design Factors  

The design factors are those features that are taken into consideration at the time of 

system design. This involves two types of strategies, a proactive strategy and a reactive 

strategy (Hosseini, Barker, & Ramirez-Marquez, 2016). The proactive design strategy 

defines those factors that need to be considered before and during the initiation of any 

disruptive/failure events. The reactive strategy considers the factors that influence the 

system resilience during and after the occurrence of disruptive events. 

2.4.3.1 Pro-active and re-active design factors 

The proactive and reactive strategies are further subdivided into three categories, where 

the model incorporates input by associating problem specific nodes: (a) system absorptive 

capability measures the ability to absorb the impact of disruptive events and present 

defined mechanisms to withstand the disruption; (b) system adaptive capability calls for 

certain arrangements that help the system adapt to the impact of disruptive events; and (c) 

system restoration capability is a permanent feature of the system, unlike adaptive 

capability, where temporary arrangements may be made to make the system functional 

(Hosseini & Barker, 2016; Vugrin, Warren, & Ehlen, 2011). A system with restorative 
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capability may offer permanent solutions for damage from an incident. For instance, if a 

pipeline is ruptured, then a restorative strategy will call for a replacement of the portion 

of the damaged pipeline, whereas an adaptive capability may mean many different 

arrangements. The adaptive arrangements may include dropping flow pressure or closing 

the valve or may involve using a temporary fix to the ruptured portion of the pipe. 

Restorative capability often means high cost repairs, due to their permanent nature.  

2.4.4 Modeling Operational Factors 

The factors that are required to enhance the system performance and enable it to operate 

efficiently in order to achieve its high maintainability are considered here. Five 

operational factors related to the oil and gas industry are identified. These are adequate 

training of workers, effective management of resources, corrective maintenance and 

system regulation with standardization (Fleming, Gordon, Flin, Mearns, & Fleming, 

1996; Gordon, 1998).  

3.4.4.1 Adequate training  

Adequate training is represented as a logical-OR variable in the system with possible 

values such as adequate and inadequate training of workers. Inadequate training may 

involve a discrepancy, a lack or a deviation from standards in operating and safety 

procedures. There are four major factors which constitute adequate training, namely: 

manning competence, lessons learned, toolkit training and best practices. Only logical-

OR values are considered, so that the model will consider the staff competent if the value 
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is true; otherwise, the staff is said to be incompetent and requires further training. 

Similarly, for a lesson learnedprimarily consisting of a result of root cause analysis of 

failuresthe model takes the values as true if the staff learns from experience. The other 

two factors in adequate training are the toolkit training and good practice guidance, which 

are proactive measures, also modeled as logical-OR variables. 

3.4.4.2 Management and resources 

This node considers factors that are essential in good system management. For example, 

“under-manning” is a condition that can overload’s existing operators, which gives rise to 

operator fatigue. Similarly, the workload can be demotivating at times, leading to a 

reduction in an operator’s performance. 

3.4.4.3 Corrective maintenance 

Corrective maintenance is considered an essential element of complex system’s 

operations, which will ensure high consistency in an offshore facility, especially in harsh 

operating environments which cause a high frequency of failures, requiring different 

kinds of preventive maintenance. There are four major types of maintenance philosophies 

to be considered, namely: (a) Preventive maintenance, which is performed on a system at 

predetermined intervals during its expected life or operations. The system is ideally 

replaced or repaired before it breaks to avoid downtime with the help of regular facility 

inspections (Kumar & Suresh, 2008; Fedele, 2011). In most cases, such maintenance is 

better than “run-to-failure” maintenance; the mean time between failures is often hard to 
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establish for a well-maintained system that seldom leads to downtime and complete 

shutdowns (Mobley, 2002). (b) Predictive maintenance is performed through non-

destructive techniques and technologies (visual monitoring, microprocessors, SCADA 

system, instrumentation and more), to detect, identify and prevent machine failures at the 

most opportune time (Rabelo, 1998; Mobley, 2002; Fedele, 2011). This involves 

diagnosis through specific measurements of some degradation processes (vibration 

monitoring, tribology, thermography and more) prior to the occurrence of any significant 

deterioration. This philosophy helps to reduce frequent machine breakdowns, create a 

necessary spare parts inventory at site, avoid unforeseen downtime and achieve a higher 

availability of the system. (c) Proactive maintenance can be identified by its ‘failure-

oriented’ nature and is the first line of defense, performed only for essential components 

and providing a pre-alert signal of failure with sufficient lead time for an operator. It 

targets the root causes of the possible deterioration rather than involving routine repairs. 

Thus, it involves a thorough inspection of a system and condition monitoring to evaluate 

imminent failures (Fitch, 1992; Fedele, 2011). (d) Periodic maintenance is time based 

maintenance performed on the equipment at regular intervals made by its user, even if the 

system is in working order. This involves a series of certain preventive measures and 

elementary tasks which may not require advanced training (lubrication, retightening 

valves, checking seals and pressure gauges and more). These four types of maintenance 

strategies used in the model contain Logical-OR nodes that deal with the presence or 

absence of these strategies. 
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3.4.4.4 System standardization 

The general purpose of system standardization is to assess whether the system is 

following standard operating procedures for good decision making (Bazerman, 1998). 

However, Chen (2003) proposed a standardization technique that is used particularly in 

drive-off scenarios. This technique provides operational guidelines to standardize an 

operator’s attention to the data that is of utmost importance in a drive-off situation. It 

minimizes recurrent screen checks so that more focused attention on diagnosis and 

situation awareness can occur within a short time, which is useful in decision making. 

Offloading operations considered in this case study require four logical factors in order to 

ensure system standardization. These are: (a) Relevant met-ocean data, (b) Equipment 

calibration schedules, (c) Avoiding failure data, and (d) Procedures and documentation. 

2.5 Case Study: Hydrocarbon Release Resilience Model During Offloading 

Operations 

Step Change in Safety (2015) states that a hydrocarbon release is one of the major 

concerns or key performance indicators for offshore installation integrity. To present a 

working example of the proposed resilience model in Fig. 12, a case study of 

hydrocarbon release during an offloading operation from an FPSO to a shuttle tanker is 

analyzed using BN (see Fig. 13). According to the Canada-Newfoundland Labrador 

Offshore Petroleum Board (C-NLOPB) (2016) reports, the offloading operation is one of 

the major contributing factors for the release of hydrocarbons. The proposed model 

identifies the disruptive events for the selected scenario with the series of sub-events 
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which indicate the vulnerability of the system. To estimate the vulnerability in the 

system, prior probabilities are assigned to the root nodes and the conditional probability 

table is developed based on previous research and expert judgment. Similarly, the 

maintainability of the system is presented to avoid and overcome the disruptive effect of 

failure events by keeping the system resilient and trying to return it to the original state. 

The initiating causes identified in this case study serve as evidence for the BN model. 

Based on congregated information and the quantitative relation among factors or nodes, 

the potential resilience of a given system is quantified. This study concludes that the 

contributing factors that sustain a system’s maintainability consequently reduce 

vulnerability and thus increase system resilience. 

In applying the proposed methodology to the case study, the following possible 

contributing factors are considered: 

2.5.1 Contributing Factors for Offloading Operations Case Study 

The contributing factors for offloading operations include: system absorptive capability, 

system adaptability and system restoration, as further discussed below. 

3.5.1.1 Factors in system absorptive capability 

Four major factors have been identified for the case study of the offloading operation that 

constitute the absorptive capability. These factors are as follows: 

 Offloading monitoring system. The main responsibility of this system is to monitor 

hose connections, the bow loading system and the overall facility. The hose connection 
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system deals with delivering oil under high pressure from the FPSO to the shuttle tanker. 

This system monitors the security of hose connections on the FPSO and the shuttle 

tanker, the durability and longevity of floating hoses and the valve control system that 

controls the oil flow, and checks joints for possible ruptures. The facility monitoring 

system eliminates chaotic equipment/structural vibrations so that it remains within the 

defined threshold range (Thomsen, 2003). Sensor malfunctions and erosions are 

monitored, and seals are checked for leakages. The bow loading operation deals with the 

telemetry system, which helps to initiate, control and terminate hydrocarbon release 

between a shuttle tanker and an FPSO by maintaining a parallel and duplicate fail-safe 

UHF transceivers’ link (Norwegian Petroleum Industry, 2015). This helps to avoid the 

communication errors and a controllable/variable pitch propeller to allow the shuttle 

tanker to securely and efficiently offload hydrocarbons from an offshore production 

storage facility. 

 Hydrocarbon release prevention plan. The hydrocarbon release prevention plan is 

one of the key performance indicators for installation, asset integrity and performance. 

The prevention plan identifies sensitive zones that are prone to hydrocarbon release and 

organizes preventive measures in terms of sensitive zone distribution and the zones’ 

isolation from sources of ignition and electrical shocks, providing extra protection during 

oil spillage incidents (McGillivary & Hare, 2008; Turner, Skinner, Roberts, Harvey, & 

Ross Environmental Research Ltd., 2010). Offshore oil and gas operators are responsible 

for a robust and immediate reaction plan if an oil spillage event occurs, and they work 

closely with spill specialists and authorities (Turner, Skinner, Roberts, Harvey, & Ross 
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Environmental Research Ltd., 2010). Hydrocarbon release prevention planning also 

includes an adequate flow control and level monitoring. Monitoring and assessing the 

spill’s trajectory is a top priority. Following that, an operator must quickly mobilize the 

appropriate material and equipment.  

 Facility protection. This system is included in the model to incorporate elements 

that protect the entire offloading facility. Here, it is ensured that the telecommunication 

links are secure and operable, especially in harsh weather. Corrosion management and 

adherence to acceptable limits are taken into account, as external corrosion causes more 

than 90% of damage leading to failure in distribution (Fesseler, Baker Jr., & Inc., 2008). 

Maintaining a minimum distance of approximately 80 to 90 meters between the shuttle 

tanker and the FPSO prevents a collision (Vinnem, 2003; Chen, Lerstad, & Moan, 2010). 

Lastly, any erroneous operation that may be caused by technical errors and/or failure of 

communication between the FPSO and shuttle tanker, mostly as a result of the two prone 

situations (surging and yawing caused by excessive fishtailing motion and heading 

deviation), should also be eradicated by improving the safety of offloading operations 

from both design and operational perspectives (Chen & Moan, 2002).  

 Platform safety. These are general safety features that encompass: alarm systems, 

hydrocarbon release detection systems, and operating threshold systems. The 

corresponding node takes a logical-OR value, that is, the presence or absence/failures of 

such systems. Hydrocarbon release detection plays a significant role in safe and secure 

offloading operations. The petrochemical industry employs various methods of leak 

detection, such as infrared detectors, acoustic leak detectors, flame ionization and more, 
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to improve overall platform safety (Abdel-Moati, Morris, Ruan, & Zeng, 2015). The 

operating thresholds include harsh weather conditions, such as wave height, wind 

intensity, low visibility and the presence of ice. These situations can potentially 

disconnect the offloading system, especially in the Flemish Pass Basin, because harsh 

weather most frequently misaligns the angle of deviation between vessels (Williams, 

Brown, Shaw, & Howard, 1999). 

3.5.1.2 Factors in system adaptive capability 

These include: emergency shutdown system (Sklet, 2006), position keeping management, 

distance keeping and avoiding drive-off (Chen, 2003).  

 Emergency shutdown system. The emergency shutdown system prevents any 

chaotic situation that can occur at a facility by observing hydrocarbon leakage, spread 

and overflow. It also prevents ignition, explosion and fatalities and protects an asset’s 

integrity (Sklet, 2006).  

 Position keeping management. This node is dependent on the following factors: 

(a) Position reference system monitors the position of the FPSO and the shuttle tanker by 

using available position data logs with a reference system, i.e. DARPS (Differential 

Absolute and Relative Position Sensor) (Chen, 2003). (b) Dynamic positioning system 

promotes an automatic safe positioning and heading angle of the shuttle tanker 

(Norwegian Petroleum Industry, 2015). (c) Avoidance of risky maneuvering may occur 

between the shuttle tanker and the FPSO during an offloading operation during 

connection, loading and disconnection (Rodriguez, Martha de Souza, & Martins, 2009). 
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According to Rodriguez et al. (2009) a hazardous event can occur due to programming 

errors of the shuttle tanker’s automation system and misjudging maneuverability 

conditions. To overcome this problem, assistance from a nearby standby vessel is 

requested to correct and track the position of the shuttle tanker. (d) The vessel motion 

monitoring system is responsible for improving the safety and efficiency of operations by 

using accurate motion data. 

 Distance keeping during tandem offloading means that the shuttle tanker needs to 

maintain a certain distance from the FPSO to avoid a collision, depending on the 

conditions. To minimize tension on the hawser and the loading hose, the tanker adjusts its 

own dynamic positioning system or Taut hawser mode to obtain the maximum uptime in 

a harsh environment, using the adaptable features (Chen, 2003).  

 Avoid drive-off means that the shuttle tanker needs to avoid unwanted and 

unplanned movement from the FPSO due to the tanker’s thrusters, and keeps the 

reference position stable during an offloading operation. Most of the drive-off scenarios 

are considered forward drive-off in default unless they are astern or sideways. The drive-

off initiates if there are errors in the system’s hardware or software, excessive relative 

vessel motion, or complex operator and machine interactions (Chen, 2003).  

3.5.1.3 Factors in system restorative capability 

The case study uses restorative capability from a failure’s detection to the repair phase. 

The factors included are: (a) early detection of failure causes, (b) available workforce, (c) 

onsite restoration facilities and (c) reactive maintenance. 
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 Early detection refers to swift situation awareness during different scenarios, such 

as drive-off, to reduce the reaction time of the operator. When the first abnormal signal is 

identified, the operator requires some time to analyze the situation, which needs quick 

formulation and accurate execution of recovery action (Chen, 2003).  

 Available workforce is the human-based resources, e.g. skilled labor, operators and 

engineers, to ensure a timely and coordinated response. 

 Reactive maintenance is described as a remedy to adjust failures or incidents by 

replacing broken parts or tools and allowing the equipment to run until failure occurs 

(Swanson, 2001). The damaged equipment is later repaired or restored, which is usually 

undertaken as a result of unplanned downtime or failure. This maintenance reduces the 

manpower and budget spent to keep the equipment operational (Paz & Leigh, 1994).  

 Onsite restoration facilities are the equipment restoration resources which are, for 

example, based on availability of a workshop and spare equipment for repair that must be 

present at the site to eliminate downtime, strengthen the ability of the facility to withstand 

disruptions and maintain continuity of site operations (Hosseini & Barker, 2016).  

3.5.1.4 Management and resources  

Preventing hydrocarbon release should be a major goal of facility operators, and can be 

achieved by effective management and appropriate resources. There are three major 

factors identified in offloading operations which can prevent a hydrocarbon release. 

These are to avoid lack of motivation and operator fatigue and to promote safety culture. 

Safety meetings and safety reviews must be included to develop a proper safety culture at 
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oil and gas facilities. The authors define operator fatigue as a type of human error that 

may serve as a potential cause of hydrocarbon release. 

For this research, the prior probabilities of the basic evidence nodes (i.e. root nodes or 

causal risk factors) of this case study are sourced from previously conducted related 

research as well as expert opinions on rare events data, as shown in Table I on next page. 

Table I: Generic BN evidence nodes probabilities (Abimbola, Khan, Khakzad, & Butt, 2015; Khakzad, 

Khan, & Amyotte, 2011; OREDA, 2002; Song, Khan, Wang, Leighton, & Yuan, 2016; Sun, Kang, Gao, & 

Jin, 2016; Hosseini & Barker, 2016; Chen & Moan, 2004), (Chen, 2003) and expert opinion. 

Node 

Symbol 
Node description 

Failure 

Probability 

Node 

Symbol 
Node description 

Failure 

Probability 

E1 Equipment vibration  9.5E-02 E27 Position reference system 2.0E-03 

E2 Malfunction of sensors  1.9E-03 E28 Dynamic positioning system 5.0E-04 

E3 Erosion 7.6E-03 E29 Avoid risky maneuvering 7.9E-03 

E4 Seals  1.2E-01 E30 Vessel motion monitoring 1.0E-01 

E5 Shuttle tanker (ST) hose connection 1.1E-01 E31 Distance keeping 3.8E-02 

E6 Hose Ageing  1.7E-01 E32 Avoid drive-off 5.4E-03 

E7 Joints rupture 4.5E-02 E33 Early detection 7.2E-05 

E8 Valves control system 1.0E-03 E34 Available workforce 1.0E-01 

E9 Telemetry system  2.4E-02 E35 Re-active maintenance 2.3E-03 

E10 Communication 6.2E-03 E36 Onsite restoration facility  1.7E-01 

E11 Controllable pitch propeller 1.8E-02 E37 Manning competence  2.7E-01 

E12 Zones classification in terms of sensitivity 1.5E-01 E38 Lesson learned 1.0E-01 

E13 Adequate flow control 1.5E-02 E39 Tool kit training 1.6E-03 

E14 Level monitoring 1.0E-05 E40 Good Practice Guidance 1.0E-03 

E15 Oil spillage preparedness program 1.0E-01 E41 Lack of motivation 1.6E-03 

E16 Avoid Collision 3.1E-03 E42 Prevent operator fatigue 1.0E-03 

E17 Erroneous operations 3.3E-03 E43 Safety culture 1.0E-03 

E18 Corrosion management 3.7E-03 E44 Facility Inspection  1.0E-04 

E19 Secure connection 9.9E-02 E45 Avoid downtime 4.4E-03 

E20 Malfunction of alarm system 9.0E-03 E46 Pro-active maintenance 1.7E-03 

E21 Hydrocarbon release detection system 2.3E-03 E47 Periodic maintenance 1.9E-03 

E22 Tension cause by waves height 4.5E-02 E48 Predictive maintenance 7.0E-04 

E23 High wind intensity 1.0E-01 E49 Procedures and documentations 7.0E-03 

E24 Low visibility 5.5E-04 E50 Avoid failure/irrational data 1.0E-02 

E25 Ice management 1.0E-01 E51 Equipment calibration schedules 6.0E-04 

E26 Emergency shutdown system failure 1.3E-04 E52 Updated relevant met-ocean data 1.0E-02 
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2.6 Results & Discussions 

The operation of transferring hydrocarbons involves a combination of different systems, 

i.e. electrical, mechanical, electro-mechanical, electronic sensors and communication 

systems. Due to the complex interaction of the systems involved, there are many factors 

affecting the efficient delivery of the hydrocarbons to the destination which can result in 

hydrocarbon releasea phenomenon of vital interest in the oil and gas industry (Chen & 

Moan, 2004; Sun, Kang, Gao, & Jin, 2016) especially in harsh environments such as 

Newfoundland (C-NLOPB, 2016).  

2.6.1 Identifying Variables 

A BN is developed to quantify resilience by considering relevant Boolean variables with 

failure probabilities adopted from different sources, with expert judgments for rare events 

(Table I). The outcome of these variables is categorized into two states, the True state, 

representing a positive outcome and the False state, representing a negative outcome. 

Similarly, High/Low states, are the counterparts of True and False states. For example, BN 

analysis demonstrates that an adequate flow control has a failure probability, as illustrated 

in Table I, where False = 1.5E-02 and True = 9.85E-01, which suggests that 98.5% of the 

time the adequate flow control is successful, and 1.5% of the time such activity fails 

during an offloading scenario. The identified relevant factors for the given case study, 

where each factor represents an evidence node, are considered as inputs to the model. 

Table II illustrates the conditional probability table for the resilience node with two 

possible states of high and low resilience, which are dependent on the relative weighted 
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sum of the parent nodes of system vulnerability and maintainability. To model the causal 

influence of parent nodes on system resilience, the Noisy-OR function is adopted. For 

instance, if maintainability of the system is high with a low system vulnerability the 

system resilience will be 98%. A similar explanation holds for other node states. 

Table II: Conditional probability table for the resilience node given the value of maintainability and 

vulnerability 

Maintainability (M) High Low 

Vulnerability (V) Low High Low High 

Reliability (R) High Low High Low High  Low High  Low 

High 9.8E-01 8.5E-01 9.2E-01 8.5E-01 7.2E-01 6.5E-01 1.1E-01 1.0E-02 

Low 2.0E-02 1.5E-01 8.0E-02 1.5E-01 2.8E-01 3.5E-01 8.9E-01 9.9E-01 

 

Baseline scenario 

The baseline scenario comprises the standard mode in which all the factors are working 

perfectly. This reflects the best practice that is followed in an offloading operation, as 

shown in Fig. 13. The model calculates the probability of system resilience as 8.3E-01, 

with vulnerability equal to 6.4E-02, and maintainability of 4.7E-01. The given scenario 

includes an assumption that the system is capable of absorbing shocks. This can be 

inferred by percentages, as follows: absorptive capability with 95% success; system 

adaptability with 97% success and system restorative capability with 92% success. It 

depicts perfect system resilience with negligible hydrocarbon release, achieving a 

successful performance of the operation. 
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Figure 13: Resilience model for offloading between FPSO and shuttle tanker 

It is inferred from the model above that if an offloading monitoring system, a hydrocarbon 

release prevention plan, facility protection, and platform safety are not effectively 

executed at the site, system absorptive capability deteriorates. For instance, the model 

clearly illustrates that when absorptive capability fails, the maintainability increases by 

default to 5.8E-01, which will keep the system resilience at 81%, as shown in Table I 

(scenario 1), because of the availability of the default maintainability feature to overcome 

the negative effects on the system. 
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2.6.2 Sensitivity Analysis 

One of the best ways to analyze and validate the expert-built model is to perform a 

sensitivity analysis by selecting a target node and subsequently observing the results and 

impact of variables on that node. In the given analysis, resilience node, vulnerability and 

maintainability have been set as target nodes and the impact of other critical variables is 

analyzed, as they affect performance monitoring. These are presented in Table III of next 

page. 
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Table III: Scenario for forward propagation sensitivity analysis 

Scenario created for forward propagation sensitivity analysis 

Evidence node States 
Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Scenario 

7 

Scenario 

8 

System 

absorptive 

capability 

True  ✓ ✓   ✓  ✓ 

False ✓   ✓ ✓  ✓  

System 

adaptability 

True ✓  ✓  ✓   ✓ 

False  ✓  ✓  ✓ ✓  

System 

restoration 

True ✓ ✓  ✓    ✓ 

False   ✓  ✓ ✓ ✓  

Adequate 

training 

True ✓ ✓ ✓ ✓ ✓ ✓ ✓  

False        ✓ 

Management 

and resources 

True ✓ ✓ ✓ ✓ ✓ ✓ ✓  

False        ✓ 

Corrective 

maintenance 

True ✓ ✓ ✓ ✓ ✓ ✓ ✓  

False        ✓ 

System 

standardization 

True ✓ ✓ ✓ ✓ ✓ ✓ ✓  

False        ✓ 

System 

vulnerability 

(%) 

High 28 28.5 19.9 49.0 41.4 41.1 61.6 30.8 

Low 72 71.5 80.1 51.0 58.6 58.9 38.4 69.2 

Maintainability 

(%) 

High 57.9 58.2 54.0 68.3 64.5 64.4 74.5 46.7 

Low 42.1 41.8 46.0 31.7 35.5 35.6 25.5 53.3 

System 

resilience (%) 

High 81.2 81.4 81.9 80.1 80.5 80.6 79.3 72.0 

Low 18.8 18.6 18.1 19.9 19.5 19.4 20.7 28.0 
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Eight different forward propagation scenarios are performed, as reported in Table III. The 

effect of treated variables can be observed clearly in terms of their respective impact on 

target nodes. For example, in Scenario 1, system vulnerability, maintainability and 

resilience are chosen as target nodes, as well as the evidence nodes mentioned, which are 

considered important for the performance of resilience. The system’s absorptive 

capability is instantiated to a failed state, with other variables (system adaptability, 

system restoration, and others) instantiated to the normal or true state. It is observed that 

vulnerability in the given scenario is 2.8E-01, and that the maintainability of 5.8E-01 

cancels the effect of disruption and maintains the resilience value at a new steady state of 

8.1E-01.  

Similarly, in Scenario 5 of Table III, system absorptive capability and restorative 

capability are set to “failed” states. This leads to a negative impact on system resilience, 

whereby maintainability increases accordingly to achieve a higher resilience of 8.5E-01. 

The graphical representation of the sensitivity analysis for the different scenarios is 

shown in Fig. 14. This illustrates the system failure in terms of vulnerability and the 

required maintainability to achieve an acceptable resilience called “new steady state”. 

The system becomes vulnerable if some of the design factors fail, but at the same time, it 

is observed that the model attempts to compensate for the effect of these disruptive events 

by increasing the default maintainability of the system through operational factors. Thus, 

the disruption results in resilience rising to 81%, which clearly demonstrates that this is 

because of the respective increase in maintainability that inhibits the decline in resilience. 
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In other words, the inverse relationship between design factors and maintainability nodes 

in the base model (as shown in Fig. 12) is set to maintain resilience so that it will slow 

down the effect of increasing vulnerability, which is the desired property of any resilient 

system. The present model may show a decline in resilience at any point. For instance, if 

the whole absorptive capability and system restorative nodes are considered to have 

failed, the resilience is decreased by 1.5% which is still in an acceptable range, and 

maintainability is increased from 4.7E-01 to 6.4E-01 in the baseline case shown in Fig. 

13, where the vulnerability is 6.4E-02. 

The quantification results of the model show that when vulnerability occurs in the 

system, it adapts maintainability and resists lowering the system’s functionality. Thus, it 

keeps the resilience high, which is not necessarily at the same but can be maintained 

within desired limits. At this position, the system successfully continues to its functions. 

If most of the design factors stop working, the system will put a high load on 

maintainability and attempt to increase its value until a threshold is achieved that is 

required maintaining minimum changes in the overall resilience of the system. This in no 

way implies that the failure of all components of the system would maintain resilience.  

Furthermore, the failure of the operational factors is observed to greatly reduce system 

maintainability. The operational design factors form the backbone of maintainability in 

the proposed model. If any of them are disturbed, it will, in turn, affect maintainability as 

well as make the system vulnerable. 
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Figure 14 shows the comparative result of vulnerability, maintainability, and resilience. 

From Scenario 1 to Scenario 7, the resilience is analyzed in terms of influencing design 

factors by applying sensitivity analysis. The value of resilience is maintained above 7.8E-

01 with the presence of extreme vulnerability due to the failure of several factors. In 

Scenario 8, it can be clearly observed that the value of resilience declines, even in the 

presence of comparatively low vulnerability. This is due to the fact that operational 

factors either fail or are set to be ineffective, resulting in a direct negative effect on 

maintainability. This eventually makes the vulnerability cross dangerous limits.  

 

Figure 14: Sensitivity analysis of the overall resilience model 
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2.6.3 Accident Scenarios 

The following accidents are considered part of the case study to verify the rationale of the 

proposed model. These accidents are described using different verified resources. 

Incident A: “Statfjord incident” 

On December 12th, 2007, an oil spill occurred due to a rupture in a hose near the Statfjord 

oil field in the North Sea in Norway. Around 3840m3 of oil was spilled into the sea. This 

amounts to almost 24,154 barrels of oil, which is considered to be the second largest spill 

in Norwegian oil history (Tisdall, 2007). The main causes, as reported in Chen, et al. 

(2010) and Chen (2003), were the controllable pitch propeller, position reference system, 

some identified sensors malfunction, errors in the DP system software, and human 

operators’ error, as identified in Fig. 13. 

Incident B: “Uisge Gorm FPSO incident” 

A similar incident occurred on April 4th, 1999, in the Uisge Gorm FPSO of Fife, Fergus, 

Flora and Angus fields of the North Sea, UK, due to the lack of a vent line opening after 

the maintenance operation (Torgeir, Amdahl, Wang, & Spencer, 2002; Knapp, 1999). 

The pressure that developed severely damaged the vessel’s hull and its vicinity. The main 

causes of this incident were: valve control system failure, erroneous operation, 

inadequate flow control, reactive maintenance failures, manning incompetence, and bad 

practice guidance, also identified in Fig. 13. 
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The model investigated the results from Incident A, where the system vulnerability (loss 

of hydrocarbon) occurred due to five evidence factors, as mentioned above. It can be 

noted that in the results, vulnerability rose from 6.5E-02 to 1.2E-01. The model also 

calculated the desired maintainability which was required to keep the system in a steady 

state and the achieved resilience was 82%. The model also investigated the results for 

scenario B, where the system vulnerability (loss of hydrocarbon) occurred due to six 

different evidence factors, as mentioned above, in which vulnerability was raised from 

6.5E-02 to 1.5E-01, and counterpart maintainability increased to 5.0E-01, which was 

required to keep the system resilient up to 8.1E-01, in terms of operational factors such as 

adequate training, deploying maintenance, following system standardization and 

resources management. 

2.7 Concluding Remarks 

This study has investigated system resilience during an offloading operation, considering 

hydrocarbon release at offshore facilities. Calculating overall system resilience is 

imperative as it is necessary to withstand inevitable difficulties, and is thus essential for 

the planning and execution of complex infrastructure systems. Offshore infrastructure 

such as drilling equipment, power plants and complex facility systems are constantly 

dealing with natural and human-made disasters; hence, they need to be scrupulously 

designed to withstand disruptions and recover rapidly. 

The proactive design strategy depends on the system’s absorptive and adaptive 

capabilities, while the reactive design strategy relies on the system’s adaptability and 
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restoration features. These unforeseen but understandable phenomena may be modeled in 

terms of a respective feed forward network that undermines system resilience. To counter 

the negative effects of vulnerability, there needs to be a comprehensive parallel model for 

system maintenance and its underlying factors. Fortunately, this study reveals a similar 

feed forward network that approaches positive convergence towards system resilience. 

The research study demonstrates the interconnection between three major factors: 

reliability, vulnerability and maintainability, and the underlying sub-factors as they affect 

the resilience of a system. The extent of vulnerability in the present model may 

adequately be controlled (or lowered) by a corresponding increase in maintainability. The 

model allows this to happen by anticipating the effect of changes in the connected factors 

of maintainability. In turn, this enables preemptive testing and analysis of hazards that 

may arise with no prior knowledge. The model thus generally permits extended 

functionality if augmented with additional factors that may prove to be of value using 

future sensitivity analysis. The selected factors have been tested for effectiveness by 

incorporating rigorous sensitivity analysis. This not only ensures the strength of the 

model in understanding the combined effect of all underlying multi-level factors on 

system resilience but also in reducing the respective probabilistic weights. The system 

enables engineers to predict with better accuracy the effects of any hidden disastrous 

events and thus manage the influence of various risk factors that inhibit the ideal 

execution of events within the framework. The model thus emphasizes the deep concern 

regarding resilience in the construction of infrastructure. 
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The concluding sensitivity analysis assisted in guiding the pre-order and post-order 

strategies required as building blocks of resilience within the system. The generalization 

of this model explicitly allows researchers to further extend its use by incorporating other 

sets of features in correct network arrangement, to study the net effect of resulting factors 

on either system resilience or some other outcome of high value. The quantification 

strategy for resilience further increases its value by breaking it down into numbers, thus 

enabling the respective user to deal with it more efficiently. The results of this study are 

quite convincing and inspire real-time deployment of the proposed model. The effect of 

the use of continuous variables in modeling the resilience of a complex system will be 

investigated in future studies.  
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Abstract 

Harsh weather and deep waters create challenging environments for offshore drilling and 

production facilities, resulting in increased chances of failure. These necessitate 

improving the resilience of engineering systems. Having a robust power system is an 

essential element of an offshore facility. A power management system interacts with 

other engineering systems to maximize performance and limit potential failures. Ensuring 

a safe and continuous operation requires technological advancement, increased reliability 

of integrated operations, and improvement of power system resiliency. This paper 

identifies the main requirements for an improved resilience of an offshore power 

management scheme. Different potential failure scenarios are identified and analyzed to 

quantify the resilience of the system. The object-oriented Bayesian network format is 

adopted to model resilience as a function of anticipated reactions, system adaptability, 

absorptive capability and restoration. Sensitivity analysis is conducted to study the impact 

and interdependencies among different variables and strategies used to quantify resilience 

of an offshore power system, and also to improve the system performance during certain 

failures by adapting control measures. 

Keywords: Resilience; Object-oriented Bayesian network (OOBN); Integrated 

operations; Power system. 
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3.1 Introduction 

The failure of an electrical power system has been identified as the most prominent 

common cause of failure for many engineering systems. For offshore facilities, such as: 

FPSOs and drilling ships, the prevailing high-power demands necessitate the provision of 

an integrated power supply system that is largely dependent on parallel and synchronized 

generators (Weingarth, et al., 2009). To ensure successful operations, it is of utmost 

importance to improve the overall efficiency and stability of the electrical power system. 

Otherwise, the occurrence of any common mode fault could result in a total blackout. The 

development of a control and power management system (PMS) is critical to improving 

the system’s resilience to power failures, governance of major systematic faults, and 

minimal stress in all operational conditions (Voltz, et al., 2008). 

In harsh offshore environments, dynamic positioning of drilling rigs is the preferred 

technology. In such tumultuous settings, undesirable electrical system outages or 

blackouts could lead to economic losses, increased risk of environmentally devastating 

incidents and the attendant company’s reputational loss. Consequently, an improved 

resilience of the power supply system is desired to forestall the occurrence of blackouts at 

offshore facilities, particularly due to severe weather conditions.  

In this study, a model of an electrical power system resilience is proposed using the 

object-oriented Bayesian network (OOBN). The quantification of resilience is performed 

by means of integration of several operations such as the integrated control system, and 

its maintainability. The major factors that contribute to resilience are divided into two 
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main categories: vulnerability factors and recovery factors. Vulnerability factors are those 

factors that may bring vulnerability to the power system, whereas recovery factors are 

those that mitigate the effects of vulnerability.  

The study uses known risk factors and employs important safety measures to estimate the 

probability of having a resilient system. Particularly, fault-tolerance capability, quick 

response, recoverability and avoiding vulnerability are emphasized. A sensitivity analysis 

is conducted for the developed model to study the importance of the various process 

parameters and altering field observations in real time. The OOBN based model enables 

both predictive and diagnostic analysis, with the help of intermediate nodes in the 

respective Bayesian network (BN) model, and estimates the posterior probabilities as new 

evidence is obtained. 

Section 4.2 presents the literature review of resilience modeling and its concept, Bayesian 

and OOBN and Noisy-OR gate formats. Section 4.3 discusses the proposed methodology, 

the development of resilience modeling and its contributing factors for an offshore 

electrical power system. The proposed OOBN model is also presented along with a 

description of the basic events failure probabilities, which are used to assign prior 

probabilities to the OOBN model discussed in Section 4.3. Section 4.4 presents the 

results and discussion and employs sensitivity analysis to identify the influence of system 

parameters. Applications of the proposed model to two different incident scenarios 

related to the offshore oil and gas industry are also presented in Section 4.4. Finally, the 

concluding remarks are presented in Section 4.5. 
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3.2 Literature Review 

This section reviews resilience modeling concepts, the use of Object-oriented Bayesian 

networks and the Noisy-OR gate, which will be applied to assess resilience in this study. 

3.2.1 Resilience Modeling and its Concept 

Resilience is the ability to minimize the magnitude and/or duration of disruptive events. 

The measure of the effectiveness of an infrastructures resilience depends upon its ability 

to anticipate, absorb, adapt to, and/or rapidly recover from a potentially catastrophic 

event (NIAC, 2010). From the perspective of critical infrastructure, resilience refers to 

coordinate planning, responsive behavior, the implementation of flexible and timely 

recovery measures, as well as the development of a professional environment that 

requires minimal service during severe disruptions, emergencies and disasters to quickly 

return operations back to their original state. Arsenault and Sood (2007) defined the 

concept of a resilient organization as one capable of deflecting deliberate attacks and 

environmental disruptions (or their effects), absorbing unavoidable damages and 

resuming operations to pre-event levels, all with utmost speed. According to Haimes 

(2009), infrastructural resilience is the ability of the system to withstand major 

disruptions within acceptable degradation parameters and recover them with 

maintainability features within an acceptable time, composite costs, and risks. Moreover, 

Keogh and Cody (2013) defined resilience as the robustness and recovering 

characteristics of utility infrastructure and operations that avoid or minimize the 

interruptions of service during an extraordinary and hazardous event. 
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Figure 15: Resilience concept graph with respect to events. Adapted and modified after 

(Panteli & Mancarella, 2015) 

Figure 15 shows how resilience, R(t), as a concept, evolves as a function of time given 

that a disturbance event occurs. In the event of a disruption, say harsh weather, at the 

time (tde), the power system should be able to adapt to the emergent conditions. R(t0) 

represents the assessment of resilience at time t0, which is the initial state.  Resilience 

demands that the system hold a high value of R(t) at t = t0 for better adaptability. With an 

initial failure event, the resilience decreases significantly to R(tds). Now, the impact of a 

failure event can be estimated by the difference, R(tds) R(t0), that helps to determine the 
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appropriate corrective measures before applying them at tsr. The initial restoration to state 

R(tns) is an intermediate arrangement because the system may take longer to be fully 

restored, i.e., (tn  tns) > (tns  tsr), to the final steady state R(tn). The way (for example, 

how fast, and how many intermediate post-restoration states there might be) a system 

progresses from state R(tns) to R(tn) depends on various factors, such as the strength of 

the system to withstand a disruptive event, the severity of the disruption, the adaptability 

of the system and the response processes, which are divided into stages, such as (t0 ≤ t ≤ 

tde), that show the resilience during normal operations. The prevalent concept of a system 

resilience reported in (Panteli & Mancarella, 2015) is extended here by introducing the 

concept of anticipation parallel to system absorption before any disruptive event. As 

explained in Section 4.3.3.2, system anticipation involves discovering potential risks and 

preparing preventive measures. The condition (tde < t  tds) denotes the damage 

propagation interval, after an initial failure that mainly reflects the absorptive and 

adaptive capacity to minimize the initial damages and consequences such as cascading 

failures. The condition (tsr < t  tn) is the recovering stage where extremis information is 

collected for assessment and resources are distributed to restore a new steady state 

quickly and effectively.  

3.2.2 Bayesian Network  

The inference probabilistic method based on Bayes’ theorem is widely used for safety 

and risk assessment of complex systems having uncertain information. It illustrates the 

problem in a directed acyclic graphical presentation, composed of connected nodes with 
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initial and intermediate events, based on the functional decomposition of the system 

(Weber & Jouffe, 2006; Hosseini & Barker, 2016). Furthermore, arcs of corresponding 

nodes and the conditional probability table represent the causal relationship and 

sensitivity link amongst variables (Khakzad, et al., 2013; El-Gheriani, et al., 2017). The 

quantitative analysis has been performed based on the d-separation principle where base 

events are conditionally independent and intermediate events are dependent on their 

influenced parent nodes. The Bayesian network (BN) represents joint probability 

distribution of variables based on conditional dependencies as: 𝑃(𝑈) = (𝑣1, 𝑣2, … , 𝑣𝑛).  

 
          P(U) =  ∏ P(𝑣i|Pa(𝑣i))

𝑛

i=1

 (14) 

From the given Eq. (14), 𝑃𝑎(𝑣𝑖) represents the set of parent nodes 𝑣𝑖, which indicates 

summation of all variables except 𝑢𝑖 (Nielsen & Jensen, 2007).  

           P(a) =  ∑ P(U)

U\𝑣𝑖

 (15) 

The advantage of BN is to allow prior probability updates with new information, called 

evidence E. Updated or posterior probabilities can be calculated as Eq. (16): 

 
          P(a) =  

P(U, E)

P(E)
=  

P(U, E)

∑ P(U, E)U
 (16) 
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3.2.3 Object-oriented Bayesian Network (OOBN) 

The development of the resilience model used here is the object-oriented modeling 

approach, where several sub-networks (instance nodes) are created in a model 

representing another Bayesian network (Khakzad, et al., 2013), as shown in Fig. 16. The 

OOBN allows an effective communication between sub-networks, avoids repetition of 

the same node structure by enabling reusable networks, and achieves a lessened 

conditional probability table, which is the primary objective in dealing with the complex 

system. These sub-network causal factors with the explicit labeling of output are linked 

with the top level of the model, where the output of the instance node provides 

interfacing functionality to become the input of the top-level model (Weber & Jouffe, 

2006). The sub-nets input node accepts the same probability of its immediate parent 

node; thus, each input node should have one parent node. In contrast, output nodes 

convey the probabilistic value to other input nodes or affect the probabilities of other 

usual nodes; as a result, the output can have more than one child node (Khakzad, et al., 

2013). Fig. 16 illustrates an example, where the input nodes are represented by dashed 

lines, output nodes are denoted with bold lines, and instance nodes classes are also 

provided. As is evident in Fig. 16, from left to right, Bayesian networks systems are 

simplified by using OOBN methodology. This work is developed in Section 4.3, by 

converting the BN resilience model into OOBN. 
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Figure 16: Simplified Bayesian network, and its conversion into an Object-Oriented Bayesian network. 

3.2.4 Noisy-OR Gate 

The Noisy-OR function is used in the model to interact between varying factors in terms 

of cause and effect of binary states: true or false. Noisy-OR describes diverse interactions 

between n number of causes, X1, X2…, Xn, and their common effect, represented by Y, 

which means Noisy-OR assumes that the causes of Xi influence Y independently. 

Suppose the probability distribution of n number of causal factors, P1, P2…, Pn. where Pi 

denotes the probability for Y being true if one causal factor, Xi, is true and the rest of the 

parameters are false, such as: Xj; j  i  (Hosseini & Barker, 2016; Onis´ko, Duzdzel, & 

Wasyluk, 2001). The mathematical expression will be Eq. (17): 

 Pi = P (Y= “true”  Xi = “true”; Xj = “false” for each j  i)    (17) 

Eq. (18) is utilized for the probability of having Y from the given subset Xp of the Xi 

which is true: 
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 P (Y= “true”  Xp) = ∏ (1 −𝑖:𝑋𝑖 𝑋𝑝
 Pi) (18) 

The Noisy-OR function is also defined in Eq. (19) (Fenton & Neil, 2013), where the term 

‘l’ denotes the leaky factor as shown in Eq. (20), which represents a situation where the 

probability of a system, here expressed as Y, could fail if all its causal factors are true, 

and vice versa. This extended feature of the binary Noisy-OR gate is appropriate to the 

system criteria where all causal factors of Y are not considered (Bobbio, et al., 2001; 

Adedigba, et al., 2016). Normally, such types of scenario are represented as: 

 Noisy-OR (X1, P1, X2, P2..., Xn, Pn, l) (19) 

 l = P (Y= “true”  X1 = “false” …, Xn = “false”, Xn = “false”) (20) 

The estimated conditional probability of Y with the given subset Xp of Xi can be achieved 

through the Noisy-OR function by using following Eq. (21) (Hosseini & Barker, 2016; 

Adedigba, Khan, & Yang, 2016): 

 P (Y= “true”  Xp) = 1  {(1 − 𝑙) ∏ (1 −𝑖:𝑋𝑖 𝑋𝑝
 Pi)} (21) 

 

  

3.3 Methodology 

3.3.1 Proposed Methodology Framework of Resilience Modeling 

Fig. 17 explains the basic strategy that is adopted here to model system resilience. The 

first step is to identify the pertinent case study factors. The second step is to arrange 
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intermediate nodes to model and integrate strategies that are used to reduce vulnerability 

and increase maintainability of the system. Then different strategies are classified in 

terms of operational and design level. The nodes obtained are used to construct various 

classes which are later combined to form the OOBN model (see Fig. 18 and Fig. 19). 

Then, prior probabilities (see Table IV) are assigned to the input nodes, and based on 

these posterior probability of resilience is obtained.  

Start

IF (Resilience 

acceptable)

No

Yes

Model systems’ vulnerability 

and maintainability

Modelling system resilience

Construct intermediate nodes to 

model strategies

End

Identify contributing factors

Determine design and 

operational strategies

Estimate failure probability of 

input nodes

 

Figure 17: Proposed methodology framework of resilience model 
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3.3.2 Modeling System Resilience, Vulnerability and Maintainability 

In this work, maintainability is discussed as the key factor in restoring the system to a 

workable state. Based on this assumption, resilience is defined as a function of system 

vulnerability (V) and maintainability (M). Because vulnerability indicates negative 

effects of system disruptions, maintainability is required to lower or cancel out the effects 

of vulnerability. The factors are inversely proportional to each other. To simplify, the 

resilience is defined as an operator that minimizes the vulnerability and maximizes 

recovering capabilities by implementing maintainability features as shown in Eq. (22) 

(Sarwar, et al., 2017).  

 System Resilience ≜ Resilience (1/V, M) (22) 

In Fig. 17, the interdependency among involved variables in the proposed base model 

describes quantification of the overall system resilience (R) as a leaf in output node, 

which is dependent on two parent variable nodes, i.e. system vulnerability (V) and system 

maintainability (M). In the model, the function of maintainability is dependent on the 

integrated system design and operational system, to reduce the system’s vulnerability by 

introducing different operational strategies. The vulnerability of the system is modeled as 

the defective state due to system design failures and operational errors. 

4.3.2.1 Modeling vulnerability 

The system deteriorates due to errors or deficiencies in the integrated system design, or 

caused by integrated operational failures. As depicted in Fig. 17, the existence of system 
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vulnerability is dependent on the integrated system design and the integrated operational 

system. If any individual component of the system fails, this inadequacy will affect either 

the integrated system design or operation and thus the system vulnerability; therefore, it 

is critical that the overall system be based on a high technical design and consider 

operational variability. One instance of vulnerability would be the blackout condition in a 

harsh offshore environment that causes a total loss of the vessel’s propulsion system as 

well as the power provided to auxiliary systems of FPSO and drilling rigs, which may 

lead to catastrophe when the facility is operating in rough seas and is in proximity to 

other vessels. Therefore, to achieve higher resilience, vulnerability is modeled using two 

factors: 1) influencing design factors, considering proactive and reactive approaches to 

risk management, and inherent safety design aspects able to withstand abnormal 

scenarios; and 2) influencing operational factors, enhancing system operation and overall 

performance. With these two general factors, several technical and design issues may be 

addressed. 

4.3.2.2 Modeling maintainability 

Maintainability is the capability of the system to anticipate disruptive events, withstand 

them and restore systems to operate effectively within well-defined conditions. 

Improving maintainability increases resilience, which reduces the vulnerability. Overall, 

system maintainability depends on the integrated system design and operational systems, 

as demonstrated in Fig. 18. Figures 18 and 19 presents object oriented network model of 

the overall system resilience. In Fig. 19, elements in circle/eclipse represents the root 
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parameters, whereas object oriented Bayesian nodes are represented in rectangular shape. 

Resilience has two parent nodes: vulnerability and maintainability. These two parent 

nodes have multiple parents. For example, the overall system Maintenance is an 

operation activity represented as node that is dependent on set amount of time (duration 

of maintenance activity) regardless of the conditions present. The definition of 

maintenance can vary depending on how it is scheduled (Arora, 2004; Kumar & Suresh, 

2008; Birolini, 2007); achieving high maintainability will raise the system's resilience. To 

raise the system's maintainability, its design and operational factors must be designed so 

that the system is protected before, during and after failure, which will help to achieve 

maximum resilience. This relationship is highlighted in object oriented Bayesian network 

model presented in Fig. 19.  

 

Figure 18: The graphical depiction of the proposed Bayesian network model for offshore power system 
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Figure 19: The graphical depiction of the proposed OOBN networks model for offshore power system 
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3.3.3 Resilience Modeling Factors for Offshore Electrical Power System  

4.3.3.1 Integrated system design 

During system design, the essential integrated factors that must be considered include a 

proactive strategy (the ability to withstand disruptive events or behavior of the system) 

and a reactive strategy (the capability of the system to restore the original or a new steady 

state after a disruption). It is necessary that the power system be designed based on 

reliability to achieve competence, sustain high performance and ensure security; these 

principles must correspond with known system failures with peak resilience to guarantee 

utmost quality and uninterrupted power supply to the infrastructures (Panteli & 

Mancarella, 2015). The perspectives to consider for the resilience system are: anticipation 

of an extraordinary event;  absorption and endurance of disruptive events (minimizing 

consequences, achieving robustness);  development of adaptive means of operations to 

accommodate changes within or around system infrastructure; quick restoration of the 

damages from a disruption by inducing smart control-based actions to provide an asset 

with control capability; and access to resources to deal efficiently with a crisis scenario. 

More concisely, the design strategies of modeling resilience system depend upon the 

ability to integrate different operations such as: system anticipation, system absorptive 

capability, system adaptability, system restorative capability, and an integrated control 

system (Francis & Bekera, 2014; Gholami, Aminifar, & Shahidehpour, 2016; NIAC, 

2010).  
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4.3.3.2 System anticipation of vulnerable scenarios 

System anticipation involves factors such as the ability of the system to forecast the set of 

risks, build in a reserve capacity that may be exploited when required and prepare a 

strategy to effectively withstand disruptions (Francis & Bekera, 2014). System 

anticipation can be performed to deal with potential disruptions by using the following 

functions such as: (a) robust communication: the system operator is obligated to use 

preventive control measures quickly, depending on the severity of the disturbance, to 

cope with a sudden electrical outage or extreme conditions (Panteli & Mancarella, 2015). 

The continuous (b) identification of system vulnerabilities (Gholami, et al., 2016): in 

large centralized power plants, substations, and electrical equipment (transformers, 

switchgears, and more), which are potential points of vulnerability in a power system, 

owing to the fact that minor uncontrollable incidents may cause interruption of megawatt 

flows, thus interfering with the provision  of real-time control measurements and 

increasing the physical vulnerability of the electricity grid. Thus, the power system can 

improve the situational awareness of the overall system resilience. The (c) control center 

(Subbarao & Srinagesh, 2012): the central control room located onshore performs a 

paramount role for the system’s security and capability of anticipation, allowing 

continuous monitoring and minimizing the control errors of electricity grids and critical 

components of an offshore power system. To effectively maintain integrated alarm 

management systems, it is vital to provide an effective emergency preparedness plan and 

supervise ongoing activities at the site or off location through the (d) abnormal situation 

awareness wall (Subbarao & Srinagesh, 2012), and real-time (e) system synchronization: 
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for example, the means to synchronize a set of generators, and the critical protection 

applications (Weingarth, et al., 2009). 

4.3.3.3 System absorptivity 

Vugrin et al. define system absorptivity as the capability of the system to absorb and 

withstand the impact of disruptive events or system perturbations, as well as minimize 

their consequences. Absorptive capability refers to all activities that need to occur to 

contain the shocks of a disruption in advance (Vugrin, Warren, & Ehlen, 2011; Francis & 

Bekera, 2014). An essential feature of system absorptivity is its ability to control and 

absorb the shocks in terms of blackout prevention, power shortages, and system 

irregularities in advance. The identified effective features of absorptive capabilities for 

the study are: (a) environmental condition monitoring (Hansen & Wendt, 2015), which 

refers to maintaining continuous monitoring of operational environments, specifically 

harsh environments; (b) operator training (Subbarao & Srinagesh, 2012), which includes 

the skilled laborers, training operators, and managers responding to and controlling the 

disruption and maintaining the continuity of the system. The (c) equipment vibration, 

which is the major cause of equipment failure, reduces the life cycle of critical 

equipment. Thus, the vibration suppression mechanism is required to achieve long-term 

reliability and availability of equipment. Furthermore, (d) ageing infrastructure deals 

with properly following the life cycle of the equipment to avoid discontinuity of 

operation, and (e) storage and backup power is the necessity of providing a backup or 
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standby generator. These help in avoiding the overall downtime and power cut-off to the 

sensitive equipment.  

4.3.3.4 System adaptability 

System adaptability pertains to the accommodation of the changing conditions within or 

around the system, as well as the enhancement of the ability of the critical infrastructure 

and functions to withstand and rapidly recover from damage and disruptions (Berkeley & 

Wallace, 2010). The adaptability of a system also necessitates changes in the current 

practices, policies, and rules to overcome a variety of imminent disruptions (Francis & 

Bekera, 2014). The adaptive capacity is the capability of the system to adapt 

independently and attempt to overcome a disruption without any recovering activity; in 

other words, reorganizing the system and performing efficiently with some extra effort 

and resources to avoid vulnerabilities (Vugrin, Warren, & Ehlen, 2011). The contributing 

adaptive factors for the present study are: (a) distributed energy source (Farzin, et al., 

2016; Panteli & Mancarella, 2015): smart distribution can be viewed as multiple energy 

sources with distributed optimization and control, sufficient generation, energy storage 

capacity, and autonomous management to achieve acceptable levels of supply during an 

emergency or unforeseen failure, thus functioning in a key role in resilience-boosting 

efforts. The (b) emergency response system (Craig & Islam, 2012), is the primary tool to 

prevent blackouts and provide a fast recovery to avoid emergency disconnects. The loss 

of dynamic positioning of vessel electrical and control systems equates to loss of station 

keeping, and the response system requires an emergency disconnect from the well-head, 
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which is a serious event to avoid. The (c) substitution of equipment refers to a situation 

when the failure of equipment occurs during the disruption. The availability of reserve 

equipment gives the flexibility to overcome such a situation. For example, a standby 

generator and UPS system provide a substitute power source during power failures 

(Hosseini & Barker, 2016). The (d) system redundancy performs a key role in mitigating 

the consequences of disruption such as blackout prevention, by enabling the quick 

response of available recovering strategies in the system (Panteli & Mancarella, 2015). 

4.3.3.5 System restoration 

System restoration refers to the ability of the system to renew or recover from disruptions 

and to apply effective measures of the recovery plan for large scale outages such as a 

“black start”, in which power generation must be brought back online without 

connection to external power sources (Vugrin, Warren, & Ehlen, 2011; NIAC, 2010). 

The restorative capacity of a system is often categorized as the rapidity of the 

normalization process. It is returning the system after a disruption to its normal 

functionality or improved operations, and system reliability should be assessed against a 

defined set of requirements that are derived for a desirable level of service and control 

(Francis & Bekera, 2014). In the context of power system resilience, the ability of the 

system to withstand low-probability and high-impact events in an effective manner 

ensures the least possible interruption in the supply of electricity to critical equipment 

and operations, and facilitates swift recovery or restoration to normal operations 

(Khodaei, 2014). The contributing factors are: (a) early detection: awareness of 
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vulnerable situations and disruptions in earlier stages to allow the protection system and 

operators to take swift action to avoid system failures and enhance restoring capabilities. 

(b) The engineering workstations provide an operator interface, system configuration 

tools for control stations and a record of the historical data of the running applications 

(alarm management system, emergency shutdown system, and more), which aid in the 

maintenance of early failure detection through live status reports of the critical equipment 

(Subbarao & Srinagesh, 2012). The (c) power outage management scheme proposes the 

hierarchical outage management structure that can enhance the resilience of the electrical 

system by adapting a smart distribution system, which comprises multi-microgrids 

against disruptive events and complete blackout facility. The autonomous management 

and control of its microgrids through central controllers, operations, and management 

must be decentralized. Furthermore, it must be made possible to share all available power 

generation and storage resources among equipment, which will achieve better 

diversification of power outage management and enhance the resilience of the overall 

distribution system (Farzin, et al., 2016). The (d) onsite repair resources pertain to the 

possibility of resources in terms of accessible on-site spare equipment for critical 

components, the availability of repair teams, the ability to perform resource mobilization, 

and the prioritization of repairs based on the criticality of individual equipment (Hosseini 

& Barker, 2016; Mensah, 2015). 
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4.3.3.6 Integrated control system 

The integrated control system emphasizes building maximum integration of system 

design and the operation of the current system. This helps to manage overall functionality 

of a power system, by optimizing steady state performance, and provides the possibility 

for future expansion and continuous improvement (Radan, 2008; Subbarao & Srinagesh, 

2012). The system has the potential to monitor, control, and safeguard the system 

operation through the following features: (a) autonomous smart grid that utilizes a digital 

information network to help maintain efficient power generation, its transmission, and 

consumption (Montoya, 2008). The (b) abnormal situation management facilitates quick 

reactions, especially during operational emergencies or breakers’ tripping that may 

further lead to a catastrophic situation (blackout). Through (c) integrated alarm 

management system, emergency shutdown of the system can be achieved. The (d) 

enhanced information sharing refers to high speed, dedicated and redundant information 

network sharing and managing the information to the control system for operators, 

maintenance staff and external users to monitor and prevent disturbances in the electrical 

system, allowing peak performance and efficiency (Subbarao & Srinagesh, 2012). 

System synchronization between equipment and standby generators is performed and 

checked by control systems before the generator circuit breakers are closed (Hossain, et 

al., 2013). 

 4.3.4 Integrated Operational System 
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The integration of work, processes, and technology enable the system to make smarter 

decisions and achieve better execution by using real-time information, collaborative 

advanced technology and multiple expertise across multiple disciplines (Lima, et al., 

2015). The exploration of new offshore oil and gas fields pushes workers and structures 

into deeper waters and harsher environments, so an integrated power system design for 

these offshore energy vessels and deep-water rigs is required. For a modern oil and gas 

vessel, there is an array of dependent factors, subsystems and interfaces. The integrated 

marine power operation mainly relies on four subsystems: (a) power generation system, 

(b) power management system, (c) integrated control system, and (d) maintenance. 

4.3.4.1 Power generation system 

The power generation system is the most vital system on-board. The generated power is 

supplied to electrically driven thrusters and provides energy to the facility, drilling 

activities and more. The continuity of power generation is most important, so the critical 

components which must be considered in the generation system are: energy storage 

devices, generators, UPS systems, and MV switch gears. 

4.3.4.2 Power management system 

As shown in Fig. 20, the focus of power management systems is to improve the electrical 

system robustness during disruption, increase the capability to deal with major failures, 

maximize the performance of the system, and maintain the critical components under 

minimal stress in operational conditions. The power management system plays a crucial 
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part in automation, and power systems on marine vessels are especially important for the 

vessels with electric propulsion systems and station keeping thrusters. It also provides an 

integrated set of control, supervision, and management functions for engines, generators, 

switchgears, and overall electrical control systems. In the model, four major factors that 

largely depend on the power management system, such as: the power distribution system, 

the blackout prevention strategy, the load limit control system, and the electric 

propulsion system are considered. 

 

Figure 20: Interdependency of Power Management System in the Model 

 Power distribution system. The interconnecting point for all installed power 

equipment is the power distribution system. Power distribution is entirely dependent on 

the power generation and power management systems. The integrated power 

management system with high power and high voltage for floating facilities offers 

additional regulation challenges, with many unknown problem areas in electrical 

generation and its distribution (Voltz, et al., 2008). The allocation of power can be 
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divided into the following categories: normal power distribution, which is the distribution 

of the electrical load to normal processes of the facility via operating generators, 

functioning through dual fuels with the primary sources being fuel gas and the backup or 

secondary source being diesel. Offshore structures are usually equipped with an 

automatic transfer system so that the units switch to diesel upon the loss of fuel gas 

without affecting the platform load, which provides redundancy of fuel sources. 

Emergency power distribution refers to the designated emergency loads required for 

emergency power distribution, which are connected via emergency service transformers 

and feeds from normal and emergency generators. In the case of power loss from topside 

power generation resulting in an emergency, a dead bus relay picks up the power from 

emergency generators through emergency power distribution. The emergency power 

distribution ensures that the energy storage technology can be adapted for the 

uninterrupted operation of the control system, alarm management system, the initial start 

of emergency generators, and more. 

 Blackout prevention strategy. A blackout in electrical power systems normally 

occurs due to short circuits, system overload, a fault in active and reactive load sharing 

between power generators, and more. The blackout condition presents significant safety 

hazards, as it will result in a total loss of the vessel’s propulsion system as well as the 

vital auxiliary systems, which may lead to catastrophe when the facility is operating in 

rough seas and in proximity to other vessels. In the case of an offshore supply vessel or 

drilling platform, this concern is magnified given the increased dependency on dynamic 
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positioning systems during drilling operations. A loss of power during these critical 

operations could potentially threaten the failure of subsurface well connections.  

The major risk factors or the common causes of the blackout that need to be avoided are 

as follows: (a) load fluctuation, (Hossain, et al., 2013) defined as malfunctioning in a 

power operation or the surging of electrical power distribution among critical equipment 

such as propulsion motors, thrusters, drilling equipment and more. The frequent 

energizing and de-energizing of the heavy load equipment causes certain changes in 

power demands and disturbs the steady state power flow to the electrical system. The 

load fluctuation ultimately contributes to the degradation of connected equipment, which 

may cause a breakdown in control and monitoring systems, resulting in power failure of 

the vessel. To prevent the effects of power surging or fluctuation, the designer of the 

vessel or platform needs to consider the careful application of surge protection to 

sensitive equipment that may be affected by sudden and transient load fluctuations. The 

(b) warning or alarms failure refers to a significant function of power management 

systems that increases the blackout prevention capabilities by informing power 

management systems, to prevent sudden engine loss. The pre-warning alarms should 

initiate the next available generators (backup or emergency) automatically if any 

conditions occur that seem to approach critical limits or will lead to the shutdown of the 

engine. The (c) cascading failures: an unstable generator can result from mechanical 

failures, load sharing malfunction, voltage regulator or reactive load sharing malfunction, 

overloading, maloperation of protective relays, or any other cause that contributes to a 

significant load imbalance for generators operating in parallel. One unhealthy generator 
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prime mover may lead to cascading failures of all online generators, resulting in a 

blackout of the vessel. Generator prime movers, large consumers, and their associated 

auxiliary support systems should be properly maintained and effectively monitored to 

quickly isolate unhealthy generators or large consumers before the abnormal operation or 

failure can precipitate a blackout. The (d) engine shutdown: the (gas/diesel) engines are 

prominent machinery that provide the initial driving force for generating electrical power. 

The size and number of the engines, which are utilized for generating electrical power, 

depend on the amount of electrical power that is consumed by vessels onboard. The 

failure of one or more engines can cause the shortage of electrical power or even a total 

blackout, which can affect several parts of a dynamic positioning system such as the 

auxiliary machinery for main propulsion, computers, referencing systems, electromotors 

for driving thrusters, and more. The availability of backup generators and related parts 

need to be monitored and atomized to achieve safe operation by using control devices. 

Continuously monitoring the load demand and automatically starting the standby 

generators or removing operating generator(s) from service based on load demand is of 

vital importance (Hossain, et al., 2013). Finally, the (e) system monitoring & automation 

provide unique automated solutions to ensure the reliable and stable supply of shipboard 

power. They also allow integrated sets of controls, supervision, and management 

functions for engines, generators, switchboards, and the control system. 

 Load limit control system. The optimum operation and control of the power 

distribution system are essential for safe operation and minimal fuel consumption. This 

load limiting control system is based on switching off the group of non-essential 
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consumers or distributing the load to the critical equipment when there is a deficit of 

generated power. The load control system mainly performs the following tasks: (a) 

controllable consumer: with respect to controllability of load consumers, the manageable 

consumers are capable of precisely setting the load within the machine 

electrical/mechanical limits. These consumers with frequency converter drives are used 

in thrusters, along with other integrating loads, such as drilling activity loads, 

compressors, and more. The (b) sheddable loads can be used for system load limiting and 

optimal load management. The non-essential consumers can be regarded as sheddable. 

Switching-off the non-essential group of load consumers is necessary to transfer that load 

to critical and important equipment, such as navigational equipment, accommodation, the 

auxiliary machinery load, and more. (c) Event based load monitors the 

network/generating system and reacts based on unwanted events such as the tripping of 

the generating set by using event-based fast load reduction. For example, if any 

component fails or the generator breaker trips in the switchboard, the signal is hardwired 

to the remote I/O unit or is transmitted to the load limit controller and initiates the event 

based load reduction program within a short period to avoid disruptions (Lauvdal & 

Adnanes, 2000). Furthermore, the (d) load forecast must be done efficiently based on 

total system connections, and demand load calculations are completed based on 

equipment listed with special care and attention to the demand and diversity factors. A 

careful study must be made of the parallel operations, a system sized for the worst case 

operating scenario, with consideration to the worst case environmental situation, to 

ensure that the load forecast design is fit for the purpose (Craig & Islam, 2012). 
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 Electric propulsion system. The electric propulsion system is composed of the: (a) 

dynamic positioning controller, which uses high-level controllers to compute surge and 

sway, as yawing required to cancel the environmental effect in order to keep track of 

desired paths; (b) integrated power automation systems are necessary for optimal and 

safe operations to cut maintenance costs by protecting against faults and malfunctions; (c) 

thrust controllers are the allocated controllers which calculate the thrust set points for 

each propulsion unit with optimized criteria aiding in the reduction of extra power 

consumption; and (d) vessel environment observer, which defines the guidelines for the 

classification of environmental and climate conditions where the facility will operate, 

such as the vibration level of critical equipment, station keeping, mechanical conditions, 

chemical substances, temperature, humidity and more (Hansen & Wendt, 2015). 

4.3.4.3 Maintenance 

The maintenance activities include runtime maintenance and repair scheduling for the 

main electrical equipment and ensuring the availability of spare equipment, which will 

strengthen the resilience and maintainability of power system operations (Subbarao & 

Srinagesh, 2012). The active operational maintenance can be performed through (a) 

preventive maintenance, which is the key to any successful assets management program, 

and can be effectively implemented to reduce the reactive maintenance by applying 

standard conservation procedures for maintaining the ongoing integrity of the overall 

system and equipment; (b) predictive maintenance, meaning that high availability of the 

system can be accomplished by improved planning, increased predictive-reactive 
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maintenance ratios and setting proper priority checks for maintenance activities; (c) 

availability of maintenance staff and spare equipment on site; and (d) good practice 

guidance, including operator training simulators which can be used to train the 

operational staff in normal and abnormal situations.  

Table IV: Prior probabilities of basic events of proposed model for power system (Abimbola, Khan, 

Khakzad, & Butt, 2015; Khakzad, Khan, & Amyotte, 2011; OREDA, 2015; Sun, Kang, Gao, & Jin, 2016; 

Cetinkaya, 2001) 

Basic events failure probability for proposed model of offshore power system 

Index Event Description 
Assigned 

probability 
Index Event Description 

Assigned 

probability 
1 Software failure 4.66E-03 26 Energy Storage Devices 1.10E-02 

2 Identifying vulnerabilities 9.63E-04 27 Switchgear system 1.10E-02 

3 Robust communication 2.52E-02 28 Generator failure 1.27E-05 

4 System synchronization 9.15E-03 29 UPS system 7.54E-02 

5 Abnormal situation awareness 2.00E-04 30 Normal power distribution 2.81E-02 

6 Alarm system 3.67E-03 31 Energy storage system 7.54E-02 

7 Emergency preparedness plan 9.20E-02 32 Emergency power distribution 2.58E-02 

8 Environmental condition monitoring 3.00E-05 33 Power outage management Scheme 8.03E-03 

9 Operator training 1.00E-03 34 System monitoring & automation 1.84E-03 

10 Equipment vibration 2.01E-03 35 Engine shutdown 4.63E-03 

11 Ageing infrastructure 1.93E-03 36 Load fluctuation 2.36E-03 

12 Storage & backup power 2.50E-03 37 Warning failures 3.90E-02 

13 Distributed energy source 3.82E-02 38 Cascaded failures 2.67E-02 

14 Emergency response system 9.20E-02 39 Controllable consumer load 5.42E-03 

15 Substitution 1.70E-02 40 Event based load 6.20E-03 

16 System redundancy 2.50E-02 41 Load forecast 6.52E-03 

17 Engineering Workstation/Toolkit training 3.82E-02 42 Automotive voltage regulator 5.42E-03 

18 Onsite repair resources 1.00E-03 43 Thrust Controller 1.10E-02 

19 Power outage management scheme 8.03E-03 44 Automated power system 7.24E-03 

20 Early detection 7.20E-04 45 Dynamic positioning system 5.01E-04 

21 Preventive maintenance 5.50E-05 46 Vessel environment observer 1.00E-05 

22 Predictive maintenance 7.01E-04 47 Enhance information sharing 6.20E-03 

23 Onsite expertise & resources 5.50E-04 48 Integrated alarm management system 9.01E-03 

24 Good practice guidance 1.00E-03 49 Emergency shutdown system 9.20E-03 

25 External supervision failure 8.30E-02 50 Autonomous smart grid 7.24E-03 
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3.4 Results and Discussions 

The schematics of BN and the corresponding OOBN model are shown in Fig. 18 and Fig. 

19. The power system involves different activities such as: electrical and 

electromechanical, the electronic sensors, and the communication system. Due to the 

complex infrastructure and integrated operating system involved, many risk factors may 

affect a power system. To achieve high efficiency and robustness of the system requires 

building resilient system, and its quantification needs to be conducted considering its 

relevant variables with failure probabilities adopted from different sources and using 

expert judgments for rare events (as shown in Table IV) to analyze and monitor system 

performance. All the variables used in the model are Boolean variables that measure a 

dichotomous response of the parent nodes, such as True/False, Present/Absent, and 

Yes/No. This includes system anticipation, system absorption, the integrated control 

system, and the categorized variables, where True represents a successful/positive 

outcome, and False represents a negative outcome. Similarly, (Yes and No) of resilience 

improvement represents the counterparts of true and false. For example, the blackout 

prevention control in a true state means that the system can be prevented from being a 

blackout scenario by achieving system monitoring through automation, minimizing 

cascaded failures, while a false state shows the system has failed to achieve blackout 

prevention.  

The posterior probability distribution of an intermediate event is determined by the 

impact of the weighted sum of probabilities on its parent nodes. The weighted impact of 
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each node represents the influence or effect on the parent node. Such weights are 

obtained based on the degree of belief using techniques such as an analytic hierarchy 

process and swing weights. The mean weight variable (WMEAN) is presented in Eq. (23), 

where i represents the number of variables connected to the weight averaged child node; 

𝑊𝑖  is the weight associated with the ith variable. 

 W 𝑀𝐸𝐴𝑁 =  ∑ 𝑊𝑖

𝑛

𝑖=1

𝑋𝑖        0 < 𝑊𝑖 < 1 ;       &   𝑋𝑖 = 1, … 𝑛 ;     ∑ 𝑊𝑖 = 1  (23) 

The posterior probability distribution of an intermediate event is based on Boolean logic, 

as demonstrated in the main model in Fig. 17. For example, the association between the 

integrated control system and its sub-system, i.e. emergency shutdown, IF (emergency 

shutdown system = “True”, “True”, “False”), indicates that an emergency shutdown is 

performed successfully due to failure of any synchronized generators or electrical 

equipment, to avoid an increasingly chaotic situation that can occur at a facility by short 

circuits, sudden voltage drops, and more. The integrated control system can be actively 

achieved by providing a backup generator to start without interrupting an operation. The 

same interpretation can be used for other contributing elements of the resilience operation 

model to achieve high resilience.  

The baseline scenario comprises the standard mode in which all the involved factors are 

working perfectly. This reflects the best design and operation of the power system, as 

shown in Fig. 18. For example, the probability table for the integrated control system 

includes True = 9.82E-01 and False = 1.80E-02, suggesting that integration of the control 
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system is 98.2% successful, while 1.8% failure of an operation negatively affects system 

design and operational performance. Furthermore, system vulnerability has two states: 

Present = 5.10E-02 and Absent = 9.49E-01, which means the system has 5% 

vulnerability, which may affect the overall system or cause the failure of the operation, 

although there is a 95% chance that it works perfectly. This helps to calculate the overall 

resilience ratio of the system. It depicts a perfect system resilience with negligible power 

system failure and achieves a successful performance of the operation. 

3.4.1 Sensitivity Analysis 

One method to check the validity of the model is to perform sensitivity analysis on the 

specific nodes and check the impact of a set of variables on the selected nodes. In this 

case, the node System Resilience is considered as the target node, and the impact of its 

causal factors is measured in terms of conditional probability. The sensitivity of the 

power system resilience to the identified nodes in Table V is conducted by instantiating 

the individual node to a “False” state (scenario 1). From Table V and Fig. 21, the 

interpretation is quite clear: for one failure event such as system absorptivity, the negative 

impact on system resilience is lower than the impact of two or more failure events 

(scenario 2). It is not necessary that each impact has the same influence on its child node, 

which, again, as shown in Table V. Several scenarios are performed to analyze the result 

of system resilience. In the extreme right column of Table V are the observations made in 

terms of the number of failure events, and the second right most column, “system 

resilience’, shows the observed consequences on the system’s resilience. 
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Table V: Forward propagation scenarios 

Sensitivity analysis of integrated control system failure using forward propagation scenarios 

Scenarios Maintenance 
System 

Anticipation 

System 

Absorptivity 

System 

Adaptability 

System 

Restoration 

Integrated 

Control 

System 

Power 

Generation 

System 

Power 

Management 

System 

System 

Resilience 

Failure 

Events 

1   F      8.525E-01 One 

2 F  F      7.950E-01 Two 

3   F   F   7.738E-01 Two 

4  F   F    7.291E-01 Two 

5    F   F F 6.208E-01 Three 

6  F   F F   5.470E-01 Three 

7 F  F  F  F  5.431E-01 Four 

8 F   F F  F F 4.290E-01 Five 
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Fig. 21 depicts the graphical representation of observed scenarios and their impact on the expected system 

resilience. Note that the graph of expected resilience is going down from scenario 1 to scenario 8, by 

considering the impacts of more failure events. This signifies that the capacity of each factor contributes to 

the system performance. 
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Figure 21: Resilience model sensitivity analysis 



118 

 

 

Figure 22: Impact of selected variables on system resilience, set to "Fail" 

The investigation and measurement of the individual impact of a failure event on 

expected resilience is shown in Fig. 22. From this study, the impact of each disrupted 

event can be measured systematically, along with the maintainability required to achieve 

the desired resilience of electric power for critical infrastructure, especially systems 

designed for harsh environments. It can also be concluded from the given case study that 

the integrated control system is most sensitive and greatly affects the system 

performance, because it is dependent on the integrated system design and operational 

system. The power distribution system has less impact on system resilience. However, a 

combination of different failure events might have an adverse effect on system resilience.   
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3.4.2    Application of the Proposed Model for Major Incidents in the Offshore Oil 

and Gas Industry 

Case 1: “Goliat FPSO blackout incident of Barents Sea” (Norge, 2016), occurred in an 

oil and gas field located in the northwest of Hammerfest, supplied with onshore hydro-

generated electricity through a subsea cable. On August 26, 2016 at 22:30, production 

was stopped due to a complete loss of power for several hours. The production capacity 

was approximately 110,000 barrels per day, hence a great loss of revenue and stability of 

the platform. Oil fields located in harsh environments face many risk factors that can lead 

to blackout conditions, where the main propulsion system, associated machinery, drilling 

activities and more, stopped operating due to loss of power at the facility. With advanced 

technologies, such as load sharing, an integrated automation system, standby power and 

well-designed operations of the system, these losses can be avoided or overcome. The 

power failure halted the Barents Sea production and increased the safety risk, which 

resulted in economic loss. The proposed model discussed in Section 4.3 is applied to 

assess the impact of the power failure on system resilience where the data in Table 1 is 

used for the analysis due to the paucity of data from this particular incident. The model 

presented in this section provided possible causal factors that increased system 

vulnerability and control measures that could help in protecting the system from 

disruptions and increase the system maintainability. In the given analysis, the following 

factors: system absorptive capability, blackout prevention control, and integrated control 

system were considered to be unsuccessful during system design and operational 
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activities, and the effects of the failure of these factors could be observed on the system 

resilience of the Goliat oil and gas field.  

The absorptive capability of a system can be affected by its dependent features, including 

the backup power generation and storage and backup power capability to energize critical 

equipment, environmental condition monitoring, the stability of installed equipment 

(equipment vibration), and ageing infrastructure. Each of these factors have different 

effects on the disruption of the absorptive capability of the oil and gas field and their 

importance is determined using the weighted sum of probabilities of its parent nodes. The 

Noisy-OR function with a leak probability of 1.0E-02 is used to calculate the conditional 

probability of the factors, as discussed in Section 4.4, which suggests that if the above-

mentioned factors fail, the system resilience will be reduced from 9.49E-01 to 5.73E-01, 

as shown in Fig. 23.  

Case 2: “Hibernia production halted by power outage” (CBC News, 2010): an oil 

production platform located about 315 km southeast of St. John’s, Newfoundland 

suspended its production due to a power outage during periodic maintenance of the main 

generator, which knocked out the alarm system. The emergency power restored the 

essential operations of the platform, but production was halted for days (CBC News, 

2010). By applying the resilience model to this case study, it was observed that for the 

failure of the following factors: system restorative capability, blackout prevention 

control, and maintenance instantiated to a failed state as indicated in Fig. 24. The system 

resilience was then calculated for the Hibernia platform. 
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The failure of the system restorative capacity occurred due to the non-performance of the 

following factors: the engineering workstation, onsite repair resources, power outage 

management scheme, and retrieving early the detection of faults. Like Case 1, each of the 

factor’s impact was based on its sensitivity and weight influence of its parent nodes in the 

system’s restoration. Four causal factors were considered for system restoration, using 

the Noisy-OR formalism; so that if all the components failed, there was still a possibility 

that 1.0E-02 of the system could survive. The same criterion is applied to the True state, 

as all system restoration factors are being considered.  

The model was used to investigate the result for Case 2, where the system vulnerability 

(chance of power loss) due to the above-mentioned factors increased from 4.0E-02 to 

2.7E-01 and the overall system resilience for the degraded state was reduced from 9.49E-

01 to 7.14E-01. The desired resilience of system performance can be maintained and 

improved upon by applying additional control measures, including: availability of stand-

by generators at site, proper implementation of an energy management system, integrated 

power management of the complex system and its efficient power optimization, and the 

installation of protection relays for the critical equipment. The model quantified system 

resilience and its dependent features to aid designers and energy planners dealing with 

the shortcomings of the design and operation, as shown in Fig. 24. 
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Figure 23: Bayesian simulation results for ‘Case 1’ 
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Figure 24: Bayesian simulation results for ‘Case 2’ 
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3.5 Conclusions 

This study has developed a methodology for assessing the resilience of a power 

management system to disruptive events using object-oriented Bayesian network 

formalism. This enables system designers in exploiting different strategies to assess 

resilience, while investigating the impact of contributing risk factors on system 

performance through sensitivity analysis. The sensitivity analysis has revealed that the 

resilience of the power management system is highly dependent on the integrated control 

system, system restoration system and the system absorptive capability. The resilience of 

offshore facilities has been discussed as a function of system vulnerability and 

maintainability, which can be quantified through integrated system design and its 

operation. Extra control measures and different scenarios have been suggested in this 

study to avoid the adverse effects of vulnerability and achieve higher maintainability. The 

Bayesian network modelling approach enables probability updating as well as conducting 

both predictive and diagnostic analysis. 
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Chapter 4: Conclusions and Recommendations 

4.1 Conclusions 

This study has developed a methodology and two models to investigate and quantify 

resilience. The developed models are used to study offshore facilities considering two 

aspects: hydrocarbon release during an offloading operation and the power management 

of disruptive events in offshore facilities, especially in harsh environments. To assess and 

quantify overall system resilience is imperative, as it is necessary to withstand inevitable 

difficulties, and is thus essential for the planning and execution of complex infrastructure 

systems. Offshore infrastructure such as drilling activities, power plants and complex 

facility systems are constantly dealing with natural and human-made disasters; hence, 

they need to be carefully designed to withstand disruptions and recover rapidly. The 

resilience of offshore facilities is discussed using the functions of system vulnerability 

and maintainability, which can be quantified through integrated system design and 

operation using a Bayesian network. This enables system designers to exploit different 

strategies to assess resilience and the underlying factors of design and operation. 

Investigation of the impact of each contributing factor on system performance is verified 

through sensitivity analysis. 

To counter the negative effects of vulnerability, there is a need for a comprehensive 

parallel model for system maintenance and its underlying factors. The extent of 

vulnerability in the present model may adequately be controlled by a corresponding 

increase in maintainability. This study employs a feed forward network that approaches 
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positive convergence towards system resilience. This not only ensures the strength of the 

model in understanding the combined effect of all underlying multi-level factors on 

system resilience, but also in reducing the unwanted events’ probabilistic weights. The 

system enables engineers to predict with better accuracy the effects of any unwanted 

outcomes and thus manage the influence of various risk factors that inhibit normal 

operation within the framework. Extra control measures and different scenarios are 

studied and analyzed to avoid the adverse effects of a system’s vulnerability and achieve 

higher maintainability. 

The sensitivity analysis conducted helps to guide the pre-event and post-event strategies 

required as building blocks of resilience within the system. The generalization of this 

model explicitly allows researchers to further extend its use by incorporating other sets of 

features in the network arrangement to study the net effect of resultant factors on system 

resilience. The results reported from the models in case studies appear satisfactory and 

the built model is capable of deployment for an engineered system. The application of 

OOBN gives the advantage of breaking down the complex system into simplified 

reusable networks that can be easily combined and extended. For future work, the 

proposed model can be implemented for continuous variables (multi states, graphical) to 

improve the analysis of resilience for complex systems to minimize the design and 

operational risks in harsh environments. For instance, a decision support system for 

corrective measures and optimization of proactive design and operational systems can be 

studied. 
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4.2 Recommendations 

The simulation of models is implemented using GeNIe 2.0 and Hugin software, which 

shows the diverse and useful capability to analyze the resilience of critical infrastructure 

systems using a probabilistic approach. The author believes that: 

• The model provides an efficient and rigorous approach to quantify resilience for 

any critical infrastructure based on a Bayesian network format to present 

quantitative risk assessment by exploring different scenarios. 

• Considering the real data and reducing the assumptions in the case study will give 

more accurate and realistic computational results and effective implementation 

strategies. 

• The proposed model can be implemented for continuous variables to improve the 

analysis of resilience for complex systems. 

• The OOBN allows an effective communication between sub-networks, avoids 

repetition of the same node structure by enabling reusable networks, and achieves 

a lessened conditional probability table, which is a primary objective in dealing 

with a complex system. 

• The generalization of this model explicitly allows researchers to further extend its 

use by incorporating other sets of features in correct network arrangement to 

study the net effect of resultant factors on either system resilience or some other 

outcome of high value. 
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• Uncertainty of the model and data needs to be investigated. A detailed uncertainty 

analysis combined with resilience analysis would strengthen the confidence and 

provide more realistic understanding of complex engineering systems. 
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