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Abstract

Due to the ocean’s importance in human lives, researchers have been studying the
ocean and developing systems to estimate its state since the 19th century. During the
last three decades, remote sensing of the ocean surface using X-band marine radars
has emerged as a reliable tool to estimate ocean wave spectra and sea state parameters
such as mean wave period and direction and significant wave height.

The purpose of this thesis is to develop methods that produce accurate and reliable
estimates of ocean wave spectra using X-band marine radar data. The approach taken
in this thesis is to determine the sources of ocean wave spectra estimation error in
existing methods and then to develop new methods that minimize those errors. In this
thesis, four sources of error are addressed: the dependency of spectra estimation on
the orientation of the analysis windows; the effect of the radar sampling process; the
effect of the scan conversion process; and the accuracy of surface current estimation.

The azimuthal location of the X-band radar data analysis window affects the esti-
mation of ocean wave spectra. It has been reported in the literature, and supported
by our results, that using the up-wave directions for analysis windows produces higher
signal to noise ratios and hence more accurate ocean wave spectra estimates. In or-
der to minimize error due to dependency on the orientation of the analysis windows,
a new method referred to as the Adaptive Recursive Positioning Method (ARPM)
is proposed. The ARPM is a recursive approach that dynamically determines the
optimal number of analysis windows and their corresponding orientation toward the
up-wave directions.

Second, in this thesis, it has been demonstrated that the sampling process of
the ocean surface by X-band marine radar during data collection significantly affects
the estimation of ocean wave spectra from X-band marine radar data. Therefore, a
method referred to as the Inverse Sampling Averaging Filter (ISAF) is proposed to

mitigate the effect of the radar sampling process of the ocean surface on the ocean
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wave spectra estimation using X-band marine radars. [ISAF was designed based on a
novel understanding of the radar sampling process to involve an averaging process or
low pass filtering of the ocean wave spectra.

Third, in this thesis, a method referred to as the Polar Fourier Transform (PFT) is
proposed to eliminate the distortion presented by the scan conversion process to the
estimated wave spectra. Unlike the existing methods which use the Cartesian Fourier
Transform (CF'T) to acquire the ocean wave spectra, the PFT method is designed to
apply a Fourier-type transformation on the radar data in its native format, which is
sampled in the polar coordinates, without the need for the intermediate stage of scan
conversion used to map the data into Cartesian coordinates.

The performance of the proposed methods, the ARPM, ISAF and PFT, are indi-
vidually validated by comparing their ocean wave spectra estimates to those acquired
using the existing methods with respect to ground truth wave spectra acquired using
a wave rider buoy. Furthermore, the proposed methods were also combined together
to seek further enhancement. The wave spectra estimation results from different com-
binations of the proposed methods were validated in comparison to the ground truth
data.

Finally, a new method to estimate surface current using X-band marine radar is
proposed. This method is referred to as the Hybrid Least Squares (HLS) method.
The HLS combines two existing approaches: the Iterative Least Squares (ILS) method
and the Normalized Scalar Product (NSP). The HLS is designed to inherit the short
computational time of ILS and the high reliability of NSP. To validate its accuracy and
reliability, the proposed HLS method was applied on a number of simulated X-band
marine radar image sets and the results were compared to the estimates acquired

using the ILS and the NSP.
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Chapter 1

Introduction

1.1 The importance of the ocean

An interconnected volume of saltwater covers roughly 71% of the planet surface and
represents one of the most valuable natural resources on Earth [2]. Throughout
history, the ocean has directly or indirectly influenced human lives in many ways. The
ocean provides convenient travel and shipping routes, by which most goods traded
between countries are carried. The ocean is also a major source of food. According to
the Food and Agricultural Organization (FAO) of the United Nations, 16.7% of the
total human consumption of animal protein in 2010 was contributed by seafood [3]. In
Canada, which has a wide access to the Atlantic and Pacific Oceans as well as Arctic
water with extended coastlines, fisheries significantly contribute to the economy of
the country. For the year 2015, Canada’s statistics show that the total number of
persons employed in the fisheries was 76 044, while the total values of seafood imports
and exports were $3438 791 and $5958 905, respectively [4]. Crude oil and natural
gas, which are among the most important energy sources in the world, may be found
under the seabed. In Newfoundland and Labrador alone, three major offshore oil

drilling projects exist: Hibernia, operated by Hibernia Management and Development



Company Ltd, Terra Nova, operated by Suncor Energy, and White Rose, operated
by Husky Energy [5]. The Government of Newfoundland and Labrador estimates
the potential Newfoundland and Labrador offshore reserve of crude oil and natural
gas to be more than 6 billion barrels and 60 trillion cubic feet, respectively [5]. The
ocean is also a significant source of other minerals such as salt, copper, nickel, iron
and cobalt. Furthermore, the ocean plays a key role in regulating the climate and

removing carbon dioxide from the air.

1.2 Motivation

The ocean has been studied intensively by oceanographers and engineers in order to
better exploit its resources. A knowledge of the ocean surface wave system is essential
for a wide range of applications. For instance, in coastal engineering, ocean waves are
the main force pressuring breakwaters and can severely damage them. Therefore, a
knowledge of the ocean wave system is crucial to the design of breakwaters. Similarly,
in offshore engineering, ocean waves generate forces on the piles on offshore structures.
In the application of ship response to waves, a knowledge of the wave system is used
to provide more stability to the ship motion [6]. Representing the ocean wave system
using a descriptive analytical model has received a great deal of attention from re-
searchers due to the benefits in understanding the ocean wave system and predicting
its behavior and correlation with climate conditions. The frequency wave spectrum
and the directional wave spectrum are perhaps the most common models of describ-
ing ocean surface waves. In fact, the aforementioned applications of breakwaters and
offshore structures and the response of ships use parameters that are directly calcu-
lated from the directional wave spectrum. The concept of using ocean wave spectra
to describe complex ocean surface elevation started about 60 years ago [7, 8]. Several

ocean wave spectral estimation methods working on different principles have been



developed based on the technologies of directional wave rider buoys, High Frequency
(HF) radars, marine radars, and Synthetic Aperture Radars (SARs) [9]. Because of
its mobility, reliability and cost efficiency, the X-band marine radar-based method of
wave spectra estimation has gained great attention from oceanographers. Nowadays,
almost every water craft of a significant size is equipped with X-band marine radar
technology which was initially implemented for target detection and navigation pur-
poses. The popularity of X-band marine radars makes them more accessible to be
used for wave spectra estimation.

In order to better understand the ocean and exploit its resources, researchers and
oceanographers have been continuously exploring the technology of using X-band
marine radar in ocean wave spectral estimation method by increasing its accuracy
and reliability. In the X-band marine radar-based method, an image spectrum is
acquired by applying the Cartesian Fourier Transform (CFT) on the ocean surface
images generated by radars. Subsequently, a directional ocean wave spectrum is
estimated from the image spectrum by excluding the non-wave spectral components
and applying a Modulation Transfer Function (MTF) to mitigate the effect of the
radar imaging process [10, 11].

The effect of X-band marine radar imaging of the ocean surface on the estimated
ocean wave spectra is one of the active research areas for the technology. This is due
to the complexity of the radar imaging process in which several phenomena contribute
to the radar images of the ocean surface. These phenomena include shadowing, tilt
modulation, and the dependency of returned radar scatter on the range, wind speed
and wave propagation direction [9]. The non-linear contribution of these phenomena
makes their effect on the estimated ocean wave spectra one of the ill-defined problems
among X-band radar-based methods for ocean wave spectral estimation. In this thesis,

several aspects of the X-band marine radar imaging process and radar-based spectral



estimation methods are studied in order to improve the performance of the CFT

method.

1.3 Problem Definition

The purpose of this thesis is to develop accurate and reliable wave spectra estimation
methods using X-band marine radar. Our approach is to identify the sources of error
in the common Cartesian Fourier Transform (CFT) method and design new methods
to mitigate those various sources of error. Several sources of error that have been

addressed in this thesis include the following:

1. The dependency on the analysis windows orientation
One of the sources of error in estimating the ocean wave spectra using X-band
radar data via the CF'T method is the dependency of the returned radar signal
strength on the azimuth direction. In the past, this problem has been addressed
by averaging the wave spectra over several analysis windows that are spatially
uniformly distributed. Except for one study by Lund et al. [12], this problem
has not been sufficiently discussed in the literature. In [12], the effect of the
analysis window location (range and orientation) is studied in the context of
Signal to Noise Ratio (SNR). It is further proposed in [12] to choose the
orientation of the analysis window in the up-wave direction for maximum SN R

which provides, by extension, better wave spectrum estimation.

2. Radar sampling of the ocean surface
In the literature, the generation of B-scan samples by X-band marine radars has
been viewed as a standard sampling of the ocean surface in which the returned
scatter is recorded at the centre of a sample’s patch area. Looking carefully at

the sampling process, it can be seen that this understanding of the ocean surface



sampling is not completely accurate since the returned scatter is collected over
the entire sample area, as determined by the radar setting parameters including
pulse length and beam width, and not only the centre of the area. This problem
has not been previously addressed. Understanding the effect of the ocean surface
sampling process on the estimated ocean wave spectra might help in developing

an algorithm to mitigate that effect.

. The scan conversion process

Polar coordinates are naturally imposed on the X-band marine radar output
data in correspondence with the manner of sample collection. B-scan samples
are arranged on a polar grid with range and azimuth resolutions that are set
by the radar parameters. In order to estimate ocean wave spectra using the
CFT method, the data must be re-sampled on a Cartesian grid [13] through a
process that is referred to as ‘scan conversion’. This process can be visualized as
a recovery of the original continuous image of ocean surface elevation followed
by a sampling on a new Cartesian grid. Two difficulties are encountered with
this process. First, the original sampling on a polar grid is non-uniform in terms
of the number of samples per unit area. Second, in order to completely recover
the original continuous image from the radar image, an ideal low pass filter is
required. Since ideal low pass filters can only be realized by an approximation,

a distortion in the recovered ocean wave spectra will result [13-15].

. Accuracy and reliability of the surface current estimation

The surface current information is one of the important sea state parameters
that can be estimated using the CFT method. Various applications includ-
ing ship navigation and oil spill control require surface current information.
Furthermore, the CFT method itself depends on estimating the velocity of en-

counter, which includes the ocean surface current and the observer’s veloc-



ity, in excluding the non-wave components from the ocean wave spectra. Two
approaches that are most commonly used to estimate surface current vectors
presently appear in the literature: the Iterative Least Squares (ILS) method
and the Normalized Scalar Product (NSP) method. The latter provides accu-
rate and reliable estimates at both low and high values of velocity of encounter.
However, the NSP is computationally expensive which may limit its implemen-
tation for real-time analysis. On the other hand, the ILS method provides
accurate and reliable estimates at low values of velocity of encounter but it be-
comes less robust at higher values of velocity of encounter. This is due to the
high aliasing effect at high values of velocity of encounter which makes it hard

for the algorithm to estimate a good initial value to start the recursive process.

1.4 Approach to the Solution and Outline of The-

S1s

In Chapter 2, the relevant background, physics, and literature are reviewed. Chapter

2 presents an overview of the ocean wave spectral descriptive model, methods of ocean

wave spectral estimation, and a review of the CFT method of ocean wave spectral

estimation using X-band marine radar. Also, the field data used to validate the

subsequently proposed methods are described in Chapter 2. In order to achieve more

accurate and reliable estimates of the ocean wave spectra, the following estimation

algorithms are proposed to mitigate the sources of error in the CF'T method that are

addressed in Section 1.3:

1. The Adaptive Recursive Positioning Method (ARPM)

Since the signal-to-noise ratio is highest in the up-wave direction [12], less error

can be expected in the estimation of wave spectra when the analysis window is
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chosen in the up-wave direction. T'wo difficulties exist with this approach. First,
the wave system may contain multiple peaks from wind waves and swell. Second,
the directional wave spectrum is generally not known a priori. Therefore, the
ARPM is proposed to select the number and direction of analysis windows

recursively.

In Chapter 3, the dependancy of wave spectra estimation in the presence of
both types of waves as manifested by wave spectra components (wind waves and
swell) is invistigated further. Also, the ARPM and performance analysis are
presented. The estimates of ocean wave spectra using the ARPM were validated
against the standard method using radar field data. The results from both
methods were validated against ground truth data acquired using a TRIAXYS

wave rider buoy are used. This work was also presented in [16].

. The Inverse Sampling Averaging Filter (ISAF)

An analytical model that describes the ocean surface sampling process is pre-
sented in Chapter 4. Furthermore, a Modulation Transfer Function referred to
as the Inverse Sampling Averaging Filter (ISAF) is proposed to mitigate the
effects of the radar sampling process based on the presented analytical model.
The performance of the ISAF was also validated in comparison with the stan-
dard method and ground truth data acquired using a TRIAXYS wave rider

buoy.

. The Polar Fourier Transform (PFT)

In order to eliminate the error that results from scan conversion, we propose to
implement the Polar Fourier Transform (PFT) [17] on B-scan images directly.
This makes the scan-conversion process unnecessary. In Chapter 5, a full de-
scription of the PF'T in three dimensions is presented. The performance of the

PFT was also validated in comparison with the CF'T method and ground truth
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data acquired using a TRIAXYS wave rider buoy. Introductory work on this

method was presented in [14, 15].

A performance comparison of the CFT, PFT, ARPM, and ISAF methods is
presented in Chapter 6. An investigation of the applicability of combining
these methods and an evaluation of the resulting enhancement /deterioration in
the performance of estimating ocean wave spectra and sea state parameters is

also undertaken.

4. The Hybrid Least Squares (HLS) method
In Chapter 7 of this thesis, a review the ILS and NSP is presented. Also, a Hy-
brid method of the two, referred to as the Hybrid Least Squares (HLS) method,
is proposed to estimate surface current with high accuracy and reliability at
high values of surface current speed and with a low computational price. This

work was also presented in [18].

Chapter 8 concludes the thesis and summarizes its findings. Suggestions for future

work are also provided in Chapter 8.



Chapter 2

Background

2.1 The ocean descriptive model and wave spectra

In the simplest description of ocean waves, which are widely accepted to be sinusoidal
[6], water particles move in a vertical circular motion. The vertical displacement in a
water particle location due to a certain ocean wave (i) at the ocean surface from the

particle’s rest position is given by

Gz, y,t) = A;cos(kpz + kyiy — wit + ;) (2.1)

where A; is the wave amplitude, k,; and k,; are the wave vector components in the =
and y directions, respectively, w; is the angular frequency and 7); is a random phase.
Equation 2.1 is one of a set of equations referred to as the Airy wave equations [6],
derived by Sir G.B. Airy in 1845. It is widely understood by oceanographers that the
ocean contains a wide range of waves that differ in wavelength, hence in period, and
direction. Also, the ocean wave system is considered to be linear such that the ocean

surface elevation ¢ due to all ocean waves is given by
C(z,y,1) = Z G(z,y,t) = Z A; cos(kyiw + kyiy — wit + ;). (2.2)
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Figure 2.1 is an illustration of the principle of linear superposition of ocean waves.
Considering (p, (i ... (s to be statistically independent random variables with the
same distribution, regardless of the distribution type, the central limit theorem states
that ¢ has a Gaussian distribution [19]. The probability that a random water particle

at the ocean surface has an elevation of ( is given thus by

L ¢
onV 2T ’

where o, is the standard deviation and the mean is assumed to be 0. By taking the

p(¢) =

(2.3)

origin x = y = 0 in Equation 2.1, without loss of generality, the average energy per

unit area of the ocean surface, Fj, is given by

E,=) (=) 054=>E, (2.4)

where E; is the energy content of the ocean wave (7). Equation 2.4 shows that the
total wave energy is the linear superposition of the energy content of individual waves.
The frequency wave spectrum E(f), where f = w/2m is the ocean wave frequency in
Hertz (Hz), is a useful representation of the contribution of individual ocean waves to
the total wave energy. F(f) is also referred to in the literature as ‘the omnidirectional
spectral density function’ or ‘non-directional wave spectrum’. It must be noted that
f is a continuous variable. This follows since, in practice, ocean waves might occur

at any frequency. The relationship between E; and E(f) is given by

B~ [ EGa. (2.5)

Sea state parameters, such as peak and mean wave period, may be estimated using
E(f), which describes the ocean system energy distribution in terms of ocean wave

frequency, i.e. wave periods.
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The wave spectrum E(f) does not include any directional information about the
ocean waves although different ocean waves with the same frequency might have
different directions. Therefore, ocean waves cannot be distinguished using ocean wave
frequency alone. In order to include the directional information about ocean waves in
the ocean wave system representation, a more detailed wave spectral representation
referred to as the directional wave spectrum E(f,6) is used. FE(f,#) describes the
ocean wave system energy in terms of wave frequency as well as the direction 6 of
ocean waves.

Figure 2.2 shows examples of both spectra; E(f) and E(f,6). The frequency
wave spectrum shown in Figure 2.2a has a peak at f = 0.085 Hz. This means that
the ocean waves with a period of 1/0.085 = 11.7 s had the biggest share of the
energy content of the ocean system at the time when the data was recorded. The sea
state, which is an index measure of the calmness/roughness of the ocean system, is
proportional to the total energy stored in the ocean system or, equivalently, the area
under the frequency wave spectrum curve. Again here, no directional information
can be retrieved from Figure 2.2a about any of the ocean waves in the system. Now,
looking at the directional wave spectrum shown in Figure 2.2b, it can be seen that the
peak wave is actually located at azimuth direction of 75° clockwise from true north.

Generally, the ocean wave system is a combination of different types of waves
including wind waves, swell, tide waves, and possibly tsunami waves. However, the
frequency and directional wave spectra are best used to represent wind waves and
swell [9]. Wind waves and swell of interest are within the range of 50-150 metres.
The wind waves are generated when local winds blow on the ocean surface for a
sufficient period of time, while a swell is basically wind waves that were generated
somewhere else and have traveled to the observation area. The main factors that

proportionally contribute to the energy stored in a wind wave are the wind speed,
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the wind duration and the fetch. The fetch is the ocean surface area being affected
by the wind. While traveling away from the fetch area where the waves are no longer
affected by the wind, swells with higher energy, which are typically longer waves,
move faster and eventually over take those with less energy. Due to this fact, swell
peaks tend to appear narrower than wind wave peaks in wave spectra most of the
time. However this is not always true and it really depends on the ocean system at
the moment. Therefore, it can be a challenge to discriminate between wind waves
and swell in wave spectra. The commercial system WAMOS II uses an adjustable
variable period limit, with a default value of 9 s, to decide whether a wave system is
wind sea or swell. A wave system with mean period larger than the pre-set period
limit variable is identified as swell system. Otherwise, the wave system is identified as
wind sea. For example, the wave system that appears in the frequency wave spectrum
shown in Figure 2.2a may be regarded as swell since the calculated mean wave period

of the system is 10.5 s.

2.2 Methods of ocean wave spectra estimation us-
ing X-band marine radar

The directional wave rider buoy method is the most common and reliable method of
ocean wave spectral estimation [20]. In fact, ocean wave spectra estimates generated
using the wave rider buoy method are often used as ground truth to validate estimates
that are generated using other methods. X-band marine radars may also be used to
estimate ocean wave spectra. The X-band marine radar method may provide better
mobility and flexibility in collecting data compared to wave rider buoys. This is
mainly because X-band radars can collect data from a wide range area of the ocean

surface, usually up to range of 5 km, compared to only one point using wave rider
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Figure 2.1: Structure of a random ocean surface.
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Figure 2.2: An example of ocean wave spectra (a) Frequency wave spectrum. (b)
Directional wave spectrum. Spectra were estimated using a TRIAXYS wave rider

buoy. Data was recorded by Defence Research and Development Canada (DRDC) on
Nov 27, 2008 between 12:30 PM and 1:00 PM near Halifax, Canada.

14



buoys. Therefore, it is far easier to change the analysis location when using X-band
marine radar compared to wave rider buoys. A buoy needs to be physically relocated
in order to change the analysis location, while only changing the analysis window
location within the radar range may be sufficient in the case of the X-band marine
radar method. Also, in the case where the X-band marine radar needs to be relocated,
it is often easier to move X-band marine radars from one point to another compared
to buoys. Moreover, due to the higher spatial resolution of X-band marine radar
images, spectral estimates generated using X-band marine radars are expected to be
less dependent on the examination location. However, it should be noted that the
method of ocean wave spectral estimation using X-band marine radar may not be able
to operate independently to estimate significant wave heights [21, 22]. This can be
related to the fact the radar images do not represent the actual ocean surface elevation
values but relative values of it on a gray scale. Subsequently, the estimates of ocean
wave spectra generated using the X-band marine radar represent relative (not actual)
energy level of ocean waves. Therefore, ocean wave spectral estimates are usually
calibrated using wave rider buoy data in order to produce correct significant wave
height estimates.

When electromagnetic radiation from an X-band marine radar is incident on the
ocean surface with angles less than 70°, it scatters back in a fashion that is best
described by Bragg scattering [23]. In this type of scattering, the returned electro-
magnetic power is proportional to the energy of the ocean wave that satisfies the

Bragg condition [23]
A

_ €
Y 2cos(¢)’
where \,, and A, are the wavelengths of the ocean wave and electromagnetic radiation,
respectively, and ¢ is the angle between the incident electromagnetic radiation and

the mean ocean surface as shown in Figure 2.3. Since X-band marine radars operate in
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Mean ocean surface level

Figure 2.3: An illustration of Bragg scattering.

the frequency range of 8-12 GHz (A, = 2.5—3.75 cm) [24], the ocean waves that satisfy
the Bragg condition have wavelengths of A\, = 1.25 — 3 cm. Such centimetre-scale
ocean waves/ripples are mainly generated by the frictional forces between the ocean
surface and local winds with a minimum speed of 3 m/s [25]. Figure 2.4, which is
taken from [1], shows the dependency of the normalized radar cross section area,
which is a representation of the returned scatter intensity, on the wind speed. It
should be noted that the data used in Figure 2.4 was acquired using a 15 GHz radar.
However, the results are still valid for X-band radars since Bragg scattering is the
dominant scattering in both cases. Since these ripples, which are the main reason
for the returned scatter, are modulated by longer wavelength gravity ocean waves
[23, 26], the returned scatter from the ocean surface is indirectly affected by these
gravity ocean waves. This phenomenon is what makes it possible to estimate ocean
wave spectra by studying the returned scatter from the surface.

The intensity (i.e. energy content) of ocean waves is not the only factor that
contributes to the returned scatter signal. Radar imaging mechanisms, including
shadowing and tilt modulation, also influence the returned scatter [10, 12, 18, 23, 27—
29]. Geometric and partial shadowing are expected to occur during the radar imaging

process [27]. Geometric shadowing occurs when waves with higher heights hide the
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shorter ones following the principle of geometrical optics. On the other hand, partial
shadowing occurs when those hidden waves still produce returned scatter which is
dependent on factors such as diffraction and polarization. In the case of X-band
marine radar, partial shadowing effect is usually neglected due to the shorter radar
electromagnetic wavelength (i.e. few centimetres) compared to those of the measured
ocean wind waves (i.e. typically tens of metres). However, the shadowing behavior in
the imaging process is still not fully understood. Tilt modulation can be also described
by analogy to geometrical optics, whereby radar signals with small incident angle are
expected to have stronger returns [11]. Polarization also influences the intensity of the
returned scatter from the ocean surface. It was reported in [30] that the normalized
radar cross-section area is 5 dB less when using the horizontal (HH) polarization
compared to the vertical (VV) polarization at a grazing angle of 40° as depicted
in Figure 2.4, which is taken from [11]. Furthermore, it was demonstrated in the
Four Frequency Radar (4FR) study, which was conducted by the US Naval Research
Lab (NRL) [1, 31] that the intensity of the return scatter and its dependence on the
polarization are affected by the incident angle. Figure 2.5, which is taken from [1],
shows the dependency of the returned scatter intensity on polarization and grazing
angle.

Usually, the returned scatter is referred to as sea clutter and commonly consists
of alternating illuminated and shadowed areas which form a strip-like pattern (see
Figure 2.6). This sea clutter can be analyzed using methods such as the Cartesian
Fourier Transformation (CFT) to estimate ocean wave spectra. This method was
first introduced by Young et al. [10] in 1985. CFT-estimated ocean wave spectra
can be used to estimate valuable sea state parameters such as surface current, wave
period, direction and significant wave height. Other ocean-related information such as

wind vectors [32-38] and bathymetry [39-41] can also be derived from CFT-estimated
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Figure 2.4: General trend in returned scatter intensity with wind speed for vertical

(VV) and Horizontal (HH) polarization. Plot is taken from [1].

ocean wave spectra.

Since its first introduction, the CFT spectral estimation method has been sig-
nificantly improved and many studies have been carried out to make the method
more robust and accurate [11, 29, 42-44]. Surface current estimation using the CFT
method has received a good deal of attention in the literature due to its key role
in excluding the non-wave components from the estimated wave spectra [18, 45, 46].
Another problem that has been addressed in the literature is the effect of shadow-
ing and tilt modulation on the CFT-estimated wave spectra. Using a Modulation
Transfer Function (MTF) to compensate for distortion in the wave spectra due to
shadowing and tilt modulation is perhaps the most popular approach [29, 44, 47, 48].
Other studies have addressed the dependency of the returned radar signal strength on
the relative azimuth direction between the peak ocean wave direction and the radar

beam direction [12; 18].
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Figure 2.6: An example of sea clutter. Image was generated using an X-band radar by
Defence Research and Development Canada (DRDC)[ Dec. 01, 2008, Atlantic ocean
near Halifax].

In spite of being the most popular method, it should be noted that the CFT is
not the only method of sea state parameters estimation from X-band marine radar.
Wavelet transforms may be used for that purpose [49]. Another recent study by Chen
et al. [50] proposed a new algorithm to estimate sea state parameters from X-band
marine radar images using empirical orthogonal functions.

In the next section, a detailed overview of ocean wave spectral estimation using

the CF'T method is presented.
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2.3 A review of wave spectral estimation using X-
band marine radar

X-band marine radars illuminate the ocean surface with electromagnetic pulses at
different directions to cover a specific azimuth range. Output samples are generated
by collecting the returned scatter during consecutive time intervals. A sample’s range
(i.e. distance from the radar) is determined by the round-trip travel time between
sending and receiving a radar pulse, while the azimuth location of the sample is
considered to be the antenna direction at the moment of pulse transmission [1, 51].
Typically, X-band marine radars make a full azimuthal rotation every 1-2 s with range
and azimuth resolutions of 1-10 m and ~ 0.35°, respectively. This configuration of
data output, in which samples are naturally digitized on a polar grid, is referred
to as B-scan format. The first step in the process of ocean wave spectra estimation
using X-band marine radar and before applying the Cartesian Fourier Transformation
(CFT) is to convert consecutive radar B-scan images to Cartesian images I(r,) using
a processes referred to as ‘scan conversion’, where rp, = (Zn,¥n,tn) is the discrete
space-time vector,n = 0... N —1, and N is the number of elements in the space-time
domain. Section 2.3.1 of this chapter includes a review of the scan conversion process

while a review of the CF'T method is found in Section 2.3.2.

2.3.1 Scan conversion

Scan conversion is used to convert B-scan images to Cartesian images in order to apply
the CFT. The use of a look-up Table (LUT) is a popular method for scan conversion
[52]. In the initial stage of the method, a reference mapping table is created and
then used to convert all B-scan images that are generated using the same set of

radar parameters. Each element of the table corresponds to an individual sample
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of the B-scan image and can hold indices of multiple Cartesian image samples. In
programming, this is often implemented using a table of linked lists !. In Figure 2.7,
which illustrates the structure of a LUT, each block belongs to an individual B-scan
image sample with indices (r;, ¢;), where r; =0...R; — 1 and ¢; =0...®; — 1, and
represents a list of its related Cartesian image indices (z;, y;), where z; =0... X; — 1
and y; = 0...Y;—1. X; and Y; represent pre-specified numbers of samples in the x and
y directions, respectively, of the scan-converted images. For example, it can be seen
in Figure 2.8, which is a not to scale illustration of the scan conversion process, that
the B-scan sample (r;, ;) = (128,0) covers the Cartesian samples (z;, y;) = (256,384),
(257,384), and (258,384). Therefore, these Cartesian samples are added to the list of
(ri, ;) = (128,0) as shown in Figure 2.7.

The LUT is created using a two-stage algorithm involving inverse and forward
mapping. The algorithm starts with the inverse mapping in which the Cartesian

image indices (z;, y;) are assigned to the B-scan image indices (7, ;) via the relation

. V((m — XA (G~ FY 0_5J

1 (y: — Yi/2)A,
Y = {Ap (5?1'/2 atan?2 ((37@ “ X, 24, ®;p | +0.5( mod P,

where A;, Ay, A, and A, are the sampling resolutions in the z, y, range and azimuth

directions, respectively, and ®;, is the initial B-scan azimuth direction clockwise
from true north. It should be noted that the mapping process here is not necessarily
one-to-one. After the inverse mapping is performed, some B-scan samples might have

been left ‘un-hit’ (not assigned to any Cartesian samples). Therefore, the forward

1 A linked list is a linear collection of objects referred to as nodes. Each node consists of a variable

to hold data, Cartesian indices in our case, and a link to the next node in the list [53].
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mapping is implemented such that an un-hit B-scan sample (7, ,) is assigned to a

Cartesian sample that is given by

2, — roAy cos(m /2 ;(‘i’m + volAy)) + X2+ 0-5J
oAr 1 2 — ‘i’m OA
Y = T Sln(ﬂ'/ A( + © 99)) +1/1,/2 +05J )
| u

Once the forward mapping is completed, the reference table is ready to be used to
map B-scan samples to their corresponding Cartesian sample(s). It should be noted
that it is possible for a Cartesian sample to be assigned to multiple B-scan samples.
For example, in Figure 2.7, the Cartesian sample (z;,y;) = (256,257) is assigned to
the B-scan samples (r;, ;) = (1,0) and (1,1). This situation is more common near
the centre of the B-scan image. In this case, the Cartesian sample is filled by the
average of the corresponding B-scan samples. Figure 2.9 shows a single B-scan radar
image and the Cartesian image after scan conversion. It should be noted that the
start collection range of the data shown in Figure 2.9 was 225 m. This appears as a

white circle at the centre of the scan-converted image in Figure 2.9.

2.3.2 The Cartesian Fourier Transform (CFT) analysis

Once the radar Cartesian images are produced using the scan conversion process, an
analysis window, f(r,), is selected. In this thesis, analysis windows with the size of
256 x 128 x 32 samples are used. An analysis window with this size covers 1920 m x 960
mx44.8 s with a sample resolution of 7.5 mx7.5 mx1.4 s. Traditionally, multiple
analysis windows are used to minimize the dependency of wave spectra estimation
on analysis window orientation. The final estimated wave spectra are acquired by
averaging the wave spectra estimates from those analysis windows which are uniformly

[54] or adaptively [16] distributed over the azimuth dimension. Figure 2.10 shows
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Figure 2.7: Demonstration of the structure of a LUT.
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Figure 2.8: Illustration of the B-scan and Cartesian sampling grids showing the radar
at the centre and the beam power pattern for one pulse. Figure dimensions are not
to scale.
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Figure 2.9: Single B-scan radar image (left). Cartesian image after scan conversion
(right). Collected on Dec. 01, 2008, Atlantic ocean near Halifax.

three analysis windows of the size noted above and uniformly distributed over the full
360° azimuth range.

Once an analysis window f(r,) is selected, the 3D Cartesian Fourier Transform
(CFT) is applied on f(r,) to evaluate the 3D image spectrum F(2), where Q is the
3D wave number-frequency vector (k,,k,,w) with k, and k, being the spatial wave
vector components and w = 27 f the wave angular frequency. The 3D image spectrum

F(€2) is computed by the 3-D discrete time Fourier transform (DTFT) given by

N—-1
F(Q) = Z Frp)e 7T,
n=0
where N is the number of points in the discrete space-time vector r,. The power

spectrum & is given in terms of F' as [10]
£@) = yIF@)
= )
The power spectrum &£ consists of components Eq, representing contents due to ocean
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Figure 2.10: Single scan-converted radar image with 3 uniformly distributed analysis
windows. Data: Dec. 01, 2008, Atlantic Ocean near Halifax, Canada.

waves and non-wave components v, that account for the influence of noise or aliasing

effects [10]. Thus, £ may be written as

E(Q) = Eq() + v(Q).

In the case of wave spectra estimation where Eq includes the components of interest,
one wishes to separate Eq from v. Since Eq is governed by the dispersion relationship
while v is not, a component in £ may be classified as a wave or non-wave component

based on whether it obeys the dispersion relationship, given by [29]

w(k,U) = y/gktanh(kd) + k- U, (2.6)

where k = (k,, k,) is the wave vector of magnitude k = 27/\,, A, being the wave-
length, in the direction of wave propagation 6 = tan'(k,/k,), d the water depth, g
the acceleration due to gravity, and U the velocity of encounter which is the sum of

the surface current velocity and the radar platform velocity. Figure 2.11 plots Equa-
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tion 2.6 for four values of U (0, 120 m/s, v/2/45 m/s, and 2/90 m/s). It can be seen
from Figure 2.11 that different values of U produce different shapes of the disper-
sion shell, around which ocean wave components are concentrated. For example, an
arbitrary component &€ (k,,w,) is classified as a wave component that belongs to Eq
if w(ko, U) € [wo — Aw,w, + Aw], where Aw = 27(TsN;) ™" is the angular frequency
resolution, 7T is the radar sampling/rotating time, and V; is the analysis window size
in the time domain (i.e. the number of radar images in one set). Otherwise, it is
classified as a non-wave component that belongs to v. The velocity of encounter (U)
can be estimated using algorithms that implement the least squares method [10, 46],
the normalized scalar product technique [45, 55, 56] or both [18].

Once Eq is extracted from £ by excluding the non-wave components (v), which
are identified by the aid of Equation 2.6, from &, the 2D wave spectrum FEg(kz, ky)

may be found as

Ey(k) =2 f Eq()dw.

Eq is integrated over only positive angular frequencies (i.e. w > 0) to remove the
180° ambiguity in wave direction, which results when the entire range of angular
frequencies (—o0o < w < 00) is considered. Ej does not reflect the actual wave
spectrum represented by the ground truth spectrum E, due to changes caused by
the radar imaging process. Figure 2.12 is an illustration of the radar imaging process.
The radar return (B-scan), shown in the upper right corner of Figure 2.12 can be seen
to be proportional to the product of the sampled ocean surface elevation (lower left of
Figure 2.12) and other modulation mechanisms that include shadowing (lower middle
of Figure 2.12) and tilt modulation (lower right of Figure 2.12). Mathematically, the
Modulation Transfer Function (MTF), which represents the change in the ocean wave

spectrum due to the imaging process, can be given by
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Figure 2.11: Dispersion relationship (a) U =0. (b) U =1£0 m/s. (c) U = v/2/45
m/s. (d) U=2/90 m/s.
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M(k) = Ey(k)/Eg(k)

where Ey; is the ground truth directional wave spectrum. It should be noted that the
MTF is meant to improve the shape of wave spectra. However, it does not calibrate
wave spectra to reflect actual energy values. Unfortunately, it is quite difficult to
characterize M (k) due to the nonlinear nature of the imaging mechanisms and their
dependency on the ocean state which is, at this stage, yet to be estimated. Never-
theless, empirical attempts have been made to find a mathematical form of M (k)

[11, 48]. Perhaps the Borge et al. model [11] is the most popular one and is given by

M(k) = k*

where [ is a constant and that has been found to be in the range of 1.2. This
value was found empirically using field and simulated data [11]. The simulations
implemented both shadowing and tilt modulation as these are considered to be the
main contributors to the MTF. The corrected directional wave spectrum FE,., which

is a better estimate of Ey, can then be given by

E.(k) = kPE.(k). (2.7)

Even though using a value of § = 1.2 produced reasonable results for many cases
of the field data used in this thesis, in a significant number of cases it did not. For
example, in some cases [ = 0.8 worked best, while § = 2 gave better results for
other cases by comparison with the ground truth spectra. Chen et al. [48] have also
reported that 8 = 1.2 might not work best for complex sea states and proposed a
new MTF for near shore applications.

Subsequently, the directional wave spectrum F.(k), which is presented in the

Cartesian coordinates, can be equivalently represented in polar coordinates by E(f,0)
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Figure 2.12: Illustration of the radar imaging process. Simulation was used to gener-
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middle), and tilt modulation signal (lower right).
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via the transformation [10]

dk
df’
where f = w/27 is the ocean wave frequency in Hz, and kdk/df is the Jacobian of

the transformation between the coordinates k = (k;, k) and (f,0). The frequency

spectrum F(f) is given by

Bt = [ E(r.00.
Once the directional and non-directional wave spectra are acquired, sea state

parameters, such as ocean wave period and direction, can be estimated by means of

a stochastic approach [57-59]. The n* spectral moment m,, is defined as

ma= [ FE( (2.8)

0
The zero-crossing period is given by T, = (mg/my)/2, the mean period Ty; = mg/m,,
and the peak wave period T, = 1/f, where f, is the peak frequency [6]. The n'"

directional moments A,, and B,, are given by

1 2w .
AP +iBuf) =1 [ B (.00
0
and the mean direction is given by

-1 Bl (f)
A(f)

Using Equation 2.8, the first moment my is given by

0., = tan

mo= [ B

Clearly, mq represents the total energy or variance in the wave system (see Equation

2.4) and indicates the severity of the ocean conditions.
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In practice, the significant wave height, H, = 4.01,/my [6, 57], is commonly used
to represent the severity of the ocean conditions. H, is defined as the average of the
highest one-third estimated wave heights [6]. Since B-scan radar images do not reflect
the actual elevation of the ocean surface but rather a relative value on the grayscale,
Eq, which is calculated from the B-scan images, do not reflect the actual ocean wave
energy but a scaled version of it. For the estimation of most sea state parameters
such as ocean wave period and direction, Eq is adequate. However, for the significant
wave height analysis, a properly scaled wave spectrum that reflects the actual ocean
wave energy is needed. Traditionally, supportive buoy data is used to calibrate Eq.
This is considered an application shortcoming of the marine radar-based methods
in wave spectra estimation [21]. A recent study by Gangeskar [60] proposed a new
method that uses shadowing in radar images to estimate the significant wave height
without the need for calibration. Subsequently, several studies used this approach
to enhance significant wave estimation [61-64]. Significant wave height analysis is
beyond the scope of this thesis. The evaluation of the proposed methods in this thesis
mainly involves the analysis of other sea state parameters including wave periods and

direction.

2.4 Data Overview

The field data used in this thesis were collected near Halifax, Nova Scotia, on the
East Coast of Canada by Defence Research and Development Canada (DRDC) (see
Figure 2.13 and Table 2.1) by shipborne Decca and Furuno X-band nautical radars
over a 10 day period (Nov 25 - Dec 4, 2008). A TRIAXY'S wave rider buoy, which gen-
erated a reading every 30 minutes, was also used to validate the marine radar-derived
results from the proposed methods in this thesis. During the experiment, there was

a drift of 41 km in the wave buoy location. However, the radars were always within
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a 10 km distance of the buoy during the experiment. Hence, no significant statisti-
cal differences are expected between measurements at the locations of the buoy and
radars in the experiments.

Figure 2.14 displays the wind speed and direction during the experiment. It
should be noted from Figure 2.14 that at some instances, the wind speed dropped
below 3 m/s. At such low wind speed, ocean wave signatures in X-band radar images
might not be sufficient to produce ocean wave spectra estimates [54]. Furthermore,
high precipitation was observed at some other instances during the experiment as
shown in Figure 2.15. Rain might contaminate X-band radar images and corrupt
wave spectra estimates from X-band radar data [54]. In order to eliminate the po-
tential discrepancies due to low wind speed or high precipitation in our analysis, the
performance validation of the proposed methods in this thesis was based only on the
wave spectra estimates that achieve a minimum agreement of 40% with the ground
truth (see Section 3.4.2 for agreement calculation). Figure 2.16 shows the significant
wave height information recorded by the TRIAXYS wave rider buoy during the ex-
periment. Except for a few hours on Nov 28, it can be seen from Figure 2.16 that
the sea state mostly varied between moderate and rough (1 m/s < Hy < 5 m/s). It
should be noted that no X-band radar data were recorded during those few hours on
Nov 28 when the significant wave height exceeded 7 m/s.

The radars, which were connected to a Wave Monitoring System IT (WaMoS II)
[54], were operating at 9.4 GHz with HH polarization and at grazing incidence. The
radar system recorded the returned scatter signal on a value scale of 0 to 255 and
saved the data samples in 8-bit unsigned integers format. Between the two radars,
since the shortest radars’ antenna rotational time was 1.44 s (Furuno), the frequency
spectrum analysis and comparison are limited in this thesis to the range of 0.05 to

0.35 Hz. For the chosen analysis window size of 256x128x32, a single estimate of
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Figure 2.13: Locations of wave buoy and radar during the experiment on Dec. 01,

2008.

ocean wave spectra using radar methods requires 32 images, which needs 80 s and
44.8 s to be generated by Decca and Furuno radars, respectively. This size of analysis
window was chosen over other popular sizes, e.g. 128x128x32, to cover a larger
azimuth range in order to mitigate the dependency of wave spectral estimation on
the azimuthal dimension. It should be noted that the generation rate of ocean wave
spectral estimates of the radar methods (the CFT and the proposed methods in this
thesis) is different from the buoy method. Thus, for compatible comparisons between
the radar and buoy estimates, radar estimates generated during the 30 minute window
of a buoy estimate generation are averaged for comparison with that buoy estimate.
The ground truth buoy directional wave spectrum has a resolution of 0.005 Hz x3°
and covers a range of 0.030 to 0.465 Hz and a full range of 360°. Further details about

the experiment are listed in Table 2.1.
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Figure 2.16: Significant wave height recorded during the field experiment.
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Table 2.1: Experiment setup: radar and buoy parameters.

Experiment location 42° 22.4391 N 61° 55.5654 W

Antenna rotational time Decca: 2.5 s, Furuno 1.44 s

Antenna height Decca: 21.9 m, Furuno 16.5 m

Sampling frequency 20 MHz
Range resolution 7.5 m

Radar pulse length 50 ns

Range coverage 240 - 2160 m
Azimuth coverage 360°

Pulses per sweep 1000

Water depth 200 m
Polarization Horizontal
TRIAXYS wave period range 1.6 to 33.3 s

TRIAXYS wave period accuracy

better than 1%

TRIAXYS wave direction range 0 to 360°
TRIAXYS wave direction accuracy 1°
TRIAXYS Heave range +20 m
TRIAXYS Heave resolution 0.0l m

TRIAXYS Heave accuracy
TRIAXYS Compass accuracy
TRIAXYS GPS

better than 2%
40.5°

12 channel
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Chapter 3

An Adaptive Method of Wave
Spectra Estimation Using X-Band

Marine Radar

3.1 Introduction

The purpose of this thesis is to develop wave spectra estimation methods that provide
more accurate and reliable estimates compared to the standard CF'T method. In one
of the early steps of the CFT method, one or multiple analysis windows of the full
azimuth range of radar data are chosen to perform the CFT analysis. Choosing a
different number or orientation of the analysis windows may change the accuracy of
the estimate. Traditionally, this problem has been addressed by using multiple win-
dows that are uniformly distributed over the full azimuth range. The final directional
wave spectrum is calculated by averaging the directional wave spectra from different
analysis windows. In this chapter, the dependency of wave spectra estimation on the

orientation of the analysis windows is studied with the intention of developing an
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algorithm that determines the number and orientation of the analysis windows such

that the output is most accurate and reliable.

3.2 The Wave Spectrum Estimation Dependency
on the Orientation of the Analysis Window

In wave spectrum estimation using marine radar images, the dependency on the az-
imuth direction of the analysis window is not due to a hydrodynamical property of the
ocean waves. Rather it is due to the imaging process [16, 65]. Several imaging mech-
anisms including the intensity variation in the up/down wave direction due to Bragg
scattering, shadowing, and tilt modulation contribute to this dependency. The Bragg
scattering contribution can be explained by the concentration of the centimetre-scale
roughness on the up-wave surface of the wind waves. Since this roughness is respon-
sible for Bragg scattering, it is expected that there will be a stronger returned radar
signal from the up-wave direction than from other directions. Even though some
studies [27] presented analysis on the shadowing formation in X-band radar images,
the shadowing contribution to the estimated wave spectrum using X-band radar data
is not fully understood. However, evidence was presented in [12] that shadowing
induces higher harmonics in radar images of the ocean surface.

In order to investigate how shadowing and tilt modulation contribute to the wave
spectra estimation dependency on the orientation of analysis windows, a simulated
ocean surface elevation using the parameters listed in Table 3.1 and the input di-
rectional spectrum shown in Figure 3.1a were implemented. The simulation was
generated using a Pierson-Moskowitz-based power distribution model recommended
by the 15th International Towing Tank Conference (ITTC) [66] and a squared cosine

distribution (accounting for angular spreading) [29], with random phases that were
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generated using a uniform distribution. Figure 3.1b shows a sample of the simulated
surface elevation. The shadowing and tilt modulation masks were calculated for the
simulated image sets using the model proposed by Nieto et al. [29]. Figures 3.1c and
3.1d show the shadowing and tilt masks, respectively. The shadowing percentage
is calculated at near, mid and far range as a function of . At a given angle 6o,
the shadowing percentage is quantified as the number of shadowed samples within a
one-dimensional rectangular window applied in the range dimension divided by the
window size. Using a one-dimensional window size of 128 samples is more meaningful
in this context since the two-dimensional analysis windows (128 x 128 or 256 x 128)
have the same range size. Figure 3.1e shows the averaged shadowing percentage for
150 simulated radar image sets. Clearly, the shadowing increases with range. This
should not be surprising since the probability that a smaller wave is hidden by a
bigger one increases as the grazing angle decreases (i.e. increasing range). Another
interesting observation is that the shadowing is minimum at cross-wave (6§ = 0° and
180°), up-wave (6 = 90°) and down-wave (f# = —90°) directions. The reason behind
the behavior of the shadowing at the up-wave and down-wave directions is not clear
to us and will be investigated in future work. The minimum shadowing at the cross-
wave (i.e. parallel to the wave front) direction can be explained by the fact that,
at this angle, radar signals travel in parallel with the ocean wave front rather than

facing it, giving a smaller opportunity for the shadowing to occur.
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Table 3.1: Numerical tests: simulation parameters.

Image set size 512 x 512 x 32 samples

Antenna rotational period 1.44s

Antenna height 10 m

Sampling frequency 20 MHz

Water depth 200 m

Wind wave direction 90° from the true north

Surface current 0.5 m/s 90° from the true north
The mean period Tp; 10 s

The significant wave height 3.5 m

In order to investigate the effect of tilt modulation, it is calculated at near, mid
and far ranges as a function of # in a manner similar to that for the shadowing case.
However, tilt modulation is quantified by integrating the tilt modulation signal over
the range within a 128 sample one-dimensional rectangular window. Figure 3.1f shows
the normalized averaged tilt modulation for the simulated image sets. The figure
shows peaks at up-wave (6 = 90°) and down-wave (# = —90°) directions and minima
at cross-wave (# = 0° and 180°) for all ranges. This analysis strongly indicates that
the azimuthal direction biases the radar imaging mechanisms and by extension wave
spectral estimation. Also, it can be concluded that for best results in wave spectrum
estimation, the analysis window should be chosen in the up-wave direction where the
shadowing is minimum since higher shadowing induces higher order dispersion modes
[12]. Also, the radar return is strongest in the up-wave direction due to the high tilt
modulation factor and Bragg scattering,.

To amplify this point, here we present a field data example. Figure 3.2 shows the

ground truth directional wave spectrum for the field data example given in Figure 3.3.
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Figure 3.1: Simulation analysis for shadowing and tilt modulation: (a) Directional
wave spectrum used to generate simulated radar images; (b) Simulated surface ele-
vation; (c) Shadowing mask; (d) Tilt modulation mask; (e) Shadowing percentage
dependency on the azimuthal direction; (f) Tilt modulation factor dependency on the
azimuthal direction.

43



350+

|
250 | |

200+ 1 0.3

=

E (mz 5 frad)

160 ¢

100+

50+

1] 0.05
a 005 01 045 02 025 03 035 D4

f{Hz)

Figure 3.2: Directional wave spectrum for example given in Figure 3.3. Directional
wave spectrum is estimated using a directional TRIAXYS wave rider buoy.

In this example, the directional and frequency wave spectra were estimated using the
CFT from an analysis window that was positioned first in the up-wave direction (see
Figures 3.3a and 3.3b) and second in the down-wave direction (see Figures 3.3c and
3.3d). It can be seen, when compared to the ground truth frequency wave spectra
in Figures 3.3b and 3.3d, that the estimate of the frequency wave spectrum is more
accurate when the analysis window is positioned in the up-wave direction (Figure
3.3b) compared to the down-wave direction (Figure 3.3d).

Wave spectra usually have one or two peaks that are related to wind waves or/and
swell. The dominant wind wave and swell do not necessarily travel in the same
direction. Therefore, choosing the analysis window in the wind wave direction might
occur at the price of compromising the swell peak or vice versa. Traditionally, this
problem is addressed by averaging the output of three uniformly distributed analysis
windows. For a field data example, Figure 3.4 shows a directional wave spectrum
which is calculated using wave rider buoy data and has two peaks at § = 110° and
185°. The directional wave spectrum estimated using marine radar data with three
analysis windows (see Figure 3.5a) is presented in Figure 3.5b. The directional wave
spectrum from each window is acquired using the CFT-based method outlined in

Section 2.3.2 and detailed in [10, 29, 47]. In the radar data used in this example,
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Figure 3.3: A field data example for wave spectrum estimation dependency on az-
imuth direction. Data was recorded on 27 Nov 2008 between 4:58 AM and 5:28 AM :
(a,c) The directional wave spectrum estimated using the CFT on an analysis window
positioned in the up-wave and down-wave directions, respectively; (b,d) The direc-
tional wave spectrum estimated using the CFT on an analysis window positioned
in the up-wave and down-wave directions, respectively, overlaid on the ground truth
frequency wave spectrum.
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the buoy is located within the radar coverage. Clearly, both peaks in the directional
wave spectrum of the buoy are detected in the radar’s wave spectrum. However,
comparing the normalized non-directional wave spectrum in Figure 3.5¢, which is
calculated using Equation 2.3.2 and divided by its maximum value, it may be seen that
the second peak is almost non-distinguishable. However, when taking the analysis
window orientation to be in the first peak direction, § = 110° (see Figure 3.5d),
the first peak is even more highly emphasized compared to the second one which is
completely non-distinguishable as shown in Figures 3.5e and 3.5f. When taking the
analysis window in the direction of the second peak (f = 185°), Figures 3.5g-3.51
show more weight for the second peak over the first which now has an energy level of
25% compared to 100% of the first peak for the ground truth. Finally, an intuitive
solution is to average the results from the two analysis windows which are in the
direction of spectral peaks at § = 110° and 185° (see Figure 3.5j). Figures 3.5k and
3.51 show better agreement with the buoy estimated spectrum.

However, this approach is challenging since the wave directions are not known
beforehand. In this chapter, a new method is proposed that is referred to as the
Adaptive Recursive Positioning Method (ARPM); this method estimates the direction

of travel of the waves and chooses the analysis windows orientation accordingly.

3.3 The Adaptive Recursive Positioning Method

(ARPM)

The ARPM determines the number and orientation of the analysis windows according
to the number and orientation of peaks in the wave spectrum. In the case where the
wave spectrum has only one peak, one analysis window is chosen in the direction

of that peak. In the case where the wave spectrum consists of two peaks resulting
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Figure 3.4: Directional wave spectrum for example given in Figure 3.5. Directional
wave spectrum is estimated using a directional TRIAXYS wave rider buoy.

from wind waves and swell, two analysis windows are chosen in the directions of these
peaks. For instances where the wave spectrum may consist of n > 2 peaks, n (possibly
overlapped) analysis windows are used and positioned in the peak directions. Since
the wave spectrum is not known beforehand, the ARPM determines the analysis
window locations recursively. Figure 3.6 shows the flowchart of the ARPM. The
method starts by estimating the wave spectrum using three uniformly distributed
analysis windows in a manner that is similar to the standard method outlined in
Section 3.2. The estimated directional wave spectrum is used as an initial estimate
to determine the number and direction of the peaks. Subsequently, new analysis
window(s) are chosen in the direction(s) of the peaks, and a new estimate of the
wave spectrum is obtained. This process is repeated until a termination criterion is
satisfied. For the results of this chapter, a simple termination criterion is used which
limits the number of iterations to a maximum number. Based on the field data used,
three iterations were found to generate satisfactory results after which little change in
the number and orientation of the analysis windows was noticed. While Figure 3.7,
which is acquired using the field data described in Section 2.4, shows a continuous

decrease in the average change in the orientation of the analysis windows to iteration
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Figure 3.5: A field data example for wave spectrum estimation dependency on az-
imuth direction. Data was recorded on 1 December 2008 between 4:03 PM and 4:38
PM : (a,d,g,j) A single Furuno radar image shown with various analysis window ori-
entations; (b,e,;h k) The directional wave spectrum estimated using the CF'T on the
analysis windows in Figures b, e, h and k, respectively; (c,f,i,l) The frequency wave
spectrum estimated using the CFT on the analysis windows in Figures a, d, g and j,
respectively overlaid on the ground truth frequency wave spectrum.
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5 or 6, trading off analysis cost and estimate accuracy, 3 iterations were found to be

sufficient.
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Figure 3.6: Adaptive Recursive Positioning Method (ARPM) flowchart.
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Figure 3.7: The average change in the analysis windows’ orientation from one iteration

to the next for different number of iterations in the ARPM.
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Obviously this method needs a full field of view, or in practice, close to it. This is
needed to facilitate the freedom in choosing the orientation of the analysis window(s).
Usually, data from offshore platforms and shipboard marine radars provide such a field
of view. On the other hand, coastal station marine radars might not provide such a
wide ocean field of view. However, the ARPM method may still be applied, although
in a more limited and less effective way since the up-wave direction detected in the

initial guess of directional wave spectrum may not be part of the field of view.

3.4 Results and Analysis

3.4.1 Field Data Examples

In order to demonstrate the accuracy of the ARPM, we start by an example. Fig-
ure 3.8 shows a ground truth wave spectrum which is estimated from TRIAXYS wave
buoy data. The spectrum has a main peak at 0.075 Hz and 90° and a secondary peak
at 0.15 Hz and 150°. Figure 3.9 shows the ARPM output for each iteration. The
estimated directional and frequency wave spectrum in the first iteration (standard
method) is shown in Figures 3.9a and 3.9b, respectively. The secondary peak is un-
derestimated with a lower relative energy level of 25%, relative to that of the main
peak of the first iteration, compared to 40% for the ground truth secondary peak. In
the second iteration, only two analysis windows are used, and they are repositioned
to be in the peak directions. The estimated directional and frequency wave spectra
of the second iteration are shown in Figures 3.9c and 3.9d, respectively. Clearly, the
secondary peak is better estimated in this iteration with a higher relative energy level
of 60%, relative to that of the main peak of the second iteration, compared to its
estimate in the first iteration of 25%. However, further refinement is needed since it

now has more relative energy than the ground truth and thus can be deemed to be
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Figure 3.8: Directional wave spectrum for example given in Figure 3.9. Directional
wave spectrum is estimated using a directional TRIAXYS wave rider buoy.

over-estimated. Finally, the last iteration produces a satisfactory improvement in the
estimated wave spectra as shown in Figures 3.9e and 3.9f. The secondary peak is now
almost at the same relative energy level (40%) as in the ground truth spectrum.
Another example is shown in Figures 3.10 and 3.11. Figure 3.10 shows a ground
truth wave spectrum which is estimated using a TRIAXYS wave buoy data. The
spectrum has two peaks, a main peak at 0.09 Hz and 225° and a secondary peak
at 0.09 Hz and 75°. Obviously, these peaks are not distinguished through the fre-
quency spectrum because both peaks are at 0.09 Hz. Looking at the directional wave
spectrum in Figure 3.11a produced in the first iteration, the secondary peak is not
detected. Comparing this estimate to the final estimate produced in the final iteration

(Figure 3.11e), the secondary peak is now visible.

3.4.2 Performance Validation

The last two examples show that the ARPM significantly improves the wave spectrum
estimation over the standard method. In order to validate the performance of the

ARPM, the agreement between its estimated wave spectrum and the buoy wave
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Figure 3.9: A field data example for wave spectrum estimation using the CFT with
the ARPM. Data was recorded on 1 December 2008 between 11:48 AM and 12:08
PM: (a,c,e) The directional wave spectrum estimated in the first, second and third
iteration, respectively; (b,d,f) The frequency wave spectrum estimated from the radar
data in the first, second and third iteration respectively and overlaid on the ground
truth frequency wave spectrum.
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Figure 3.10: Directional wave spectrum for example given in Figure 3.11. Directional
wave spectrum is estimated using a directional TRIAXYS wave rider buoy.

spectrum (the ground truth) is quantified using the correlation coefficient between
the two frequency spectra on a discrete frequency grid. The value of the correlation

coefficient ranges from 0 (no similarity) to 1 (identical) and is estimated by

_ N; Y- ErEz — (X Er)(X: Eg)
VI S B — (2 BN, 2 B — (% Ba)l|

where Er and Ep are the radar and buoy-estimated normalized frequency spectrum,

p (3.1)

respectively, Ny is the number of frequency points in Fr and Fpg, and ) is the
summation over all frequency points in E'zr and Eg. As described in Section 2.4, one
radar set (32 images) is used to calculate a wave spectrum estimate. Furthermore, the
buoy records data for 30 minutes in order to generate an estimate of wave spectrum.
For a proper comparison with the wave buoy output, a buoy wave spectrum estimate
was compared to the average of all radar-based wave spectral estimates that were
produced within the 30-minute interval of that buoy estimate. The standard method
and the ARPM are used to estimate the wave spectrum. The estimated correlation

coefficient with the buoy ground truth is calculated for each method. Figure 3.12
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Figure 3.11: A field data example for wave spectrum estimation using the CFT with

the ARPM. Data was recorded on 3 December 2008 between 5:01 AM and 5:31
AM: (a,c,e) The directional wave spectrum estimated in the first, second and third
iteration, respectively; (b,d,f) The frequency wave spectrum estimated from the radar
data in the first, second and third iteration respectively and overlaid on the ground
truth frequency wave spectrum.
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Figure 3.12: A comparison between the ARPM and the standard method in terms
of the frequency wave spectrum similarity with respect to the buoy ground truth
spectra. Each point represents the correlation coefficient between ground truth and
the radar-estimated frequency wave spectra.(a) Dec 1 afternoon and evening, (b) Dec
2 afternoon and evening, (¢) Dec 3 afternoon and evening, (d) Dec 4 morning.

shows the correlation coefficient in pairs: the standard method coefficient is marked
using an “o0” while the ARPM is marked using an “ x ”; the results are shown for four
12-hour periods during Dec 1 - Dec 4, 2008. To enhance the readability of the results,
the ARPM output is plotted in blue (red) to indicate improvement (deterioration)
in performance compared to the standard method. Clearly, the ARPM outperforms
the standard method with higher correlation coefficients except for a few cases. The
average improvement is found to be 9.8%.

For further validation, the peak wave period 7, mean period Ty, the zero-crossing
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period 7, and the peak wave direction 6, are estimated for wind waves and swell
using the standard method and the ARPM. Figures 3.13 and 3.14 show the peak
wave period and direction, respectively, over time. Both figures show an advantage of

the ARPM over the standard CFT method for most of the time. The mean absolute

error (e, |,|ery, |, |e7.| and |eq,|) and error standard deviation (oer, , Oy, , Ocp, and
Oc,,) Of these estimates are calculated with respect to the ground truth and listed
in Table 3.2. Figure 3.15 shows the normalized (with respect to the CFT) average
absolute error in estimating T},, 7o, T, and 6, using the ARPM. The mean absolute

error and the error standard deviation of 7, are calculated by

Ne
S 1
ler,| = 7 > 1T = Touoy| (3.2)
€ n=1
and
1 Qe 1 Qe ’
O.ETp = E; (Tpn - E;:Tﬂm) 3 (33)

respectively, where N, is the total number of radar estimates and T}y, is the buoy
ground truth of 7},. The other metrics in Table 3.2 are calculated in a similar manner.

Finally, it is not surprising that this improvement comes at the price of extra com-
putational time. As an illustration, in our analysis and implementation, the standard
method needed 2.7 s to process one radar set (32 radar images) while the ARPM
required 5 s, with both implementations running on the same processor and with
similar software and data structure efficiency. However, this price is very reasonable
since the time needed by the radar to generate one data set is 48 s. Therefore, the
ARPM can be also used for real-time analysis.

In the next chapter, the effect of the ocean surface sampling process on the esti-
mated ocean wave spectra is investigated. It will be demonstrated that the conven-
tional assumption of the radar sampling process of the ocean surface being a standard

sampling is not quite accurate. In fact, an averaging process is involved and can be
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Figure 3.13: A comparison between the ARPM and the standard method in terms
of the peak wave period. (a) Dec 1 afternoon and evening, (b) Dec 2 afternoon and
evening, (c¢) Dec 3 afternoon and evening, (d) Dec 4 morning.
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Figure 3.14: A comparison between the ARPM and the standard method in terms
of the peak wave direction. (a) Dec 1 afternoon and evening, (b) Dec 3 morning, (c)
Dec 2 afternoon and evening, (d) Dec 3 morning.
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represented by an analytical model. Understanding the sampling process will help
us to understand its effect on ocean wave spectra estimation and, ultimately, in the

design of an algorithm to mitigate that effect.

Table 3.2: Comparison of the ARPM and the standard method in wave period and

peak direction estimation.

@(S) Oer, (s)  lezo:l(s) Tergy (s) @(S) Ocr, (8) @(0) asep(o}

CFT 2.5 0.9 24 0.8 2.3 0.8 15.1 16.1
ARPM 2 0.9 1.9 1.5 1.9 1.5 11.7 13

1.2 : ;
ECFT [ JARPM

0.2F 4

L LB

Tin T. a,

'::h:]'

Figure 3.15: The average absolute error of the ARPM normalized with respect to the
CFT method.
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3.5 Conclusions

In this chapter, the dependency of ocean wave spectra estimation on the orientation
of the analysis windows is investigated. Our results show that the best orientation of
the analysis window is in the up-wave direction where the effects of shadowing and
tilt modulation are minimum and the returned scatter intensity is maximum due to
stronger Bragg scattering. However, in the presence of wind waves and swell, the
situation is more challenging since choosing the orientation of the analysis window
in the direction of one of the sets of waves (wind waves or swell) is at the price of
underestimating the other one. For this reason, we propose to use multiple analysis
windows oriented in the directions of wind waves and swell. This approach presents
another challenge which is that the wind wave and/or the swell directions are not
known a priori. Therefore, this chapter proposes the Adaptive Recursive Position
Method (ARPM) to solve this problem by finding the number and orientation of
analysis windows recursively. The ARPM presented significant improvement in wave
spectra estimation that has been demonstrated by producing frequency spectra that
better agree with ground truth data. It has also been shown that the ARPM can
produce more accurate and reliable wave period and direction estimates compared
to the standard method. The ARPM successfully serves the purpose of reducing the
estimation error of the ocean wave spectra using the CF'T method. Future work on
the ARPM will include possible enhancements of the iterative process by seeking

optimal initial guesses and termination criteria.
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Chapter 4

The effect of radar ocean surface
sampling on wave spectrum
estimation using X-band marine

radar

4.1 Introduction

The dependency of estimated ocean wave spectra on the azimuth direction of analysis
window was the first source of error in wave spectra estimation addressed in this thesis.
The second source of error in ocean wave spectral estimation addressed in this thesis
is from the sampling process of the ocean surface by X-band marine radars. This
problem has not been previously addressed. Our approach is to model the effect of
the ocean sampling process via an invertible analog filter. Subsequently, the effect of

the sampling process may be mitigated by using the inverse of the proposed analog

filter.
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Main Beam

Figure 4.1: An illustration of radar radiation pattern.

4.2 The Radar Sampling Process and the Inverse

Sampling Averaging Filter (ISAF)

4.2.1 Radar sampling process

To sample the ocean surface over the range dimension at a given direction using an
X-band marine radar, the radar sends its electromagnetic pulse with the main beam
being pointed in that direction as shown in Figure 4.1. Subsequently, the radar starts
to receive the returned scatter, repeatedly, for short periods of time 7 = 1/f, where
fs 1s the radar sampling frequency. The radar range resolution A, is determined by

7 via [1, 51]

A, =e1/2, (4.1)
where ¢ is the speed of light. The azimuth radar resolution is given by
Ay = BWr,

where BW is the half-power beam width and r is the distance of the sample from the

radar. The returned scatter from the sample is collected from the entire area of the

62



sample. This implies that an averaging filter is involved in the sampling process. The
manner in which different locations in the sample patch contribute to the returned
signal is difficult to model or estimate due to the following reasons. First, various
locations in the sample patch depend on the ocean state at the time of scatter. Second,
the signal power across the sample patch varies due to the radar beam pattern.
However, to simplify the problem we assume that different parts in the sample area
contribute equally to the returned scatter.

Our preliminary approach to investigate the effect of the ocean surface sampling
process on the estimates of the ocean wave spectra is as follows. First, Cartesian
images of ocean surface elevation are simulated on a fine grid. For best results, a high
Cartesian spatial resolution of dz x dy = 1 x 1 m is used. Next, B-scan images are
generated from the simulated ocean surface elevation Cartesian images using values
of A, and BW that are used in an actual X-band marine radar as listed in Table 4.1.
A B-scan sample is calculated by averaging those high-resolution Cartesian samples
which fall in the area of that B-scan sample. Finally, the CF'T method is used to
estimate the ocean wave spectra from the B-scan images. In order to understand the
behavior of the ocean surface sampling process, the CFT-estimates are compared to
the simulation input spectra (the spectra used to generate the simulated Cartesian
images of ocean surface elevation). It should be noted here that neither shadowing nor
tilt modulation were implemented in our simulation in order to examine the effect
of the ocean surface sampling alone. A modified Pierson-Moskowitz-based power
distribution model presented in [66] was adopted to generate the input non-directional
wave spectrum of the simulation. A squared cosine distribution[11] was used to add
the directional component of the input directional wave spectrum for producing the
simulated images. Furthermore, for more realistic simulation output, uniform random

phases were added to different wave numbers of the input wave spectrum.
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Figure 4.2a shows an example of the generated simulation input directional wave
spectrum based on the parameters listed in Table 4.1. Figure 4.2b depicts a sample
of the simulated high resolution ocean surface elevation images. Figure 4.2c¢ shows
the B-scan image generated from the high resolution ocean surface image displayed
in Figure 4.2b. Figure 4.2d shows an analysis window of size 1600 x 800 m generated
from the B-scan image displayed in Figure 4.2¢ using the scan conversion process
outlined in Section 2.3.1. Figure 4.2e contains the CFT-estimate of the directional
wave spectrum from the analysis window with a sample shown in Figure 4.2d. Also,
Figure 4.2f displays the normalized CFT-estimate of the non-directional wave spec-
trum compared to the simulated normalized input non-directional wave spectrum.
Clearly, the normalized CFT-estimate of the non-directional wave spectrum decays
faster than the normalized input spectrum. This supports our assumption that the
sampling process may be presented by an averaging (low pass) filter that attenuates

high frequencies relative to low frequencies.

Table 4.1: Numerical tests: simulation parameters.

Antenna rotational period 1.44 s

Ocean surface grid resolution 1 x 1 m

Wind wave direction 90° from true north
Mean period Ty 10 s
Significant wave height 3.5m

Antenna beam width BW 1°
Pulses per 360° 1000
Radar sampling frequency fs 20 MHz

Radar range resolution A, 7.5 m
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Figure 4.2: A synthetic data example that illustrates the effect of the radar sampling
process of the ocean surface on estimates of ocean wave spectra. (a) Simulation input
directional wave spectrum. (b) A sample of the simulated high resolution Cartesian
images of ocean surface elevation using dz xdy = 1 x 1 m. (c¢) A sample of the B-scan
images that are produced from the simulated high resolution images using A, = 7.5
m and Ay = 1° . (d) A selected rectangular analysis window from the scan converted
B-scan images of size 1600 x 800 m using A, x A, = 7.5 x 7.5 m.
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Figure 4.2: (e) The normalized estimated directional wave spectrum using the CFT
method from B-scan simulated radar returns of the ocean surface elevation. (f) The
normalized input and CFT-estimate of the non-directional wave spectra.

In order to understand the effect of ocean surface sampling on the estimated
ocean wave spectra from the simulated data, Figure 4.3 shows an area of a B-scan
sample which is a function of the range resolution A,, the beamwidth BW and the
range r. The figure also shows the underlying high-resolution Cartesian grid for the
simulated ocean surface elevation with a spatial resolution of dz x dy = 1 x 1 m.
Clearly, the number of high-resolution samples that are averaged to form the B-scan
sample is not fixed, but increases with range r and, by extension, with the area of the
B-scan sample. To simplify the problem, the B-scan sample area is considered to be
rectangular with the dimensions of L, x L,, where L, =r BW and L, = A,, instead
of the ring sector, as shown in Figure 4.3. This assumption is valid for high ranges r
and low Beam width BW values, which is the case in our field data experiment with
r > 240 and BW = 1°. The numbers of high-resolution samples N, and N, that are
averaged to produce one B-scan sample are given by

L,

e [ = [12] 0
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respectively, where [-] is the ceiling function. The wave number response of this

averaging process can be given by the 2-D low pass filter Hy = H;_H, B, where

1 Nz/2—1 )

Hy, (ks) = 5 Yo () (4.3)
¥ ne=—Ng/2
1 Ny/2—1 i

Hy, (ky) = 77 > () (4.4)
Y ny=—Ny/2

where k, = k,dz and f::y = kydy are the normalized wave number vector components
in the  and y direction, respectively, and r, is the magnitude of the filter zeros. In
order to achieve an invertible filter, r, was chosen to be 0.9 (see Section 4.2.3 for an
explanation of this choice). Using the radar configurations given in Table 4.1 and
Equations 4.1 and 4.2 and considering » = 1000 m, N, and N, are found to be 18
and 8, respectively. Figures 4.4a and 4.4b show the zero-pole diagrams of Hj_ and
H By respectively, while Figure 4.5a and Figure 4.5b shows the normalized directional
magnitude response of Hj in the (kg, féy) and (k,0) domain, respectively. To verify
our rectangular area assumption, H;C(jém, jéy) is multiplied by the input directional
wave spectrum shown in Figure 4.5 to produce a modified input non-directional wave
spectrum. This modified spectrum is compared to the CFT-estimate of the non-
directional wave wave spectrum as shown in Figure 4.6. Clearly, introducing Hj
improves the agreement between the two non-directional wave spectra. Since Hj is
designed to be invertible (see Section 4.2.3), the effect of the radar sampling process
may be mitigated by multiplying the CFT-estimate of the directional wave spectrum
by H k_ !, Figure 4.7 shows the improvement that shaping by H 1 ! can bring to the
CF'T-estimate of the non-directional wave spectrum. When multiplied by H T ! the
observed increase in the non-directional wave spectrum shown in Figure 4.7 for fre-
quencies higher than 0.25 Hz is due to the small values of Hj shown in Figure 4.5.

This behavior at higher frequencies is not expected to be experienced in our field data
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Figure 4.3: An illustration of the the polar samples area.

analysis as shown is Section 4.2.2.

The previous example and the design of Hj have helped in understanding the effect
of the ocean surface sampling process on the estimated ocean wave spectra. H. 3 ! was
designed to mitigate the effect of the averaging process of the simulated ocean surface
elevation with dr x dy = 1 m on the estimated ocean wave spectra. Considering a
higher resolution of the simulated ocean surface elevation lead to higher values of N,
and NV, given in Equation 4.2 and, hence, a more accurate design of Hj in modeling
the effect of ocean surface sampling process. Ultimately, the most accurate design of
Hj, is achieved when dz x dy — 0, which requires consideration of the filter design in

the analog domain.

4.2.2 The averaging process in the analog domain

In order to extend H z ! to be applicable to radar field data, the filter design has to
be considered in the analog domain. The radar actually collects the returned scatter
from the continuous rectangular area L, x L, shown in Figure 4.3. Therefore, the
analog average filter is given by Hy = Hj, Hy, where Hy, and H}, are adaptive moving

average filters in the z and y directions, respectively, and are calculated as follows.
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Figure 4.5: The directional wave number response of Hy in (a) ky, k, and (b) k.6
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In the z direction, the moving average filter in the spatial domain can be stipulated

by the rectangular window

hy(z) = Liru(az + L, /2)u(—zx + L,/2).

where u(-) is the unit step function. Using the Laplace transform,

o0 B eSsz,/Q - e—sszﬁ
Hy, (ky) = / he(z)e™dz = (4.5)

oo Selip

where s, = 0 + jk,, with o being the attenuation constant. Similarly,

eSy Ly/2 _ e_SULy/Q

Hy,(ky) =

(4.6)

SyLy
where s, = 0+ jk,. Using the parameters given in Table 4.1 and considering o = —0.1
for a invertible analog filter (see Section 4.2.3), Figure 4.8a and Figure 4.8b show the
directional wave number response of Hj in the (kz, ky) and (k, #) domain, respectively.
Since Hp is invertible, Hk_l = 1/Hy can be used to mitigate the effect of the radar
sampling process on radar field data. H, ' is referred to as the Inverse Sampling
Averaging Filter (ISAF). For radar field data, the ISAF is used with the modulation
transfer function MTF = k=2 proposed in [11]. The ISAF filter is integrated in the
CF'T method outlined in Section 2.3.2 by updating Equation 2.7 as follows.

E.(k) = k"2 Ep (k) H ' (k).

4.2.3 Filter inversion and the attenuation constant o

Using the attenuation constant ¢ = 0 in Equations 4.5 and 4.6 produces a non-
invertible wave number response due to the zeros shown in Figures 4.9a and 4.9b,
respectively, being on the unit circle of the z-plane. This is the case because once the

radar averages the returned scatter from all positions in the sample area, information
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Figure 4.8: The directional wave number response of Hy in (a) kg, k, and (b) k, 0
domain.

about individual positions cannot be retrieved from the radar output. Still, we can
use an interpolation of the filter by setting ¢ = —0.1 in Equations 4.5 and 4.6. This
value was chosen so that the interpolation follows the envelope of the original filter
with 0 = 0 as shown in Figures 4.9a and 4.9b. Choosing a lower value of o, such as
-0.2, might lead to an underestimation of wave spectra components at low wave num-
bers due to the high amplitude response of |Hj, | at those wave numbers as depicted
in Figure 4.5. On the other hand, using a higher value of ¢ such as -0.05 might lead
to an unstable behavior of the inverse filter due to the small values of |Hj, | and |Hy, |
at their zeros. For the same reason, » = 0.9 was used in Equations 4.3 and 4.4. This

value was found using the Z-Laplace transform relationship theory, where [67]

» = T,ze',l'kz — esmdfc _ e(ar-i—jkm)dfc _ earda:ejkmdm‘

Therefore, r, = €’®. Using 0 = —0.1 and dz = 1 m as shown in Table 4.1 leads to

r=10.9.
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Figure 4.9: (a and b) The magnitude of the x and y components, respectively, of the
analog averaging filter (H) for o = 0, -0.05, -0.1 and -0.2.

4.3 Results and Analysis

4.3.1 Field data examples

In this section, three field data examples of ocean wave spectral estimation using the
CF'T-with-ISAF method and the CFT-without-ISAF method are presented to demon-
strate the performance of the [ISAF. Figure 4.10 shows: (a) a ground truth directional
wave spectrum estimated from TRIAXYS Wave Rider buoy data, (b) the estimated
directional wave spectrum using the CFT-without-ISAF, (c) the estimated directional
wave spectrum using the CFT-with-ISAF method, and (d) the non-directional wave
spectra deduced from the three directional wave spectra. In the case of a directional
wave spectrum with multiple peaks, the terminology used in this discussion is that
the peak with the highest peak energy is referred to as the main peak, while the
other peaks are referred to as the secondary peaks. Also, since we are dealing with
normalized wave spectra, the energy level of secondary peaks is measured with re-
spect to the energy level of the main peak of the same spectrum. Figures 4.10a and

4.10d show that the ground truth wave spectra have a main peak at 0.135 Hz and
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243° and a secondary peak at 0.08 Hz and 114° with relative energy level of 70%.
Looking at the estimates of the directional and non-directional wave spectra that are
generated using the CFT-without-ISAF method shown in Figures 4.10b and 4.10d,
respectively, both peaks were detected. However, the main peak was barely detected
and was detected as the secondary peak at 0.128 Hz and 245° with a relative energy
level of 43%, while the secondary peak was detected as the main peak at 0.075 Hz
and 100°. On the other hand, when the ISAF was implemented in the CF'T method,
as shown in Figures 4.10c and 4.10d, both peaks were properly detected. The main
peak was detected as the main peak at 0.134 Hz and 245° and the secondary peak
was detected as a secondary peak at 0.075 Hz and 100° with a relative energy level
of 78%. Clearly, the ISAF has significantly improved the wave spectrum estimation
in this example. Figure 4.10d also shows better agreement between the ground truth
non-directional spectrum and the spectrum obtained by the CFT-with-ISAF method
compared to the CFT-without-ISAF.

The same conclusion may be drawn from the example given in Figures 4.11. The
ground truth directional wave spectrum shown in Figure 4.11a contains four peaks

located at 0.03 Hz and 140°, 0.03 Hz and 290°, 0.14 Hz and 75°, and 0.16 Hz and

250°. For convenience, these peaks are referred to as P1, P2, P3, and P4. It can be
seen from Figures 4.10b and 4.10c that P1 and P2 were not detected by CFT-with-
ISAF and detected by the CFT-without-ISAF. However, P3 and P4 were detected
more accurately in terms of peak location and relative energy as shown in Figure
4.11d. Since most of the spectrum energy is actually contained in P3 and P4, it can
be concluded that the CFT-with-ISAF outperforms the CFT-without ISAF in this
example too.

Finally, Figure 4.12 shows another example for comparison between the CFT-with-

ISAF and CFT-without-ISAF. In this example, non-directional wave spectrum esti-
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mates generated using both methods show a good agreement with the non-directional
ground truth wave spectrum as shown in Figure 4.12d. However, the CF'T-with-ISAF
estimate shows a slight advantage for the CF'T-with-ISAF' estimate in terms of agree-

ment with the ground truth non-directional wave spectrum.

4.3.2 Performance validation

In order to validate the performance of the ISAF, the CF'T was used to estimate the
wave spectra with and without implementing the ISAF. The results were compared
to the ground truth wave spectra that were estimated using the TRIAXYS wave
rider buoy, which produces one reading every 30 minutes. For a proper comparison,
all CFT estimates from image sets (32 images) that the radar produced within a
30-minute window are averaged to be compared with the buoy reading produced in
the same window. The correlation coefficient estimate, given by Equation 3.1, be-
tween the ground truth and the CFT-estimated non dimensional wave spectrum was
used as an agreement measure between the two spectra. The value of the coefficient
ranges from 0 (no agreement) to 1 (identical). Figure 4.13 shows the correlation
coefficient in pairs: the CFT-without-ISAF coefficient is marked using a “o” while
the CFT-with-ISAF is marked using a “ x ”; the results are shown for four 12-hour
periods during Dec 1 - Dec 4, 2008. To enhance the readability of the results, the
CF'T-with-ISAF output is plotted in blue and red to indicate improvement and dete-
rioration in performance, respectively, compared to the CFT-without-ISAF method.
Clearly, the performance of CF'T has significantly improved with the implementation
of the ISAF with higher correlation coefficients except for a few cases. On average,
an improvement on the agreement with the ground truth of 11% has been achieved.
Ultimately, this improvement is expected to reflect positively in the estimation of sea

state parameters.
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For further validation, the CFT with ISAF method and the standard CF'T method
are used to estimate the peak wave period 7, mean period Tp;, the zero-crossing
period T, and the peak wave direction ¢,. The estimates are then compared with

the ground truth buoy-estimates. Figures 4.14 and 4.15 show the peak wave period

and direction, respectively. The mean absolute errors (|er,|,|eT, |, |e1.| and |eg,|) and
error standard deviations (0ey, , Ocy , Ocr, and o, ) of these estimates are calculated
with respect to the ground truth and listed in Table 4.2. Figure 4.16 shows the
normalized (with respect to the CF'T) average absolute error in estimating 75, Toy, 1%,
and 6, using the ISAF method. The mean absolute error and the error standard
deviation of 7, are given by Equations 3.2 and 3.3, respectively. The other metrics

are calculated in a similar manner. Improvements are observed in estimating sea state

parameters. For |er,|, |er,|, |eT.|, and |eq,|, improvements of 12%, 20%, 20%, and

33% were achieved.

Table 4.2: Comparison of the CFT with and without the [SAF in wave period and

peak direction estimation.

leq,|(s) Oer, (5) lemal(s) Oemy, (5) leml(s) Oer,(s) leo,l(°) e, (°)

CFT-without-ISAF 2.5 0.9 24 0.8 23 0.8 15.1 16.1
CFT-with-ISAF 2.2 0.5 1.9 0.5 1.9 0.5 9.9 6
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Figure 4.16: The average absolute error of the ISAF normalized with respect to the
CFT method.

4.4 Conclusions

In the literature, the process of ocean surface sampling using X-band marine radar
has been considered as a standard sampling. Thus, the influence of ocean surface
sampling on the ocean wave spectra estimation using the CF'T has not been previously
addressed. In this chapter, the ocean wave surface sampling process has been modelled
and a novel understanding of it being an averaging process has been presented. A
2-D low pass filter model has been presented to describe the effect of the sampling
process on the CFT method estimates of the ocean wave spectra. Furthermore, a filter
referred to as the Inverse Sampling Moving Average Filter (ISAF) has been proposed
to mitigate that effect. The performance of the ISAF was validated against ground
truth data that were obtained from a TRIAXYS wave rider buoy. Results show

that implementing the ISAF in the CFT method of ocean wave spectral estimation
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significantly improves the accuracy of the method. The improvement measures that
were considered in this paper include the accuracy of estimating the non-directional
wave spectrum, the peak wave period, the mean wave period, the zero-crossing wave
period, and the peak wave direction. Future work on the ISAF will include further
validation involving other ocean state parameters such as the significant wave height

and surface current estimation.
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Figure 4.10: A field data example to demonstrate the improvement introduced by
the ISAF to the CFT-method in ocean wave spectral estimation. Data were recorded
on Nov 29, 2008 between 8:08 PM and 8:38 PM: (a) The ground truth directional
wave spectrum estimated using the TRIAXYS Wave Rider buoy data. (b and ¢) The
directional wave spectrum estimated using the CFT-without-ISAF and the CF'T-with-
ISAF method, respectively. (¢) The non-directional wave spectra estimated using the
CFT-without-ISAF, the CFT-with-ISAF method, and the TRIAXYS Wave Rider

buoy data.
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Figure 4.11: A field data example to demonstrate the improvement introduced by
the ISAF to the CFT-method in ocean wave spectral estimation. Data were recorded
on Dec 4, 2008 between 11:26 AM and 11:56 AM: (a) The ground truth directional
wave spectrum estimated using the TRIAXYS Wave Rider buoy data. (b and ¢) The
directional wave spectrum estimated using the CFT-without-ISAF and the CF'T-with-
ISAF method, respectively. (¢) The non-directional wave spectra estimated using the
CFT-without-ISAF, the CFT-with-ISAF method, and the TRIAXYS Wave Rider

buoy data.
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Figure 4.12: A field data example to demonstrate the improvement introduced by
the ISAF to the CFT-method in ocean wave spectral estimation. Data were recorded
on Dec 03, 2008 between 10:29 AM and 10:59 AM: (a) The ground truth directional
wave spectrum estimated using the TRIAXYS Wave Rider buoy data. (b and ¢) The
directional wave spectrum estimated using the CFT-without-ISAF and the CF'T-with-
ISAF method, respectively. (¢) The non-directional wave spectra estimated using the
CFT-without-ISAF, the CFT-with-ISAF method, and the TRIAXYS Wave Rider

buoy data.
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Figure 4.13: A comparison of the CFT with and without the ISAF in terms of the
wave frequency spectrum similarity with respect to the buoy ground truth spectra.
Each point represents the correlation coefficient between ground truth and the radar
data 30 minute averaged frequency wave spectra. (a) Dec 1 afternoon and evening,
(b) Dec 2 afternoon and evening, (c) Dec 3 afternoon and evening, (d) Dec 4 morning.
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Figure 4.14: A comparison of the CFT with and without the ISAF in terms of the
wave peak period. (a) Dec 1 afternoon and evening, (b) Dec 2 afternoon and evening,
(¢) Dec 3 afternoon and evening, (d) Dec 4 morning.
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Figure 4.15: A comparison of the CFT with and without the ISAF in terms of the

wave peak direction.(a) Dec 1 afternoon and evening, (b) Dec 2 afternoon and evening,
(¢) Dec 3 afternoon and evening, (d) Dec 4 morning.
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Chapter 5

Using the Polar Fourier Transform
(PFT) in wave spectra estimation

using X-band marine radar

5.1 Introduction

Another source of error that is addressed in this thesis is the process of scan con-
version. This process is used to convert radar images from polar coordinates to the
Cartesian coordinates before applying the CFT. Different reasons contributed to the
adoption of the scan conversion process in X-band radar-based ocean wave spec-
tra estimation methods. First, conducting the ocean wave spectral analysis in the
Cartesian domain is mainly inherited from the target detection and navigation ap-
plication of X-band marine radars. Second, the popularity of the Cartesian Fourier
transformation and its computational efficiency in the Fast Fourier Transform (FFT)
further motivated using the Cartesian analysis in wave spectra estimation using X-

band radars. Understanding the effect of scan conversion on wave spectra estimation
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can be challenging due to its changing behavior with range. In this chapter, an esti-
mation algorithm is proposed to eliminate the error introduced by the scan conversion
process by adopting Fourier analysis in polar coordinates. Doing so implies dropping

the step of scan conversion.

5.2 The effect of scan conversion on the estimated
wave spectra

Scan conversion, as explained in Section 2.3.1, is used to convert B-scan images to
Cartesian images in preparation for applying CFT. To the best of our knowledge,
the effect of the scan conversion process on the wave spectral estimation using the
CF'T method has not been addressed in the literature. Revisiting the process of
scan conversion, it can be observed that the mapping algorithm in the process is not
one-to-one. In fact, it is common in the areas that are far from the image centre that
multiple Cartesian samples are assigned to a single B-scan sample as shown in the
lower right diagram of Figure 5.1. This is due to the larger B-scan samples’ areas
compared to the Cartesian samples’ area at high ranges. Therefore, a B-scan sample
can cover multiple Cartesian samples. In this case, an up-sampling or interpolation
process takes place. Also, it is possible to have one Cartesian sample being assigned
to multiple B-scan samples. In this case, the Cartesian sample is filled by the value
of one of the corresponding B-scan samples or by the average of the corresponding
B-scan samples. The latter scenario is common near the centre where the B-scan
samples’ areas are usually smaller than the Cartesian samples’ area. This case can
be seen in the lower left diagram if Figure 5.1.

Mathematically, scan conversion is a process of re-sampling in which the original

continuous signal (ocean surface image) is reconstructed. Subsequently, the recon-
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structed continuous image is sampled on a new Cartesian grid. According to the
sampling theorem, in order to perfectly and uniquely reconstruct a continuous signal
from its sampled representation, an ideal low pass filter is needed and the original
signal is required to be strictly band-limited. These requirements are not applicable
here and only approximations of low pass filters are used.

Practically, several methods of interpolation and/or decimation may be used to
perform the scan conversion process. These include ray tracing, space-variant interpo-
lation, and space semi-invariant interpolation [13]. In the LUT method, for instance,
these methods are used to determine the weight of each contributing B-scan sample
from the LUT in calculating Cartesian samples. The trade-off between these methods
is complexity versus the amount of distortion added to the wave spectrum.

In this chapter, we take the approach of eliminating the scan conversion process
entirely by applying a form of Fourier transformation on the radar output directly
in its B-scan native format. This requires the implementation of a Polar Fourier
Transform (PFT) that suits the polar sampling nature of the digitized B-scan samples.
The Polar Fourier Transform (PFT) that is adopted in this thesis was introduced by
Wang et al in 2009 [17].

5.3 The Polar Fourier Transform (PFT)

Figure 5.2 shows the flow chart of the PFT method in estimating the wave spectra
compared to the traditional CFT method. It can be seen that both methods produce
a 3D image spectrum. The subsequent analysis for estimating ocean wave spectra and
sea state parameters, as outlined in Section 2.3.2, are the same for both methods. It
is important to point out that the analysis windows in the PF'T take the shape of ring
sectors as compared to rectangular windows for the CFT method (See Figure 5.3).

Another advantage of the PFT method lies in the compatibility of the shape of the
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Figure 5.1: An illustration of the scan conversion process: (Upper left) a diagram
shows the radar sampling process on a polar grid. (Upper right) a polar grid over
which the ocean surface is sampled by the radar overlaid by the Cartesian grid used in
scan conversion. (Lower left) an enlargement of a near range sampling area. (Lower
right) an enlargement of a far range sampling area. Figure dimensions are not to
scale.
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analysis windows and the native layout of B-scan images. Such compatibility allows
the availability of all B-scan samples to be used in the analysis. Using rectangular
windows on the other hand, as in the CFT method, limits the availability of samples
that are located at near or far ranges. For instance, the blue ring sector analysis
window shown in Figure 5.3b include more samples at the maximum range compared
to the blue rectangular analysis window shown in Figure 5.3a, which can only include
the maximum range samples that are located at the far corners of the window. Fur-
thermore, since the intensity of returned scatter and shadowing are affected by the
range, their effect is expected to be more uniform when using ring sector analysis
windows compared to rectangular analysis windows. It should be noted that a ring
sector analysis window is acquired by applying a rectangular analysis window on the

B-scan data directly as depicted in Figure 5.4.

5.3.1 Derivation of the PFT

Since scan conversion deals with spatial coordinates only where it maps from one

set of spatial coordinates (r, ) to another (z,y), the problem is time independent

and can be addressed in spatial coordinates only. This reduces the problem to 2D

instead of 3D. The CFT basis functions, e’*>*e/*v¥_ can be found by solving for the

eigenfunctions of the Laplacian, which in the Cartesian coordinates takes the form
0? 0?

2 _ 72 2_ Y v
\Y _Vm+Vy_6$2+6y2.

Similarly, the basis functions of a polar Fourier transform can be found by solving for

the eigenfunctions of the Laplacian in polar coordinates, which is given by

1
VE=VI+ 5V,
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Figure 5.4: (a) Ring sector analysis windows in B-scan domain. (b) Ring sector
analysis windows in Cartesian domain.

where
10 0
2 [ — RS
Ve = T Or (Tar)
and
52
2
V{p — 8—(p2
The Eigenvalue problem can be written as
1
VEIIJ(T', ©) + ;Vilﬁ('r, ©) + k2‘II(?°, ¢) =0. (5.1)

which is the Helmholtz equation in polar coordinates. Substituting a separation of

variables, ¥(r, @) = R(r)®(p), Equation 5.1 may be written as

82
and
10 0 , m?
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The solution of Equation 5.2 is

L (me)

Pn(p) = o :

where m is an integer, and the general non-singular solution of Equation 5.3 is
Rin(r) = VEJu(kr), (5.4)

where J,,, is the Bessel function of the first kind of order m. This solution satisfies

orthogonality over the radial direction as

T(k) = /:0 T (ko) I (kr)rdr = ﬁa(kﬂ —k), (5.5)

where 4(.) is the Dirac delta function, and kg is an arbitrary wave number. The basis

functions of the PFT are given in [17] as,

Ui (7, 0) = R (1) P () = \/ng(kr)e(jmv).

and the forward PF'T is given by

oo 2w

P(k,m) = f f £ (r, @)U, 0)rdigdr, (5.6)

T3

where represents complex conjugation and P(k,m) is the PFT spectrum. The

inverse PFT is given by

o0
o0

flrip) = Z /P(k,m)@k,m(r,wkdk.

5.3.2 Application to radar images

In ocean wave spectral remote sensing applications, as in other real world applications,

the range dimension r is limited. Hence, the orthogonality described by Equation 5.5
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Figure 5.5: Zero-padding in the PFT analysis window.
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Figure 5.6: Orthogonality of Bessel functions for infinite and finite ranges presented
in Equation 5.7. The values m = 0,ky = .1 rad/m are used, without losing the

generality.
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does not strictly hold, at least not for all values of k. Instead, for limited r € [a,b],

as shown in Figure 5.5,

T(k) = /me(kor)Jm(kr)rdr =

ﬁ [k (kob) J,, (kb) — ko Jm (Kkb) J' (Kob))] (5.7)

_ﬁ [k Jim(koa) Jh (ka) — koJim(ka)J' (koa))]

Figure 5.6 shows the the orthogonality function T for infinite range r € [0, 00| and a
finite range r € [a, b], where the values of a and b that are used to generate the figure
are 250 and 1210 m, respectively. These values are used to reflect a practical scenario
from radar field data. The figure shows that an infinite range satisfies orthogonality
while a finite range does not. Furthermore, there is no set of k£ values for Equation
5.7 that satisfies the orthogonality. In order to simplify the problem, zero-padding is
used to extend the analysis window range to be r € [0,b]. This can be seen in Figure
5.5 where the samples that belong to r € [0,a] are filled with zeros. The analysis
window now takes the shape of a sector instead of a ring sector as shown in Figure

5.5. With the zero-padding, Equation 5.7 reduces to

T(k) = /: I (ko) I (kr)rdr = ﬁ [k Jm (kob) J! (kb) — k1 Jim(kb)J' (kob))]  (5.8)

With the help of Sturm-Liouville(S-L) theory [17] and imposing the zero boundary
condition, Jp,(kb) = 0, the orthogonality in Equation 5.8 is satisfied for a certain set
of values, k = ky,,, with k,,,b being the set of zeros of the mth order Bessel function
and n = 1... N is an integer. Using Equation 5.8 and ky = 0.1 rad/m, Figure 5.7
shows the orthogonality for r € [0, b]. The side lobes that appear in the figure are due

to zero padding, which can be visualized as multiplying the radar image by a unit
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Figure 5.7: Orthogonality of Bessel functions for infinite case presented in Equation
5.8. The values m = 0,ky = .1 rad/m are used, without loss of generality.

step function in the range dimension. R(r), given in Equation 5.4, is updated such

that

1

e

R (1) =

Jm (knmr):

where

N(m)_bjﬁ (kn )
n _2 m+1 m)-

Hence, the Polar Fourier Transform over a finite region can be given as

b 2w

Poum) = [ [ #0600 m(r v,

where P(n,m) are the PFT coefficients of the B-scan image f(r,¢). The B-scan

f(r,¢) can be reconstructed from P(n,m) as

95



N 0/2

f(ra 9’3) = Z Z P(n’?m)ll’nm(rr QO)?

n=1 m=—06/2-1

where O is the number of directions sampled in one full radar sweep and

Vo (7, ) = R (1) P (). (5.9)

In the CFT method, as explained in Chapter 2, the Fourier transformation is
applied in the time domain using the FF'T in order to remove the 180° ambiguity in
direction that results from the 2-D special Fourier analysis. Similarly, the FF'T can
be applied to the 2-D PFT output in order to removed the ambiguity in direction.

Keep in mind that the scan conversion process is time independent.

5.3.3 Relation to the Cartesian Fourier transform

The 2-D Fourier transform in its vector form is given by

Fa) = [ fweas

In polar coordinates, the transform takes the form

oo 2m
F(k,0) = / / f(r, p)e3kreos6=)rdrdep.
o Jo
Using the identity

00
e—jk-rcos(.‘)—go) — Z j‘me(kr)ejmee_jW,

m=—0o0

F(k,0) can be written as

o0 27 o0
F(k,0) :/‘; [] f(r,0) Z 5 T (k)™ eI ™ drdep. (5.10)

Comparing Equations 5.10 and

oo 2w

Pliym) = [ [ 0¥ p)rdrds.

0 0
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it can be seen that

i 1
= Z j_m Pk,mejmﬂ.
— Vork
Conversely, the polar Fourier transform spectrum is given in terms of the Cartesian

Fourier transform spectrum as

P(k,m) F(k,e)e—fmﬂde.

\/_

Clearly P(k,m) are the Fourier coefficients of the Cartesian Fourier spectrum over
the azimuth dimension multiplied by the factor j™/+/k. For a limited range r € [0, ],

P(n,m) is given in [17] as

P(n,m) = (~1)") ”‘%—kﬂmz InKaD) -smto (k)
kﬂa[] nm

where (kg, fp) are the polar wave number vector components and A is the smallest

rectangular area that encloses the ring sector analysis window. Conversely,

F(ko,00) = QIZ )" (=) knm m(sz) g™ P(n,m).  (5.11)

Equation 5.11 presents a very important link between output of the PFT and the CFT.
Once the the PF'T image spectrum is produced, Equation 5.11 is used to convert it to
the familiar CFT image spectrum. In Figure 5.2, the conversion using this equation
is presented by the ‘spectral conversion to CF'T’ block.

Finally, it should be noted from our discussion in this section that since the
PFT is different from the CFT in terms of its basis functions, the way an image
is decomposed is also different. The CF'T represents an image in terms of its basic
plane wave components, while the PFT, with its basis functions given in Equation

5.9, represents the image in terms of cylindrical waves.
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5.4 Results and Analysis

In our experiments to validate the performance of the PFT compared to the CFT
in wave spectrum estimation, both transforms were applied to field data described
in Section 2.4. The CFT method used rectangular analysis windows of size 256 x 128
samples, which covers an area of 1843200 m? (1920 x 960 m). On the other hand,
the PFT method used ring sector analysis windows of size 320 x 128 samples, which
covers an area of 1849800 m? taking the centre of the ring sector analysis window at
r = 960 m and an azimuth resolution of 0.36°. The size of the ring sector analysis

windows covers roughly the same area as the rectangular analysis windows used in

the CFT method.

5.4.1 Field data examples

Examples of estimated wave spectra using the PF'T are shown in Figure 5.8. Fig-
ure 5.8a illustrates the normalized directional ground truth wave spectrum, which is
estimated from TRIAXYS wave buoy data. The spectrum has a main peak at 0.07
Hz and 110° and a secondary peak at 0.14 Hz and 140°, with a 63% relative energy
of the main peak energy. The normalized estimated directional wave spectra using
the CF'T and the PF'T are shown in Figures 5.8c and 5.8d, respectively. Normalized
non-directional wave spectra using the TRIAXYS wave buoy, the CF'T and the PFT
are shown in Figure 5.8b. In comparison with the TRIAXY S-estimated wave spectra,
the PF'T shows a better performance in wave spectra estimation. The PFT spectra
show a main peak at 0.07 Hz and 111° compared to 0.075 Hz and 100° for the CFT
spectra. Also, the PF'T spectra show a secondary peak at 0.13 Hz and 155°, with
35% relative energy, compared to 0.12 Hz and 170°, with 18% relative energy for the
CF'T spectra.

Another example is shown in Figure 5.9. Figure 5.9a shows the normalized ground
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truth wave spectrum which is estimated using TRIAXYS wave buoy data. The spec-
trum has two peaks, a main peak at 0.11 Hz and 190° and a secondary peak at 0.75
Hz and 95°, with a 92% relative energy level. In comparison with the TRIAXYS-
estimated wave spectra, again the PF'T shows a better wave spectral estimation than
the CF'T. As shown in Figures 5.9b and 5.9d, the PFT detects both peaks; the main
peak at 0.11 Hz and 180° and the secondary peak at 0.08 Hz and 90°, with 97%
relative energy level. On the other hand, the CF'T detects only the secondary peak
at 0.75 Hz and 95° as a false main peak, while the true main peak is not detected
(see Figures 5.9b and 5.9¢).

5.4.2 Performance validation

In order to validate the performance of the PFT in comparison with the CFT, both
methods are used to estimate wave spectra using the X-band marine radar data
described in Section 7.3. Furthermore, the ocean wave spectral estimates from both
methods are compared to the ground truth estimates there were generated using a
TRIAXYS wave rider buoy. The correlation coefficient p between the radar-estimated
non-directional wave spectra and the non directional buoy spectrum was used as an
agreement measure between the two spectra. The value of the correlation coefficient
ranges from 0 (no similarity) to 1 (identical) and is given by Equation 3.1. p was
calculated for different radar estimates using the PFT and CFT. Figure 5.10 shows the
correlation coefficient in pairs: the CFT coefficients are marked using “o” while the
PFT is marked using “x”; the results are shown for four 12-hour periods during Dec
1 - Dec 4, 2008. To enhance the readability of the results, the PFT output is plotted
in blue to indicate improvement in performance (and in red to indicate deterioration)
compared to the CF'T output. The results show that the PFT outperforms the CFT

method with higher correlation coefficients for the majority of time samples. The
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Figure 5.8: A field data example for wave spectrum estimation using the PFT. Data
were recorded on Dec 1, 2008, between 12:08 PM and 12:38 PM: (a) Directional wave
spectrum estimated using a directional TRIAXYS wave rider buoy. (b) Frequency
wave spectrum estimated from the radar data using the CFT and PFT overlaid on
the ground truth frequency wave spectrum. (c and d) The directional wave spectrum
estimated using the CFT and PFT, respectively.
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Figure 5.9: A field data example for wave spectrum estimation using the PFT. Data
were recorded on Dec 1, 2008, between 11:42 AM and 12:12 PM: (a) Directional wave
spectrum estimated using a directional TRIAXYS wave rider buoy. (b) Frequency
wave spectrum estimated from the radar data using the CFT and PFT overlaid on
the ground truth frequency wave spectrum. (c and d) The directional wave spectrum
estimated using the CFT and PFT, respectively.
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average improvement is found to be 12%.

For further validation, the peak wave period T,,, mean period Tp;, the zero-crossing
period T, and the peak wave direction 6, are calculated from the PFT and CFT-
estimated spectra (see Section 2.3.2) for wind waves and swell. Figures 5.11 and

5.12 show the peak wave period and direction, respectively. The mean absolute error

(ler,|;lems, |, ler.| and |eg,|) and error standard deviation (0%, , Oy, , Oy, and oe, )
of these estimates are calculated with respect to the ground truth and are listed
in Table 5.1. Figure 5.13 shows the normalized (with respect to the CFT) average
absolute error in estimating 7, T, 77, and 6, using the PFT. The mean absolute error
and the error standard deviation of T}, are given by Equations 3.2 and 3.3, respectively.
The other metrics are calculated in a similar manner. As derived from Table 5.1,
the PFT-wave period and direction estimates are 54% and 49%, respectively, more
accurate than the CFT-estimates. The standard deviation values are calculated and
listed in Table 5.1 in order to provide better understanding of the distribution of
estimates.

While it appears that the PF'T method may offer some advantage over the tradi-
tional CFT method, the CF'T has the advantage of shorter computational time over
the PFT. This is due to the Fast Fourier Transform algorithm which is used to eval-
uate the CF'T. As yet, there is no such fast algorithm for the PFT. In our analysis
and implementation, the CF'T needed 2.7 s to process one radar set (32 radar images)
while the PF'T required 4.3 min to process the same set, with both implementations
running on the same processor and with similar software and data structure efficiency.
However, the PF'T method computational time might be improved by using a faster
processor and utilizing parallel computation. If the goal of using the PF'T for real-
time analysis is to be realized, it will be important to reduce the computational time

to below 48 s, which is the time needed for the radars used in this experiment to
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Table 5.1: Comparison of the PFT and the CFT in wave period and peak direction

estimation.

ler,|(8) Oer, (5) lemul(s) Oy, (5) erl(s) 0er,(5) leg,I(%) o, (%)

CFT 2.5 0.9 24 0.8 2.3 0.8 15.1 16.1

PFT 14 0.6 1.1 0.7 1.1 0.7 7.7 6.8

generate one radar image set.

In the next chapter, further validation analysis of the PFT performance is con-
ducted in comparison with the ARPM and the ISAF methods that are individually
proposed in Chapter 3 and 4, respectively. Also the performance of the proposed

methods is analyzed when they are combined.

5.5 Conclusions

Scan conversion is a process of non-uniform re-sampling which leads to some distortion
in the wave spectra estimated using marine radar. In this chapter, it is proposed to
eliminate the scan conversion process and to apply Fourier transformation directly
on the radar data in their native polar B-scan format. The Polar Fourier Transform
(PFT) that satisfies orthogonality in the polar coordinates was adopted in this chapter
and integrated into an overall wave spectral estimation method. The PFT decomposes
an image into its basic components of cylindrical waves, rather than plane waves as
in the CFT. Using the PFT requires the analysis windows to have the shape of
ring sectors instead of rectangular windows. There is an inherent advantage to this
shape of window, namely the compatibility with the original B-scan image layout.

This allows for more availability of samples for use in the analysis. Results show
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that using the PFT instead of the CF'T improves the performance of the radar-based
method in estimating the ocean wave spectra. This was shown by comparing the wave
spectra estimates from CF'T and PFT with ground truth spectra that were acquired
from TRIAXYS wave buoy data. It also was shown that the PFT produces more
accurate estimates of sea state parameters such as wave period and direction. The
PFT algorithm significantly serves the purpose of this thesis of reducing the error in

wave spectra estimation.
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Figure 5.11: A comparison between the PFT and the CFT in terms of the peak wave
period. (a) Dec 1 afternoon and evening, (b) Dec 2 afternoon and evening, (c¢) Dec 3
afternoon and evening, (d) Dec 4 morning.
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Figure 5.12: A comparison between the CFT and the PFT in terms of the peak wave

direction. (a) Dec 1 afternoon and evening, (b) Dec 2 afternoon and evening, (c¢) Dec
3 afternoon and evening, (d) Dec 4 morning.
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Chapter 6

Performance comparison of the

ARPM, ISAF, and PFT

6.1 Introduction

In Chapters 3, 4, and 5 respectively, the ARPM, ISAF, and the PFT have been
proposed for enhancing ocean wave spectral estimation using X-band marine radar.
It has been shown that the methods, individually, produce more accurate estimates
of ocean wave spectra and of wave period and direction compared to the standard
CF'T method, which has been reviewed in Chapter 2. However, the improvement
levels varied among the methods. In this chapter, a performance comparison anal-
ysis of the three methods is presented. Furthermore, this chapter also explores and
validates the performance of the methods when implemented together. For example,

the performance of the PFT in estimating the ocean wave spectra is explored when

implemented with the ARPM or with the ISAF.
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6.2 Design of combined methods

The CFT or the PFT can be implemented with the ARPM, ISAF, or both. Figure
6.1 shows the flow chart of the combining procedure of the CFT, PFT, ARPM, and

the ISAF. Eight possible combinations include:

1. The CFT alone
This method represents the standard CF'T method reviewed in Chapter 2 and
highlighted by the blue box in Figure 6.1. The scan conversion process is used
to convert the B-scan images to produce Cartesian images. Subsequently, three
uniformly distributed rectangular analysis windows are selected. The CFT
method is applied on the selected analysis windows to produce the final es-

timate of the directional wave spectrum.

2. The CFT with ARPM
This combination is proposed in Chapter 3 and highlighted by the blue and red
boxes in Figure 6.1. Once the directional wave spectrum is estimated using the
CFT method, new rectangular analysis windows are chosen. The number and
direction of the new analysis windows are determined based on the number and
direction of the peaks in the estimated directional wave spectrum. The analysis
window re-selection process is repeated until the ARPM termination condition
is satisfied. Without loss of generality, the termination condition used here is

to reach a maximum number of three iterations.

3. The CFT with ISAF
This method is proposed in Chapter 4 and highlighted by the blue and yellow
boxes in Figure 6.1. The final estimate of the directional wave spectrum using
this method is generated by applying the ISAF modulation transfer function to

the CF'T-estimated directional wave spectrum in order to mitigate the effect of
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the ocean surface sampling process.

. The CFT with ARPM and ISAF

The blue, yellow and red boxes in Figure 6.1 highlight this combination, in
which the CFT-estimated directional wave spectrum is corrected using the ISAF
modulation transfer function. Subsequently, new rectangular analysis windows
are re-selected by the ARPM iterative process to produce the final directional

wave spectrum estimate.

. The PFT alone

This method is proposed in Chapter 5 and highlighted by the green box in
Figure 6.1. Two main differences between the CF'T and the PFT methods are
shown in Figure 6.1. First, unlike the CFT method, the PF'T method does not
require the intermediate stage of scan conversion. Second, the PF'T uses ring
sector analysis windows compared to rectangular windows used by the CEF'T
method. The PFT is applied on three uniformly distributed ring sector analysis

windows to produce the final estimate of the directional wave spectrum

. The PFT with ARPM

The green and red boxes in Figure 6.1 highlight this combination. The number
and direction of peaks in the PFT-estimated directional wave spectrum are used
to determine the number and direction of the new ring sector analysis windows.
The PFT is used again to estimate the directional wave spectrum from the new
analysis windows. This process is repeated recursively until the termination

condition of a maximum of three iterations is satisfied.

. The PFT with ISAF
As highlighted by the green and yellow boxes in Figure 6.1 for this combina-

tion, the PFT-estimated directional wave spectrum is corrected using the ISAF
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modulation transfer function to produce the final directional wave spectrum.

8. The PFT with ARPM and ISAF
This combination is highlighted in Figure 6.1 by the green, yellow, and red
boxes. Once the PFT-estimate of the directional wave spectrum is generated, it
is corrected by the ISAF modulation transfer function. Subsequently, new ring
sector analysis windows are re-selected using the ARPM iterative algorithm.
The final estimate of the directional wave spectrum is produced once the ARPM

termination condition of a maximum of three iterations is satisfied.

The performance of estimating the ocean wave spectra and the wave period and
directions of the CFT with the ARPM, the CFT with the ISAF, and the PF'T alone
were presented in Chapters 3, 4, and 5, respectively. The performance analysis of the
remaining combinations outlined in Section 6.2 in estimating the ocean wave spectra
and the wave period and direction is presented in Section 6.3. Using a performance
validation approach that is similar to that used in the previous chapters, estimates
of the ocean wave spectra and wave period and direction produced by the different
combinations are compared to ground truth estimates generated using a TRIAXYS

wave rider buoy (as discussed in Section 2.4).

6.3 Results and Analysis

The various combinations of the CFT, ARPM, ISAF, and PFT presented in Section
6.2 are used to estimate ocean wave spectra from the field data described in Section
2.4. Subsequently, the peak wave period T,,, mean period Ty, the zero-crossing period

T’ and the peak wave direction @, are calculated from the estimated wave spectra as

described in Section 2.3.2. For comparison, the mean absolute error (|er,|,|er, |, [T, |

and g, |) and error standard deviation (0, , Ocy , 0cp, and o, ) of these estimates

Tz
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Figure 6.1: Flow chart of the directional wave spectrum estimation using the PFT,
ARPM and ISAF. The blue, green, yellow, and red boxes highlight the standard CF'T,
the PFT, the ISAF and the ARPM methods, respectively.
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are calculated with respect to the ground truth. Experimental results are listed
in Table 6.1. Figure 6.2 shows the normalized (with respect to the CFT) average
absolute error in estimating 7,75, T,, and 6, using the proposed methods. The
mean absolute error and the error standard deviation of 7, are given by Equations
3.2 and 3.3, respectively. The other metrics are calculated in a similar manner. Also,
Table 6.2 lists the relative improvements presented by the proposed methods and their
combinations in comparison with the standard CFT method. The following remarks

can be noted from Tables 6.1 and 6.2:

e All the proposed methods (the ARPM, ISAF, and PFT) individually and their
combinations have improved the estimation accuracy of the wave period and

wave direction compared to the standard CFT method.

e Between the APRM and the ISAF when implemented with the CFT, the ARPM
showed a better performance in estimating 7}, with 20% improvement compared
to 12% using the ISAF. However, the ISAF improved the wave direction esti-
mation by 33% compared to 22% using the ARPM. In terms of Ty, and T, both

methods showed a similar performance with an improvement of 20%.

e When implementing the CFT with ARPM and ISAF, the combination outper-
forms the performance of the CFT with ARPM and the CFT with ISAF in
terms of wave period estimation with improvements of 32%, 38%, and 38% in
estimating T}, Tpy, and T, respectively. On the other hand, the combination

outperforms the CFT with ARPM but not the CFT with ISAF in terms of

estimating 6, with an improvement of 23%.

e The PFT outperforms the standard CFT, the CFT with ARPM, the CF'T with
ISAF, and the CFT with ARPM and ISAF. The PFT produced 44% , 54%,

52%, and 49% improvement in the estimation of T, T, T, and 6, respectively.
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However, as mentioned in Section 5.4.2, the PF'T is computationally expensive

which might limit its implementation to non-real time applications.

Using the PFT with ARPM produces improvements of 60%, 46%, 46%, and
33% in the estimation of T,, T, T, and 6,, respectively. Interestingly, the
PFT method produces more accurate wave direction estimates than the PF'T
when combined with the ARPM. Further investigation on the reason behind

this behavior is to be addressed in future work.

When using the PFT with ISAF, improvements of 52%, 66%, 66%, and 55%
in the estimation of 7}, T3, T, and 6,, respectively, are achieved. It must be
noted that this combination has produced the most accurate estimates of Tj,

T,, and ¢, among all the methods and their combinations.

When implementing the PFT with ARPM and ISAF, the estimation of T, T},
T, and 6, have improved by 72%, 63%, 63%, and 33%, respectively. Also, the

most accurate estimates of 7, were produced using this combination.

In order to further demonstrate the performance of the proposed methods and

their combinations, two field data examples of ocean wave spectral estimation are

presented. Figure 6.3 shows (a) a ground-truth directional wave spectrum estimated

from TRIAXYS Wave Rider buoy data, (b-e) the estimated non-directional wave spec-

trum using the proposed methods and their combinations, and (f-m) the estimated

directional wave spectrum using the proposed methods and their combinations. With

a similar terminology to that used in Chapters 3, 4, and 5, the peak with highest en-

ergy is referred to as the main peak, while the other peaks are referred to as the

secondary peaks. Also, since we are dealing with normalized wave spectra, the en-

ergy level of the secondary peaks is measured relatively with respect to the energy

level of the main peak in the same spectrum.
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Figures 6.3a and 6.3b show that the ground truth wave spectra have a main peak
at 0.115 Hz and 200° and a secondary peak at 0.075 Hz and 95° with a relative energy
level of 73%. Looking at the estimates of the non-directional and directional wave
spectrum that were generated using the standard CFT method shown in Figures 6.3b
and 6.3f, respectively, the secondary peak was detected as a main peak at 0.08 Hz and
115° while the main peak was not detected. Using the CF'T with ARPM, as depicted
in Figures 6.3c and 6.3g, the main peak is now more visible but still detected as a
secondary peak with a relative energy level of 25%. It is expected that the CFT
with ARPM would have performed even better if both peaks were detected in the
CF'T-estimated directional wave spectrum of Figure 6.3f which is used as the initial
guess for the ARPM recursive algorithm. Implementing the CF'T with ISAF improves
the estimates of the non-directional and directional wave spectra as displayed in
Figures 6.3d and 6.3h. The main peak was still detected as a secondary peak with
a relative energy of 35%. Using the CF'T with ARPM and ISAF introduces further
enhancement in detecting the main peak. However, the main peak is still detected as
secondary a peak with a relative energy level of 40%.

Figures 6.3b and 6.3j show the PFT-estimates of the non-directional and direc-
tional wave spectra, respectively. The main peak was detected as a secondary peak
with a relative energy level of 65% , the PFT outperformed the CFT, the CFT with
ARPM, the CFT with ISAF, and the CFT with ARPM and ISAF. Further significant
enhancement was observed when the PFT with ARPM was used as shown in Figures
6.3c and 6.3k. Even though the main peak was still detected as a secondary peak,
the estimation of its relative energy was significantly improved as it was estimated
to be 95%. The peaks were finally properly detected in this example when the PFT
with ISAF was implemented. Figures 6.3d and 6.31 show that the main peak was

detected as a main peak and the secondary peak, which has a relative energy of 73%
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was detected as a secondary peak with a relative energy of 85%. The estimates of the
last combination used here, which is the PF'T with ARPM and ISAF, are presented
in Figures 6.3e and 6.3m. Again, both peaks were properly detected and the second
peak was detected with a relative energy of 65%.

As a conclusion, this example shows that the PFT with ISAF and the PFT with
ARPM and ISAF produce the most accurate ocean wave spectral estimation.

In the field example shown in Figure 6.4, the directional ground truth spectrum
depicted in Figure 6.4a contains a main peak at 0.12 Hz and 225° and a secondary
peak at 0.115 Hz and 100°. Throughout the Figures 6.4(b-e) and (f-m), the estimates
of the non-directional and directional wave spectrum, respectively, using the various
proposed methods and their combinations are displayed. Due to the close frequencies
of the two peaks, the two peaks are hardly distinguishable from each other in the
non-directional spectrum shown in Figure 6.4b. Therefore, the comparison between
the spectral estimates based on peaks energy is not possible. However, it is clear
from Figures 6.4e and 6.4m of the non-directional and directional wave spectra, re-
spectively, generated using the PFT with ARPM and ISAF method that among the
various spectrum estimates, the estimates generated using the PFT with ARPM and
ISAF method agree the most with the ground truth spectra.

The ARPM, ISAF, and PFT are concerned with improving sea state parameters
that are derived from ocean wave spectra including wave period and direction. Hence,
the approach followed in designing the previous methods was to improve ocean wave
spectral estimation in order to produce accurate sea state parameters. However,
the next chapter of this thesis which is concerned with the velocity of encounter
information, has a slightly different approach. The velocity of encounter information is
estimated from the image spectrum rather than the directional or non-directional wave

spectra. Therefore, directional and non-directional wave spectral analysis may not be
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relevant for estimating the velocity of encounter. However, it must be remembered
from Section 2.3.2 that improving velocity of encounter estimation will indirectly
improve the estimation of wave spectra since the velocity of encounter information
plays a key role in excluding the non-wave components from the image spectrum in

the CTFE method.

6.4 Conclusions

From the previous discussion in Section 6.3 we conclude that combining the proposed
methods can significantly improve the wave period and direction estimation. The
most accurate estimates of T, were achieved when the PFT with ARPM and ISAF
method was used. However, using the PFT with ISAF produced the most accurate

estimates of T1, T, and 6,.
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Table 6.1: Comparison of the ARPM, ISAF, PFT and their combinations and the

standard CF'T method in wave period and direction estimation.

[en,|(s) Oer, (5) letnal(s) Oery (5) leml(s) Ger(s) 16,1(°) e, (°)

CFT

2.5 0.9 2.4 0.8 2.3 0.8 15.1 16.1
alone
CFT with

2 0.9 1.9 1.5 1.9 1.5 11.7 13

ARPM
CFT with

2.2 0.5 1.9 0.5 1.9 0.5 9.9 6
ISAF
CFT with

1.7 1 1.5 1.1 1.4 1 11.6 13
ARPM and ISAF
PEFT

1.4 0.6 1.1 0.7 1.1 0.7 7.7 6.8
alone
PFT with

1 0.7 1.3 1 1.2 0.9 9.9 12

ARPM
PFT with

1.2 1.2 0.8 1 0.8 1 6.8 8.1
ISAF
PFT with

0.7 1 0.9 1.2 0.9 1.1 10 12.4

ARPM and ISAF
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Table 6.2: Relative estimation improvements of T;,, To1, 1%, and 6, using the ARPM,
ISAF, PFT and their combinations compared to the standard CF'T method.

Tp Tor T, Op

CFT with ARPM 20% 21% 1% 23%

CFT with ISAF 12% 21% 17% 34%

CFT with ARPM and ISAF 32% 38% 39% 23%

PFT alone 44% 54% 52% 49%
PFT with ARPM 60% 46% 48% 34%
PFT with ISAF 52% 67% 65% 56%

PFT with ARPM and ISAF 72% 63% 61% 37™%

1.5 T T T T

I CFT alone [ PFT alone

I CFT-ARPM [IPFT-ARPM

I CFT-ISAF [ IPFT-ISAF

[ CFT-ARPM-ISAF [__]PFT-ARPM-ISAF

lel/lelcpr

=
o
T
1

’Fp .:nll .T: 0;1

Figure 6.2: The average absolute error of the proposed methods normalized with
respect to the CF'T method.
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Figure 6.3: A field data example for wave spectrum estimation using the CFT, PFT,
ARPM, and ISAF. Data were recorded on Dec 1, 2008 between 4:40PM and 5:10
PM: (a) Directional wave spectrum estimated using a directional TRIAXYS wave

rider buoy. Cont.
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Chapter 7

A hybrid method for velocity of
encounter estimation using X-band

nautical radar

7.1 Introduction

The final enhancement on the wave spectra estimation using X-band marine radar
that is considered in this thesis is to develop an accurate (produces low estimation
error) and reliable (converges to the true value) method of estimating the velocity of
encounter. The velocity of encounter is defined as the vector summation of surface
current velocity and ship velocity, which are both measured with respect to the same
reference. In the CFT method of estimating ocean wave spectra, as discussed in
Section 2.3.2, the velocity of encounter value is used to exclude the non-wave compo-
nents of the image spectrum from contributing to the wave spectrum. This is done by

classifying the 3-D image spectrum components to wave and non-wave components
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based on their agreement with the dispersion relationship given by

w(k,U) = y/gktanh(kd) + k- U (7.1)

where k is the wave number vector, U is the velocity of encounter, d the water depth,
g the acceleration due to gravity. Figure 7.1 shows an example of image spectrum
in the k,w domain. It can be seen how most of the spectrum energy is concentrated
near the dispersion curve (the red dotted line). A velocity of encounter value of
U = (U,,U,) = (0.54, —0.35) m/s, which is estimated using the Hybrid Least squares
(HLS) method explained later in this chapter, is used here to plot the dispersion

curve.

0.35
0.3

0.25

k (rad/m)

0.15

0.1

0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4
w(rad/s)

Figure 7.1: An example of the image spectrum in the (k,w) domain. The dotted red
line represents the dispersion relationship given by Equation 7.1.

It can be seen from Equation 7.1 that the velocity of encounter, which is not

known a priori, is required in order to exclude the non-wave components from the
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image spectrum. Furthermore, a high velocity of encounter might significantly in-
crease aliasing in the frequency domain which results from under-sampling in the
time domain [45]. This effect takes place due to the increase in observed wave fre-
quency according to Equation 7.1. Therefore, velocity of encounter information might
also be used to mitigate the effect of the aliasing phenomenon [68-70]. Several meth-
ods have been proposed to estimate U [10, 45, 46, 55, 56]. These follow one of two
approaches: the Least Squares (LS) [10] method and the Normalized Scalar Product
(NSP) [45].

7.1.1 The Least Squares (LS) method

The basic LS [10] estimates the optimum U that minimizes the error quantity

Q= %i (L(kU)Y (7.2)

i=1 Tw
where (k;j,w;) are the wavenumber-frequency components of the ith regression co-
ordinate. The image spectrum components that are chosen to be included in the
regression process are referred to as the regression coordinates. N, is the number
of regression coordinates, which is the number of image spectrum components that
exceed an initial threshold value of T,; = 0.2. This is a common empirical value
that is chosen based on the assumption that this will separate the fundamental wave
components in the image spectrum from higher harmonics and noise [29, 44, 55, 56].
o, is the expected standard deviation of error difference of the theoretical angular
frequency given by Equation 7.1 and the angular frequency component of regression
coordinates wj.

Studies have shown that the LS method produces only a rough estimate of the

true U and several enhancements had been made to improve its accuracy and re-

liability [46, 55, 56, T1]. Senet et al. [46] proposed several enhancements to this
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method. The improved LS is referred to as the Iterative Least Squares (ILS) method.
The ILS utilizes a larger number of regression coordinates by using a lower threshold
value. A common value of this threshold is T, = 0.02 [46]. It is expected with such
a low threshold value that not all the regression coordinates follow the fundamental
dispersion relationship given in Equation 7.1. This is due to aliasing and the nonlin-
ear imaging process [29]. Instead, the regression process uses the general dispersion

relationship with higher order harmonics, which is given by

gk tanh(kd)

+k-U, p=0,1,2,..., (7.3)

where p is the harmonic order. Clearly, substituting p = 0 in Equation 7.3 leads to
the familiar fundamental dispersion relationship as in Equation 7.1.

Furthermore, the ILS estimates U iteratively starting from an initial guess that
is estimated using the basic LS. The process involves iterative frequency mode clas-
sification for regression coordinates as fundamental or first harmonic frequencies and
solving for Equation 7.2. Huang et al. [56] proposed a further improvement to the ILS
by using an adaptive initial guess. It was also proposed in [56] to use the frequency
mode classification information to exclude the non-wave components from the wave
spectrum instead of using a band-pass filter. This improves the overall performance
of the CF'T method in terms of accuracy and computational time.

The Polar Current Shell (PCS) , which utilizes a sinusoidal curve-fitting algorithm
in polar coordinates and uses LS fitting in the range and azimuth dimensions sepa-
rately, is another method that was recently proposed for estimating the velocity of
encounter [71, 72]. In [73], a comparison of the ILS, NSP and PCS was presented
using vertically polarized field data from a stationary X-band marine radar. The
study concluded that the three methods perform equally in terms of the estimation

accuracy of the velocity of encounter. However, since the radar platform used in
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the study was stationary, only low values of the velocity of encounter (or simply the

surface current velocity) are included in the comparison.

7.1.2 The Normalized Scalar Product (NSP)

The NSP method was first proposed by Serafino et al. [45]. In this method, the

optimum U is estimated by maximizing the normalized scalar product

(1F1(k,w)|, G(k,w, U))
VPrFg

where Fj(k,w) is the image spectrum, Pr and Pg the power of F; and G, respectively,

V(U) =

and (-) indicates the scalar product. The characteristic function G(-,-) is given by

1, if |w; —w(k;, U)| < Aw.
Gk,w,U) =

0

otherwise.

where Aw is the angular frequency resolution. This method outperforms the LS
based methods in terms of accuracy and reliability at higher ranges of U (|U| >8
m/s). However, this method is computationally expensive and may thus be restricted
to off-line analysis.

In this chapter, a hybrid method is proposed for estimating the velocity of en-
counter. This method includes both ILS and NSP, and is designed to support high

reliability and short computational time, especially at higher ranges of |U|.

7.2 A Hybrid Least Squares Method

Despite its low reliability at higher |U| as compared to the NPS; the ILS is commonly
used due to its short computational time. This makes it more suitable for real time

analysis and for stationary platforms and slow moving vessels (such that |U| < 6
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m/s). However, at higher speeds, this method may be less robust due to the higher
error in the initial guess, which is estimated using the LS method. In order to examine
the dependency of the ILS method reliability on the initial guess estimation error,
X-band radar images were simulated using different input values of U as described in
Section 7.3. Subsequently, the ILS method was used to estimate U from the simulated
X-band radar images. However, the initial guess value of the ILS was not estimated
using the LS method. Instead, it was provided to the ILS method. Different initial
guess values with a range of absolute error between the initial guess and the true value
of 0 to 5 m/s were used. The robustness of the ILS method was measured by the
ILS method’s failure probability. The ILS method is considered to fail in estimating
U when the iterative process does not converge to the true value of U. The failure
probability is measured by the percentage of time the method fails in estimating U.
Our results, as shown in Figure 7.2, indicate that the initial guess has to be roughly
within 2 m/s of the true value in order for the ILS to successfully estimate U.

In order to enhance the reliability of the ILS method, a new technique referred
to as the Hybrid Least Squares (HLS) method is proposed. The HLS combines the
two methods in Section 7.1. The initial guess is estimated using the NSP with a
resolution of 1 m/s. Such a low resolution requires a very short computational time
(50 ms). At the same time, it guarantees an initial guess within 1 m/s from the true
value. Subsequently, the ILS is performed using this initial guess. Another advantage
of using this method is that it retains the regression coordinate mode classification

for later processing as suggested in [56].

7.3 Numerical Tests

In order to examine the performance of the HLS compared to the NSP and ILS,

the three methods are used to estimate |U| from sets of simulated radar images. The
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Figure 7.2: Failure probability of ILS dependency on the initial guess value.

simulation was conducted at 4 different values of U (2.1, 5.5, 8.3 and 11.7 m/s) with a
direction of 180° from the main wave direction. The Pierson-Moskowitz-based power
distribution model presented in [66] and a squared cosine distribution (accounting
for angular spreading) [11], with random phases that are generated using a uniform
distribution, were used to simulate ocean surface elevation. The values of U were
chosen to cover low to high speeds, while the particular direction was chosen because
we have noticed that the reliability of the ILS is most sensitive to the case in which
the velocity of encounter direction is opposite to that of the waves. For each of the
test values of |U|, 70 sets of radar images were simulated using the parameters listed
in Table 7.1. After applying the three methods (NSP, ILS and HLS) to the simulated
sets, several comparison metrics were calculated for each method and data set. These
metrics include the average absolute error (Zjy)) in the magnitude of the velocity of

encounter (|UJ) and its standard deviation (0%, ), the average absolute error (g)y)

133



Table 7.1: Numerical tests: simulation parameters.

Image set size 128 x 128 x 32 samples
Antenna repetition time 144 s

Antenna height 10 m

Sampling frequency 20 MHz

Patch distance from the antenna 1km
Water depth 200 m

Main wave direction 270° from true north

in the direction of the velocity of encounter (Z/U) and its standard deviation (oz,,,),

and the average computational time (7) and its standard deviation (o7).

7.4 Results and Analysis

Table 7.2 lists the comparison metrics for the three methods with |U| = 2.1 m/s. At
this relatively low speed, the results show that the three methods produce accurate
estimates for U with Zjy; less than 7 cm/s and high reliability with Oz, less than
10 em/s as well. This indicates that most of the results from the test image sets are
located within 10 cm/s of the average estimate. This can be also seen from Figure 7.3
which shows the error vector (ey) at |U| = 2.1 m/s. Table 7.2 also shows that the
NSP requires a relatively large computational time 7(s) (71 s) compared to the other
two methods which require less than 0.5 s. Therefore, at such low speeds the ILS and
the HLS are preferable over the NPS.

Similar conclusions can be drawn from the results of [U| = 5.5 m/s as shown in Ta-

ble 7.3 and Figure 7.4. Moving to a higher range (|U| = 8.3 m/s), it can be seen from
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Table 7.4 that both the accuracy and reliability of the ILS are reduced as compared
to those of the other two methods with Zjy| = 0.21 m/s and 0%, = 0.25 m/s. This is
due to incorrect results for some image sets when the iterative method started with
poor initial guesses. These incorrect estimates do not appear in Figure 7.5 as they
are located further than 2 m/s from the true value and are truncated from the plot
as shown. The probability of the ILS to break down dramatically increases at speeds
of 8 m/s and higher. The main reason for this failure is a poor initial guess. This
should not be surprising as for higher speeds the regression coordinates are expected
to be scattered far from the fundamental dispersion shell. Meanwhile, the HLS is
still able to maintain accurate and reliable estimates while maintaining a very short
computational time. At |U| = 11.7 m/s, the highest speed considered in this paper,
Table 7.2 shows that the ILS has completely failed to estimate U as seen from the
fact that 2y and oz, equal 4.4 and 4.7, respectively. This shows that more of the
ILS estimates did not converge acceptably close to the true value. This can be seen
in Figure 7.6 where fewer values of the ILS are shown. On the other hand the other
two methods maintain satisfactory accuracy and reliability.

Among the three, the HLS shows very short computational times and high accu-
racy and reliability for all velocities of encounter ranges. In our study, this indicates
that the proposed method (HLS) significantly outperforms the two other methods
(ILS and NSP).
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Table 7.2: Velocity of encounter magnitude |U| = 2.1 m/s.

cu) (m/s) oz, Eu (°) 0z, T(s) oF

NSP 0.07 0.09 3.9 4.7 717 11.0
ILS 0.07 0.09 3.9 5.0 0.1 0.02
HLS 0.06 0.08 4.1 45 0.28 0.05

Table 7.3: Velocity of encounter magnitude |U| = 5.5 m/s.

gu| (m/s) 05y Ew (°) 0z, T(s) o

NSP 0.06 0.06 0.5 0.7 1276 27
ILS 0.08 0.05 0.5 0.6 023 0.05
HLS 0.09 0.05 0.5 0.6 0.5 0.1

Table 7.4: Velocity of encounter magnitude |U| = 8.3 m/s.

gy (m/s) ogy Ev (°) Oeny T(s) o7

NSP 0.15 0.11 04 0.6 1223 28
ILS 0.21 025 0.2 0.3 02 0.05
HLS 0.17 0.1 02 0.3 0.5 0.1

Table 7.5: Velocity of encounter magnitude |U| = 11.7 m/s.

E|U| (II]/S) GEIUI €su (O) Ozru ?(3) oF

NSP 0.3 0.18 0.3 04 124 28
ILS 44 4.7 27 58 0.23 0.05
HLS 0.16 0.15 0.2 025 05 011
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Figure 7.3: Error vector (¢y) at|U| = 2.1 m/s.

#  NPS
15+ O IS
+ HLS

Ely (m/s)
(=]

2 -I1 0 1 2
cye (m/s)

Figure 7.4: Error vector (¢y) at|/U| = 5.5 m/s.
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Figure 7.5: Error vector (¢y) at|/U| = 8.3 m/s.
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Figure 7.6: Error vector (¢y) at|U| = 11.7 m/s.
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7.5 Conclusions

The value of the velocity of encounter is important in wave spectrum estimation
using the 3D Fourier transformation on nautical radar images. It is used to exclude
non-wave components from the image spectrum to produce the wave spectrum. Two
main approaches are currently used to estimate velocity of encounter: the Iterative
Least Squares (ILS) and Normalized Scalar Product (NSP). The ILS provides short
computational time and good accuracy at lower values of the velocity of encounter.
However, the reliability of this method dramatically drops at speeds of 8 m/s and
higher. The main reason for such poor performance at high speeds has been identified
in this chapter to be due to a poor initial guess. On the other hand, the NSP provides
high reliability at all speed ranges but at the price of long computational times. In
this chapter, a new algorithm that combines the ILS and NSP to support short
computational time and high reliability is proposed. The method is referred to as
Hybrid Least Squares (HLS). The new method estimates the initial guess using the
NSP and then uses the ILS method to refine the estimate. Our results show that HLS
achieves its purpose by supporting a short computational time while maintaining high

reliability at all speed ranges.
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Chapter 8

Summary and future work

8.1 Summary of the thesis

The ocean is one of the earth’s most important natural resources. Fisheries provide
humans with one of the most nutritious food resources. The ocean also plays a key
role in transportation around the globe with most goods being shipped via sea routes.
Furthermore, the ocean has a significant impact on our climate with regulating the
amount of CO, in the atmosphere. Also, a huge amount of crude oil and natural
gas has been discovered trapped under the ocean seabed. This has motivated great
attention among drilling companies and engineers to exploit these energy resources. It
is quite clear how important the ocean is in our lives. This has motivated researchers
since ancient times to study the ocean in order to better use its resources.

Ocean wave spectra are widely accepted as a descriptive model of the ocean sys-
tem. Wave spectra represent the ocean surface system in terms of the energy con-
tent of contributing plane ocean waves. Several technologies have been developed
to estimate ocean wave spectra, such as wave buoys and remote sensing using HF
and X-band radars. The purpose of this thesis is to develop accurate and reliable
methods for wave spectra and sea state parameters estimation using X-band marine

radar. Three wave spectral estimation algorithms in addition to a surface current
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estimation algorithm have been proposed to address different sources of error in the
current Cartesian Fourier Transform (CF'T) method of ocean wave spectra and sea
state parameter estimation.

The first algorithm, which was proposed in Chapter 3 of this thesis, addresses
the dependency of the X-band marine radar-estimated ocean wave spectra on the
azimuth location of the analysis window. One of the advantages of using X-band
marine radars to estimate ocean wave spectra is that they can provide field data from
a wide area, usually within a radius of 5 km and azimuth of 360° when deployed at
sea. In practice, not all the radar field data are analyzed to estimate the ocean wave
spectra. Typically, rectangular analysis windows with a size of 256 x 128 samples
[18, 29], covering an area of 1920 x 960 m?, are chosen from the radar data to be used
for analysis. It has been reported in the literature and verified in this thesis that the
azimuth location of the analysis window influences the estimated ocean wave spectra.
This is due to the effect of the radar imaging process represented by shadowing and
tilt modulation.

Traditionally, several analysis windows that are uniformly distributed in the az-
imuth direction have been used to eliminate the dependency of the estimated wave
spectra on the azimuth direction. In this thesis, it was verified using simulated X-
band radar data that the effect of shadowing and tilt modulation is minimum in
the up-wave azimuth direction. Therefore, better ocean wave estimates are expected
when choosing the analysis window in the up-wave directions. However, two chal-
lenges are present here: the up-wave direction is not known a priori and the ocean
system might have not only wind waves but swell as well, and hence multiple up-
wave directions. Therefore, the Adaptive Recursive Positioning Method (ARPM)
was proposed to address this problem. The ARPM uses three analysis windows to

estimate initial spectra. The up-wave direction and the number of analysis windows
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are determined from the initial spectra. Subsequently, new wave spectra are acquired
using new analysis windows that are located in the up-wave directions. The process
is repeated recursively to achieve more accurate results.

The ARPM results from field data showed an improvement of 9.8% on the agree-
ment between the CFT-estimated and the ground truth frequency wave spectrum.
Also, 20%, 20%, and 22% improvements in the peak wave period, mean wave period
and peak wave direction estimates, respectively, were achieved by implementing the
ARPM method. These improvements come at the expense of extra computational
time. Implementing the ARPM requires computational time that is double or triple
the time needed by the conventional CF'T method. Fortunately, the ARPM can be
implemented in near real-time because its computational time still does not exceed
the radar data generating time. The ARPM’s applicability is limited to cases where
the radar data is available for a full 360° azimuth range. A possible enhancement on
the method is to expand its applicability to the cases where the field of view is par-
tially blocked. This can be addressed by using the available field of view to determine
an initial estimate. If the up-wave direction lies in the available part of the field of
view, the ARPM can proceed normally. Otherwise, the algorithm would terminate
and the initial estimate would be used.

In Chapter 4 the sampling process of the ocean surface by X-band radar and its
effect on the ocean wave spectra estimation were revisited. Traditionally, the radar
sampling process is considered to be a standard sampling, in which the ocean surface
elevation is sampled at the centre of the polar sample areas. It was demonstrated
in Chapter 4 that this assumption is not accurate. A B-scan sample is generated by
accumulating the returned scatter from the whole sample area, which is determined by
the radar beam width and range resolution. This motivates the assumption that the

radar sampling of the ocean surface involves an averaging process, which is equivalent
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to using a low-pass filter in the frequency domain. The radar sampling process was
simulated in order to understand its effect on the estimated ocean wave spectra. The
results support the assumption of using an averaging filter in the sampling process. An
analytical model was presented to describe the frequency response of the sampling low
pass filter. Furthermore, an approximation of the inverse low pass filter is presented,
which is referred to as the Inverse Sampling Averaging Filter (ISAF). It was also
proposed to implement the [SAF in the CFT method in order to mitigate the effect
of the radar sampling process. For validation, the CFT method with and without the
ISAF were used to estimate ocean wave spectra and wave period and direction. The
estimates from the standard CFT method and the CFT with ISAF are compared
to ground truth estimates, which are acquired using a TRIAXYS wave rider buoy
data. The results show that using the ISAF provides an improvement of 11% in
the agreement between the CFT-estimated and the ground truth frequency wave
spectrum. Furthermore, the ISAF improves the estimates of peak wave period, mean
wave period, and peak wave direction by 12%, 20%, and 26%, respectively.

Another source of error in wave spectra estimation with the CF'T that was ad-
dressed in this thesis is the effect of the scan conversion process. The scan conversion
process is used to convert the radar output samples, which are digitized on a polar
grid and referred to as B-scan images, to Cartesian images. This step is necessary
to allow the application of the CFT on the Cartesian images. This scan conversion
process adds some distortion to the estimated wave spectra. From a signal processing
point of view, scan conversion is a process of re-sampling in which the original con-
tinuous image of the ocean surface is retrieved and subsequently sampled on a new
Cartesian grid. In the wave number frequency domain, retrieving the original con-
tinuous image is equivalent to applying a low-pass filter. To achieve a distortionless

retrieval, an ideal low pass filter is required. Of course, an ideal low-pass filter can
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not be achieved in practice and approximations necessarily introduce distortion to
the estimated wave spectra.

In Chapter 5 of this thesis, discarding the scan-conversion process is proposed. In
order to do so, a method of applying the 3D Fourier transformation in polar coordi-
nates instead of Cartesian coordinates is required. A transform that is referred to as
the Polar Fourier Transformation (PFT) [17] is adopted for that purpose. The PFT
is modified to allow its applicability on radar data. For performance validation of
the PFT compared to the CF'T, both transforms are applied on field data described
in Section 2.4. The ocean wave spectra estimates from both transforms were com-
pared to ground truth estimates that were acquired using TRIAXYS wave rider buoy
data. In the comparison analysis, the agreement between the radar-estimated ocean
frequency wave spectrum (using either the CFT or the PFT) and the ground truth
spectrum is represented using the correlation coefficient between the two spectra.
Other comparison metrics that are used include the mean absolute error and error
standard deviation in the estimation of the wave period and direction. The results
showed that the estimates of the frequency wave spectrum that were acquired using
the PFT represent a 12% improvement in the agreement with the ground truth fre-
quency wave spectrum compared to the CFT-estimates. The results presented in this
thesis also showed that using the PFT produces 44%, 54% and 49% improvements in
the peak wave period, mean wave period, and peak wave direction estimates, respec-
tively. The main drawback of the PFT method is the relatively long computational
time. In our analysis, in which the implementations of the PFT and the CFT run
on the same processor and with similar data structure efficiency, the CFT required
only 20% of the time needed by the PFT to analyze the same data. The time that
the PF'T needed to analyze a 32 radar image set was 4.3 min compared to 2.7 s us-
ing the standard CFT method. The CF'T fast data analysis capability is due to the
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Fast Fourier Transform (FF'T) algorithm. On the other hand, there exists no similar
fast algorithm to perform the PFT. An enhancement on the PF'T method that could
greatly increase its applicability, which can be addressed in the future, would be to
develop a fast algorithm to compute the transformation.

The performance of implementing the CF'T, PFT, ARPM, PFT, and their com-
binations in estimating ocean wave spectra and ocean wave period and direction is
validated in Chapter 6. It was found that the most accurate estimates of the peak
wave direction were achieved when the PFT was implemented with the ARPM and
the ISAF with an improvement of 72% when compared to the CFT method. On the
other hand, the most accurate estimates of the mean wave period and peak wave
direction with improvements of 65% and 55%, respectively, over the CFT method
were achieved using the ARPM with ISAF method.

Finally, the problem of estimating the velocity of encounter U was addressed in
Chapter 7. The velocity of encounter represents the vector summation of the ocean
surface current velocity and the ship velocity. The velocity of encounter information
has a key role in reducing the noise and removing the non-wave components from the
3D image spectrum in order to produce the 3D ocean wave spectrum. Higher mag-
nitudes of U increases the possibility of aliasing in the image spectrum. Estimating
U is crucial for the CFT method of wave spectra estimation. Two main methods
are currently used to estimate U: the Iterative Least Squares (ILS) method and the
Normalized Scalar Product (NSP). Both methods provide accurate estimates at low
speeds of U. The ILS method provides lower computational time compared to the
NSP. However, the accuracy and reliability of the ILS drop dramatically at higher val-
ues of U while the NSP maintains performance at higher values of U. In this thesis,
it was found that main reason that the ILS drops performance at higher values of U is

the poor initial guess of the recursive process. Thus, a hybrid method for estimating
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U was proposed. This method is referred to as the Hybrid iterative Least Squares
(HLS) The initial guess is estimated using the NSP with wide intervals. This allows a
good rough initial estimate of U with a short computational time. Subsequently, the
initial guess is provided to the ILS to start the recursive process. Simulated X-band
radar images were used to validate the performance of the proposed method. The
results show that the HLS maintains its accuracy and reliability at higher values of

U and has low computational time.

8.2 Future work

While the thesis presented a significant improvement on the estimation of ocean wave
spectra and sea state parameters, extension opportunities on the presented algorithms
remain.

In Chapter 3, the shadowing effect was found to be minimum in the up-wave and
down-wave directions. These behaviors are not clear and need further investigation.

Another interesting conclusion can be found in Chapter 6 where implementing the
ARPM provided a slight deterioration in the performance of the PFT with ISAF in
estimating 74,7, and 6,. Further investigation is required in order to explain this
behavior.

Despite the improvement introduced by the PFT method, proposed in Chapter 5
in estimating the ocean wave spectra and sea state parameters, the method may still
not be applied for real-time applications using the current form of the PFT due to
its long computational time. In our analysis, one ring sector analysis window with a
size of 320 x 128 x 32 required 4.3 minutes to be analyzed using the PFT method. In
order for the PFT to be implemented in real time applications, the processing time
should be brought down to less than 44.3 s, which is the time required to generate a

32-image radar set. This condition is considered under the assumption that only one

146



analysis window is used to estimate wave spectra and sea state parameters. Since, in
practice, multiple analysis windows are used, the processing time should not exceed
44.3/n s, where n is the number of analysis windows. A future enhancement on the
current PF'T method is to design a more efficient PFT such that the method can be
implemented in real time applications.

Another future work direction of this thesis concerns the applicability expansion
of the proposed methods to other sea state parameters. Even though the performance
enhancement using the proposed methods of ARPM, ISAF and PF'T was validated for
estimating ocean wave spectra and wave period and direction, the applicability of the
proposed methods is not limited to those parameters. After a proper validation, the
proposed methods may also be applied to estimate other sea state parameters, such

as significant wave heights, or related information, such as wind speed and direction.
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