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Abstract

We discuss methods for comparing effects of two treatments A and B. We investigate

the performance of response-adaptive (RA) and covariate-adjusted response-adaptive

(CARA) designs in multi-center clinical trials. First, we discuss applying RA designs

to maximize the well-being of participating patients in multi-center clinical trials. We

assume that the centers are selected from a large population of centers and develop a

generalized linear mixed model (GLMM) to examine the treatment effect. The asymp-

totic properties of the maximum likelihood (ML) estimators of model parameters are

derived using the influence function method. We verified their theoretical properties

through simulation studies. The techniques are then applied to a real data that were

obtained from a multi-center clinical trial designed to compare two cream prepara-

tions (active drug/control) for treating an infection. Secondly, we investigate the effi-

ciency for estimates of model parameters and ethics for participating patients among

RA, CARA, and completely randomized (CR) designs for a generalized linear model

(GLM). We consider the logit model to measure efficiency and ethics. Furthermore,

we showed that ML estimators of GLM parameters are consistent and asymptotically

follow multivariate normal distribution for adaptive designs. A simulation study was

conducted to verify these theoretical results. Finally, we provide a justification of why

asymptotic results for Wald-type tests for adaptive designs can be used. We proved

that the choice of adaptive designs affects the statistical power of hypothesis testing

via these quantities: the target allocation proportion, the bias of the randomization

procedure from the target, and the variability induced by the randomization process.

Moreover, we showed that the statistical power increases when the design variability

decreases for a covariate in a logit model. Our theoretical findings are verified by

simulation results.
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Chapter 1

An Overview of Statistical

Modelling and Adaptive Designs in

Clinical Trials

In the past several decades, much research has been conducted in developing therapy

methods and drug development through clinical trials. Researchers have been inter-

ested in acquiring an efficient procedure for comparing new treatments with existing

ones. These procedures include the design criteria, which consist of treatment assign-

ments to patients, and comparisons of treatment methods characterized by statistical

approaches for identifying the best treatment. At the initial stage of a clinical trial,

the selection of a suitable design for treatment assignment is of primary concern. It is

also important to identify a suitable model that will be used for data analysis at the

initial stage of the experiment. Thus is however challenging due to lack of sufficient

data at the beginning of an experiment. In fact, sufficient data usually is available at

the end of a clinical trial. Given sufficient data for statistical inference, one can choose

a simple and an efficient model, for future usage, from a set of candidate models. For
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example, the Akaike Information Criterion (AIC) or the Bayesian Information Crite-

rion (BIC) can be used to choose a model to describe a given data set. Furthermore,

the Quasi-AIC (QAIC) can be applied as a model selection criterion when the estima-

tion of regression parameters are based on Quasi-Likelihood (QL) methods [Burnham

and Anderson (2002)]. Thus, the absence of sufficient data at the initial stage of the

trial makes the identification of the best model a challenging task.

In this thesis, we investigate some designs for treatment assignment and develop a

new approach for conducting statistical inference for the purpose of comparing two

treatments, say A and B, in multi-center clinical trials. In particular, we will investi-

gate the performance of Response-Adaptive (RA), and Covariate-Adjusted Response-

Adaptive (CARA) designs in maximizing the well-being of participating patients while

collecting responses and associated covariates and assigning treatments to patients at

participating medical centers. The purpose is to optimise the resources while having

an efficient statistical inference procedure at the end of the clinical trial. Throughout

this thesis, treatment A will be considered an experimental treatment and treatment

B will be an existing treatment. Burnham and Anderson (2002) notes that although

an ideal data set cannot be collected to explain the behavior of treatments A and

B, the experimenter should be cautious when collecting data for this purpose. For

instance, an experimenter has to be cautious with the type of response (binary, count,

continuous, and longitudinal) and covariates to be collected, since the correct identi-

fication of the behavior of treatments A and B depends on the data collected.

According to Sverdlov (2016), clinical trials typically have several goals, which can be
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divided into two main objectives:

objective 1 : have an efficient statistical inference at the end of a clinical trial, and

objective 2 : respect the well-being and dignity of participating patients.

(1.1)

According to Sverdlov (2016), efficiency generally refers to the power of testing a re-

search hypothesis in clinical trials, while ethics often concerns patients assigned to

unsafe or inferior treatments. An efficient statistical inference is necessary for the

well-being of future patients. Sverdlov (2016) refers to the conflict between these two

objectives as “individual versus collective ethics”. It is clear that statistical power

increases when sample size is larger. However, increasing the sample size results in

the following: (i) raising the cost of an experiment and (ii) increasing the number of

patients in randomization.

Suppose a clinical trial is conducted in J medical centers, which are randomly selected

from a large number of medical facilities. Furthermore, suppose that the responses are

binary and denoted by Yij. Let n∗j be the total number of patients who are recruited

and assigned to one and only one of the two treatments in center j, j = 1, 2, · · · , J and

n =
J∑
j=1

n∗j , where n is the total number of participating patients. Define the response

Yij and treatment assignment XijA to patient i in center j, for i = 1, 2, · · · , n∗j and

j = 1, 2, · · · , J by

Yij =


1 if treatment is

a success,

0 otherwise,

and XijA =


1 if patient i in center j

is assigned to treatment A,

0 otherwise.

(1.2)

Although the comparison of treatments effect is the primary goal, treatment effect can
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be efficiently compared when suitable covariates are included in a proper model. Some

typical covariates are gender, smoking status, age, cholesterol level, chronic conditions,

and so on. The smoking status of a patient can influence the response of medical care

for cancer, whereas the patients’ chronic disease, for instance high blood glucose level

or cholesterol level, can affect the response of medical care for hypertension. Suppose

that K number of categorical covariates other than treatment, say v∗1, v
∗
2, · · · , v∗K , are

collected in the clinical trial, and each covariate has a finite number of levels, where

v∗k has Lk + 1 levels: say v∗k0, v
∗
k1, · · · , v∗kLk for k = 1, 2, · · · , K. Then, we can define a

set of dummy variables based on the reference category v∗k0, k = 1, 2, · · · , K, for each

covariate. Without loss of generality, let Z′ij = (Zij1, · · · , Zijp) be the p dimensional

vector of dummy variables corresponding to the covariates of patient i in center j,

where p =
K∑
k=1

Lk and each component of Zij has binary levels, for i = 1, 2, · · · , n∗j

and j = 1, 2, · · · , J . These dummy variables represent the characteristic of patients.

Thus, Zij is the covariates of patient i in center j.

Sverdlov (2016) notes that one can assume a starting model for a clinical trial. In

what follows, we add center effects to Sverdlov (2016) initial model because the ex-

periment in this thesis is conducted at multiple clinics. Therefore, we assume that

Yij, conditional on xijA, zij, and uj follows the statistical model,

E(Yij|xijA, zij, uj) = g∗(θ, xijA, zij, uj), (1.3)

for i = 1, 2, · · · , n∗j and j = 1, 2, · · · , J , where g∗(.) is a regression function; uj is the

effect of center j; θ is a vector of model parameters which includes the main effect of

treatment A compared to treatment B, the main effects of other covariates, and the

effects of treatment by covariate interactions.
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In this thesis, we wish to conduct efficient statistical inference of the treatment effect,

in the following areas:

(i) The selection of an appropriate regression function g∗.

The function g∗ in (1.3) can be selected from existing binary link functions such

as logit, probit, cauchit, and complementary log-log [See McCullagh and Nelder

(1989)]. The maximum likelihood (ML) method for parameter estimation rely

on a link function. On the other hand, identifying the behavior of collected

data using either the Quasi-Likelihood (QL) or the Generalized Quasi-Likelihood

(GQL) method does not require a full model assumption to conduct statistical

inference. Also, a nonparametric method could be used to conduct inference at

end of the clinical trials [Sverdlov (2016)].

(ii) The inclusion of variables in linear predictor.

In our analysis, we will determine the types of variables, such as covariate and

center effect, that should be incorporated into the linear predictor. Depending

on the variables included in the model, we will use the Generalized Linear Model

(GLM), or the Generalized Linear Mixed Model (GLMM) or the Generalized

Linear Model with fixed center effects to analyze the data set.

(iii) The estimation of model parameters.

A suitable method will be implemented to estimate the model parameters.

Some methods in literature are Maximum Likelihood (ML), Method of Mo-

ments (MM), Quasi-Likelihood (QL) [see Wedderburn (1974); McCullagh and

Nelder (1983)], and Generalized Quasi-Likelihood (GQL) [see Sutradhar (2003)].

In this thesis, we have applied the ML method. We also introduced a new ap-

proach in § 2.3 for computing MLE based on the concept of influence functions.
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(iv) Hypothesis testing.

After estimating the model parameters, we will conduct hypothesis testing to

identify whether treatment A is significantly different from treatment B for a

given significance level. For example, a Likelihood-Ratio test, a Score test, or a

Wald test will be implemented to test regression parameters. Furthermore, the

power of the test for a given size of the test will be computed and checked with

the experimenter’s predetermined value of power. Also, if the computed power

does not attain this threshold value, then we will increase the sample size until

this threshold value is achieved.

(v) Interpretation of results.

Finally, the results will be interpreted after reaching the experimenter’s thresh-

old value of power. Also, the best treatment will be identified at the end of the

clinical trial.

1.1 Designs in Clinical Trials

Friedman et al. (2015) define “a clinical trial as a prospective study comparing the

effects and value of intervention(s) against an existing treatment in human beings”.

For instance, in a clinical trial to compare a new treatment, say A against an existing

treatment, B, treatment A is considered the intervention and treatment B as the

existing. In statistics, the variable treatment is an example of a controllable variable

or factor since the values or levels of the treatments can be set by the experimenter.

Thus, we define controllable variables or factors as any variable that might influence

the response whose values the experimenter can set. That is, by controllable variable

we mean that the experimenter can decide the type of randomization to apply in

selecting a design. In contrast, covariates are variables that might affect the outcome
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but experimenters cannot control, nonetheless, these covariates can be measured.

The concept of selection of designs was introduced by James Lind in a clinical trial,

which was conducted in 1747 [Dunn (1997)] involving six groups of food, which were

suspected by Lind, to cure scurvy. However, in this experiment, there was no evidence

that the designs were chosen with a pre-specified objective of conducting valid infer-

ence. According to Oyet (1997), the principle of optimal designs was first proposed by

Smith (1918). In these optimal designs, a criteria is applied to choose designs for the

purpose of conducting efficient statistical inference with minimum sample size, which

will reduce the cost of experimentation.

When constructing optimal designs, randomization is commonly applied to lessen ex-

perimental bias. In fact, the principle of randomization introduced by Ronald Fisher

in 1926 was systematically applied in agriculture. Thus, completely randomized (CR)

designs or equal allocations is a randomization method used to avoid selection or

experimenter bias during treatment allocation [Shao and Yu (2013)]. Furthermore,

although some pivotal covariates are unknown to the experimenter, we may be able

to estimate the treatment effect efficiently by applying randomization because ran-

domization reduces experimental bias. In fact, complete randomization is used in

equal allocation. However, “equal allocation may result in severe imbalance not only

between the treatment groups but also across covariates” [Shao and Yu (2013)]. But,

balances will be asymptotically achieved between the treatment groups as well as

across covariates. In fact, reducing experimental bias is the pre-selected objective

of equal allocation. Instead of the concept of complete randomization, it is possi-

ble to apply other randomization methods to quickly achieve objective 1 in (1.1).

For instance, accrued information is utilized in adaptive designs to avoid complete
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randomization. So, we discuss the concept of adaptive randomization in the next

section.

1.1.1 Adaptive Designs

Adaptive designs were introduced to overcome disadvantages of equal allocation with-

out completely eliminating the principle of randomization. So, these designs impose

some restrictions in the selection process while maintaining the spirit of randomiza-

tion. The history of treatment assignments in an experiment is used to select the next

assignment in restricted randomization, which is a member of the family of adaptive

designs. In adaptive designs, accumulated data are used to create these restrictions.

As a result, restricted randomization is an approach to maintain balance between

treatment groups when sample size is small. Bailey (1987) had noted that the con-

cept of restricted randomization was developed by Yates (1948) and Youden (1972).

The main purpose of restricted randomization is to achieve objective 1 in (1.1).

However, this randomization was not based on the concept of optimal designs.

Contrary to the objective of restricted randomization, the concept of adaptive designs,

first introduced by Thompson (1933) was to obtain data for the purpose of respecting

the well-being and dignity of participating patients. In 2010, the US Food and Drug

Administration (FDA) recommended some guidelines for applying adaptive designs

in clinical trials. The FDA (2010) notes that modifications can be made to the design

based on interim analysis of already collected data before collecting data for final

analysis. Modification can be made to the following:

(i) randomization procedure,

(ii) total sample size of the study (including early termination), and
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(iii) analytic methods to evaluate the endpoints (e.g., covariates of final analysis,

statistical methodology, Type I error control).

These adaptive designs are not only applied to choose the best treatment, but they are

also used to find the best dose level for a group of patients having specific covariates,

because small dosage amounts may not significantly improve the disease status of a

patient. On the other hand, a large dosage may produce dangerous side effects [FDA

(2010)]. Adaptive designs are also used in the development of medical device [FDA

(2015)].

There are currently a wide variety of adaptive designs in the literature. The differ-

ences in these designs are determined by their pre-selected objectives. For instance,

Covariate-Adaptive (CA), Response-Adaptive (RA), Covariate-Adjusted Response-

Adaptive (CARA), Response-Adaptive Covariate-Adjusted (RACA) designs are mem-

bers of the family of adaptive designs. Rosenberger et al. (2012), states that “an

important class of clinical trial designs is adaptive randomization, which is a change

in randomization probabilities during the course of the trial to promote multiple ex-

perimental objectives, while protecting the study from bias and preserving inferential

validity of the results”. Next, we describe these adaptive designs based on the accru-

ing data and randomization of treatment assignments.

A sigma algebra is a set of all possible information generated by random variables.

For i = 1, 2, · · · , n∗j , let us assume that Xij = σ(X1jA, X2jA, · · · , XijA), and Yij =

σ(Y1j, Y2j, · · · , Yij) are the sigma algebras generated by treatment assignments, and re-

sponses respectively in center j, j = 1, 2, · · · , J . Thus, for i = 1, 2, · · · , n∗j , σ(Xij,Yij)

is the sigma algebra in center j, j = 1, 2, · · · , J . That is, σ(Xij,Yij) is a set of

all possible information generated by {X1jA, X2jA, · · · , XijA, Y1j, Y2j, · · · , Yij}. For
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i = 1, 2, · · · , n∗j , define C(zij) = (z′1j, z
′
2j, · · · , z′ij)′ is the history of covariates in center

j, j = 1, 2, · · · , J and Fij = σ(Xij,Yij) for j = 1, 2, · · · , J . Let πijA be the prob-

ability that patient i in center j will receive treatment A, for i = 1, 2, · · · , n∗j and

j = 1, 2, · · · , J . We also define similar sigma algebras when we apply a common ran-

domization for treatment assignments to all centers. In that case, for i = 1, 2, · · · , n,

Xi = σ(X1A, X2A, · · · , XiA), and Yi = σ(Y1, Y2, · · · , Yi) are the sigma algebras gen-

erated by treatment assignments, and responses respectively with σ(Xi,Yi) as the

common sigma algebra. For i = 1, 2, · · · , n, define C(zi) = (z′1, z
′
2, · · · , z′i)′ is the

history of covariates and Fi = σ(Xi,Yi). Here, πiA is the probability that patient i is

getting treatment A for i = 1, 2, · · · , n. In Chapter 2, response adaptive designs were

only applied to each center independently. The adaptive designs in Chapters 3 and

4, however, implemented a common randomization to all centers. In the next subsec-

tions, the definitions of adaptive designs are discussed for a common randomization

to all centers.

Restricted Randomization

When applying restricted randomization, treatment assignments of previous patients

are taken into account when choosing a treatment for a new patient. Thus, πiA = 1/2

and πiA = P (XiA = 1|Xi−1) for i = 1, 2, · · · , n.

Response-Adaptive (RA) Designs

In RA designs, treatment assignments and available responses of previous patients

are used in randomization of treatment assignments. Therefore, π1A,RA = 1/2 and

πiA,RA = P [XiA = 1|σ(Xi−1,Yi−1)] for i = 2, 3, · · · , n, where σ(Xi−1,Yi−1) is the sigma

algebra of treatment assignments and responses.
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Response-adaptive designs have become a desirable treatment allocation procedure in

clinical trials because they commonly lead to the assignment of more patients to the

potentially better treatment. Beginning with Zelen (1969), several authors have pro-

posed a variety of adaptive procedures for allocating treatments to patients in clinical

trials. Zelen (1969) introduced an urn based procedure commonly referred to as the

play the winner (PW) rule for comparing pairs of treatments, say A and B. In this

procedure, the first treatment assignment to patient 1 is usually made based on the

outcome of tossing a fair coin. According to Zelen (1969), a success on a particular

treatment generates a future trial on the same treatment with a new patient; a failure

on a treatment generates a future trial on the alternate treatment. Wei and Durham

(1978) noted that the time it takes to observe the response of a patient in a clinical

trial may be much longer than the time between entry of new patients for treatment

assignment. Thus, they proposed a modification to the PW rule called the random-

ized play the winner (RPW) rule. They recommended placing an initial number of u

balls of each type in the urn. In their procedure, β balls of type A and α (β ≥ α ≥ 0)

balls of type B are added to the urn if the response to treatment A is a success. The

type of balls added to the urn is reversed if the response to treatment B is a success,

that is, β balls of type B and α (β ≥ α ≥ 0) balls of type A are added to the urn.

The randomized play the winner rule is thus usually denoted by RPW(u, α, β).

It is clear that adaptive designs based on the urn model can only be applied in clinical

trials with binary responses. If an experimenter has a target proportion of allocation

for, say treatment A in mind, the PW and RPW rules cannot be applied. As a result,

Eisele (1994) and Eisele and Woodroofe (1995) proposed a doubly adaptive biased coin

design (DBCD) which uses an allocation function g(.) to target any specified allocation

proportion ρ for treatment A. The design is said to be doubly adaptive because the
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procedure requires estimating the value of ρ, the desired allocation proportion, after

each trial and also takes into account the current proportion of subjects assigned to

each treatment. In our simulation studies, we have used the allocation proportion

ρ(P̂AS, P̂BS) =

√
P̂AS

(
√
P̂AS +

√
P̂BS)

, (1.4)

proposed by Rosenberger, Stallard, Ivanova, Harper and Ricks (2001), to compute

estimates of ρ where P̂AS and P̂BS are the proportions of successes in the group of

patients assigned to treatment A and treatment B respectively. The expression (1.4)

is commonly referred to as the RSIHR allocation proportion. However, the approach

of Eisele (1994) and Eisele and Woodroofe (1995) is more complicated to achieve the

desired allocation proportion, ρ [see Rosenberger and Lachin (2016)]. Recently, Hu

and Zhang (2004) developed a family of allocation functions defined for all ξ ≥ 0 by

g(ξ)(0, ρ) = 1, g(ξ)(1, ρ) = 0,

g(ξ)(υ, ρ) =
ρ(ρ/υ)ξ

ρ(ρ/υ)ξ + (1− ρ)((1− ρ)/(1− υ))ξ
, (1.5)

where υ is the proportion of patients assigned to treatment A, and ξ is nonnegative

integer. for assigning treatments in DBCD and generalized the concept to more than

two treatments. They also studied the asymptotic properties of the proportion of pa-

tients υ assigned to treatment A under certain regularity conditions. Hu et al. (2006)

then derived a lower bound for the asymptotic variance of the allocation proportions

for response-adaptive procedures under the assumption of normality. They discussed

the issue of how to choose the best adaptive design procedure for a particular experi-

ment and showed that the DBCD approach of Hu and Zhang (2004) is asymptotically

best under certain conditions. More recently, Baldi Antognini and Zagoraiou (2012)
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highlighted the importance of incorporating covariates in models for generating adap-

tive designs since the effectiveness of a treatment typically depends on the profile

of a patient. Thus, they introduced the so-called reinforced DBCD. Nevertheless,

they noted that further research is needed in analyzing the data obtained through

response-adaptive the case of generalized linear models (GLM). Additional reviews of

various types of response adaptive designs can be found in Rosenberger and Lachin

(2002), and Chow and Chang (2008).

Covariate-Adaptive (CA) Designs

If the treatment selection for a new patient is based on the previous history of pa-

tients’ treatment assignments and covariate profiles, as well as the covariate profile of

the new patient, then the design criterion is called the CA designs in clinical trials.

In CA designs, treatment assignments and covariates of previous patients as well as

the covariates of the current patient are employed in the selection of treatments. It

follows that πiA,CA(z i) = P [XiA = 1|Xi−1, C(zi−1), z i] for i = 1, 2, · · · , n.

Rosenberger and Sverdlov (2008) note that “the goal of CA designs is to adaptively

balance the covariate profiles of patients randomized to treatments”. The objective of

balancing treatments include achieving overall balance, balance within covariate mar-

gin, and balance within stratum, which is a combination of the levels of covariates.

The advantage of achieving overall balance of treatment assignment is an increase

in the power of hypothesis testing. If pre-stratification of covariates is possible at

the initial stage of a clinical trial, then separate restricted randomization can be im-

plemented to assign treatments within each stratum to attain these balancing goals.

Such a design method is called the stratified permuted block (SPB) design. How-

ever, when the number of strata is large, then SPB design is impractical [Hu and Hu
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(2012)]. Thus, CA designs were introduced to achieve these balancing goals when

the number of strata is large. These CA designs are called minimization procedures

[Rosenberger and Sverdlov (2008)]. Moreover, many authors such as Pocock and Si-

mon (1975), Wei (1978), Hu and Hu (2012), and Lin and Su (2012) developed CA

designs to achieve the balancing of covariates to treatments in sequential clinical trials.

The equal allocation method for treatment assignments does not depend on covariate

profiles. Therefore, there is a chance that under equal allocation procedures, all treat-

ment assignments to some covariate profiles will be of one category, say treatment A.

When this happens, there is treatment imbalance within covariate margin or stratum.

This will then decrease the power of the test for significance of all model parameters.

However, the overall balancing goals (nA/n→ 0.5 in probability) of treatment assign-

ments can still be achieved by applying the equal allocation, where nA is the number

of patients assigned to treatment A from a total number of n patients.

The family of CA designs can be further partitioned into two sub families. The first

family of CA designs is based on balancing treatment assignments over the covariate

profiles by defining the measure of treatment imbalances. For instance, Pocock and

Simon (1975) established a measure of marginal treatment imbalances that can be

constructed by using differences between the number of treatments within the levels

of covariates and appropriate weights. Hu and Hu (2012) developed a function for

the measure of imbalance that includes three types of treatment imbalances: overall,

marginal, and within stratum. Lin and Su (2012) developed a measure of treatment

imbalance with empirical cumulative distribution functions by using observed covari-

ates. Then, the minimization method can be applied to minimize these measures

of treatment imbalances to achieve treatment balancing goals. In the minimization
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method, when a new patient becomes available for treatment assignment, the selec-

tion probability p∗ is chosen in such a way that there is a higher chance of assigning

the treatment that will minimize the measure of treatment imbalances over covariate

profiles. Moreover, an experimenter will decide on a value greater than 1/2 and less

than or equal to one to assign to the selection probability p∗ [see Chapter 9 of Rosen-

berger and Lachin (2016)]. In fact, if the experimenter picks the higher chance to be

equal to one, then the allocation becomes deterministic.

Covariate-Adjusted Response-Adaptive (CARA) Designs

In CARA designs, the information on treatment assignments, covariates, and re-

sponses of previous patients as well as the covariates of the current patient are uti-

lized in the new patient’s treatment assignment. Thus, πiA,CARA(z i) = P [XiA =

1|Fi−1, C(zi−1), z i] for i = 1, 2, · · · , n, where Fi−1 = σ(Xi−1,Yi−1).

In recent years, clinical trials are mostly conducted in five different phases namely,

phase 0 to phase IV. Also, a large number of subjects participate in phase III clini-

cal trials. Thus, ethicists are consulted by a clinical trial research team to maintain

human ethical standards [see Rosenberger, Vidyashankar and Agarwal (2001)]. High

standard of ethics imply that more patients have to be treated by the best treatment.

Response-adaptive designs are known to be effective in assigning more patients to the

best treatment.

Consider the multi-center clinical trial for Stroke Prevention in Atrial Fibrillation

Study [see Hart et al. (2003), Stroke Prevention in Atrial Fibrillation Investigators

(1990)]. According to Hu et al. (2015), “Had the researchers ignored the factor of

patients anticoagulation status, which can be used as a covariate in the statistical
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model, their results would have produced a misleading conclusion that aspirin was

generally more effective than placebo in preventing the occurrence of stroke”. Thus,

either aspirin or placebo is the globally best treatment to reduce the number of strokes

in patients having atrial fibrillation. That is, aspirin is a better treatment only for a

subgroup of patients and this clinical trial is an evidence for existence of drug by drug

interactions. In fact, researchers have been exploring the invention of personalized

medicine due to increasing availability of biomarkers and the observed heterogeneity

of patients’ responses to treatment [see Sverdlov (2016)]. Therefore, how does covari-

ates in randomization of treatment assignments help to achieve objective 2 in (1.1)?

CARA design has been shown to be a method to attain this objective [Hu (2012)].

More details about CARA designs can be found in Rosenberger, Vidyashankar and

Agarwal (2001), Zhang et al. (2007), and Hu et al. (2015).

Rosenberger, Vidyashankar and Agarwal (2001) considered the application of CARA

designs based on a logit model. Zhang et al. (2007) extended the CARA designs to

more than two treatments under the framework of a generalized linear model and dis-

cussed a detailed formulation of the design under linear and logistic regression models.

But they considered separate models for each treatment while applying CARA de-

sign to select treatment assignments. Recently, Zhu (2015) noticed a drawback of

the treatment assignment procedure of Zhang et al. (2007). Zhu (2015) notes that

“it assumes that there are no common parameters for the two treatments of interest,

thus estimating every parameter based on the data from just one treatment, which

excludes many commonly used models”. The model of Rosenberger, Vidyashankar

and Agarwal (2001) has been implemented user-friendly statistical software, RStudio.

Here, we will investigate the large sample behavior of the Maximum Likelihood Es-

timate (MLE) of model parameters in the model of Rosenberger, Vidyashankar and
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Agarwal (2001) for CARA designs.

According to Hu (2012), “covariate information plays an important role in the design

and analysis of clinical trials to develop personalized medicine”. In fact, covariate

information is used in the randomization of CA and CARA designs. A pre-selected

objective of CA designs is achieving statistical efficiency; whereas achieving participat-

ing patients’ ethics is the pre-selected objective of CARA designs. Achieving efficiency

and ethics goals may be stand alone objective in these adaptive designs, however, in

recent years, researchers have been interested in how to incorporate achieving both

efficiency and ethics aims in a design. For example, Response-Adaptive Covariate-

Adjusted (RACA) designs have incorporated components of efficiency and ethics in a

design. This design is described in the next section.

Response-Adaptive Covariate-Adjusted (RACA) Designs

Response-Adaptive Covariate-Adjusted (RACA) designs were introduced by Ning and

Huang (2010). In RACA design, the information on treatment assignments, covari-

ates, and available responses of previous patients as well as the covariates of the

current patient are used in the new patient’s treatment assignment [Ning and Huang

(2010)], however noted that the mechanism of CARA and RACA designs are com-

pletely different. To be specific the probability of assigning a new patient to treatment

A is

πiA,RACA(z i) = P [XiA = 1|Fi−1, C(zi−1), z i]

=
[πiA,RA]τ1 [πiA,CA]τ2

[πiA,RA]τ1 [πiA,CA]τ2 + [1− πiA,RA]τ1 [1− πiA,CA]τ2
(1.6)

where πiA,RA = P [XiA = 1|σ(Xi−1,Yi−1)], and πiA,CA(z i) = P [XiA = 1|Xi−1, C(zi−1), z i]
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for i = 2, 3, · · · , n, τ1 and τ2 are the tuning parameters. It is clear that if τ1 = 0 and

τ2 = 1, we get the pure CA design; if τ1 = 1 and τ2 = 0, we get the pure RA design.

Thus, RACA designs are the combination of RA and CA designs. Also, the measures

of efficiency and ethics can be controlled by the tuning parameters in RACA designs

[see Lin et al. (2016)]. A difference of CARA whereas an initial model is required

for its application, an initial model is not needed to apply RACA designs. According

to Yuan and Liu (2011), when we incorporate CA design into a group sequential RA

design, the resulting design combines the advantages of CA and RA design.

Response-adaptive designs create more severe treatment imbalances compared to

equal allocation over covariate profiles. However, the focus of RACA designs is to

achieve simultaneously objective 1 and objective 2 in (1.1). That is, measures of

efficiency and ethics are accounted in RACA designs. In fact, recent research have

focused on achieving efficiency and ethics in a design. For example Hu et al. (2015)

developed a unified family of CARA designs using the components of efficiency and

ethics in a design.

1.2 Statistical Models

It is well known that physical, psychological, and genetic factors can contribute to

differences between patients in a clinical trial. Human beings are different among

others with respect to several factors such as physical, psychological, and genetic

factors. Thus, one can expect patient population to be heterogeneous. Therefore,

statistical modelling is required to identify the effect of treatments on the response by

including these heterogeneous factors, which are known as covariates. In what follows,

we will discuss some of these candidate models, which can be used in the analysis of
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a given data. The models are Generalized Linear Models, and Generalized Linear

Mixed Effect Models.

1.2.1 Generalized Linear Models (GLMs)

The GLMs have been implemented in various disciplines such as agriculture, eco-

nomics, engineering, medicine, and social sciences [Lindsey (1997)]. These class of

models were first introduced by Nelder and Wedderburn (1972). Moreover, GLMs

can be seen as an extension of classical linear models [McCullagh and Nelder (1983)].

Components of GLMs

A GLM has three components, namely, the probability distribution, the linear predic-

tor, and the link function [McCullagh and Nelder (1983)]. We provide a description

of these components only for binary responses, which are success or failure. Define,

the response Yi and treatment assignment XiA of patient i for i = 1, 2, · · · , n by

Yi =


1 if treatment is

a success,

0 otherwise,

and XiA =


1 if patient i is assigned

to treatment A,

0 otherwise.

(1.7)

Let, z′i = (zi1, · · · , zip) be the p dimensional vector of observed covariates of patient

i. We note that each component of zi is either 0 or 1, for i = 1, 2, · · · , n.

Following McCullagh and Nelder (1989) it is common to define a generalized linear

model, in general, as

E(Yi|xiA, zi) = g∗(θ, xiA, zi), i = 1, 2, · · · , n. (1.8)
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Let Λi = E(Yi|xiA, zi). We note that the GLM in (1.8) is similar to (1.3) without

center effects. In this thesis, we consider the response to be binary. Therefore, we

have

E(Yi|xiA, zi) = P (Yi = 1|xiA, zi).

Our purpose is to develop the relationship between the probability of the response,

Λ, the treatment assignment and covariates of a patient, and treatment by covariate

interactions w′i = (xiA, 1, zi, xiAz′i). We now describe the three components of a GLM.

1. The probability distribution of Y

When we apply equal allocation for treatment assignments, the responses are

independent. These responses are however not identically distributed because

the distribution of Yi depends on wi, where w′i = (xiA, 1, z
′
i, xiAz′i). Suppose

that conditional on wi, the binary response Yi follows the bernoulli distribution

with probability mass function

P (Yi = yi|wi) = Λyi
i (1− Λi)

(1−yi), for yi = 0, 1, (1.9)

where Λi = E(Yi|xiA, zi). Now when an adaptive design is applied to select

treatment assignments, it creates dependency among responses because the

treatment assignment will depend on accumulating data. However, the dis-

tribution assumption in (1.9) is still valid when adaptive designs are used as the

treatment selection criteria.

2. The linear predictor

We will assume that Λ is influenced through a linear combination of treatment
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assignments and covariates given by

ηi = w′iθ,

where θ is a vector of model parameters including the main effect of treatments.

3. Link function, Ψ

To examine the relationship between Λ and η, we need a function to construct

the relationship. It is clear that, Λ takes values between 0 and 1, whereas, η can

take values between −∞ and ∞. The functions which define the relationship

between Λ and η are called link functions in GLMs. In general, Λ and η are

connected through a link function

Ψ(Λi) = ηi.

Some candidate link functions are

(i) the logit function

Ψ1(Λ) = ln[Λ/(1− Λ)],

(ii) the probit function

Ψ2(Λ) = Φ−1(Λ),

(iii) the cauchit function

Ψ3(Λ) = tan
[
πΛ− π

2

]
,
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(iv) the complementary log-log function

Ψ4(Λ) = ln[− ln(1− Λ)].

1.2.2 Generalized Linear Mixed Effect Models (GLMMs)

Generalized linear mixed models are very popular statistical models which have been

used extensively in many areas of applications such as biomedical, clinical trials

[Agresti and Hartzel (2000); Yaseri et al. (2014)], social science and agricultural sci-

ence. A useful discussion on the theories and applications of GLMM can be found in,

for instance Jiang (2007) and McCulloch, Searle and Neuhaus (2008).

When clinical trials are conducted in multiple centers, there is a possibility that center

effects might influence the response. In fact, some unobservable causes may also affect

responses of patients. For example, according to Kahan (2014), some possible latent

effects are

(i) effect of variation in surgeons’ skill between centers

(ii) effect of differences in guidelines of centers

(iii) these multiple centers might be selected from different countries.

It is clear that under equal allocation criterion for treatment assignment, responses

of patients within a center might be correlated; but responses of patients between

centers are independent. However, we can assume that conditional on center effect,

responses of patients within a center are independent [Jiang (2007)]. Since J centers

in the experiment are randomly selected from a large number of medical centers, we

will assume that center effects are random and these center effects are heterogeneous
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between centers. On the other hand, the fixed effects of covariates are common across

centers. Thus, the GLMM approach we have developed in this thesis will be used to

account for three features: (i) within center correlation, (ii) between center hetero-

geneity, and (iii) common fixed effects across centers [Tuerlinckx et al. (2006)]. In

what follows, we will assume that these center effects follow a known distribution.

1.3 Statistical inference

In a clinical trial, treatment comparisons include the following: (i) finding the best

dosage level of a drug for a group of patients who have certain characteristics or co-

variates, (ii) comparing a new drug with existing drugs for a disease. Also, an efficient

treatment comparison through hypothesis testing is important for future patients. In

general, an experimenter may claim that a new treatment is more effective than an

existing treatment. Now, if there is no interaction between treatment and covariates,

the experimenter may test significance for overall effect of treatment A compared to

treatment B through the hypothesis,

H0 : βA0 = 0 HA : βA0 > 0, (1.10)

where βA0 is the true effect of the treatment A (the new treatment) compared to

treatment B (an existing treatment). Suppose the experimenter decides to reject H0

when, in fact, H0 is true. Then, though the new treatment does not lead to any

improvement in the responses of patients compared to the existing treatment, the

experimenter will recommend the new treatment. This type of error is called Type I

error. It is important to verify that hypothesis testing procedures are able to control

the Type I error. Thus, we will examine the size of the test through simulation studies
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in Chapter 4.

Concerning the power of test, there exist three different methods, (i) exact method,

(ii) approximation method, and (iii) simulation method, commonly applied for power

analysis in statistical models and tests [Castelloe (2000)]. Castelloe (2000) notes that

there is no standard procedure for power analysis in Generalized Linear Models. An

approximation method for power analysis computation of logistic regression was first

introduced by Whittemore (1981). However, this approach is only suitable for binary

responses with rare events such as disease or death and covariates that are discrete

or continuous. These covariates were also assumed to have a joint probability dis-

tribution function. Later, Self and Mauritsen (1988) developed an approximation

procedure to power analysis based on score tests for GLMs. They implemented their

approach to categorical covariates with a finite number of distinct covariate configu-

rations. Later, Self et al. (1992) established a tool for power computation based on

the likelihood ratio test. They compared their method with the method of Self and

Mauritsen (1988) through simulation studies. Shieh (2000) carried out a simulation

study to compare the method of Whittemore (1981) and Self et al. (1992) with various

combination of response probabilities and covariate distribution in logistic regression

models. Later, Shieh (2005) proposed a method for power computation based on

Wald statistic. In fact, his/her method accommodates multiple parameters, and the

flexibility of covariates configurations within the framework of GLMs. Lyles et al.

(2007) developed a method for estimating conditional power for binary, ordinal, or

count responses in GLMs.

Recently, Yi and Wang (2011) introduced the generalized score statistic method which

is an extension of Rao’s score test to response-adaptive designs. They demonstrated
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that the generalized score statistic method performs well compared to the score test

when applying adaptive design as the design criteria. We observe that the design cri-

teria influences the power of chi-squared tests through the non-centrality parameter

[see Hu and Rosenberger (2003)]. They identified three major influence factors: (i) the

target allocation proportion, (ii) the randomization bias from target proportion, and

(iii) the variance of randomization from target proportion. Yi and Wang (2009) ex-

amined the performance of response-adaptive designs for the assignments of patients

to the best treatment and the power of the statistical test using a variance-penalized

criterion. Implementing the transition probability procedure of a Markov chain, Yi

(2013) established a method to compute the exact statistical power for the general

class of response-adaptive designs. According to Chow and Chang (2008), a major or

significant adaptation leads to the moving target population rather than the fixed tar-

get population. An effective statistical inference can be conducted considering these

strategies: (i) sample size adjustment at interim, (ii) sample size allocation to treat-

ments, (iii) delete, add, or change treatment arms, and (iv) change in study endpoints.

Recently, Ma et al. (2015) established a theoretical foundation for hypothesis testing

for parameters in linear models under a large class of CA designs, which includes

Pocock and Simon (1975) marginal method and stratified permuted block design.

Also, they used the ordinary least squares method to estimate their model parame-

ters. We will however develop a theoretical foundation for hypothesis testing when

responses are binary, and the design criteria are CARA designs. Furthermore, we

will apply the maximum likelihood method to estimate the parameters in the logit

model. The objectives of CA designs are to adaptively balance the covariate profiles

of patients randomized to treatments. As a result, the power of the hypothesis testing

is maximized. On the other hand, the objectives of CARA designs are to minimize
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the assignments of patients to inferior treatment. Therefore, the objectives of these

two designs are completely different. That is, CA designs are less ethical than CARA

designs but CA designs are more efficient than CARA designs. In fact, CA designs

are more efficient than equal allocations [see Ma et al. (2015)].

Although Ma et al. (2015) used all the important covariates at the design stage, they

dropped some covariate information in the final statistical inference. This will however

lead to estimators of parameters that are generally inconsistent and biased. This will

also affect the derivation for the distribution of the test statistic.

1.4 Motivation and contribution of this thesis

1.4.1 Motivation of this thesis

According to Hu et al. (2006), properties of the statistical methods under RA de-

signs are well established under the assumption of a simple homogeneous parametric

structure [see Wei (1978); Ivanova (2003); Eisele (1994); Hu and Zhang (2004); Yi

and Wang (2007); Yi and Wang (2011); Rosenberger et al. (1997)]. The diversity

of patients’ characteristics were not considered in the investigation of RA designs.

Rosenberger and Hu (2002) provided some conditions for the asymptotic normality

of regression parameters in Generalized Linear Models (GLMs) that includes covari-

ates of patients when sequential designs are applied to treatment assignments. When

we add center effects in GLM, we have two modelling approaches, namely, GLM

with fixed grouping effects and Generalized Linear Mixed Effect Model (GLMM) [see

Agresti and Hartzel (2000) and Broström and Holmberg (2001)]. In this thesis, we

examine the performance of RA randomizations when a Generalized Linear Mixed

Effect Model (GLMM) is the parametric model in multi-center clinical trials.
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Yi and Wang (2007) provided conditions for consistency and asymptotic normality

of ML estimators for a class of adaptive designs under the assumption that only

treatment influences the response. Rosenberger, Vidyashankar and Agarwal (2001)

demonstrated that CARA designs reduces the number of patients assigned to inferior

treatments through simulation studies. However, the large sample behavior of regres-

sion parameters of the model in Rosenberger, Vidyashankar and Agarwal (2001) was

not discussed in the literature for CARA designs [see Basak et al. (2009)]. Thus,

one of the objectives of this thesis is to establish the conditions for consistency and

asymptotic normality of ML estimators for CARA designs.

Rosenberger, Vidyashankar and Agarwal (2001) discussed the most natural mapping,

defined in § 3.7, with model based odds ratio for reducing the number of patients to

inferior treatments. In fact, we can efficiently minimize the number of patients to in-

ferior treatments if the initial model for applying CARA design is correctly specified.

In other words, the assignment of patients to better treatments might be inefficient

if an initial model is misspecified. However, when we apply the RA designs using

proportions, the initial model is not required. In what follows, we will investigate the

efficiency and ethics between RA and CARA designs.

Even though data collected from RA designs are dependent among responses, Yi and

Wang (2011) justified that Wald, score, and the likelihood ratio tests can be used

when the sample size is large. Moreover, they introduced the generalized score statis-

tic for RA designs and concluded that the performance of Wald test is better than

the score test, the generalized score test, and the likelihood ratio test. In fact, this
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result motivated us to discuss the Wald test for adaptive designs considering the het-

erogeneity of patients’ characteristics in the logit model.

Covariate-adaptive designs are usually applied to quickly achieve objective 1 in (1.1).

Furthermore, RA designs generate more severe imbalances of covariates over treat-

ment arms when compared to equal allocation [Ning and Huang (2010)]. Hence, Ning

and Huang (2010) introduced the Response-Adaptive Covariate-Adjusted (RACA)

designs to achieve objective 1 and objective 2 in (1.1) simultaneously. Now, if

treatment by covariate interactions exist, then CARA designs will reduce the number

of patients assigned to inferior treatments. However, Ning and Huang (2010) dis-

cussed that “the identification of such interaction terms in regression models is not

feasible unless the sample size is large”. This observation motivated us to compare

the performance of CARA designs with RA designs through simulation studies.

Hu and Rosenberger (2003) explored the relationship between the non-centrality pa-

rameter of the usual chi-square test for binary responses and the design’s quantities:

the target allocation proportion, the bias of the randomization procedure from that

target, and the variability induced by the randomization process. However, they de-

rived an expression for the non-centrality parameter under the assumption of a simple

homogeneous parametric structure. These results motivated us to consider deriving

the non-centrality parameter when we relax the assumption of simple uniform para-

metric structure and prove the relationship between the non-centrality parameter and

target allocation proportion when a covariate is in the logit model.
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1.4.2 Contribution of this thesis

In this section, we discuss our contribution to the literature through this thesis. In

Chapter 2, we propose an approach to investigate the large sample theory of regression

parameters of Generalized Linear Mixed Models (GLMMs) with sequential designs via

the influence function method for familial data that was developed by Zhang and Oyet

(2014). The performance of RA designs was investigated for GLMMs. Moreover, the

influence function of ML estimates was derived and used to obtain a closed form ex-

pression of the asymptotic covariance of ML estimates, which does not currently exist

in the literature. A new searching method for estimating the model parameters is

introduced based on the influence function method. Also, we verified that this new

iteration method works better than the Hessian matrix searching method through

simulation studies and application to real data. The main results of Chapter 2 are

outlined in a recent paper by Selvaratnam, Oyet, Yi and Gadag (2017).

In Chapter 3, we discuss the logit model for a general class of adaptive designs. The

consistency and asymptotic normality of ML estimators of regression parameters of

logit model was examined for adaptive designs. We reduced the strong regularity

assumption that Fisher information and observed Fisher information matrices are

positive definite matrices within a neighborhood that is close to vector of true param-

eters to a weaker assumption. This weak assumption is that the Fisher information

matrix is positive define matrix at the vector of true parameters. We consider the

odds-ratio-based limiting allocation that was introduced by Basak et al. (2009). We

apply the Doubly adaptive Biased Coin Design (DBCD) to target this limiting al-

location. Furthermore, the performance of this RA randomization is compared with

CARA designs and equal allocation by simulation studies.
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In Chapter 4, we investigate the power computation methods for a general class of

adaptive designs. We examine the asymptotic distribution of the Wald test statistic in

hypothesis testing under null and alternative hypothesis for adaptive designs consider-

ing the logit model as a true model. We investigate the performance of three designs:

the RA design, the CARA design, and equal allocation. In this investigation, we

examine the quantities: the number of patients assigned to the inferior treatment, the

design variability, statistical power for testing hypotheses, and Type I error rates. We

examine the non-centrality parameter of the Wald test for binary responses with the

inclusion of heterogeneous patients’ characteristic in a logit model. We proved that

this non-centrality parameter is a function of the design proportions. Furthermore,

we demonstrated that this function is concave when we assume only one covariate in

the logit model.



Chapter 2

Estimation of a Generalized Linear

Mixed Model for

Response-Adaptive Designs in

Multi-Center Clinical Trials

2.1 Introduction

The objective of comparing the effectiveness of two treatments in a clinical trial is

not only gathering information about the relative effectiveness of the treatments but

also assigning treatments to patients in a way that consider the wellbeing of patients;

that is objective 2 in (1.1). The response-adaptive designs are generally discussed

in the literature to achieve this objective in a clinical trial assuming a simple ho-

mogeneous parametric structure. In this chapter, we examine the performance of

response-adaptive designs when we assume the generalized linear mixed effect model

(GLMM) is an ideal model.
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The construction of likelihood functions under GLMM has largely assumed that co-

variates are fixed. However, generating treatment assignments through adaptive de-

signs create dependency among responses. Consequently, we follow the approach of

Rosenberger et al. (1997), Hu et al. (2006), and Yi and Wang (2007) to construct the

likelihood function for GLMM with response-adaptive randomization by using the

idea of likelihood function for sequential decision process. One difficulty commonly

associated with using GLMMs is the problem of obtaining closed form expressions for

the asymptotic variance of MLEs of the model parameters because the likelihood func-

tion contains integrals which cannot be solved analytically. Thus, asymptotic results

in the literature have been based on the inverse of the Hessian matrix obtained from

the likelihood function. In this chapter, we avoid the complications introduced by

the integrals that cannot be solved analytically by using a Gauss-Hermite quadrature

method to approximate the integrals in the likelihood function. This novel approach

then allows us to exploit influence function techniques, as in Zhang and Oyet (2014),

to establish the asymptotic properties of consistency and normality and to derive a

closed form expression for the asymptotic covariance matrix of the MLEs. These re-

sults are outlined in Theorem 2.3.1 of § 2.3.

In § 2.2, we introduce the likelihood function for GLMM with response-adaptive ran-

domization and apply the Gauss-Hermite quadrature to obtain the MLEs of the model

parameters. The Gauss-Hermite quadrature has also been used by other authors to

approximate integrals in generalized linear mixed models. See for instance Agresti

and Hartzel (2000), Fahrmeir and Tutz (2001), Broström and Holmberg (2001), and

Fortin (2013). We derive the influence function of the MLEs in § 2.3 and use this

result to discuss the consistency and asymptotic normality of the MLEs. The results



33

of a simulation study and an application to real data are discussed in § 2.4 and § 2.5

respectively. We conclude this chapter with some remarks in § 2.6.

2.2 The Model and Parameter Estimation

Suppose that patients are recruited sequentially into a center and each patient is

treated with one and only one of two treatments A and B. Suppose the number of

patients within center j, n∗j , is assumed to be fixed. Also, responses and treatment

assignments of all n patients are defined in (1.2). Furthermore, let Xij = (1, XijA)′ as

the covariate associated with the binary response Yij. In what follows, we will assume

that the response Yij is generated from a GLMM given by

logit[P (Yij = 1|uj, xijA)] = x′ijβ + uj (2.1)

where β = (γ0, βA)′ and the random center effect uj, j = 1, 2, · · · , J , are independent

normal random variables with mean zero and common variance σ2.

For i ≥ 2, let πijA = P [XijA = 1|(x1jA, y1j), · · · , (x(i−1)jA, y(i−1)j)] and πijB =

1 − πijA, 1 ≤ j ≤ J . In response-adaptive designs, the random allocation rule

πj = {πij, i = 1, 2, · · ·n∗j} typically consists of a sequence of vector of probabili-

ties, where πij = (πijA, πijB). It is common to pre-specify the value of the allocation

probability for the first patient in center j, j = 1, 2, · · · , J , π1jA = P (X1jA = 1)

to, say a value of 1/2. Clearly, the fact that each πij, i ≥ 2 depends on previous

treatment assignments and responses induce some dependency among the collected

data. Thus, following Yi and Wang (2007), the unconditional likelihood function for
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{(yij, xijA); j = 1, 2, · · · , J and i = 1, 2, · · · , n∗j} can be written as

LR(θ) =
J∏
j=1

∫ ∞
−∞

{ n∗j∏
i=1

[
π
xijA

ijA π
(1−xijA)
ijB P (Yij = yij |uj , xijA)

]
1√
2πσ

exp(−u2j/2σ2)

}
duj

= h(π̃)
J∏
j=1

∫ ∞
−∞

{[ n∗j∏
i=1

[
1 + exp(−x′ijβ − uj)

]−yij [
1 + exp(x′ijβ + uj)

]−(1−yij)]
1√
2σ

exp(−u2j/2σ2)

}
duj , (2.2)

where h(π̃) =
J∏
j=1

(1/
√
π)

n∗j∏
i=1

π
xijA

ijA π
(1−xijA)
ijB and θ′ = (β′, σ). In the special case of equal allo-

cation, h(π̃) ∝ (1/2)n.

Next, we let r = 1 if a patient receives treatment A and r = 0 otherwise and apply

the transformation u∗j =
uj√
2σ

to (2.2), to obtain

LR(θ) = h(π̃)
J∏
j=1

∫ ∞
−∞

{( 1∏
r=0

[
1 + exp(−γ0 − βAr −

√
2σu∗j )

]−n∗jrS
[
1 + exp(γ0 + βAr +

√
2σu∗j )

]−n∗jrF )
exp(−[u∗j ]2)

}
du∗j . (2.3)

In (2.3), n∗jrS and n∗jrF are the number of successes and failures respectively, in center

j under treatment r. Given yj = (y1j, y2j, · · · , ynjj)′, the observed vector of responses

from center j, the log-likelihood function of θ can be written as

lR(θ) = lnh(π̃) +

J∑
j=1

ln

∫ ∞
−∞

fyj (u
∗
j ,θ)e

−[u∗j ]
2

du∗j ,

where fyj (u
∗,θ) =

1∏
r=0

[
1 + exp(−θ′Vr)

]−n∗jrS [1 + exp(θ′Vr)
]−n∗jrF with V′r = (1, r,

√
2u∗).

We note that the integral in lR(θ) cannot be solved analytically. Therefore, we have

used the Gauss-Hermite quadrature method to approximate the integral in the fol-

lowing way. Let d∗ be the number of sample points to be used in the approximation
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and sh the roots of the Hermite polynomial Qd∗(s) (h = 1, 2, · · · , d∗) with associated

weights wh. Then, by applying the Gauss-Hermite approximation to the integral in

the log-likelihood function lR(θ) we have

lR(θ) ≈ lnh(π̃) +
J∑
j=1

ln

[
d∗∑
h=1

whfyj
(sh,θ)

]
. (2.4)

By Theorem 5.1.9 of Brass and Petras (2011), for each j, j = 1, · · · , J , the Gauss-

Hermite approximation converges to the exact integral as d∗ →∞.

In our simulation studies and in our application to real data, the optimx function in R

software was applied to solve the maximum likelihood estimating equation
∂lR(θ)

∂θ
= 0,

where

∂lR(θ)

∂θ
≈

J∑
j=1


[
d∗∑
h=1

whfyj
(sh,θ)

]−1 [
d∗∑
h=1

wh
∂fyj (sh,θ)

∂θ

], (2.5)

with
∂fyj

(u∗,θ)

∂θ
= fyj (u

∗,θ)
∂ ln fyj

(u∗,θ)

∂θ
. Now,

ln fyj (u
∗,θ) = −

1∑
r=0

{n∗jrS ln[1 + exp(−θ′Vr)] + n∗jrF ln[1 + exp(θ′Vr)]},

∂ ln fyj (u
∗,θ)

∂θ
= −

1∑
r=0

{
n∗jrS

exp(−θ′Vr)

[1 + exp(−θ′Vr)]
(−1)Vr + n∗jrF

exp(θ′Vr)

[1 + exp(θ′Vr)]
Vr

}

=
1∑
r=0

{
n∗jrS

1

[1 + exp(θ′Vr)]
Vr − n∗jrF

1

[1 + exp(−θ′Vr)]
Vr

}

=
1∑
r=0

{
n∗jrS [1 + exp(θ′Vr)]

−1Vr − n∗jrF [1 + exp(−θ′Vr)]
−1Vr

}
. (2.6)

The inputs to the optimx function in R were the log-likelihood function (2.4), the
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gradient vector in (2.5) and the Hessian matrix
∂2lR(θ)

∂θ∂θ′
, given by

∂2lR(θ)

∂θ∂θ′
≈

J∑
j=1

{[
d∗∑
h=1

whfyj
(sh,θ)

]−1 [
d∗∑
h=1

wh
∂2fyj

(sh,θ)

∂θ∂θ′

]

−

[
d∗∑
h=1

whfyj
(sh,θ)

]−2 [
d∗∑
h=1

wh
∂fyj

(sh,θ)

∂θ

][
d∗∑
h=1

wh
∂fyj

(sh,θ)

∂θ′

]}
, (2.7)

where

∂fyj (u
∗,θ)

∂θ′
=

[
∂fyj (u

∗,θ)

∂θ

]′
∂2fyj

(u∗,θ)

∂θ∂θ′ =
∂ ln fyj

(u∗,θ)

∂θ

∂fyj
(u∗,θ)

∂θ′
+

∂2 ln fyj
(u∗,θ)

∂θ∂θ′ fyj
(u∗,θ),

and

∂2 ln fyj
(u∗,θ)

∂θ∂θ′

= −
1∑
r=0

{
n∗jrS exp(θ

′Vr)[1 + exp(θ′Vr)]
−2 + n∗jrF exp(−θ′Vr)[1 + exp(−θ′Vr)]

−2
}

VrV
′
r.

2.3 Asymptotic Properties

We mentioned earlier that the presence of integrals, which are functions of the un-

known parameter vector θ, in the likelihood function for GLMMs has limited the

ability of previous authors to verify conditions that are necessary for an appropriate

central limit theorem to be valid. In this section, we avoid this difficulty by first

deriving the influence function of the MLEs and then using the result to obtain the

asymptotic properties of the MLEs. Zhang and Oyet (2014) applied a similar approach
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to derive the asymptotic properties of the generalized quasi likelihood estimators of

the parameters of a branching process model. In statistics, the influence function is

the effect on an estimator of changing one point of the sample. The influence func-

tion of an estimate also indicates the sensitivity of the estimate to the observations

Shen (1995). We note that in general, the number of patients within each center

may not be equal. However, we will assume that the number of patients in each of

the J centers is fixed but the number of centers J can be increased as many as possible.

Now, for fixed i, i = 1, 2, · · · , n∗0 where n∗0 = min(n∗1, n
∗
2, · · · , n∗J), let Y1,Y2, · · · ,YJ

be a sequence of independent and identically distributed random vectors with joint

distribution function F ∗(t), t = (t1, t2, · · · , tn∗0)′. Define the empirical distribution

function of the observed responses y1,y2, · · · ,yJ as

F ∗J (t) =
1

J

J∑
j=1

δyj(t),

where δyj(t) is the indicator function

δyj(t) =

 1 if y1j ≤ t1, y2j ≤ t2, · · · , yn∗0j ≤ tn∗0 ,

0 otherwise.

For an arbitrary distribution function G∗ and ε ≥ 0, define F ∗ε = (1−ε)F ∗+εG∗ to be

the ε-contaminated distribution function of F ∗. Then, using (2.5), the ML estimating

equation
∂lR(θ)

∂θ
can be written as

L∗(y,θ, F ∗J ) =
∂lR(θ)

∂θ
=

∫ [ d∗∑
h=1

whfy(sh,θ(F
∗
J ))

]−1 [
d∗∑
h=1

whHy(sh,θ(F
∗
J ))

]
dF ∗J (y) = 0,

(2.8)

where Hy(sh,θ) =
∂fy(sh,θ)

∂θ
. That is, θ(F ∗J ) = θ̂ is a solution to (2.8). To simplify
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notations, we let

Aεy =

[
d∗∑
h=1

whfy(sh,θ(F
∗
ε ))

]−1
and, Bεy =

[
d∗∑
h=1

whHy(sh,θ(F
∗
ε ))

]
. (2.9)

Then, with

A0y = Aεy|ε=0 and B0y = Bεy|ε=0, (2.10)

we have that

L∗(y,θ, F ∗) =

∫ [ d∗∑
h=1

whfy(sh,θ(F
∗))

]−1 [
d∗∑
h=1

whHy(sh,θ(F
∗))

]
dF ∗

=

∫
A0yB0ydF

∗ = 0, (2.11)

since the true value of θ, θ(F ∗) is also a solution to the estimating equation. By

definition, the influence function of θ̂ at F ∗ is the Gâteaux derivative of θ(F ∗ε ) at

ε = 0 and G∗ = δyj(y).

Now, at F ∗ε , since(2.11) we have

L∗(y,θ, F ∗ε ) =

∫ [ d∗∑
h=1

whfy(sh,θ(F
∗
ε ))

]−1 [
d∗∑
h=1

whHy(sh,θ(F
∗
ε ))

]
dF ∗ε

=

∫
AεyBεydF

∗
ε = 0 (2.12)
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Therefore, the partial derivative of L(y,θ, F ∗ε ) with respect to ε is given by

∂L∗(y,θ, F ∗ε )

∂ε

=
∂

∂ε

∫
AεyBεydF

∗
ε (y)

=

∫
∂AεyBεydF

∗
ε (y)

∂ε

=

∫
∂AεyBεydF

∗
ε (y)

θ′(F ∗ε )

∂θ(F ∗ε )

∂ε

=

∫ [
∂Aεy

∂θ′(F ∗ε )
BεydF

∗
ε (y) +Aεy

∂Bεy

∂θ′(F ∗ε )
dF ∗ε (y) +AεyBεy

∂dF ∗ε (y)

∂θ′(F ∗ε )

]
∂θ(F ∗ε )

∂ε

=

∫ [
∂Aεy

∂θ′(F ∗ε )
Bεy

]
∂θ(F ∗ε )

∂ε
dF ∗ε (y) +

∫ [
Aεy

∂Bεy

∂θ′(F ∗ε )

]
∂θ(F ∗ε )

∂ε
dF ∗ε (y) +

∫
[AεyBεy] d

∂F ∗ε (y)

∂ε

=

∫
∂Aεy

∂θ′(F ∗ε )
Bεy

∂θ(F ∗ε )

∂ε
dF ∗ε +

∫
Aεy

∂Bεy

∂θ′(F ∗ε )

∂θ(F ∗ε )

∂ε
dF ∗ε +

∫
AεyBεy(dG

∗ − dF ∗),

It follows that at ε = 0, we have

∂L∗(y,θ, F ∗ε )

∂ε

∣∣∣∣
ε=0

=

∫ [
∂A0y

∂θ′(F ∗)
B0y

]
I(θ(G∗))dF ∗ +

∫ [
A0y

∂B0y

∂θ′(F ∗)

]
I(θ(G∗))dF ∗ +

∫
A0yB0y(dG

∗ − dF ∗)

=

∫ [
∂A0y

∂θ′(F ∗)
B0y

]
I(θ(G∗))dF ∗ +

∫ [
A0y

∂B0y

∂θ′(F ∗)

]
I(θ(G∗))dF ∗ +

∫
A0yB0ydG

∗,

where ∂A0y

∂θ′(F ∗)
=

∂Aεy

∂θ′(F ∗ε )

∣∣∣∣
ε=0

, ∂B0y

∂θ′(F ∗)
=

∂Bεy

∂θ′(F ∗ε )

∣∣∣∣
ε=0

, and I(θ(G∗)) =
∂θ(F ∗ε )

∂ε

∣∣∣∣
ε=0

. Now to obtain

the influence function for a given distribution function G∗ and

I(θ(G∗)) = −
{∫ [

B0y
∂A0y

∂θ′(F ∗)
+A0y

∂B0y

∂θ′(F ∗)

]
dF ∗

}−1 [∫
A0yB0y dG

∗
]
,

= EG∗ [−C−1B0yA0y] (2.13)

where C =

∫ [
B0y

∂A0y

∂θ′(F ∗)
+A0y

∂B0y

∂θ′(F ∗)

]
dF ∗. From (2.11) and (2.13), it is easy to see

that at G∗ = F ∗ we have, I(θ(F ∗)) = EF∗ [−C−1B0yA0y] = 0. We also have that, at

G∗ = δyj(y) the influence function of θ at F ∗ becomes IF (y,θ, F ∗) = −C−1B0yA0y. In
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order to derive the asymptotic properties of the MLE, θ(F ∗J ) of θ, we first use the

Taylor series expansion to obtain the first order approximation of θ(F ∗ε ), as

θ(F ∗ε ) = θ(F ∗ε )|ε=0 +
∂θ(F ∗ε )

∂ε

∣∣∣∣
ε=0

ε+ · · ·

= θ(F ∗) + EG∗ [IF (y,θ, F
∗)] ε+ · · · ,

for any ε and G∗. In particular, at ε = 1 and G∗ = F ∗J we have

θ(F ∗J )− θ(F ∗) ≈ 1

J

J∑
j=1

IF (yj,θ, F
∗),

which can also be written as

√
J(θ(F ∗J )− θ(F ∗)) ≈ 1√

J

J∑
j=1

IF (yj,θ, F
∗).

Therefore, by the strong law of large numbers
1

J

J∑
j=1

IF (yj ,θ, F
∗)

a.s−−→ 0, since

EF ∗ [IF (y,θ, F ∗)] = 0. Furthermore,
1√
J

J∑
j=1

IF (yj ,θ, F
∗)

d−→ N(0,Σ), by the central

limit theorem where Σ = EF ∗ [IF (y,θ, F ∗)IF (y,θ, F ∗)′]. These results are summa-

rized in the following theorem.

Theorem 2.3.1. Suppose n∗j = n∗0 for j = 1, 2, · · · , J and Y1,Y2, · · · ,YJ be a se-

quence of independent and identically distributed random variables with distribution

function F ∗(y). Let F ∗J (y) be the empirical distribution function of the observed re-

sponses y1,y2, · · · ,yJ . Then, using the Gauss-Hermite approximation defined in (2.4)

such that d∗ →∞ where d∗ is the number of sample points in the Gauss-Hermite ap-

proximation, we have that

(a) the influence function of θ at F ∗ is IF (y,θ, F ∗) = −C−1B0yA0y,

(b) by the strong law of large numbers, θ(F ∗J )
a.s−→ θ(F ∗) as J →∞, and
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(c) by the central limit theorem,
√
J(θ(F ∗J )− θ(F ∗))

d−→ N{0,Σ} as J →∞, with

Σ = EF ∗ [IF (y,θ, F ∗)IF (y,θ, F ∗)′].

In our simulation studies, we have used the plug-in estimate of the asymptotic covari-

ance matrix of θ̂ to compute an estimate of the variance of the MLE of θ. It can be

easily verified that the plug-in estimate is given by

V̂ (θ̂) =
1

J
EF ∗J [IF (y,θ, F ∗)IF (y,θ, F ∗)′],

=
1

J2

J∑
j=1

IF (yj,θ, F
∗)IF ′(yj,θ, F

∗), (2.14)

where IF (yj,θ, F
∗) = −C−1S B0yjA0yj and

CS =
1

J

J∑
j=1

[
B0yj

∂A0yj

∂θ′(F ∗)
+ A0yj

∂B0yj

∂θ′(F ∗)

]
. (2.15)

2.4 Simulation Studies

In this section, we examine the performance of the ML estimation procedure and the

asymptotic results we derived in (2.2) and (2.3) respectively, through simulation stud-

ies. For this purpose, we have chosen J = 25, 50, and 100 centers with n∗0 = n∗j = 15

patients in each of the centers in order to examine the performance of the estimates

for small (J = 25), moderate (J = 50) and large (J = 100) values of J . Each data set

used in computing the parameter estimates and values of the asymptotic variances

was generated using various combinations of values of the parameters γ0, βA and σ.

The values of the parameters we considered were (a) γ0 = −2, βA = 3, and σ = 0.8;

(b) γ0 = −1, βA = 4, and σ = 1; and (c) γ0 = 0.5, βA = 1, and σ = 0.8. It is clear,

from our discussions that the assignment of treatments to patients in each center will
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depend on the response-adaptive design used in the clinical trials. The choice of design

for treatment assignment will also affect the performance of the parameter estimates.

Therefore, in our simulation studies we will compare the performance of the estimates

under the completely randomized design (CRD), the RPW rule introduced by Wei

and Durham (1978), and the doubly adaptive biased coin design targeting the RSIHR

desired allocation to treatment A (Doublyξ).

The data generation procedure we applied starts with an initial assignment of treat-

ment A to patient 1 and treatment B to patient 2. This initial assignment automat-

ically determines the values of the covariate XijA to be x1jA = 1 and x2jA = 0. We

then used equation (2.17) to compute the conditional probability that the response

of the treatments assigned to patient i is a success given that they were treated in

center j, j fixed. Suppose we denote this conditional probability by τ ∗. Then, the

response for patient i in center j was obtained by generating a Bernoulli observation

with probability of success τ ∗. In order to generate the response for the next patient

in the same center, we first used one of the designs (CRD, RPW or Doublyξ) to assign

a treatment to the patient. As noted earlier, once the treatment has been assigned,

the value of the covariate XijA is known. The process of generating the ith response

and treatment assignment for a fixed design was then repeated until all patients in a

given center j have been treated. The entire data generating process was repeated to

generate data for each of the 25, 50 or 100 centers.

Under CRD, patients have an equal chance of receiving either treatment A or treat-

ment B. That is, for a fixed center j = 1, 2, · · · , J , P (XijA) = 1/2, i = 3, 4, · · · , n∗j .

So, to determine the treatment for the next available patient we started by generating

a Bernoulli observation with probability of success 1/2. We then assigned treatment
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Table 2.1: Proportion of patients assigned to treatment A in all centers (υA) based
on RPW, CRD and Doublyξ procedures from 3000 simulations. Simulated means
(SM) and simulated standard errors (SSE), estimated standard errors based on the
Hessian matrix (ESE), estimated standard errors based on the influence function
(IESE), mean squared error (MSE) and 95% coverage probability [C95%] based on
normal distribution for the MLEs of model parameters, with covariate effects γ0 = −2,
βA = 3, σ = 0.8, J = 100 and n∗0 = 15.

Design Quantity γ̂0 β̂A σ̂ υA
RPW SM -2.0110 3.0068 0.7914 0.6514

SSE 0.1612 0.1669 0.1034 0.0128
ESE 0.1617 0.1664 0.1047 -
IESE 0.1610 0.1649 0.1033 -
MSE 0.0523 0.0556 0.0218 -
C95% 0.9490 0.9530 0.9487 -

CRD SM -2.0043 3.0051 0.7850 0.5002
SSE 0.1430 0.1535 0.1051 0.0120
ESE 0.1423 0.1565 0.1066 -
IESE 0.1418 0.1550 0.1048 -
MSE 0.0408 0.0481 0.0227 -
C95% 0.9493 0.9523 0.9527 -

Doubly0 SM -2.0064 3.0090 0.7906 0.5876
SSE 0.1516 0.1631 0.1070 0.0120
ESE 0.1518 0.1613 0.1054 -
IESE 0.1511 0.1600 0.1042 -
MSE 0.0462 0.0527 0.0227 -
C95% 0.9483 0.9470 0.9473 -

Doubly3 SM -2.0100 3.0080 0.7880 0.6172
SSE 0.1587 0.1668 0.1048 0.0067
ESE 0.1549 0.1626 0.1046 -
IESE 0.1541 0.1612 0.1032 -
MSE 0.0494 0.0544 0.0221 -
C95% 0.9433 0.9420 0.9513 -

Doubly7 SM -2.0108 3.0086 0.7858 0.6221
SSE 0.1580 0.1650 0.1036 0.0059
ESE 0.1555 0.1630 0.1044 -
IESE 0.1547 0.1618 0.1029 -
MSE 0.0493 0.0539 0.0218 -
C95% 0.9490 0.9507 0.9520 -
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Table 2.2: Proportion of patients assigned to treatment A in all centers (υA) based on
RPW, CRD and Doublyξ DBCD procedures from 3000 simulations. Simulated means
(SM) and simulated standard errors (SSE), estimated standard errors based on the
Hessian matrix (ESE), estimated standard errors based on the influence function
(IESE), mean squared error (MSE) and 95% coverage probability [C95%] based on
normal distribution for the MLEs of model parameters, with covariate effects γ0 = 0.5,
βA = 1, σ = 0.8, J = 50 and n∗0 = 15.

Design Quantity γ̂0 β̂A σ̂ υA
RPW SM 0.4992 1.0058 0.7849 0.5615

SSE 0.1736 0.1907 0.1482 0.0280
ESE 0.1688 0.1858 0.1441 -
IESE 0.1687 0.1834 0.1409 -
MSE 0.0589 0.0710 0.0431 -
C95% 0.9450 0.9407 0.9427 -

CRD SM 0.4983 1.0027 0.7818 0.5001
SSE 0.1606 0.1807 0.1455 0.0167
ESE 0.1607 0.1807 0.1426 -
IESE 0.1610 0.1780 0.1394 -
MSE 0.0519 0.0653 0.0420 -
C95% 0.9530 0.9527 0.9433 -

Doubly0 SM 0.5007 1.004 0.7801 0.5242
SSE 0.1650 0.1816 0.1429 0.0182
ESE 0.1627 0.1813 0.1429 -
IESE 0.1630 0.1788 0.1398 -
MSE 0.0540 0.0659 0.0414 -
C95% 0.9440 0.9480 0.9470 -

Doubly3 SM 0.5018 1.006 0.7823 0.5314
SSE 0.1651 0.1775 0.1440 0.0098
ESE 0.1628 0.1790 0.1431 -
IESE 0.1632 0.1768 0.1400 -
MSE 0.0540 0.0636 0.0416 -
C95% 0.9387 0.9493 0.9457 -

Doubly7 SM 0.5022 1.005 0.7828 0.5320
SSE 0.1647 0.1795 0.1443 0.0084
ESE 0.1629 0.1787 0.1430 -
IESE 0.1634 0.1766 0.1396 -
MSE 0.0539 0.0642 0.0417 -
C95% 0.9400 0.9490 0.9450 -
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Table 2.3: Proportion of patients assigned to treatment A in all centers (υA) based on
RPW, CRD and Doublyξ DBCD procedures from 3000 simulations. Simulated means
(SM) and simulated standard errors (SSE), estimated standard errors based on the
Hessian matrix (ESE), estimated standard errors based on the influence function
(IESE), mean squared error (MSE) and 95% coverage probability [C95%] based on
normal distribution for the MLEs of model parameters, with covariate effects γ0 = −2,
βA = 3, σ = 0.8, J = 25 and n∗0 = 15.

Design Quantity γ̂0 β̂A σ̂ υA
RPW SM -2.0326 3.0291 0.7569 0.6514

SSE 0.3353 0.3478 0.2228 0.0263
ESE 0.3262 0.3375 0.2180 -
IESE 0.3194 0.3281 0.2048 -
MSE 0.2217 0.2370 0.1013 -
C95% 0.9500 0.9570 0.9710 -

CRD SM -2.0200 3.0250 0.7629 0.4997
SSE 0.2820 0.3182 0.2300 0.0244
ESE 0.2862 0.3165 0.2250 -
IESE 0.2821 0.3065 0.2097 -
MSE 0.1633 0.2027 0.1103 -
C95% 0.9520 0.9527 0.9787 -

Doubly0 SM -2.0237 3.0257 0.7617 0.5870
SSE 0.3083 0.3284 0.2278 0.0235
ESE 0.3054 0.3263 0.2205 -
IESE 0.2990 0.3144 0.2060 -
MSE 0.1905 0.2159 0.1045 -
C95% 0.9520 0.9550 0.9737 -

Doubly3 SM -2.0281 3.0292 0.7617 0.6168
SSE 0.3137 0.3304 0.2253 0.0131
ESE 0.3123 0.3293 0.2186 -
IESE 0.3060 0.3180 0.2050 -
MSE 0.1983 0.2194 0.1029 -
C95% 0.9513 0.9537 0.9680 -

Doubly7 SM -2.0315 3.0296 0.7583 0.6220
SSE 0.3163 0.3278 0.2223 0.0116
ESE 0.3136 0.3302 0.2175 -
IESE 0.3070 0.3187 0.2048 -
MSE 0.2010 0.2184 0.0999 -
C95% 0.9507 0.9570 0.9667 -
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A to the patient if the outcome was 1. In this case, xijA = 1. Alternatively, we

assigned treatment B to the patient if the outcome was 0. In this case, xijA = 0.

In order to determine the treatment allocation under DBCD targeting the RSIHR

desired allocation to treatment A (Doublyξ), we used available information and the

expression (1.4) proposed by Rosenberger, Stallard, Ivanova, Harper and Ricks (2001)

to compute an estimate of the desired allocation proportion ρ to treatment A. We

then used the estimated desired allocation proportion ρ to calculate the DBCD treat-

ment allocation function (1.5) for treatment A for each value of the parameter ξ =

0, 3 and 7, where υ is the proportion of patients assigned to treatment A. In a se-

quential process, the values of υ and ρ in (1.4) were separately updated for each center.

The results in Tables 2.1 - 2.5 show that the ML estimating procedure we outlined in

2.2 performed well by consistently estimating the model parameters. In addition to

estimating the parameters, we also computed the standard errors of the estimators in

three ways for the purpose of comparison and validating our theoretical results. First,

we computed the variance of the estimates obtained from the 3000 simulations. We

have denoted the standard errors obtained by taking the square root of the variance

computed from this method by SSE. Secondly, we used the inverse of the Hessian ma-

trix obtained at the final stage of the maximization process to compute the standard

errors and finally, we used the plug-in estimate of variance based on the influence

function in (2.14) to compute the standard errors. The estimates of the standard

errors shown in Tables 2.1 - 2.5 are very similar in magnitude. In the tables, the

estimated standard errors denoted by ESE are based on the inverse of the Hessian

matrix and the influence function based estimated standard errors are denoted by

IESE. Bias is calculated by the difference between ML estimate and true parameter.

Then, MSE is computed by the sum of squared bias and ESE. Since the values of the
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estimated standard errors from all three methods are very similar, we used the ESE

to construct 95% confidence intervals for the parameters γ0, βA, and σ based on the

assumption of normality. These results are also shown in Tables 2.1 - 2.5. In all cases,

the estimated coverage probability under the assumption of normality was found to

be approximately 95% under each of the designs we considered. There was however

some slight deviations in the coverage probability estimate for the variance σ̂ when J

= 25 (Table 2.3). These simulation results validate the influence function based proof

of asymptotic normality of the parameter estimates we outlined in the section 2.3.

The values of υA in Tables 2.1 - 2.5 show that the two response-adaptive designs

namely, RPW and DBCDs, consistently assigned the treatment with high probability

of success to more patients which is a morally and ethically desirable outcome. That

is, υA is larger than 50% in both cases, whereas υA = 50% under CRD. We had

mentioned earlier that the simulated mean squared errors for all response-adaptive

designs considered in this chapter were similar in value. Our simulation results also

show that the design variability under DBCD becomes increasingly smaller than those

under RPW and CRD as ξ becomes larger in magnitude. For instance, in Table 2.1,

the design variability under RPW and CRD were 0.0128 and 0.0120 respectively,

whereas, the design variability under DBCD for ξ = 0, 3, 7 were 0.0120, 0.0067 and

0.0059 respectively. A similar pattern can be seen in the values of the design variability

in Tables 2.2 - 2.5. These results agree with the conclusion of Hu et al. (2006) who

noted that the design variability of the allocation proportion can attain its lower bound

for larger values of ξ. Taken together, these simulation results demonstrate that the

Gauss-Hermite quadrature method was effective in approximating the integral in the

log-likelihood function.
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Table 2.4: Proportion of patients assigned to treatment A in all centers (υA) based on
RPW, CRD and Doublyξ DBCD procedures from 3000 simulations. Simulated means
(SM) and simulated standard errors (SSE), estimated standard errors based on the
Hessian matrix (ESE), estimated standard errors based on the influence function
(IESE), mean squared error (MSE) and 95% coverage probability [C95%] based on
normal distribution for the MLEs of model parameters, with covariate effects γ0 = −1,
βA = 4, σ = 1, J = 100 and n∗0 = 15.

Design Quantity γ̂0 β̂A σ̂ υA
RPW SM -0.9977 3.9989 0.9853 0.6958

SSE 0.1569 0.2177 0.1364 0.0156
ESE 0.1586 0.2163 0.1363 -
IESE 0.1580 0.2142 0.1333 -
MSE 0.0499 0.0944 0.0374 -
C95% 0.9477 0.9530 0.9523 -

CRD SM -1.0033 4.0092 0.9902 0.4998
SSE 0.1354 0.2082 0.1288 0.0121
ESE 0.1365 0.2088 0.1261 -
IESE 0.1364 0.2069 0.1242 -
MSE 0.0371 0.0872 0.0326 -
C95% 0.9530 0.9540 0.9487 -

Doubly0 SM -1.0051 4.0099 0.9902 0.5846
SSE 0.1424 0.2094 0.1330 0.0124
ESE 0.1440 0.2106 0.1301 -
IESE 0.1436 0.2082 0.1278 -
MSE 0.0412 0.0884 0.0348 -
C95% 0.9610 0.9507 0.9420 -

Doubly3 SM -1.0049 4.0090 0.9913 0.6104
SSE 0.1453 0.2088 0.1338 0.0071
ESE 0.1460 0.2108 0.1312 -
IESE 0.1455 0.2085 0.1285 -
MSE 0.0426 0.0883 0.0352 -
C95% 0.9460 0.9533 0.9460 -

Doubly7 SM -1.0051 4.0084 0.9904 0.6140
SSE 0.1449 0.2093 0.1362 0.0064
ESE 0.1463 0.2110 0.1313 -
IESE 0.1458 0.2088 0.1288 -
MSE 0.0426 0.0886 0.0360 -
C95% 0.9523 0.9533 0.9380 -
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Table 2.5: Proportion of patients assigned to treatment A in all centers (υA) based on
RPW, CRD and Doublyξ DBCD procedures from 3000 simulations. Simulated means
(SM) and simulated standard errors (SSE), estimated standard errors based on the
Hessian matrix (ESE), estimated standard errors based on the influence function
(IESE), mean squared error (MSE) and 95% coverage probability [C95%] based on
normal distribution for the MLEs of model parameters, with covariate effects γ0 = 0.5,
βA = 1, σ = 0.8, J = 100 and n∗0 = 20.

Design Quantity γ̂0 β̂A σ̂ υA
RPW SM 0.5023 0.9997 0.7922 0.5717

SSE 0.1124 0.1151 0.0895 0.0190
ESE 0.1116 0.1136 0.0901 -
IESE 0.1117 0.1130 0.0894 -
MSE 0.0251 0.0261 0.0162 -
C95% 0.9467 0.9500 0.9453 -

CRD SM 0.5012 1.0012 0.7920 0.4999
SSE 0.1076 0.1108 0.0900 0.0106
ESE 0.1064 0.1101 0.0892 -
IESE 0.1064 0.1092 0.0881 -
MSE 0.0229 0.0244 0.0162 -
C95% 0.9447 0.9487 0.9480 -

Doubly0 SM 0.5035 1.0010 0.7920 0.5261
SSE 0.1091 0.1120 0.0914 0.0116
ESE 0.1077 0.1105 0.0896 -
IESE 0.1078 0.1095 0.0886 -
MSE 0.0236 0.0247 0.0165 -
C95% 0.9447 0.9507 0.9407 -

Doubly3 SM 0.5040 1.0002 0.7919 0.5328
SSE 0.1090 0.1067 0.0914 0.0063
ESE 0.1076 0.1092 0.0897 -
IESE 0.1078 0.1085 0.0887 -
MSE 0.0235 0.0233 0.0165 -
C95% 0.9473 0.9527 0.9413 -

Doubly7 SM 0.5034 1.0009 0.7919 0.5335
SSE 0.1086 0.1057 0.0898 0.0052
ESE 0.1076 0.1090 0.0897 -
IESE 0.1078 0.1083 0.0888 -
MSE 0.0234 0.0231 0.0162 -
C95% 0.9460 0.9560 0.9467 -
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2.5 Application to Real Data

Through simulation, we have shown in § 2.4, that the asymptotic standard errors

of the estimated parameters based on the influence function (IESE) and the Hessian

Matrix (ESE), were similar in value to the simulated standard errors (SSE) (see Tables

2.1 - 2.5). In this section, we apply the techniques proposed in this chapter to real

data obtained from a multi-center clinical trial. The trials were conducted at eight

different centers for the purpose of comparing two cream preparations (active drug,

control) for treating an infection (Beitler and Landis (1985)). GLMM can be used

conceptually in a multi-center clinical trial when a sample of centers is selected from a

large number of centers and the number of centers selected is reasonably large. Grizzle

(1987) suggested that occasionally, it is preferable to consider center effects as random

effects rather than fixed effects even if the sample of centers was not randomly chosen.

He also noted that the number of centers selected has to be large enough for consistent

estimation of the model parameters in GLMM. Though the data in this application

was collected from only eight medical centers, a total of 273 patients participated

in the study. The data, taken from Agresti and Hartzel (2000) are summarized in

Table 2.6. Agresti and Hartzel (2000) had considered several models for estimating

the treatment effect. However, we will discuss only the GLM with fixed center effects

and the GLMM. The model with fixed center effects we considered is given by,

logit[P (Yij = 1|xijA)] = βFxijA + uFj , i = 1, 2, · · · , n∗j and j = 1, 2, · · · , J, (2.16)

where the center effects uFj , j = 1, 2, · · · , J are assumed to be fixed and βF is the

treatment effect that is assumed to be constant over centers. We also considered a
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GLMM with logit link function defined by

logit[P (Yij = 1|uj, xijA)] = γ0 + βAxijA + uj, i = 1, 2, · · · , n∗j and j = 1, 2, · · · , J,

(2.17)

where γ0 is the overall intercept, βA is the treatment effect that is assumed to be con-

stant over centers, and the random center effect uj, j = 1, 2, · · · , J , are independent

normal random variables with mean zero and common center variance σ2.

Table 2.6: Clinical trial relating treatment to response for eight centres.

Centre Treatment Response Total
Success Failure

1 Drug 11 25 36
Control 10 27 37

2 Drug 16 4 20
Control 22 10 32

3 Drug 14 5 19
Control 7 12 19

4 Drug 2 14 16
Control 1 16 17

5 Drug 6 11 17
Control 0 12 12

6 Drug 1 10 11
Control 0 10 10

7 Drug 1 4 5
Control 1 8 9

8 Drug 4 2 6
Control 6 1 7

Total Drug 55 75 130
Control 47 96 143

Though models (2.16) and (2.17) appear to be similar in structure the methods for es-

timating the model parameters are completely different. In fact, the overall intercept
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γ0 in (2.17) cannot be estimated separately in (2.16) because the overall intercept is

included in center effects. Indeed, our main objective is to estimate the treatment

effect efficiently and not how to estimate the overall intercept and center effects sep-

arately. We will apply two separate iteration methods for estimating the parameters

of the models. The first method is the usual approach based on the gradient vector

and the Hessian matrix defined in the section 2.2 of this chapter. We introduce a new

approach, in this section, based entirely on the influence function given by

θ̂new = θ̂old +
1

J

J∑
j=1

IF (yj,θ, F
∗)|θ=θ̂old , (2.18)

where
1

J

J∑
j=1

IF (yj,θ, F
∗) = −(JCS)−1

J∑
j=1

B0yjA0yj with CS given by (2.15) and A0yj ,

and B0yj defined by (2.10).

We observe that in Table 2.6, the responses of all patients assigned to the control

group in Centers 5 and 6 were failures. As a result, following Agresti and Hartzel

(2000) we will examine whether centers with 0 successes have any influence on the

results of descriptive and inferential analyses. To investigate the effect which centers

with 0 successes for treatment has on inference, we will examine the p−values of the

Wald test for treatment effect. More specifically, the Wald Statistic (see Lyles, Lin

and Williamson (2007)) χ2
c = β̂2

A/V ar(β̂A) and the corresponding p−value for testing

H0 : βA = 0 versus the alternative Ha : βA > 0 will be computed under three scenar-

ios, namely, (a) DATA 1 which is the original data shown in Table 2.6; (b) DATA

2 which excludes data from centers with zero responses in the control group; and (c)

DATA 3 which combines the data from Centers 5, 6 and 7. The results from this

analysis are shown in Table 2.7.
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Table 2.7: Values of the D−optimality criterion, the Wald Statistic and their cor-
reponding p−values for testing the significance of treatment effect computed using
DATA 1, DATA 2 and DATA 3, and estimated parameters and their standard er-
rors based on (a) the Hessian matrix denoted by Estimate and ESE respectively; (b)
the influence function approach in (2.18) denoted by IEstimate and IESE respectively
for the parameters in model (2.17) and the parameters in model (2.16) denoted by
FEstimate and FESE respectively.

Data Quantity γ̂0 β̂A/β̂F σ̂ D−optimality Wald p−value
Statistics

DATA 1 (a) Estimate -1.1894 0.7385 1.3971
203.5655 6.044 0.014

ESE 0.5803 0.3004 0.4196

(b) IEstimate -1.1894 0.7385 1.3971
564.1102 5.806 0.016

IESE 0.6367 0.3065 0.2419

FEstimate
-

0.7766
- - - -

FESE 0.3067

DATA 2 (a) Estimate -0.6605 0.5548 1.2720
166.1339 3.102 0.078

ESE 0.5834 0.3150 0.4372

(b) IEstimate -0.6605 0.5549 1.2720
829.5909 3.970 0.046

IESE 0.5819 0.2785 0.2238

FEstimate
-

0.5754
- - - -

FESE 0.3205

DATA 3 (a) Estimate -0.8096 0.7440 1.3297
166.2647 6.150 0.013

ESE 0.6167 0.3000 0.4338

(b) IEstimate -0.8097 0.7441 1.3297
656.4324 5.427 0.020

IESE 0.6852 0.3194 0.2102

FEstimate
-

0.7774
- - - -

FESE 0.3050
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We had mentioned earlier that our main objective is to estimate treatment effect

efficiently while maximizing the number of patients assigned to the best treatment.

The results in Table 2.7 show that estimates of the treatment effects, overall intercept

and the standard deviation σ obtained from the two methods are about the same in

magnitude within DATA 1, DATA 2 and DATA 3. That is, the presence of zero

response does not appear to affect the parameter estimates. However, the standard

errors of the estimates obtained from the two methods are, in most cases, different in

value with noticeably larger differences in SE(γ̂0) and SE(σ̂). For instance, ESE(γ̂0)

= 0.5803 and IESE(γ̂0) = 0.6367 and ESE(σ̂) = 0.4196 and IESE(σ̂) = 0.2419,

whereas ESE(β̂A/β̂F ) = 0.3004 and IESE(β̂A/β̂F ) = 0.3065 for DATA 1. The

same pattern is replicated in the results for DATA 3. In these cases, we observe that

IESE(γ̂0) > ESE(γ̂0) while IESE(σ̂) < ESE(σ̂). These results are reasonable since

γ0 + uj = uFj for j = 1, 2, · · · , J. Also, the estimation method for GLMM estimates

these effects separately while these effects cannot be separated in the model (2.16).

It is interesting to note that the patterns in the standard errors of γ̂0 and β̂A/β̂F de-

scribed above are reversed when the data for centers with zero responses in the control

group are excluded (DATA 2) when estimating the model parameters. In this case,

IESE(γ̂0) = 0.5819 is slightly less than ESE(γ̂0) = 0.5834 and IESE(β̂A/β̂F ) =

0.2785 is also less than ESE(β̂A/β̂F ) = 0.3150. Given the small number of centers for

which data was available, the change in pattern may be attributed to the cumulative

reduction in the total number of responses in DATA 2 from 130 to 102 in the treat-

ment group and from 143 to 121 in the control group. More specifically, the number

of successes and failures reduced from 55 to 48 and from 75 to 54 respectively in the

treatment group and from 96 to 74 failures in the control group. We note that the

patterns were the same in DATA 1 and in DATA 3 where there was no reduction

in the overall number of responses.
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Given the differences between the standard error estimates obtained from the two

methods of estimation we examined the D-optimality criterion in order to compare

the covariance matrices of the estimates. Also, this D-optimality is computed by the

determinant of Hessian matrix. The results in Table 2.7 show that at the final stage of

the iteration process, estimates based on the influence function approach consistently

maximized the determinant of the information matrix. For instance the value of

the D-optimality criterion based on the Hessian matrix approach and the influence

function approach were 203.56 and 564.11 respectively for DATA 1 and 166.13 and

829.59 respectively for DATA 2. These results indicate that when compared to the

method based on the Hessian matrix, the influence function iteration method searches

for solutions in a neighborhood that is closer to the vector of true parameters. Thus,

the influence function estimate will, in general, be closer to the true parameter. The

results of our simulation studies with a large number of centers shown in Tables 2.1

- 2.5 also confirms this conclusion since the values of IESE are, in general, smaller

when compared with the values of ESE for all parameter estimates. Concerning the

Wald test for significance of treatment effect, we observe that the p-values are about

the same in magnitude for DATA 1 and DATA 3 irrespective of the method of

iteration used in estimating the parameters. However, when the estimation is based

on the Hessian matrix, the p-values change rapidly from 0.014, under the original data

(DATA 1), to 0.078 once Centers 5 and 6 with 0 successes were deleted from the data

(DATA 2). This then leads to contradictory interpretations of the effect of treatments

at 5% level of significance. On the other hand, the effect of excluding centers with

0 successes from the data on the the p-values is not as severe and lead to the same

conclusion for DATA 1, DATA 2 and DATA 3 when the estimation is based on

the influence function. Thus, for this data under consideration the influence function
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approach appear to lead to a more stable result irrespective of whether centers with 0

successes are included or excluded from the data. The approach based on the Hessian

matrix is however not so stable. These results clearly highlight the need for further

research on the influence function method of estimation in generalized linear models.

2.6 Conclusion

In this chapter, we have discussed a generalized linear mixed model for analyzing

data arising from the application of response-adaptive designs in multi-center clinical

trials. We have shown that the estimators of the model parameters are consistent and

asymptotically normally distributed. We have also introduced a new iteration method

based entirely on the influence function of the parameter estimates. Previously, the

computation of the asymptotic variance of the regression parameter estimators have

been based entirely on the inverse of the Hessian matrix obtained from the likelihood

function. We have now provided an alternative, in this chapter, by deriving a closed

form expression for the asymptotic variance of the regression parameter estimators

based on an influence function approach. To our knowledge, such a closed form ex-

pression does not currently exist in the literature. In fact, our asymptotic approach

does not depend on the selection criteria for treatment assignments. These selection

criteria for treatment assignments include the family of response-adaptive designs and

the completely randomized design. In our simulation studies we have demonstrated

that estimates of the asymptotic variance computed from the closed form expression

we derived compare favourably well with the true values obtained directly from simu-

lation. Thus, in practice the IESE can be used to estimate the asymptotic variance of

the regression parameter estimators. We have also demonstrated through simulation

that response-adaptive designs are more ethically and morally desirable because they
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assign the potentially better treatment to more patients and that the design vari-

ability improves with appropriate choice of the parameter in the allocation function

of Hu and Zhang (2004). Moreover, the estimated 95% coverage probabilities based

on the normal distribution were shown to be unbiased. This clearly indicates that

the maximum likelihood approach with the Gauss-Hermite quadrature approxima-

tion performs very well in estimating the parameters of the GLMM. Finally, we note

that the Gauss-Hermite quadrature for integral approximation as well as the influence

function technique for deriving the asymptotic properties can be easily extended to

generalized linear mixed models based on the exponential family.



Chapter 3

Estimation of a Generalized Linear

Model for Adaptive Designs in

Multi-Center Clinical Trials

3.1 Introduction

In Chapter 2, we assumed the GLMM as an ideal model and investigated the efficiency

and ethics of participating patients between RA designs and equal allocation. Also,

we applied separate randomization to each center. In this chapter, we assume that

center effects are fixed effects. Therefore, we consider the generalized linear model

(GLM) is an ideal model. The common randomization for treatment assignments

is applied to all medical centers. We examine the asymptotic theories for a general

class of adaptive designs assuming the GLM as an ideal model. Also, we compare the

efficiency and ethics among RA, CARA, and Completely Randomized (CR) design

under this assumption.
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In this chapter, we introduce the logit model which includes treatment by covariate

interactions and discuss estimation method of model parameters in § 3.2. We pro-

vide a procedure for Covariate-Adjusted Response-Adaptive designs in § 3.3. The §

3.4 deals with proposed conditions for asymptotic properties of parameter estimates

for CARA designs. We discuss a odds-ratio-based target allocation proportion for

Response-Adaptive design in § 3.5. The theoretical results in § 3.4 are validated

through simulation studies in § 3.6. Finally, conclusions are provided in § 3.7.

3.2 The Logit Model and Parameter Estimation

In this section, we describe the logit model and the estimation method for model

parameters for comparing two treatments, which are treatment A and treatment B,

when other associated categorical covariates are considered. The logit model is a

well-known model for constructing the relationship between binary responses and as-

sociated covariates. Moreover, it is easy to interpret estimates in the logit model if

there is no interaction effects in the model. However, it is not easy to interpret the

estimates if the interaction terms are significant in the logit model [Ai and Norton

(2003)] . In this chapter, we assume that responses are binary, which is either success

or failure, so the logit model was chosen to establish a linkage between the responses

and covariates. Let n be the total number of patients who were recruited and assigned

one and only one treatment from two treatments at the end of a clinical trial. The

response and treatment assignment of patient i are defined by (1.7).

Also, let Z′i = (Zi1, · · · , Zip) be the p dimensional vector of covariate information of

patient i, i = 1, 2, · · · , n. Here, one of the covariates in the p-dimensional vector

Zi may represent centers to account for center effects. We define {v1,v2, · · · ,vm}
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as the mutually exclusive configuration levels of Z. That is, a typical patient be-

longs to one and only from these categories. When patients enter sequentially into

the clinical trial, we assume that the experimenter knows the value of the random

variable Z before entering a patient into a medical clinic and we assume that the

joint probability mass function of Z follows multinomial distribution with unknown

parameters, but these parameters do not depend on model parameters which is de-

fined in (3.1). Let us assume that the probability value of vh, P (Z = vh) = ρh; h =

1, 2, · · · ,m, then
m∑
h=1

ρh = 1. Also, zi is the observed value of covariate vector of pa-

tient i. Furthermore, let Xi = σ(X1A, X2A, · · · , XiA) and Yi = σ(Y1, Y2, · · · , Yi) be

the sigma algebras generated by treatment assignments and responses respectively.

Define C(zi) = (z′1, z
′
2, · · · , z′i)′ as the history of covariates and Fi = σ(Xi,Yi).

Consider the logit model:

logit[P (Yi = 1|xiA, zi)] = xiAβA + γ0 + z′iγ + xiAz′iδ, for i = 1, 2, · · · , n, (3.1)

where γ = (γ1, γ2, · · · , γp)′ are the main effects of covariates and δ = (δ1, δ2, · · · , δp)′

are the treatment by covariates interaction effects. Also, βA is the effect of treat-

ment A compared to treatment B, γ0 is the intercept term in this model. There-

fore, the probability mass function for the random variables {Yi, i = 1, 2, · · · , n}, is

P (Yi = yi|xiA, zi) = [1 + exp(−w′iθ)]
−yi [1 + exp(w′iθ)]

−(1−yi), where wi = (xiA, 1, z
′
i, xiAz′i)

′,

θ = (βA, γ0,γ
′, δ′)′ is a q := 2(p + 1) dimensional vector. Also we assume that

θ belongs to an admissible set Ω(θ0) ⊆ <q; Ω(θ0) is open and convex in <q, where

θ0 = (βA0, γ00,γ
′
0, δ
′
0)
′ is the q-dimensional vector of true unknown parameters, which

we can estimate by the method of ML. For the logit model in (3.1), it can be shown

that
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E(Yi|xiA, zi) = [1 + exp(−w′iθ)]
−1, and V ar(Yi|xiA, zi) = exp(−w′iθ)[1 + exp(−w′iθ)]

−2. The like-

lihood function can be written as

Ln(θ) =
n∏
i=1

[πiA(zi)]
xiA [1− πiA(zi)](1−xiA)[1 + exp(−w′iθ)]

−yi [1 + exp(w′iθ)]
−(1−yi), (3.2)

where πiA(zi) = P [XiA = 1|Fi−1, C(zi−1), zi]. Then, the log-likelihood function `n(θ) and

the score function of the log-likelihood are given by

`n(θ) = lnh(π̃)−
n∑
i=1

yi ln[1 + exp(−w′iθ)]−
n∑
i=1

(1− yi) ln[1 + exp(w′iθ)], (3.3)

and

sn(θ) = `′n(θ) =

n∑
i=1

yiwi −
n∑
i=1

[1 + exp(−w′iθ)]
−1wi, (3.4)

where h(π̃) =

n∏
i=1

[πiA(zi)]
xiA [1− πiA(zi)](1−xiA) and `′n(θ) =

∂`n(θ)

∂θ
. We then solve the ML

estimating equation

`′n(θ) = 0, (3.5)

to obtain the ML estimates of the model parameters.

The second derivative of the log-likelihood function called the observed Fisher infor-

mation matrix

Fn(θ) =
n∑
i=1

exp(−w′iθ)[1 + exp(−w′iθ)]−2wiw
′
i. (3.6)

is used in the Newton-Raphson iteration procedure

θ̂new = θ̂old + [Fn(θ)]−1
θ=θ̂old

[sn(θ)]θ=θ̂old ,
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to obtain the MLE θ̂n = (β̂A,n, γ̂0,n, γ̂
′
n, δ

′
n)′ of θ0 = (βA0, γ00,γ

′
0, δ
′
0)
′ which is the

vector of true model parameters. The asymptotic distribution of the MLE θ̂n will be

discussed in § 3.4.

3.3 The Covariate-Adjusted Response-Adaptive De-

sign (CARA)

Several authors have noted that minimum information is required to get ML estimates

[Silvapulle (1981), Albert (1984), and Santner and Duffy (1986)]. If sequential trial

gets minimum information, then we are able to compute the inverse of the Hessian

matrix. Thus, we need initial information to obtain ML estimates of model parame-

ters in (3.1) as a result of the application of CARA design. Before getting minimum

information for which
∂`n(θ)

∂θ
= 0 is estimable, equal allocation is applied for treatment

assignments. Suppose the first n0 number of patients’ information is enough to solve

the equation in (3.5) and
∂`n(θ)

∂θ
= 0 is estimable for all n ≥ n0.

We evaluate some quantities for patient (n + 1) having the covariate information

zn+1. If this patient is assigned to treatment A, the expected success probability

of this patient becomes Pn+1,A = [1 + exp(−β̂A,n − γ̂0,n − z′n+1γ̂n − z′n+1δ̂n)]
−1. Similarly,

if this patient is assigned to treatment B, the expected success probability of this

patient, Pn+1,B = [1 + exp(−γ̂0,n − z′n+1γ̂n]
−1. Then, the model based odds ratio for

comparing treatment A to treatment B is xm =
Pn+1,A

(1− Pn+1,A)

(1− Pn+1,B)

Pn+1,B
= exp(β̂A,n +

z′n+1δ̂n). Rosenberger, Vidyashankar and Agarwal (2001) applied the most natural

mapping to obtain the treatment assignment function, f : [0,∞)→ [0, 1], defined by

f(x) =
x

x+ 1
. (3.7)
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Using this function, the allocation probability to treatment A becomes

π[n+1]A(zn+1) = {1 + exp[−(β̂A,n + z′n+1δ̂n)]}−1. (3.8)

As an example, suppose that patient i belongs to the vh group. We thus allocate

treatment A to patient i with the following probability:

πiA(vh) = P (XiA = 1|Fi−1, C(zi−1), zi = vh) = {1 + exp[−(β̂A,(i−1) + v′hδ̂i−1)]}−1, (3.9)

where i > n0 and n0 is the initial number of patients to whom treatments were

assigned using equal allocation. We note that this is one example of a CARA design.

3.4 Asymptotics of Parameter Estimates for CARA

Define the subgroup of patient indices having the vh (h = 1, 2, · · · ,m) covariates

configuration level as

J (h)
n = {i : zi = vh; i = 1, 2, · · · , n}.

Since the clinical trial in this study is sequential trial and patients arrive sequentially

to the clinic, we define

J (h)
∞ = {i : zi = vh; i = 1, 2, · · · · · · };

Next, we describe the subgroup of patients belongs to stratum h. We define a set

J (h) = {(i, h) : zi = vh; i = 1, 2, · · ·n},
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where (i, h) is an ordered pair indicating that patient i belongs to stratum h. For ease

of notation we assign the first element of J (h) as 1, the second element as 2, · · · and

the last element of J (h) as nh. J
(h) can be written as

J (h) = {1, 2, · · · , nh}.

For instance suppose, n = 8 and m = 4, z1 = v2, z2 = v1, z3 = v1, z4 = v3, z5 =

v4, z6 = v2, z7 = v4, z8 = v2. Then, the set

J (1) = {(2, 1), (3, 1)},

identifies the patient 2 and patient 3 belong to stratum 1, n1 = 2, and J (1) = {1, 2}.

The set J (h) contains nh number of patient indices with n =
m∑
h=1

nh. We have πiA(vh)

is the probability of patient i assigned to treatment A if patient i belongs to vh group,

for i = 1, 2, · · · , n and h = 1, 2, · · · ,m. In fact, we do not know the format of πiA(vh).

In the next Lemma, we discuss the average of these πiA(vh) converges almost surely

the average of patients assigned to treatment A when we fix h, h = 1, 2, · · · ,m.

Lemma 3.4.1. For a group of patients having vh covariates configuration level, we

have
NAh(n)

nh
− 1

nh

∑
i∈J(h)

n

πiA(vh)
a.s.−−→ 0 as nh →∞, where NAh(n) =

∑
i∈J(h)

n

XiA is the number

of patients assigned to treatment A in vh group, NBh(n) = nh−NAh(n), and nh is the

number of patients in vh group for h = 1, 2, · · · ,m. Also, πiA(vh) is the probability of

patient i assigned to treatment A if patient i belongs to vh group, for i = 1, 2, · · · , n

and h = 1, 2, · · · ,m.

Proof. For a fixed h = 1, 2, · · · ,m, define
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Sn(vh) =
n∑
i

I[zi = vh]{XiA − πiA(vh)} =
∑
i∈J(h)

n

{XiA − πiA(vh)}, where I is an indicator func-

tion. Let us consider

Sn+1(vh)− Sn(vh) = I[zn+1 = vh]{X(n+1)A − π(n+1)A(zn+1)}.
Case 1: If zn+1 = vh,

E[Sn+1(vh)− Sn(vh)|Fn, C(zn), zn+1] = E{X(n+1)A|Fn, C(zn), zn+1 = vh} − π(n+1)A(vh)

= P{X(n+1)A = 1|Fn, C(zn), zn+1 = vh} − π(n+1)A(vh)

= 0.

Case 2: If zn+1 6= vh, then Sn+1(vh)− Sn(vh) = 0. So that

E[Sn+1(vh)− Sn(vh)|Fn, C(zn), zn+1] = 0.

Therefore, the sequence of partial sums {Sn(vh)} is a martingale. We know that

0 < |XnA − πnA(vh)| < 1 for n ∈ J (h)
∞ . It follows that∑

n∈J(h)
∞

n−2h E{[XnA − πnA(vh)]2|Fn−1, C(zn−1), zn = vh} <∞. Therefore, by Theorem 1 of

Csörgö (1968) {the strong law of large numbers for martingales}, we obtain

lim
nh→∞

1

nh
Snh

(vh) = 0. Hence, the Lemma holds.

The observed Fisher information matrices are random matrices. If the average ob-

served Fisher information matrices converges to a non-random matrix, then we can

discuss the consistency of ML estimators. We require a condition for the average

observed Fisher information matrices converges to a non-random matrix. Therefore,

we initially will set a condition for this purpose. We describe this condition in the

following Assumption 3.4.1.

Assumption 3.4.1. For each h = 1, 2, · · · ,m, (1/nh)
∑
i∈J(h)

n

πiA(vh)
a.s.−−→ πA(vh) as

nh →∞, where 0 < πA(vh) < 1, where, πiA(vh) is the treatment assignment function.



66

We now introduce some new notations for elements of the observed Fisher information

matrix for mathematical convenience. Let
1

n
Fn(θ) =

1

n

n∑
i=1

Hi(θ), where

Hi(θ) = g(w′iθ)



xiA xiA xiAz′i xiAz′i

xiA 1 z′i xiAz′i

xiAzi zi ziz
′
i xiAziz

′
i

xiAzi xiAzi xiAziz
′
i xiAziz

′
i


and (3.10)

g(w′iθ) = exp(−w′iθ)[1+ exp(−w′iθ)]
−2. Furthermore, define the functions of θ: λAh(θ) and

λBh(θ) as

λAh(θ) = exp(−βA − γ0 − v′hγ − v′hδ)[1 + exp(−βA − γ0 − v′hγ − v′hδ)]
−2

λBh(θ) = exp(−γ0 − v′hγ)[1 + exp(−γ0 − v′hγ)]
−2.

Conditional on Fi−1, C(zi−1), and zi, XiA follows a bernoulli distribution with the

unknown parameter. The recursive expectations can be taken from step 1 to step

n to obtain the unconditional expectation of the elements of the average observed

information matrix which is defined in (3.10). If this average expectation of the

observed Fisher information matrix converges almost surely to a non-random matrix,

then this non-random matrix is called the Fisher information matrix. In this section,

the Fisher information matrix I(θ) is defined in Lemma 3.4.2. Lemma 3.4.2 also

describes the existence of the Fisher information matrix under some conditions.

Lemma 3.4.2. If Assumption 3.4.1 and
nh
n

a.s−→ ρh are satisfied, then we have

(1/n)
n∑
i=1

Ei−1{Hi(θ)}
a.s.−−→ I(θ) as n→∞, where the conditional expectation defined by
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Ei−1[•] = ExiA
[•|Fi−1, C(zi−1), zi], I(θ) is the Fisher information matrix that is a non-

random matrix

I(θ) =



I11(θ) I12(θ) I13(θ) I14(θ)

I ′12(θ) I22(θ) I23(θ) I24(θ)

I′13(θ) I′23(θ) I33(θ) I34(θ)

I′14(θ) I′24(θ) I′34(θ) I44(θ)


, (3.11)

where θ ∈ Ω(θ0). Moreover, Hi(θ) is defined in (3.10) for i = 1, 2, · · · , n and nh is

the number of patients in vh group.

Proof. First we note that I12(θ) = I11(θ), I14(θ) = I24(θ) = I13(θ), and I44(θ) =

I34(θ). Therefore, we have the following results for the components of I(θ).

1

n

n∑
i=1

Ei−1{g(w′iθ)xiA} =
1

n

n∑
i=1

E{g(w′iθ)xiA|Fi−1, C(zi−1), zi}

=
1

n

n∑
i=1

m∑
h=1

I[zi = vh]λAh(θ)πiA(zi)

=

m∑
h=1

n∑
i=1

1

n
I[zi = vh]λAh(θ)πiA(zi)

=
m∑
h=1

nh
n
λAh(θ)

 1

nh

∑
i∈J(h)

n

πiA(vh)


a.s.−−→

m∑
h=1

ρhλAh(θ)πA(vh) = I11(θ) [because of
nh
n

a.s−−→ ρh, and

the Assumption 3.4.1.]

1

n

n∑
i=1

Ei−1{g(w′iθ)} =
1

n

n∑
i=1

E{g(w′iθ)|Fi−1, C(zi−1), zi}

=
1

n

n∑
i=1

m∑
h=1

I[zi = vh]{λAh(θ)πiA(zi) + λBh(θ)[1− πiA(zi)]}

=
m∑
h=1

nh
n

λAh(θ)
 1

nh

∑
i∈J(h)

n

πiA(vh)

+ λBh(θ)

1− 1

nh

∑
i∈J(h)

n

πiA(vh)


a.s.−−→

m∑
h=1

ρh{λAh(θ)πA(vh) + λBh(θ)[1− πA(vh)]} = I22(θ).
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1

n

n∑
i=1

Ei−1{g(w′iθ)xiAz′i} =
1

n

n∑
i=1

E{g(w′iθ)xiAz′i|Fi−1, C(zi−1), zi}

=
1

n

n∑
i=1

m∑
h=1

I[zi = vh]λAh(θ)z
′
iπiA(zi)

=
m∑
h=1

λAh(θ)
1

n

n∑
i=1

I[zi = vh]z
′
iπiA(zi)

=
m∑
h=1

λAh(θ)
nh
n

 1

nh

∑
i∈J(h)

n

πiA(vh)

v′h

a.s.−−→
m∑
h=1

λAh(θ)ρhπA(vh)v
′
h = I13(θ).

1

n

n∑
i=1

Ei−1{g(w′iθ)z′i} =
1

n

n∑
i=1

E{g(w′iθ)z′i|Fi−1, C(zi−1), zi}

=
1

n

n∑
i=1

m∑
h=1

I[zi = vh]{λAh(θ)πiA(zi) + λBh(θ)[1− πiA(zi)]}v′h

=
m∑
h=1

nh
n

λAh(θ)
 1

nh

∑
i∈J(h)

n

πiA(vh)

+ λBh(θ)

1− 1

nh

∑
i∈J(h)

n

πiA(vh)

v′h

a.s.−−→
m∑
h=1

ρh{λAh(θ)πA(vh) + λBh(θ)[1− πA(vh)]}v′h = I23(θ).

1

n

n∑
i=1

Ei−1{g(w′iθ)ziz′i} =
1

n

n∑
i=1

E{g(w′iθ)ziz′i|Fi−1, C(zi−1), zi}

=
1

n

n∑
i=1

m∑
h=1

I[zi = vh]{λAh(θ)πiA(zi) + λBh(θ)[1− πiA(zi)])}vhv′h

=
m∑
h=1

nh
n

λAh(θ)
 1

nh

∑
i∈J(h)

n

πiA(vh)

+ λBh(θ)

1− 1

nh

∑
i∈J(h)

n

πiA(vh)

vhv
′
h

a.s.−−→
m∑
h=1

ρh{λAh(θ)πA(vh) + λBh(θ)[1− πA(vh)]}vhv′h = I33(θ).

1

n

n∑
i=1

Ei−1{g(w′iθ)xiAziz
′
i} =

1

n

n∑
i=1

E{g(w′iθ)xiAziz
′
i|Fi−1, C(zi−1), zi}

=
1

n

n∑
i=1

m∑
h=1

I[zi = vh]λAh(θ)πiA(zi)vhv
′
h

=

m∑
h=1

nh
n
λAh(θ)

 1

nh

∑
i∈J(h)

n

πiA(vh)

vhv
′
h

a.s.−−→
m∑
h=1

ρhλAh(θ)πA(vh)vhv
′
h = I34(θ).



69

Therefore, (1/n)
n∑
i=1

Ei−1{Hi(θ)} a.s.−−→ I(θ) as n→∞.

The next Lemma states that the average observed Fisher information matrix converges

almost surely to the Fisher information matrix I(θ) under some conditions.

Lemma 3.4.3. If the Assumption 3.4.1 and
nh
n

a.s−→ ρh are satisfied, then the average

observed Fisher information matrix, (1/n)Fn(θ), converges almost surely to I(θ),

where θ ∈ Ω(θ0), nh is the number of patients in vh group, and I(θ) is a Fisher

information matrix.

Proof. Define NAh(n) =
∑
i∈J(h)

n

xiA as the number of patients assigned to treatment A

in vh group and NBh(n) = nh −NAh(n). Then, the following results hold.

1

n

n∑
i=1

g(w′iθ)xiA =
1

n

m∑
h=1

λAh(θ)NAh(n)

=

m∑
h=1

λAh(θ)
nh
n

NAh(n)

nh

a.s.∼
m∑
h=1

λAh(θ)
nh
n

 1

nh

∑
i∈J(h)

n

πiA(vh)


a.s.−−→

m∑
h=1

λAh(θ)ρhπA(vh) = I11(θ)

1

n

n∑
i=1

g(w′iθ)xiAz′i =
1

n

m∑
h=1

λAh(θ)NAh(n)v
′
h

=
m∑
h=1

λAh(θ)
nh
n

NAh(n)

nh
v′h

a.s.∼
m∑
h=1

λAh(θ)
nh
n

 1

nh

∑
i∈J(h)

n

πiA(vh)

v′h

a.s.−−→
m∑
h=1

λAh(θ)ρhπA(vh)v
′
h = I13(θ)
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1

n

n∑
i=1

g(w′iθ) =
1

n

m∑
h=1

{λAh(θ)NAh(h) + λBh(θ) [nh −NAh(h)]}

=
m∑
h=1

nh
n

{
λAh(θ)

NAh(h)

nh
+ λBh(θ)

[
1− NAh(h)

nh

]}
a.s.∼

m∑
h=1

nh
n

λAh(θ)
 1

nh

∑
i∈J(h)

n

πiA(vh)

+ λBh(θ)

1− 1

nh

∑
i∈J(h)

n

πiA(vh)


a.s.−−→

m∑
h=1

ρh{λAh(θ)πA(vh) + λBh(θ)[1− πA(vh)]} = I22(θ)

1

n

n∑
i=1

g(w′iθ)z
′
i =

1

n

m∑
h=1

{λAh(θ)NAh(n) + λBh(θ) [nh −NAh(n)]}v′h

=

m∑
h=1

nh
n

{
λAh(θ)

NAh(n)

nh
+ λBh(θ)

[
1− NAh(n)

nh

]}
v′h

a.s.∼
m∑
h=1

nh
n

λAh(θ)
 1

nh

∑
i∈J(h)

n

πiA(vh)

+ λBh(θ)

1− 1

nh

∑
i∈J(h)

n

πiA(vh)

v′h

a.s.−−→
m∑
h=1

ρh{λAh(θ)πA(vh) + λBh(θ)[1− πA(vh)]}v′h = I23(θ)

1

n

n∑
i=1

g(w′iθ)ziz
′
i =

1

n

m∑
h=1

{λAh(θ)NAh(n) + λBh(θ) [nh −NAh(n)]}vhv
′
h

=

m∑
h=1

nh
n

{
λAh(θ)

NAh(n)

nh
+ λBh(θ)

[
1− NAh(n)

nh

]}
vhv

′
h

a.s.∼
m∑
h=1

nh
n

λAh(θ)
 1

nh

∑
i∈J(h)

n

πiA(vh)

+ λBh(θ)

1− 1

nh

∑
i∈J(h)

n

πiA(vh)

vhv
′
h

a.s.−−→
m∑
h=1

ρh{λAh(θ)πA(vh) + λBh(θ)[1− πA(vh)]}vhv′h = I33(θ)

1

n

n∑
i=1

g(w′iθ)xiAziz
′
i =

1

n

m∑
h=1

λAh(θ)NAh(n)vhv
′
h

=
m∑
h=1

nh
n
λAh(θ)

NAh(n)

nh
vhv

′
h

a.s.∼
m∑
h=1

nh
n
λAh(θ)

 1

nh

∑
i∈J(h)

n

πiA(vh)

vhv
′
h

a.s.−−→
m∑
h=1

λAh(θ)πA(vh)ρhvhv
′
h = I34(θ)
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In Lemma 3.4.3 we show that the average observed Fisher information, (1/n)Fn(θ),

converges almost surely and pointwise to I(θ) for each θ ∈ Ω(θ0). The next Lemma

3.4.4 states that (1/n)Fn(θ) converges almost surely and uniformly on a neighbour-

hood of θ0 under the same conditions in Lemma 3.4.3.

Lemma 3.4.4. If the Assumption 3.4.1, and
nh
n

a.s.−−→ ρh are satisfied with m < ∞

and q <∞, then we can find that there exists an open ball G ⊆ Ω(θ0), θ0 ∈ G such

that the average observed Fisher information (1/n)Fn(θ) uniformly and almost surely

converges to I(θ) on G, where nh is the number of patients in vh group.

Proof. From Lemma 3.4.3 we have that (1/n)Fn(θ) almost surely converges on Ω(θ0).

First we consider the element (1, 1) := (1/n)
∑n

i=1 g(w′iθ)xiA =
∑m

h=1 λAh(θ){NAh(n)/n}

of the matrix (1/n)Fn(θ). Let ε > 0, for h = 1, 2, · · · ,m.

From Lemma 3.4.3 we have {NAh(n)/n} a.s.−−→ ρhπA(vh) as n → ∞ under Assump-

tion (3.4.1) and
nh
n

a.s−→ ρh. The function λAh(θ) : Ω(θ0)→ < is a bounded function.

Therefore, there existsN11h ∈ N such that |{NAh(n)/n} − ρhπA(vh)| < ε/1.5
m∑
h=1

λAh(θ0)

for all n ≥ N11h a.s. Furthermore, λAh(θ) is a continuous function, so lim
θ→θ0

λAh(θ) = λAh(θ0).

Therefore, there exists δ11h > 0 such that λAh(θ) < 1.5λAh(θ0) for all θ ∈ Gδ11h , where

Gδ11h = {θ :‖ θ − θ0 ‖< δ11h}. We then obtain

λAh(θ)

∣∣∣∣NAh(n)

n
− ρhπA(vh)

∣∣∣∣ < [ελAh(θ0)]/
m∑
h=1

λAh(θ0). (3.12)
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Consider

∣∣∣∣∣
m∑
h=1

λAh(θ)
NAh(n)

n
−

m∑
h=1

λAh(θ)ρhπA(vh)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
h=1

λAh(θ)

{
NAh(n)

n
− ρhπA(vh)

}∣∣∣∣∣
≤

m∑
h=1

λAh(θ)

∣∣∣∣NAh(n)

n
− ρhπA(vh)

∣∣∣∣
< ε. (3.13)

Therefore,

∣∣∣∣∣
m∑
h=1

λAh(θ)
NAh(n)

n
−

m∑
h=1

λAh(θ)phπA(vh)

∣∣∣∣∣ < ε for all n ≥ N11 and for all

θ ∈ G11, where N11 = max
1≤h≤m

N11h, δ11 = min
1≤h≤m

δ11h, and G11 = {θ :‖ θ − θ0 ‖< δ11}.

It follows that
1

n

n∑
i=1

g(w′iθ)xiA uniformly and almost surely converges on G11. Sim-

ilarly, we can show that there exists Nij = max
1≤h≤m

Nijh and δij = min
1≤h≤m

δijh such that

the (i, j)th element of the matrix (1/n)Fn(θ) uniformly and almost surely converges

on Gij, where Gij = {θ :‖ θ−θ0 ‖< δij}. Since q is finite, there exists N = max
1≤i,j≤q

Nij

and δ = min
1≤i,j≤q

δij such that (1/n)Fn(θ) uniformly and almost surely converges to I(θ)

on G, where G = {θ :‖ θ − θ0 ‖< δ}.

Lemma 3.4.5. If the Assumption 3.4.1 is satisfied with m < ∞ and q < ∞, then

(1/n)µin uniformly and almost surely converges to λi(θ) as n→∞ for i = 1, 2, · · · , q,

where µ1n ≤ µ2n · · · ≤ µqn and λ1(θ) ≤ λ2(θ) · · · ≤ λq(θ) are eigenvalues of the sym-

metric matrices Fn(θ) and I(θ) respectively, Fn(θ) is an observed Fisher information

matrix, and I(θ) is a Fisher information matrix.

Proof. According to Lemma 2.1.19 (Hoffman-Wielandt) in Anderson, Alice and

Ofer (2010), we have

q∑
i=1

|(1/n)µin − λi(θ)|2 ≤ trace{(1/n)Fn(θ)− I(θ)}2. (3.14)

Let the (j, k)th element of the matrices (1/n)Fn(θ) and I(θ) be defined by (1/n)Fjkn(θ)
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and Ijk(θ), respectively, where j, k = 1, 2, · · · , q. Let ε > 0. From Lemma 3.4.4, there

exists N ∈ N and δ > 0 such that (1/n)Fn(θ) uniformly and almost surely converges

to I(θ) on G, where G = {θ :‖ θ − θ0 ‖< δ}. Therefore, there exists N ∈ N and

δ > 0 such that (1/n)Fjkn(θ) uniformly and almost surely converges to Ijk(θ) on G,

where G = {θ :‖ θ − θ0 ‖< δ} for all 1 ≤ j, k ≤ q.

Then, there exists N ∈ N and δ > 0 such that |(1/n)Fjkn(θ)− Ijk(θ)|2 < ε2/q2 on G

for all θ ∈ G = {θ :‖ θ − θ0 ‖< δ}, all n ≥ N , where 1 ≤ j, k ≤ q. Furthermore,

trace{(1/n)Fn(θ)− I(θ)}2 =

q∑
j=1

q∑
k=1

|(1/n)Fjkn(θ)− Ijk(θ)|2 < ε2 (3.15)

Because (1/n)Fn(θ)− I(θ) is a symmetric matrix. From (3.14) and (3.15) we obtain
q∑
i=1

|(1/n)µin − λi(θ)|2 < ε2. Therefore, there exists N ∈ N and δ > 0 such that

|(1/n)µin − λi(θ)| < ε for all n ≥ N , all θ ∈ G = {θ :‖ θ − θ0 ‖< δ} with 1 ≤ i ≤ q.

Hence the Lemma holds.

Assumption 3.4.2. I(θ0) is a positive definite matrix, where θ0 is the q dimensional

true vector of parameters, and I(θ0) is a Fisher information matrix.

Lemma 3.4.6. If the Assumptions 3.4.1 and 3.4.2 are satisfied with m < ∞, and

q <∞, then the following results hold

(i) There exists an open ball G ⊆ Ω(θ0) and N ∈ N such that the Fisher infor-

mation matrix I(θ) is a positive definite matrix for all θ ∈ G and the observed

Fisher information matrix Fn(θ) is positive definite for all n ≥ N and for all

θ ∈ G.

(ii) θ̂n
a.s−→ θ0 as n→∞, where θ̂n is the MLE of θ0.
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Proof. (i) From Lemma (3.4.5), we have that (1/n)λminFn(θ) uniformly and almost

surely converges to λ1(θ) as n→∞, where λminFn(θ) is the minimum eigenvalue

of Fn(θ). Therefore, there exists an open ball G1 = {θ :‖ θ−θ0 ‖< δ1} ⊆ Ω(θ0)

and N ∈ N such that λ1(θ)− 0.5λ1(θ0) < (1/n)λminFn(θ) for all θ ∈ G1 and

for all n ≥ N .

By applying Lemma 3.4.4, (1/n)Fn(θ) uniformly and almost surely converges

to I(θ) on G2. Moreover, (1/n)Fn(θ) is continuous on G2. From the uniform

convergence theorem, we have that I(θ) is continuous on G2. Therefore, the

coefficients of the polynomial for computing the eigenvalues of I(θ) are continu-

ous and finite on G2, since m is finite. The eigenvalues of I(θ) are roots of this

polynomial. Therefore, the eigenvalues of I(θ) are continuous functions on G2

{Ortega (1932), page 45}.

It follows that, λ1(θ) is a continuous function of θ on G2. So we have lim
θ→θ0

λ1(θ) = λ1(θ0).

Then there exists δ2 > 0 such that 0.6λ1(θ0) < λ1(θ) for all θ ∈ G2 = {θ :‖

θ − θ0 ‖< δ2}. Let δ = min{δ1, δ2}. Then there exists an open ball G = {θ :‖

θ − θ0 ‖< δ} ⊆ Ω(θ0) and N ∈ N such that 0 < 0.1λ1(θ0) <
1

n
λminFn(θ) and

0 < 0.6λ1(θ0) < λ1(θ) for all θ ∈ G and for all n ≥ N . Hence part (i) of this

Lemma holds.

(ii) From part (i), we have 0.1λ1(θ0) <
1

n
λminFn(θ0) for all n ≥ N . Therefore,

λminFn(θ0)
a.s−→∞. (3.16)

Furthermore,
1

n
λmaxFn(θ0)

a.s−→ λq(θ0), where λq(θ0) is the maximum eigenvalue

of the positive definite matrix I(θ0). Let ε > 0 then, there exits N3 ∈ N such that
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λq(θ0) − ε < 1

n
λmaxFn(θ0) < λq(θ0) + ε for all n ≥ N3. Choose ε = 0.5λq(θ0),

then 0 < 0.5λq(θ0) <
1

n
λmaxFn(θ0) < 1.5λq(θ0) for all n ≥ N3, and

{
1

n
λmaxFn(θ0)

}1/4

< {1.5λq(θ0)}1/4 for all n ≥ N3 (3.17)

Let N4 = max{N,N3}. Choose τ = 2 and consider

λminFn(θ)

[λmaxFn(θ0)]1/(2+τ)
=

(1/n)λminFn(θ)

[(1/n)λmaxFn(θ0)]0.25
n0.75

>
0.1λ1(θ0)

{1.5λq(θ0)}0.25

= c (say) for all n > N4 and θ ∈ G. (3.18)

Using (3.16) and (3.18) we obtain θ̂n
a.s−→ θ0 as n→∞ [Theorem 2 of Fahrmeir

and Kaufmann (1985)].

Theorem 3.4.1. If the Assumptions 3.4.1 and 3.4.2 are satisfied with m <∞, q <∞,

then we have that
√
n(θ̂n − θ0) is asymptotically multivariate normal in distribution

with mean 0 and variance-covariance matrix I(θ0)
−1, where I(θ0) is a Fisher infor-

mation matrix.

Proof. We have sn(θ0) =
n∑
i=1

yiwi −
n∑
i=1

[1 + exp(−w′iθ0)]
−1wi. Then

sn+1(θ0)− sn(θ0) = yn+1wn+1 − [1 + exp(−w′n+1θ0)]
−1wn+1.

Consider

E[sn+1(θ0)− sn(θ0)|Fn, C(zn), x(n+1)A]

= E[yn+1|x(n+1)A]wn+1 − [1 + exp(−w′n+1θ0)]
−1wn+1

= 0.



76

Therefore E[sn+1(θ0)− sn(θ0)|Fn, C(zn)] = 0.

Then {sn(θ0)} is a sequence of martingale arrays. Under some regularity conditions,

applying the martingale central limit theorem,
1√
n

sn(θ0) follows multivariate normal

distribution.

Let xn be the history of treatment assignments of all n patients. That is, xn =

(x1A, x2A, · · · , xnA). Then we have

E[sn(θ0)|xn]

=
n∑
i=1

E[yi|xiA]wi −
n∑
i=1

[1 + exp(−w′iθ0)]
−1wi

= 0.

Therefore,

E[sn(θ0)] = 0q×1. (3.19)

Now,

Var[sn(θ0)|xn] = Var

[
n∑
i=1

yiwi|xn

]

=
n∑
i=1

Var[yiwi|xiA]

=
n∑
i=1

exp(−w′iθ0)[1 + exp(−w′iθ0)]
−2wiw

′
i

= Fn(θ0),

and, by Lemma (3.4.3)
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1

n
Var[sn(θ0)] =

1

n
Exn{Var[sn(θ0)]}+

1

n
Varxn{E[sn(θ0)]}

=
1

n
Exn{Var[sn(θ0)]}

=
1

n
Exn{Fn(θ0)}

L−→ I(θ0). (3.20)

Using (3.19), (3.20), and the fact that
1√
n

sn(θ0) follows multivariate normal distri-

bution we have that

1√
n

sn(θ0) ∼ Nq[0, I(θ0)]. (3.21)

Apply the multivariate version of the Taylor’s expansion {Königsberger (2004), page

66} for the score function sn(θ) to obtain

0 = sn(θ̂n) = sn(θ0)− Fn(θ0)(θ̂n − θ0) + o(‖ θ̂n − θ0 ‖q), (3.22)

where o(‖ θ̂n−θ0 ‖q) = [o1(‖ θ̂n−θ0 ‖q), o2(‖ θ̂n−θ0 ‖q), · · · , oq(‖ θ̂n−θ0 ‖q)]′ and

the error vector, o(‖ θ̂n − θ0 ‖q), in (3.22) goes to 0q×1 faster than ‖ θ̂n − θ0 ‖q goes

to zero when θ̂n is near to θ0.

Moreover θ̂n is a consistent estimator of θ0 satisfying the conditions in Lemma (3.4.6).

Thus, the linear approximation in (3.22) is good enough for sn(θ̂n). Under these
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conditions, we have that

Fn(θ0)(θ̂n − θ0) ≈ sn(θ0)

√
n(θ̂n − θ0) ≈

[
1

n
Fn(θ0)

]−1 [
1√
n

sn(θ0)

]
(3.23)

since the remainder term goes faster to zero when θ̂n closes to θ0. Using Lemma

3.4.3, we have that

1

n
Fn(θ0)

a.s.−−→ I(θ0)

⇒
[

1

n
Fn(θ0)

]−1
a.s.−−→ I(θ0)

−1 (3.24)

Therefore it follow, from (3.24), (3.21), and (3.23), we have that

√
n(θ̂n − θ0) ∼ N

[
0, I(θ0)

−1] . (3.25)

3.5 A Limiting Allocation for Response-Adaptive

Design based on the Most Natural Mapping

In § 3.3, we discussed CARA design. The model based odds-ratio that was obtained

from ML estimates and the most natural mapping were used to formulate this CARA

design. However, RA designs have been well developed in literature. Thus, this RA

designs have to be compared with CARA design. Moreover, we have many types of RA

designs in literature. But, we selected the odds-ratio-based response-adaptive design

because this design has similar formulation comparable with CARA design. In this
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section, we discuss odds-ratio-based response-adaptive designs that was introduced

by Basak et al. (2009). The odds ratio for comparing treatment A against treatment

B is given by,

OR(PAS, PBS) =
PAS

(1− PAS)

(1− PBS)

PBS
, (3.26)

where PAS and PBS are the success probabilities for those patients assigned to treat-

ment A and B, respectively.

The odds-ratio-based limiting allocation to treatment A using the most natural map-

ping is provided

ρ(PAS, PBS) =
OR(PAS, PBS)

1 +OR(PAS, PBS)
. (3.27)

In our simulation study for this chapter, we use the allocation function of DBCD that

is defined in (1.5) to target this limiting allocation.

3.6 Simulation Studies

In this section, we validate the theoretical results we obtained in § 3.4. Suppose,

treatments A and B are to be compared among patients who have a disease, consid-

ering the covariates: gender, chronic conditions, age. The description of responses,

treatment assignments, and covariates are given by

Yi =


1 if treatment is

a success,

0 otherwise.

and XiA =


1 if the patient i is assigned

to treatment A,

0 otherwise.
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Zi1 =

 1 Male (55%),

0 Female.
and Zi2 =

 1 at least one chronic condition (60%),

0 otherwise.

Zi3 =

 1 20 ≤ Age ≤ 50 (30%),

0 otherwise.
and Zi4 =

 1 50 < Age ≤ 65 (30%),

0 otherwise.

In this simulation study, the patient responses are assumed to be instantaneous. The

following model is assumed to be the true statistical model for simulation studies,

logit[P (Yi = 1|xiA)] = xiAβA + γ0 + γ1zi1 + γ2zi2 + γ3zi3 + γ4zi4 + δ1xiAzi1 +

δ2xiAzi2 + δ3xiAzi3 + δ4xiAzi4,

= w′iθ for i = 1, 2, · · · , n (3.28)

where θ = (βA, γ0,γ
′, δ′)′ and wi = (xiA, 1, z

′
i, xiAz′i)

′. Also, P (Yi = 1|xiA) =

[1 + exp(−w′iθ)]−1 and P (Yi = 0|xiA) = [1 + exp(w′iθ)]−1.

Since we have four binary covariates, Z1, Z2, Z3, Z4, we can form 16 configuration’

levels that are defined in Table 3.1.

In this simulation study, the three sets of true parameter values for the logit model

in (3.28) we selected are:

(a) βA0 = 1.25, γ00 = 0.50, γ10 = −0.18, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 =

0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00

(b) βA0 = 1.25, γ00 = 0.5, γ10 = −0.22, γ20 = −0.4, γ30 = 0.2, γ40 = 0.1, δ10 =
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Table 3.1: The levels of configurations(CL) or strata

Level(h) z1 z2 z3 z4
S1 0 0 0 0
S2 0 0 0 1
S3 0 0 1 0
S4 0 0 1 1
S5 0 1 0 0
S6 0 1 0 1
S7 0 1 1 0
S8 0 1 1 1
S9 1 0 0 0
S10 1 0 0 1
S11 1 0 1 0
S12 1 0 1 1
S13 1 1 0 0
S14 1 1 0 1
S15 1 1 1 0
S16 1 1 1 1

0.09, δ20 = −0.8, δ30 = 0.06, δ40 = 0.04

(c) βA0 = 0, γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25, γ40 = 0.15, δ10 =

0.10, δ20 = −1.50, δ30 = 0.05, δ40 = 0.05.

The set (a) represents no treatment by covariates interactions in the true model.

Thus, treatment A is the best treatment because βA0 is positive. However, in sets (b)

and (c), the true model contains treatment by covaraite interactions. Thus, neither

treatment A nor treatment B is the globally best treatment. We consider these three

scenarios to conduct simulation study. The selected number of patients were 500 and

1000 to implement this simulation study through 3000 simulations.

In CARA design, the probabilities of treatment assignments depend on the current

patients’ covariates. On the contrary, these probabilities does not depend on the cur-

rent patients’ covariates in RA designs. In this simulation study, CARA design is
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Table 3.2: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. The proportion of patients assigned to treatment A in stratum h (P̂Ah) for
h = 1, 2, · · · ,m, simulated means (SM), simulated standard errors (SSE) with the model
parameters βA0 = 1.25, γ00 = 0.50, γ10 = −0.18, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10,
δ10 = 0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Stratum h
Design Quantity S1 S2 S3 S4 S5 S6 S7 S8

CARA SM(P̂Ah) 0.7308 0.7286 0.7260 0.7228 0.7305 0.7291 0.7220 0.7206

SSE(P̂Ah) 0.1194 0.1422 0.1572 0.1902 0.1031 0.1255 0.1366 0.1685

RA SM(P̂Ah) 0.7748 0.7734 0.7754 0.7753 0.7758 0.7768 0.7762 0.7719

SSE(P̂Ah) 0.0791 0.1024 0.1122 0.1496 0.0664 0.0836 0.0939 0.1211

CR SM(P̂Ah) 0.4964 0.5000 0.4995 0.4961 0.4981 0.4995 0.4994 0.5012

SSE(P̂Ah) 0.0790 0.1094 0.1246 0.1712 0.0650 0.0889 0.0967 0.1360

Design Quantity S9 S10 S11 S12 S13 S14 S15 S16

CARA SM(P̂Ah) 0.7316 0.7271 0.7238 0.7211 0.7309 0.7267 0.7246 0.7225

SSE(P̂Ah) 0.1095 0.1367 0.1426 0.1807 0.0955 0.1202 0.1257 0.1580

RA SM(P̂Ah) 0.7754 0.7736 0.7746 0.7740 0.7756 0.7754 0.7764 0.7760

SSE(P̂Ah) 0.0718 0.0902 0.1014 0.1349 0.0633 0.0775 0.0838 0.1082

CR SM(P̂Ah) 0.5012 0.4978 0.5011 0.4976 0.5006 0.5018 0.4990 0.5022

SSE(P̂Ah) 0.0720 0.0968 0.1097 0.1538 0.0580 0.0781 0.0866 0.1247

Table 3.3: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. The proportion of patients assigned to treatment A (P̂A), the success rates of
patients (P̂S), simulated means (SM), and simulated standard errors (SSE) with the model
parameters βA0 = 1.25, γ00 = 0.50, γ10 = −0.18, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10,
δ10 = 0.00, δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Quantity CARA RA CR

SM(P̂A) 0.7279 0.7752 0.4996

SSE(P̂A) 0.0504 0.0455 0.0222

SM(P̂S) 0.7602 0.7718 0.7044

SSE(P̂S) 0.0213 0.0214 0.0202
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compared to CR design and RA design that is described in § 3.5. We have already

mentioned that neither treatment A nor treatment B is the globally best treatment if

treatment by covariate interactions exist. Thus, we compute the combined proportion

of success rates of treatment A and B, say P̂S, to compare three designs because we

would not come to any conclusion based on the results that the proportion of patients

assigned to treatment A, say P̂A. Furthermore, we calculated the proportion of pa-

tients assigned to treatment A for stratum h, say P̂Ah, h = 1, 2, · · · , 16. In fact, P̂S

is a measure that can be used to compare participating patients’ ethics among three

designs.

Table 3.4: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. Simulated means (SM), simulated standard error (SSE), estimated standard error
(ESE), and coverage probability (CP) with the model parameters βA0 = 1.25, γ00 = 0.50,
γ10 = −0.18, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 = 0.00, δ20 = 0.00, δ30 = 0.00,
δ40 = 0.00.

Design Quan-

tity β̂A γ̂0 γ̂1 γ̂2 γ̂3 γ̂4 δ̂1 δ̂2 δ̂3 δ̂4
CARA SM 1.359 0.418 -0.183 -0.294 0.226 0.082 -0.006 -0.026 0.029 0.023

SSE 0.561 0.449 0.397 0.416 0.443 0.446 0.496 0.521 0.556 0.548
ESE 0.522 0.410 0.375 0.384 0.412 0.394 0.474 0.487 0.526 0.498
CP 0.940 0.942 0.944 0.939 0.947 0.939 0.946 0.936 0.946 0.937

RA SM 1.300 0.484 -0.181 -0.315 0.274 0.105 -0.004 -0.002 -0.014 0.004
SSE 0.567 0.472 0.429 0.440 0.479 0.458 0.506 0.527 0.576 0.551
ESE 0.545 0.446 0.412 0.420 0.454 0.431 0.498 0.510 0.552 0.521
CP 0.940 0.947 0.948 0.946 0.941 0.944 0.950 0.948 0.939 0.944

CR SM 1.287 0.512 -0.190 -0.296 0.256 0.106 0.005 -0.024 0.017 0.017
SSE 0.495 0.292 0.267 0.276 0.296 0.283 0.445 0.458 0.511 0.470
ESE 0.487 0.287 0.265 0.270 0.290 0.277 0.440 0.453 0.491 0.461
CP 0.952 0.949 0.950 0.950 0.947 0.952 0.950 0.954 0.949 0.953

We also computed the simulated means (SM) to confirm the consistency of parameter

estimates. The estimated standard error (ESE) is computed using the inverse of the

Hessian matrix obtained at the final stage of the maximization process. Also, the

simulated standard error (SSE) is calculated to validate whether ESE can be used in

real data analysis. That is, if the values of SSE and ESE are close, we can use ESE
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for real data analysis. The normal distribution based coverage probability (CP) is

computed to verify whether the parameter estimates asymptotically follow the nor-

mal distribution.

Table 3.5: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. The proportion of patients assigned to treatment A in stratum h (P̂Ah) for
h = 1, 2, · · · ,m, simulated means (SM), simulated standard errors (SSE) with the model
parameters βA0 = 1.25, γ00 = 0.5, γ10 = −0.22, γ20 = −0.4, γ30 = 0.2, γ40 = 0.1, δ10 = 0.09,
δ20 = −0.8, δ30 = 0.06, δ40 = 0.04.

Stratum h
Design Quantity S1 S2 S3 S4 S5 S6 S7 S8

CARA SM(P̂Ah) 0.7373 0.7402 0.7412 0.7414 0.5953 0.6035 0.6047 0.6123

SSE(P̂Ah) 0.1171 0.1421 0.1522 0.1872 0.1236 0.1514 0.1618 0.1920

RA SM(P̂Ah) 0.6836 0.6829 0.6844 0.6807 0.6822 0.6856 0.6848 0.6814

SSE(P̂Ah) 0.0857 0.1108 0.1240 0.1661 0.0729 0.0921 0.1020 0.1341

CR SM(P̂Ah) 0.4964 0.4999 0.4994 0.4961 0.4982 0.4995 0.4995 0.5012

SSE(P̂Ah) 0.0790 0.1094 0.1247 0.1712 0.0651 0.0889 0.0967 0.1360

Design Quantity S9 S10 S11 S12 S13 S14 S15 S16

CARA SM(P̂Ah) 0.7530 0.7554 0.7532 0.7564 0.6157 0.6232 0.6240 0.6351

SSE(P̂Ah) 0.1045 0.1272 0.1347 0.1717 0.1147 0.1404 0.1477 0.1767

RA SM(P̂Ah) 0.6834 0.6813 0.6835 0.6788 0.6835 0.6833 0.6841 0.6812

SSE(P̂Ah) 0.0807 0.1013 0.1129 0.1507 0.0668 0.0847 0.0928 0.1229

CR SM(P̂Ah) 0.5012 0.4978 0.5011 0.4978 0.5007 0.5018 0.4990 0.5022

SSE(P̂Ah) 0.0720 0.0968 0.1096 0.1540 0.0580 0.0781 0.0866 0.1247

The results in Tables 3.2, 3.5, 3.8, and 3.11 show that the proportion of patients

assigned to treatment A are (i) approximately equal in each stratum for RA design,

(ii) approximately 0.5 in each stratum for CR design, and (iii) different in values

among strata for CARA design except in Table 3.2. This shows that the proportion

of patients assigned to treatment A are equal in each stratum for CARA design when

there is no treatment by covariate interaction in the true model [see Table 3.2].
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Table 3.6: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. The proportion of patients assigned to treatment A (P̂A), the success rates of
patients (P̂S), simulated means (SM), and simulated standard errors (SSE) with the model
parameters βA0 = 1.25, γ00 = 0.5, γ10 = −0.22, γ20 = −0.4, γ30 = 0.2, γ40 = 0.1, δ10 = 0.09,
δ20 = −0.8, δ30 = 0.06, δ40 = 0.04.

Quantity CARA RA CR

SM(P̂A) 0.6664 0.6832 0.4996

SSE(P̂A) 0.0535 0.0484 0.0222

SM(P̂S) 0.6767 0.6750 0.6435

SSE(P̂S) 0.0221 0.0217 0.0214

Table 3.7: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. Simulated means (SM), simulated standard error (SSE), estimated standard
error (ESE), and coverage probability (CP) with the model parameters βA0 = 1.25,
γ00 = 0.5, γ10 = −0.22, γ20 = −0.4, γ30 = 0.2, γ40 = 0.1, δ10 = 0.09, δ20 = −0.8,
δ30 = 0.06, δ40 = 0.04.

Design Quan-

tity β̂A γ̂0 γ̂1 γ̂2 γ̂3 γ̂4 δ̂1 δ̂2 δ̂3 δ̂4
CARA SM 1.353 0.415 -0.224 -0.370 0.173 0.082 0.101 -0.873 0.092 0.060

SSE 0.540 0.427 0.359 0.390 0.414 0.378 0.462 0.498 0.526 0.488
ESE 0.502 0.394 0.331 0.366 0.368 0.350 0.426 0.468 0.474 0.449
CP 0.941 0.949 0.947 0.945 0.934 0.947 0.939 0.943 0.940 0.937

RA SM 1.291 0.485 -0.227 -0.412 0.218 0.112 0.102 -0.823 0.058 0.036
SSE 0.492 0.372 0.342 0.347 0.387 0.356 0.428 0.463 0.493 0.445
ESE 0.483 0.366 0.337 0.344 0.369 0.352 0.425 0.453 0.468 0.445
CP 0.951 0.954 0.948 0.954 0.942 0.952 0.953 0.948 0.937 0.955

CR SM 1.274 0.515 -0.239 -0.408 0.212 0.102 0.114 -0.831 0.063 0.054
SSE 0.478 0.290 0.262 0.274 0.288 0.281 0.402 0.448 0.458 0.424
ESE 0.469 0.286 0.263 0.269 0.288 0.275 0.402 0.438 0.444 0.421
CP 0.954 0.948 0.952 0.947 0.950 0.946 0.950 0.948 0.950 0.949
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Table 3.8: CARA, RA, and CR procedures from 3000 simulations with 500 number
of patients. The proportion of patients assigned to treatment A in stratum h (P̂Ah)
for h = 1, 2, · · · ,m, simulated means (SM), simulated standard errors (SSE) with
the model parameters βA0 = 0, γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25,
γ40 = 0.15, δ10 = 0.10, δ20 = −1.50, δ30 = 0.05, δ40 = 0.05.

Stratum h
Design Quantity S1 S2 S3 S4 S5 S6 S7 S8

CARA SM(P̂Ah) 0.4962 0.5072 0.5079 0.5127 0.2108 0.2239 0.2233 0.2348

SSE(P̂Ah) 0.1513 0.1767 0.1913 0.2318 0.0948 0.1142 0.1254 0.1557

RA SM(P̂Ah) 0.3339 0.3326 0.3345 0.3314 0.3326 0.3336 0.3342 0.3311

SSE(P̂Ah) 0.0879 0.1152 0.1256 0.1704 0.0712 0.0924 0.1001 0.1356

CR SM(P̂Ah) 0.4964 0.4999 0.4994 0.4961 0.4982 0.4995 0.4995 0.5012

SSE(P̂Ah) 0.0790 0.1094 0.1247 0.1712 0.0651 0.0889 0.0967 0.1360

Design Quantity S9 S10 S11 S12 S13 S14 S15 S16

CARA SM(P̂Ah) 0.5214 0.5275 0.5271 0.5319 0.2244 0.2368 0.2370 0.2469

SSE(P̂Ah) 0.1416 0.1716 0.1778 0.2153 0.0955 0.1160 0.1209 0.1527

RA SM(P̂Ah) 0.3342 0.3356 0.3315 0.3317 0.3325 0.3338 0.3339 0.3308

SSE(P̂Ah) 0.0810 0.1052 0.1165 0.1522 0.0646 0.0844 0.0898 0.1253

CR SM(P̂Ah) 0.5012 0.4978 0.5011 0.4978 0.5007 0.5018 0.4990 0.5022

SSE(P̂Ah) 0.0720 0.0968 0.1096 0.1540 0.0580 0.0781 0.0866 0.1247

Table 3.9: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. The proportion of patients assigned to treatment A (P̂A), the success rates
of patients (P̂S), simulated means (SM), and simulated standard errors (SSE) with
the model parameters βA0 = 0, γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25,
γ40 = 0.15, δ10 = 0.10, δ20 = −1.50, δ30 = 0.05, δ40 = 0.05.

Quantity CARA RA CR

SM(P̂A) 0.3417 0.3331 0.4996

SSE(P̂A) 0.0572 0.0472 0.0222

SM(P̂S) 0.4787 0.4577 0.4296

SSE(P̂S) 0.0248 0.0234 0.0225
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Table 3.10: CARA, RA, and CR procedures from 3000 simulations with 500 number of
patients. Simulated means (SM), simulated standard error (SSE), estimated standard
error (ESE), and coverage probability (CP) with the model parameters βA0 = 0,
γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25, γ40 = 0.15, δ10 = 0.10, δ20 = −1.50,
δ30 = 0.05, δ40 = 0.05.

Design Quan-

tity β̂A γ̂0 γ̂1 γ̂2 γ̂3 γ̂4 δ̂1 δ̂2 δ̂3 δ̂4
CARA SM -0.017 0.213 -0.203 -0.323 0.249 0.146 0.108 1.670 0.025 0.042

SSE 0.487 0.282 0.231 0.264 0.252 0.249 0.485 0.540 0.516 0.491
ESE 0.437 0.269 0.228 0.252 0.249 0.239 0.429 0.492 0.468 0.448
CP 0.935 0.946 0.949 0.944 0.947 0.946 0.928 0.946 0.939 0.938

RA SM -0.011 0.249 -0.205 -0.356 0.261 0.152 0.106 -1.559 0.040 0.046
SSE 0.462 0.247 0.227 0.231 0.250 0.238 0.459 0.467 0.501 0.477
ESE 0.452 0.243 0.226 0.230 0.246 0.235 0.442 0.447 0.479 0.461
CP 0.948 0.943 0.951 0.951 0.946 0.953 0.944 0.948 0.947 0.943

CR SM 0.008 0.257 -0.214 -0.361 0.265 0.156 0.112 -1.530 0.029 0.041
SSE 0.427 0.288 0.260 0.264 0.286 0.276 0.403 0.404 0.443 0.414
ESE 0.414 0.282 0.261 0.266 0.285 0.273 0.399 0.403 0.433 0.416
CP 0.944 0.947 0.956 0.951 0.952 0.948 0.944 0.951 0.939 0.954

Table 3.11: CARA, RA, and CR procedures from 3000 simulations with 1000 number
of patients. The proportion of patients assigned to treatment A in stratum h (P̂Ah)
for h = 1, 2, · · · ,m, simulated means (SM), simulated standard errors (SSE) with
the model parameters βA0 = 0, γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25,
γ40 = 0.15, δ10 = 0.10, δ20 = −1.50, δ30 = 0.05, δ40 = 0.05.

Stratum h
Design Quantity S1 S2 S3 S4 S5 S6 S7 S8

CARA SM(P̂Ah) 0.5006 0.5036 0.5055 0.5118 0.1917 0.1997 0.1990 0.2074

SSE(P̂Ah) 0.1123 0.1382 0.1437 0.1749 0.0701 0.0864 0.0910 0.1134

RA SM(P̂Ah) 0.3330 0.3341 0.3359 0.3359 0.3348 0.3329 0.3339 0.3340

SSE(P̂Ah) 0.0630 0.0800 0.0892 0.1166 0.0499 0.0649 0.0731 0.0942

CR SM(P̂Ah) 0.4994 0.5012 0.4990 0.5004 0.4999 0.4999 0.4985 0.4972

SSE(P̂Ah) 0.0547 0.0766 0.0845 0.1179 0.0440 0.0616 0.0690 0.0962

Design Quantity S9 S10 S11 S12 S13 S14 S15 S16

CARA SM(P̂Ah) 0.5240 0.5270 0.5285 0.5353 0.2050 0.2123 0.2143 0.2200

SSE(P̂Ah) 0.1084 0.1285 0.1384 0.1652 0.0727 0.0881 0.0944 0.1116

RA SM(P̂Ah) 0.3346 0.3343 0.3311 0.3298 0.3338 0.3344 0.3330 0.3341

SSE(P̂Ah) 0.0586 0.0742 0.0810 0.1082 0.0464 0.0581 0.0658 0.0866

CR SM(P̂Ah) 0.5000 0.5022 0.4983 0.5014 0.5002 0.5003 0.5004 0.4980

SSE(P̂Ah) 0.0497 0.0700 0.0774 0.1054 0.0412 0.0564 0.0636 0.0871
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Table 3.12: CARA, RA, and CR procedures from 3000 simulations with 1000 number
of patients. The proportion of patients assigned to treatment A (P̂A), the success
rates of patients (P̂S), simulated means (SM), and simulated standard errors (SSE)
with the model parameters βA0 = 0, γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25,
γ40 = 0.15, δ10 = 0.10, δ20 = −1.50, δ30 = 0.05, δ40 = 0.05.

Quantity CARA RA CR

SM(P̂A) 0.3289 0.3338 0.4999

SSE(P̂A) 0.0459 0.0342 0.0161

SM(P̂S) 0.4820 0.4578 0.4297

SSE(P̂S) 0.0180 0.0164 0.0155

Table 3.13: CARA, RA, and CR procedures from 3000 simulations with 1000 number
of patients. Simulated means (SM), simulated standard error (SSE), estimated stan-
dard error (ESE), and coverage probability (CP) with the model parameters βA0 = 0,
γ00 = 0.25, γ10 = −0.20, γ20 = −0.35, γ30 = 0.25, γ40 = 0.15, δ10 = 0.10, δ20 = −1.50,
δ30 = 0.05, δ40 = 0.05.

Design Quan-

tity β̂A γ̂0 γ̂1 γ̂2 γ̂3 γ̂4 δ̂1 δ̂2 δ̂3 δ̂4
CARA SM 0.002 0.229 -0.198 -0.338 0.242 0.153 0.104 -1.612 0.029 0.034

SSE 0.322 0.192 0.160 0.180 0.172 0.167 0.316 0.389 0.342 0.338
ESE 0.302 0.187 0.158 0.175 0.172 0.165 0.298 0.346 0.324 0.311
CP 0.940 0.944 0.945 0.945 0.950 0.951 0.945 0.944 0.948 0.930

RA SM 0.000 0.247 -0.197 -0.353 0.246 0.154 0.100 -1.524 0.051 0.050
SSE 0.320 0.175 0.162 0.164 0.172 0.166 0.309 0.309 0.330 0.327
ESE 0.312 0.170 0.158 0.161 0.172 0.165 0.305 0.308 0.330 0.318
CP 0.948 0.946 0.943 0.946 0.951 0.955 0.950 0.951 0.948 0.944

CR SM 0.005 0.250 -0.202 -0.352 0.250 0.156 0.099 -1.514 0.046 0.040
SSE 0.295 0.201 0.187 0.192 0.198 0.193 0.278 0.287 0.304 0.293
ESE 0.289 0.197 0.183 0.186 0.199 0.191 0.279 0.281 0.302 0.290
CP 0.945 0.947 0.941 0.945 0.950 0.952 0.949 0.945 0.953 0.953
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The values of SM(P̂S) in Table 3.3 clearly show that RA and CARA designs increase

the well-being of participating patients compared to CR designs because the values

of SM(P̂S) for RA, CARA, and CR designs are 77.18%, 76.02%, and 70.44%, respec-

tively. Moreover, the values of SM(P̂S) for RA design is higher than CARA design.

Thus, RA design has been stably moving to achieve target allocation compared to

CARA design. On the other hand, CARA design has three different stages: (i) the

initial stage that is equal allocation, (ii) the second stage that attempts to detect

treatment by covariate interactions, and (iii) the final stage that ethically reduces

the number of patients assigned to inferior treatment. That is, after identification

of treatment by covariate interactions, the success rates of participating patients are

increased by CARA designs. In fact, this result confirms the statement of Ning and

Huang (2010) that was mentioned in Section 1.4.1.

We now examine the scenario that true model contain treatment by covariate in-

teractions. The results in Tables 3.6, 3.9, and 3.12 are the scenarios for which

true models contain treatment by covariate interactions. These tables show that

CARA and RA designs generate ethically desirable outcomes compared with CR de-

sign. Moreover, CARA design are more ethical than RA designs. In this chapter,

the ethical measure is the value of SM(P̂S). Also, we measure the amount of in-

teraction from origin, which is (0,0,0,0), using the Euclidean distance denoted by

EI. That is, the interaction measure is based on Euclidean distance. Therefore, EI

for Table 3.6 =
√

0.092 + (−0.8)2 + 0.062 + 0.042 = 0.8083 and EI for Table 3.9 =√
0.12 + (−1.5)2 + 0.052 + 0.052 = 1.5050. The difference of ethical measure between

CARA and RA design for Table 3.6 = 67.67 - 67.50 = 0.17 and the difference of

ethical measure between CARA and RA design for Table 3.9 = 47.87 - 45.77 = 2.1.

These results show that, the difference in the ethical measure between CARA and RA
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designs increases when the effect of treatment by covariate interactions increase.

When we investigate Table 3.9 and 3.12, the number of participating patients are

the only difference between these two tables. That is, the number of participating

patients in Table 3.9 is 500 and the number of participating patients in Table 3.12

is 1000. Moreover, the ethical measures for CARA, RA, and CR designs in Table

3.12 are increased by 0.33%, 0.01%, 0.01% respectively compared to Table 3.9. Thus,

CARA design generate more ethically desirable outcome compared to RA and CR

design after detecting the treatment by covariate interaction.

Because the parameter θ is multi-dimensional, we use the Euclidean distance to com-

pare the consistency and asymptotic normality among designs. We define the measure

for consistency as the Euclidean distance of SM(θ̂) from θ0, denoted by EC. The mea-

sure for normality is the Euclidean distance of CP(θ̂) from (0.95, 0.95, · · · , 0.95)′ that

is 10× 1 dimension, denoted by EN. In Table 3.4, EC for CARA, RA, and CR design

are 0.1471, 0.0618, and 0.0537 respectively. In Table 3.7, EC for CARA, RA, and CR

design are 0.1633, 0.0571, and 0.0558 respectively. In the Table 3.10, EC for CARA,

RA, and CR design are 3.1705, 0.0628, and 0.0475 respectively. In the Table 3.13, EC

for CARA, RA, and CR design are 0.118, 0.0252, and 0.0195 respectively. According

to these EC values, the ML estimator under CR design is slightly more consistent

than the estimator under RA design, while the ML estimator for RA design is more

consistent than CARA design. We report the values of EN to compare normality of

ML estimators among designs. In Table 3.4, EN for CARA, RA, and CR design are

0.0291, 0.0202, and 0.0066 respectively. In Table 3.7, EN for CARA, RA, and CR

design are 0.0286, 0.0177, and 0.0073 respectively. In Table 3.10, EN for CARA, RA,

and CR design are 0.0327, 0.0133, and 0.0162 respectively. In Table 3.13, EN for
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CARA, RA, and CR design are 0.0255, 0.0123, and 0.0137 respectively. Therefore,

ML estimators slightly deviate from the normal distribution under CARA designs

compared to RA and CR designs when the number of participating patients is 500.

However, ML estimators approximately follow the normal distribution for CARA de-

sign when the number of participating patients is large. These results validate our

theoretical findings.

3.7 Conclusion

In this chapter, we have established conditions for which ML estimators of parame-

ters in GLM for adaptive designs are consistent and asymptotically follow multivariate

normal distribution. One of these conditions is that the Fisher information matrix is

a positive definite matrix at the true vector of parameters instead of the assumption:

Fisher information and observed Fisher information matrices are positive definite ma-

trices within a neighborhood of the vector of true parameters. We have demonstrated

CARA and RA designs maximizing the well-being of participating patients in a clini-

cal trial compared to CR design by simulation studies. Moreover, RA design generates

more ethically desirable outcomes as well as efficient ML estimates than CARA design

when there is no treatment by covariate interaction in the true model. If true model

contains treatment by covariate interactions, then CARA design is more ethical than

RA design. However, ML estimates for CARA design are less efficient compared to

estimators under RA design. As we discuss in § 3.6, CARA design has three stages.

Furthermore, CARA design maximizes the well-being of participating patients in the

final stage after treatment by covariate interactions have been detected. Based on

the above conclusions, we recommend that we can apply RA design until detecting

treatment by covariate interactions. If treatment by covarite interaction is detected,
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then we can apply CARA design in the final stage of a clinical trial.



Chapter 4

Investigating the Performance of

Statistical Power versus Ethics

between Response-Adaptive and

Covariate-Adjusted

Response-Adaptive Designs

4.1 Introduction

In Chapter 3, we established a set of conditions for asymptotic normality and con-

sistency of estimators of regression parameters of logit model when we implement

adaptive designs that satisfy the assumption 3.4.1. In this chapter, we establish the-

oretical foundation for the power computation based on Wald statistics when the

model contains categorical variables with adaptive designs that satisfy assumption
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3.4.1. Also, one of main objectives of a clinical trial is to test treatment effect effi-

ciently.

This chapter is organized as follows. In § 4.2, general results for hypotheses testing are

presented for adaptive designs and the model in (3.1) is considered as a true model.

Similar justification of the Wald type hypotheses testing procedure is discussed in §

4.3 for adaptive designs; but the model in (4.10) is considered as the true model. In

§ 4.4, we investigate our theoretical results through simulation studies. At last, we

provide the conclusion in § 4.5.

4.2 Hypothesis Testing: Full Model

In general, the hypotheses test for model in (3.1) are

H0 : Dθ0 = d0 vs HA : Dθ0 6= d0 (4.1)

where D is an (d× q) matrix of full row rank, d0 is a (d× 1) constant column vector,

H0 and HA are null and alternative hypotheses respectively.

Theorem 4.2.1. We Assume 3.4.1 and 3.4.2 hold , with m <∞, q <∞. Define the

Wald-type test statistic TW = [Dθ̂n−d0]
′[DFn(θ̂n)−1D′]−1[Dθ̂n−d0], where Fn(θ̂n)

is the observed Fisher information matrix that is evaluated at θ̂n. Then, for fixed n,

(a) under H0, TW converges to the central chi-square distribution with d degrees of

freedom, say, χ2
d;

(b) under HA, TW is asymptotically distributed as non-central chi-square distribu-

tion with d degrees of freedom, and non-centrality parameter φ(a), say, χ2
d(φ

(a));
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where θ̂n ∈ G is the unrestricted MLE of θ0, n ≥ N , φ(a) = n[Dθ0−d0]
′[DI(θ0)

−1D′]−1[Dθ0−

d0], I(θ0) is the Fisher information matrix; G, and N is defined in Lemma 3.4.6.

Proof. From Lemma 3.4.6, Theorem 3.4.1, and Lemma 3.4.3, we have the fol-

lowing results:

(i) θ̂n
a.s−→ θ0,

(ii)
√
n(θ̂n − θ0)

d−→ Nq[0, I(θ0)
−1],

(iii)
1

n
Fn(θ0)→ I(θ0).

Using the result (i) and the continuous mapping theorem, the following result can be

obtained

1

n
Fn(θ̂n)

a.s.−−→ 1

n
Fn(θ0). (4.2)

Furthermore, applying (4.2) and the result (iii), we obtain

1

n
Fn(θ̂n)

a.s.−−→ I(θ0). (4.3)

(a) Let θ̂n ∈ G and n ≥ N ,

we have that assumptions 3.4.1 and 3.4.2 are true, m < ∞, q < ∞; thus

Fn(θ̂n) is a positive definite matrix [Lemma 3.4.6]. As a result, DFn(θ̂n)−1D′

is a positive definite matrix because D is a matrix of full row rank. Then,

[DFn(θ̂n)−1D′]−1 exists.
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Under H0, TW can be written as

TW = [Dθ̂n −Dθ0]
′[DFn(θ̂n)−1D′]−1[Dθ̂n −Dθ0]

= [
√
nD(θ̂n − θ0)]

′{D[(1/n)Fn(θ̂n)]−1D′}−1[
√
nD(θ̂n − θ0)]

{D[(1/n)Fn(θ̂n)]−1D′}−1 a.s.−−→ {DI(θ0)
−1D′}−1

= D∗(θ0)
−1/2D∗(θ0)

−1/2, (4.4)

where D∗(θ0) = DI(θ0)
−1D′. Since D is a (d × q) matrix of full row rank and

I(θ0)
−1 is a positive definite matrix, we have that D∗(θ0) is a positive definite

matrix, [Seber and Lee (2003)]. Therefore, there exists a unique square root

matrix D∗(θ0)
1/2 of D∗(θ0).

Now, D is a (d × q) matrix and
√
n(θ̂n − θ0)

d−→ Nq[0, I(θ0)
−1]. Therefore, we

have
√
nD(θ̂n−θ0)

d−→ Nd[0,D
∗(θ0)] and D∗(θ0)

−1/2√nD(θ̂n−θ0)
d−→ Nd[0, I

∗
d]

[Srivastava (2002)], where I∗d is an identity matrix of dimension d. Therefore,

T ∗W = {
√
n[Dθ̂n −Dθ0]

′}[DI(θ0)
−1D′]−1{

√
n[Dθ̂n −Dθ0]}

= {
√
n[Dθ̂n −Dθ0]

′D∗(θ0)
−1/2}{

√
nD∗(θ0)

−1/2[Dθ̂n −Dθ0]}
d−→ χ2

(d) (4.5)

where χ2
(d) is the central chi-square distribution with d degrees of freedom. It

follows from (4.4) and (4.5), that TW asymptotically follows the central chi-

square distribution with d degrees of freedom.
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(b) Under HA

TW = [Dθ̂n − d0]
′[DFn(θ̂n)−1D′]−1[Dθ̂n − d0]

=
√
n[Dθ̂n − d0]

′[D{(1/n)Fn(θ̂n)}−1D′]−1
√
n[Dθ̂n − d0].

We consider

√
n[Dθ̂n − d0] =

√
n[D(θ̂n − θ0) + (Dθ0 − d0)]

d−→ Nd[
√
n(Dθ0 − d0),D

∗(θ0)].

Thus,

√
nD∗(θ0)

−1/2[Dθ̂n − d0]
d−→ Nd[

√
nD∗(θ0)

−1/2(Dθ0 − d0), I
∗
d].

Therefore, following Anderson (1966)

T ∗W = {
√
n[Dθ̂n − d0]

′}[DI(θ0)
−1D′]−1{

√
n[Dθ̂n − d0]}

= {
√
n[Dθ̂n − d0]

′D∗(θ0)
−1/2}{

√
nD∗(θ0)

−1/2[Dθ̂n − d0]}
d−→ χ2

(d)(φ
(a)), (4.6)

where φ(a) = n[Dθ0 − d0]
′[DI(θ0)

−1D′]−1[Dθ0 − d0]. From (4.4) and (4.6), we

have that TW asymptotically follows the non-central chi-square distribution with

d degrees of freedom, given n, and non-centrality parameter φ(a).
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4.2.1 Testing Interaction Effects

To test the interaction effects in (3.1), we test the following hypothesis:

H0I : δ0 = 0p×1 vs HAI : δ0 6= 0p×1. (4.7)

Choose D =

(
0p×(q−p) I∗p×p

)
, where I∗p×p is an identity matrix of dimension p

and d0 = 0p×1, then the two hypotheses in (4.7) and (4.1) are equivalent. Define

1

n
Fn(θ) =

 ∆
[n]
11 (θ) ∆

[n]
12 (θ)

∆
[n]
21 (θ) ∆

[n]
22 (θ)

, where

∆
[n]
11 (θ) =

1

n

n∑
i=1

g(w′iθ)


xiA xiA xiAz′i

xiA 1 z′i

xiAzi zi ziz
′
i

, ∆
[n]
21 (θ) = ∆

[n]
12 (θ)′,

∆
[n]
12 (θ) =

1

n

n∑
i=1

g(w′iθ)


xiAz′i

xiAz′i

xiAziz
′
i

, and ∆
[n]
22 (θ) =

1

n

n∑
i=1

g(w′iθ)xiAziz
′
i. From The-

orem 4.2.1, when H0I is true, we have that

TWI = n[Dθ̂n − d0]
′{D[(1/n)Fn(θ̂n)]−1D′}−1[Dθ̂n − d0]

= nδ̂
′
n[S

∆
[n]
11

(θ̂n)]δ̂n ∼ χ2
p, (4.8)

where S
∆

[n]
11

(θ̂n) = ∆
[n]
22 (θ̂n)−∆

[n]
21 (θ̂n)[∆

[n]
11 (θ̂n)]−1∆

[n]
12 (θ̂n).

4.2.2 Power of the Test for Interaction Effects

According to Theorem 4.2.1, when HAI is true, TWI is asymptotically distributed

as non-central chi-square distribution with p degrees of freedom, given n, and the
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non-centrality parameter φ, where

φ = n[Dθ0 − d0]
′{D[(1/n)Fn(θ0)]−1D′}−1[Dθ0 − d0]

= nδ′0[S∆
[n]
11

(θ0)]δ0, (4.9)

with S
∆

[n]
11

(θ0) = ∆
[n]
22 (θ0) −∆

[n]
21 (θ0)[∆

[n]
11 (θ0)]

−1∆
[n]
12 (θ0). When we conduct the hy-

pothesis test for interaction effect in (4.7), we assume that the vector of parameters,

θ0I = (βA0, γ00,γ0
′)′, in model (3.1) are nuisance parameters. In practice the experi-

menter does not know the values of the nuisance parameters needed to compute power

for a real data. Also to compute the value of the non-centrality parameter φ in (4.9),

Fn(θ0) is replaced by Fn(θ̂n) [Demidenko (2007)].

4.3 Testing Hypotheses using the Wald-Type Statis-

tic: Reduced Model

After conducting the test for interaction effects in (4.7), if we conclude that there is

no evidence for interaction effects, one can drop the interaction terms from the full

model in (3.1) when conducting statistical inference for the main treatment effect.

Hereinafter, this sub model is called the reduced model. The reduced model is given

by

logit[P (Yi = 1|xiA, zi)] = xiAβAR + γ0R + z′iγR,

= w′iRθR, for i = 1, 2, · · · , n (4.10)
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where γR = (γ1R, γ2R, · · · , γpR)′ are the main effects of covariates, βAR is the effect of

treatment A compared to treatment B, γ0R is the intercept term, wiR = (xiA, 1, z
′
i)
′,

and θR = (βAR, γ0R,γ
′
R)′. In fact, the model in (4.10) is a sub-model of the model in

3.1. In this case, we can define the design matrix XR as

XR =



w′1R

w′2R

· · ·

· · ·

w′nR


.

In this subsection, we assume that the model in (4.10) is the true model and the true

vector of parameters is θ0R, where θ0R = (βA0R, γ00R,γ
′
0R)′. We will investigate the

influence of adaptation on the statistical power in testing for main effect.

Assumption 4.3.1. I(θ0R) is a positive definite matrix, where θ0R is a (q − p)

dimensional true vector of parameters, and I(θ0R) is a Fisher information matrix.

4.3.1 Testing for Main Effect of Treatment

The hypothesis of interest in testing for the main effect of treatment for the model in

(4.10) becomes

H0TR : βA0R = 0 HATR : βA0R 6= 0. (4.11)

Now, let DR =

(
1 01×(q−p−1)

)
, d0R = 0, and define

1

n
Fn(θR) =

 ∆
[n]
11t(θR) ∆

[n]
12t(θR)

∆
[n]
21t(θR) ∆

[n]
22t(θR)

,

where
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∆
[n]
11t(θR) =

1

n

n∑
i=1

g(w′iRθR)xiA, ∆
[n]
22t(θR) =

1

n

n∑
i=1

g(w′iRθR)

 1 z′i

zi ziz
′
i

,

∆
[n]
12t(θR) =

1

n

n∑
i=1

g(w′iRθR)

(
xiA xiAz′i

)
, ∆

[n]
21t(θR) = ∆

[n]
12t(θR)′. Under H0TR, we

have that the test statistics given by

TWR = n[DRθ̂nR]′{DR[(1/n)Fn(θ̂nR)]−1D′R}−1[DRθ̂nR]

= n[β̂AnR]2[S
∆

[n]
22t

(θ̂nR)]
d−→ χ2

1, (4.12)

follows the chi-squared distribution with 1 degree of freedom, where S
∆

[n]
22t

(θ̂nR) =

∆
[n]
11t(θ̂nR)−∆

[n]
12t(θ̂nR)[∆

[n]
22t(θ̂nR)]−1∆

[n]
21t(θ̂nR).

4.3.2 Statistical Power Computation for Hypothesis Testing

of Main Effect

It is clear that, under HATR, TWR is asymptotically distributed as non-central chi-

square with 1 degree of freedom and non-centrality parameter φ, given by

φ = n[DRθ0R − d0R]′{DR[(1/n)Fn(θ0R)]−1D′R}−1[DRθ0R − d0R]

= n[βA0R]2[S
∆

[n]
22t

(θ0R)], (4.13)

where S
∆

[n]
22t

(θ0R) = ∆
[n]
11t(θ0R) − ∆

[n]
12t(θ0R)[∆

[n]
22t(θ0R)]−1∆

[n]
21t(θ0R). In this section,

the true treatment effect, βA0R, is the main parameter of interest. We refer to the

other parameters, θ0NR = (γ00R,γ0R
′)′, in the model (4.10) as nuisance parameters.

The nuisance parameters, θ0NR are however required for power computation in testing

the hypothesis in (4.11). Demidenko (2007) notes that to compute the value of the

non-centrality parameter φ in (4.13), Fn(θ0R) has to be replaced by Fn(θ̂nR).
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As defined earlier, NAh(n) is the number of patients assigned to treatment A for

a given nh number of patients in stratum h, h = 1, 2, · · · ,m. Define the sample

proportion of patients (say p̂Ah) assigned to treatment A for a given nh number of

patients in the stratum as p̂Ah =
NAh(n)

nh
, for h = 1, 2, · · · ,m. Furthermore, let

p̂A = (p̂A1, p̂A2, · · · , p̂Am)′ be the vector of sample proportions of patients assigned to

treatment A for a given n and πA = (πA(v1), πA(v2), · · · , πA(vm))′ be the vector of

target proportions of patients assigned to treatment A over patients’ strata. Then,

for a given n, we investigate the non-centrality parameter φ

φ

n
= [βA0R]2[S

∆
[n]
22t

(θ0R)], (4.14)

where S
∆

[n]
22t

(θ0R) = ∆
[n]
11t(θ0R)−∆

[n]
12t(θ0R)[∆

[n]
22t(θ0R)]−1∆

[n]
21t(θ0R),

∆
[n]
11t(θ0R) =

1

n

n∑
i=1

g(w′iRθ0R)xiA, ∆
[n]
22t(θ0R) =

1

n

n∑
i=1

g(w′iRθ0R)

 1 z′i

zi ziz
′
i

,

∆
[n]
12t(θ0R) =

1

n

n∑
i=1

g(w′iRθ0R)

(
xiA xiAz′i

)
, ∆

[n]
21t(θ0R) = ∆

[n]
12t(θ0R)′.

Theorem 4.3.1. Consider the non-centrality parameter φ defined in (4.14) and follow

the notation that was introduced in this section. Then,

1. φ is a function of p̂A, where p̂A = (p̂A1, p̂A2, · · · , p̂Am)′ is the vector of sample

proportions of patients assigned to Treatment A for given n. Let this function

be φ(p̂A).

2. φ(p̂A) can be expressed the following quantities: the target allocation propor-

tion, the bias of the randomization procedure from the target, and the variability

induced by the randomization process.

Proof. From (4.14),
φ

n
= [βA0R]2[S

∆
[n]
22t

(θ0R)].
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1. First, we express the components of
φ

n
, namely, ∆

[n]
11t(θ0R), ∆

[n]
12t(θ0R), ∆

[n]
21t(θ0R),

and ∆
[n]
22t(θ0R) as function of p̂Ah for h = 1, 2, · · · ,m.

∆
[n]
11t(θ0R) =

1

n

n∑
i=1

g(w′iRθ0R)xiA

=
m∑
h=1

λAhR(θ0R)
nh
n

NAh(n)

nh

=
m∑
h=1

λAhR(θ0R)
nh
n
p̂Ah

∆
[n]
12t(θ0R) =

1

n

n∑
i=1

g(w′iRθ0R)

(
xiA xiAz′i

)
=

m∑
h=1

λAhR(θ0R)
nh
n

NAh(n)

nh

(
1 v′h

)
=

m∑
h=1

λAhR(θ0R)
nh
n
p̂Ah

(
1 v′h

)
∆

[n]
21t(θ0R) =

m∑
h=1

λAhR(θ0R)
nh
n
p̂Ah

(
1 v′h

)′

∆
[n]
22t(θ0R) =

1

n

n∑
i=1

g(w′iRθ0R)

 1 z′i

zi ziz
′
i


=

m∑
h=1

Υ(θ0R, p̂Ah)

 1 v′h

vh vhv
′
h


where Υ(θ0R, p̂Ah) =

nh
n
{λAhR(θ0R)p̂Ah + λBhR(θ0R) [1− p̂Ah]},

λAhR(θR) = exp(−βAR − γ0R − v′hγR)[1 + exp(−βAR − γ0R − v′hγR)]−2, and

λBhR(θR) = exp(−γ0R − v′hγR)[1 + exp(−γ0R − v′hγR)]−2. Therefore, the non-

centrality parameter φ is a function of p̂A.
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2. We apply the multivariate version of Taylor’s expansion to φ(p̂A) in a neighbor-

hood centered around πA. As a result,

1

n
φ(p̂A) =

1

n
φ(πA) +

1

n
φ(1)(πA)[p̂A − πA] +

1

2
[p̂A − πA]′

1

n
φ(2)(πA)[p̂A − πA]

+ o(‖ p̂A − πA ‖m), where (4.15)

1

n
φ(1)(πA) =

1

n

(
∂φ(p̂A)

∂p̂A

)
p̂A=πA

=
1

n

(
∂φ(p̂A)

∂p̂A1

∂φ(p̂A)

∂p̂A2
· · · ∂φ(p̂A)

∂p̂Ah
· · · ∂φ(p̂A)

∂p̂Am

)′
p̂A=πA

where, for h = 1, 2, · · · ,m

1

n

∂φ(p̂A)

∂p̂Ah
= [βA0R]2

[
∂S

∆
[n]
22t

(θ0R, p̂A)

∂p̂Ah

]

= [βA0R]2

[
∂∆

[n]
11t(θ0R, p̂A)

∂p̂Ah
− ∂∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

∂p̂Ah

]

= [βA0R]2

[
∂∆

[n]
11t(θ0R, p̂A)

∂p̂Ah
− ∂∆

[n]
12t(θ0R, p̂A)

∂p̂Ah
[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]

− [βA0R]2

[
∆

[n]
12t(θ0R, p̂A)

∂[∆
[n]
22t(θ0R, p̂A)]−1

∂p̂Ah
∆

[n]
21t(θ0R, p̂A)

]

− [βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1

∂∆
[n]
21t(θ0R, p̂A)

∂p̂Ah

]

∂∆
[n]
11t(θ0R, p̂A)

∂p̂Ah
= λAhR(θ0R)

nh
n

∂∆
[n]
12t(θ0R, p̂A)

∂p̂Ah
= λAhR(θ0R)

nh
n

(
1 v′h

)
∂∆

[n]
21t(θ0R, p̂A)

∂p̂Ah
= λAhR(θ0R)

nh
n

(
1 v′h

)′
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∂[∆
[n]
22t(θ0R, p̂A)]−1

∂p̂Ah
= −[∆

[n]
22t(θ0R, p̂A)]−1

[
∂[∆

[n]
22t(θ0R, p̂A)]

∂p̂Ah

]
[∆

[n]
22t(θ0R, p̂A)]−1

= −[∆
[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1,

where MDh =

nh
n
{λAhR(θ0R)− λBhR(θ0R)}

 1 v′h

vh vhv
′
h


.

To evaluate the term
1

n
φ(2)(πA) in (4.20), we require the following second deriva-

tives:

(i)
∂2∆

[n]
11t(θ0R, p̂A)

∂p̂Ah∂p̂Ah∗
= 0 for h∗ = h or h∗ 6= h.

(ii)
∂2∆

[n]
12t(θ0R, p̂A)

∂p̂Ah∂p̂Ah∗
= 01×(p+1) for h∗ = h or h∗ 6= h.

(iii)
∂2∆

[n]
21t(θ0R, p̂A)

∂p̂Ah∂p̂Ah∗
= 0(p+1)×1 for h∗ = h or h∗ 6= h.

(iv)
∂2[∆

[n]
22t(θ0R, p̂A)]−1

∂p̂Ah∂p̂Ah
= 2[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1

(v)
∂2[∆

[n]
22t(θ0R, p̂A)]−1

∂p̂Ah∂p̂Ah∗
= [∆

[n]
22t(θ0R, p̂A)]−1MDh∗ [∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1

+ [∆
[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1MDh∗ [∆

[n]
22t(θ0R, p̂A)]−1
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1

n
φ(2)(πA) =

1

n

(
∂2φ(p̂A)

∂p̂A∂p̂′A

)
p̂A=πA

=
1

n



∂2φ(p̂A)

∂p̂A1∂p̂A1

∂2φ(p̂A)

∂p̂A1∂p̂A2
· · · ∂2φ(p̂A)

∂p̂A1∂p̂Ah∗
· · · ∂2φ(p̂A)

∂p̂A1∂p̂Am
∂2φ(p̂A)

∂p̂A2∂p̂A1

∂2φ(p̂A)

∂p̂A2∂p̂A2
· · · ∂2φ(p̂A)

∂p̂A2∂p̂Ah∗
· · · ∂2φ(p̂A)

∂p̂A2∂p̂Am

· · · · · · · · · · · · · · · · · ·
∂2φ(p̂A)

∂p̂Ah∂p̂A1

∂2φ(p̂A)

∂p̂Ah∂p̂A2
· · · ∂2φ(p̂A)

∂p̂Ah∂p̂Ah∗
· · · ∂2φ(p̂A)

∂p̂Ah∂p̂Am

· · · · · · · · · · · · · · · · · ·
∂2φ(p̂A)

∂p̂Am∂p̂A1

∂2φ(p̂A)

∂p̂Am∂p̂A2
· · · ∂2φ(p̂A)

∂p̂Am∂p̂Ah∗
· · · ∂2φ(p̂A)

∂p̂Am∂p̂Am


p̂A=πA

.(4.16)

Hence the theorem holds.

4.3.3 Concaveness of the Non-centrality Parameter

We begin by noting that the theoretical non-centrality parameter φ. Also, we consider

only the one covariate Z1. This parameter φ is a function of the sample proportion of

patients assigned to treatment A. we assume the true model

logit[P (Yi = 1|xiA)] = w′iθ0R for i = 1, 2, · · · , n (4.17)

where θ0R = (βA0R, γ00R, γ10R)′, wi = (xiA, 1, zi1)
′. In this section, we show that

the non-centrality parameter of the distribution of the test statistic is concave, the

hypothesis test for testing treatment effect

H0T : βA0R = 0 HA : βA0R 6= 0, (4.18)
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where βA0R is the effect of treatment A (the new treatment) compared to the effect

of treatment B (an existing treatment).

As defined earlier, NAh(n) is the number of patients assigned to treatment A for a

given nh number of patients in stratum h, h = 1, 2. Here, the sample proportion

of patients (say p̂Ah) assigned to treatment A for a given nh number of patients in

the stratum is p̂Ah =
NAh(n)

nh
, for h = 1, 2. Also, let p̂A = (p̂A1, p̂A2)

′ be the vector

of sample proportions of patients assigned to treatment A for given n and πA =

(πA(v1), πA(v2))
′, the vector of target proportions of patients assigned to treatment A

over patients’ strata. From (4.14), the non-centrality parameter φ for a given n is

1

n
φ(p̂A) = [βA0R]2[S

∆
[n]
22t

(θ0R, p̂A)], (4.19)

where S
∆

[n]
22t

(θ0R, p̂A) = ∆
[n]
11t(θ0R, p̂A)−∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A).

Theorem 4.3.2. Consider the non-centrality parameter defined in (4.19). If we use

the notations in § 4.1, then φ(p̂A) is a concave function.

Proof. Using the proof of Theorem 4.3.1, we have

∆
[n]
11t(θ0R, p̂A) =

2∑
h=1

λAh(θ0R)
nh
n
p̂Ah,

∆
[n]
12t(θ0R, p̂A) =

2∑
h=1

λAh(θ0R)
nh
n
p̂Ah

(
1 vh

)
,

∆
[n]
21t(θ0R, p̂A) =

2∑
h=1

λAh(θ0R)
nh
n
p̂Ah

(
1 vh

)′
,

∆
[n]
22t(θ0R, p̂A) =

2∑
h=1

Υh(θ0R)

 1 vh

vh vh

 ,
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where Υh(θ0R) =
nh
n
{λAh(θ0R)p̂Ah + λBh(θ0R) [1− p̂Ah]},

λAh(θ0R) = exp(−βA0R − γ00R − vhγ10R)[1 + exp(−βA0R − γ00R − vhγ10R)]−2,

λBh(θ0R) = exp(−γ00R − vhγ10R)[1 + exp(−γ00R − vhγ10R)]−2 for h = 1, 2; v1 = 1 and

v2 = 0.

Applying the multivariate version of Taylor’s expansion to φ(p̂A) in a neighborhood

centered around πA we obtain,

1

n
φ(p̂A) =

1

n
φ(πA) +

1

n
φ(1)(πA)[p̂A − πA]− 1

2
[p̂A − πA]′[− 1

n
φ(2)(πA)][p̂A − πA]

Now,

1

n
φ(1)(πA) =

1

n

(
∂φ(p̂A)

∂p̂A

)
p̂A=πA

=
1

n

(
∂φ(p̂A)

∂p̂A1

∂φ(p̂A)

∂p̂A2

)′
p̂A=πA

with

1

n

∂φ(p̂A)

∂p̂Ah
= [βA0R]2

[
∂S

∆
[n]
22t

(θ0R, p̂A)

∂p̂Ah

]

= [βA0R]2

[
∂∆

[n]
11t(θ0R, p̂A)

∂p̂Ah
− ∂∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

∂p̂Ah

]

= [βA0R]2

[
∂∆

[n]
11t(θ0R, p̂A)

∂p̂Ah
− ∂∆

[n]
12t(θ0R, p̂A)

∂p̂Ah
[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]

− [βA0R]2

[
∆

[n]
12t(θ0R, p̂A)

∂[∆
[n]
22t(θ0R, p̂A)]−1

∂p̂Ah
∆

[n]
21t(θ0R, p̂A)

]

− [βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1

∂∆
[n]
21t(θ0R, p̂A)

∂p̂Ah

]
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where

∂∆
[n]
11t(θ0R, p̂A)

∂p̂Ah
= λAh(θ0R)

nh
n

∂∆
[n]
12t(θ0R, p̂A)

∂p̂Ah
= λAh(θ0R)

nh
n

(
1 vh

)
∂∆

[n]
21t(θ0R, p̂A)

∂p̂Ah
= λAh(θ0R)

nh
n

(
1 vh

)′

and

∂[∆
[n]
22t(θ0R, p̂A)]−1

∂p̂Ah
= −[∆

[n]
22t(θ0R, p̂A)]−1

[
∂[∆

[n]
22t(θ0R, p̂A)]

∂p̂Ah

]
[∆

[n]
22t(θ0R, p̂A)]−1

= −[∆
[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1,

MDh =

nh
n
{λAh(θ0R)− λBh(θ0R)}

 1 vh

vh vh


.

We note that here, h = 1, 2, and v1 = 1, v2 = 0. Also,

1

n
φ(2)(πA) =

1

n

(
∂2φ(p̂A)

∂p̂A∂p̂′A

)
p̂A=πA

=
1

n


∂2φ(p̂A)

∂p̂A1∂p̂A1

∂2φ(p̂A)

∂p̂A1∂p̂A2
∂2φ(p̂A)

∂p̂A2∂p̂A1

∂2φ(p̂A)

∂p̂A2∂p̂A2


p̂A=πA

. (4.20)

To evaluate the term
1

n
φ(2)(πA) in 4.20, we require the following second derivatives:

(i)
∂2∆

[n]
11t(θ0R, p̂A)

∂p̂Ah∂p̂Ah∗
= 0 for h∗ = h or h∗ 6= h,

(ii)
∂2∆

[n]
12t(θ0R, p̂A)

∂p̂Ah∂p̂Ah∗
= 01×2 for h∗ = h or h∗ 6= h,
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(iii)
∂2∆

[n]
21t(θ0R, p̂A)

∂p̂Ah∂p̂Ah∗
= 02×1 for h∗ = h or h∗ 6= h, and

(iv)
∂2[∆

[n]
22t(θ0R, p̂A)]−1

∂p̂Ah∂p̂Ah∗
= 2[∆

[n]
22t(θ0R, p̂A)]−1MDh∗ [∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1

for h∗ = h or h∗ 6= h.

The second derivatives in (4.20) are then, given by

1

n

∂2φ(p̂A)

∂p̂Ah∂p̂Ah∗

= 2[βA0R]2
[
λAhR(θ0R)

nh
n

(
1 vh

)
[∆

[n]
22t(θ0R, p̂A)]−1MDh∗ [∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
λAhR(θ0R)

nh
n

(
1 vh

)
[∆

[n]
22t(θ0R, p̂A)]−1λAh∗R(θ0R)

nh∗

n

(
1 vh∗

)′]
+ 2[βA0R]2

[
λAh∗R(θ0R)

nh∗

n

(
1 vh∗

)
[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MDh∗ [∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1

]
∆

[n]
21t(θ0R, p̂A),

1

n

∂2φ(p̂A)

∂p̂Ah∂p̂Ah

= 2[βA0R]2
[
λAh(θ0R)

nh
n

(
1 vh

)
[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
λAh(θ0R)

nh
n

(
1 vh

)
[∆

[n]
22t(θ0R, p̂A)]−1λAh(θ0R)

nh
n

(
1 vh

)′]
+ 2[βA0R]2

[
λAh(θ0R)

nh
n

(
1 vh

)
[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1MDh[∆

[n]
22t(θ0R, p̂A)]−1

]
∆

[n]
21t(θ0R, p̂A).
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Using the fact that v1 = 1, v2 = 0, we obtain the following results

∆
[n]
22t(θ0R, p̂A) =

2∑
h=1

Υh(θ0R)

 1 vh

vh vh


= Υ1(θ0R)

 1 1

1 1

+ Υ2(θ0R)

 1 0

0 0


=

 Υ1(θ0R) + Υ2(θ0R) Υ1(θ0R)

Υ1(θ0R) Υ1(θ0R)

 ,

with

∆
[n]
22t(θ0R, p̂A)−1 =

1

Υ1(θ0R)Υ2(θ0R)

 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)

 .

Recall that

MDh =

nh
n
{λAh(θ0R)− λBh(θ0R)}

 1 vh

vh vh




= µh(θ0R)

 1 vh

vh vh

 ,

where µh(θ0R) =
nh
n
{λAh(θ0R)− λBh(θ0R)}, and

∆
[n]
12t(θ0R, p̂A) =

2∑
h=1

λAh(θ0R)
nh
n
p̂Ah

(
1 vh

)

=
2∑

h=1

Ch(θ0R)

(
1 vh

)
=

(
C1(θ0R) + C2(θ0R) C1(θ0R)

)
1×2

,
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where Ch(θ0R) = Dh(θ0R)p̂Ah and Dh(θ0R) = λAh(θ0R)
nh
n

. It follows that,

[∆
[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1

=
µ1(θ0R)

[Υ1(θ0R)Υ2(θ0R)]

 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


 1 1

1 1

 [∆
[n]
22t(θ0R, p̂A)]−1

=
µ1(θ0R)

[Υ1(θ0R)]2Υ2(θ0R)

 0 0

1 1


 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


=

µ1(θ0R)

[Υ1(θ0R)]2

 0 0

0 1

 ;

[∆
[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1

=
µ2(θ0R)

[Υ1(θ0R)Υ2(θ0R)]

 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


 1 0

0 0

 [∆
[n]
22t(θ0R, p̂A)]−1

=
µ2(θ0R)

Υ1(θ0R)[Υ2(θ0R)]2

 1 0

−1 0


 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


=

µ2(θ0R)

[Υ2(θ0R)]2

 1 −1

−1 1

 ;

[∆
[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

=
µ1(θ0R)

[Υ1(θ0R)]2

 0 0

0 1


 C1(θ0R) + C2(θ0R)

C1(θ0R)

 =
µ1(θ0R)C1(θ0R)

[Υ1(θ0R)]2

 0

1

 ;
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[∆
[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

=
µ2(θ0R)

[Υ2(θ0R)]2

 1 −1

−1 1


 C1(θ0R) + C2(θ0R)

C1(θ0R)


=
µ2(θ0R)C2(θ0R)

[Υ2(θ0R)]2

 1

−1

 ;

∆
[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

=
[µ1(θ0R)]2

[Υ1(θ0R)]2
∆

[n]
12t(θ0R, p̂A)

 0 0

0 1


 1 1

1 1

 [∆
[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

=
[µ1(θ0R)]2

[Υ1(θ0R)]3
1

Υ2(θ0R)
∆

[n]
12t(θ0R, p̂A)

 0 0

1 1


 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


∆

[n]
21t(θ0R, p̂A)

=
[µ1(θ0R)]2

[Υ1(θ0R)]3

(
C1(θ0R) + C2(θ0R) C1(θ0R)

) 0 0

0 1

∆
[n]
21t(θ0R, p̂A)

=
[µ1(θ0R)]2

[Υ1(θ0R)]3
C1(θ0R)

(
0 1

) 0 0

0 1

∆
[n]
21t(θ0R, p̂A)

=
[µ1(θ0R)]2

[Υ1(θ0R)]3
C1(θ0R)

(
0 1

) C1(θ0R) + C2(θ0R)

C1(θ0R)


=

[µ1(θ0R)]2

[Υ1(θ0R)]3
[C1(θ0R)]2.
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The elements of (4.20) can be further simplified as follows:

∆
[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

=
[µ2(θ0R)]2

[Υ2(θ0R)]2
∆

[n]
12t(θ0R, p̂A)

 1 −1

−1 1


 1 0

0 0

 [∆
[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

=
[µ2(θ0R)]2

[Υ1(θ0R)][Υ2(θ0R)]3
∆

[n]
12t(θ0R, p̂A)

 1 0

−1 0


 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


∆

[n]
21t(θ0R, p̂A)

=
[µ2(θ0R)]2

[Υ2(θ0R)]3

(
C1(θ0R) + C2(θ0R) C1(θ0R)

) 1 −1

−1 1

∆
[n]
21t(θ0R, p̂A)

=
[µ2(θ0R)]2

[Υ2(θ0R)]3
C2(θ0R)

(
1 −1

) C1(θ0R) + C2(θ0R)

C1(θ0R)


=

[µ2(θ0R)]2

[Υ2(θ0R)]3
[C2(θ0R)]2;

MD2[∆
[n]
22t(θ0R, p̂A)]−1MD1

=
µ2(θ0R)µ1(θ0R)

Υ1(θ0R)Υ2(θ0R)

 1 0

0 0


 Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


 1 1

1 1


=
µ2(θ0R)µ1(θ0R)

Υ2(θ0R)

 1 −1

0 0


 1 1

1 1


=

 0 0

0 0

 ;
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1

n

∂2φ(p̂A)

∂p̂A1∂p̂A1

= 2[βA0R]2
{
D1(θ0R)

(
1 1

)
[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

}
− 2[βA0R]2

{
[D1(θ0R)]2

(
1 1

)
[∆

[n]
22t(θ0R, p̂A)]−1

(
1 1

)′}
+ 2[βA0R]2

[
D1(θ0R)

(
1 1

)
[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1

]
∆

[n]
21t(θ0R, p̂A)

= 2[βA0R]2D1(θ0R)

(
1 1

) 0

1

 µ1(θ0R)C1(θ0R)

[Υ1(θ0R)]2

− 2[βA0R]2[D1(θ0R)]2
1

Υ1(θ0R)Υ2(θ0R)

(
1 1

) Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


 1

1


+ 2[βA0R]2D1(θ0R)

(
1 1

) 0

1

 µ1(θ0R)C1(θ0R)

[Υ1(θ0R)]2

− 2[βA0R]2
[µ1(θ0R)]2

[Υ1(θ0R)]3
[C1(θ0R)]2

= −2[βA0R]2

Υ1(θ0R)

{
[D1(θ0R)]2 − 2D1(θ0R)

µ1(θ0R)C1(θ0R)

Υ1(θ0R)
+

[µ1(θ0R)]2

[Υ1(θ0R)]2
[C1(θ0R)]2

}
= −2[βA0R]2

Υ1(θ0R)

{
D1(θ0R)− µ1(θ0R)

Υ1(θ0R)
C1(θ0R)

}2

;



116

1

n

∂2φ(p̂A)

∂p̂A2∂p̂A2

= 2[βA0R]2
{
D2(θ0R)

(
1 0

)
[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

}
− 2[βA0R]2

{
[D2(θ0R)]2

(
1 0

)
[∆

[n]
22t(θ0R, p̂A)]−1

(
1 0

)′}
+ 2[βA0R]2

[
D2(θ0R)

(
1 0

)
[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1

]
∆

[n]
21t(θ0R, p̂A)

= 2[βA0R]2

D2(θ0R)µ2(θ0R)

[Υ2(θ0R)]2

(
1 0

) 1 −1

−1 1

∆
[n]
21t(θ0R, p̂A)


− 2[βA0R]2

 [D2(θ0R)]2

Υ1(θ0R)Υ2(θ0R)

(
1 0

) Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)

( 1 0

)′
+ 2[βA0R]2

D2(θ0R)
µ2(θ0R)

[Υ2(θ0R)]2

(
1 0

) 1 −1

−1 1

∆
[n]
21t(θ0R, p̂A)


− 2[βA0R]2

[µ2(θ0R)]2

[Υ2(θ0R)]3
[C2(θ0R)]2

= 2[βA0R]2

D2(θ0R)µ2(θ0R)

[Υ2(θ0R)]2

(
1 −1

) C1(θ0R) + C2(θ0R)

C1(θ0R)




− 2[βA0R]2

 [D2(θ0R)]2

Υ2(θ0R)

(
1 −1

) 1

0




+ 2[βA0R]2

D2(θ0R)
µ2(θ0R)

[Υ2(θ0R)]2

(
1 −1

) C1(θ0R) + C2(θ0R)

C1(θ0R)




− 2[βA0R]2
[µ2(θ0R)]2

[Υ2(θ0R)]3
[C2(θ0R)]2;
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1

n

∂2φ(p̂A)

∂p̂A2∂p̂A2

= −2[βA0R]2

Υ2(θ0R)

{
[D2(θ0R)]2 − 2C2(θ0R)D2(θ0R)µ2(θ0R)

1

Υ2(θ0R)
+

[µ2(θ0R)]2

[Υ2(θ0R)]2
[C2(θ0R)]2

}
= −2[βA0R]2

Υ2(θ0R)

{
D2(θ0R)− µ2(θ0R)

Υ2(θ0R)
C2(θ0R)

}2

;

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A2

= 2[βA0R]2
[
λA1(θ0R)

n1

n

(
1 1

)
[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
λA1(θ0R)

n1

n

(
1 1

)
[∆

[n]
22t(θ0R, p̂A)]−1λA2(θ0R)

n2

n

(
1 0

)′]
+ 2[βA0R]2

[
λA2(θ0R)

n2

n

(
1 0

)
[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)

]
− 2[βA0R]2

[
∆

[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1MD2[∆

[n]
22t(θ0R, p̂A)]−1MD1[∆

[n]
22t(θ0R, p̂A)]−1

]
∆

[n]
21t(θ0R, p̂A)

= 2[βA0R]2

D1(θ0R)
µ2(θ0R)C2(θ0R)

[Υ2(θ0R)]2

(
1 1

) 1

−1




− 2[βA0R]2

D1(θ0R)D2(θ0R)

Υ1(θ0R)Υ2(θ0R)

(
1 1

) Υ1(θ0R) −Υ1(θ0R)

−Υ1(θ0R) Υ1(θ0R) + Υ2(θ0R)


 1

0




+ 2[βA0R]2

D2(θ0R)
µ1(θ0R)C1(θ0R)

[Υ1(θ0R)]2

(
1 0

) 0

1




− 2[βA0R]2

∆
[n]
12t(θ0R, p̂A)[∆

[n]
22t(θ0R, p̂A)]−1

 0 0

0 0

 [∆
[n]
22t(θ0R, p̂A)]−1∆

[n]
21t(θ0R, p̂A)


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1

n

∂2φ(p̂A)

∂p̂A1∂p̂A2

= −2[βA0R]2

D1(θ0R)D2(θ0R)

Υ1(θ0R)

(
0 1

) 1

0




= 0.

Since

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A1

= −2[βA0R]2

Υ1(θ0R)

{
D1(θ0R)− µ1(θ0R)

Υ1(θ0R)
C1(θ0R)

}2

< 0,

1

n

∂2φ(p̂A)

∂p̂A2∂p̂A2

= −2[βA0R]2

Υ2(θ0R)

{
D2(θ0R)− µ2(θ0R)

Υ2(θ0R)
C2(θ0R)

}2

< 0, and

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A2
= 0;

1

n

∂2φ(p̂A)

∂p̂A2∂p̂A1
= 0.

The determinant of
1

n
φ(2)(πA) in (4.20) is positive and

1

n

∂2φ(p̂A)

∂p̂A1∂p̂A1
is negative. That

is,
1

n
φ(2)(p̂A) is a negative definite matrix. Therefore, φ(p̂A) is a concave function.

For an example, we choose the values for true parameters: βA = 1.5, γ0 = 0.6, and

γ1 = −0.4 to draw the three dimensional graph of
1

n
φ(πA) versus πA = (πA(v1), πA(v2))

′

when the number of participating patients is 500. This graph is in the Figure 4.1.

This graph confirms the concaveness of the non-centrality parameter that is a function

of the proportion of treatment assignment.



119

Figure 4.1: The graph of concaveness



120

4.4 Simulation Studies

In this section, we validate our theoretical results through simulation studies. We

follow the same description and choice of true parameters used in § 3.6 for our sim-

ulation studies. Moreover, we verify whether the test statistic has valid the Type I

error and discuss the computation of statistical power to apply for real data. The

statistical power and Type I error rates are compared among three designs that were

discussed in Chapter 3.

To verify the Type I error rates, data was generated under the null hypothesis H0I .

We then estimate the size of the test, α∗, by computing the proportion of rejections

of H0I for a fixed value α∗. We consider a test of the hypothesis for treatment by

covariate interactions in the logit model defined in (3.1).

H0I : δ0 = 04×1 HAI : δ0 6= 04×1 (4.21)

where δ0 = (δ10, δ20, δ30, δ40)
′. We use the Wald test that was derived in Section 4.2.1.

Thus, the Wald test statistic for testing the hypothesis in (4.21) is

TWI = nδ̂
′
n[S

∆
[n]
11

(θ̂n)]δ̂n ∼ χ2
4,α. (4.22)

The rejection region for the test in (4.21) are

{TWI : TWI < χ2
4,α∗/2 or TWI > χ2

4,(1−α∗/2)}, (4.23)

where P [TWI < χ2
4,α∗/2] = α∗/2 and P [TWI < χ2

4,1−α∗/2] = 1− α∗/2. We consider two

scenarios to confirm whether Type I error is controllable for testing the hypothesis in
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4.21. These results are outlined in Table 4.1 and 4.2.

Table 4.1: CARA, RA, and CR procedures from 10000 simulations with 500 number of
patients. Size of the test (α∗) and estimated size of the test (α̂∗) with model parameters
βA0 = 1.00, γ00 = 0.50, γ10 = −0.18, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 = 0.00,
δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Design α∗ α̂∗ α̂∗ − α∗
CARA 0.10 0.1102 0.0102

0.05 0.0517 0.0017
0.01 0.0095 -0.0005

RA 0.10 0.0936 -0.0064
0.05 0.0462 -0.0038
0.01 0.0097 -0.0003

CR 0.10 0.0946 -0.0054
0.05 0.0471 -0.0029
0.01 0.0100 0.0000

Table 4.2: CARA, RA, and CR procedures from 10000 simulations with 500 number of
patients. Size of the test (α∗) and estimated size of the test (α̂∗) with model parameters
βA0 = 0.50, γ00 = 0.50, γ10 = −0.18, γ20 = −0.30, γ30 = 0.25, γ40 = 0.10, δ10 = 0.00,
δ20 = 0.00, δ30 = 0.00, δ40 = 0.00.

Design α∗ α̂∗ α̂∗ − α∗
CARA 0.10 0.1059 0.0059

0.05 0.0540 0.004
0.01 0.0116 0.0016

RA 0.10 0.0935 -0.0065
0.05 0.0481 -0.0019
0.01 0.0085 -0.0015

CR 0.10 0.0966 -0.0034
0.05 0.0464 -0.0036
0.01 0.0088 -0.0012

In CARA designs, the estimated size of errors are slightly higher than the true size of

error; reverse results are generated by RA and CR designs. But, these three designs

control Type I error because there is no significant deviation between the actual size
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of test and estimated size of test.

Table 4.3: CARA, RA, and CR procedures from 5000 simulations with 500 number of
patients and 0.05 size of the test. Power computation testing interaction with model pa-
rameters βA0 = 0.50, γ00 = 0.25, γ10 = −0.20, γ20 = −0.40, γ30 = 0.35, γ40 = 0.20,
δ0 = (δ10, δ20, δ30, δ40)

′.

Average Overall
Simulated Conventional Error Design Success

δ0 Design Power Power Variability Rates

(0.10,−1.50, 0.00, 0.00)′
CARA 0.7902 0.7186 0.0716 0.1559 0.5112
RA 0.8068 0.7843 0.0225 0.1119 0.4851
CR 0.8262 0.8103 0.0159 0.1038 0.4796

(0.10,−1.50, 0.35, 0.00)′
CARA 0.7984 0.7271 0.0713 0.1564 0.5193
RA 0.8112 0.7928 0.0184 0.1127 0.4929
CR 0.8284 0.8113 0.0171 0.1038 0.4903

(0.30,−1.20, 0.35, 0.20)′
CARA 0.6240 0.5643 0.0597 0.1569 0.5466
RA 0.6318 0.6220 0.0098 0.1135 0.5280
CR 0.6426 0.6231 0.0195 0.1038 0.5284

(0.20,−2.00, 0.07, 0.05)′
CARA 0.9608 0.8666 0.0942 0.1471 0.5152
RA 0.9708 0.9481 0.0227 0.1108 0.4742
CR 0.9774 0.9709 0.0065 0.1038 0.4621

Table 4.4: CARA, RA, and CR procedures from 5000 simulations with 1000 number
of patients and 0.05 size of the test. Power computation testing interaction with model
parameters βA0 = 0.50, γ00 = 0.25, γ10 = −0.20, γ20 = −0.40, γ30 = 0.35, γ40 = 0.20,
δ0 = (δ10, δ20, δ30, δ40)

′.

Average Overall
Simulated Conventional Error Design Success

δ0 Design Power Power Variability Rates

(0.10,−1.50, 0.00, 0.00)′
CARA 0.9916 0.9720 0.0196 0.1170 0.5131
RA 0.9912 0.9891 0.0021 0.0784 0.4849
CR 0.9944 0.9923 0.0021 0.0724 0.4791

(0.10,−1.50, 0.35, 0.00)′
CARA 0.9930 0.9756 0.0174 0.1173 0.5214
RA 0.9960 0.9902 0.0058 0.0788 0.4933
CR 0.9948 0.9923 0.0025 0.0722 0.4901

(0.30,−1.20, 0.35, 0.20)′
CARA 0.9450 0.9120 0.0330 0.1170 0.5478
RA 0.9550 0.9442 0.0107 0.0795 0.5279
CR 0.9540 0.9438 0.0102 0.0724 0.5279

(0.20,−2.00, 0.07, 0.05)′
CARA 0.9998 0.9893 0.0105 0.1103 0.5190
RA 0.9996 0.9998 -0.0002 0.0774 0.4742
CR 1.000 1.0000 0.0000 0.0724 0.4616

We justify the power computation method discussed in § 4.2.2 by simulation study.

So, data was generated under the alternative hypothesis in (4.21). Simulated power is

calculated by the proportion of rejections using the rejection region in (4.23). On the
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other hand, we use the power computation method in § 4.2.2 to calculate statistical

power to each simulation. Then, we calculate the average of these calculated powers

and this power is called the conventional power. According to Demidenko (2007),

there is no exact method to compute the statistical power for test in (4.21) because

of nuisance parameters. The null model approach was used to estimate nuisance pa-

rameters in earlier literatures [see Whittemore (1981) and Self and Mauritsen (1988)

]. So, estimation of nuisance parameters has not ended up in research of statistical

power computation, particularly for a small sample and continuous covariates. In this

simulation study, we are interested in comparing the statistical powers among three

designs: CARA, RA, and CR designs. Because the power computation in § 4.2.2 is

an approximate method, thus we compute error that is the difference between the

simulated power and the conventional power.

The simulated powers in Tables 4.3 and 4.4 show that CR designs have more statisti-

cal powers than RA and CARA designs. Furthermore, RA designs are more efficient

than CARA designs. When we examine the errors among three designs, CARA de-

signs create more errors than RA and CR designs; also RA designs generate more

errors compared to CR designs because CARA designs create more treatment im-

balances over the covariate profiles [see Tables 3.5, 3.8, and 3.11]. However, ethical

measures [Overall Success Rates] demonstrate reverse conclusions. Therefore, CARA

designs are more ethical compared to RA and CR designs if true model contains treat-

ment by covariate interactions. When we increase the number of patients from 500 to

1000, then (i) simulated powers increase, and (ii) errors decrease [see Tables 4.3 and

4.4].

We define the design variability for stratum h is SSE(P̂Ah) for h = 1, 2, · · · . Then, the
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average design variability is calculated using the formula
m∑
h=1

P̂Ah/m. The results in

Tables 4.3 and 4.4 show that the simulated power increases when the average design

variability decreases. Moreover, CARA designs have more design variabilities than

RA and CRD designs.

4.5 Conclusion

In this chapter, we have justified using the Wald test for adaptive designs when the

sample size is large. We have discussed the power computation method for real data,

and this method is an approximation to compute statistical power. Moreover, we

have verified that the power calculation based on this approach generates values close

to exact power when the sample size increases. Thus, we can use this power compu-

tation method to calculate power when we do sequential analysis in a clinical trial.

We have proved that the statistical power depends on adaptive designs through the

non-centrality parameter. In fact, we have demonstrated that this non-centrality

parameter is a function of proportions of patients assigned to treatments over the

covariate profiles. Furthermore, we have proved that this function is concave when we

assume the logit model as an ideal model with binary covariates. Also, we have shown

this non-centrality parameter depends on these quantities: the target allocation pro-

portion, the bias of the randomization procedure from the target, and the variability

induced by the randomization process.

Although CARA designs have less efficiency compare to RA and CR designs, CARA

designs generate more ethically desirable outcomes than RA and CR designs if the

exact model contains treatment by covariates interactions. The power of hypothesis
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testing increases when design variability decreases. Further research requires extend-

ing Theorem 4.3.2 for more than one categorical covariates.



Chapter 5

Discussion and Conclusions

5.1 An overview for the contribution of this thesis

Treatment assignment methods play a significant role in an efficient statistical infer-

ence and the ethics of participating patients in clinical trials. Moreover, the efficient

statistical inference is essential for the well-being of future patients. Adaptive de-

signs are used to achieve these efficiencies and ethics goals. It is in interest to de-

velop adaptive design methods to maximize the well-being of participating patients.

Furthermore, Response-Adaptive (RA) and Covariate-Adjusted Response-Adaptive

(CARA) designs are used to increase the well-being of participating patients. Also,

the RA designs have been well established with the assumption of simple homoge-

neous parametric structure. The limited number of researchers have developed under

the assumption of non-homogeneous parametric structure for RA designs. Due to in-

creasing discoveries of biomarkers and identification of the observed diversity among

patients, personalized medicine has interested to extend human life expectancy. In

fact, these factors which are biomarkers and the observed heterogeneity among pa-

tients are covariates. Meanwhile, these covariates are used to achieve the ethics goals
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for participating patients. CARA designs were developed to get benefits using covari-

ates in randomization to maximize the well-being of participating patients.

We have investigated the performance of RA designs when a generalized linear mixed

model (GLMM) is an ideal model. We have considered a logit model to examine the

ethics of participating patients. We have shown that the estimators of model parame-

ters are consistent and follow asymptotically normal distribution when the number of

patients is assumed to be constant at each medical center. Also, we have introduced

the new searching method to estimate of model parameters based on the influence

function approach and derived a closed form expression for the asymptotic variance

of the regression parameter estimators. Moreover, we have demonstrated that this

searching method works better than Hessian matrix approach. We have verified that

RA designs generate ethically desirable outcome compared to CR design by conduct-

ing simulation studies.

We have examined the performance of RA, CARA, and CR designs, for which re-

sponses come from GLM, measuring these quantities: (i) efficiency of statistical in-

ference, and (ii) ethics of participating patients. Thus, we have considered the logit

model with categorical covariates to investigate these designs. Furthermore, we have

proved that the ML estimators of model parameters are consistent and follow asymp-

totically multivariate Gaussian distribution for adaptive designs. According to the

present literature, when we study the large sample behavior of ML estimators for

model parameters, a regularity assumption: the Fisher information and ob-

served Fisher information matrices are positive definite within a neighbor-

hood near to vector of ideal parameters is necessary to examine the asymptotic

properties of these estimators. In fact, the boundary of the area is not exactly defined,
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and this assumption is a strong assumption. Thus, we have proved that an assump-

tion: the Fisher information matrix at the ideal vector of parameters is a positive

definite matrix is sufficient to investigate the asymptotic properties of ML estimators.

We have demonstrated that RA design generates ethically desirable outcomes as well

as more statistical efficiency compared to CARA design if there is no treatment by co-

variate interactions in an ideal model. Also, when a perfect model contains treatment

by covariate interactions, CARA design is more ethical than RA design; however, RA

design has more statistical power than CARA design.

We have justified that the Wald-type of test can be asymptotically applied for a

general class of adaptive designs. Moreover, the power computation method has been

discussed for adaptive designs when a logit model is an exact model. Also, we have

verified that this power calculation method generates exact statistical power for a

large number of participating patients based on simulation results. We have shown

that the choice of adaptive designs affects the statistical power of hypothesis testing.

Moreover, we have theoretically shown that the statistical power decreases with design

variabilities of adaptive designs for which a covariate is in a logit model. Moreover,

the simulation results have confirmed this behavior between statistical power and

design variability for more than one covariates. Thus, our simulation results validate

the feasibility of logical proof for which the statistical power decreases when design

variability increases for more than one covariate. Therefore, we conclude this chapter

by discussing some future works including the behavior of the statistical power and

design variability.



129

5.2 Future Works

Based on contributions of this thesis, we discuss some future works to extend this

research.

We have assumed that treatment assignment and center effects only influence response

to investigate the performance of RA designs in a multi-center clinical trial in Chapter

2. Treatment effect can be efficiently estimated when we include covariates of patients

in a model. The investigation of large sample properties of ML estimators for model

parameters we have developed using the influence function method can be extended

to generalized linear mixed models for the exponential family including covariates.

We will examine the performance of the iteration method that we have introduced

based on the influence function method and iteration method based on the Hessian

matrix for GLM.

Many adaptive designs satisfy the Assumption 3.4.1 in Chapter 3. For instance, we

will provide a logical proof for which the response adaptive (RA) and the covariate

adaptive (CA) designs based the minimization method satisfy the Assumption 3.4.1

in Chapter 3. As we mentioned in § 5.1, we will theoretically show that the statistical

power increases when the design variability decreases for more than one categorical

covariates. CA designs are used in a clinical trial to improve the efficient statistical

inference. In fact, the equal allocation has less efficiency compared to CA design.

Thus, the design variability of CA design is smaller than CR design. We will demon-

strate this conclusion using simulation study.
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