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Abstract

Longitudinal data analysis for discrete such as count and binary data has been an

important research topic over the last three decades. With regard to inferences for

this type of data, the marginal model approach using ‘working’ correlation based

GEE (generalized estimating equation), and an auto-correlation class based GQL

(generalized quasi-likelihood) approach have been used, among others. This later

GQL approach was suggested because of certain efficiency drawbacks of the GEE

approach. Many studies were also done using the GQL approach for longitudinal

mixed models. In this thesis, we study the longitudinal count and binary data in a

wider semi-parametric longitudinal fixed and mixed model setup. For inferences, the

SQL (semi-parametric quasi-likelihood), SGQL (semi-parametric generalized quasi-

likelihood) and SML (semi-parametric maximum likelihood) have been used wherever

appropriate. The asymptotic properties such as consistency of the estimators pro-

duced by these approaches have been studied in detail. We also study the finite

sample properties of the new approaches and compare them where applicable with

existing SGEE (semi-parametric generalized estimating equation) approaches. The

proposed models and the estimation methodologies are also illustrated with some real

life data.
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Chapter 1

Background of the problem

Generalized linear models (GLMs) both in independent and longitudinal contexts

have been an important research topic over the last three decades. The main purpose

of these types of models is to examine the effects of certain fixed covariates on the

responses in either an independent or longitudinal framework. For example, in a GLM

setup for longitudinal data, repeated binary data consisting of asthma status (0 or 1)

collected from 537 children over a period of four years has been analyzed by many

authors (Zeger et al., 1988, Sutradhar, 2003). For this problem, the main objective is

to find the effect of mothers’ smoking habit (a fixed covariate) on the asthma status

of the children while taking the longitudinal correlation of the responses into account.

For longitudinal count data a similar GLM has been fitted to various data sets by

some authors. For example, we refer to the Health Care Utilization (HCU) data

(Sutradhar, 2003) where repeated numbers of yearly physician visits were studied as

a function of various covariates such as gender, education level, chronic disease status,

and age of the individuals.

In many cases, the repeated responses can be influenced by a latent individual
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random effect, then their means, variances and correlation structure will also be af-

fected by the distribution of the random effect. So, for a better modeling of the effects

of the fixed covariates, it is necessary in such situations to extend the GLM to the

GLMM (generalized linear mixed model) (Sutradhar, 2010) by introducing an individ-

ual random effect into the models. For example, Sutradhar and Bari (2007) revisited

the HCU data by fitting it to a GLMM for longitudinal data, and obtained a better

estimation of the mean and variance as compared to that from fitting a GLM for lon-

gitudinal data. For binary data, for example, Sutradhar et al. (2008) fitted a mixed

model for longitudinal data to the SLID (Survey of Labour and Income Dynamics)

data collected by Statistics Cananda from 1993 to 1998, for evaluating the effects of

the covariates including gender, age, geographic location, education level, and mari-

tal status on the employment status (1 for ‘unemployed all year’, 0 for otherwise) of

15,731 individuals over a period of four years from 1993 to 1996.

For clarity, we provide these models , i.e. GLM and GLMM under an independent

setup, and GLM and GLMM under a longitudinal setup in Sections 1.1 and 1.3,

respectively.

The aforementioned models, GLM and GLMM in both independent and longitudi-

nal setup, may fall short in situations where the fixed covariates used in these models

may not be able to adequately explain the responses. To tackle this situation, there

are studies in the literature where a secondary covariate that may not be of direct

interest but may influence the responses is introduced. For example, in a longitudinal

respiratory infection (binary) status study (Lin and Carroll, 2001, Section 8) gender

and vitamin A deficiency status were considered as primary covariates, whereas the

age effect of an individual was not of direct interest but it was included as a sec-

ondary covariate. In count data setups, one may again refer to the HCU data where
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similar to the respiratory infection status study, the age covariate could also be con-

sidered as a secondary covariate. In general, the effects of such secondary covariates

are nonparametrically taken care of, and the GLMs in both independent and longi-

tudinal setup are extended to SGLMs (semi-parametric generalized linear models) in

both independent and longitudinal setup respectively. In Sections 1.2 and 1.4, we

will provide a brief introduction of SGLMs in independent and longitudinal setup,

respectively. The SGLMs for longitudinal data have been studied by some authors

such as Severini and Staniswalis (1994), Lin and Carroll (2001, 2006), Warriyar and

Sutradhar (2014), Sutradhar et al. (2016). However, there are some issues with the

inference techniques used by some of the above authors. Also, in practice, it may hap-

pen that, in addition to the primary and secondary covariates used to construct the

above mentioned SGLM for longitudinal data, the repeated responses of an individual

may also be influenced by another individual latent effect. However, the analysis of

this type of longitudinal responses affected by both random effects and nonparametric

functions is however not adequately addressed in the literature. This thesis is aimed

to address these issues. To be specific, the objective of the thesis are: (1) Inferences

in the SGLM setup for longitudinal data, (2) extension of the SGLM for longitudinal

data to the SGLMM setup, and (3) development of inferences under the SGLMM

setup for longitudinal data. As far as the kind of responses, we will devote this work

to the study of repeated count and binary data.

1.1 Generalized linear fixed and mixed models

1.1.1 Generalized linear models (GLMs)

Let {yi}, i = 1, · · · , K, denote the observed independent responses, and xi = (xi1, · · · , xip)⊤

be the associated p-dimensional covariate vector, whose effects on the response mean
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µi(βββ) = E(Yi) are given through a linear predictor x⊤
i βββ with βββ = (β1, · · · , βp)⊤. In the

GLM regression setup (Nelder and Wedderburn, 1972), the responses yi’s are further

assumed to follow the exponential family density function

f(yi|θi) = exp[yiθi − a(θi) + b(yi)], (1.1)

with the functional form of a(·) known, and b(·) depending only on yi. Then it can

be shown that the mean and variance functions of the response variable Yi for all

i = 1, · · · , K, are given by

µi(βββ) = E(Yi|xi) = a′(θi), and

σii(βββ) = var(Yi|xi) = a′′(θi), (1.2)

respectively, where a′(·) and a′′(·) are respectively the first and second derivatives of

a(·) with respect to θi. The mean µi is related to the linear predictor x⊤
i βββ by the link

function h(·) as

h(µi(βββ)) = x⊤
i βββ, (1.3)

and θi = x⊤
i βββ when the link function is canonical (McCullagh and Nelder, 1989).

1.1.1.1 Quasi-likelihood estimation for βββ

In the above exponential family setup, β̂̂β̂β, the maximum likelihood estimate (MLE) of

βββ whenever βββ lies in an open subset in real space, is obtained by solving the equation:

∑
i

[yi − a′(θi)]
∂θi
∂βββ

=
∑
i

∂θi
∂βββ

a′′(θi)

a′′(θi)
[yi − a′(θi)]



5

=
∑
i

∂θi
∂βββ

∂µi
∂θi

[σii(βββ)]
−1 [yi − a′(θi)] = 0, (1.4)

which further gives the quasi-likelihood (QL) estimating equation

∑
i

∂µi(βββ)

∂βββ
[σii(βββ)]

−1 [yi − µi(βββ)] = 0 (1.5)

proposed by Wedderburn (1974) (see also McCullagh, 1983, McCullagh and Nelder,

1989). Note that when applying QL estimating equation (1.5), one needs to specify

only the first two moments of the distribution of Yi’s, even when the exact form of the

distribution of Yi’s is unknown. It is known that this QL estimator β̂̂β̂βQL is a consistent

estimation of true βββ. For Poisson and binary data, whose distributions belong to the

exponential family, β̂̂β̂βQL from (1.5) is also the ML estimate from (1.4).

1.1.2 Generalized linear mixed models (GLMMs)

In GLM, from (1.3), the mean µi is a function of the linear predictor x⊤
i βββ, which

can be denoted as µi(βββ) = h−1(x⊤
i βββ) = g(x⊤

i βββ). If the responses are also affected by

a latent random effect, the random effect can be included in the model through the

linear predictor as x⊤
i βββ+ τ ∗i , where τ

∗
i = σττi is an i.i.d. (independent and identically

distributed) random variable with mean 0 and variance σ2
τ . Then the GLMM can be

defined by the conditional mean of Yi given τi as

E(Yi|xi, τi) = g(x⊤
i βββ + σττi), i = 1, · · · , K. (1.6)

In practice, τ ∗i ’s are usually assumed to follow a normal or t distribution (Breslow and

Clayton, 1993, Jiang, 1998), but there also exist some studies avoiding distributional

assumption for τ ∗i (Montalvo, 1997, Wooldridge, 1999). As compared to the GLMs
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(1.3), it is of main interest here for (1.6) to estimate σ2
τ in additional to βββ. For

inferences about βββ and σ2
τ under GLMs for longitudinal data, for example, we refer

to Breslow and Clayton (1993), Jiang (1998), and Sutradhar (2004).

1.2 Semi-parametric GLMs (SGLMs)

In semi-parametric problems, the response yi is influenced by both primary covariate

xi and certain secondary covariate zi. As a result, in semi-parametric models, the

mean response µi should be a function of both the fixed regression effect parameter

βββ, and an unspecified (nonparametric) function ψ(zi) that we assume to be smooth

enough. That is, under semi-parametric setup, the mean response can be abbreviated

as

µi(βββ, ψ(zi)) = E(Yi|xi, zi) = g(x⊤
i βββ + ψ(zi)). (1.7)

It is clear that when zi is assumed to influence yi through (1.7), any estimate obtained

for βββ by ignoring ψ(zi) would be biased and hence mean squared error inconsistent. As

compared to the parametric GLMs, the semi-parametric GLMs allow a more flexible

treatment of the effects from the secondary covariate zi.

In a semi-parametric setup, the fixed regression parameter vector βββ as well as the

nonparametric function ψ(·) need to be estimated, even though our primary interest

is only on βββ. The βββ estimation approach presented in Section 1.1 was developed

through the research on the parametric GLMs. Similarly, there exist many early

works (Muller, 1988, Staniswalis, 1989) on nonparametric models somewhat equiva-

lent to substituting βββ = 0 in (1.7), yielding many kernel methods and their variants

for nonparametric regression estimation, such as Nadaraya-Watson kernel regression
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estimation (Nadaraya, 1964, Watson, 1964, Bierens, 1987, Andrews, 1995), local lin-

ear and polynomial regression (Cleveland, 1979, Fan, 1992, 1993, Stone, 1980, 1982),

recursive kernel estimation (see e.g., Ahmad and Lin, 1976, Greblicki and Krzyzak,

1980), spline smoothing (Whittaker, 1922, Eubank, 1988, Wahba, 1990), and near-

est neighbor estimation (Royall, 1966, Stone, 1977). Among these techniques, the

Nadaraya-Watson kernel estimator or the local constant estimator for ψ(z) is the

simplest to implement, and serves our purpose in this work well. As an illustrative

example, in the nonparametric regression model

yi = ψ(zi) + ϵi, i = 1, · · · , K, and ϵi
i.i.d.∼ (0, σ2

ϵ ),

this estimator at a given covariate point z is given by

ψ̂(z) =

∑K
i=1 yiK

(
z−zi
b

)∑K
i=1K

(
z−zi
b

) ,
where K(·) is a suitable kernel density function and b is the bandwidth.

The performance of the kernel techniques is heavily influenced by the selection of

an appropriate bandwidth parameter b, which is always a problem in nonparametric

regression (Silverman, 1986). Many data-based procedures to choose a bandwidth,

such as cross validation (see Stone, 1974, Picard and Cook, 1984, Kohn et al., 1991),

generalized cross validation (Craven and Wahba, 1979) have been discussed in the

literature. Altman (1990) suggested that these bandwidth selection techniques do not

perform well when the errors are correlated, so we exclude these techniques from fur-

ther discussion. Pagan and Ullah (1999) proposed an optimum value for bandwidth,

which minimizes the approximate mean integrated squared error. The authors rec-

ommended b ∝ K−1/5, and suggested that this value of bandwidth is the only choice

for b where the bias and variance, when estimating the model parameters, are of the
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same order of magnitude. In practice, the bias and variance cannot be minimized

together by certain b value, so the best choice of b involves a trade-off between bias

and variance (Ruppert, 1997). In this regard, based on the asymptotic formula for the

nonparametric function estimators, we developed a mini-max approach, which selects

the b values minimizing the maximum mean squared error of the estimate over the

support of nonparametric functions.

In semi-parametric setup for independent responses, the estimation of both βββ and

ψ(·) is also extensively studied in the literature (e.g., Severini and Staniswalis, 1994,

Carota and Parmigiani, 2002). Based on the QL method, for example, Severini and

Staniswalis (1994) proposed a semi-parametric QL (SQL) approach for the estimation

of βββ and ψ(·). In this approach, one only needs to specify the form of the conditional

mean µi = E(Yi|xi, zi) as a function of x⊤
i βββ + ψ(zi), and the conditional variance

σii = var(Yi|xi, zi) as a function of µi, without the need of knowing the distribution of

data. Under the assumption that the individuals are independent, the SQL estimating

equations for ψ(z) and βββ estimation can be written out as

K∑
i=1

wi(z)
∂µi(x

⊤
i βββ + ψ(z))

∂ψ(z)
σ−1
ii (µi(x

⊤
i βββ + ψ(z)))

[
yi − µi(x

⊤
i βββ + ψ(z))

]
= 0 (1.8)

(for all z on the support of ψ(·)), and

K∑
i=1

∂µi(x
⊤
i βββ + ψ(zi))

∂βββ
σ−1
ii (µi(x

⊤
i βββ + ψ(zi)))

[
yi − µi(x

⊤
i βββ + ψ(zi))

]
= 0, (1.9)

respectively. Here wi(z) =
pi( z−zi

b )∑K
i=1 pi(

z−zi
b )

, with pi(·) being a kernel density function

for which, for example, one may choose pi
(
z−zi
b

)
= 1√

2πb
exp

(
−1

2

(
z−zi
b

)2)
with a

suitable bandwidth b. Note that when wi(z) = 1, this SQL equation further reduces

to the well-known quasi-likelihood estimating equation (Wedderburn, 1974). The
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authors applied their estimation methodology to continuous linear and gamma data,

and discrete binary data. Note that in this thesis, we focus on only semi-parametric

modeling and inferences of longitudinal discrete such as count and binary data, where

independent count and binary data are special cases. As a preparation for inducing

the estimation approaches in more general longitudinal setup, we now explain semi-

parametric QL estimation in details for linear, count data and binary data models in

the independence setup.

1.2.1 Linear model

The semi-parametric linear model can be written as

yi = µi(βββ, ψ(zi)) + ϵi = x⊤
i βββ + ψ(zi) + ϵi, i = 1, · · · , K, and ϵi

i.i.d.∼ (0, σ2
ϵ ). (1.10)

Here E(Yi|xi, zi) = µi(βββ, ψ(zi)) = x⊤
i βββ + ψ(zi) and var(Yi|xi, zi) = σii = σ2

ϵ , i =

1, · · · , K. If ϵi’s are normally distributed, the canonical link function h(·) is the

identity function, and the natural parameter θi = x⊤
i βββ+ψ(zi). However, for applying

the SQL approach, only mean and variance need to be specified, while the exact form

of the distribution is irrelevant.

1.2.1.1 Estimation of nonparametric function ψ(z)

Whenever µi(βββ, ψ(zi)) and σii(µi) are correctly defined, the SQL estimating equations

can be obtained directly from (1.8) and (1.9). For this model, according to (1.8), the

SQL estimating equation for ψ(z) is

K∑
i=1

wi(z)
∂µi(βββ, ψ(z))

∂ψ(z)

[
yi − µi(βββ, ψ(z))

σ2
ϵ

]
= 0 (1.11)
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for all z in the support of ψ(·). Because ∂µi(βββ,ψ(z))
∂ψ(z)

=
∂[x⊤

i βββ+ψ(z)]

∂ψ(z)
= 1, (1.11) can be

simplified as

K∑
i=1

wi(z)

[
yi − x⊤

i βββ − ψ(z)

σ2
ϵ

]
= 0 (1.12)

⇒
K∑
i=1

wi(z)
(
yi − x⊤

i βββ
)
−

K∑
i=1

wi(z)ψ(z) = 0,

yielding an estimate for the nonparametric function ψ(z) as

ψ̂(z) =

∑K
i=1wi(z)

(
yi − x⊤

i βββ
)∑K

i=1wi(z)
=

K∑
i=1

wi(z)
(
yi − x⊤

i βββ
)

(1.13)

since
∑K

i=1wi(z) = 1. (1.13) is a general formula for any point z in the support of the

nonparametric function ψ(·). Specifically at point zi, the ith observed “secondary”

covariate, it becomes

ψ̂(zi) =
K∑
j=1

wj(zi)
(
yj − x⊤

j βββ
)
= ŷi − x̂⊤

i βββ, (1.14)

where

ŷi =
K∑
j=1

wj(zi)yj and x̂i =
K∑
j=1

wj(zi)xj . (1.15)

Note that the regression parameter vector βββ in (1.14) is unknown either, and need

to be estimated from (1.9). In practice, the estimates of ψ(z) and βββ are obtained by

solving (1.8) and (1.9) iteratively until they both converge. The estimating equation

for βββ under the present semi-parametric linear model is provided in the following

section, although, these formulas for ψ̂(zi) and β̂̂β̂β are already discussed in literature.

See Severini and Staniswalis (1994), Speckman (1988), Hastie and Tibshirani (1990).
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1.2.1.2 Estimation of regression effects βββ

In semi-parametric problem, the estimator ψ̂(·) of the nonparametric function ψ(·) is

also a function of unknown parameter vector βββ. So after we substitute ψ̂(·) for ψ(·)

in (1.9) to write out SQL estimating equation for βββ, the derivative of µi with respect

to βββ need to take βββ in ψ̂(·) into account. As for the present semi-parametric linear

model, we first write µi(βββ, ψ̂(zi)) = x⊤
i βββ + ψ̂(zi) and compute

∂µi(βββ, ψ̂(zi))

∂βββ
=

∂

∂βββ

[
x⊤
i βββ + ψ̂(zi)

]
=

∂

∂βββ

[
x⊤
i βββ + ŷi − x̂⊤

i βββ
]

= (xi − x̂i)
⊤ , (1.16)

where x̂i is defined in (1.15). Then from (1.9) we can write the SQL estimating

equation for βββ as

K∑
i=1

(xi − x̂i)
⊤

[
yi − x⊤

i βββ − ψ̂(zi)

σ2
ϵ

]
= 0,

and by substituting ψ̂(zi) = ŷi − x̂⊤
i βββ we obtain

K∑
i=1

(xi − x̂i)
⊤ [yi − x⊤

i βββ − ŷi + x̂⊤
i βββ
]
=

K∑
i=1

(xi − x̂i)
⊤
[
(yi − ŷi)− (xi − x̂i)

⊤βββ
]
= 0,

yielding

K∑
i=1

(xi − x̂i)
⊤ (yi − ŷi) =

K∑
i=1

(xi − x̂i)
⊤ (xi − x̂i)βββ.

It then follows that β̂̂β̂β has the closed form expression given by

β̂̂β̂β =

[
K∑
i=1

(xi − x̂i)
⊤ (xi − x̂i)

]−1 K∑
i=1

(xi − x̂i)
⊤ (yi − ŷi) , (1.17)
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where ŷi and x̂i are given in equation (1.15). The above equation (1.17) is the same

as in Severini and Staniswalis (1994) [Eq. (10), page 503] with D = I, the identity

matrix.

1.2.2 Count data model

The ideal case for count data is to follow Poisson density function f(yi), which can

be expressed as a special form of exponential family density (1.1) given by

f(yi) =
exp(−µi)µyii

yi!
=

1

yi!
exp[yi log µi − µi], (1.18)

where θi = log µi and a(θi) = µi.

Thus we write the Poisson mean and variance as

E(Yi|xi, zi) = var(Yi|xi, zi) = µi(βββ, ψ(zi)), (1.19)

where

µi(βββ, ψ(zi)) = exp(x⊤
i βββ + ψ(zi)),

which is different from (1.10) under the linear case, but in the present semi-parametric

setup still consists of the fixed regression function as well as a nonparametric smooth

function.

In practice, count data seldom exactly follow Poisson distribution, but usually

their first two moments are still modeled by (1.19). Because SQL requires only the

correct specification of mean and variance, SQL approach can thus be applied to real

count data.
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1.2.2.1 Estimation of nonparametric function ψ(z)

For constructing SQL estimating equation for ψ(z), we first compute ∂µi(βββ,ψ(z))
∂ψ(z)

=

∂ exp(x⊤
i βββ+ψ(z))

∂ψ(z)
= exp(x⊤

i βββ +ψ(z)). Then by substituting this result as well as the for-

mulas (1.19) for mean and variance into (1.8), we obtain the SQL estimating equation

for ψ(z) as

K∑
i=1

wi(z)
[
yi − exp(x⊤

i βββ + ψ(z))
]
= 0 (1.20)

for all z in the support of ψ(·), which further gives a closed form solution

ψ̂(z) = log

( ∑K
i=1wi(z)yi∑K

i=1wi(z) exp(x
⊤
i βββ)

)
.

Thus for z = zi the estimator of ψ(z) has the form

ψ̂(zi) = log

( ∑K
j=1wj(zi)yj∑K

j=1wj(zi) exp(x
⊤
j βββ)

)
. (1.21)

1.2.2.2 Estimation of regression effects βββ

For establishing the SQL estimating equation for βββ, we first need to compute

∂µi(βββ, ψ̂(zi))

∂βββ
=

∂

∂βββ
exp(x⊤

i βββ + ψ̂(zi)) =
[
exp(x⊤

i βββ + ψ̂(zi))
] [

xi +
∂ψ̂(zi)

∂βββ

]
(1.22)

with ψ̂(zi) as in (1.21). The derivative ∂ψ̂(zi)
∂βββ

is computed as

∂ψ̂(zi)

∂βββ
= −

[ ∑K
j=1wj(zi)yj∑K

j=1wj(zi) exp(x
⊤
j βββ)

]−1
[∑K

j=1wj(zi)yj

] [∑K
j=1wj(zi) exp(x

⊤
j βββ)xj

]
[∑K

j=1wj(zi) exp(x
⊤
j βββ)
]2

= −
∑K

j=1wj(zi) exp(x
⊤
j βββ)xj∑K

j=1wj(zi) exp(x
⊤
j βββ)

. (1.23)
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Now by using (1.23) in (1.22) we write

∂µi(βββ, ψ̂(zi))

∂βββ
=
[
exp(x⊤

i βββ + ψ̂(zi))
] [

xi −
∑K

j=1wj(zi) exp(x
⊤
j βββ)xj∑K

j=1wj(zi) exp(x
⊤
j βββ)

]

= µi(βββ, ψ̂(zi))

[
xi −

∑K
j=1wj(zi) exp(x

⊤
j βββ)xj∑K

j=1wj(zi) exp(x
⊤
j βββ)

]
.

Then by substituting all these results into (1.9), the SQL estimating equation for βββ

for count data is obtained as

K∑
i=1

[
xi −

∑K
j=1wj(zi) exp(x

⊤
j βββ)xj∑K

j=1wj(zi) exp(x
⊤
j βββ)

]
[yi − µ̃i] = 0,

where µ̃i = exp(x⊤
j βββ + ψ̂(zi)). Now by using

x̂i =

∑K
j=1wj(zi) exp(x

⊤
j βββ)xj∑K

j=1wj(zi) exp(x
⊤
j βββ)

, (1.24)

we rewrite the estimating equation as

K∑
i=1

(xi − x̂i)
⊤ (yi − µ̃i) = 0. (1.25)

The estimating equation (1.25) can be solved iteratively using the well-known Newton-

Raphson method. The iterative equation has the form

β̂̂β̂β(r+1) = β̂̂β̂β(r) −

[
∂

∂βββ⊤

K∑
i=1

(xi − x̂i)
⊤ (yi − µ̃i)

]−1 [ K∑
i=1

(xi − x̂i) (yi − µ̃i)

]

= β̂̂β̂β(r) +

[
K∑
i=1

(xi − x̂i)
⊤ µ̃i (xi − x̂i)

]−1 [ K∑
i=1

(xi − x̂i) (yi − µ̃i)

]
(1.26)

and is used to compute the final estimate β̂̂β̂β until convergence.
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1.2.3 Binary data model

Unlike linear and count data whose distribution and variances are usually not known,

the binary distribution f(yi) and variance σii = var(Yi|xi, zi) can always be written

out with mean µi as

f(yi) = µyii (1− µi)
1−yi and

σii = µi(βββ, ψ(zi)) [1− µi(βββ, ψ(zi))] (1.27)

respectively, in the semi-parametric GLM setup for binary responses. The binary

density is a special case of the exponential family density (1.1) with

θi = log

(
µi

1− µi

)
and a(θi) = − log(1− µi).

Now for implementing the SQL estimation approach, we only need to specify the

model for conditional mean µi. Under the canonical link function, the canonical

parameter θi = x⊤
i βββ + ψ(zi), a(θi) = log(1 + exp(θi)), and

µi =
exp(θi)

1 + exp(θi)
,

yielding

E(Yi|xi, zi) = a′(θi) = µi(βββ, ψ(zi)) =
exp(x⊤

i βββ + ψ(zi))

1 + exp(x⊤
i βββ + ψ(zi))

.

1.2.3.1 Estimation of nonparametric function ψ(z)

As usual, we first compute

∂µi(βββ, ψ(z))

∂ψ(z)
=

∂

∂ψ(z)

exp(x⊤
i βββ + ψ(z))

1 + exp(x⊤
i βββ + ψ(z))

=
exp(x⊤

i βββ + ψ(z))

1 + exp(x⊤
i βββ + ψ(z))

1

1 + exp(x⊤
i βββ + ψ(z))
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= µi(βββ, ψ(z)) [1− µi(βββ, ψ(z))] ,

and then simplify (1.8) with these results as

K∑
i=1

wi(z) [yi − µi(βββ, ψ(z))] = 0 (1.28)

for all z in the support of ψ(·), which is the SQL estimating equation for ψ(z).

Note that it has the same form as (1.20) with the difference lying in the formula

for µi(βββ, ψ(z)).

1.2.3.2 Estimation of regression effects βββ

In binary case, there is no closed form solution for ψ̂(z). For computing ∂ψ̂(z)
∂βββ

, we

replace ψ(·) with ψ̂(·) in (1.28), and then take derivative of both sides with respect

to βββ to obtain

−
K∑
i=1

wi(z)µi(βββ, ψ̂(z))
[
1− µi(βββ, ψ̂(z))

] [
xi +

∂ψ̂(z)

∂βββ

]
= 0 .

By solving for ∂ψ̂(z)
∂βββ

, we obtain

∂ψ̂(z)

∂βββ
= −

∑K
i=1wi(z)µi(βββ, ψ̂(z))

[
1− µi(βββ, ψ̂(z))

]
xi∑K

i=1wi(z)µi(βββ, ψ̂(z))
[
1− µi(βββ, ψ̂(z))

] .

Then

∂µi(βββ, ψ̂(zi))

∂βββ
=

∂

∂βββ

[
exp(x⊤

i βββ + ψ̂(zi))

1 + exp(x⊤
i βββ + ψ̂(zi))

]

=

⎡⎢⎣ exp(x⊤
i βββ + ψ̂(zi))[

1 + exp(x⊤
i βββ + ψ̂(zi))

]2
⎤⎥⎦[xi + ∂ψ̂(zi)

∂βββ

]
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= µi(βββ, ψ̂(zi))
[
1− µi(βββ, ψ̂(zi))

] [
xi +

∂ψ̂(zi)

∂βββ

]
.

Based on all these results, the SQL estimating equation (1.9) reduces to

K∑
i=1

[
xi +

∂ψ̂(zi)

∂βββ

] [
yi − µi(βββ, ψ̂(zi))

]
= 0, (1.29)

which is the SQL estimating equation for βββ in binary case, and need to be solved

iteratively using the Newton-Raphson method.

1.3 Generalized linear fixed and mixed models for

longitudinal data

1.3.1 Generalized linear fixed models for longitudinal data

The results on GLMs in Section 1.1 and semi-parametric GLMs in Section 1.2 were

based on independent observations. In this section, we provide an overview of the

existing models and associated inferences in a longitudinal setup.

In notation, for the ith (i = 1, · · · , K) individual, let yi = (yi1, · · · , yij, · · · , yini
)⊤

denote ni× 1 vector of repeated responses, where yij is the response recorded at time

j. Further, suppose that yij is influenced by a fixed and known p-dimensional time

dependent covariate vector xij = (xij1, · · · , xijv, · · · , xijp)⊤ collected together with

yij, and the regression effects of xij on yij for all i = 1, · · · , K and j = 1, · · · , ni

can be indicated by a p-dimensional vector βββ = (β1, · · · , βp)⊤. Because the same

variables are measured repeatedly on the same individual over a period of time, the

observations are likely to be correlated. So the correlations among yij’s for the same

ith individual cannot be neglected, even though it may still be reasonable to assume
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independence among different individuals. The joint distribution of response vector

yi is hard to determine, especially in discrete cases, but we assume that, conditional

on the covariates, each component yij marginally follows (1.1), and has mean µij(βββ) =

E[Yij] = a′(θij) and variance σijj(βββ) = var[Yij] = a′′(θij) [see (1.2)−(1.3)]. Following

(1.5), the independence assumption based QL estimating equation for the unknown

regression parameter βββ can be written as

K∑
i=1

ni∑
j=1

∂a′(θij)

∂βββ
[a′′(θij)]

−1
[yij − a′(θij)] =

K∑
i=1

ni∑
j=1

∂µij(βββ)

∂βββ
[σijj(βββ)]

−1 [yij − µij(βββ)] = 0 . (1.30)

βββ estimates from (1.30) are consistent. However, because the correlations among

the observations from the same individual are ignored, such estimates are in general

inefficient. In order to achieve the desired efficiency, it is necessary to take into account

the correlations of longitudinal responses.

One of the first remedies to the inefficient estimation problem in longitudinal

data analysis was proposed by Liang and Zeger (1986). These authors introduced

a ‘working’ correlation matrix to account for the correlation among the repeated

observations in the longitudinal setup, and proposed a generalized estimating equation

(GEE) of the form

K∑
i=1

∂µµµ⊤
i

∂βββ
V−1
i (α) [yi − µµµi] = 0 (1.31)

to obtain consistent and efficient regression estimates of the parameters involved in the

GLM model for longitudinal data. Define µµµi(βββ) = (µi1(βββ), · · · , µij(βββ), · · · , µin(βββ))⊤ as

the mean vector of yi, andVi(α) = A
1/2
i Ri(α)A

1/2
i as the covariance matrix of yi with

Ai = diag[σi11(βββ), · · · , σijj(βββ), · · · , σinn(βββ)]. Then, Ri(α) is the ‘working’ correlation
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matrix with α as its ‘working’ correlation parameter. This GEE represented an im-

portant progress in longitudinal data analysis. However, subsequent research showed

that it can fail to ensure consistency and efficiency in some situations. For example,

Crowder (1995) showed that due to a problem in estimating the so-called ‘working’

correlation parameter α, the GEE regression parameter estimates are inconsistent in

several situations. In cases where ‘working’ correlations are estimable, Sutradhar and

Das (1999) demonstrated that the use of stationary ‘working’ correlation matrix in

GEE can produce less efficient regression estimates than the independence assumption

based QL or moment estimates. Sutradhar (2010) further demonstrated that even in

the stationary setup, the use of ‘working’ stationary correlation matrix can still pro-

duce less efficient estimates than the ‘working’ independence assumption based GEE

or QL, or moments estimates. Sutradhar (2003) proposed a generalization of the QL

estimation approach, where βββ is obtained by solving the generalized quasi-likelihood

(GQL) estimating equation given by

K∑
i=1

∂µµµ⊤
i

∂βββ
ΣΣΣ−1
i (ρ) [yi − µµµi] = 0 , (1.32)

where µµµi(βββ) = (µi1(βββ), · · · , µij(βββ), · · · , µini
(βββ))⊤ is the mean vector of yi, ΣΣΣi(ρ) =

A
1/2
i Ci(ρ)A

1/2
i is the covariance matrix of yi withAi = diag[σi11(βββ), · · · , σijj(βββ), · · · , σinini

(βββ)],

Ci(ρ) is a general class of auto-correlations, and ρ is a correlation index parameter.

Note that GQL allows each individual to have different number of repeated responses,

ni. The estimator β̂̂β̂βGQL obtained by solving (1.32) is consistent and very efficient for

βββ.
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1.3.2 Generalized linear mixed models for longitudinal data

For a generalization from GLM to GLMM for longitudinal data, we can follow the

procedure presented in Section 1.1.2, that is, to add a random effect to the linear

predictor in the mean function, and thus convert the mean in GLM to the conditional

mean in GLMM for longitudinal data. To be specific, suppose that the mean of Yij

in GLM is given by µij(βββ) = E(Yij) = g(x⊤
ijβββ), then in GLMM, the conditional mean

of Yij given τi, the random effect as defined in (1.6), is given by

E(Yij|xij, τi) = g(x⊤
ijβββ + σττi). (1.33)

In this longitudinal setup, the repeated responses of the same individual share a com-

mon random effect, which will influence the correlation structure of the model. Extra

efforts are required for defining the dynamic dependence of the repeated responses

conditional on random effect τi, and computing the unconditional correlation struc-

ture of the model. For count data, for example, such conditional dynamic dependence

can be

yij|τi =

yi,j−1∑
k=1

bk(ρ)|τi + dij|τi, j = 2, . . . , ni (1.34)

(Sutradhar and Bari, 2007), where it is assumed that yi1|τi ∼ Poi(m∗
i1), and for

j = 2, . . . , ni, yi,j−1|τi ∼ Poi(m∗
i,j−1), and dij|τi ∼ Poi(m∗

ij − ρm∗
i,j−1) with m∗

ij =

exp(x⊤
ijβββ + σττi) for j = 1, . . . , ni. Here Poi(m) stands for Poisson distribution with

mean m. In (1.34), conditional on τi, dij and yi,j−1 are independent. Furthermore,

bk(ρ) stands for a binary random variable with Pr[bk(ρ) = 1] = ρ. Model (1.34)

produces correlation structure reflecting longitudinal relationship for over-dispersed

count data. Similarly, for longitudinal binary data, the GLMM, for example, has the
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form

Pr(yij = 1|yi,j−1,xij, τi) =
exp(x⊤

ij(tij)βββ + θyi,j−1 + σττi)

1 + exp(x⊤
ij(tij)βββ + θyi,j−1 + σττi)

, for j = 2, · · · , ni

(1.35)

(Sutradhar et al., 2008), where θ is a dynamic dependence parameter, and στ is the

random effect standard derivation.

For inferences under the count data model (1.34), we refer, for example, to Mon-

talvo (1997), Wooldridge (1999), Jowaheer and Sutradhar (2002), Sutradhar and Bari

(2007), Winkelmann (2008), and for inferences under the binary dynamic model (1.35),

we refer, for example, to Manski (1987), Honoré and Kyriazidou (2000), Sutradhar

et al. (2008, 2010).

1.4 Semi-parametric generalized linear fixed mod-

els for longitudinal data

The GLMs explained in Section 1.3.1 has also been generalized to a semi-parametric

setup (Severini and Staniswalis, 1994, Lin and Carroll, 2001). Under this generaliza-

tion, the mean and variance functions are defined as

µij(βββ, ψ(zij)) = E(Yij|xij, ψ(zij)) = a′(θij), and

σijj(βββ, ψ(zij)) = var(Yij|xij, ψ(zij)) = a′′(θij), (1.36)

and the link function h(·) in (1.3) has the form

h(µij(βββ, ψ(zij))) = x⊤
ijβββ + ψ(zij), (1.37)
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where ψ(zij) is the nonparametric function in secondary covariate zij.

For more studies for this type of SGLMs for longitudinal data, we refer to Zeger

and Diggle (1994), Severini and Staniswalis (1994) (Section 8), Lin and Carroll (2001),

Sneddon and Sutradhar (2004), You and Chen (2007), Warriyar and Sutradhar (2014),

Sutradhar et al. (2016). In particular, in linear longitudinal setup, this type of model

is studied by Severini and Wong (1992), Zeger and Diggle (1994), Moyeed and Dig-

gle (1994), You and Chen (2007), Fan et al. (2007), Fan and Wu (2008), Li (2011),

Warriyar and Sutradhar (2014).

1.4.1 Existing inferential techniques

Because this SGLM for longitudinal data is a generalization of the SGLM (1.7) to the

longitudinal setup, it is convenient to use a general notation as follows. Suppose that

tij denotes the time at which the jth (j = 1, . . . , ni) response is recorded from the

ith (i = 1, . . . , K) individual, and yij denotes this response. Next, unlike the scalar

response case explained by model (1.7), suppose that yi = (yi1, . . . , yini
)⊤ denotes

the ni × 1 vector of repeated responses for the i-th (i = 1, . . . , K) individual. Also

suppose that yij is influenced by a fixed and known p-dimensional time-dependent

primary covariate vector xij(tij) and an additional time-dependent scalar secondary

covariate zij(tij). Note that similar to (1.7), the primary covariates are included in the

regression model parametrically using a linear predictor, whereas the covariate(s) of

secondary interest are included in the model nonparametrically. Because of the fact

that the repeated responses {yij, j = 1, . . . , ni} are likely to be correlated, Severini

and Staniswalis (1994) (Eq. (17)), and Lin and Carroll (2001) (Eq. (10)), for example,

estimated the regression effects β by solving the so-called ‘working’ correlations-based
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SGEE (semi-parametric generalized estimating equation)

K∑
i=1

∂µ⊤
i (β,Xi, ψ̂(β, zi))

∂β
V −1
i

[
yi − µi(β,Xi, ψ̂(β, zi))

]
= 0, (1.38)

where Vi is referred to as a ‘working’ covariance matrix. More specifically, in (1.38),

X⊤
i = (xi1, . . . ,xini

) denotes the p×ni covariate matrix with xij as the p-dimensional

covariate vector for the i-th individual at time point tij, µi(β,Xi, ψ̂(β, zi)) is a

mean vector as opposed to the scalar mean µi(·) in (1.9), and ψ̂(β, zi) = (ψ̂(β, zi1),

· · · , ψ̂(β, zij), · · · , ψ̂(β, zini
))⊤ is an ni × 1 consistent estimate of the nonparamet-

ric vector function for known β. Here zi represents the secondary covariate values

zi1, . . . , zini
. As far as Vi matrix is concerned, it is an ni × ni ‘working’ covariance

matrix representing the correlations of the repeated responses. It is computed by

Vi = A
1
2
i RiA

1
2
i , (1.39)

where Ai = diag[var(yi1), . . . , var(yini
)] with var(yij) = µij(β,xij, ψ̂(β, zij)) for the

Poisson panel data, and var(yij) = µij(β,xij, ψ̂(β, zij))[1 − µij(β,xij, ψ̂(β, zij))] for

binary data, for examples. The matrix Ri has been computed by an unstructured

(UNS) common constant correlation matrix (R = Ri), where

R = K−1

K∑
i=1

rir
⊤
i , where ri = (ri1, . . . , rini

)⊤, (1.40)

with rij = [yij − µij(β, xij, ψ̂(β, zij))]/[µij(β,xij, ψ̂(β, zij))]
1
2 for count data, and

rij = [yij − µij(β, xij, ψ̂(β, zij))]/[µij(β,xij, ψ̂(β, zij))[1 − µij(β,xij, ψ̂(β, zij))]]
1
2 for

binary data, for examples. Severini and Staniswalis (1994) (Eq. (18)) and Lin and

Carroll (2001) (Eqs. (6)-(7)) also estimated the nonparametric function ψ(z) using

the working correlation matrixRi, whereas Zeger and Diggle (1994) (see also Sneddon



24

and Sutradhar, 2004, You and Chen, 2007) used ‘working’ independence among the

repeated data.

However, the approach of Severini and Staniswalis (1994) and Lin and Carroll

(2001), for the estimation of both β and the nonparametric function ψ(·), has several

drawbacks:

1) The common matrixR can not be computed unless ni = n for all i = 1, . . . , K. One

cannot use this R matrix for panel data, especially when an ni × ni matrix is needed

for the i-th individual (see Sutradhar, 2010). Furthermore, because covariates (xij)

of an individual i are dependent on j, Sutradhar (2010) showed that the correlations

of the repeated data following a sensible dynamic model also involve xij. This, for

j < k, for a known function q, produces

E[rijrik] = q(xij,xik, ψ̂(zij), ψ̂(zik)) (1.41)

and hence the average K−1
∑K

i=1 rijrij obtained from all individuals may be biased

for the true correlation element ρi,jk for the i-th individual. This will produce an

inefficient estimate of β, especially when the covariates are dependent on the value of

j.

2) Weights are used to select data points with associated secondary covariate value zij

close to the targeted point z for estimating nonparametric function value ψ(z). Under

these circumstances, if the correlations among repeated responses are considered,

data points with different distances from point z will inevitably mix up, causing

failure for the weights to select the correct data points for nonparametric function

estimation. This is why using Ri matrices in weighted GEE, even the correct ones,

for nonparametric function estimation can be counterproductive. In fact, Lin and

Carroll (2001) (Section 7) found that using the Ri matrix for the estimation of ψ(·)
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produces a less efficient estimate than using the independence assumption, that is,

Ri = Ini
. Besides, ψ(·) is of secondary interest and hence it is sufficient to estimate it

consistently, whereas more effort is needed to obtain a consistent and efficient estimate

for the main regression parameter β.

In fact, it is demonstrated in details in Chapter 4 (Section 4.1.4.1) that the above

SGEE(UNS) approach produces less efficient regression estimates than independence

assumption based such as SGEE(I) and SQL approaches. Thus, the SGEE(UNS)

or generally speaking the SGEE approach may not be appropriate for such kind of

problems.

1.4.2 A proposed inference remedy for the SGLFMs for lon-

gitudinal data

In this thesis, we will revisit the aforementioned inference issue. Specifically, under

this semi-parametric longitudinal setup, we will discuss a SGQL (semi-parametric

generalized quasi-likelihood) approach for consistent and efficient estimation of β for

count data model (Chapter 2) and for binary data models (Chapter 4).

1.5 Objective of the thesis

The main objective of this thesis is to study the semi-parametric fixed and mixed

models for discrete data, namely count and binary data. The plan of the thesis is as

follows.

(i) As indicated above, in Chapter 2 we first revisit the fitting of a semi-parametric

generalized linear fixed model to repeated count data. Specifically, we explain what

was done by Sutradhar et al. (2016) in fitting such models. Both models and inference

techniques used by these authors will be indicated.
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(ii) In Chapter 3, we provide (a) a generalization of the semi-parametric fixed models

for longitudinal count data discussed in Chapter 2 to the mixed model setup; (b)

we discuss the consistent estimation of all functions and parameters involved in the

model; here, we propose a SGQL approach for the estimation of the main regression

and overdispersion parameters; (c) we show that this SGQL estimator is efficient

through an intensive simulation study based on finite samples; and (d) the asymptotic

properties of the estimators are presented.

(iii) Different from count data models, there exist several dynamic fixed models to

deal with repeated binary data. The linear dynamic conditional probability (LDCP)

and binary dynamic logit (BDL) models are widely used. (a) In Chapter 3, we provide

a generalization of LDCP model to the semi-parametric setup. We discuss consistent

estimation techniques for all functions and parameters of the model. The asymptotic

and finite sample performances of the estimators are examined. (b) We illustrate

the proposed semi-parametric model and estimation techniques by reanalyzing an

infectious disease data set. Next, (c) we provide a generalization of the BDL model

to the semi-parametric setup which is referred to as the SBDL model. Consistent and

efficient estimates for functions and parameters are discussed both analytically and

empirically.

(iv) In Chapter 5, (a) we further generalize the SBDFL (semi-parametric binary dy-

namic fixed logit) model discussed in Chapter 4 to the mixed model setup. This

generalized model is referred to as the SBDML (semi-parametric binary dynamic

mixed logit) model. Then (b) we provide consistent estimation of all functions and

parameters involved in the model. Here we propose SGQL and SML (semi-parametric

maximum likelihood) approaches for the estimation of the main regression and overdis-

persion parameters. (c) Asymptotic properties of the estimators are then derived. (d)
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We also conduct a simulation study to compare the performances of the two ap-

proaches, namely the SGQL and SML approaches, for parameter estimation.

The conclusion of the thesis is given in Chapter 6.



Chapter 2

Semi-parametric dynamic fixed

models for longitudinal count data

2.1 Semi-parametric dynamic model for panel count

data

As indicated in Section 1.4.1, suppose that tij denotes the time at which the jth

(j = 1, . . . , ni) response is recorded from the ith (i = 1, . . . , K) individual, and yij

denotes this response. Also suppose that xxxij(tij) is the primary covariate collected at

time tij, and zij(tij) is a secondary covariate corresponding to the same time tij. These

zij’s are in general assumed to be dense. In some situations, one may be interested to

know the direct influence of tij on the response yij. In such cases, zij(tij) = tij (Lin and

Carroll, 2001) where zij still retains its dense character. Because the effect of zij(tij)

on yij is not of direct interest, its influence would be taken care of non-parametrically,

whereas the effects of the primary covariates (those are of direct interest) xxxij(tij) are

formulated through a specified parametric regression function.

Next, in this longitudinal setup, the repeated responses yi1, . . . , yij, . . . , yini
are
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likely to be correlated. In a longitudinal parametric setup, there exist many studies

(Sutradhar, 2003, 2010, 2011), where the correlations are modeled through certain

dynamic relationship between the present and past responses of the individual. This

dynamic model has also been generalized recently by Sutradhar et al. (2016) to the

longitudinal semi-parametric setup. More specifically, following Sutradhar (2003),

these authors (Sutradhar et al., 2016) have used the dynamic model given by

⎧⎪⎨⎪⎩ yi1 = Poi(µi1(βββ,xxxi1, ψ(zi1)))

yij = ρ ∗ yi,j−1 + dij =
∑yi,j−1

s=1 bs(ρ) + dij, j = 2, . . . , ni,
(2.1)

where Pr[bs(ρ) = 1] = ρ and Pr[bs(ρ) = 0] = 1 − ρ, with ρ as the correlation index

parameter; and

dij ∼ Poi [µij(βββ,xxxij, ψ(zij))− ρµi,j−1(βββ,xxxi,j−1, ψ(zi,j−1))]

for j = 2, . . . , ni, where in general for all j = 1, . . . , ni,

µij(βββ,xxxij, ψ(zij)) = exp(xxx⊤ij(tij)βββ + ψ(zij)). (2.2)

Here Poi(m) stands for Poisson distribution with mean m. Also, dij and yi,j−1 are

assumed to be independent.

Note that the dynamic model (2.1) produces the means and variances as

E[Yij|xxxij, zij] = µij(βββ,xxxij, ψ(zij)) = exp(xxx⊤ij(tij)βββ + ψ(zij))

var[Yij|xxxij, zij] = σi,jj(βββ,xxxij, ψ(zij)) = µij(βββ,xxxij, ψ(zij))

= exp(xxx⊤ij(tij)βββ + ψ(zij)). (2.3)
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Now, to derive the correlations between count responses under model (2.1), observe

that for j < k, the covariance between yij and yik can be written as

cov(Yij, Yik|xxxij,xxxik, ψ(zij), ψ(zik))

= E(YijYik|xxxij,xxxik, ψ(zij), ψ(zik))− E(Yij|xxxij, ψ(zij))E(Yik|xxxik, ψ(zik))

= EYij [YijEYi,j+1
{. . .EYi,k−1

(E(Yik|yi,k−1, yi,k−2, . . . , yi,j+1))}]

−µij(βββ,xxxij, ψ(zij))µik(βββ,xxxik, ψ(zik))

= σi,jk(βββ,xxxij,xxxik, ψ(zij), ψ(zik), ρ)

= ρk−jµij(βββ,xxxij, ψ(zij)) (2.4)

(Sutradhar, 2010), yielding the correlations between yij and yik as

corr(Yij, Yik|xxxij,xxxik, ψ(zij), ψ(zik)) =

⎧⎪⎨⎪⎩
ρk−j

√
µij(βββ,xxxij ;ψ(zij))

µik(βββ,xxxik;ψ(zik))
j < k

ρj−k
√

µik(βββ,xxxik;ψ(zik))
µij(βββ,xxxij ;ψ(zij))

j > k.

(2.5)

Notice that because the so-called error count dij in model (2.1) has a Poisson

distribution with mean µij(·) − ρµi,j−1(·), it then follows that the correlation index

parameter ρ must satisfy the restriction

0 < ρ < min

[
1,

µij(·)
µi,j−1(·)

]
, for all i = 1, . . . , K and j = 2, . . . , ni.

Thus, the proposed model allows only positive correlations between the repeated

responses, and the exact correlation between any two responses can be computed by

using (2.5).

Note that the AR(1) type dynamic model (2.1) appears to be highly practical

because in practice, one expects that the correlation would decay as the time lag in-

creases. However, such a pattern in the longitudinal setup must be influenced by the
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time-dependent covariates as well. The model (2.1) has also been used in time series

setup especially with stationary (time independent) covariates to model the correla-

tions of the repeated counts. See, for example, Al-Osh and Alzaid (1987), McKenzie

(1988), and Winkelmann (2008) (Section 7.3). In a regression setup, for time series of

counts, Zeger (1988) used correlated random effects to model the correlations of the

repeated counts. This produces a complicated correlation structure without the dy-

namic property desired among lagged responses. If one is suspicious about the AR(1)

model as opposed to any other low order auto-correlation model, then a diagnostic

may be done following Sutradhar (2010) (Section 4). However, this is beyond the

scope of this thesis.

There are some alternative models such as marginal models (Severini and Staniswalis,

1994, Lin and Carroll, 2001) to deal with repeated binary or count data that belong

to the exponential family. These marginal models produce the mean and variance

similar to (2.3). But unlike (2.5), these models do not assume any correlation struc-

ture. Consequently, for inference about these marginal models, the aforementioned

authors used the so-called ‘working’ correlation approach. More specifically, a UNS

(unstructured) correlation matrix, namely,

R(= Ri) = K−1

K∑
ℓ=1

rℓr
⊤
ℓ .

[see Eqn. (1.40) in Chapter 1] is used in the existing studies to construct an estimating

equation for the regression parameter βββ involved in (2.3). However, the approach of

using UNS in R matrix has some drawbacks. In the longitudinal semi-parametric bi-

nary fixed model setup, we demonstrate in Chapter 4 that the UNS based approach is

not appropriate for this problem because it produces less efficient regression estimates

than the ones obtained through the independence assumption based QL or GEE(I)



32

approaches.

2.2 Estimation for the semi-parametric model (2.1)

Fitting of the model (2.1) to a data set requires the estimation of the nonparametric

function ψ(·), regression parameter βββ and correlation index parameter ρ.

Because the nonparametric function ψ(·) is not of direct interest, Sutradhar et al.

(2016) estimated ψ(·) with an independence assumption based SQL (semi-parametric

quasi-likelihood) approach. This SQL estimate of ψ(·) was used to construct a SGQL

(semi-parametric generalized quasi-likelihood) estimating equation (Sutradhar, 2003)

for βββ. The longitudinal correlation index parameter ρ was estimated using a SMM

(semi-parametric method of moments) approach. For convenience, these SQL, SGQL

and SMM estimating equations are presented below.

2.2.1 SQL estimation of the nonparametric function ψ(·)

Using z0 for zij for given i and j, Sutradhar et al. (2016) have used the independence

assumption based SQL (semi-parametric quasi-likelihood) estimating equation

K∑
i=1

ni∑
j=1

wij(z0)
∂µij
∂ψ(z0)

(
yij − µij
σi,jj

) = 0, (2.6)

(Carota and Parmigiani, 2002) to obtain ψ̂(z0), where wij(z0) is known as a kernel

weight. If wij(z0) = 1 for all i and j, the SQL estimating equation (2.6) reduces to

the well known QL estimating equation (Wedderburn, 1974). After some algebra, it

was shown in Sutradhar et al. (2016) that the SQL estimator of ψ(·) has the close
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form

ψ̂(βββ, z0) = log

{ ∑K
i=1

∑ni

j=1wij(z0)yij∑K
i=1

∑ni

j=1wij(z0) exp[xxx
⊤
ij(tij)βββ]

}
. (2.7)

2.2.2 Moment estimation for the correlation index parameter

ρ

Notice from (2.4) that the lag 1 covariance has the formula

cov(Yi,j−1, Yij) = ρµi,j−1(βββ,xxxi,j−1, ψ(zi,j−1)). (2.8)

Consequently, by equating the average sample covariance with its population coun-

terpart in (2.8), a MM (method of moments) estimator of ρ can be obtained as

ρ̂ =
K∑
i=1

ni∑
j=2

[
(yij − µij(xxxij,βββ, ψ(zij)))√

µij(βββ,xxxij, ψ(zij))
][
(yi,j−1 − µi,j−1(xxxi,j−1,βββ, ψ(zi,j−1)))√

µi,j−1(βββ,xxxi,j−1, ψ(zi,j−1))
]/

K∑
i=1

ni∑
j=2

[

√
µi,j−1(βββ,xxxi,j−1, ψ(zi,j−1))√

µij(βββ,xxxi,j, ψ(zi,j))
] (2.9)

for known ψ(·).

However, as ψ(·) was estimated consistently by (2.7), the means, variances and

covariances can be modified (see Sutradhar et al., 2016) as

µ̃ij(βββ,xxxij, ψ̂(βββ, zij)) = E[Yij|xxxij, ψ̂(·)] = exp[xxx⊤ij(tij)βββ + ψ̂(βββ, zij)]

σ̃i,jj(βββ,xxxij, ψ̂(βββ, zij)) = µ̃ij(βββ,xxxij, ψ̂(βββ, zij)) = exp[xxx⊤ij(tij)βββ + ψ̂(βββ, zij)],

and

σ̃i,jk(βββ, ρ,xxxij, ψ̂(βββ, zij)) = ρk−jµ̃ij(βββ,xxxij, ψ̂(βββ, zij)), for j < k, (2.10)
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respectively. Next by replacing ψ(zij) function involved in (2.9) with ψ̂(βββ, zij) for

known βββ, we used the SMM (semi-parametric method of moments) estimator given

by

ρ̃ =
K∑
i=1

ni∑
j=2

[
(yij − µ̃ij(xxxij,βββ, ψ̂(βββ, zij)))√

µ̃ij(βββ,xxxij, ψ̂(βββ, zij))
][
(yi,j−1 − µ̃i,j−1(xxxi,j−1,βββ, ψ̂(βββ, zi,j−1)))√

µ̃i,j−1(βββ,xxxi,j−1, ψ̂(βββ, zi,j−1))
]

/
K∑
i=1

ni∑
j=2

[

√
µ̃i,j−1(βββ,xxxi,j−1, ψ̂(βββ, zi,j−1))√

µ̃ij(βββ,xxxi,j, ψ̂(zij))
]. (2.11)

2.2.3 Estimation of βββ

As far as the estimation of the main regression parameter βββ is concerned, using

µ̃µµi(βββ, ψ̂(βββ)) = E(Yi) = [µ̃i1(βββ, ψ̂(βββ)), . . . , . . . , µ̃ini
(βββ, ψ̂(βββ))]⊤ : ni × 1

Σ̃ΣΣi(βββ, ρ, ψ̂(βββ)) = cov(Yi) = (σ̃i,jk(βββ, ρ, ψ̂(βββ))) : ni × ni, (2.12)

Sutradhar et al. (2016) have constructed the SGQL (semi-parametric generalized

quasi-likelihood) estimating equation

K∑
i=1

∂[µ̃µµi(βββ, ψ̂(βββ))]
⊤

∂βββ
[Σ̃ΣΣi(βββ, ρ, ψ̂(βββ))]

−1 [yyyi − µ̃µµi(βββ, ψ̂(βββ))] = 0, (2.13)

for βββ. This SGQL estimating equation was shown to produce both consistent and

efficient estimates for βββ.



Chapter 3

Semi-parametric dynamic mixed

models for longitudinal count data

Panel count data analysis has been an important research topic over the last decades

both in Econometrics and Statistics. See, for example, Montalvo (1997), Wooldridge

(1999), Sutradhar and Bari (2007), Winkelmann (2008), Sutradhar (2011) (Chapter

8), and Sutradhar et al. (2014) for various longitudinal mixed models for such panel

count data. Sutradhar and Bari (2007) have illustrated their longitudinal mixed model

in the context of repeated physician office visits data. Sutradhar (2011) (Chapter 8)

has also discussed an application to a panel count data consisting of repeated patent

awards to selected industries in USA and their R&D (research and development) re-

lated covariates (Hausman et al., 1984, Blundell et al., 1995, Montalvo, 1997). In

these panel count data models, the repeated count responses are influenced by time

dependent covariates and individual common random effect. Suppose that tij denote

the time at which the jth (j = 1, . . . , ni) count response is recorded from the ith

(i = 1, . . . , K) individual. Next, suppose that yyyi = (yi1, . . . , yij, . . . , yini
)⊤ denote the

ni×1 vector of repeated count responses for the ith individual. Also suppose that the
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response yij of the ith individual is influenced by a fixed and known p−dimensional

time dependent covariate vector xxxij(tij) and another unobservable factor. We accom-

modate this unobservable factor by using a latent effect τ ∗i , say, which we assume to be

common among the repeated counts yi1, . . . , yij, . . . , yini
. In count data setup, these

random effects are in general assumed to follow certain gamma or lognormal distribu-

tions, lognormal being most widely used (Breslow and Clayton, 1993, Schall, 1991).

For this chapter, we assume that τ ∗i
iid∼ N(0, σ2

τ ), or equivalently τi = τ ∗i /στ
iid∼ N(0, 1).

Note that in most of the longitudinal studies , the covariates are collected at regular

intervals, tij = hj, where h is a constant, and hence xxxij(tij) can be replaced by xxxij(j),

when convenient. For example, in a physician visits study, xxxij(j) may represent the

smoking status of the ith individual in jth month, where detailed breakdown such as

smoking status over the days or weeks may not be more informative.

We now consider that yij conditional on τi follows a marginal Poisson distribution

with mean E [Yij|τi] = m∗
ij = exp(xxx⊤ij(j)βββ + σττi). That is,

m∗
ij = E [Yij|τi] = Var [Yij|τi] = exp(xxx⊤ij(j)βββ + σττi). (3.1)

Because conditional on τi, yi1, . . . , yij, . . . , yini
are likely to be correlated, some

authors such as Sutradhar and Bari (2007), Sutradhar et al. (2014) modeled this

through a dynamic relationship given by

yij|τi = ρ ∗ yi,j−1|τi + dij|τi, j = 2, . . . , ni, (3.2)

where it is assumed that yi1|τi ∼ Poi(m∗
i1), and for j = 2, . . . , ni, yi,j−1|τi ∼ Poi(m∗

i,j−1),

and dij|τi ∼ Poi(m∗
ij − ρm∗

i,j−1). Here Poi(m) stands for Poisson distribution with

mean m. In (3.2), conditional on τi, dij and yi,j−1 are independent. Furthermore,

for a given count yi,j−1, ρ ∗ yi,j−1 =
∑yi,j−1

k=1 bk(ρ) is a binomial thinning operation,
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where bk(ρ) stands for a Bernoulli random variable with Pr[bk(ρ) = 1] = ρ and

Pr[bk(ρ) = 0] = 1−ρ. This model (3.2) produces the pairwise correlations conditional

on τi as

Corr(Yij, Yik|τi) = ρk−j
√
m∗
ij

/
m∗
ik for j < k.

In some practical situations, it may happen that in addition to xxxij(tij) or xxxij(j),

some other secondary covariates are collected from the ith individual at times tij

(j = 1, · · · , ni). We consider a scalar secondary covariate for convenience, namely,

zij(tij). For example, in the Health Care Utilization (HCU) data (Sutradhar, 2003),

the repeated numbers of yearly physician visits were studied as a function of various

covariates such as gender, education level, chronic disease status and age of the in-

dividuals. Here the effects of gender, education level and chronic disease status on

individuals’ yearly physician office visits may be of primary interest, whereas the age

of an individual could be considered as the secondary covariate zij. On top of xxxij(tij),

this secondary covariate zij(tij) must influence yij as well. But its effect is not of

direct interest. Following some semi-parametric longitudinal fixed models (Severini

and Staniswalis, 1994, Zeger and Diggle, 1994, Sneddon and Sutradhar, 2004, Lin and

Carroll, 2001, 2006, You and Chen, 2007, Warriyar and Sutradhar, 2014), we accom-

modate the effect of zij(tij) nonparametrically. The ultimate model for the responses

yij, j = 1, · · · , ni, as a function of the fixed covariate xxxij(tij), random effect τi and

secondary covariate zij(tij) will be referred to as the semi-parametric generalized lin-

ear mixed model (SGLMM) for longitudinal data. This mixed model is discussed in

details in the next section. Note that this SGLMM for longitudinal data is new, and

it has not been adequately addressed in the literature.

For the purpose of fitting the SGLMM to a longitudinal data set, a step by step
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estimation for the nonparametric function, and regression, overdispersion, and longi-

tudinal correlation index parameters, is given in Section 3.2. The asymptotic proper-

ties of the estimators are discussed in Section 3.3 in details. In Section 3.4, we carry

out an extensive simulation study to examine the finite sample performance of the

estimation approaches for the proposed semi-parametric dynamic mixed model.

3.1 Proposed SGLMM for longitudinal count data

and its basic properties

In this section, we extend the GLMM for longitudinal data ((3.1)−(3.2)) for count

data to the semi-parametric setup. For the purpose, we add a nonparametric function

ψ(zij) to the linear predictor xxx⊤ij(j)βββ + σττi in the mixed model (3.1). One may write

the conditional marginal mean and variance as

µ∗
ij = E [Yij|τi] = Var [Yij|τi] = exp

{
xxx⊤ij(j)βββ + σττi + ψ(zij)

}
, (3.3)

which are now semi-parametric because of the introduction of ψ(zij). This model

(3.3) is known as SGLMM for longitudinal Poisson count data. However, to be brief,

we may refer to this SGLMM (3.3) as the semi-parametric mixed model (SMM). Note

that τi in (3.3), similar to the mixed model (3.1)−(3.2), will be assumed to follow

τi
iid∼ N(0, 1) (see also Breslow and Clayton, 1993, Schall, 1991).

The correlations among yi1, . . . , yij, . . . , yini
conditional on τi are modeled through

a dynamic relationship given by

yij|τi = ρ ∗ yi,j−1|τi + dij|τi , (3.4)
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which is similar to but different from (3.2). The difference lies in the fact that the

conditional marginal means and variances under (3.4) have the form (3.3), whereas

under the mixed model (3.1) and (3.2), yij|τi ∼ Poi(m∗
ij) withm

∗
ij = exp(xxx⊤ij(j)βββ+στi).

Consequently, following the correlation properties under the model (3.1)−(3.2), we can

write the formula for correlations under the present model (3.3)−(3.4) as

Corr(Yij, Yik|τi) = ρk−j
√
µ∗
ij

/
µ∗
ik for j < k, or

Cov(Yij, Yik|τi) = ρk−jµ∗
ij for j < k. (3.5)

Next, we provide the basic properties of the count responses, i.e., the unconditional

mean, variance and pairwise covariances under the proposed SMM ((3.3)−(3.4)) as

in the following lemma.

Lemma 3.1. Under the SMM (3.3)−(3.4), the responses have the following moment

properties:

µij ≡ µij(βββ, στ , ψ(·)) = E [Yij] = exp

{
xxx⊤ijβββ +

σ2
τ

2
+ ψ(zij)

}
, (3.6)

σijj ≡ σijj(βββ, στ , ψ(·)) = Var [Yij] = µij + µ2
ij

[
exp(σ2

τ )− 1
]
, and (3.7)

σijk ≡ σijk(βββ, στ , ρ, ψ(z0)) = Cov (Yij, Yik)

= ρk−jµij + µijµik
(
exp(σ2

τ )− 1
)
, j < k, j, k = 1, · · · , ni . (3.8)

Proof. The proof follows from the moment generating function of the normal distri-

bution.

µij = E [Yij] = E [E (Yij|τi)]

= exp
{
xxx⊤ijβββ + ψ(zij)

}
E (exp(σττi)) = exp

{
xxx⊤ijβββ +

σ2
τ

2
+ ψ(zij)

}
,
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and

σijj = Var [Yij] = Var [E (Yij|τi)] + E [Var (Yij|τi)]

= Var
[
exp

{
xxx⊤ijβββ + ψ(zij) + σττi

}]
+ E

[
µ∗
ij

]
= exp

{
2xxx⊤ijβββ + 2ψ(zij)

}
Var (exp(σττi)) + µij

=

[
exp

{
xxx⊤ijβββ + ψ(zij) +

σ2
τ

2

}]2 (
exp(σ2

τ )− 1
)
+ µij

= µij + µ2
ij

[
exp(σ2

τ )− 1
]
.

Similarly, the formula for the pair-wise covariances in (3.8) is derived as

σijk = Cov (Yij, Yik) = E [Cov (Yij, Yik|τi)] + Cov [E (Yij|τi) ,E (Yik|τi)] ,

which by using (3.5) reduces to

σijk = E
[
ρk−jµ∗

ij

]
+ Cov

[
exp(xxx⊤ijβββ + ψ(zij) + σττi), exp(xxx

⊤
ikβββ + ψ(zik) + σττi)

]
= ρk−jµij + µijµik

(
exp(σ2

τ )− 1
)
.

Note that the above notations, i.e., µij(·), σijj(·) and σijk(·) were also used in Chapter

2, specifically in the equations (2.3)−(2.4) [see also (1.36)]. However, they were written

under the fixed model, i.e., for the cases where στ = 0.

We remark that the Lemma 3.1 further gives the lag (k − j) unconditional corre-

lations as

Corr (Yij, Yik) =
σijk√
σijjσikk
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=
µijρ

k−j + µijµik (exp(σ
2
τ )− 1)[{

µij + µ2
ij (exp(σ

2
τ )− 1)

}
{µik + µ2

ik (exp(σ
2
τ )− 1)}

] 1
2

. (3.9)

We further remark that because in model (3.4) dij|τi ∼ Poi(µ∗
ij − ρµ∗

i,j−1) with

(µ∗
ij − ρµ∗

i,j−1) ≥ 0, the correlation index parameter ρ in (3.8) or (3.9), must satisfy

the range restriction 0 ≤ ρ < min[1, µ∗
ij/µ

∗
i,j−1], which is the same as

0 ≤ ρ < min[1, ν∗ij/ν
∗
i,j−1] for j = 2, . . . , ni and i = 1, . . . , K, (3.10)

where ν∗ij = exp(xxx⊤ijβββ+ψ(zij)). Because consecutive observations tend to have similar

covariate values, ν∗ij/ν
∗
i,j−1 in (3.10) are likely to be close to 1, so practically (3.10)

should not force a strict restriction on data.

Notice from (3.9) that under the proposed model, unlike the longitudinal fixed

model case (2.5), the correlation index parameter value ρ = 0 does not imply that

the responses under the present model (3.3)−(3.4) are uncorrelated. The repeated

responses are uncorrelated only when both ρ = 0 and σ2
τ = 0. However, since in

the mixed model σ2
τ > 0 always, the pairwise responses are positively correlated

irrespective of the case whether ρ is zero or not. This correlation behavior of the

proposed model will be exploited in the next section in order to develop the necessary

estimating equations.

3.2 Quasi-likelihood estimation for the proposed

SGLMM for longitudinal count data

In (3.9) we have seen that the repeated responses are uncorrelated only when both

correlation index parameter ρ and over-dispersion effect parameter στ are zero. There-

fore, one has to be careful while estimating the regression effects βββ and nonparametric
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function ψ(zij(tij)) using any GEE(I) (the generalized estimating equation based on

the assumption of independence) approach. In fact, although one can argue that it

would be okay to use ρ = 0 for initial estimation of these parameters and functions,

one cannot set σ2
τ = 0 because this would always produce inconsistent estimates since

σ2
τ is involved in the mean function (3.6) along with them [βββ and ψ(zij)]. As opposed

to the semi-parametric longitudinal fixed model (Severini and Staniswalis, 1994, Lin

and Carroll, 2001, 2006, You and Chen, 2007, Warriyar and Sutradhar, 2014) this is

a major additional estimation problem in the present semi-parametric longitudinal

mixed model case.

In this section we develop a quasi-likelihood estimation approach which provides

consistent estimates for all parameters and the nonparametric function involved in

the SGLMM. Note that this approach has been used by some authors (Severini and

Staniswalis, 1994, Lin and Carroll, 2001, 2006, Warriyar and Sutradhar, 2014) for the

SGLFM (semi-parametric generalized linear fixed model) for longitudinal data. Sev-

erini and Staniswalis (1994) and Lin and Carroll (2001) (see also Zeger and Diggle,

1994) refer to their procedure as the semi-parametric generalized estimating equation

(SGEE) approach which does not need any specification of the underlying longitudi-

nal correlation structure. However, there has been many studies showing that, under

specific circumstances, independence assumption based GEE (GEE(I)) approach may

produce more efficient regression estimates at times than arbitrary ‘working’ correla-

tions based GEE approach. See for example, Sutradhar (2010) (Section 3.1) (see also

Sutradhar and Das, 1999) in the context of GLFM for longitudinal count data. Also,

as we will show in Chapter 4, in the context of semi-parametric longitudinal models

for binary data, the SGEE(I) approach produces more efficient regression estimates as

compared to ‘working’ SGEE approaches. This efficiency feature undermines the use

of the GEE or SGEE approaches. Thus, we do not discuss the GEE approaches any
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further in this chapter. Instead, we assume that the repeated count data are gener-

ated following the AR(1) Poisson mixed model (3.4) based correlation structure (3.9)

and consequently use the true correlation structure based semi-parametric GQL (gen-

eralized quasi-likelihood) approach for the estimation of the main regression effects

(of the primary covariates) and the overdispersion parameter (Sutradhar and Bari

(2007); Sutradhar (2011, Chapter 8)). Next, because the nonparametric function and

the longitudinal correlations are of secondary interest, we estimate them using the

simpler SQL (semi-parametric QL) and SMM (semi-parametric method of moments)

approaches, respectively, as opposed to the SGQL approach. These estimation ap-

proaches are discussed in the following subsections.

3.2.1 QL estimation for the nonparametric function ψ(·)

The function ψ(zij) has to be estimated for all j = 1, . . . , ni and i = 1, . . . , K, where

zij is a secondary covariate collected at time tij. Thus, it is equivalent to estimate

ψ(z0), say, where z0 ≡ zij for all values of i and j. In the SGLFM setup for longitudinal

data, some authors such as Lin and Carroll (2001) (see also Severini and Staniswalis,

1994) have estimated the function ψ(·) by using a ‘working’ correlation structure based

estimating equation approach. There are several drawbacks of this GEE approach.

For example, these authors have considered the case ni = n, say, for estimating their

so-called n×n unstructured ‘working’ common correlation matrix, whereas in practice

ni’s can be different. Furthermore, using a common average ‘working’ correlation

matrix for all individuals may not be appropriate mainly because actual correlations

may be functions of time dependent covariates [see (3.9)]. These limitations restrict

the application of their approach to longitudinal problems. Our study in this thesis

indicates that because zij are simply fixed covariates, for consistent estimation of

ψ(zij), which is of secondary interest, it would be enough to use an independent
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assumption based estimating equation, whereas the main regression parameter (effect

of primary covariates) βββ would be estimated consistently and as efficiently as possible

by using the correlation structure based estimating equation. Furthermore unlike the

existing fixed regression models, we also need to consistently and efficiently estimate

the overdispersion parameter, σ2
τ , involved in the present mixed model (3.3).

In the quasilikelihood (QL) approach for independent data (Wedderburn, 1974)

one explores the mean and the variance functions, variance being a function of mean

such as in a GLM setup, to write a QL estimating equation for the parameter involved

in the mean function. When the mean function involves a nonparametric function,

one way to address the estimation of such a function is by solving a kernel weights

based semi-parametric QL (SQL) estimating equation. For the estimation of ψ(z0)

in the present setup which influences the mean function µij(βββ, στ , ψ(z0)), the SQL

estimating equation has the form

K∑
i=1

ni∑
j=1

wij(z0)
∂µij(βββ, στ , ψ(z0))

∂ψ(z0)

(
yij − µij(βββ, στ , ψ(z0))

σijj(βββ, στ , ψ(z0))

)
= 0 (3.11)

(e.g. Carota and Parmigiani, 2002, Sutradhar et al., 2016, see also (2.6)), where wij(z0)

is referred to as the kernel weight defined as

wij(z0) = pij(
z0 − zij

b
)

/
K∑
l=1

nl∑
u=1

plu(
z0 − zlu

b
) (3.12)

where pij is the kernel density with a suitable bandwidth parameter, b. Note that this

SQL estimating equation (3.11) is different than the so-called ‘working’ correlations

based SGEE (semi-parametric GEE) used by Lin and Carroll (2001, 2006) (see also

Severini and Staniswalis, 1994). It is simpler than SGEE and also it assures the

consistency of the estimator. Notice that even though SGEE is developed for efficient
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estimation, it may produce inefficient estimate than the ‘working’ independence based

SQL estimator [Lin and Carroll (2001, Section 7), Sutradhar et al. (2016)].

With regard to the selection of the kernel density pij(·), it should be noted that

there is, in fact, no unique choice for the selection of such a density. Some of the

widely used kernel densities, for example, are the Gaussian density given by

pij

(
z0 − zij

b

)
=

1√
2π b

exp

{
−1

2

(
z0 − zij

b

)2
}
, (3.13)

and the Epanechnikov kernel (Pagan and Ullah (1999, p. 28)) with density

pij(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
1
4
(1− ϕ2) for |ϕ| ≤ 1

0 otherwise

with ϕ =
z0 − zij

b
. (3.14)

In (3.12)−(3.14), b is a suitable bandwidth parameter. We assume that this parameter

is chosen such that the mean squared error of the estimator of ψ(zij) will be minimized.

It has been suggested to choose b as b ∝ K−1/5 (Altman, 1990, Powell and Stoker,

1996, Pagan and Ullah, 1999, Horowitz, 2009).

Now, because ∂µij(βββ, σ
2
τ , ψ(z0))/∂ψ(z0) = µij(βββ, σ

2
τ , ψ(z0)), the SQL estimating

equation (3.11) can be further simplified as

K∑
i=1

ni∑
j=1

wij(z0)

(
yij − µij(βββ, σ

2
τ , ψ(z0))

1 + µij(βββ, σ2
τ , ψ(z0)) (exp(σ

2
τ )− 1)

)
= 0 , (3.15)

which, for given values of βββ and σ2
τ , may be solved iteratively until convergence.

Notice that the estimate of ψ(z0) from the SQL estimating equation (3.15) is a

function of βββ and σ2
τ . Hence we denote the estimator of ψ(z0) by ψ̂(z0;βββ, σ

2
τ ). The

consistency property of this estimator is discussed in Section 3.3, and we study through

simulations its finite sample properties along with the properties of other estimators
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in Section 3.4.

3.2.2 SGQL estimation of regression effects βββ

Recall that the means µij(βββ, σ
2
τ , ψ(zij)) and variances σijj(βββ, σ

2
τ , ψ(zij)) for all j =

1, · · · , ni; i = 1, · · · , K are used to estimate ψ(·) by using the well-known QL approach

(Wedderburn, 1974). As mentioned, this was done to obtain consistent estimator of

ψ(·). In this section, however, we develop the estimation technique to obtain both

consistent and efficient estimates for the regression parameters. For this purpose

we need to consider the covariances among the repeated responses. Thus, we now

construct the mean vector and covariance matrix of the repeated count responses.

For known ψ(·), let

E(YYY i) = µµµi(βββ, σ
2
τ , ψ(·))

= (µi1(βββ, σ
2
τ , ψ(·)), . . . , µij(βββ, σ2

τ , ψ(·)), . . . , µini
(βββ, σ2

τ , ψ(·)))⊤, (3.16)

and

Cov(YYY i) = ΣΣΣi(βββ, σ
2
τ , ρ, ψ(·)) = (σijk(βββ, σ

2
τ , ρ, ψ(·))) : ni × ni , (3.17)

where yyyi = (yi1, . . . , yij, . . . , yini
)⊤ is the ni × 1 vector of responses for the ith in-

dividual. However, it is clear from the last section that when ψ(zij) are estimated

by solving the SQL estimating equation (3.15), we obtain the estimator ψ̂(zij;βββ, σ
2
τ )

which contains unknown βββ and σ2
τ . Consequently, the mean vector and the covariance

matrix now have the forms

µ̄µµi(βββ, σ
2
τ , ψ̂(βββ, σ

2
τ )) =

(
µ̄i1(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ )), . . . , µ̄ij(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ )), . . . ,

µ̄ini
(βββ, σ2

τ , ψ̂(βββ, σ
2
τ ))
)⊤

: ni × 1 and (3.18)
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Σ̄ΣΣi(βββ, σ
2
τ , ρ, ψ̂(βββ, σ

2
τ )) = (σ̄ijk(βββ, σ

2
τ , ρ, ψ̂(βββ, σ

2
τ ))) : ni × ni. (3.19)

We now use these new notations from (3.18) and (3.19) and following Sutradhar

(2003), for example, construct the semi-parametric GQL (SGQL) estimating equation

for βββ as

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ρ, ψ̂(βββ, σ
2
τ ))

×
(
yyyi − µ̄µµi(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))
)
= 0. (3.20)

Note that the computation of the derivative matrix
∂µ̄µµ⊤i (βββ,σ2

τ ,ψ̂(βββ,σ
2
τ ))

∂βββ
in (3.20) re-

quires the formula for the derivative ∂ψ̂(βββ,σ2
τ )

∂βββ
, whereas this derivative would have been

zero if ψ(·) was known. The exact formula for the gradient matrix
∂µ̄µµ⊤i (βββ,σ2

τ ,ψ̂(βββ,σ
2
τ ))

∂βββ

may be computed as

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))

∂βββ

=
∂(µ̄i1(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ )), . . . , µ̄ini

(βββ, σ2
τ , ψ̂(βββ, σ

2
τ )))

∂βββ
, (3.21)

where, for j = 1, . . . , ni, one obtains

∂µ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂βββ

= µ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

[
xxxij +

∂ψ̂(zij;βββ, σ
2
τ )

∂βββ

]
. (3.22)

Now to compute the derivative
∂ψ̂(zij ;βββ,σ

2
τ )

∂βββ
for (3.22), we turn back to the estimating
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equation (3.15) for ψ(z0), and take its derivative with respect to βββ and obtain

K∑
i=1

ni∑
j=1

wij(z0)

⎧⎪⎨⎪⎩ (exp(σ2
τ )− 1) yij + 1[

1 + µ̄ij(βββ, σ2
τ , ψ̂(z0;βββ, σ

2
τ )) (exp(σ

2
τ )− 1)

]2
⎫⎪⎬⎪⎭

× µ̂ij(βββ, σ
2
τ , ψ̂(z0;βββ, σ

2
τ ))

[
xxxij +

∂ψ̂(z0;βββ, σ
2
τ )

∂βββ

]
= 0,

yielding

∂ψ̂(z0;βββ, σ
2
τ )

∂βββ
(3.23)

=

−
K∑
i=1

ni∑
j=1

wij(z0)

{
1+yij(exp(σ2

τ )−1)
[1+µ̄ij(βββ,σ2

τ ,ψ̂(z0;βββ,σ
2
τ ))(exp(σ

2
τ )−1)]

2

}
µ̄ij(βββ, σ

2
τ , ψ̂(z0;βββ, σ

2
τ ))xxxij

K∑
i=1

ni∑
j=1

wij(z0)

{
1+yij(exp(σ2

τ )−1)

[1+µ̄ij(βββ,σ2
τ ,ψ̂(z0;βββ,σ

2
τ ))(exp(σ

2
τ )−1)]

2

}
µ̄ij(βββ, σ2

τ , ψ̂(z0;βββ, σ
2
τ ))

.

Applying the gradient function from (3.22) to (3.20), we now solve Eqn. (3.20). The

SGQL estimate of βββ obtained by solving (3.20) will be denoted by β̂ββ. Its asymptotic

and finite sample properties are discussed in Sections 3.3 and 3.4, respectively.

3.2.3 SGQL estimation of the random effect variance σ2τ

In general, the generalized method of moments (GMM) and the generalized quasi-

likelihood (GQL) are popular procedures for the estimation of the overdispersion

index parameter, σ2
τ , involved in the SGLMM (3.2) with repeated count data. How-

ever, it was demonstrate by Rao et al. (2012) (see also Sutradhar (2011, Chapter

8, table 8.2)), under a linear longitudinal setup, that the GQL approach produces

more efficient estimate for this parameter as compared to the GMM approach. Fur-

thermore, Sutradhar and Bari (2007) demonstrated that, for count data, the GQL

approach also performs well in estimating this parameter under a longitudinal setup.
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In this section, we generalize the GQL approach to the semi-parametric longitudinal

setup. Note that our proposed estimating equation would be similar to (3.20) for βββ

estimation. The difference lies in the fact that the SGQL estimating equation for σ2
τ

will be constructed using second order responses.

3.2.3.1 SGQL estimation using squared responses

Consider a vector of squared responses UUU i = [Y 2
i1, . . . , Y

2
ij , . . . , Y

2
ini
]⊤. Then a GQL

estimating equation for σ2
τ may be developed by minimizing the quadratic distance

function

Q = (uuui − E[UUU i])
⊤{Cov[UUU i]}−1(uuui − E[UUU i]) (3.24)

(Sutradhar and Bari, 2007), where uuui is the observed value of UUU i. For the computation

of E[UUU i] and Cov[UUU i] in the present semi-parametric setup, we first recall from (3.18)

that µij = E[Yij] now has the formula µ̄ij ≡ µ̄ij(βββ, σ
2
τ , ψ̂(βββ, σ

2
τ )). This is because the

estimate of ψ(z0), ψ̂(z0;βββ, σ
2
τ ) ≡ ψ̂(βββ, σ2

τ ) (3.15), is still a function of unknown βββ and

σ2
τ . Then, we may compute E[UUU i] by using

E[Y 2
ij ] = λ̄ijj(βββ, σ

2
τ , ψ̂(·)) = µ̄ij + µ̄2

ij e
σ2
τ . (3.25)

More specifically,

λ̄λλi(βββ, σ
2
τ , ψ(·)) = E(UUU i) = E[Y 2

i1, . . . , Y
2
ij , . . . , Y

2
ini
]⊤

= [λ̄i11(βββ, σ
2
τ , ψ̂(·)), . . . , λ̄ijj(βββ, σ2

τ , ψ̂(·)), . . . , λ̄inini
(βββ, σ2

τ , ψ̂(·))]⊤. (3.26)

By using similar notation we now compute Ω̄ΩΩi = Cov(UUU i). To be brief, we use µ̄ij for

µ̄ij(βββ, σ
2
τ , ψ̂(βββ, σ

2
τ )), and λ̄ijj for λ̄ijj(βββ, σ

2
τ , ψ̂(·)). The diagonal elements of Ω̄ΩΩi can be
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obtained following Sutradhar and Bari (2007, Section 3) as

Var
(
Y 2
ij

)
= µ̄ij

[
1 + 7µ̄ij exp(σ

2
τ ) + 6µ̄2

ij exp(3σ
2
τ ) + µ̄3

ij exp(6σ
2
τ )
]
− λ̄2ijj. (3.27)

3.2.3.1.1 Computation of the off-diagonal elements

To compute the off-diagonal elements of Ω̄ΩΩi, we will use the following 3 lemmas. First,

model (3.4) leads directly to the recursive conditional expectation formula

E
[(
Yij − µ∗

ij

)⏐⏐Yi,j−1 = yi,j−1, τi
]
= ρ

(
yi,j−1 − µ∗

i,j−1

)
, (3.28)

as well as the following conditional expectation formula:

Lemma 3.2. Lag 1 expectation of conditional corrected squares: for j = 2, · · · , ni,

E
[{(

Yij − µ∗
ij

)2 − µ∗
ij

} ⏐⏐⏐Yi,j−1 = yi,j−1, τi

]
= ρ2

[(
yi,j−1 − µ∗

i,j−1

)2 − µ∗
i,j−1

]
+ ρ (1− ρ)

(
yi,j−1 − µ∗

i,j−1

)
. (3.29)

Proof. By expanding the left hand side of (3.29), we obtain

E
[(
Yij − µ∗

ij

)2 ⏐⏐⏐Yi,j−1 = yi,j−1, τi

]
= E

[(
Y 2
ij − 2µ∗

ijYij + µ∗
ij
2
) ⏐⏐Yi,j−1 = yi,j−1, τi

]
= ρ2y2i,j−1 − 2ρ2µ∗

i,j−1yi,j−1 − ρ2yi,j−1 + ρ yi,j−1 + ρ2µ∗
i,j−1

2 − ρ µ∗
i,j−1 + µ∗

ij

= ρ2
(
yi,j−1 − µ∗

i,j−1

)2
+ ρ

(
yi,j−1 − µ∗

i,j−1

)
− ρ2

(
yi,j−1 − µ∗

i,j−1

)
− ρ2µ∗

i,j−1 + µ∗
ij

= ρ2
[(
yi,j−1 − µ∗

i,j−1

)2 − µ∗
i,j−1

]
+ ρ (1− ρ)

(
yi,j−1 − µ∗

i,j−1

)
+ µ∗

ij ,

yielding the lemma.

Lemma 3.3. Lag (k − j) expectation of conditional corrected squares: for j < k and
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j, k = 1, · · · , ni,

E
[{

(Yik − µ∗
ik)

2 − µ∗
ik

} ⏐⏐Yi,j = yi,j, τi
]
= ρ2(k−j)

[(
yij − µ∗

ij

)2 − µ∗
ij

]
+ ρk−j

(
1− ρk−j

) (
yij − µ∗

ij

)
. (3.30)

Proof. It follows from (3.29) that conditional on τi,

E
[{

(Yik − µ∗
ik)

2 − µ∗
ik

} ⏐⏐Yi,j = yi,j, τi
]

= E
[
ρ2
{
ρ2
[(
yi,k−2 − µ∗

i,k−2

)2 − µ∗
i,k−2

]
+ ρ (1− ρ)

(
yi,k−2 − µ∗

i,k−2

)}
+ ρ (1− ρ)ρ

(
yi,k−2 − µ∗

i,k−2

) ⏐⏐Yi,j = yi,j, τi
]

= E
[
ρ4
[(
yi,k−2 − µ∗

i,k−2

)2 − µ∗
i,k−2

]
+ ρ (1− ρ)

(
ρ+ ρ2

) (
yi,k−2 − µ∗

i,k−2

) ⏐⏐⏐Yi,j = yi,j, τi

]
.

Further, using (3.28) and (3.29) recursively, we obtain

E
[{

(Yik − µ∗
ik)

2 − µ∗
ik

} ⏐⏐Yi,j = yi,j, τi
]

= ρ2(k−j)
[(
yij − µ∗

ij

)2 − µ∗
ij

]
+ ρ (1− ρ)

(
ρk−j−1 + . . .+ ρ2(k−j−1)

) (
yij − µ∗

ij

)
= ρ2(k−j)

[(
yij − µ∗

ij

)2 − µ∗
ij

]
+ ρk−j(1− ρ)

(
1 + . . .+ ρk−j−1

) (
yij − µ∗

ij

)
= ρ2(k−j)

[(
yij − µ∗

ij

)2 − µ∗
ij

]
+ ρk−j

(
1 + . . .+ ρk−j−1 − ρ− . . .− ρk−j

) (
yij − µ∗

ij

)
= ρ2(k−j)

[(
yij − µ∗

ij

)2 − µ∗
ij

]
+ ρk−j

(
1− ρk−j

) (
yij − µ∗

ij

)
.

Lemma 3.4. Unconditional product moments: For j < k (j, k = 1, · · · , ni),

E(Y 2
ijY

2
ik) = 2ρ2(k−j)µ2

ij e
σ2
τ + 4ρk−j µikµ

2
ij e

3σ2
τ + 2ρk−j µ2

ij e
σ2
τ + 2ρk−j µikµij e

σ2
τ

+ ρk−j µij + µ2
ikµ

2
ij e

6σ2
τ + µikµ

2
ij e

3σ2
τ + µ2

ikµij e
3σ2

τ + µikµij e
σ2
τ . (3.31)
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Proof. By (3.28) and Lemma 3.3, we compute

E(Y 2
ijY

2
ik|τi) = E

[(
Yij − µ∗

ij + µ∗
ij

)2
(Yik − µ∗

ik + µ∗
ik)

2 |τi
]

= E
[{(

Yij − µ∗
ij

)2
+ 2µ∗

ij

(
Yij − µ∗

ij

)
+ µ∗

ij
2
}{

(Yik − µ∗
ik)

2 + 2µ∗
ik (Yik − µ∗

ik) + µ∗
ik

2
}
|τi
]

= E
[{(

Yij − µ∗
ij

)2
+ 2µ∗

ij

(
Yij − µ∗

ij

)
+ µ∗

ij
2
}{

ρ2(k−j)
[(
Yij − µ∗

ij

)2 − µ∗
ij

]
+ ρk−j

(
1− ρk−j

) (
Yij − µ∗

ij

)
+ µ∗

ik + 2ρk−jµ∗
ik

(
Yij − µ∗

ij

)
+ µ∗

ik
2
}
|τi
]
,

that can be simplified to

E(Y 2
ijY

2
ik|τi) = E

[
ρ2(k−j) Y 4

ij − 2µ∗
ij ρ

2(k−j) Y 3
ij − ρ2(k−j) Y 3

ij + 2µ∗
ik ρ

k−j Y 3
ij + ρk−j Y 3

ij

+µ∗
ij
2 ρ2(k−j) Y 2

ij − 2µ∗
ij µ

∗
ik ρ

k−j Y 2
ij − µ∗

ij ρ
k−j Y 2

ij + µ∗
ik

2 Y 2
ij + µ∗

ik Y
2
ij |τi

]
= 2µ∗

ij
2 ρ2(k−j) + 4µ∗

ij
2 µ∗

ik ρ
k−j + 2µ∗

ij µ
∗
ik ρ

k−j + 2µ∗
ij
2 ρk−j

+ µ∗
ij ρ

k−j + µ∗
ij
2 µ∗

ik
2 + µ∗

ij µ
∗
ik

2 + µ∗
ij
2 µ∗

ik + µ∗
ij µ

∗
ik.

Finally, by substituting ψ̂(·) for ψ(·) in (3.31), we obtain the off-diagonal elements

of Ω̄ΩΩi as:

Cov
(
Y 2
ij , Y

2
ik

)
= 2ρ2(k−j)µ̄2

ij exp(σ
2
τ ) + 4ρk−j µ̄ikµ̄

2
ij exp(3σ

2
τ ) + 2ρk−j µ̄2

ij exp(σ
2
τ )

+ 2ρk−j µ̄ikµ̄ij exp(σ
2
τ ) + ρk−j µ̄ij + µ̄2

ikµ̄
2
ij exp(6σ

2
τ ) + µ̄ikµ̄

2
ij exp(3σ

2
τ )

+ µ̄2
ikµ̄ij exp(3σ

2
τ ) + µ̄ikµ̄ij exp(σ

2
τ )− λ̄ijjλ̄ikk (3.32)

for j < k; j, k = 1, · · · , ni.

3.2.3.1.2 SGQL estimating equation

Now the minimization of Q in (3.24) with regard to σ2
τ provides the SGQL estimating
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equation for σ2
τ as

K∑
i=1

∂λ̄λλ
⊤
i (βββ, σ

2
τ , ψ̂(·))

∂σ2
τ

Ω̄ΩΩ
−1
i (βββ, σ2

τ , ρ, ψ̂(·))
(
uuui − λ̄λλi(βββ, σ

2
τ , ψ̂(·))

)
= 0 (3.33)

(Sutradhar, 2004), where λ̄λλi(βββ, σ
2
τ , ψ̂(·)) is a vector given by (3.25) and Ω̄ΩΩi(βββ, σ

2
τ , ρ, ψ̂(·))

is given by (3.27) and (3.32). Also in (3.33),

∂λ̄λλ
⊤
i

∂σ2
τ

=
∂(λ̄i11, . . . , λ̄ijj, . . . , λ̄inini

)

∂σ2
τ

, with

∂λ̄ijj
∂σ2

τ

=
∂
(
µ̄ij + µ̄2

ij exp(σ
2
τ )
)

∂σ2
τ

=
∂µ̄ij
∂σ2

τ

+ 2µ̄ij

(
∂µ̄ij
∂σ2

τ

)
exp(σ2

τ ) + µ̄2
ij exp(σ

2
τ ). (3.34)

Next because µ̄ij is obtained by replacing ψ̂(·) for ψ(·), it follows from (3.6) and (3.18)

that

∂µ̄ij
∂σ2

τ

= µ̄ij

[
1

2
+
∂ψ̂(zij;βββ, σ

2
τ )

∂σ2
τ

]
. (3.35)

For convenience, by labeling µ̄ij with µ̄ij(zij), we then write

∂ψ̂(z0;βββ, σ
2
τ )

∂σ2
τ

= −1

2

− exp(σ2
τ )

⎡⎢⎢⎢⎣
K∑
i=1

ni∑
j=1

wij(z0)
{

yij−µ̄ij(z0)
[1+µ̄ij(z0)(exp(σ2

τ )−1)]2

}
µ̄ij(z0)

K∑
i=1

ni∑
j=1

wij(z0)
{

1+yij(exp(σ2
τ )−1)

[1+µ̄ij(z0)(exp(σ2
τ )−1)]2

}
µ̄ij(z0)

⎤⎥⎥⎥⎦ , (3.36)

yielding

∂µ̄ij
∂σ2

τ

≡ ∂µ̄ij(zij)

∂σ2
τ
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= − exp(σ2
τ )

⎡⎢⎢⎢⎣
K∑
l=1

nl∑
u=1

wlu(zij)
{

ylu−µ̄lu(zij)
[1+µ̄lu(zij)(exp(σ2

τ )−1)]2

}
µ̄lu(zij)

K∑
l=1

nl∑
u=1

wlu(zij)
{

1+ylu(exp(σ2
τ )−1)

[1+µ̄lu(zij)(exp(σ2
τ )−1)]2

}
µ̄lu(zij)

⎤⎥⎥⎥⎦ µ̄ij(zij) . (3.37)

Notice that in the semi-parametric setup, it is important to accommodate the gradient

formula in (3.37), because when ψ(·) is known, ∂ψ(·)/∂σ2
τ = 0 and ∂µij/∂σ

2
τ = 1

2
µij.

Thus, using this later result will produce an inconsistent estimate.

3.2.3.2 SGQL estimation using squared corrected responses

For technical convenience an alternative way to construct a GQL estimating equation

for σ2
τ would be exploiting the vectors of second order squared corrected responses

from the individuals. For the ith individual, let

gggi = [(yi1 − µ̄i1(·))2, . . . , (yij − µ̄ij(·))2, . . . , (yini
− µ̄ini

(·))2]⊤

denote the second order corrected squared response vector, with known µ̄ij(·) (3.18)

computed from the previous iteration under a suitable iterative scheme. Following

(3.33), in this case, we write the SGQL estimating equation for σ2
τ as

K∑
i=1

∂σ̄σσ⊤
i (βββ, σ

2
τ , ψ̂(·))

∂σ2
τ

Ω̄ΩΩ
−1
iC (βββ, σ

2
τ , ρ, ψ̂(·))

(
gggi − σ̄σσi(βββ, σ

2
τ , ψ̂(·))

)
= 0, (3.38)

where

σ̄σσi = E(GGGi) = (σ̄i11, . . . , σ̄ijj, . . . , σ̄inini
)⊤

Ω̄ΩΩiC = Cov(GGGi), (3.39)
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with ‘C’ indicating a ‘corrected’ response based quantity, and by (3.7)

σ̄ijj = µ̄ij + µ̄2
ij(exp(σ

2
τ )− 1). (3.40)

In (3.38),

∂σ̄σσ⊤
i

∂σ2
τ

=
∂

∂σ2
τ

(σ̄i11, . . . , σ̄ijj, . . . , σ̄inini
), with

∂σ̄ijj
∂σ2

τ

=
∂µ̄ij
∂σ2

τ

+ 2µ̄ij

(
∂µ̄ij
∂σ2

τ

)(
exp(σ2

τ )− 1
)
+ µ̄2

ij exp(σ
2
τ ), (3.41)

where ∂µ̄ij/∂σ
2
τ is given by (3.37). Next, as the following lemmas indicate, the for-

mulas for the elements of Ω̄ΩΩiC may be computed in a manner similar to that for the

elements of Ω̄ΩΩi in (3.33).

Lemma 3.5. The diagonal elements of Ω̄ΩΩiC are given by

Var
[
(Yij − µ̄ij)

2] = µ̄4
ij

(
exp(6σ2

τ )− 4 exp(3σ2
τ ) + 6 exp(σ2

τ )− 3
)

+ µ̄3
ij

(
6 exp(3σ2

τ )− 12 exp(σ2
τ ) + 6

)
+ µ̄2

ij

(
7 exp(σ2

τ )− 4
)
+ µ̄ij − σ̄2

ijj, (3.42)

and the off-diagonal elements are given by

Cov
[
(Yij − µ̄ij)

2 , (Yik − µ̄ik)
2] = [

µ̄2
ijµ̄ik

(
4ρk−j + 1

)
+ µ̄ijµ̄

2
ik

] (
exp(3σ2

τ )− 2 exp(σ2
τ ) + 1

)
+ 2ρk−jµ̄2

ij

(
exp(σ2

τ )− 1 + ρk−j exp(σ2
τ )
)
+ µ̄ijµ̄ik

[
2ρk−j

(
exp(σ2

τ )− 1
)
+ exp(σ2

τ )
]

+ ρk−jµ̄ij + µ̄2
ijµ̄

2
ik

(
exp(6σ2

τ )− 4 exp(3σ2
τ ) + 6 exp(σ2

τ )− 3
)
− σ̄ijjσ̄ikk. (3.43)

Proof. The equation (3.42) can be easily derived by noting that conditional on τi, Yij

follows a Poisson distribution [Sutradhar (2011, Section 6.3.1)]. Now to obtain the

result in (3.43), for ∀ 1 ≤ j < k ≤ ni, by Lemma (3.3), we first obtain the conditional
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expectation as

E
[
(Yik − µik)

2 (Yij − µij)
2
⏐⏐ τi] = E

[
(Yik − µ∗

ik + µ∗
ik − µik)

2 (Yij − µ∗
ij + µ∗

ij − µij
)2 ⏐⏐⏐ τi]

= E
[{

(Yik − µ∗
ik)

2 + 2 (µ∗
ik − µik) (Yik − µ∗

ik) + (µ∗
ik − µik)

2} ·{(
Yij − µ∗

ij

)2
+ 2

(
µ∗
ij − µij

) (
Yij − µ∗

ij

)
+
(
µ∗
ij − µij

)2} ⏐⏐⏐ τi]
= E

[{
ρ2(k−j)

[(
Yij − µ∗

ij

)2 − µ∗
ij

]
+ ρk−j

(
1− ρk−j

) (
Yij − µ∗

ij

)
+ µ∗

ik + (µ∗
ik − µik)

2

+ 2ρk−j (µ∗
ik − µik)

(
Yij − µ∗

ij

)}{(
Yij − µ∗

ij

)2
+ 2

(
µ∗
ij − µij

) (
Yij − µ∗

ij

)
+
(
µ∗
ij − µij

)2} ⏐⏐⏐ τi]
= E

[{
ρ2(k−j)

(
Yij − µ∗

ij

)2
+ ρk−j

[
1− ρk−j + 2 (µ∗

ik − µik)
] (
Yij − µ∗

ij

)
+
[
µ∗
ik + (µ∗

ik − µik)
2 − ρ2(k−j)µ∗

ij

]}
{(
Yij − µ∗

ij

)2
+ 2

(
µ∗
ij − µij

) (
Yij − µ∗

ij

)
+
(
µ∗
ij − µij

)2} ⏐⏐⏐ τi]
= E

[
ρ2(k−j)

(
Yij − µ∗

ij

)4
+
{
2
(
µ∗
ij − µij

)
ρ2(k−j) + ρk−j

[
1− ρk−j + 2 (µ∗

ik − µik)
]} (

Yij − µ∗
ij

)3
+
(
Yij − µ∗

ij

)2 {
ρ2(k−j)

(
µ∗
ij − µij

)2
+ µ∗

ik + (µ∗
ik − µik)

2 − ρ2(k−j)µ∗
ij

+2
(
µ∗
ij − µij

)
ρk−j

[
1− ρk−j + 2 (µ∗

ik − µik)
]}

+
(
Yij − µ∗

ij

) {
2
(
µ∗
ij − µij

) [
µ∗
ik + (µ∗

ik − µik)
2 − ρ2(k−j)µ∗

ij

]
+ρk−j

[
1− ρk−j + 2 (µ∗

ik − µik)
] (
µ∗
ij − µij

)2}
+
(
µ∗
ij − µij

)2 [
µ∗
ik + (µ∗

ik − µik)
2 − ρ2(k−j)µ∗

ij

] ⏐⏐⏐ τi]
= 4ρk−jµ∗

ikµ
∗
ij
2 − 4ρk−jµikµ

∗
ij
2 + 2ρk−jµ∗

ij
2 − 4ρk−jµijµ

∗
ikµ

∗
ij

+ 2ρk−jµ∗
ikµ

∗
ij + 4ρk−jµikµijµ

∗
ij − 2ρk−jµijµ

∗
ij

− 2ρk−jµikµ
∗
ij + ρk−jµ∗

ij + 2ρ2(k−j)µ∗
ij
2 + µ∗

ik
2µ∗

ij
2 − 2µikµ

∗
ikµ

∗
ij
2

+ µ∗
ikµ

∗
ij
2 + µ2

ikµ
∗
ij
2 − 2µijµ

∗
ik

2µ∗
ij + µ∗

ik
2µ∗

ij

+ 4µikµijµ
∗
ikµ

∗
ij − 2µijµ

∗
ikµ

∗
ij − 2µikµ

∗
ikµ

∗
ij + µ∗

ikµ
∗
ij

− 2µ2
ikµijµ

∗
ij + µ2

ikµ
∗
ij + µ2

ijµ
∗
ik

2 − 2µikµ
2
ijµ

∗
ik + µ2

ijµ
∗
ik + µ2

ikµ
2
ij.
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Then, by averaging over the distribution of τi
iid∼ N(0, 1), we obtain the unconditional

expectation as

E
[
(Yik − µik)

2 (Yij − µij)
2] = 4ρk−jµikµij

2e3σ
2
τ − 4ρk−jµikµij

2eσ
2
τ + 2ρk−jµij

2eσ
2
τ − 4ρk−jµikµ

2
ije

σ2
τ

+ 2ρk−jµikµije
σ2
τ + 4ρk−jµikµ

2
ij − 2ρk−jµ2

ij − 2ρk−jµikµij + ρk−jµij

+ 2ρ2(k−j)µ2
ije

σ2
τ + µ2

ikµ
2
ije

6σ2
τ − 2µ2

ikµ
2
ije

3σ2
τ

+ µikµ
2
ije

3σ2
τ + µ2

ikµ
2
ije

σ2
τ − 2µ2

ikµ
2
ije

3σ2
τ + µ2

ikµije
3σ2

τ

+ 4µ2
ikµ

2
ije

σ2
τ − 2µikµ

2
ije

σ2
τ − 2µ2

ikµije
σ2
τ + µikµije

σ2
τ

− 2µ2
ikµ

2
ij + µ2

ikµij + µ2
ikµ

2
ije

σ2
τ − 2µ2

ikµ
2
ij + µikµ

2
ij + µ2

ikµ
2
ij

= µikµ
2
ij

[
4ρk−j

(
e3σ

2
τ − 2eσ

2
τ + 1

)
+ e3σ

2
τ − 2eσ

2
τ + 1

]
+ 2ρk−jµ2

ij

(
eσ

2
τ − 1 + ρk−jeσ

2
τ

)
+ µikµij

[
2ρk−j

(
eσ

2
τ − 1

)
+ eσ

2
τ

]
+ ρk−jµij

+ µ2
ikµ

2
ij

(
e6σ

2
τ − 4e3σ

2
τ + 6eσ

2
τ − 3

)
+ µ2

ikµij

(
e3σ

2
τ − 2eσ

2
τ + 1

)
= µikµ

2
ij

(
4ρk−j + 1

) (
e3σ

2
τ − 2eσ

2
τ + 1

)
+ 2ρk−jµ2

ij

(
eσ

2
τ − 1 + ρk−jeσ

2
τ

)
+ µikµij

[
2ρk−j

(
eσ

2
τ − 1

)
+ eσ

2
τ

]
+ ρk−jµij + µ2

ikµ
2
ij

(
e6σ

2
τ − 4e3σ

2
τ + 6eσ

2
τ − 3

)
+ µ2

ikµij

(
e3σ

2
τ − 2eσ

2
τ + 1

)
=
[
µikµ

2
ij

(
4ρk−j + 1

)
+ µ2

ikµij
] (
e3σ

2
τ − 2eσ

2
τ + 1

)
+ 2ρk−jµ2

ij

(
eσ

2
τ − 1 + ρk−jeσ

2
τ

)
+ µikµij

[
2ρk−j

(
eσ

2
τ − 1

)
+ eσ

2
τ

]
+ ρk−jµij + µ2

ikµ
2
ij

(
e6σ

2
τ − 4e3σ

2
τ + 6eσ

2
τ − 3

)
.

Finally, by combining terms and substituting ψ̂(·) for ψ(·), we obtain (3.43).

3.2.3.3 Normal approximation based SGQL estimation using squared cor-

rected responses

In Sections 3.2.3.1 and 3.2.3.2 we computed the covariance matrix for the raw and

squared corrected responses for the construction of the estimating equation for σ2
τ .
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Notice that these computations were done by retaining the original (count) distribu-

tion nature of the responses. However, there exists an alternative approach (Zhao and

Prentice, 1990, Prentice and Zhao, 1991) where this type of fourth moments calcu-

lations are done by changing the distributional assumption for the responses. More

specifically, these authors proceed as if the repeated count responses are multivariate

normal random variables in order to compute these higher order moments, while using

the correct means and variances.

This “normality” based SGQL estimating equation would be the same as that of

(3.38) constructed based on squared corrected responses except that the fourth order

moment matrix Ω̄ΩΩiC is now replaced with a normality based fourth order moment

matrix, say Ω̄ΩΩiC,N . Thus, in notation of (3.38),

CovN(GGGi) = Ω̄ΩΩiC,N , (3.44)

where the elements of this matrix are computed from the normality based fourth order

product moments formula

EN [(Yij − µ̄ij)(Yik − µ̄ik)(Yil − µ̄il)(Yim − µ̄im)]

= σ̄ijkσ̄ilm + σ̄ijlσ̄ikm + σ̄ijmσ̄ikl. (3.45)

for i = 1, . . . , K and 1 ≤ j, k, l,m ≤ ni. For example, under normality,

Var
[
(Yij − µ̄ij)

2] = EN
[
(Yij − µ̄ij)

4]− σ̄2
ijj

= 3σ̄2
ijj − σ̄2

ijj = 2σ̄2
ijj, (3.46)

by (3.45). Notice that the normality assumption for count responses {yij, j = 1, . . . , ni}
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simplifies the computation of high order moments. Also we remark that this approx-

imation appears to work well for repeated count data in the GLM setup (Sutradhar,

2011, Chapter 8). In this section, we have considered its use in the semi-parametric

longitudinal mixed model setup. The finite sample performance of this approach in

the present setup will be given in Section 3.4.

For completeness, using the notations from (3.44)−(3.46), we now write the desired

normality based SGQL estimating equation for σ2
τ as

K∑
i=1

∂σ̄σσ⊤
i (βββ, σ

2
τ , ψ̂(·))

∂σ2
τ

Ω̄ΩΩ
−1
iC,N(βββ, σ

2
τ , ρ, ψ̂(·))

(
gggi − σ̄σσi(βββ, σ

2
τ , ψ̂(·))

)
= 0, (3.47)

which is solved iteratively until convergence.

3.2.4 Estimation of the longitudinal correlation index param-

eter ρ

The estimation of the regression parameter βββ and over-dispersion parameter σ2
τ are

discussed in Sections 3.2.2 and 3.2.3, respectively. Notice that their estimation re-

quires the longitudinal correlation index parameter ρ to be known. We show in this

section that the ρ parameter can be estimated by solving an unbiased moment equa-

tion that leads to a consistent estimator. For the purpose, it follows from (3.7) and

(3.8) that the variances and the lag 1 covariances of the repeated counts under the

present model have the formulas

E
[
(Yij − µij)

2] = σijj = µij + µ2
ij

(
exp(σ2

τ )− 1
)
, and

E [(Yij − µij) (Yi,j+1 − µi,j+1)] = σi,j,j+1 = ρµij + µijµi,j+1

(
exp(σ2

τ )− 1
)
, (3.48)
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respectively. Let y∗ij = (yij − µij) / (σijj)
1/2. It is then straightforward to observe that

E

[∑K
i=1

∑ni

j=1 y
∗
ij
2∑K

i=1 ni

]
= 1, (3.49)

and

E

[∑K
i=1

∑ni−1
j=1 y∗ijy

∗
i,j+1∑K

i=1(ni − 1)

]
=

ρ
∑K

i=1

∑ni−1
j=1

µij√
σijjσi,j+1,j+1∑K

i=1(ni − 1)

+
(exp(σ2

τ )− 1)
∑K

i=1

∑ni−1
j=1

µijµi,j+1√
σijjσi,j+1,j+1∑K

i=1(ni − 1)
. (3.50)

Now by exploiting (3.49) and (3.50), more specifically considering the ratio of the

quantities within the square brackets in (3.50) and (3.49) and denoting it by a1, that

is,

a1 =

∑K
i=1

∑ni−1
j=1 y∗ijy

∗
i,j+1/

∑K
i=1(ni − 1)∑K

i=1

∑ni

j=1 y
∗
ij
2/
∑K

i=1 ni
, (3.51)

we may then write a first order approximate expectation as

E [a1] ≈ ρg1 + b1, (3.52)

where

b1 =
(
exp

(
σ2
τ

)
− 1
) K∑
i=1

ni−1∑
j=1

φijφi,j+1

/
K∑
i=1

(ni − 1), (3.53)

and

g1 =
K∑
i=1

ni−1∑
j=1

µij (σijjσi,j+1,j+1)
−1/2

/
K∑
i=1

(ni − 1), (3.54)
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with φij = µij/ (σijj)
1/2 .

Next by replacing µij, σijj, and σi,j+1,j+1 in (3.51), (3.53) and (3.54) with µ̄ij, σ̄ijj,

and σ̄i,j+1,j+1 respectively, one can obtain ā1, b̄1, and ḡ1, from a1, b1, and g1, respec-

tively. Consequently, from (3.52), we write an approximate moment estimator of ρ

as

ρ̂ =
ā1 − b̄1
ḡ1

. (3.55)

Note that the overall estimation for all functions and parameters, that is the

estimation of the nonparametric function ψ(·) (Section 3.2.1), regression effects βββ

(Section 3.2.2), over-dispersion component σ2
τ (Section 3.2.3), and the longitudinal

correlation index parameter ρ (Section 3.2.4), is carried out in iterated stages until

convergence.

3.3 Asymptotic results

For the definition of the notations such as o, O, op and Op used in this thesis, we refer

to Bishop et al. (2007), Chapter 14.

3.3.1 Consistency of the SQL estimator of ψ(·)

Note that the SQL estimating equation (3.15) is an extension of the well known QL

estimating equation (Wedderburn, 1974). This estimating equation, which is free of ρ,

is written by exploiting the means and the variances of the responses, variance being a

function of the mean in the present GLMM setup, by treating the repeated responses of

an individual as independent. ψ(zℓu) has to be evaluated for all u = 1, . . . , nl; and ℓ =

1, . . . , K. For convenience, in (3.15), we have shown the estimation for ψ(z0) for z0 =
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zℓu for a selected value of ℓ and u. This estimate for ψ(z0) was denoted by ψ̂(z0;βββ, σ
2
τ ).

For notational simplicity, here we use µij(z0) for µij(βββ, σ
2
τ , ψ(z0)). Now, for known βββ

and σ2
τ , and for true mean µij = exp(xxx⊤ijβββ + σ2

τ

2
+ψ(zij)), a Taylor expansion of (3.15)

around ψ(z0) gives

ψ̂(z0;βββ, σ
2
τ )− ψ(z0) = AK +HK +O(|ψ̂(z0;βββ, σ2

τ )− ψ(z0)|2) (3.56)

where

AK =
1

BK

1

K

K∑
i=1

ni∑
j=1

pij(z0)
yij − µij

1 + µij(z0) (exp(σ2
τ )− 1)

, and

HK =
1

BK

1

K

K∑
i=1

ni∑
j=1

pij(z0)
µij − µij(z0)

1 + µij(z0) (exp(σ2
τ )− 1)

with BK = 1
K

∑K
i=1

∑ni

j=1 pij(z0)
µij(z0)

1+µij(z0)(exp(σ2
τ )−1)

, and pij(z0) is the short abbrevi-

ation for pij(
z0−zij
b

) defined in (3.12), b being the so-called bandwidth parameter.

Because it is easy to show that AK has zero mean and bounded variance, one may

then write

AK = Op(1/
√
K) (3.57)

as K → ∞, according to Theorem 14.4-1 in Bishop et al. (2007). Now we show that

HK approaches zero in the order of O(b2).

Lemma 3.6. The kernel density pij(z0) defined by (3.13)−(3.14) has the expectation

given by

E [pij(z0) (zij − z0)|xij] = O(b2) (3.58)
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as K → ∞.

Proof. Let h(zij;xij) be the pdf of zij conditional on xij, then

E [pij(z0) (zij − z0)|xij] =
∫
pij(z0) (zij − z0)h(zij;xij) dzij

=

∫
pij(z0)

[
(zij − z0)h(z0;xij) +O

(
(zij − z0)

2
)]
dzij

since h(zij;xij) = h(z0;xij) +O(zij − z0)

= h(z0;xij)

∫
pij(z0) (zij − z0) dzij +O(b2), (3.59)

because
∫
pij(z0)O ((zij − z0)

2) dzij can be shown bounded in the order of b2 (O(b2)).

Next the first term in (3.59) gives zero as pij(z0) is symmetric about z0, yielding the

lemma.

Lemma 3.7. The quantity HK in (3.56) satisfies

HK = O(b2) (3.60)

as K → ∞.

Proof. By a first order Taylor expansion, we may write

HK ≃ 1

BK

1

K

K∑
i=1

ni∑
j=1

pij(z0)
µij(z0)ψ

′(z0)

1 + µij(z0) (exp(σ2
τ )− 1)

(zij − z0) .

Next, we rewrite this HK as

HK =
1

BK

1

K

K∑
i=1

ni∑
j=1

µij(z0)ψ
′(z0)

1 + µij(z0) (exp(σ2
τ )− 1)

{pij(z0) (zij − z0)− E [pij(z0) (zij − z0)|xij]}

+
1

BK

1

K

K∑
i=1

ni∑
j=1

µij(z0)ψ
′(z0)

1 + µij(z0) (exp(σ2
τ )− 1)

E [pij(z0) (zij − z0)|xij] .
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Here the second term has the order O(b2) by Lemma 3.6. For the first term, due to

pij(z0), its variance is in the order of O(b2/K), so it has the order Op(b/
√
K), which

can be neglected. Thus HK has the order O(b2).

We now apply Lemma 3.7 and use (3.57) in (3.56). Thus, we write

ψ̂(z0;βββ, σ
2
τ )− ψ(z0) = AK +O(b2) + op(1/

√
K) = Op(1/

√
K) +O(b2) (3.61)

as K → ∞, where b ∝ K−α (Pagan and Ullah, 1999, Horowitz, 2009) for a suitable

value for α ∈ [1/5, 1/3] (Lin and Carroll, 2001). Notice that when α > 1/4, ψ̂(z0;βββ, σ
2
τ )

is a consistent estimator of nonparametric function value ψ(z0).

3.3.2 Consistency of the SGQL estimator of βββ and its asymp-

totic multivariate normal distribution

The SGQL estimator of βββ, say β̂ββ, is obtained by (3.20). Before we derive the asymp-

totic properties of the estimator β̂ββ, it is convenient to prove the following two lemmas.

The main result is given in Theorem 3.1.

First notice that in the SGQL estimating equation (3.20) for βββ, we have used

ψ̂(βββ, σ2
τ ) for ψ̂(zij;βββ, σ

2
τ ) by suppressing zij for notational simplicity. Let

ψ̂ψψ(zzzi;βββ, σ
2
τ ) ≡ [ψ̂(zi1;βββ, σ

2
τ ), . . . , ψ̂(zij;βββ, σ

2
τ ), . . . , ψ̂(zini

;βββ, σ2
τ )].

Also recall from (3.20) that ψ̂(βββ, σ2
τ ) was used to define µ̄µµi(·) and Σ̄ΣΣi from µµµi(·) and

ΣΣΣi respectively. Here ψ̂(βββ, σ
2
τ ) refers to using all values of ψ̂(zij;βββ, σ

2
τ ) for j = 1, . . . , ni.

We now refer to (3.20) and express its solution as in the following lemma.

Lemma 3.8. Suppose that the estimating equation (3.20) is written as KDK(βββ) = 0,
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where

DDDK(βββ) =
1

K

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)

×
[
YYY i − µ̄µµi(βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))
]
.

Then we can write

β̂ββ − βββ = [FFF (βββ)]−1DDDK(βββ) + op(1/
√
K), (3.62)

where

FFF (βββ) = E

[
∂µ̄µµ⊤

i (βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)

∂µ̄µµi(βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ⊤

]
.

Proof. Because the SGQL estimator β̂ββ of βββ obtained from (3.20) satisfies DDDK(β̂ββ) = 0,

a linear (first order) Taylor expansion about true βββ provides

DDDK(βββ) +DDD′
K(βββ)(β̂ββ − βββ) +O(|β̂ββ − βββ|2) = 0, (3.63)

yielding

β̂ββ − βββ = − [DDD′
K(βββ)]

−1
[DDDK(βββ) +O(|β̂ββ − βββ|2)]

= [FFFK(βββ)]
−1DDDK(βββ) + op(1/

√
K), (3.64)

where

FFFK(βββ) = −DDD′
K(βββ) = −∂D

DDK(βββ)

∂βββ⊤
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=
1

K

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)

∂µ̄µµi(βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ⊤ .

Here we in fact applied Lemma 3.9 and b ∝ K−α with 1/5 ≤ α ≤ 1/3 (Lin and

Carroll, 2001) to learn that O(|β̂ββ − βββ|2) is in the order of op(1/
√
K).

Now under the assumption that

lim
K→∞

FFFK(βββ) = E

[
∂µ̄µµ⊤

i (βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)

∂µ̄µµi(βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ⊤

]
= FFF (βββ),

the lemma follows.

Lemma 3.9. DDDK(βββ) in Lemma 3.8 can be written as

DDDK(βββ) =
1

K

K∑
i=1

(Z̄ZZ1i − Z̄ZZ2i)(YYY i − µµµi) +O(b2) + op(1/
√
K), (3.65)

where

Z̄ZZ1i =
∂µ̄µµ⊤

i (βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂, ρ),

and

Z̄ZZ2i =
(
Z̄ZZ2i1, · · · , Z̄ZZ2ini

)
with

Z̄ZZ2ij =
K∑
i′=1

ni∑
j′=1

ni∑
k′=1

1

BK(zi′k′)

∂µ̄i′j′(βββ, σ
2
τ , ψ̂(zi′j′ ;βββ, σ

2
τ ))

∂βββ
v̄j

′k′

1i′ (βββ, σ
2
τ , ψ̂, ρ) ·

µi′k′(βββ, σ
2
τ , ψ(zi′k′))

pij(zi′k′)

1 + µij(zi′k′) (eσ
2
τ − 1)

,

where v̄jk1i (βββ, σ
2
τ , ψ̂, ρ) is the (j, k)th element of Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂, ρ).
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Proof. Write DDDK(βββ) as

DDDK(βββ) =
1

K

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)

[
YYY i − µµµi(βββ, σ

2
τ ,ψψψ(zzzi))

]
− 1

K

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)·[

µ̄µµi(βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))− µµµi(βββ, σ

2
τ ,ψψψ(zzzi))

]
=DDD1K(βββ)−DDD2K(βββ),

where

DDD1K(βββ) =
1

K

K∑
i=1

Z̄ZZ1i

[
YYY i − µµµi(βββ, σ

2
τ ,ψψψ(zzzi))

]
, (3.66)

and

DDD2K(βββ) =
1

K

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ψ̂ψψ(zzzi;βββ, σ
2
τ ), ρ)·[

µ̄µµi(βββ, σ
2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))− µµµi(βββ, σ

2
τ ,ψψψ(zzzi))

]
=

1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

∂µ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂βββ
v̄jk1i (βββ, σ

2
τ , ψ̂, ρ)·[

µ̄ik(βββ, σ
2
τ , ψ̂(zik;βββ, σ

2
τ ))− µik(βββ, σ

2
τ , ψ(zik))

]
=

1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

{
∂µ̄ij(βββ, σ

2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂βββ
v̄jk1i (βββ, σ

2
τ , ψ̂, ρ)µik(βββ, σ

2
τ , ψ(zik))·[

ψ̂(zik;βββ, σ
2
τ )− ψ(zik)

]
+ Op

([
ψ̂(zik;βββ, σ

2
τ )− ψ(zik)

]2)}
=

1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

∂µ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂βββ
v̄jk1i (βββ, σ

2
τ , ψ̂, ρ)µik(βββ, σ

2
τ , ψ(zik))·[

ψ̂(zik;βββ, σ
2
τ )− ψ(zik)

]
+ op(1/

√
K) by (3.61)
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=
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

∂µ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂βββ
v̄jk1i (βββ, σ

2
τ , ψ̂, ρ)µik(βββ, σ

2
τ , ψ(zik))·[

1

K

1

BK(zik)

K∑
i′=1

ni′∑
j′=1

pi′j′(zik)
Yi′j′ − µi′j′

1 + µi′j′(zik) (eσ
2
τ − 1)

+O(b2) + op(1/
√
K)

]
+ op(1/

√
K)

=
1

K

K∑
i′=1

ni′∑
j′=1

[
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

1

BK(zik)

∂µ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂βββ
v̄jk1i (βββ, σ

2
τ , ψ̂, ρ)µik(βββ, σ

2
τ , ψ(zik))

pi′j′(zik)

1 + µi′j′(zik) (eσ
2
τ − 1)

]
(Yi′j′ − µi′j′(βββ, σ

2
τ , ψ(zi′j′))) +O(b2) + op(1/

√
K)

=
1

K

K∑
i=1

Z̄ZZ2i(YYY i − µµµi(βββ, σ
2
τ ,ψψψ(zzzi))) +O(b2) + op(1/

√
K). (3.67)

The above results for DDD1K(βββ) (3.66) and DDD2K(βββ) (3.67) together complete the proof.

Let ZZZ1i and ZZZ2i be the Z̄ZZ1i and Z̄ZZ2i defined in Lemma 3.9, respectively, with

ψ̂(zij;βββ, σ
2
τ ) being replaced by its true value ψ(zij) for all j, and ∂ψ̂(zij;βββ, σ

2
τ )/∂βββ

given in (3.24) being replaced by

∂ψ̃(zij;βββ, σ
2
τ )

∂βββ
(3.68)

=

− 1
K

K∑
i=1

ni∑
l=1

wil(zij)E

[{
1+yil(exp(σ2

τ )−1)
[1+µ̄il(βββ,σ2

τ ,ψ̂(zij ;βββ,σ
2
τ ))(exp(σ

2
τ )−1)]

2

}
µ̄il(βββ, σ

2
τ , ψ̂(zij;βββ, σ

2
τ ))

]
xxxil

1
K

K∑
i=1

ni∑
l=1

wil(zij)E

[{
1+yil(exp(σ2

τ )−1)

[1+µ̄il(βββ,σ2
τ ,ψ̂(zij ;βββ,σ

2
τ ))(exp(σ

2
τ )−1)]

2

}
µ̄il(βββ, σ2

τ , ψ̂(zij;βββ, σ
2
τ ))

]

for all j. Then a linear Taylor expansion of Z̄ZZ1i − Z̄ZZ2i with respect to ψ̂(zij;βββ, σ
2
τ ) at

point ψ(zij), and ∂ψ̂(zij;βββ, σ
2
τ )/∂βββ at point ∂ψ̃(zij;βββ, σ

2
τ )/∂βββ for all j gives

(
Z̄ZZ1i − Z̄ZZ2i

)
= (ZZZ1i −ZZZ2i) +

ni∑
j=1

[
O(ψ̂(zij;βββ, σ

2
τ )− ψ(zij)) +O(

∂ψ̂(zij;βββ, σ
2
τ )

∂βββ
− ∂ψ̃(zij;βββ, σ

2
τ )

∂βββ
)

]
.

According to (3.61), ψ̂(zij;βββ, σ
2
τ ) − ψ(zij) = Op(1/

√
K) + O(b2). Here we require
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that b ∝ K−α satisfies α > 1/4 to ensure the
√
K−consistency of nonparametric

function estimator ψ̂(zij;βββ, σ
2
τ ). Then ψ̂(zij;βββ, σ

2
τ )− ψ(zij) = op(1). Next, by the law

of large numbers for independent random variables (Breiman (1968, Theorem 3.27)),

∂ψ̂(zij ;βββ,σ
2
τ )

∂βββ
− ∂ψ̃(zij ;βββ,σ

2
τ )

∂βββ
= op(1). So by neglecting the higher order terms, one may

obtain

(
Z̄ZZ1i − Z̄ZZ2i

)
≈ (ZZZ1i −ZZZ2i) . (3.69)

We now turn back to Lemma 3.8 and derive the asymptotic distribution of β̂ββ as

in the following theorem.

Theorem 3.1. The SGQL estimator β̂ββ (the solution of (3.20)) has the limiting (as

K → ∞) multivariate normal distribution given as

√
K
{
β̂ββ − βββ −O(b2)

}
D−→ Np(0,Vβββ), (3.70)

where

Vβββ = [FFF (βββ)]−1 1

K

[
K∑
i=1

(ZZZ1i −ZZZ2i)ΣΣΣi (ZZZ1i −ZZZ2i)
⊤

]
[FFF (βββ)]−1 .

Proof. By using (3.65) in (3.62), one obtains

√
K
{
β̂ββ − βββ −O(b2)

}
≈ [FFF (βββ)]−1 1√

K

K∑
i=1

(
Z̄ZZ1i − Z̄ZZ2i

)
(YYY i − µµµi). (3.71)

Now because Z̄ZZ1i − Z̄ZZ2i can be treated as semi-parametric longitudinal (covariance)

weight matrix which we have approximated as in (3.69), we rewrite the approximate

equation (3.71) as

√
K
{
β̂ββ − βββ −O(b2)

}
≈ [FFF (βββ)]−1 1√

K

K∑
i=1

(ZZZ1i −ZZZ2i) (YYY i − µµµi). (3.72)
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Next, define

f̄ffK =
1

K

K∑
i=1

fff i =
1

K

K∑
i=1

(ZZZ1i −ZZZ2i) (YYY i − µµµi) , (3.73)

where YYY 1, · · · ,YYY K are independent of each other as they are collected from K inde-

pendent individuals. However, they are not identically distributed because

YYY i ∼ [µµµi,ΣΣΣi] , (3.74)

where the mean vectors and covariance matrices are different for different individuals.

By (3.74), it follows from (3.73) that

E[f̄ffK ] = 0

cov[f̄ffK ] =
1

K2

K∑
i=1

cov[fff i]

=
1

K2

K∑
i=1

(ZZZ1i −ZZZ2i)ΣΣΣi (ZZZ1i −ZZZ2i)
⊤

=
1

K2
VVV ∗
K . (3.75)

If the multivariate version of Lindeberg’s condition holds, that is,

lim
K→∞

VVV ∗
K

−1
K∑
i=1

∑
(fff⊤i VVV

∗
K

−1fff i)>ϵ

fff ifff
⊤
i g(fff i) = 0 (3.76)

for all ϵ > 0, g(·) being the probability distribution of fff i, then the Lindeberg-Feller

central limit theorem (Amemiya, 1985, Theorem 3.3.6; McDonald, 2005, Theorem

2.2) implies that

K(VVV ∗
K)

− 1
2 f̄ffK

D−→ Np(0, IIIp). (3.77)
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Then (3.72) gives

√
K
{
β̂ββ − βββ −O(b2)

}
= [FFF (βββ)]−1 1√

K

K∑
i=1

(ZZZ1i −ZZZ2i) (YYY i − µµµi) + op(1)

= [FFF (βββ)]−1
√
K f̄ffK + op(1)

D−→ Np(0, K
1

K2
FFF−1VVV ∗

KFFF
−1) = Np(0,VVV βββ), (3.78)

yielding the Theorem.

Note that because b ∝ K−α, for
√
K-consistency of β̂ββ, we need to have Kb4 → 0

as K → ∞, which happens when 1/4 < α ≤ 1/3 (see, for example, Lin and Carroll

(2001) for upper limit).

3.3.3 Consistency of the SGQL estimator of σ2τ and its asymp-

totic normal distribution

Notice that the SGQL estimating equation (3.20) for βββ has the form

K∑
i=1

∂µ̄µµ⊤
i (βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))

∂βββ
Σ̄ΣΣ

−1
i (βββ, σ2

τ , ρ, ψ̂(βββ, σ
2
τ ))
(
yyyi − µ̄µµi(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))
)
= 0,

whereas the SGQL estimating equation (3.33) for σ2
τ has a similar but different form

given by

K∑
i=1

Q̄QQ1i

(
uuui − λ̄λλi(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))
)
= 0, (3.79)

where

Q̄QQ1i =
∂λ̄λλ

⊤
i (βββ, σ

2
τ , ψ̂(·))

∂σ2
τ

Ω̄ΩΩ
−1
i (βββ, σ2

τ , ρ, ψ̂(βββ, σ
2
τ )).
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One of the big differences between these estimating equations lies in the fact that the

nonparametric function estimate ψ̂(βββ, σ2
τ ) involved in both equations is a function of

the first order response {yij} (3.15), while yyyi is the vector of first order responses in

the estimating equation for βββ, but uuui involved in the estimating equation for σ2
τ is

a vector of squared responses. This difference will come to play when we derive the

asymptotic properties of the SGQL estimator of σ2
τ , say σ̂

2
τ . In preparation for the

main result given in Theorem 3.2, we first prove the following two lemmas.

Lemma 3.10. We express the estimating equation (3.79) as KMK = 0, where

MK =
1

K

K∑
i=1

Q̄QQ1i

(
uuui − λ̄λλi(βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))
)
.

Then we can write

σ̂2
τ − σ2

τ = L−1MK + op(1/
√
K), (3.80)

where

L = E

[
∂λ̄λλ

⊤
i (βββ, σ

2
τ , ψ̂(βββ, σ

2
τ ))

∂σ2
τ

Ω̄ΩΩ
−1
i (βββ, σ2

τ , ρ, ψ̂(βββ, σ
2
τ ))

∂λ̄λλi(βββ, σ
2
τ , ψ̂(βββ, σ

2
τ ))

∂σ2
τ

]
.

Proof. Because the SGQL estimator σ̂2
τ of σ2

τ obtained from (3.79) [see also (3.33)]

satisfies MK(σ̂
2
τ ) = 0, a linear Taylor series expansion, similar to (3.63), about σ2

τ

provides

σ̂2
τ − σ2

τ = L−1
K MK +O(|σ̂2

τ − σ2
τ |2)

= L−1
K MK + op(1/

√
K), (3.81)
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where LK = ∂MK/∂σ
2
τ and it has the formula given by

LK =
1

K

K∑
i=1

∂λ̄λλ
⊤
i (βββ, σ

2
τ , ψ̂(·))

∂σ2
τ

Ω̄ΩΩ
−1
i (βββ, σ2

τ , ρ, ψ̂(·))
∂λ̄λλi(βββ, σ

2
τ , ψ̂(·))

∂σ2
τ

=
1

K

K∑
i=1

L∗
i . (3.82)

Here we in fact applied Lemma 3.11 and b ∝ K−α with 1/5 ≤ α ≤ 1/3 (Lin and

Carroll, 2001) to learn that O(|σ̂2
τ − σ2

τ |2) is in the order of op(1/
√
K). Note that

E(L∗
i ) = L. Then it is easy to prove that LK = L + Op(1/

√
K) as K → ∞, and the

lemma is proven.

Lemma 3.11. MK in Lemma 3.10 may be shown to satisfy

MK =
1

K

K∑
i=1

Q̄QQ1i

[
uuui − λλλi(βββ, σ

2
τ ,ψψψ(zzzi))

]
− 1

K

K∑
i=1

Q̄QQ2i(YYY i − µµµi) +O(b2) + op(1/
√
K),

(3.83)

where Q̄QQ1i is defined in (3.79), and Q̄QQ2i =
(
Q̄2i1, · · · , Q̄2ij, · · · , Q̄2ini

)⊤
with

Q̄2ij =
1

K

K∑
i′=1

ni′∑
j′=1

ni′∑
k′=1

1

BK(zi′k′)
W ∗
i′j′k′

pij(zi′k′)

1 + µij(zi′k′) (eσ
2
τ − 1)

, (3.84)

where

W ∗
ijk =

∂λ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂σ2
τ

vjk2i (βββ, σ
2
τ , ψ̂, ρ)

∂λ̄ik(βββ, σ
2
τ , ψ(zik))

∂ψ(zik)
(3.85)

with vjk2i (βββ, σ
2
τ , ψ̂, ρ) being the (j, k)th element of the ni × ni inverse fourth order mo-

ments matrix Ω̄ΩΩ
−1
i (βββ, σ2

τ , ψ̂, ρ).
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Proof. Write MK from (3.79) as

MK =M1K −M2K , (3.86)

where

M1K =
1

K

K∑
i=1

Q̄QQ1i

[
uuui − λλλi(βββ, σ

2
τ ,ψψψ(zzzi))

]
(3.87)

M2K =
1

K

K∑
i=1

Q̄QQ1i

[
λ̄λλi(βββ, σ

2
τ , ψ̂ψψ(zzzi;βββ, σ

2
τ ))− λλλi(βββ, σ

2
τ ,ψψψ(zzzi))

]
.

Now because

λ̄λλi(·) = [λ̄i1(·), . . . , λ̄ij(·), . . . , λ̄ini
(·)]⊤, and λλλi(·) = [λi1(·), . . . , λij(·), . . . , λini

(·)]⊤,

using the notation for Q̄QQ1i from (3.79), we express M2K in (3.87) as

M2K =
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

∂λ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ ))

∂σ2
τ

vjk2i (βββ, σ
2
τ , ψ̂, ρ)

[
λ̄ik(βββ, σ

2
τ , ψ̂(zik;βββ, σ

2
τ ))

− λik(βββ, σ
2
τ , ψ(zik))

]
. (3.88)

A Taylor expansion of λ̄ij(βββ, σ
2
τ , ψ̂(zij;βββ, σ

2
τ )) with respect to ψ(zij) for all i = 1, . . . , K

and j = 1, . . . , ni, reduces M2K in (3.88) to

M2K =
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

{
W ∗
ijk

[
ψ̂(zik;βββ, σ

2
τ )− ψ(zik)

]
+ Op

([
ψ̂(zik;βββ, σ

2
τ )− ψ(zik)

]2)}
, (3.89)

where W ∗
ijk is defined in (3.85). Further by using the formula for ψ̂(zik;βββ, σ

2
τ )−ψ(zik)
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from (3.61), M2K in (3.89) may be re-expressed as

M2K =
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

{
W ∗
ijk

[
AK(zik) +O(b2)

]
+Op

([
Op(1/

√
K) +O(b2)

]2)}

=
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

W ∗
ijkAK(zik) +O(b2) + op(1/

√
K), (3.90)

where AK is given by (3.56). Then by using the formula for AK for (3.56), one may

obtain

M2K =
1

K

K∑
i′=1

ni′∑
j′=1

ni′∑
k′=1

W ∗
i′j′k′

{
1

BK(zi′k′)

1

K

K∑
i=1

ni∑
j=1

pij(zi′k′)
Yij − µij

1 + µij(zi′k′) (exp(σ2
τ )− 1)

}

+O(b2) + op(1/
√
K)

=
1

K

K∑
i=1

ni∑
j=1

{
1

K

K∑
i′=1

ni′∑
j′=1

ni′∑
k′=1

1

BK(zi′k′)
W ∗
i′j′k′

pij(zi′k′)

1 + µij(zi′k′) (exp(σ2
τ )− 1)

}
(Yij − µij)

+O(b2) + op(1/
√
K)

=
1

K

K∑
i=1

ni∑
j=1

Q̄2ij (Yij − µij) +O(b2) + op(1/
√
K)

=
1

K

K∑
i=1

Q̄QQ2i(YYY i − µµµi) +O(b2) + op(1/
√
K). (3.91)

The above results for M1K (3.87) and M2K (3.91) together yield the lemma.

Let QQQ1i and QQQ2i be the Q̄QQ1i and Q̄QQ2i, respectively, with ψ̂(zil;βββ, σ
2
τ ) being replaced

by its true value ψ(zil), and ∂ψ̂(zil;βββ, σ
2
τ )/∂σ

2
τ given in (3.37) being replaced by

∂ψ̃(zil;βββ, σ
2
τ )

∂σ2
τ

= −1

2
− exp(σ2

τ )

⎡⎢⎢⎢⎣
1
K

K∑
i=1

ni∑
j=1

wij(zil)E
[{

yij−µ̄ij(zil)
[1+µ̄ij(zil)(exp(σ2

τ )−1)]2

}
µ̄ij(zil)

]
1
K

K∑
i=1

ni∑
j=1

wij(zil)E
[{

1+yij(exp(σ2
τ )−1)

[1+µ̄ij(zil)(exp(σ2
τ )−1)]2

}
µ̄ij(zil)

]
⎤⎥⎥⎥⎦

(3.92)
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for all l. Then with a similar argument as that for (3.69), one may obtain

Q̄QQ1i ≈ QQQ1i and Q̄QQ2i ≈ QQQ2i. (3.93)

We now turn back to (3.80) and derive the asymptotic distribution of σ̂2
τ as in the

following theorem.

Theorem 3.2. The SGQL estimator σ̂2
τ (the solution of (3.33)) has the limiting (as

K → ∞) normal distribution given as

√
K
{
σ̂2
τ − σ2

τ −O
(
b2
)} D−→ N(0, Vσ2

τ
) as K → ∞, (3.94)

where

Vσ2
τ

= L−1 1

K

K∑
i=1

[
QQQ1iΩΩΩiQQQ

T
1i +QQQ2iΣΣΣiQQQ

T
2i − 2QQQ1iCov(UUU i,YYY i)QQQ

T
2i

]
L−1. (3.95)

Proof. By applying Lemma 3.11, it now follows from Lemma 3.10 that

√
K
{
σ̂2
τ − σ2

τ −O(b2)
}
≈ L−1 1√

K

K∑
i=1

Q̄QQ1i[uuui − λλλi(βββ, σ
2
τ ,ψψψ(zzzi))]

− L−1 1√
K

K∑
i=1

Q̄QQ2i(YYY i − µµµi). (3.96)

Then similar to (3.72), by using (3.93), we can rewritten (3.96) as

√
K
{
σ̂2
τ − σ2

τ −O(b2)
}
≈ L−1 1√

K

K∑
i=1

QQQ1i[uuui − λλλi(βββ, σ
2
τ ,ψψψ(zzzi))]

− L−1 1√
K

K∑
i=1

QQQ2i(YYY i − µµµi). (3.97)

Further by using similar arguments as in the proof of Theorem 3.1, one may apply the
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Lindeberg-Feller central limit theorem for non-identically distributed random variables

(Amemiya, 1985, Theorem 3.3.6), and proves the theorem.

Similar to the condition for the
√
K-consistency of β̂ββ, for

√
K-consistency of σ̂2

τ ,

we need to have O(b2) = Kb4 → 0 as K → ∞, that is, 1/4 < α ≤ 1/3 (see Lin and

Carroll (2001), for example, for the upper limit).

Note that in this section we have derived the asymptotic properties of σ̂2
τ which is

obtained by applying the SGQL estimation approach using squared responses as dis-

cussed in Section 3.3.1. The derivation of the asymptotic properties for the estimator

of σ2
τ obtained by applying the variation of the SGQL approach from Section 3.3.2 or

3.3.3 will be similar, and hence omitted for the interest of space.

3.3.4 Consistency of the moment estimator of ρ

The consistency of the moment estimator ρ̂ obtained in Section 3.2.4 is given by the

following lemma:

Lemma 3.12. For a1, b1 and g1 defined by (3.51), (3.53) and (3.54) respectively, the

moment estimator ρ̂ = a1−b1
g1

obtained from (3.52) is a consistent estimator for the

longitudinal correlation index parameter ρ.

Proof. Recall from (3.49) that Y ∗
ij = (Yij − µij) / (σijj)

1/2. It is obvious that

E
(
Y ∗
ij
2
)

= 1 for all i and j (3.98)

⇒ E

[
ni∑
j=1

(
Y ∗
ij
2 − 1

)]
= 0 for all i = 1, . . . , K

and

E

[(
Yij − µij√

σijj

)(
Yi,j+1 − µi,j+1√

σi,j+1,j+1

)]
=

σi,j,j+1√
σijjσi,j+1,j+1

(3.99)
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⇒ E

[
ni−1∑
j=1

(
Y ∗
ijY

∗
i,j+1 −

σi,j,j+1√
σijjσi,j+1,j+1

)]
= 0 for all i = 1, . . . , K.

Now because E

[(∑ni−1
j=1

[
Y ∗
ijY

∗
i,j+1 −

σi,j,j+1√
σijjσi,j+1,j+1

])2]
by (3.99) and

E

[(∑ni

j=1

[
Y ∗
ij
2 − 1

])2]
by (3.98) are all functions of µij, σ

2
τ and ρ, they are bounded

under the assumption that µij and ni are all bounded. Thus for a sufficiently large

but finite m0, one may write

E

⎡⎣(ni−1∑
j=1

[
Y ∗
ijY

∗
i,j+1 −

σi,j,j+1√
σijjσi,j+1,j+1

])2
⎤⎦ < m0,

and also E

⎡⎣( ni∑
j=1

[
Y ∗
ij
2 − 1

])2
⎤⎦ < m0, (3.100)

for all i = 1, . . . , K. Now because Yij’s are independent for different i, it follows from

the law of large numbers for independent random variables [Breiman (1968, Theorem

3.27)] that

∑K
i=1

[∑ni−1
j=1

(
y∗ijy

∗
i,j+1 −

σi,j,j+1√
σijjσi,j+1,j+1

)]
∑K

i=1(ni − 1)

P−→ 0

⇒

∑K
i=1

[∑ni−1
j=1 y∗ijy

∗
i,j+1

]
∑K

i=1(ni − 1)
=
ρ
∑K

i=1

[∑ni−1
j=1

µij√
σijjσi,j+1,j+1

]
∑K

i=1(ni − 1)

+
(exp(σ2

τ )− 1)
∑K

i=1

[∑ni−1
j=1

µijµi,j+1√
σijjσi,j+1,j+1

]
∑K

i=1(ni − 1)
+ op(1), (3.101)

and

∑K
i=1

[∑ni

j=1

(
y∗ij

2 − 1
)]

∑K
i=1 ni

P−→ 0 ⇒
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∑K
i=1

[∑ni

j=1 y
∗
ij
2
]

∑K
i=1 ni

= 1 + op(1). (3.102)

Next, dividing (3.101) by (3.102) and using the notations a1, b1 and g1 from (3.51)−(3.54),

we can write

a1(1 + op(1)) = ρ g1 + b1 + op(1) ⇒ a1 + a1 op(1) = ρ g1 + b1 + op(1). (3.103)

Here

a1 op(1) =

∑K
i=1

∑ni−1
j=1 y∗ijy

∗
i,j+1/

∑K
i=1(ni − 1)∑K

i=1

∑ni

j=1 y
∗
ij
2/
∑K

i=1 ni
op(1) = op(1).

This is because the numerator and denominator for a1 are finite by the law of large

numbers (Breiman, 1968, Theorem 3.27). Consequently, from (3.103) we obtain

a1 + op(1) = ρ g1 + b1 + op(1) ⇒ ρ̂ =
a1 − b1
g1

= ρ+ op(1),

or equivalently,

ρ̂ =
a1 − b1
g1

P−→ ρ as K → ∞. (3.104)

Hence, the lemma follows.

We remark that the consistency result in (3.104) remains valid when ψ(·) in µij’s

is replaced by its consistent estimate ψ̂(·).
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3.4 A simulation study

The objective of our simulation study in this section is to examine the finite sample

performance of the (1) SQL approach for ψ(·) estimation; (2) SGQL estimation for βββ

and σ2
τ ; and (3) SMM estimation for the correlation index parameter ρ.

3.4.1 Design construction

For the purpose, we select the parameters, primary and secondary covariates, and the

nonparametric function as follows:

1. Parameters selection: We consider the following four sets of parameter values.

Set 1: (βββ1,βββ2) = (0.5, 0.5), σ2
τ = 0.5, ρ = 0.5;

Set 2: (βββ1,βββ2) = (0.5, 0.5), σ2
τ = 0.5, ρ = 0.8;

Set 3: (βββ1,βββ2) = (0.5, 0.5), σ2
τ = 1.0, ρ = 0.5; and

Set 4: (βββ1,βββ2) = (0.5, 0.5), σ2
τ = 1.0, ρ = 0.8.

2. Primary covariate selection: For the primary covariate selection, we choose

ni = 4 equi-spaced time points for all i = 1, . . . , K, with K = 100. Next, because

βββ = (β1, β2)
⊤ is the effect of two time dependent primary covariates, we choose these

covariates as

xij1(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

for i = 1, . . . , 25 and j = 1, 2

1 for i = 1, . . . , 25 and j = 3, 4

−1
2

for i = 26, . . . , 75 and j = 1

0 for i = 26, . . . , 75 and j = 2, 3

1
2

for i = 26, . . . , 75 and j = 4

j
2ni

for i = 76, . . . , 100 and j = 1, 2, 3, 4
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xij2(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j−2.5
2ni

for i = 1, . . . , 50 and j = 1, 2, 3, 4

0 for i = 51, . . . , 100 and j = 1, 2

1
2

for i = 51, . . . , 100 and j = 3, 4.

(3.105)

Note that these covariate values are the same as in Sutradhar (2010, p. 188). These

values are chosen to reflect the variable time dependence for the different groups of

individuals. Thus, the choice is quite general. One may choose other specific covariates

depending on the situations.

3. Random effects generation: The random effects τi for i = 1, . . . , 100, are

generated from N(0, 1) distribution.

4. Secondary covariate selection: For a given i (i = 1, . . . , 100), we choose a value

for zij from a uniform (U) distribution, namely

zij ∼ U [j − 0.5, j + 0.5], (3.106)

for j = 1, . . . , ni = 4. Note that for each j = 1, . . . , 4, the interval [j − 0.5, j + 0.5]

was divided into 25 (alternatively it could be 50 or 100, and so on) equi-spaced points

allowing one value to be chosen from 25 values. Thus, altogether ni = 4 values were

chosen from j-related four intervals. This was independently repeated for K = 100

individuals. Consequently, these 400 values are expected to be dense and they reflect

the time dependence.

5. Nonparametric function selection: We chose, for example, a quadratic non-

parametric function given by

ψ(zij) = 0.3 + 0.2

(
zij −

ni + 1

2

)
+ 0.05

(
zij −

ni + 1

2

)2

(3.107)
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with ni = 4, where zij is generated by (3.106). Remark that in practice this nonpara-

metric function influencing yij would be unknown.

3.4.2 Data generation

We use the design selected from the last section into the SGLMM (or SMM in brief,

(3.3)−(3.4)) and generate the data. More specifically, we use (3.3) and (3.4) to gener-

ate repeated Poisson observations {yij, j = 1, . . . , ni; i = 1, . . . , K} conditional on the

random effects and nonparametric function, where random effects and nonparametric

function are chosen as indicated above.

3.4.3 Naive estimation (ignoring ψ(·)) effect on βββ, σ2τ and ρ

estimates

When repeated Poisson count data are generated under the present SGLMM (3.3)−(3.4)

following Sections 3.4.1 and 3.4.2, but one ignores the presence of ψ(·) in the model

and makes an attempt to estimate the parameters (βββ, σ2
τ and ρ) by treating the data

as though they were generated from the GLMM (ψ(·) = 0), the estimates will be

biased. To have an idea of the magnitude of bias, we examine the performance of

such naive GQL (NGQL) estimators by repeating the data generation 1000 times and

computing the simulated mean (SM), simulated standard error (SSE), and simulated

mean squared error (SMSE) of the NGQL estimates for βββ and σ2
τ , and moment es-

timate of ρ. The parameter values and their simulated estimates are shown in Table

3.1.
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True βββ = (β1, β2)
⊤ σ2

τ ρ Quantity β̂1,NGQL β̂2,NGQL σ̂2
τ,NGQL ρ̂Moment

βββ = (0.5, 0.5)⊤ 0.5 0.5 SM 0.9483 1.1209 0.6829 0.1850

SSE 0.1199 0.1778 0.1468 0.1640

MSE 0.2153 0.4171 0.0550

0.8 SM 0.9638 1.1134 0.6836 0.5261

SSE 0.0995 0.1550 0.1445 0.1540

MSE 0.2250 0.4003 0.0545

1.0 0.5 SM 0.9669 1.0962 1.1364 0.1100

SSE 0.1227 0.1751 0.2656 0.1662

MSE 0.2331 0.3861 0.0890

0.8 SM 0.9704 1.0957 1.1461 0.3337

SSE 0.1031 0.1469 0.2960 0.2288

MSE 0.2319 0.3764 0.1088

Table 3.1: Simulated means (SMs), simulated standard errors (SSEs) and mean

squared errors (MSEs) of NGQL estimates (ignoring the presence of ψ(·)) of re-

gression parameters βββ and random effects variance σ2
τ under non-stationary AR(1)

correlation model (3.3) and (3.4) for selected values of correlation index parameter ρ

with K = 100, ni = 4; based on 1000 simulations.

As expected, the results in Table 3.1 show that the estimates of βββ and σ2
τ are highly

biased. For example, when ρ = 0.5, for the true regression parameter βββ = (0.5, 0.5)⊤

and random effects variance σ2
τ = 0.5, the estimated values of βββ and σ2

τ are found to be

(0.9483, 1.1209)⊤ and 0.6829, respectively. The estimate for ρ = 0.5 was found to be

0.185. Clearly all of these naive estimates computed by ignoring ψ(zij) are useless, and

hence one must take ψ(zij) into account in estimating these regression, overdispersion
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and correlation index parameters. This will require the consistent estimation of the

nonparametric function as well, which was discussed in Section 3.2.1.

3.4.4 Main simulation results

We now examine the performance of the proposed semi-parametric estimation ap-

proach discussed in Section 3.2 for the estimation of the function ψ(zij), and all the

parameters (βββ, σ2
τ and ρ). The overdispersion parameter σ2

τ was estimated by using

squared response based exact (SR-exact), corrected squared response based exact

(CSR-exact), and corrected squared normal (CSR-normal) techniques as discussed in

Section 3.2.3. We also examine the performance of the SGQL approach by pretend-

ing that the correlation index parameter ρ is zero. Recall that in the present setup,

ρ = 0 does not mean the repeated responses are independent. The independence

requires that both ρ = 0 and σ2
τ = 0. All estimates (simulated mean, SM) along with

their standard errors (SSE) and mean square errors (MSE) are obtained based on

1000 simulations. The results are provided in Table 3.2 for βββ, σ2
τ and ρ parameters.

The SQL estimate for ψ(·) is displayed in Fig. 3.1. Note that this estimate uses σ2
τ

estimated by the exact weight matrix discussed above. Here the bandwidth in ψ(·)

estimation is chosen as b = K−1/5 (Pagan and Ullah, 1999, Altman, 1990, Horowitz,

2009) to minimize bias and variance of the nonparametric function estimates, instead

of considering consistency of the estimators.

Figure 3.1 shows that the SQL approach estimates the true nonparametric curve

well. The estimated curve almost coincides with the true curve when overdispersion

index parameter is small , that is, σ2
τ = 0.5. This holds for small and large correlation

index parameter (ρ) values. The curve estimate is less satisfactory when σ2
τ = 1.0.

This happens because σ2
τ = 1.0 produces large overdispersion in the data and, as the

results of Table 3.2 show, the estimates σ̂2
τ are slightly biased when σ2

τ = 1.0.
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Figure 3.1: The plot for ψ(·) estimation for the approach with σ2

τ estimated by the
exact weight matrix given in Section 3.2.3.1. The thick curve is the true ψ(·) function
value. The thinner curves are the estimated ψ(·) value and the one standard error
curves. The bandwidth b = K−1/5.

Next, the results from Table 3.2 indicate that the main regression parameters

β1 = β2 = 0.5 are estimated very well by the proposed SGQL approach irrespective

of the SGQL procedures (SR-Approx (ρ = 0), SR-exact, CSR-exact or CSR-normal)

used for the estimation of σ2
τ . This estimation pattern holds whether correlation index

ρ is small (0.5) or large (0.8). For example, for large ρ = 0.8 and small σ2
τ = 0.5

(estimated by SR-exact approach), the SGQL estimates of βββ = (β1, β2)
⊤ = (0.5, 0.5)⊤

are (0.4940, 0.4844)⊤ with MSEs (0.0165, 0.0516)⊤. The estimates are similar even

when σ2
τ is large, specifically when σ2

τ = 1.0, the estimates are (0.4922, 0.4701)⊤ with

MSEs (0.0163, 0.0471)⊤. As far as the estimation of correlation parameters σ2
τ and ρ

is concerned, the SGQL approaches for σ2
τ and the method of moments for ρ, work

very well when σ2
τ is small. For large σ2

τ = 1.0, the estimates for both parameters

are slightly biased. For example, when ρ = 0.8, for σ2
τ = 0.5, the CSR-normal weight

based SGQL approach produces the estimate σ̂2
τ = 0.4739 with MSE 0.0163, and the
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method of moments yields ρ estimate as 0.7689 with SSE 0.0870. When σ2
τ = 1.0, the

CSR-normal weight based SGQL approach produces an estimate σ̂2
τ = 0.8841 with

MSE 0.0720, and the method of moments yields ρ estimate as 0.7399 with SSE 0.1446,

i.e., the bias is slightly larger than when σ2
τ = 0.5. Thus, the simulation study suggests

that the proposed estimation approaches perform quite well when overdispersion is

small and they perform reasonably well when overdispersion is large. However, for

the cases with large overdispersion, it might be desirable to develop a suitable bias

correction approach.
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Table 3.2: Simulated means (SMs), simulated standard errors (SSEs) and mean
squared errors (MSEs) of the SGQL estimates of regression parameters βββ, and the SR-
exact, CSR-exact, CSR-normal and SR-Approx (ρ = 0) weight matrix based SGQL
estimates for the random effects variance σ2

τ under non-stationary AR(1) correla-
tion model (3.3) and (3.4) for selected values of correlation index parameter ρ with
K = 100, ni = 4; based on 1000 simulations. The function ψ(·) is estimated by SQL
approach and ρ is estimated using method of moments in all cases. The bandwidth
b = K−1/5 = 0.3981072.

True βββ = (β1, β2)
⊤ σ2

τ ρ Method Quantity β̂1 β̂2 σ̂2
τ ρ̂

βββ = (0.5, 0.5)⊤ 0.5 0.5 SR-exact SM 0.4947 0.4881 0.4899 0.4594
SSE 0.1576 0.2907 0.1252 0.1254
MSE 0.0249 0.0846 0.0158

SR-Approx (ρ = 0) SM 0.4947 0.4876 0.4803 0.4710
SSE 0.1576 0.2909 0.1264 0.1180
MSE 0.0248 0.0847 0.0164

CSR-exact SM 0.4942 0.4872 0.4737 0.4771
SSE 0.1576 0.2909 0.1265 0.1221
MSE 0.0248 0.0847 0.0167

CSR-normal SM 0.4941 0.4868 0.4694 0.4824
SSE 0.1575 0.2908 0.1249 0.1162
MSE 0.0248 0.0847 0.0165

0.8 SR-exact SM 0.4940 0.4844 0.5013 0.7503
SSE 0.1283 0.2267 0.1269 0.0959
MSE 0.0165 0.0516 0.0161

SR-Approx (ρ = 0) SM 0.4941 0.4838 0.4792 0.7684
SSE 0.1284 0.2269 0.1291 0.0839
MSE 0.0165 0.0517 0.0171

CSR-exact SM 0.4937 0.4843 0.4784 0.7657
SSE 0.1281 0.2271 0.1265 0.0918
MSE 0.0164 0.0517 0.0165

CSR-normal SM 0.4936 0.4841 0.4739 0.7689
SSE 0.1280 0.2269 0.1250 0.0870
MSE 0.0164 0.0517 0.0163
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Table 3.2: (Continued)

True βββ = (β1, β2)
⊤ σ2

τ ρ Method Quantity β̂1 β̂2 σ̂2
τ ρ̂

1.0 0.5 SR-exact SM 0.5032 0.4896 0.8823 0.4470
SSE 0.1660 0.2809 0.2263 0.1891
MSE 0.0275 0.0789 0.0650

SR-Approx (ρ = 0) SM 0.5021 0.4898 0.8845 0.4569
SSE 0.1665 0.2811 0.2346 0.1881
MSE 0.0277 0.0790 0.0683

CSR-exact SM 0.5017 0.4894 0.8768 0.4595
SSE 0.1665 0.2814 0.2327 0.1901
MSE 0.0277 0.0792 0.0693

CSR-normal SM 0.5017 0.4881 0.8743 0.4673
SSE 0.1662 0.2805 0.2336 0.1852
MSE 0.0276 0.0787 0.0703

0.8 SR-exact SM 0.4922 0.4701 0.8989 0.7221
SSE 0.1275 0.2152 0.2461 0.1545
MSE 0.0163 0.0471 0.0707

SR-Approx (ρ = 0) SM 0.4918 0.4686 0.8883 0.7368
SSE 0.1278 0.2152 0.2402 0.1456
MSE 0.0164 0.0472 0.0701

CSR-exact SM 0.4921 0.4690 0.8875 0.7331
SSE 0.1277 0.2152 0.2384 0.1500
MSE 0.0163 0.0472 0.0694

CSR-normal SM 0.4911 0.4685 0.8841 0.7399
SSE 0.1280 0.2156 0.2421 0.1446
MSE 0.0165 0.0474 0.0720



Chapter 4

Semi-parametric dynamic fixed

models for longitudinal binary data

In Chapter 2 we have discussed a semi-parametric dynamic model for the analysis

of longitudinal count data with fixed regression effects. However, recent studies (Su-

tradhar, 2010) show that, except for the stationary cases where covariates are time

independent, the correlation structures for non-stationary binary data are, in general,

different than those for count data. Thus, special attention is needed to model the cor-

relations for the non-stationary (with time dependent covariates) binary data which

does not follow from count data models discussed in Chapter 2. In the parametric

setup, we refer to Sutradhar (2011, Chapter 7) for such non-stationary correlation

models for longitudinal binary data. Specifically, two models, namely the LDCP

(linear dynamic conditional probability) and the BDL (binary dynamic logit) mod-

els are discussed. The purpose of this chapter is to generalize these models to the

semi-parametric setup. To be specific, we develop a semi-parametric LDCP (SLDCP)

model in Section 4.1 and a semi-parametric BDL (SBDL) model in Section 4.2.



90

4.1 SLDCP (semi-parametric linear dynamic con-

ditional probability) model for longitudinal bi-

nary data

Recall from Sutradhar (2011) (see also Zeger et al., 1985) that for the binary responses

{yi1, . . . , yij, . . . , yini
} the LDCP model is defined as

µij(βββ,xxxij) = Pr[Yij = 1|xxxij]

=
exp(xxx⊤ij(tij)βββ)

1 + exp(xxx⊤ij(tij)βββ)
for j = 1, · · · , ni, and (4.1)

λi,j|j−1(βββ, ρ;xxxij,xxxi,j−1) = Pr[Yij = 1|yi,j−1,xxxij,xxxi,j−1]

= µij(βββ,xxxij) + ρ[yi,j−1 − µi,j−1(βββ,xxxi,j−1)] for j = 2, . . . , ni. (4.2)

Similar to the semi-parametric fixed model for count data (Chapter 2), the above

LDCP model may be generalized to the semi-parametric setup as

µij(βββ,xxxij, ψ(zij)) = Pr[Yij = 1|xxxij, zij]

=
exp(xxx⊤ij(tij)βββ + ψ(zij))

1 + exp(xxx⊤ij(tij)βββ + ψ(zij))
for j = 1, . . . , ni, and (4.3)

λi,j|j−1(βββ, ρ, ψ(·);xxxij,xxxi,j−1, zij, zi,j−1)

= Pr[Yij = 1|yi,j−1,xxxij,xxxi,j−1, zij, zi,j−1]

= µij(βββ,xxxij, ψ(zij)) + ρ[yi,j−1 − µi,j−1(βββ,xxxi,j−1, ψ(zi,j−1))] for j = 2, . . . , ni,

(4.4)

where

max

[
−µij(·)

1− µi,j−1(·)
,−1− µij(·)

µi,j−1(·)

]
≤ ρ ≤ min

[
1− µij(·)

1− µi,j−1(·)
,
µij(·)
µi,j−1(·)

]
,
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for j = 2, . . . , ni; i = 1, . . . , K. In (4.3) and (4.4) ψ(zij) is the non-parametric function

added to explain the effect of the secondary covariates zij(tij) on the binary responses.

Note that the semi-parametric binary correlation model (4.4) is similar but differ-

ent than the semi-parametric model for the longitudinal count data (Chapter 2). The

count data model is based on so-called binary thinning operation (Sutradhar, 2003,

McKenzie, 1988). While the binary data model follows a linear correlation model

studied earlier by Zeger et al. (1985). In the following subsection, we provide the

marginal correlation properties of the SLDCP model (4.3)−(4.4).

4.1.1 Basic properties of the SLDCP model

Lemma 4.1. Under the SLDCP (4.3)−(4.4), the responses have the following mo-

ment properties:

E[Yij|xxxij, zij] = µij(βββ,xxxij, ψ(zij)) for all j = 1, . . . , ni ,

Var[Yij|xxxij, zij] = σi,jj(βββ,xxxij, ψ(zij))

= µij(βββ,xxxij, ψ(zij))[1− µij(βββ,xxxij, ψ(zij))], for all j = 1, . . . , ni, (4.5)

and

Corr(Yij, Yik|xxxij,xxxik, zij, zik)

=

⎧⎪⎨⎪⎩
ρk−j

√
µij(βββ,xxxij ;ψ(zij))[1−µij(βββ,xxxij ;ψ(zij))]
µik(βββ,xxxik;ψ(zik))[1−µik(βββ,xxxik;ψ(zik))]

j < k

ρj−k
√

µik(βββ,xxxik;ψ(zik))[1−µik(βββ,xxxik;ψ(zik))]
µij(βββ,xxxij ;ψ(zij))[1−µij(βββ,xxxij ;ψ(zij))] j > k.

(4.6)

Proof. E[Yi1] = µi1(βββ,xxxi1, ψ(zi1)) follows (4.3). For j = 2, . . . , ni, by applying (4.4)
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recursively, the marginal mean property is derived as

E[Yij] = E[E[Yij|yi,j−1]] = µij + ρE[Yi,j−1 − µi,j−1]

= µij + ρE[E[Yi,j−1 − µi,j−1|yi,j−2]] = µij + ρ2 E[Yi,j−2 − µi,j−2]

...

= µij + ρj−1 E[Yi1 − µi1]

= µij .

The variance follows by definition of the binary response.

For j < k (Sutradhar, 2011, Chapter 7),

Cov[Yij, Yik] = E[(Yij − µij)(Yik − µik)] = E[E[(Yij − µij)(Yik − µik)|yij, · · · , yi,k−1]]

= ρE[(Yij − µij)(Yi,k−1 − µi,k−1)]

= ρE[E[(Yij − µij)(Yi,k−1 − µi,k−1)|yij, · · · , yi,k−2]]

= ρ2 E[(Yij − µij)(Yi,k−2 − µi,k−2)]

... by applying (4.4) recursively

= ρk−j E[(Yij − µij)(Yij − µij)]

= ρk−j σijj ,

which further gives (4.6).

4.1.2 Estimation for the proposed SLDCP model

Fitting the SLDCP model (4.4) to the repeated binary data requires the estimation

of the nonparametric function ψ(·), and the model parameters βββ and ρ. We provide

their step by step consistent estimation as follows.
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4.1.2.1 SQL estimation of the nonparametric function ψ(·) under the

SLDCP model

Note that it is of primary interest to estimate the regression effects βββ involved in the

SLDCP model (4.4) consistently and as efficiently as possible. However, a consistent

estimator of βββ can not be obtained without consistently estimating the function ψ(zij)

involved in the model [see (4.3)]. Thus, for known βββ, we first develop a consistent

estimator ψ̂(βββ, zij) for ψ(zij). Further, note that given βββ, a consistent estimator of

ψ(·) can be obtained through the means and variances of the repeated responses

{yij, j = 1, . . . , ni} only. Afterwards, in a second stage, one can pretend that the

repeated responses are independent, that is, assume that ρ = 0 in model (4.4). This

is equivalent to use the QL (quasi-likelihood) approach (Wedderburn, 1974) which is

further equivalent to the independence (I) assumption based GEE (GEE(I)) approach

(Liang and Zeger, 1986). In the present context, this QL approach will be referred to

as the semi-parametric QL (SQL) approach which we construct as follows.

Without loss of generality, use z0 for zij for given i and j, and hence estimate

ψ(z0) at all possible values of z0 corresponding to all i and j. Note that it is impos-

sible to estimate the regression parameters βββ and the nonparametric function ψ(z0)

independently. Thus, for known βββ, under the assumption that the mean function

µij in (4.5) [see also (4.3)] is continuous, one may solve the SQL (semi-parametric

quasi-likelihood) estimating equation for ψ(zij)|zij=z0 as

K∑
i=1

ni∑
j=1

wij(z0)
∂µij
∂ψ(z0)

(
yij − µij
σi,jj

)
= 0, (4.7)
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where σi,jj is the variance of yij as given by (4.5), and

wij(z0) = pij(
z0 − zij

b
)/

K∑
i=1

ni∑
j=1

pij(
z0 − zij

b
) (4.8)

is a kernel weight with pij as the kernel density, as discussed in (3.12)−(3.14). Note

that for wij(z0) = 1, the SQL estimating equation (4.7) reduces to the well known QL

(quasi-likelihood) equation (Wedderburn, 1974). For the bandwidth parameter b in

the kernel density pij((z0− zij)/b), we assume that this parameter is chosen such that

the mean squared error of the estimator of ψ(zij) will be minimum. By this token, b

may be optimally chosen as b ∝ K−1/5 (Pagan and Ullah, 1999). More specifically, one

may use b = c0K
−1/5 where the constant c0 can be estimated, for example, following

Horowitz (2009, Section 2.7) and Powell and Stoker (1996).

Next because

∂µij(βββ,xxxij, ψ(z0))

∂ψ(z0)
= µij(βββ,xxxij, ψ(z0))[1− µij(βββ,xxxij, ψ(z0))] = σijj(z0),

the SQL estimating equation (4.7) reduces to

f(ψ(z0),βββ) =
K∑
i=1

ni∑
j=1

wij(z0)[yij − µij(βββ,xxxij, ψ(z0))] = 0, (4.9)

which may be solved for the estimate ψ̂(z0,βββ) of ψ(z0) by using the iterative equation

ψ̂(z0,βββ)(r+1) = ψ̂(z0,βββ)(r)

−
[
{f ′

ψ(z0)
(ψ(z0),βββ)}−1f(ψ(z0),βββ)

]
|ψ(z0)=ψ̂(z0,βββ)(r)

, (4.10)
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where (r) indicates the rth iteration, and f ′
ψ(z0)

(ψ(z0),βββ) has the formula

f ′
ψ(z0)

(ψ(z0),βββ)

= −
K∑
i=1

ni∑
j=1

wij(z0)[µij(βββ,xxxij, ψ(z0)){1− µij(βββ,xxxij, ψ(z0))}]. (4.11)

Note that as shown in Section 4.1.3.1, the SQL estimator ψ̂(z0,βββ) obtained from

(4.9) is a consistent estimator for the true nonparametric function ψ(z0). More specif-

ically, it is shown that ψ̂(z0,βββ) converges to ψ(z0) provided Kb
4 → 0 as K → ∞, im-

plying that for a constant c∗, the bandwidth parameter b may be chosen as b = c∗K−α

with α > 1
4
. A similar result with 1

4
< α ≤ 1

3
is available in Lin and Carroll (2001),

for example. Notice that this choice of b is not optimal, because the asymptotic

convergence was derived, for simplicity, only by reducing the bias of the estimator,

while the derivation of the optimal choice requires both bias reduction and variance

minimization of the estimator.

Note that some authors such as Lin and Carroll (2001) have estimated ψ(·) using

‘working’ correlations, whereas we have used independence approach to construct the

SQL estimating equation (4.7). This is because the SQL estimate from (4.9) is simple

and, as shown in Section 4.1.3.1, it is also consistent. It is further seen from Lin and

Carroll (2001, Section 4) that the use of such working correlations does not improve

the efficiency for the estimates of the main regression parameters. We discuss this

issue in details in Section 4.1.4.1.

4.1.2.2 SGQL estimation of the regression effects βββ

For known βββ, in the last section, we have obtained the SQL estimator ψ̂(βββ, zij) which is

a consistent estimator for the true nonparametric function ψ(zij).We now replace the

ψ(zij) function involved in the original mean, variance and covariance of the responses
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given in (4.5)−(4.6) with this estimator ψ̂(βββ, zij), and re-express these moments as

µ̃ij(βββ,xxxij, ψ̂(βββ, zij)) = µij(βββ,xxxij, ψ(zij))|ψ(zij)=ψ̂(βββ,zij)

σ̃i,jj(βββ,xxxij, ψ̂(βββ, zij)) = σi,jj(βββ,xxxij, ψ(zij))|ψ(zij)=ψ̂(βββ,zij), (4.12)

and

σ̃i,jk(βββ, ρ,xxxij,xxxik, ψ̂(βββ, zij), ψ̂(βββ, zik)) (4.13)

= σi,jk(βββ, ρ,xxxij,xxxik, ψ(zij), ψ(zik))|ψ(zij)=ψ̂(βββ,zij),ψ(zik)=ψ̂(βββ,zik) for j < k,

respectively. Further, for notational simplicity, in the rest of this section, we use

µ̃ij(βββ, ψ̂(βββ)) for µ̃ij(βββ,xxxij, ψ̂(βββ, zij)); σ̃i,jj(βββ, ψ̂(βββ)) for σ̃i,jj(βββ,xxxij, ψ̂(βββ, zij)); and σ̃i,jk(βββ, ρ, ψ̂(βββ))

for σ̃i,jk(βββ, ρ,xxxij,xxxik, ψ̂(βββ, zij), ψ̂(βββ, zik)).We now express the mean and covariance ma-

trix of the binary response vector yyyi = (yi1, . . . , yij, . . . , yini
)⊤ as

µ̃µµi(βββ, ψ̂(βββ)) = E[YYY i] = [µ̃i1(βββ, ψ̂(βββ)), . . . , µ̃ij(βββ, ψ̂(βββ)), . . . , µ̃ini
(βββ, ψ̂(βββ))]⊤ : ni × 1

Σ̃ΣΣi(βββ, ρ, ψ̂(βββ)) = Cov[YYY i] = (σ̃i,jk(βββ, ρ, ψ̂(βββ))) : ni × ni. (4.14)

Next, following Sutradhar (2003, 2010), for example, we construct the GQL (general-

ized quasi-likelihood) estimating equation for βββ as

K∑
i=1

∂[µ̃µµi(βββ, ψ̂(βββ))]
⊤

∂βββ
[Σ̃ΣΣi(βββ, ρ, ψ̂(βββ))]

−1 [yyyi − µ̃µµi(βββ, ψ̂(βββ))] = 0, (4.15)

where

∂[µ̃µµi(βββ, ψ̂(βββ))]
⊤

∂βββ
=
∂(µ̃i1(βββ, ψ̂(βββ)), . . . , µ̃ij(βββ, ψ̂(βββ)), . . . , µ̃ini

(βββ, ψ̂(βββ)))

∂βββ
.
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We remark that to reflect the semi-parametric means and correlations involved in

the GQL estimating equation (4.15) for βββ, we refer to this estimating equation as

the semi-parametric GQL (SGQL) estimating equation. Let the solution of (4.15) be

denoted by β̂ββSGQL. Further note that in the derivative matrix in the SGQL estimating

equation (4.15), the derivative vector for the jth element has the formula

∂µ̃ij(βββ, ψ̂(βββ))

∂βββ
= µ̃ij(βββ, ψ̂(βββ))(1− µ̃ij(βββ, ψ̂(βββ)))

(
xxxij +

∂

∂βββ
ψ̂(βββ, zij)

)
= µ̃ij(βββ, ψ̂(βββ))(1− µ̃ij(βββ, ψ̂(βββ))) [xxxij (4.16)

−
∑K

ℓ=1

∑nℓ

u=1wℓu(zij)µ̃ℓu(βββ, ψ̂(βββ, zij))(1− µ̃ℓu(βββ, ψ̂(βββ, zij)))xxxℓu∑K
ℓ=1

∑nℓ

u=1wℓu(zij)µ̃ℓu(βββ, ψ̂(βββ, zij))(1− µ̃ℓu(βββ, ψ̂(βββ, zij)))

]
,

where ψ̂(βββ, zij) is the solution of (4.9).

Thus, the β̂ββSGQL estimate may be obtained by solving (4.15) iteratively until

convergence. As we will see later, this estimator is consistent for true βββ and it is

always more efficient than the existing GEE(I), i.e. SQL approaches, whereas the so-

called GEE approaches may not satisfy this fundamental inequality. The asymptotic

convergence is explained in Section 4.1.3.2 and its finite sample performance both for

bias and efficiency is discussed through a simulation study in Section 4.1.4.2.

Note that for efficient estimation of the regression effects (of the primary co-

variates), some authors (Severini and Staniswalis, 1994, Lin and Carroll, 2001) used

the so-called unstructured (UNS) correlation matrix based GEE approach. As an

extension of the longitudinal model based study (Sutradhar and Das, 1999) to the

semi-parametric longitudinal setup, we show in Section 4.1.4.1 through an empirical

study that the semi-parametric GEE(UNS) (SGEE (UNS)) approach used in Lin and

Carroll (2001) may produce inefficient regression estimates, as compared to the semi-

parametric QL (SQL) or SGEE(I) approach. Thus, the SGEE approach can not be

recommended in practice for regression estimation.
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4.1.2.3 Semi-parametric method of moments (SMM) estimation for the

correlation index parameter ρ

When the regression effects βββ and the nonparametric function ψ(zij) are known, one

may use the method of moments and exploit the second order moments from (4.5)

and (4.6) and obtain the moment estimator of ρ as

ρ̂ =

∑K
i=1

∑ni

j=2 y
∗
ijy

∗
i,j−1∑K

i=1

∑ni

j=1 y
∗2
ij

∑K
i=1 ni∑K

i=1

∑ni

j=2

[
σi,j−1,j−1

σi,jj

] 1
2

(4.17)

(Sutradhar and Kovacevic, 2000; Sutradhar, 2011, Eqn. (7.88)], where

y∗ij = [yij − µij(βββ,xxxij, ψ(zij))]/
√
σi,jj(βββ,xxxij, ψ(zij)) with

σi,jj(βββ,xxxij, ψ(zij)) = µij(βββ,xxxij, ψ(zij))(1− µij(βββ,xxxij, ψ(zij))),

and µij(βββ,xxxij, ψ(zij)) = exp{xxx⊤ijβββ + ψ(zij)}/[1 + exp{xxx⊤ijβββ + ψ(zij)}].

Next by replacing µij(βββ,xxxij, ψ(zij)) with

¯̄µij(β̂ββSGQL,xxxij, ψ̂(β̂ββSGQL, zij)) =
exp{xxx⊤ijβ̂ββSGQL + ψ̂(β̂ββSGQL, zij)}

1 + exp{xxx⊤ijβ̂ββSGQL + ψ̂(β̂ββSGQL, zij)}

in (4.17), we obtain the SMM (semi-parametric method of moment) estimator of ρ as

ˆ̄ρ =

∑K
i=1

∑ni

j=2 ȳ
∗
ij ȳ

∗
i,j−1∑K

i=1

∑ni

j=1 ȳ
∗2
ij

∑K
i=1 ni∑K

i=1

∑ni

j=2

[
¯̄σi,j−1,j−1

¯̄σi,jj

] 1
2

, (4.18)

where

ȳ∗ij =
yij − ¯̄µij(β̂ββSGQL,xxxij, ψ̂(β̂ββSGQL, zij))√

¯̄σi,jj(β̂ββSGQL,xxxij, ψ̂(β̂ββSGQL, zij))

¯̄σi,jj(β̂ββSGQL,xxxij, ψ̂(β̂ββSGQL, zij)) = ¯̄µij(β̂ββSGQL,xxxij, ψ̂(β̂ββSGQL, zij))
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× [1− ¯̄µij(β̂ββSGQL,xxxij, ψ̂(β̂ββSGQL, zij))].

The consistency of this SMM estimator ˆ̄ρ will be shown in brief in Section 4.1.3.3.

4.1.3 Asymptotic properties of the estimators of the SLDCP

model

4.1.3.1 Consistency of ψ̂(·)

For convenience, in (4.9), we have shown the estimation for ψ(z0) for z0 = zℓu for

a selected value of ℓ(ℓ = 1, . . . , K) and u(u = 1, . . . , nℓ). For notational simplicity,

here we use µij(z0) for µij(βββ,xxxij, ψ(z0)). Now, for known βββ, and for true binary mean

µij ≡ µij(βββ,xxxij, ψ(zij)) given by (4.3), with the similar idea as in Section 3.3.1, a Taylor

expansion of f(ψ̂(z0;βββ),βββ) =
∑K

i=1

∑ni

j=1wij(z0)[yij −µij(βββ,xxxij, ψ̂(z0;βββ))] (4.9) about

ψ(z0) gives

ψ̂(z0;βββ)− ψ(z0) ≈
∑K

i=1

∑ni

j=1wij(z0) [yij − µij(z0)]∑K
i=1

∑ni

j=1wij(z0)µij(z0) [1− µij(z0)]
=

f(ψ(z0),βββ)

f ′
ψ(z0)

(ψ(z0),βββ)

=
1

f ′
ψ(z0)

(ψ(z0),βββ)

[
K∑
i=1

ni∑
j=1

wij(z0) [yij − µij] +
K∑
i=1

ni∑
j=1

wij(z0) [µij − µij(z0)]

]
= AK +HK , (4.19)

where

HK =
1

BK

1

K

K∑
i=1

ni∑
j=1

pij(z0) [µij − µij(z0)] , and

AK =
1

BK

1

K

K∑
i=1

ni∑
j=1

pij(z0) (yij − µij) with

BK =
1

K

K∑
i=1

ni∑
j=1

pij(z0)µij(z0) [1− µij(z0)] ,
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and pij(z0) ≡ pij(
z0−zij
b

) being the kernel density defined in (3.13). Here b ∝ K−α for

a suitable α (Pagan and Ullah, 1999, p. 28; Lin and Carroll, 2001). The asymptotic

behaviors of AK and HK are given by the following lemmas.

Lemma 4.2.

AK = Op(1/
√
K). (4.20)

Proof. Notice that E[AK ] = 0 and

Var[AK ] =
1

B2
K

1

K2

K∑
i=1

Var

[
ni∑
j=1

pij(z0)Yij

]
=

1

K
Qk

withQK = 1
B2

K

1
K

∑K
i=1Var

[∑ni

j=1 pij(z0)Yij

]
= O(1). The result in (4.20) then follows,

for example, from Amemiya (1985, Theorem 14.4-1).

Lemma 4.3.

HK = O(b2), (4.21)

where b is the bandwidth parameter involved in the kernel density.

Proof. By using

µij − µij(z0) = µij(z0) [1− µij(z0)]ψ
′(z0)(zij − z0) +O

(
(zij − z0)

2
)
,

we write

HK ≈ 1

BK

1

K

K∑
i=1

ni∑
j=1

pij(z0)µij(z0) [1− µij(z0)]ψ
′(z0) (zij − z0)
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=
1

BK

1

K

K∑
i=1

ni∑
j=1

µij(z0) [1− µij(z0)]ψ
′(z0) {pij(z0) (zij − z0)− E [pij(z0) (zij − z0)|xij]}

+
1

BK

1

K

K∑
i=1

ni∑
j=1

µij(z0) [1− µij(z0)]ψ
′(z0) E [pij(z0) (zij − z0)|xij]

= O(b2),

according to result (3.58), which is applicable to this SLDCP setup. For the first

term, due to pij(z0), its variance is in the order of O(b2/K), so it is Op(b/
√
K), which

can be neglected. Thus we have shown that HK = O(b2).

By using (4.20) and (4.21) in (4.19), one obtains

ψ̂(z0;βββ)− ψ(z0) = AK +O(b2) = Op(1/
√
K) +O(b2), (4.22)

showing that ψ̂(z0;βββ) is consistent for ψ(z0) provided Kb
4 → 0 as K → ∞, that is,

K 1
K4α = 1

K4α−1 → 0, yielding the condition α > 1/4. Note that this convergence result

is obtained by minimizing the bias of the estimator [see (4.19)] only.

4.1.3.2 Asymptotic normality and consistency of β̂ββSGQL

The asymptotic result of the SGQL estimator β̂ββSGQL of βββ is given by the following

lemma.

Lemma 4.4.

√
K
{
β̂ββSGQL − βββ

}
= FFF−1 1√

K

K∑
i=1

(ZZZ1i −ZZZ2i) (YYY i − µµµi)

+ O(
√
Kb4) + op(1), (4.23)
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where ZZZ1i =
∂µ̃µµ⊤i (βββ,ψ̂(zzzi;βββ))

∂βββ
Σ̃ΣΣ

−1

i (βββ, ψ̂(zzzi;βββ), ρ), and ZZZ2i = (ZZZ2i1, · · · ,ZZZ2ini
) with

ZZZ2ij =
1

K

K∑
i′=1

ni∑
j′=1

ni∑
k′=1

1

BK(zi′k′)

∂µ̃i′j′(βββ, ψ̂(zi′j′ ;βββ))

∂βββ
vj

′k′

1i′ (βββ, ψ̂, ρ)

× µi′k′(βββ, ψ(zi′k′)) [1− µi′k′(βββ, ψ(zi′k′))] pij(zi′k′),

where BK and the kernel density pij(z0) are defined in (4.19), and vjk1i is the (j, k)th

element of Σ̃ΣΣ
−1

i .

Proof. Recall that the SGQL estimator β̂ββSGQL of βββ is obtained by solving the esti-

mating equation (4.15). For true βββ, denote the estimating function in (4.15) as

DDDK(βββ) =
1

K

K∑
i=1

∂[µ̃µµi(βββ, ψ̂(βββ))]
⊤

∂βββ
[Σ̃ΣΣi(βββ, ρ, ψ̂(βββ))]

−1 [yyyi − µ̃µµi(βββ, ψ̂(βββ))].

Thus, β̂ββSGQL must satisfy DDDK(β̂ββSGQL) = 0, which by a linear Taylor expansion about

true βββ provides

DDDK(βββ) + (β̂ββSGQL − βββ)DDD′
K(βββ) + op(1/

√
K) = 0. (4.24)

Thus,

β̂ββSGQL − βββ = − [DDD′
K(βββ)]

−1
[DDDK(βββ) + op(1/

√
K)]

= [FFFK(βββ)]
−1DDDK(βββ) + op(1/

√
K), (4.25)

where

FFFK(βββ) =
1

K

K∑
i=1

∂[µ̃µµi(βββ, ψ̂(βββ))]
⊤

∂βββ
[Σ̃ΣΣi(βββ, ρ, ψ̂(βββ))]

−1 ∂µ̃µµi(βββ, ψ̂(βββ))

∂βββ⊤ .
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Notice that in (4.25), one may write

FFF (βββ) = lim
K→∞

FFFK(βββ) = Eψ̂

[
∂µ̃µµ⊤

i (βββ, ψ̂(zzzi;βββ))

∂βββ
Σ̃ΣΣ

−1

i (βββ, ψ̂(zzzi;βββ), ρ)
∂µ̃µµi(βββ, ψ̂(zzzi;βββ))

∂βββ⊤

]
.

Next the estimating function DDDK(βββ) in (4.25) may be further expressed as

DDDK(βββ) =
1

K

K∑
i=1

ZZZ1i (YYY i − µµµi)

− 1

K

K∑
i=1

∂µ̃µµ⊤
i (βββ, ψ̂(zzzi;βββ))

∂βββ
Σ̃ΣΣ

−1

i (βββ, ψ̂(zzzi;βββ), ρ)
[
µ̃µµi(βββ, ψ̂(zzzi;βββ))− µµµi(βββ, ψ(zzzi))

]
=

1

K

K∑
i=1

ZZZ1i (YYY i − µµµi)−
1

K

K∑
i=1

ni∑
j=1

ni∑
k=1

∂µ̃ij(βββ, ψ̂(zij;βββ))

∂βββ
vjk1i (βββ, ψ̂, ρ)

× µik(βββ, ψ(zik)) [1− µik(βββ, ψ(zik))]
[
ψ̂(zik;βββ)− ψ(zik)

]
+ op(1/

√
K)

=
1

K

K∑
i=1

(ZZZ1i −ZZZ2i)(YYY i − µµµi) +O(b2) + op(1/
√
K), (4.26)

by (4.22).

Hence by using (4.26) in (4.25), one obtains the result (4.23).

Theorem 4.1. The SGQL estimator β̂ββSGQL (the solution of (4.15)) has the limiting

(as K → ∞) multivariate normal distribution given as

√
K
{
β̂ββSGQL − βββ −O(b2)

}
→ N(0,VVV βββ), (4.27)

where

VVV βββ = FFF−1 1

K

[
K∑
i=1

(ZZZ1i −ZZZ2i)ΣΣΣi (ZZZ1i −ZZZ2i)
⊤

]
FFF−1.

Proof. Because E[YYY i − µµµi] = 0, and cov[YYY i] = ΣΣΣi, under the conditions (3.76), by

applying Lindeberg-Feller central limit theorem (Bishop, Fienberg and Holland, 2007,

Theorem 3.3.6) for independent random variables with non-identical distributions to



104

Lemma 4.4, one obtains the theorem.

4.1.3.3 Consistency of ˆ̃ρ

We proved the consistency for known βββ and ψ(zij). The result remains valid when βββ

and ψ(zij) are replaced by their respective consistent estimates. The consistency of

the moment estimator ρ̂ (4.17) is given by the following lemma:

Lemma 4.5. The moment estimator ρ̂ given in (4.17) is a consistent estimator for

the longitudinal correlation index parameter ρ.

Proof. Notice that for known βββ and ψ(zij), the moment estimator of ρ is given by

(4.17). For two fixed quantitiesM1 andM2, we assume that the lag 1 sum of products

and sum of squares used in (4.17) have bounded variances satisfying

E

⎡⎣(ni−1∑
j=1

[
Y ∗
ijY

∗
i,j+1 −

σi,j,j+1√
σijjσi,j+1,j+1

])2
⎤⎦ < M1, and

E

⎡⎣( ni∑
j=1

[
Y ∗
ij
2 − 1

])2
⎤⎦ < M2,

respectively. Now because Yij’s are independent for different i, for K → ∞, we may

apply the law of large numbers for independent random variables (Breiman, 1968,

Theorem 3.27) and obtain

∑K
i=1

∑ni−1
j=1

(
y∗ijy

∗
i,j+1 −

σi,j,j+1√
σijjσi,j+1,j+1

)
∑K

i=1(ni − 1)

P−→ 0

⇒
∑K

i=1

∑ni−1
j=1 y∗ijy

∗
i,j+1∑K

i=1(ni − 1)
=
ρ
∑K

i=1

∑ni−1
j=1

√
σijj√

σi,j+1,j+1∑K
i=1(ni − 1)

+ op(1). (4.28)
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Similarly,

∑K
i=1

∑ni

j=1

(
y∗ij

2 − 1
)∑K

i=1 ni

P−→ 0 ⇒∑K
i=1

∑ni

j=1 y
∗
ij
2∑K

i=1 ni
= 1 + op(1). (4.29)

Dividing (4.28) by (4.29), after some algebra, one obtains

ρ̂ =

K∑
i=1

ni−1∑
j=1

y∗ijy
∗
i,j+1

K∑
i=1

ni∑
j=1

y∗ij
2

K∑
i=1

ni

K∑
i=1

ni−1∑
j=1

[
σijj

σi,j+1,j+1

] 1
2

P−→ ρ as K → ∞ . (4.30)

The consistency for ˆ̃ρ in (4.18) follows from (4.30) because of the fact that ˆ̃ρ was

constructed by putting consistent estimates for βββ and ψ(zij) in the formula for ρ̂ in

(4.17).

4.1.4 A simulation study

The main objective of this simulation study (see Section 4.1.4.2) is to examine the

finite sample bias and efficiency performance of the proposed SGQL estimator of the

regression parameter βββ obtained by solving the SGQL estimating equation (4.15). Be-

cause this βββ parameter is involved in the AR(1) (auto-regressive order 1) type SLDCP

model (4.4) for repeated binary data, it can not be estimated without estimating the

nonparametric function ψ(·) and the longitudinal correlation index parameter ρ. The

estimates in the simulation study are obtained by solving the SQL estimating equa-

tion (4.9) for the ψ(·) function and the SMM equation (4.18) for the ρ parameter.

Note that only the SGQL estimates of the main parameter βββ are compared with the
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existing GEE estimates obtained by using ‘working’ MA(1) (moving average of order

1), EQC (equi-correlations) and independence (I) assumption under a truly AR(1)

binary data. The unstructured (UNS) ‘working’ correlation structure (Severini and

Staniswalis, 1994, Lin and Carroll, 2001) is not used in this simulation study in Sec-

tion 4.1.4.2, because, as we demonstrate in Section 4.1.4.1, the GEE(UNS) approach

may produce less efficient estimates than the GEE(I) (independence assumption based

GEE) estimates which makes the GEE approach useless. Nevertheless, other possible

‘working’ correlations (MA(1), EQC, I) based GEE were included in Section 4.1.4.2

for the sake of completeness.

As far as the primary and secondary covariates are concerned, we choose the

primary covariates as:

For K = 50,

xij1(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

for i = 1, . . . , 10 and j = 1, 2

1 for i = 1, . . . , 10 and j = 3, 4

−1
2

for i = 11, . . . , 40 and j = 1

0 for i = 11, . . . , 40 and j = 2, 3

1
2

for i = 41, . . . , 50 and j = 4

j
2ni

for i = 41, . . . , 50 and j = 1, 2, 3, 4

(4.31)

xij2(j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j−2.5
2ni

for i = 1, . . . , 25 and j = 1, 2, 3, 4

0 for i = 26, . . . , 50 and j = 1, 2

1
2

for i = 26, . . . , 50 and j = 3, 4.

For K = 70,
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xij1(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

for i = 1, . . . , 15 and j = 1, 2

1 for i = 1, . . . , 15 and j = 3, 4

−1
2

for i = 16, . . . , 55 and j = 1

0 for i = 16, . . . , 55 and j = 2, 3

1
2

for i = 16, . . . , 55 and j = 4

j
2ni

for i = 56, . . . , 70 and j = 1, 2, 3, 4

(4.32)

xij2(j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j−2.5
2ni

for i = 1, . . . , 35 and j = 1, 2, 3, 4

0 for i = 36, . . . , 70 and j = 1, 2

1
2

for i = 36, . . . , 70 and j = 3, 4.

For K = 100: This design is the same as in (3.105).

The secondary covariates (zij) and nonparametric functions (ψ(zij)) are chosen as

in (3.106) and (3.107), respectively.

Furthermore, for the bandwidth parameter involved in the kernel weights we choose

the recommended optimal value under the independent setup, namely b = c0K
−1/5,

where K = 50, 70, or 100. As far as c0 is concerned, the formula in Horowitz (2009,

Section 2.7) appears to be complex. Because this parameter is set for all possible small

partitions for the secondary covariate z, we have treated c0 as the standard deviation

of z values from the entire space. For example, in Chapter 3, for z values ranging

from 0.5 to 4.5, c0 was chosen as c0 = σz ≈ range/4 = [4.5− 0.5]/4 = 1.0 (see Figure

3.1). This choice of normalizing constant works better than other choices, which we

verified by searching for mini-max MSE (mean squared error) of the estimators. We

do not report the detailed results here to save space.
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4.1.4.1 SGEE estimation of regression parameter βββ and drawbacks

Notice that under the SLDCP model (4.4), ψ(z0) is estimated by solving (4.9) as

a function of βββ by treating ρ = 0, ρ being the dynamic dependence parameter of

the model. The estimator is denoted by ψ̂(z0,βββ). Next, we remark that for the es-

timation of the main regression parameter βββ, some of the existing studies (Severini

and Staniswalis, 1994, Lin and Carroll, 2001) have dealt with marginal models where

the mean and the variances are not affected by the dynamic dependence parameter.

To accommodate possible correlation of the repeated data, these authors have used a

‘working’ correlation structure based GEE (generalized estimating equation) approach

for efficient estimation of βββ which does not require any modeling for the true correla-

tion structure such as using (4.4). More specifically, using yyyi = [yi1, . . . , yij, . . . , yini
]⊤,

the vector of repeated responses, and zzzi = [zi1, . . . , zij, . . . , zini
]⊤, corresponding vector

of secondary covariates, the ‘working’ correlations approach solves the GEE defined

as
K∑
i=1

∂µµµ⊤
i (βββ,XXX i, ψ̂(βββ,zzzi))

∂βββ
V −1
i (yyyi − µµµi(βββ,XXX i, ψ̂(βββ,zzzi))) = 0, (4.33)

where X⊤
i = (xxxi(ti1), . . . ,xxxi(tij), . . . ,xxxi(tini

)) denote the p× ni covariate matrix with

xxxi(tij) as the p−dimensional primary covariate vector as in (4.3) for the ith individual

at time point tij, µµµi(βββ,XXX i, ψ̂(βββ,zzzi) is a mean vector constructed from (4.14)−(4.15),

where for known βββ, ψ̂(βββ,zzzi) is a ni×1 consistent estimate of the nonparametric vector

function ψ(zzzi). As opposed to (4.15), the VVV i in (4.33) is a so-called ni × ni ‘working’

correlation matrix representing the correlations of the repeated responses which is

computed by VVV i = AAA
1
2
i RRRiAAA

1
2
i where AAAi = diag[var(yi1), . . . , var(yij), . . . , var(yini

)] with

var(yij) = µij(βββ,xxxij, ψ̂(βββ, zij))[1− µij(βββ,xxxij, ψ̂(βββ, zij))]

= vij(βββ,xxxij, ψ̂(βββ, zij))
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as in (4.14), but RRRi has been computed by an unstructured (UNS) common constant

correlation matrix (RRR) as

RRR(≡ RRRi) = K−1

K∑
i=1

rrrirrr
⊤
i , where rrri = (ri1, . . . , rij, . . . , rini

)⊤, (4.34)

with rij =
(yij−µij(βββ,xxxij ,ψ̂(βββ,zij)))

[vij(βββ,xxxij ,ψ̂(βββ,zij))]
1
2
.

Because of the serious inefficiency drawbacks of the GEE approach in the longi-

tudinal setup (Sutradhar and Das, 1999) where GEE was found to be less efficient

than using independence approach, it is first worth checking the performance of the

existing UNS matrix RRR based GEE (4.33) (GEE(UNS)) approach (Lin and Carroll,

2001) for estimation of βββ in the present semi-parametric longitudinal setup, before

this approach is included in overall comparison under Section 4.1.4.2.

For the purpose we consider K = 50, 70, independent individuals each providing

repeated binary responses for ni = n = 4 times. We take these individuals as having

the two primary covariates with their effects βββ = (β1, β2)
⊤ = (0.5, 0.5)⊤ on the re-

sponses, where the values of the covariates are given as in (4.31) and (4.32). Also the

nonparametric function in secondary covariates is given by (3.107). Then, we gener-

ate the repeated binary responses {yij, j = 1, . . . , ni = n = 4} following the SLDCP

model (4.4) using these parameters, covariates and nonparametric function. As far

as the correlation index parameter is concerned, we choose ρ = 0.1, and the actual

correlations among the data were computed by (4.6). However, to estimate βββ by using

the UNS ‘working’ correlation matrix RRR (4.34) based SGEE in (4.33), one does not

need to know this correlation structure (4.6). Following Lin and Carroll (2001, Eqn.

(10)), in a given simulation, we obtain the estimate of βββ by solving (4.33), where the

function ψ(·) is estimated by (4.9). We use 1000 simulations and denote the average
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(simulated mean (SM)) of these βββ estimates by β̂ββSGEE(UNS) and also compute the sim-

ulated standard error (SSE). In order to examine the relative efficiency performance

of this estimate β̂ββSGEE(UNS) with the estimate obtained under the independence as-

sumption (RRR = III4), we obtain the SGEE(I) estimate by (4.33) but by treatingRRR = III4,

which is denoted by β̂ββSGEE(I), and is also the SQL (semi-parametric QL) or moment

estimate. As an illustration, we now display these estimates along their simulated

mean squared error (SMSE) as follows for K = 50 and K = 70 :

K=50 K=70

Quantity β̂1,SGEE(UNS) β̂1,SGEE(I) β̂1,SGEE(UNS) β̂1,SGEE(I)

SM 0.574 0.552 0.525 0.509
SSE 0.561 0.533 0.456 0.443
SMSE 0.320 0.286 0.208 0.196

β̂2,SGEE(UNS) β̂2,SGEE(I) β̂2,SGEE(UNS) β̂2,SGEE(I)

SM 0.577 0.541 0.568 0.562
SSE 1.207 1.128 0.968 0.922
SMSE 1.461 1.272 0.940 0.852

Table 4.1: Illustration of relative efficiency performance of the SGEE(UNS) (Lin and
Carroll (2001)) and SGEE(I) approaches in estimating regression effects βββ

Notice that SGEE(I) approach estimates of both β1 and β2, have smaller SSE

and MSE than the ones obtained via an unstructured (UNS) ‘working’ correlations

based SGEE(UNS) (Lin and Carroll, 2001) approach. For example, when K = 70, the

SGEE(UNS) produces β2 estimate with MSE 0.940, while the simpler SGEE(I)≡SQL

approach shows the MSE as 0.852. This example, therefore, illustrates that it is

useless to attempt applying the ‘working’ correlations based GEE approach to increase

the efficiency in regression estimation because the independence assumption based

approach may produce, at times, better estimates. This recommendation for the

semi-parametric longitudinal models is similar to that of (Sutradhar and Das, 1999)

for the longitudinal models. Nevertheless, for the sake of completeness, we use other
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‘working’ correlations based GEE approaches in the next section to compare their

efficiency performance with the proposed SGQL approach.

4.1.4.2 Performance of the proposed SGQL estimation approach

Because in the semi-parametric longitudinal setup, the existing works (Severini and

Staniswalis, 1994, Lin and Carroll, 2001, for example) recommended the use of the

GEE(UNS) for inferences about the main regression parameters of the model, in the

last section we conducted a separate simulation study to examine the performance

of this recommended approach. The simulation study however produced contradic-

tions and suggests not to use such GEE(UNS) approach as it fails to gain efficiency

at times over the GEE(I) (independence assumption based) approach. In this sec-

tion, we examine the performance of the proposed SGQL approach in estimating the

nonparametric function and parameters of the SLDCP model (4.4). For the sake of

completeness we also include some other possible ‘working’ correlations (other than

UNS) based GEE approaches. The selected ‘working’ correlation structures are: sta-

tionary MA(1) (moving average order 1), stationary EQC (equi-correlations), and

independence (I). Note that the proposed dynamic model (4.4) produces time depen-

dent covariates based non-stationary correlation structure (4.6), whereas the autocor-

relations based existing SGEE approaches use stationary such as traditional AR(1),

MA(1) and EQC structures. The repeated binary data were generated as in the last

section. The simulated estimates using K = 50 and 100, for example are given in

Tables 4.2 and 4.3, respectively. For longitudinal correlations, we choose its index

as ρ = 0.1, 0.5. The estimates of the nonparametric function along with the true

functions are displayed in Figure 4.1.

The SQL estimates of the function ψ(·) computed following (4.9) are displayed in

Figure 4.1. This SQL approach appears to perform very well for the true quadratic
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Figure 4.1: The plots for the true (thick curve) and estimated (dotted curve) non-
parametric function ψ(·) for the SLDCP model based on βββ estimate produced by the
SGQL approach. The bandwidth b = K−1/5.

nonparametric function. Next, the simulation results in Table 4.2 and 4.3 show that

the proposed SGQL approach appears to produce regression estimates with smaller

MSE (mean squared error) than other SGEE approaches including the SGEE(I) ap-

proach, indicating its superiority. For example, for large ρ = 0.5, the results for

K = 50 in Table 4.2 show that β1 = 0.5 and β2 = 0.5 are estimated by the SGQL

approach with MSEs 0.2845 and 1.1146, while the SGEE(EQC) produces the esti-

mates with larger MSEs 0.3154 and 1.2638, respectively; the independence approach

SGEE(I) produces the estimates with MSEs 0.4287 and 1.8196, respectively, which

are the worst performance. Furthermore, as expected, all approaches produce the

regression estimates with similar MSEs when ρ is small, that is, ρ = 0.1. Next, when

the results from Table 4.3 for K = 100 are compared with those in Table 4.2 for

K = 50, the larger cluster number appears to produce estimates with smaller MSEs,

as expected. The SMM approach explained in Section 4.1.2.3 also appears to produce

estimates of ρ close to its true value. Thus the proposed SGQL approach performs well
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ρ Methods Quantity β̂1 β̂2 α̂ ρ̂

0.1 SGQL SM 0.5531 0.5611 0.0925
SSE 0.5170 1.1062 0.0780
MSE 0.2698 1.2261

SGEE(MA(1)) SM 0.5529 0.5555 0.0975
SSE 0.5175 1.0933 0.0821
MSE 0.2703 1.1973

SGEE(EQC) SM 0.5551 0.5610 0.0469
SSE 0.5203 1.0953 0.0657
MSE 0.2735 1.2022

SGEE(I) SM 0.5504 0.5498
SSE 0.5218 1.1091
MSE 0.2746 1.2313

0.5 SGQL SM 0.5529 0.5115 0.4517
SSE 0.5310 1.0562 0.0864
MSE 0.2845 1.1146

SGEE(MA(1)) SM 0.5701 0.4680 0.5249
SSE 0.5955 1.2323 0.0736
MSE 0.3592 1.5181

SGEE(EQC) SM 0.5645 0.5575 0.3747
SSE 0.5582 1.1233 0.0855
MSE 0.3154 1.2638

SGEE(I) SM 0.5409 0.5234
SSE 0.6538 1.3494
MSE 0.4287 1.8196

Table 4.2: Simulated means (SMs), simulated standard errors (SSEs) and mean square
errors (MSEs) of the SGQL and SGEE estimates of the regression parameter β1 = 0.5
and β2 = 0.5, under LDCP AR(1) correlation model for selected values of correlation
index parameter ρ with K = 50, n = 4, and 1000 simulations. The covariates xxxij’s
are given by (4.31). The bandwidth b = K−1/5.

in estimating the function ψ(·), main regression parameters and the correlation index

parameter involved in the SLDCP model (4.4). This SGQL approach also performs

better than any selected SGEE approaches.
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ρ Methods Quantity β̂1 β̂2 α̂ ρ̂

0.1 SGQL SM 0.5235 0.5237 0.0956
SSE 0.3587 0.7783 0.0557
MSE 0.1291 0.6058

SGEE(MA(1)) SM 0.5232 0.5239 0.1009
SSE 0.3588 0.7788 0.0587
MSE 0.1292 0.6065

SGEE(EQC) SM 0.5246 0.5275 0.0509
SSE 0.3602 0.7790 0.0455
MSE 0.1302 0.6070

SGEE(I) SM 0.5237 0.5335
SSE 0.3622 0.7828
MSE 0.1316 0.6132

0.5 SGQL SM 0.5344 0.5355 0.4794
SSE 0.3652 0.7521 0.0564
MSE 0.1344 0.5663

SGEE(MA(1)) SM 0.5361 0.5196 0.5290
SSE 0.4019 0.8712 0.0515
MSE 0.1627 0.7586

SGEE(EQC) SM 0.5401 0.5535 0.3761
SSE 0.3848 0.8077 0.0570
MSE 0.1495 0.6546

SGEE(I) SM 0.5338 0.5593
SSE 0.4491 0.9704
MSE 0.2026 0.9442

Table 4.3: Simulated means (SMs), simulated standard errors (SSEs) and mean square
errors (MSEs) of the SGQL and SGEE estimates of the regression parameter β1 = 0.5
and β2 = 0.5, under LDCP AR(1) correlation model for selected values of correlation
index parameter ρ with K = 100, n = 4, and 1000 simulations. The covariates xxxij’s
are given by (3.105). The bandwidth b = K−1/5.

4.1.5 An illustration: Fitting the SLDCP model to the lon-

gitudinal infectious disease data

To illustrate the proposed semi-parametric LDCP (4.4) with a real life data, in this

section we reanalyze the respiratory infection (0 =no, 1 =yes) data earlier studied

by some authors (Zeger and Karim, 1991, Diggle et al., 1994, Lin and Carroll, 2001).
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These binary data for the presence of respiratory infection were collected from 275

preschool-age children examined every quarter for up to six consecutive quarters.

In our notation, yij indicates the infection status of the ith (i = 1, . . . , 275) child

collected on jth (j = 1, . . . , ni) quarter with max ni = 6. A variety of primary

covariates, namely, vitamin A deficiency, sex, height, and stunting status; and a

secondary covaraite, namely the age of the child in unit of month, were recorded. In

our notation, these primary and secondary covariates are denoted by xxxij(j) and zij

respectively. Similar to the earlier studies, it is of main interest to find the effects (βββ) of

the primary covariates while fitting the secondary covariates through a nonparametric

function ψ(zij). For the purpose, Lin and Carroll (2001, Section 8) for example, fitted

a semi-parametric marginal model with binary means

µij(βββ,xxxij, ψ(zij)) =
exp(xxx⊤ij(tij)βββ + ψ(zij))

1 + exp(xxx⊤ij(tij)βββ + ψ(zij))
,

as in (4.3). As far as the correlation model is concerned, they did not model the

correlations of the repeated binary responses. Instead they used the so-called ‘work-

ing’ UNS correlation structure (4.33) based SGEE approach for efficient estimation of

the nonparametric function and other parameters as well. However, as it was demon-

strated in Section 4.1.4.1, this UNS based SGEE approach (SGEE(UNS)) turned to be

undesirable as it produced less efficient regression estimates under the SLDCP model

(4.4) (see also Sutradhar and Das, 1999). Furthermore, because the SGQL approach

discussed in Section 4.1.4.2 performs very well in estimating the parameters, we fit-

ted the SLDCP model using this SGQL estimation approach. The nonparametric

function estimates ψ̂(age) using independence assumption based SQL approach are

displayed in Figure 4.2. These estimates, unlike in Lin and Carroll (2001), in general

show a linear negative effect of age rather than any quadratic effect. The estimates of
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the regression effects of the primary covariates involved in the parametric regression

function obtained by using the SGQL approach are shown in Table 4.4. To construct

a confidence interval for the estimated age effect, one may use sandwich method to

estimate its pointwise standard errors (Lin and Carroll, 2001). For estimating the

standard error of the estimator of the correlation index parameter ρ, we recommend

to generate a large size of data according to the model (4.3) - (4.4) with the esti-

mated parameters and nonparametric function, then calculate the sample standard

error of the estimator (4.18). However, the secondary covariate and the correlation

index parameter are not our primary interest, so we do not include these estimates

here.

In a longitudinal study, the mean and variance of the data usually change with

regard to time, mainly due to the influence of time dependent primary and secondary

covariates; because of this, it may not be enough to examine only the effects of the

primary covariates in such a study. For this reason, we computed the averages of the
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Figure 4.2: Estimated ψ(·) function for the unbalanced infectious disease data using

the semi-parametric LDCP (SLDCP) model. The bandwidth b =
(
age range

4

)
K−1/5,

where K is the number of individuals in the relevant data.
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Models
SLDCP PLDCP

Primary covariates Estimate SE Estimate SE
Vitamin A deficiency 0.576 0.448 0.701 0.443
Seasonal Cosine -0.579 0.170 -0.569 0.167
Seasonal Sine -0.156 0.168 -0.165 0.168
Sex -0.515 0.227 -0.399 0.224
Height -0.027 0.025 -0.044 0.025
Stunting 0.464 0.407 0.168 0.398
Age as a primary covariate – – -0.388 0.078
Intercept – – -1.277 0.259
correlation index parameter ρ 0.020 – 0.028 –

Table 4.4: Primary regression effect estimates along with their standard errors for the
respiratory infectious data under the semi-parametric LDCP (SLDCP) (4.4) and fully

parametric LDCP (PLDCP) models. The bandwidth b =
(
age range

4

)
K−1/5, where

K is the number of individuals.

binary data along with their estimated means over the time range under the SLDCP

model. For a given time j, these averages are

ȳj =

∑K
i=1 yij
K

µ̂j(for SLDCP model) =

∑K
i=1 µ̂ij(β̂ββ,xxxij, ψ̂(β̂ββ, zij))

K
, (4.35)

respectively. These averages in Figure 4.3 show that the fitted means under the

model are somehow close to the mean functions of the binary observations (in solid

green). In particular, the observed and fitted means seem to show the same pattern.

Furthermore, because the estimated nonparametric functions in Figure 4.2 show a

negative linear effect of age on the responses, we have also fitted a parametric LDCP

(PLDCP) model by treating age as an additional primary covariate. We remark that

in other problems in practice, one may obtain a complicated pattern for the function

ψ(·). Moreover, as the Table 4.4 shows, the estimated effect values of some of the
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Figure 4.3: The average of the estimated means under the SLDCP model and the
average of y values at each longitudinal index (time) point for the unbalanced infec-

tious disease data. The bandwidth b =
(
age range

4

)
K−1/5, where K is the number

of individuals in the relevant data.

covariates such as sex and stunting are quite different under this PLDCP model as

compared to the semiparametric LDCP (SLDCP) model. This difference may stem

from the inclusion of age effect in the parametric function, since Fig. 4.2 shows that

the detailed effect of age is not totally linear.

In summary, we now choose to interpret the effects of the primary covariates under

the SLDCP model as opposed to the parametric LDCP model. To be specific, the

Vitamin A deficiency (yes/no) has a large positive effect 0.57 on the probability of

having respiratory infection in a child. The negative value −0.52 for the sex effect

shows that female child (coded as 1) has smaller probability of having respiratory

infection. As far as the nonparametric function effect is concerned, the estimated

function under the SLDCP model shows that as age increases the infection probability

decreases as one may expect.
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4.2 SBDL (semi-parametric binary dynamic logit)

model for longitudinal binary data

Sutradhar (2011) considered a BDL model for longitudinal binary data given by

Pr[Yi1 = 1|xxxi1] = πi1(βββ|xxxi1) =
exp(xxx⊤i1βββ)

1 + exp(xxx⊤i1βββ)
, and (4.36)

Pr[Yij = 1|yi,j−1,xxxij] =
exp(xxx⊤ijβββ + θyi,j−1)

1 + exp(xxx⊤ijβββ + θyi,j−1)
for j = 2, . . . , ni,

= pi,j|j−1(βββ, θ|xxxij, yi,j−1), (4.37)

where θ is a dynamic dependence parameter which is quite different than ρ in the

LDCP model (4.2). More specifically, θ parameter in (4.37) can range from −∞ to

+∞, whereas the ρ parameter in (4.2) must satisfy a range restriction so that the

conditional probability λi,j|j−1(·) may range from 0 to 1. Furthermore, the marginal

mean (and hence variance) at a given time point under the LDCP model (4.1)−(4.2)

depends on the covariates at that time point only, whereas the marginal mean (and

hence variance) at a given time point under the BDL model (4.36)−(4.37) is a function

of the covariate history up to the present time point, thus, generating a recursive rela-

tionship among the means. To be specific, at time j, the LDCP model (4.1)−(4.2) has

the marginal means stated by (4.1), whereas the BDL model (4.36)−(4.37) produce

the corresponding marginal means as

πij(βββ, θ|xxxi1, . . . ,xxxij) = π∗
ij + πi,j−1(βββ, θ|xxxi1, . . . ,xxxi,j−1)

[
π̃ij − π∗

ij

]
, (4.38)

for j = 2, . . . , ni, where

π̃ij =
exp(xxx⊤ijβββ + θ)

1 + exp(xxx⊤ijβββ + θ)
, and π∗

ij =
exp(xxx⊤ijβββ)

1 + exp(xxx⊤ijβββ)
,



120

with πi1(·) = µi1(βββ|xxxi1) = π∗
i1. These marginal means in (4.38) show a recursive

relationship. For further details on the basic properties including the correlations

among repeated responses under these two models, see Sutradhar (2011, Sections 7.4,

7.7.2) and Sutradhar and Farrell (2007), for example.

Note that many longitudinal binary data in socio-economic and bio-medical fields

appear to follow the marginal means pattern (4.38) as compared to (4.1). For example,

in a socio-economic problem, the unemployment/employment status of an individual

at a given year is likely to be a function of all mean employment status from all past

years. Similarly, in a bio-medical field, the asthma status of an individual at a given

month or year would likely be the function of all past asthma status of the individual.

For this reason, in this section we concentrate our attention to the longitudinal bi-

nary data satisfying the BDL ((4.36)−(4.37)) type model that produces the recursive

marginal means given by (4.38). Further note that the BDL model (4.36)−(4.37) is

written in terms of the primary covariates {xxxij, j = 1, . . . , ni} only. As a main pur-

pose of this thesis, we now generalize the BDL model to the semi-parametric setup by

considering secondary covariates denoted earlier by {zij(tij), j = 1, . . . , ni}, and their

effects on the binary responses accommodated nonparametrically by a smooth func-

tion ψ(zij). One may then extend the BDL model (4.36)−(4.37) to the longitudinal

semi-parametric setup and write a semi-parametric BDL (SBDL) model as

Pr[Yi1 = 1|xxxi1, zi1] =
exp(xxx⊤i1βββ + ψ(zi1))

1 + exp(xxx⊤i1βββ + ψ(zi1))

= πi1(βββ, ψ(zi1)|xxxi1, zi1), and (4.39)

Pr[Yij = 1|yi,j−1,xxxij, zij] =
exp(xxx⊤ijβββ + θyi,j−1 + ψ(zij))

1 + exp(xxx⊤ijβββ + θyi,j−1 + ψ(zij))
for j = 2, . . . , ni,

= pi,j|j−1(βββ, θ, ψ(zij)|xxxij, zij, yi,j−1). (4.40)

Notice that unlike the BDL model (4.36)−(4.37), the main regression parameter βββ
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and the dynamic dependence (or correlation index) parameter θ in the SBDL model

(4.39)−(4.40) can not be consistently estimated unless the function ψ(·) is estimated.

More specifically, if the presence of ψ(·) is ignored and βββ and θ are jointly estimated

using the data that follow the model (4.39)−(4.40), one would then obtain biased

and hence mean squared error inconsistent estimates for these parameters. The main

objective of this section is to obtain a consistent estimator ψ̂(zij|βββ, θ) for ψ(zij) as-

suming that βββ and θ are known and then estimate βββ and θ jointly by exploiting the

modified SBDL model given by

π̄i1(βββ, ψ̂(βββ, zi1)|xxxi1, zi1) =
exp(xxx⊤i1βββ + ψ̂(βββ, zi1))

1 + exp(xxx⊤i1βββ + ψ̂(βββ, zi1))
, (4.41)

p̄i,j|j−1(βββ, θ, ψ̂(βββ, θ, zij)|xxxij, zij, yi,j−1)

=
exp(xxx⊤ijβββ + θyi,j−1 + ψ̂(βββ, θ, zij))

1 + exp(xxx⊤ijβββ + θyi,j−1 + ψ̂(βββ, θ, zij))
, (4.42)

for j = 2, . . . , ni. The estimation via a semi-parametric conditional quasi-likelihood

(SCQL) approach for the estimation of the function ψ(·), and a joint MLE (maxi-

mum likelihood) approach for the estimation of βββ and θ is presented in Section 4.2.2.

Because one of the purpose of the estimation of the model is to understand the data

through estimation of the basic properties such as mean, variance and correlations

of the repeated binary responses, we first provide these basic properties of the SBDL

model (4.39)−(4.40) in Section 4.2.1. The consistency of all estimators is shown in

Section 4.2.3. We also discuss the finite sample properties of the estimators through a

simulation study in Section 4.2.4. The proposed longitudinal semi-parametric model

and the estimation methodology are then illustrated by reanalyzing the well known

respiratory infection status data earlier analyzed by some authors such as Zeger and

Karim (1991), Diggle et al. (1994), Lin and Carroll (2001) (see also Sutradhar et al.,

2016). This is done in Section 4.2.5.
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4.2.1 Basic properties of the SBDL model

The proposed semi-parametric BDL (SBDL) model is stated in (4.39)−(4.40), which

similarly to (4.36)−(4.38) produces the recursive means as

πij(βββ, θ, ψ(·)) = E[Yij] = Pr[Yij = 1]

=

⎧⎪⎨⎪⎩
πi1(βββ, ψ(zi1)) j = 1

π∗
ij(βββ, ψ(zij)) + πi,j−1(βββ, θ, ψ(·))[π̃ij(βββ, θ, ψ(zij))− π∗

ij(βββ, ψ(zij))] j = 2, . . . , ni,

(4.43)

where

π̃ij(βββ, θ, ψ(zij)) =
exp(xxx⊤ijβββ + θ + ψ(zij))

1 + exp(xxx⊤ijβββ + θ + ψ(zij))
, and

π∗
ij(βββ, ψ(zij)) =

exp(xxx⊤ijβββ + ψ(zij))

1 + exp(xxx⊤ijβββ + ψ(zij))
, satisfying π∗

i1(βββ, ψ(zi1)) = πi1(βββ, ψ(zi1)).

It is obvious that the variances are given by

σijj(βββ, θ, ψ(·)) = var[Yij] = πij(βββ, θ, ψ(·))[1− πij(βββ, θ, ψ(·))], for j = 1, . . . , ni. (4.44)

As far as the correlation properties of the SBDL model ((4.39)−(4.40)) is con-

cerned, for j < k, following Sutradhar and Farrell (2007), for example, one may

compute the pair-wise covariances as

σijk(βββ, θ, ψ(·)) = Cov(Yij, Yik)

= πij(βββ, θ, ψ(·))[1− πij(βββ, θ, ψ(·))]

× Πk
u=j+1[π̃iu(βββ, θ, ψ(ziu))− π∗

iu(βββ, ψ(ziu))], (4.45)
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yielding the pair-wise lag (k − j) correlations as

Corr(Yij, Yik) =

√
σijj(βββ, θ, ψ(·))
σikk(βββ, θ, ψ(·))

× Πk
u=j+1[π̃iu(βββ, θ, ψ(ziu))− π∗

iu(βββ, ψ(ziu))] (4.46)

which satisfies the full range from -1 to 1, as

0 < π̃iu(βββ, θ, ψ(ziu)), π
∗
iu(βββ, ψ(ziu)) < 1.

We remark that understanding the basic properties of the data requires the esti-

mation of the nonparametric functions as well as the parameters βββ and θ involved in

the formulas (4.43), (4.44), and (4.46). We deal with this estimation issue in the next

section.

4.2.2 SBDL model fitting

Fitting the SBDL model (4.39)−(4.40) to the repeated binary data requires the esti-

mation of the nonparametric function ψ(·), and the model parameters βββ and θ, where

βββ is the main regression effects and θ is the dynamic dependence or correlation index

parameters. We provide their step by step consistent estimation as follows.

4.2.2.1 SCQL estimation of ψ(·) under the SBDL model

Note that it is of primary interest to estimate the regression effects βββ and the dynamic

dependence parameter θ involved in the SBDL model (4.40) consistently and as effi-

ciently as possible. However, one can not obtain the consistent estimators of βββ and

θ in (4.40) without consistently estimating the nonparametric function ψ(zij). Thus,

for known βββ and θ, we first develop a consistent estimator ψ̂(βββ, zij) for the function
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ψ(zij).

It follows from the SBDL model (4.40) that a consistent estimator of ψ(·) can be

obtained by exploiting only the conditional means and variances of the repeated re-

sponses {yij, j = 1, . . . , ni}.Observe from the model that pi,j|j−1(βββ, θ, ψ(zij)|xxxij, zij, yi,j−1)

is the conditional mean (probabilities) of yij for j = 2, . . . , ni. For technical conve-

nience, for j = 1, define yi0 = 0. It then follows by (4.39) and (4.40) that

πi1(βββ, ψ(zi1)) = pi,1|0(βββ, θ, ψ(zi1)|xxxi1, zi1, yi0 = 0).

Thus, in general, conditioning on the past response, we may now write the conditional

means and variances of yij as

E[Yij|yi,j−1,xxxij, zij] = pi,j|j−1(βββ, θ, ψ(zij)|xxxij, zij, yi,j−1)

var[Yij|yi,j−1,xxxij, zij] = pi,j|j−1(βββ, θ, ψ(zij)|xxxij, zij, yi,j−1)

× [1− pi,j|j−1(βββ, θ, ψ(zij)|xxxij, zij, yi,j−1)], (4.47)

for all j = 1, . . . , ni. These conditional means and variances in (4.47) will be ex-

ploited to write a QL (quasi-likelihood) (Wedderburn, 1974) estimating equation for

the estimation of ψ(zij). We refer this approach as the semi-parametric conditional

QL (SCQL) estimation approach.

For this estimation purpose, without loss of generality, we use z0 for zij for given

i and j, and hence estimate ψ(z0) at all possible values of z0 corresponding to all

i and j. We remark that it is impossible to estimate βββ and θ consistently without

estimating ψ(z0) consistently. Thus, for known βββ and θ, following the QL approach
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of Wedderburn (1974), one may now solve the SCQL estimating equation

K∑
i=1

ni∑
j=1

wij(z0)
∂pi,j|j−1(βββ, θ, ψ(z0))

∂ψ(z0)

(
yij − pi,j|j−1(βββ, θ, ψ(z0))

pi,j|j−1(βββ, θ, ψ(z0)){1− pi,j|j−1(βββ, θ, ψ(z0))}

)

=
K∑
i=1

ni∑
j=1

wij(z0)
{
yij − pi,j|j−1(βββ, θ, ψ(z0))

}
= g(ψ(z0),βββ, θ) = 0, (4.48)

to obtain a consistent estimate of ψ(z0) (see also Severini and Staniswalis, 1994). In

(4.48), wij(z0) is a kernel weight defined as

wij(z0) = pij(
z0 − zij

b
)/

K∑
i=1

ni∑
j=1

pij(
z0 − zij

b
) (4.49)

with pij being the kernel density, as discussed in (3.12)−(3.14). Note that for wij(z0) =

1, the SCQL estimating equation (4.48) reduces to the well known QL (quasi-likelihood)

equation. Here b is a suitable bandwidth parameter. We assume that this parameter

is chosen such that the bias and variance of the estimator of the function ψ(zij) will

be minimum. By this token, b may be optimally chosen as b ∝ K−1/5 (Pagan and

Ullah, 1999, Altman, 1990). More specifically, as we explained in Section 4.1.4, one

may use b = c0K
−1/5 where the constant c0 can be estimated, for example, following

Horowitz (2009, Section 2.7) (see also Powell and Stoker, 1996).

Now for known βββ and θ, we may solve the SCQL estimating equation (4.48) by

using the iterative equation given by

ψ̂(z0,βββ, θ)(r+1) = ψ̂(z0,βββ, θ)(r) (4.50)

−
[
{g′ψ(z0)(ψ(z0),βββ, θ)}

−1g(ψ(z0),βββ, θ)
]
|ψ(z0)=ψ̂(z0,βββ,θ)(r)

,
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where (r) indicates the rth iteration, and g′ψ(z0)(ψ(z0),βββ, θ) has the formula

g′ψ(z0)(ψ(z0),βββ, θ)

= −
K∑
i=1

ni∑
j=1

wij(z0)[pi,j|j−1(βββ, θ, ψ(z0)){1− pi,j|j−1(βββ, θ, ψ(z0))}]. (4.51)

4.2.2.2 Joint estimation: Semi-parametric maximum likelihood (SML)

estimation of βββ and θ

For the SBDL model (4.39)−(4.40), ψ(zij) is estimated by solving the semi-parametric

conditional QL (SCQL) estimating equation given by (4.48). For given βββ and θ,

this estimator is denoted by ψ̂(zij,βββ, θ) as in (4.50). Because the regression and the

dynamic dependence parameters in the SBDL model appear in the conditional mean

functions in a similar way, it is convenient to estimate them jointly. Let φφφ = (βββ⊤, θ)⊤.

Now by using ψ̂(zij,βββ, θ) from (4.50) for the true ψ(·), one may re-express the

marginal and conditional probabilities from (4.39)−(4.40) as

π̄i1(βββ, ψ̂(zi1,βββ)) =
exp(xxx⊤i1βββ + ψ̂(zi1,βββ))

1 + exp(xxx⊤i1βββ + ψ̂(zi1,βββ))
, and

p̄ij|j−1(βββ, θ, ψ̂(zij,φφφ)) =
exp[xxx⊤ijβββ + yi,j−1θ + ψ̂(zij,φφφ)]

1 + exp[xxx⊤ijβββ + yi,j−1θ + ψ̂(zij,φφφ)]
,

respectively, and write the likelihood function for φφφ = (βββ⊤, θ)⊤ as

L(βββ, θ, ψ̂(·,βββ, θ)) = ΠK
i=1

[
{π̄i1(βββ, ψ̂(zi1,βββ))}yi1{1− π̄i1(βββ, ψ̂(zi1,βββ))}1−yi1

× Πni
j=2{p̄i,j|j−1(βββ, θ, ψ̂(zij,βββ, θ)|yi,j−1)}yij{1− p̄i,j|j−1(βββ, θ, ψ̂(zij,βββ, θ)|yi,j−1)}1−yij

]
,

(4.52)
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leading to the log likelihood estimating equation for φφφ given by

HHHK =
∂ logL

∂φφφ

=
K∑
i=1

ni∑
j=1

yij

⎡⎢⎣
⎛⎜⎝ xxxij

yi,j−1

⎞⎟⎠+
∂ψ̂(zij,φφφ)

∂φφφ

⎤⎥⎦−
K∑
i=1

ni∑
j=1

p̄ij|j−1

⎡⎢⎣
⎛⎜⎝ xxxij

yi,j−1

⎞⎟⎠+
∂ψ̂(zij,φφφ)

∂φφφ

⎤⎥⎦
=

K∑
i=1

ni∑
j=1

(
yij − p̄ij|j−1

)⎡⎢⎣
⎛⎜⎝ xxxij

yi,j−1

⎞⎟⎠+
∂ψ̂(zij,φφφ)

∂φφφ

⎤⎥⎦ = 0, (4.53)

where we have used yi0 = 0 as a conventional notation. Notice that the likelihood

equation (4.53) contains the derivative function
∂ψ̂(zij ,φφφ)

∂φφφ
which must be computed from

the SCQL estimating equation (4.48) for ψ(zij) satisfying

K∑
ℓ=1

nℓ∑
u=1

wℓu(zij){yℓu − p̄ℓ,u|u−1(φφφ, ψ̂(zij,φφφ))} = 0.

This derivative function has the formula

∂ψ̂(zij,φφφ)

∂φφφ
= −

K∑
ℓ=1

nℓ∑
u=1

wℓu(zij)p̄ℓu|u−1(zij)
[
1− p̄ℓu|u−1(zij)

]⎛⎜⎝ xxxℓu

yℓ,u−1

⎞⎟⎠
K∑
ℓ=1

nℓ∑
u=1

wℓu(zij)p̄ℓu|u−1(zij)
[
1− p̄ℓu|u−1(zij)

] . (4.54)

Notice that this non-zero derivative (4.54) arises because of the use of the estimate of

ψ(·) while estimating φφφ.
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4.2.3 Asymptotic properties of the estimators of the SBDL

model

4.2.3.1 Consistency of the nonparametric function estimator ψ̂(·)

Recall that under the SBDL model (4.40), ψ̂(z0) ≡ ψ̂(z0,βββ, θ) ≡ ψ̂(z0,φφφ) is the solu-

tion of the semi-parametric conditional quasi-likelihood (SCQL) estimating equation

(4.48), that is, g(ψ(z0),βββ, θ) = 0. By (4.48) and (4.51), a Taylor series expansion

produces

ψ̂(z0;φφφ)− ψ(z0) ≈
g(ψ(z0),βββ, θ)

g′ψ(z0)(ψ(z0),βββ, θ)

=

∑K
i=1

∑ni

j=1wij(z0)
{
yij − pi,j|j−1(βββ, θ, ψ(z0))

}∑K
i=1

∑ni

j=1wij(z0)[pi,j|j−1(βββ, θ, ψ(z0)){1− pi,j|j−1(βββ, θ, ψ(z0))}]

=

∑K
i=1

∑ni

j=1wij(z0)
{
yij − pi,j|j−1(βββ, θ, ψ(zij))

}∑K
i=1

∑ni

j=1wij(z0)[pi,j|j−1(βββ, θ, ψ(z0)){1− pi,j|j−1(βββ, θ, ψ(z0))}]

+

∑K
i=1

∑ni

j=1wij(z0)
{
pi,j|j−1(βββ, θ, ψ(zij))− pi,j|j−1(βββ, θ, ψ(z0))

}∑K
i=1

∑ni

j=1wij(z0)[pi,j|j−1(βββ, θ, ψ(z0)){1− pi,j|j−1(βββ, θ, ψ(z0))}]
= CK +DK , (4.55)

where

CK =
1

GK

1

K

K∑
i=1

ni∑
j=1

pij(z0)
(
yij − pi,j|j−1

)
and

DK =
1

GK

1

K

K∑
i=1

ni∑
j=1

pij(z0)
(
pi,j|j−1 − pi,j|j−1(z0)

)
with

GK =
1

K

K∑
i=1

ni∑
j=1

pij(z0)pi,j|j−1(z0)
[
1− pi,j|j−1(z0)

]
.

Here pij(z0) ≡ pij(
z0−zij
b

) is the kernel density defined in (3.13)−(3.14).
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As in Lemma 4.2, it can be shown that

CK = Op(1/
√
K) (4.56)

We now show that DK approaches zero in order of O(b2).

Lemma 4.6. The kernel density pij(z0) defined by (3.13)−(3.14) has the expectation

given by

E

[
ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)

⏐⏐⏐⏐⏐xxxi
]

= O(b2), (4.57)

where xxxi = (xxxi1, · · · ,xxxini
)⊤.

Proof. Let zzzi = (zi1, · · · , zini
)⊤ and qij = Pr(yij = 1|zi,j+1,xxxi) = Pr(yij = 1|xxxi)

since the distribution of yij is independent of zi,j+1 according to (4.39) and (4.40).

Then qij =
∫
πijfi(zzzi|xxxi)dzzzi, where πij is defined in (4.43), and fi(zzzi|xxxi) is the joint

distribution of zzzi conditional on xxxi. Also define

gj(zij;βββ, θ, z0,xxxi) = E[pij|j−1(z0)[1− pij|j−1(z0)]|zij,xi]

=
∑
yi,j−1

pij|j−1(z0)[1− pij|j−1(z0)]q
yi,j−1

i,j−1 (1− qi,j−1)
1−yi,j−1

= gj(βββ, θ, z0,xxxi)

because the conditional expectation is in fact independent of zij, and define hj(zij;xxxi)

as the pdf of zij conditional on xxxi, then

E

[
ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)

⏐⏐⏐⏐⏐xxxi
]

=

ni∑
j=1

Ezij
[
pij(z0)(zij − z0)E{pij|j−1(z0)[1− pij|j−1(z0)]|zij,xxxi}

⏐⏐xxxi]
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=

ni∑
j=1

Ezij [pij(z0)(zij − z0)gj(βββ, θ, z0,xxxi)|xxxi]

=

ni∑
j=1

∫
pij(z0)gj(βββ, θ, z0,xxxi)(zij − z0)hj(zij;xxxi) dzij.

Then as hj(zij;xxxi) = hj(z0;xxxi) +O(zij − z0), it follows that

E

[
ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)

⏐⏐⏐⏐⏐xxxi
]

=

ni∑
j=1

∫
pij(z0)

[
gj(βββ, θ, z0,xxxi)hj(z0;xxxi)(zij − z0) +O

(
(zij − z0)

2
)]
dzij

=

ni∑
j=1

gj(βββ, θ, z0,xxxi)hj(z0;xxxi)

∫
pij(z0)(zij − z0) dzij +O(b2) = O(b2),

because pij(z0) is symmetric about z0 and
∫
pij(z0)O ((zij − z0)

2) dzij can be shown

bounded in the order of O(b2).

Lemma 4.7. The quantity DK in (4.55) satisfies

DK = O(b2). (4.58)

Proof. By using

pij|j−1 − pij|j−1(z0) = pij|j−1(z0)
[
1− pij|j−1(z0)

]
ψ′(z0)(zij − z0) +O

(
(zij − z0)

2
)
,

we write

DK ≈ ψ′(z0)

GK

1

K

K∑
i=1

ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)

=
ψ′(z0)

GK

1

K

K∑
i=1

{
ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)
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−E

[
ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)

⏐⏐⏐⏐⏐xxxi
]}

+
ψ′(z0)

GK

1

K

K∑
i=1

E

[
ni∑
j=1

pij(z0)pij|j−1(z0)
[
1− pij|j−1(z0)

]
(zij − z0)

⏐⏐⏐⏐⏐xxxi
]
= O(b2),

by law of large numbers (Breiman, 1992) and Lemma 4.6. For the first term, due

to pij(z0), its variance is in the order of O(b2/K), so it is Op(b/
√
K), which can be

neglected.

By using (4.56) and Lemma 4.7 in (4.55), one obtains

ψ̂(z0;φφφ)− ψ(z0) = CK +O(b2) = Op(1/
√
K) +O(b2). (4.59)

It then follows that ψ̂(z0;βββ, θ) obtained from (4.48) is a
√
K-consistent estimator of

ψ(z0) provided Kb
4 → 0 for K → ∞.

We remark that the consistency result in (4.59) was obtained by reducing the

bias of the estimator ψ̂(·). This consistency result holds when Kb4 → 0 as K →

∞, implying that for a constant c∗, the bandwidth parameter b may be chosen as

b = c∗K−α with α > 1
4
. A similar result with 1

4
< α ≤ 1

3
is available in Lin and

Carroll (2001), for example. It is however understandable that this choice for b value

may not be optimal. This is because for any optimal selection one has to reduce

both the bias and the variance of the estimator, whereas the convergence result in

(4.59) was obtained by reducing the bias under the assumption that variance of the

estimator would be finite based on the design covariates selection. A derivation for

optimal choice for b value is beyond the scope of the present thesis. However, in

the simulation study to be conducted in Section 4.2.4 and in further data analysis in

Section 4.2.5, as indicated earlier, we consider an optimal value of b = c0K
−1/5 chosen

under the independence setup (Pagan and Ullah, 1999; Horowitz, 2009, Section 2.7).
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For c0, we use c0 = σz (3.13), the standard deviation of the covariate z collected

over the whole duration of the longitudinal study. Once again for the consistency of

ψ̂(z0;φφφ) shown by (4.59) the mild condition Kb4 → 0 as K → ∞ is sufficient.

4.2.3.2 Consistency of θ̂ and β̂ββ

Let φ̂φφ = (β̂ββ
⊤
, θ̂)⊤ denote the solution of the conditional maximum likelihood estimating

equation (4.53) for φφφ. Then the asymptotic result of φ̂φφ is given by the following lemma.

Lemma 4.8.

√
K
{
φ̂φφ− φφφ

}
= JJJ−1 1√

K

K∑
i=1

ni∑
j=1

[WWW 1ij(yi,j−1)−WWW 2ij] (Yij − pij|j−1)

+ O(
√
Kb4) + op(1), (4.60)

where

WWW 1ij(yi,j−1) =

⎛⎜⎝ xxxij

yi,j−1

⎞⎟⎠+
∂ψ̂(zij,φφφ)

∂φφφ
, and

WWW 2ij =
1

K

K∑
i′=1

ni′∑
j′=1

1

GK(zi′j′)
WWW 1i′j′pij(zi′j′)

× pi′j′|j′−1(φφφ, ψ(zi′j′))
[
1− pi′j′|j′−1(φφφ, ψ(zi′j′))

]
,

with GK(·) defined as in (4.55).

Proof. A linear Taylor expansion of the left hand side of (4.53) about the true param-

eter value φ gives
√
K
{
φ̂φφ− φφφ

}
= JJJ−1

K

{√
KHHHK

}
+ op(1), (4.61)
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where

HHHK =
K∑
i=1

ni∑
j=1

(
yij − p̄ij|j−1

)
WWW 1ij

JJJK =
1

K

K∑
i=1

ni∑
j=1

p̄ij|j−1

(
1− p̄ij|j−1

)⎡⎢⎣
⎛⎜⎝ xxxij

yi,j−1

⎞⎟⎠+
∂ψ̂(zij;φφφ)

∂φφφ

⎤⎥⎦
×

⎡⎢⎣
⎛⎜⎝ xxxij

yi,j−1

⎞⎟⎠+
∂ψ̂(zij;φφφ)

∂φφφ

⎤⎥⎦
⊤

.

Suppose that JJJ = limK→∞ JJJK = Eψ̂(·)JJJK . It then follows from (4.61) that

√
K
{
φ̂φφ− φφφ

}
= JJJ−1

{√
KHHHK

}
+ op(1) . (4.62)

Now the lemma follows from (4.62) by writing

HHHK =
1

K

K∑
i=1

ni∑
j=1

WWW 1ij

[
yij − pij|j−1(φφφ, ψ(zij))

]
− 1

K

K∑
i=1

ni∑
j=1

WWW 1ij

[
p̄ij|j−1(φφφ, ψ̂(zij;φφφ))− pij|j−1(φφφ, ψ(zij))

]

and applying (4.59).

Theorem 4.2. The estimator φ̂φφ (the solution of (4.53)) has the limiting (as K → ∞)

multivariate normal distribution given as

√
K
{
φ̂φφ− φφφ−O(b2)

}
→ N(0,VVV φφφ), (4.63)
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where

VVV φφφ = JJJ−1 1

K

[
K∑
i=1

Var

{
ni∑
j=1

[WWW 1ij(yi,j−1)−WWW 2ij] (Yij − pij|j−1)

}]
JJJ−1.

Proof. Because E[YYY i − pij|j−1|yi,j−1] = 0, the theorem follows from Lemma 4.8 under

some conditions (see Eqn. (3.76)), by applying Lindeberg-Feller central limit theo-

rem (Bishop, Fienberg and Holland, 2007, Theorem 3.3.6) for independent random

variables with non-identical distributions.

Thus it follows from Lemma 4.8 and Theorem 4.2 that φ̂φφ is
√
K consistent estima-

tor for φφφ, and has an asymptotic multivariate normal distribution provided Kb4 → 0

for K → ∞.

4.2.4 A simulation study

The main objective of this simulation study is to examine the finite sample perfor-

mance of the proposed SML (semi-parametric maximum likelihood) estimator of the

regression parameter βββ and dynamic dependence parameter θ obtained by solving the

SML estimating equation (4.53). Notice that the SML estimates for βββ and θ were

obtained by using the SCQL (semi-parametric conditional quasi-likelihood) estimate

for the function ψ(·). Thus the simulation study will also show the performance of

this SCQL estimate for the nonparametric function.

We chooseK = 100 individuals as a small sample size andK = 300 as a moderately

large sample size. Next suppose that the ith individual provides ni = 4 repeated

binary responses for all i = 1, . . . , K. The primary covariates are selected as:
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For K = 100, 300 :

xij1(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

for i = 1, . . . , K/4 and j = 1, 2

1 for i = 1, . . . , K/4 and j = 3, 4

−1
2

for i = K/4 + 1, . . . , 3K/4 and j = 1

0 for i = K/4 + 1, . . . , 3K/4 and j = 2, 3

1
2

for i = K/4 + 1, . . . , 3K/4 and j = 4

j
2ni

for i = 3K/4 + 1, . . . , K and j = 1, 2, 3, 4

xij2(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j−2.5
2ni

for i = 1, . . . , K/2 and j = 1, 2, 3, 4

0 for i = K/2 + 1, . . . , K and j = 1, 2

1
2

for i = K/2 + 1, . . . , K and j = 3, 4.

(4.64)

Note that for K = 100, this design is the same as in (3.105).

As far as the secondary covariates (zij) and nonparametric functions (ψ(zij)) are

concerned, we choose them as in (3.106) and (3.107), respectively.

Furthermore, as mentioned in Section 4.2.2.1, for the bandwidth parameter in-

volved in the kernel weights, we choose the recommended optimal value under the

independent setup, namely b = c0K
−1/5, where K = 100, 300, with c0 = σz.

Next we choose the regression and dynamic dependence parameters as

βββ = (β1, β2)
⊤ = (0.5, 0.5)⊤; and θ ≡ −3.0,−1.0, 1.0.

The data generation and estimation were done based on 1000 simulations.

The SCQL estimates for the function ψ(·) along with the true function are dis-

played in Figure 4.4 for the case with K = 100. The estimated functions appear to

almost overlap the true function indicating good fitting. The SML estimates of βββ and
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Figure 4.4: The plots for the true (thick curve) and estimated (dotted curve) non-
parametric function ψ(·) for the SBDL model based on φφφ estimate produced by the

SML approach. The bandwidth b = c0K
−1/5 with c0 = σz ≈

(
z range

4

)
.

θ are shown in Table 4.5 for selected values of the dynamic dependence parameter

θ ≡ −3.0,−1.0, and 1.0. The estimates are in general good agreement with the cor-

responding true values of the parameter. To be specific, the SML approach appears

to produce almost unbiased estimates for the dynamic dependence parameter. For

example, θ = −1.0 is estimated as −1.04 and θ = 1.0 is estimated as 1.00, when

K = 100. As far as the estimation of regression effects is concerned, βββ estimates are

less biased when the dynamic dependence is negative. For positive θ = 1.0, the βββ es-

timates show some bias, but the bias gets smaller when K is increased. For example,

for θ = 1.0, the β2 = 0.5 estimate is 0.55 when K = 100, but the estimate is found

to be 0.51 when K = 300. Now because K is usually large in a longitudinal study,

the proposed estimation approaches appear to be adequate in fitting the SBDL model

(4.39)−(4.40).
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K Method Quantity β1 β2 θ
100 0.5 0.5 −3.0

SML SM 0.5272 0.5101 −3.1185
SSE 0.3480 0.8523 0.3790
MSE 0.1217 0.7258 0.1576

100 0.5 0.5 −1.0
SML SM 0.5302 0.5348 −1.0386

SSE 0.3174 0.7340 0.2447
MSE 0.1016 0.5395 0.0613

100 0.5 0.5 1.0
SML SM 0.5371 0.5547 0.9973

SSE 0.3652 0.8954 0.3061
MSE 0.1346 0.8039 0.0936

300 0.5 0.5 −3.0
SML SM 0.5094 0.5129 −3.04104

SSE 0.2127 0.4933 0.2054
MSE 0.0453 0.2432 0.0438

300 0.5 0.5 −1.0
SML SM 0.5075 0.5213 −1.0149

SSE 0.1977 0.4344 0.1385
MSE 0.0391 0.1890 0.0194

300 0.5 0.5 1.0
SML SM 0.5123 0.4968 0.9940

SSE 0.2112 0.5063 0.1737
MSE 0.0447 0.2561 0.0302

Table 4.5: Simulated means (SMs), simulated standard errors (SSEs) and mean
square errors (MSEs) of the semi-parametric maximum likelihood (SML) estimates
for the regression parameter βββ and dynamic dependence parameter θ, under the semi-
parametric BDL model for selected parameter values with K = 100, 300, ni = 4, and

1000 simulations. The bandwidth b = c0K
−1/5 with c0 = σz ≈

(
z range

4

)
.

4.2.5 An illustration: Fitting the SBDL model to the longi-

tudinal infectious disease data

To illustrate the proposed semi-parametric BDL model (4.39)−(4.40), in this section,

we reanalyze the respiratory infection (0 = no, 1 = yes) data earlier studied by some

authors such as Zeger and Karim (1991), Diggle et al. (1994), Lin and Carroll (2001).
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These binary data for the presence of respiratory infection were collected from 275

preschool-age children examined every quarter for up to six consecutive quarters. In

our notation, yij indicates the infection status of the ith (i = 1, . . . , 275) child col-

lected on jth (j = 1, . . . , ni) quarter with max ni = 6. A variety of primary covariates,

namely vitamin A deficiency, sex, height, and stunting status, and a secondary covari-

ate, namely the age of the child in the unit of month, were recorded. In our notation

these primary and secondary covariates are denoted by xxxij(j) and zij respectively.

Similar to the aforementioned studies, it is of main interest to find the effects (βββ) of

the primary covariates while fitting the secondary covariates through a smooth func-

tion ψ(zij). For the purpose, Lin and Carroll (2001, Section 8) for example, fitted a

semi-parametric marginal model with binary means

µij(βββ,xxxij, ψ(zij)) =
exp(xxx⊤ij(tij)βββ + ψ(zij))

1 + exp(xxx⊤ij(tij)βββ + ψ(zij))
,

with no specified correlation structures. These authors advocate for the use of the

‘working’ UNS (unstructured) correlations based GEE (generalized estimating equa-

tion) approach for efficient estimation of the function ψ(·) and other parameters

as well. However, as we demonstrated in Section 4.1.4.1 in the context of SLDCP

model that the UNS based GEE approach encounters efficiency drawbacks. For ex-

ample, it was shown that SGEE(UNS) produces less efficient regression estimates

than SGEE(I). Moreover, the GEE approach is not applicable to the present SBDL

model (4.39)−(4.40) because unlike GEE models it is not a marginal model and the

marginal means under this SBDL model contains the dynamic dependence param-

eter (see Eqn. (4.43)). Consequently, we do not include the ‘working’ correlations

model based GEE approach to analyze this data set. Nevertheless, on top of fitting

the proposed SBDL model (4.39)−(4.40), we also include the fitting of the SLDCP
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(semi-parametric LDCP) model as presented in Section 4.1.5, where the parameters

including the correlation index ρ, and the nonparametric function were estimated

using a SGQL (semi-parametric GQL ) approach. These SGQL estimates of the pa-

rameters along with the SML estimates for the proposed (main) SBDL model (4.40)

are displayed in Table 4.6. Note that the simulation study in Section 4.2.4 showed

Models
SLDCP SBDL

Primary covariates SGQL Estimate SE SML Estimate SE
Vitamin A deficiency 0.576 0.448 0.567 0.522
Seasonal Cosine -0.579 0.170 -0.772 0.224
Seasonal Sine -0.156 0.168 -0.174 0.179
Sex -0.515 0.227 -0.467 0.274
Height -0.027 0.025 0.004 0.029
Stunting 0.464 0.407 0.697 0.493
Dynamic dependence parameter ρ 0.020 –
Dynamic dependence parameter θ – – 0.261 0.381

Table 4.6: Primary regression effect estimates (SML) along with their standard errors
for the respiratory infectious data under the semi-parametric BDL (SBDL) model
(4.40). The SGQL estimates under a SLDCP model are also given. The bandwidth is

used as b =
(
age range

4

)
K−1/5, where K is the number of individuals in the relevant

data.

that the SML and SCQL approaches work very well in estimating the nonparametric

function ψ(·) and the parameters βββ and θ involved in the SBDL model (4.40). The

SCQL estimate for the nonparametric function of the SBDL model for fitting the in-

fectious disease data is displayed in Figure 4.5. Unlike in Lin and Carroll (2001) these

estimates in general show a linear negative effect of age rather than any quadratic

effect.

Further, we remark that because in a longitudinal study, the mean (and variance

as well) function of the data usually change with regard to time mainly due to the

influence of time dependent primary and secondary covariates, it may not be enough
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Figure 4.5: Estimated ψ(·) function for the unbalanced infectious disease data using

the semi-parametric BDL (SBDL) model. The bandwidth b =
(
age range
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K−1/5,

where K is the number of individuals in the relevant data.
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(4.4) models, and the average of y values at each longitudinal index (time) point

for the unbalanced infectious disease data. The bandwidth b =
(
age range

4

)
K−1/5,

where K is the number of individuals in the relevant data.



141

to only examine the effects of primary covariates in such a study. For this reason,

we have computed the averages of the binary data along with their estimated means

over the time range under both SLDCP and SBDL models. For a given time j, these

averages are

ȳj =

∑K
i=1 yij
K

,

µ̂j(for SLDCP model) =

∑K
i=1 µ̂ij(β̂ββ, ρ̂,xxxij, ψ̂(β̂ββ, zij))

K
, and

π̂j(for SBDL model) =

∑K
i=1 π̂ij(β̂ββ, θ̂,xxxij, ψ̂(β̂ββ, θ̂, zij))

K
,

respectively. The display of these averages in Figure 4.6 shows that the fitted means

under the SBDL model (in dotted red) are closer to the mean functions of the binary

observations (in solid green) than the fitted means under the SLDCP model, except for

the time around 3rd quarter. However, this SBDL model does not produce marginal

means used by Lin and Carroll (2001) for example, to interpret the regression effects.

As shown in Table 4.6, except for the effect of Vitamin A deficiency, the estimated

effect values for the remaining primary covariates are generally different under SLDCP

and SBDL models. For example, stunting covariate affect the presence of infection

with coefficient 0.46 under the SLDCP model but with 0.69 under the SBDL model.

Because the estimated nonparametric functions show a negative linear effect of age

on the responses, we have also fitted a parametric LDCP (PLDCP) model by treating

age as an additional primary covariate (results are shown in Table 4.4). However, the

effects of some of the covariates such as sex and stunting are quite different under this

PLDCP model as compared to the semi-parametric LDCP (SLDCP) model.

In summary, because SBDL model appears to fit the mean function of the observa-

tions over time better than the SLDCP model, we chose to interpret the effects of the

primary covariates under the SBDL model. To be specific, the Vitamin A deficiency
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(yes/no) has a large positive effect 0.57 on the probability of having respiratory in-

fection in a child. The negative value −0.47 for the sex effect shows that female child

(coded as 1) has smaller probability of having respiratory infection. As far as the

nonparametric function effect is concerned, the estimated function under the SBDL

model shows that as age increases the infection probability gets decreased.



Chapter 5

Semi-parametric dynamic mixed

models for longitudinal binary data

In the previous chapter we have introduced two semi-parametric dynamic fixed mod-

els for binary data, namely the SLDCP (4.3)−(4.4) and SBDL (4.39)−(4.40) models.

However, as discussed in Chapter 3 for count data, there may be situations where

suitable random effects involved in semi-parametric linear predictor may explain the

data better than the fixed model. In this chapter, we consider the mixed model exten-

sion of the binary fixed models discussed in Chapter 4. However, because the SBDL

model, as opposed to the SLDCP model, produces mean functions based on the past

history which is more practical, in this chapter we generalize the SBDL model only.

We refer to such model as the SBDML (semi-parametric binary dynamic mixed logit)

model. One could also extend the SLDCP model to the SLDMCP (semi-parametric

linear dynamic mixed conditional probability) model, but we did not enclose this gen-

eralization to save space. As another reason for our preference of the SBDL model

to SLDCP model, the SBDL model allows unrestricted dynamic dependence param-

eter values, whereas some special care is needed about the restriction of the dynamic



144

dependence parameters under the SLDCP model.

We now generalize the SBDL model ((4.39)−(4.40)) to the mixed model setup as

follows. Similar to the mixed model for count data (3.3), we simply add a random

effect τ ∗i = σττi with τi
i.i.d.∼N(0, 1) to the SBDL model as

Pr(yij = 1|yi,j−1,xij, τi) =

⎧⎪⎪⎨⎪⎪⎩
exp(x⊤

i1(ti1)βββ+ψ(zi1)+στ τi)

1+exp(x⊤
i1(ti1)βββ+ψ(zi1)+στ τi)

= p∗i10, for j = 1

exp(x⊤
ij(tij)βββ+θyi,j−1+ψ(zij)+στ τi)

1+exp(x⊤
ij(tij)βββ+θyi,j−1+ψ(zij)+στ τi)

= p∗ijyi,j−1
, for j = 2, · · · , ni .

(5.1)

Note that this SBDML model (5.1) reduces to the BDML model (Sutradhar, 2011,

Chapter 9), namely

Pr(yij = 1|yi,j−1,xij, τi) =

⎧⎪⎪⎨⎪⎪⎩
exp(x⊤

i1(ti1)βββ+στ τi)

1+exp(x⊤
i1(ti1)βββ+στ τi)

, for j = 1

exp(x⊤
ij(tij)βββ+θyi,j−1+στ τi)

1+exp(x⊤
ij(tij)βββ+θyi,j−1+στ τi)

, for j = 2, · · · , ni ,
(5.2)

when the nonparametric function ψ(·) is ignored. This BDML model has been studied

by many authors such as Heckman (1979), Manski (1987), Honoré and Kyriazidou

(2000). For a detailed study including the estimation of the parameters of this BDML

model, we refer to Sutradhar (2011, Chapter 9).

The SBDML model (5.1) is quite general. The longitudinal correlations among

repeated responses arise due to the dynamic dependence of a current response (yij) on

the past response (yi,j−1), and each response (yij) is also influenced by a latent effect

(τi) of the ith individual causing overdispersion and hence structural correlations. This

model (5.1) is quite different than some existing mixed effect models (Breslow and

Clayton, 1993, Lin and Carroll, 2006), where longitudinal correlations are assumed to
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be generated only through random effects. In (5.1), the dynamic dependence condi-

tional on the random effects introduces longitudinal correlations among the repeated

binary responses. For this reason, the random effects model considered by Lin and

Carroll (2006, Example 3) would produce correlations without lag dependence, hence

it should not be used as longitudinal correlations. For example, under their model, the

Cov(Yij, Yik) does not depend on lag |k − j|, instead they remain similar or the same

for any small or large value of |k − j|, which is generally inappropriate for repeated

responses. In contrast, the introduction of dynamic dependence parameter θ in model

(5.1) results in a more flexible lag-dependent correlation structure, which may also

contain the influence from the random effects through σ2
τ .

5.1 Basic properties of the proposed SBDMLmodel

(5.1)

As in other chapters of the thesis, the primary covariates xij are always considered

fixed. So for simplicity, we will drop the conditioning on xij. Notice that the SBDML

model (5.1) can also be written in the form of

E[Yij|yi,j−1, τi] = p∗ij1yi,j−1 + p∗ij0(1− yi,j−1) , (5.3)

where p∗ij0 = exp(x⊤
ijβββ + ψ(zij) + σττi)/[1 + exp(x⊤

ijβββ + ψ(zij) + σττi)] and p∗ij1 =

exp(x⊤
ijβββ + θ + ψ(zij) + σττi)/[1 + exp(x⊤

ijβββ + θ + ψ(zij) + σττi)]. It follows that the

mean of Yij conditional on τi, which is denoted by µ∗
ij(τi) = E[Yij|τi], j = 1, · · · , ni,
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can be written as

µ∗
ij(τi) =

⎧⎪⎪⎨⎪⎪⎩
p∗i10, for j = 1

p∗ij0 +
(
p∗ij1 − p∗ij0

)
µ∗
i,j−1(τi), for j = 2, · · · , ni ,

(5.4)

yielding the unconditional mean µij = E(Yij) and variance σijj = Var(Yij) as

µij =

∫ ∞

−∞
µ∗
ij(τi)φ(τi)dτi ≃

1

N

N∑
w=1

µ∗
ij(τiw) and σijj = µij (1− µij) (5.5)

respectively, where φ(·) is the standard normal density, N is a large number such

as N = 1000, and τiw, w = 1, · · · , N , is a random sample from a standard normal

distribution. Notice that the recursive nature of formula (5.4) implies that the uncon-

ditional mean µij depends not only on the present covariate values (xij, zij), but also

on the past covariate values from (xi,j−1, zi,j−1) to (xi1, zi1). This shows a major differ-

ence between the SBDML model (5.1) and the semi-parametric fixed models studied

by other authors such as Severini and Staniswalis (1994), Lin and Carroll (2001).

As far as the second order moments are concerned, one may first write

E[(Yij − µ∗
ij)(Yik − µ∗

ik)|τi] = µ∗
ij(1− µ∗

ij)
k∏

l=j+1

(p∗il1 − p∗il0),

yielding

λ∗ijk(τi) = E[YijYik|τi] = µ∗
ij(τi)

(
1− µ∗

ij(τi)
) k∏
l=j+1

(p∗il1 − p∗il0) + µ∗
ij(τi)µ

∗
ik(τi) . (5.6)

It then follows that the unconditional second order moments are given by

λijk ≡ E[YijYik] =

∫ ∞

−∞
λ∗ijk(τi)φ(τi)dτi ≃ 1

N

N∑
w=1

λ∗ijk(τiw) , (5.7)
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for any j ̸= k, j, k = 1, · · · , ni; yielding Cov(Yij, Yik) = λijk − µijµik, and hence

correlations as

Corr(Yij, Yik) ≡ λijk − µijµik√
σijjσikk

. (5.8)

Furthermore, when needed, by using

E[Yij − µ∗
ij|yi,j−1, τi] =

(
p∗ij1 − p∗ij0

) (
yi,j−1 − µ∗

i,j−1

)
(5.9)

for j ≥ 2, one can derive other higher order moments. These moments will be nec-

essary for the construction of SGQL estimating equations for the parameters of the

model (see Section 5.2).

Note that in practice, it is necessary to understand the mean, variance and correla-

tion of the responses. For this reason, one must estimate the means and variances by

(5.5) and correlations by (5.8) consistently, which requires the consistent estimation of

the parameters, namely, βββ, θ and σ2
τ , and ψ(·). This estimation is discussed in details

in Section 5.2. The asymptotic properties of the estimators are given in Section 5.3.

5.2 Estimation

The estimation of the parameters of the BDML (binary dynamic mixed logit) model

has been carried out by Sutradhar et al. (2010) using both GQL and ML approaches,

GQL being the simpler but competitive. The proposed SBDML model (5.1) is a gen-

eralization of the BDML model (5.2) to the semi-parametric setup. Note that because

the parameters of this SBDML model cannot be estimated consistently without esti-

mating the function ψ(·) consistently, this makes the whole estimation procedure more

complex. In a mixed model framework, this has not been addressed in the literature
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so far. In this section, for the estimation of the parameters, we continue to explore

the GQL and ML approaches following Sutradhar et al. (2010). To be specific, we

modify their estimation approaches to accommodate the fact that the estimate of the

nonparametric function is obtained for known values of the parameters.

We remark that some authors (Severini and Staniswalis, 1994, Lin and Carroll,

2001) dealt with estimation of the SBL (semi-parametric binary logit) marginal model

as opposed to the recursive semi-parametric model (4.39)−(4.40). These authors used

the SGEE (semi-parametric generalized estimating equation) approach for marginal

models, which is not applicable for the present situation because the mean and vari-

ance under the present model (5.1) include the dynamic dependence parameters.

Moreover, these authors did not consider any mixed effects in their marginal models.

5.2.1 Estimation of the nonparametric function ψ(·): A SCQL

approach

In marginal model setup, the nonparametric function involved in the semi-parametric

models has been estimated by some authors (Severini and Staniswalis, 1994, Lin

and Carroll, 2001) using WGEE (weighted generalized estimating equation) approach

where estimating equation was constructed by assuming a “working” correlation ma-

trix. However, in the context of fitting the generalized linear longitudinal fixed model

to count data, Sutradhar et al. (2016) [see also Chapter 2] have demonstrated that

a “working” independence assumption-based GEE, i.e., GEE(I) approach, still pro-

duces a consistent estimate for the nonparametric function, and this approach is much

simpler.

Note that as opposed to the marginal models, we exploited the aforementioned

idea of applying independence assumption for consistent estimation of nonparametric

function in Chapter 4 under the dynamic fixed model setup for binary data. More
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specifically, under the SBDL (semi-parametric binary dynamic logit) model we used

SCQL (semi-parametric conditional QL) approach which makes the present response

independent to past responses conditionally. In this section, we follow the SCQL

approach but accommodate the random effect variance involved in the present SBDML

model. Thus we use all yij conditional on yi,j−1 (j = 2, · · · , ni) to construct the desired

SCQL estimating equation. For ααα = (βββ⊤, θ, σ2
τ )

⊤ we first compute the marginal mean

at time point j = 1 and the conditional means for j = 2, · · · , ni, as

Pr(yi1 = 1) = E[Yi1] =

∫ ∞

−∞
p∗i10(ααα, ψ(zi1), τi)φ(τi)dτi = p†i10(ααα, ψ(zi1))

Pr(yij = 1|yi,j−1) = E[Yij|yi,j−1] =

∫ ∞

−∞
p∗ijyi,j−1

(ααα, ψ(zij), τi)φ(τi)dτi, j = 2, · · · , ni

= p†ijyi,j−1
(ααα, ψ(zij)), say, (5.10)

where p∗ijyi,j−1
(·) is given in (5.1), and φ(·) is the probability density function (pdf)

of the standard normal distribution. We remark that the conditional probability

p†ijyi,j−1
(ααα, ψ(zij)) is different than the conditional probability pi,j|j−1(βββ, θ, ψ(zij)) used

under the fixed model. It then follows that the variance at j = 1 and the variances

at j = 2, · · · , ni conditional on the previous responses have the forms

var(Yi1) = p†i10(ααα, ψ(zi1))
[
1− p†i10(ααα, ψ(zi1))

]
var(Yij|yi,j−1) = p†ijyi,j−1

(ααα, ψ(zij))
[
1− p†ijyi,j−1

(ααα, ψ(zij))
]
, j = 2, · · · , ni

= σijyi,j−1
(ααα, ψ(zij)), say. (5.11)

Note that for notational convenience, we may define a dummy response yi0 and set

yi0 = 0 for all i = 1, · · · , K. Then the SCQL estimating equation for estimating the
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nonparametric function at covariate value z is given by

K∑
i=1

ni∑
j=1

wij(z) vijyi,j−1
(ααα, ψ(z))σ−1

ijyi,j−1
(ααα, ψ(z))

[
yij − p†ijyi,j−1

(ααα, ψ(z))
]

= f(ψ(z),ααα) = 0 , (5.12)

where

vijyi,j−1
(ααα, ψ(z)) =

∂p†ijyi,j−1
(ααα, ψ(z))

∂ψ(z)

=

∞∫
−∞

p∗ijyi,j−1
(ααα, ψ(z), τi)

[
1− p∗ijyi,j−1

(ααα, ψ(z), τi)
]
φ(τi)dτi , (5.13)

and wij(z) is referred to as the so-called kernel weight defined as

wij(z) = hij(
z − zij
b

)

/
K∑
l=1

nl∑
u=1

hlu(
z − zlu
b

) . (5.14)

Here, to avoid confusing with other notations in this chapter, we use hij(·) to denote

the kernel density pij(·) defined in (3.12)−(3.14), with b as a suitable bandwidth

parameter.

For known ααα, one may then solve the estimating equation (5.12) by using the

iterative equation given by

ψ̂(z,ααα)(r+1) = ψ̂(z,ααα)(r) −
[{
f ′
ψ(z)(ψ(z),ααα)

}−1
f(ψ(z),ααα)

]
|ψ(z)=ψ̂(z,ααα)(r)

, (5.15)

where (r) indicates the rth iteration and f ′
ψ(z)(ψ(z),ααα) has the formula

f ′
ψ(z)(ψ(z),ααα) ≃ −

K∑
i=1

ni∑
j=1

wij(z) v
2
ijyi,j−1

(ααα, ψ(z))σ−1
ijyi,j−1

(ααα, ψ(z)) .
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For notational simplicity, p†ijyi,j−1
(ααα, ψ(z)) and vijyi,j−1

(ααα, ψ(z)) will be abbreviated as

p†ijyi,j−1
(z) and vijyi,j−1

(z), respectively.

We remark that conditional on τi’s, the conditional SCQL [see (4.48)] estimating

equation is written as

K∑
i=1

ni∑
j=1

wij(z)
∂p∗ijyi,j−1

(z)

∂ψ(z)

yij − p∗ijyi,j−1
(z)

p∗ijyi,j−1
(z)
(
1− p∗ijyi,j−1

(z)
) = 0

⇒
K∑
i=1

ni∑
j=1

wij(z)
(
yij − p∗ijyi,j−1

(z)
)
= 0 .

Then by taking expectation over τi’s, we obtain the semi-parametric conditional mo-

ment estimating equation for ψ(z) as

K∑
i=1

ni∑
j=1

∫
wij(z)

(
yij − p∗ijyi,j−1

(z)
)
φ(τi)dτi =

K∑
i=1

ni∑
j=1

wij(z)
(
yij − p†ijyi,j−1

(z)
)
= 0 .

(5.16)

Simulation study shows that (5.12) gives better estimating results than (5.16) does.

So in later part of this chapter, we concentrate on the estimating approaches with

ψ(z) estimated by (5.12).

5.2.2 Joint estimation of the regression, dynamic dependence

and over-dispersion index parameters

In Section 5.2.1, the SCQL estimate ψ̂(z,ααα) for the function ψ(z) was obtained for

known ααα. In following sections, we demonstrate how ααα can be consistently estimated

by using the aforementioned SGQL and SML approaches.
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5.2.2.1 A SGQL estimation approach

Because ααα = (βββ⊤, θ, σ2
τ )

⊤, we construct a first and second order (pairwise products)

response-based quasi-likelihood estimating equation (Sutradhar et al., 2010) for its

estimation. Let ui = (y⊤
i , s

⊤
i )

⊤ represent this vector with yi = (yi1, · · · , yini
)⊤ as the

ni-dimensional vector of responses for the ith individual and si = (yi1yi2, · · · , yijyik,

· · · , yi,ni−1yini
)⊤ be the (ni − 1)ni/2-dimensional vector of distinct pairwise products

of the ni responses. Let λλλi = E[Ui] = (E[Y⊤
i ],E[S

⊤
i ])

⊤ be the expectation of the

vector ui, which is already computed in Section 5.1. To be specific, µij = E[Yij]

and λijk = E[YijYik] are known by (5.5) and (5.7), respectively. Next, let ΩΩΩi be the

{ni(ni + 1)/2 × ni(ni + 1)/2} covariance matrix of ui for the ith individual. In the

SGQL approach, one essentially minimizes the so-called generalized squared distance

K∑
i=1

(ui − λλλi)
⊤ΩΩΩ−1

i (ui − λλλi) (5.17)

to estimate the desired parameters of the model. This provides the estimating equa-

tion (5.18) below for ααα after some modifications.

For the present semi-parametric model, we note that the true function ψ(·) is un-

known, instead its estimator ψ̂(·,ααα) is used, where ψ̂(·,ααα) was obtained by solving the

SCQL estimating equation (5.12) for known ααα. However, in practice ααα are unknown

parameters. Note that the means and second order moments under model (5.1) are

defined as µij(ααα, ψ(zi)) (j = 1, · · · , ni) and λijk(ααα, ψ(zi)) (j ̸= k; j, k = 1, · · · , ni),

respectively, with zi = (zi1, · · · , zini
)⊤, but the vector function ψ(zi) is estimated as

ψ̂(zi,ααα). For this reason, we modify the notations for the moments when ψ(zi) is re-

placed with ψ̂(zi,ααα) as µ̃ij(ααα, ψ̂(zi,ααα)) and λ̃ijk(ααα, ψ̂(zi,ααα)), that is, we add a symbol,

say tilde for the quantities containing the estimated nonparametric function ψ̂(·,ααα),

and write out the parameter and nonparametric function dependence explicitly.
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Minimization of the generalized squared distance (5.17) for the estimation of ααα =

(βββ⊤, θ, σ2
τ )

⊤ leads to the SGQL estimating equations for ααα as

K∑
i=1

∂λ̃λλ
⊤
i (ααα, ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα))
[
ui − λ̃λλi(ααα, ψ̂(zi,ααα))

]
= 0 , (5.18)

which may be solved iteratively by using

α̂αα(r + 1) = α̂αα(r) +

[
K∑
i=1

∂λ̃λλ
⊤
i (ααα, ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα))
∂λ̃λλi(ααα, ψ̂(zi,ααα))

∂ααα⊤

]−1

r

×[
K∑
i=1

∂λ̃λλ
⊤
i (ααα, ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα))
[
ui − λ̃λλi(ααα, ψ̂(zi,ααα))

]]
r

,

(5.19)

where [·]r denotes that the quantity in the parenthesis is evaluated at ααα = α̂αα(r), the

value of ααα obtained from the rth iteration. Let α̂ααSGQL denote the solution of (5.18)

obtained by (5.19).

Notice that unlike in the longitudinal mixed model case (Sutradhar et al., 2010),

the computation for the gradient functions in the present semi-parametric longitudinal

mixed model setup requires special care for additional derivatives of the estimated

nonparametric function with respect to ααα. For convenience, we give below the main

formulas for the gradients with details for the additional derivatives in the Appendix

A.3. To be specific, for ααα = (βββ⊤, θ, σ2
τ )

⊤ ≡ (ααα⊤
1 , α2, α3)

⊤ and a large integer N ,

∂µ̃ij(ααα, ψ̂(zi,ααα))

∂ααα
=

1

N

N∑
w=1

⎛⎜⎜⎜⎜⎝
∂/∂ααα1

∂/∂α2

∂/∂α3

⎞⎟⎟⎟⎟⎠ µ̃∗
ij(τiw,ααα, ψ̂(zi,ααα)) (5.20)
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by (5.5), and

∂λ̃ijk(ααα, ψ̂(zi,ααα))

∂ααα
=

1

N

N∑
w=1

⎛⎜⎜⎜⎜⎝
∂/∂ααα1

∂/∂α2

∂/∂α3

⎞⎟⎟⎟⎟⎠ λ̃∗ijk(τiw,ααα, ψ̂(zi,ααα)) (5.21)

by (5.7). In (5.20),

∂µ̃∗
ij(τiw,ααα, ψ̂(zi,ααα))

∂αm
=

⎧⎪⎨⎪⎩ cm,1 if j = 1

cm,j + dm,jµ̃
∗
i,j−1 +

(
p̃∗ij1 − p̃∗ij0

) ∂µ̃∗i,j−1

∂αm
if 2 ≤ j ≤ ni ,

(5.22)

with

cm,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p̃∗ij0

(
1− p̃∗ij0

) [
xij +

∂ψ̂(zij ,ααα)

∂αααm

]
for m = 1

p̃∗ij0
(
1− p̃∗ij0

) ∂ψ̂(zij ,ααα)
∂αm

for m = 2

p̃∗ij0
(
1− p̃∗ij0

) [
1

2στ
τiw +

∂ψ̂(zij ,ααα)

∂αm

]
for m = 3 ,

and

dm,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[
p̃∗ij1

(
1− p̃∗ij1

)
− p̃∗ij0

(
1− p̃∗ij0

)] [
xij +

∂ψ̂(zij ,ααα)

∂αααm

]
for m = 1

p̃∗ij1
(
1− p̃∗ij1

) [
1 +

∂ψ̂(zij ,ααα)

∂αm

]
− p̃∗ij0

(
1− p̃∗ij0

) ∂ψ̂(zij ,ααα)
∂αm

for m = 2[
p̃∗ij1

(
1− p̃∗ij1

)
− p̃∗ij0

(
1− p̃∗ij0

)] [
1

2στ
τiw +

∂ψ̂(zij ,ααα)

∂αm

]
for m = 3 .

In (5.21), for j < k,

∂λ̃∗ijk
∂αm

=
(
1− 2µ̃∗

ij

) ∂µ̃∗
ij

∂αm

k∏
l=j+1

(p̃∗il1 − p̃∗il0) +

[
µ̃∗
ij

∂µ̃∗
ik

∂αm
+ µ̃∗

ik

∂µ̃∗
ij

∂αm

]

+ µ̃∗
ij

(
1− µ̃∗

ij

) k∑
u=j+1

dm,u

k∏
l ̸=u
l=j+1

(p̃∗il1 − p̃∗il0) . (5.23)
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As indicated above, these main gradient functions in (5.20)-(5.23) contain the deriva-

tive of the estimated function ψ̂(zij,ααα) with respect to ααα = (ααα⊤
1 , α2, α3)

⊤. The formula

for this additional derivative, i.e., ∂ψ̂(zij,ααα)/∂ααα is lengthy, and for convenience are

given in the Appendix A.3.

Next, all moments needed to compute Ω̃ΩΩi matrix in (5.18) are given in Section 5.1

and Appendix A.1, with ψ(·) replaced by its estimates ψ̂(·,ααα). For example, for j < k

˜Cov(Yij, Yik) = λ̃ijk(ααα, ψ̂(zi,ααα))− µ̃ij(ααα, ψ̂(zi,ααα)) µ̃ik(ααα, ψ̂(zi,ααα)) .

5.2.2.2 The semi-parametric maximum likelihood (SML) method for ααα

estimation: An alternative estimation approach

In last section, we have developed a moments-based SGQL approach for the estima-

tion of the parameters in ααα. It, however, appears from the model (5.1) that we can

also use the well-known likelihood approach for this estimation, but, we caution that

the computations will be much more involved as compared to the SGQL approach.

Nevertheless, for the sake of completeness, we develop the likelihood estimating equa-

tions for the components of ααα in order to examine the relative efficiency of the simpler

SGQL approach.

To derive the likelihood estimating equations, we first construct the likelihood

function for the semi-parametric mixed model (5.1) using ψ̂(zij,ααα) for ψ(zij), as

L̃(βββ, θ, σ2
τ , ψ̂(·,ααα)) =

K∏
i=1

∫ ∞

−∞

[
exp([x⊤

i1βββ + ψ̂(zi1,ααα) + σττi]yi1)

1 + exp([x⊤
i1βββ + ψ̂(zi1,ααα) + σττi]yi1)

(5.24)

×
ni∏
j=2

exp(x⊤
ijβββyij + θyi,j−1yij + ψ̂(zij,ααα)yij + σττiyij)

1 + exp(x⊤
ijβββ + θyi,j−1 + ψ̂(zij,ααα) + σττi)

]
φ(τi) dτi .

Recall that we used yi0 = 0 as a conventional notation. One may then write the



156

log-likelihood by (5.24) as

log L̃(βββ, θ, σ2
τ , ψ̂(·,ααα)) =

K∑
i=1

{
ni∑
j=1

[
x⊤
ijβββyij + θyi,j−1yij + ψ̂(zij,ααα)yij

]
+ log Ji

}
,

(5.25)

where Ji =
∫∞
−∞ exp(σττisi)∆iφ(τi)dτi with si =

ni∑
j=1

yij, and ∆i =
∏ni

j=1{1+exp(x⊤
ijβββ+

θyi,j−1 + ψ̂(zij,ααα) + σττi)}−1, yielding the likelihood estimating equation as

∂

∂ααα
log L̃(ααα, ψ̂(·,ααα)) = 0 , (5.26)

which may be solved by using the iterative equation

α̂αα(r + 1) = α̂αα(r)−

[(
∂2

∂ααα∂ααα⊤ log L̃

)−1
∂

∂ααα
log L̃

]
r

, (5.27)

where [·]r indicates that the quantity in the square bracket is evaluated at ααα = α̂αα(r)

obtained from the rth iteration. The solution of (5.26) is denoted as α̂ααSML. Note

that the formulas for the first and second order derivatives for (5.26) and (5.27) are

lengthy and cumbersome. For convenience, they are provided in Appendix A.4.

5.3 Asymptotic properties of the estimators of the

SBDML model

5.3.1 Consistency of the SCQL estimator of ψ(·)

The nonparametric function ψ(zlu) in (5.1) has to be estimated for all l = 1, · · · , K,

and u = 1, · · · , nl. For convenience, in (5.12), we have shown the estimation of ψ(z)

for z = zlu for a selected value of l and u. Note that ψ(z) cannot be estimated
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without knowing or estimating ααα. Thus, in (5.15), the estimate of ψ(z) was denoted

by ψ̂(z,ααα). Now, a Taylor expansion of (5.12) about true ψ(z) gives

ψ̂(z,ααα)− ψ(z) ≈ AK +QK , (5.28)

where AK = 1
BK(z)

1
K

K∑
i=1

ni∑
j=1

hij(z) vijyi,j−1
(z)σ−1

ijyi,j−1
(z) [yij − p†ijyi,j−1

(zij)] =
1
K

K∑
i=1

ni∑
j=1

a∗K,ij(z) [yij − p†ijyi,j−1
(zij)] with BK(z) = 1

K

K∑
i=1

ni∑
j=1

hij(z)σ
−1
ijyi,j−1

(z) v2ijyi,j−1
(z) and

hij(z) as the short abbreviation for hij(
z−zij
b

) defined in (5.14). Also in (5.28),

QK = 1
BK(z)

1
K

K∑
i=1

ni∑
j=1

hij(z) vijyi,j−1
(z)σ−1

ijyi,j−1
(z) [p†ijyi,j−1

(zij)− p†ijyi,j−1
(z)] = 1

K

K∑
i=1

ni∑
j=1

a∗K,ij(z) [p
†
ijyi,j−1

(zij)− p†ijyi,j−1
(z)]. As ni’s are small and fixed, and K is large in the

present longitudinal setup, we use B = limK→∞BK for BK involved in AK . It then

follows that AK has zero mean and bounded variance, implying that AK = Op(1/
√
K)

(Bishop, Fienberg, and Holland, 2007, Theorem 14.4-1). Furthermore, the following

lemmas show that QK in (5.28) is in the order of O(b2).

Lemma 5.1. Let xi = (xi1, · · · ,xini
), then

E

[
ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z) (zij − z)

⏐⏐⏐⏐⏐xi
]

= O(b2). (5.29)

Proof. Let zzzi = (zi1, · · · , zini
)⊤ and qij = Pr(yij = 1|zi,j+1,xxxi) = Pr(yij = 1|xxxi)

because according to the model (5.1), the distribution of yij is independent of zi,j+1.

Then qij =
∫
µijfi(zzzi|xxxi)dzzzi, where µij is defined in (5.5), and fi(zzzi|xxxi) is the joint

distribution of zzzi conditional on xxxi. Also define

gj(zij;ααα, z,xi) = E[v2ijyi,j−1
(z)σ−1

ijyi,j−1
(z)|zij,xi]

=
∑
yi,j−1

v2ijyi,j−1
(z)σ−1

ijyi,j−1
(z) q

yi,j−1

i,j−1 (1− qi,j−1)
1−yi,j−1
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= gj(ααα, z,xi)

because the conditional expectation is in fact independent of zij, and hj(zij;xi) be

the pdf of zij conditional on xi, then

E

[
ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z) (zij − z)

⏐⏐⏐⏐⏐xi
]

=

ni∑
j=1

Ezij

[
hij(z) (zij − z) E

[
v2ijyi,j−1

(z)σ−1
ijyi,j−1

(z) fj(yi,j−1|zij,xi)
⏐⏐⏐zij,xi]⏐⏐⏐xi]

=

ni∑
j=1

Ezij [hij(z)(zij − z)gj(ααα, z,xi)|xi]

=

ni∑
j=1

∫
hij(z)gj(ααα, z,xi)(zij − z)hj(zij;xi) dzij .

Then as hj(zij;xi) = hj(z;xi) +O(zij − z), it follows that

E

[
ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z) (zij − z)

⏐⏐⏐⏐⏐xi
]

=

ni∑
j=1

∫
hij(z)

[
gj(ααα, z,xi)hj(z;xi)(zij − z) +O

(
(zij − z)2

)]
dzij

=

ni∑
j=1

gj(ααα, z,xi)hj(z;xi)

∫
hij(z)(zij − z) dzij +O(b2) = O(b2),

because hij(z) is symmetric about z and
∫
hij(z)O ((zij − z)2) dzij can be shown

bounded in the order of O(b2).

Lemma 5.2.

QK = O(b2). (5.30)
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Proof.

QK ≃ 1

B(z)K

K∑
i=1

ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z)ψ′(z) [zij − z]

=
ψ′(z)

B(z)K

K∑
i=1

{
ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z) (zij − z)

−E

[
ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z) (zij − z)

⏐⏐⏐⏐⏐xi
]}

+
ψ′(z)

B(z)K

K∑
i=1

E

[
ni∑
j=1

hij(z) v
2
ijyi,j−1

(z)σ−1
ijyi,j−1

(z) (zij − z)

⏐⏐⏐⏐⏐xi
]
= O(b2),

by result (5.29). For the first term, due to hij(z), its variance is in the order of

O(b2/K), so it is Op(b/
√
K), which can be neglected. Thus we have shown that

QK = O(b2).

Now we have

AK = Op(1/
√
K) and QK = O(b2) , (5.31)

yielding

ψ̂(z,ααα)− ψ(z) = AK +O(b2) = Op(1/
√
K) +O(b2) . (5.32)

That is, ψ̂(z,ααα) is
√
K-consistent for ψ(z) provided Kb4 → 0 as K → ∞.

5.3.2 Asymptotic distribution of the SGQL estimator of ααα

Recall that ααα represents the regression effects (βββ), dynamic dependence parameter (θ)

and the random effects variance (σ2
τ ). That is, ααα = (βββ⊤, θ, σ2

τ )
⊤, which was estimated

in Section 5.2.2.1 by solving the SGQL estimating equation given by (5.18). Denote
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the estimating function (left side of (5.18)) involved in the SGQL equation as

DK(ααα) =
1

K

K∑
i=1

∂λ̃λλ
⊤
i (ααα, ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα))
[
ui − λ̃λλi(ααα, ψ̂(zi,ααα))

]
, (5.33)

implying that DK(α̂ααSGQL) = 0. Now a linear Taylor expansion about true ααα provides

DK(ααα) + ∂DK(ααα)/∂ααα
⊤ (α̂ααSGQL −ααα) + op(1/

√
K) = 0, yielding

α̂ααSGQL −ααα = F−1
K (ααα)DK(ααα) + op(1/

√
K) , (5.34)

where

FK(ααα) = − ∂DK(ααα)

∂ααα⊤ =
1

K

K∑
i=1

∂λ̃λλ
⊤
i (ααα, ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα))
∂λ̃λλi(ααα, ψ̂(zi,ααα))

∂ααα⊤ .

Next, write Z1i =
∂λ̃λλ

⊤
i (ααα,ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα)) and

Z2ij =
1

K

K∑
i′=1

ni′∑
j′=1

∂λ̃λλ
⊤
i′ (ααα, ψ̂(zi′ ,ααα))

∂ααα
Ω̃ΩΩ

−1

i′ (ααα, ψ̂(zi′ ,ααα))
∂λλλi′(ααα, ψ(zi′))

∂ψ(zi′j′)
a∗K,ij(zi′j′) ,

where a∗K,ij(zi′j′) is defined in (5.28). Because

DK(ααα) =
1

K

K∑
i=1

∂λ̃λλ
⊤
i (ααα, ψ̂(zi,ααα))

∂ααα
Ω̃ΩΩ

−1

i (ααα, ψ̂(zi,ααα)) [{ui − λλλi(ααα, ψ(zi))}

+
{
λλλi(ααα, ψ(zi))− λ̃λλi(ααα, ψ̂(zi,ααα))

}]
,

by using Taylor expansion of {λλλi(ααα, ψ(zi)) − λ̃λλi(ααα, ψ̂(zi,ααα))} with respect to ψ(zi′j′)

for all i′ = 1, · · · , K and j′ = 1, · · · , ni′ , and applying (5.28) and (5.31), one may
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obtain

DK(ααα) =
1

K

K∑
i=1

[
Z1i (ui − λλλi)−

ni∑
j=1

Z2ij

(
yij − p†ijyi,j−1

(zij)
)]

+O(b2) + op(1/
√
K). (5.35)

Denote F = limK→∞FK . It then follows from (5.34) by (5.35) that

√
K {α̂ααSGQL −ααα} = F−1 1√

K

K∑
i=1

[
Z1i (ui − λλλi)−

ni∑
j=1

Z2ij

(
yij − p†ijyi,j−1

(zij)
)]

+O(
√
Kb4) + op(1). (5.36)

Next because E[Ui − λλλi] = 0, E[Yij − p†ijyi,j−1
(zij)] = 0, and Cov[Ui] = ΩΩΩi, by

using Lindeberg-Feller central limit theorem (Amemiya, 1985, Theorem 3.3.6) for

independent random variables with non-identical distributions, one obtains

√
K
{
α̂ααSGQL −ααα−O(b2)

} D−→ N(0,VSGQL) , (5.37)

where

VSGQL = F−1 1

K

{
K∑
i=1

Cov

[
Z1i (Ui − λλλi)−

ni∑
j=1

Z2ij

(
Yij − p†ijyi,j−1

(zij)
)]}

F−1,

which can be estimated consistently by using

V̂SGQL = F̂−1
K (α̂ααSGQL)

1

K

{
K∑
i=1

[
Z1i (Ui − λλλi)−

ni∑
j=1

Z2ij

(
Yij − p†ijyi,j−1

(zij)
)]

×

[
Z1i (Ui − λλλi)−

ni∑
j=1

Z2ij

(
Yij − p†ijyi,j−1

(zij)
)]⊤⎫⎬⎭ F̂−1

K (α̂ααSGQL) .
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Note that because b ∝ K−ν , for
√
K-consistency of α̂ααSGQL, we need to have Kb4 → 0

as K → ∞, which happens when 1/4 < ν ≤ 1/3 (see Lin and Carroll, 2001, for

example, for upper limit).

5.3.3 Asymptotic distribution of the SML estimator of ααα

Recall from Section 5.2.2.2 that the parameters of the model, i.e. ααα, were also es-

timated by using the SML approach, even though SGQL approach was found to be

simpler. In this section, we now discuss the asymptotic properties of the SML esti-

mator of ααα.

For trueααα, by using (5.1), we write l(ααα, ψ(·)) = logL(ααα, ψ(·)) =
∑K

i=1 li(ααα, ψ(zi)) =∑ni

j=1[x
⊤
ijβββyij+θyi,j−1yij+ψ(zij)yij]+log Ji(ααα, ψ(zi)) because the individuals are inde-

pendent. Here Ji(ααα, ψ(zi)) is defined in (5.25). Recall from (5.26) that the likelihood

estimate of ααα was obtained by replacing ψ(zij) with its consistent estimate ψ̂(zij,ααα).

Applying a Taylor expansion over the likelihood equation gives

√
K {α̂ααSML −ααα} = H−1

K

{√
KCK

}
+ op(1), (5.38)

where CK = 1
K
∂l̃(ααα, ψ̂(· ,ααα))/∂ααα and HK = − 1

K
∂2l̃(ααα, ψ̂(· ,ααα))/∂ααα∂ααα⊤. Denote H =

limK→∞ HK . By (5.38), we write
√
K{α̂ααSML − ααα} = H−1{

√
KCK} + op(1). By a

further linear Taylor expansion of l̃(ααα, ψ̂(· ,ααα)) about ψ(zij) for all i = 1, · · · , K and

j = 1, · · · , ni, one may obtain l̃(ααα, ψ̂(· ,ααα)) ≃ l(ααα, ψ(·)) +
K∑
i=1

ni∑
j=1

∂l(ααα,ψ(·))
∂ψ(zij)

[ψ̂(zij,ααα) −

ψ(zij)], yielding

CK ≈ 1

K

K∑
i=1

∂li(ααα, ψ(zi))

∂ααα
+C1K +

1

K

K∑
i=1

ni∑
j=1

∂ψ̂(zij,ααα)

∂ααα

∂li(ααα, ψ(zi))

∂ψ(zij)
, (5.39)

whereC1K = 1
K

K∑
i=1

ni∑
j=1

Z3ij(yi,j−1)[yij−p†ijyi,j−1
(zij)]+O(b

2) with Z3ij(yi,j−1) =
1
K

K∑
i′=1

ni′∑
j′=1
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∂2li′ (ααα,ψ(zi′ ))
∂ααα∂ψ(zi′j′ )

a∗K,ij(zi′j′), where a
∗
K,ij(zi′j′) is defined in (5.28). Next by using the law

of large numbers, we can neglect the dependence of Z3ij on yi′j′ ’s, and retain only its

dependence on yi,j−1 contained in a∗K,ij(zi′j′). Also by the law of large numbers, in

(5.39), we can neglect the dependence of
∂ψ̂(zij ,ααα)

∂ααα
on xij’s and yij’s, and regard it as a

function of zij and ααα only. Then (5.38) becomes

√
K {α̂ααSML −ααα} ≈ H−1 1√

K

K∑
i=1

{
∂li(ααα, ψ(zi))

∂ααα
+

ni∑
j=1

Z3ij(yi,j−1)
[
yij − p†ijyi,j−1

(zij)
]

+

ni∑
j=1

∂ψ̂(zij,ααα)

∂ααα

∂li(ααα, ψ(zi))

∂ψ(zij)

}
+O(

√
Kb4). (5.40)

Because E[∂li(ααα, ψ(zi))/∂ααα] = 0 and E[∂li(ααα, ψ(zi))/∂ψ(zij)] = 0 for all i and j, by

Lindeberg-Feller central limit theorem (Amemiya, 1985, Theorem 3.3.6) we can obtain

√
K
{
α̂ααSML −ααα−O(b2)

} D−→ N(0,VSML) , (5.41)

where

VSML = H−1 1

K

K∑
i=1

Cov

{
∂li(ααα, ψ(zi))

∂ααα
+

ni∑
j=1

Z3ij(yi,j−1)
[
yij − p†ijyi,j−1

(zij)
]

+

ni∑
j=1

∂ψ̂(zij,ααα)

∂ααα

∂li(ααα, ψ(zi))

∂ψ(zij)

}
H−1 ,

which can be estimated consistently by using

V̂SML = Ĥ−1
K

{
1

K

K∑
i=1

ĜiĜ
⊤
i

}
Ĥ−1
K ,
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where

Ĝi =
{∂li(ααα, ψ(zi))

∂ααα
+

ni∑
j=1

Z3ij(yi,j−1)[yij − p†ijyi,j−1
(zij)]

+

ni∑
j=1

∂ψ̂(zij,ααα)

∂ααα

∂li(ααα, ψ(zi))

∂ψ(zij)

}⏐⏐
ααα=α̂αα,ψ(zi)=ψ̂(zi,α̂αα)

.

It follows from (5.41) that α̂ααSML is biased for ααα unless
√
K O(b2) → 0. Hence for

√
K-consistency of α̂ααSML, we need to have Kb4 → 0 as K → ∞, which gives K 1

K4ν =

1
K4ν−1 → 0, and hence 1/4 < ν ≤ 1/3 (see Lin and Carroll, 2001, for example, for

upper limit).

We remark that in obtaining SGQL and SML estimates of ααα, we have used ψ̂(z,ααα)

as a consistent estimate for ψ(z). However, when ααα is estimated, this estimate in

turn becomes ψ̂(z, α̂αα). Note that no matter whether ααα is estimated by SGQL or SML

approach, as long as ν satisfies 1/4 < ν ≤ 1/3,

√
K O

(
(α̂αα−ααα)2

)
=

1√
K
O

((√
K (α̂αα−ααα)

)2)
=

1√
K
Op(1) = op(1).

It then follows that ψ̂(z, α̂αα) is also
√
K-consistent for ψ(z) under the condition Kb4 →

0, or equivalently, 1
4
< ν ≤ 1

3
. That is,

√
K
{
ψ̂(z, α̂αα)− ψ(z)

}
=

√
K
{
ψ̂(z, α̂αα)− ψ̂(z,ααα)

}
+
√
K
{
ψ̂(z,ααα)− ψ(z)

}
=

1√
K

K∑
i=1

ni∑
j=1

a∗K,ij(z)
[
yij − p†ijyi,j−1

(z)
]

+
∂ψ̂(z,ααα)

∂ααα⊤

√
K {α̂αα−ααα}+O(

√
Kb4) + op(1) .
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5.4 A simulation study

In Chapter 4, specifically in Section 4.2.4, we conducted a simulation study examining

the performance of the SML estimation approach under the semi-parametric binary

fixed model. However, because the SML approach becomes complicated for the semi-

parametric mixed model in this chapter, we have discussed the SGQL approach mainly

for the estimation of the main parameters ααα = (βββ⊤, θ, σ2
τ )

⊤. This approach is simpler

than the SML approach for such mixed models. The large sample properties of the

SGQL estimator of ααα was discussed in Section 5.3.2. In this section, we now conduct

a simulation study to examine the small/finite sample performance of the SGQL

estimator. For the sake of completeness, we also include the SML approach in this

study.

As far as the design is concerned, we use 2 fixed covariates as in Chapters 3 and

4 (Sections 3.4, 4.1.4 and 4.2.4). However, we write these covariates again as follows

to accommodate a general cluster size ni. More specifically, we will use ni = 4, 6 and

10. These notations will reflect the covariates of the previous chapters when ni = 4.

xij1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

for i = 1, . . . , 25 and j ≤ ni/2

1 for i = 1, . . . , 25 and ni/2 < j ≤ ni

−1
2

for i = 26, . . . , 75 and j ≤
⌊
ni

3

⌋
0 for i = 26, . . . , 75 and

⌊
ni

3

⌋
< j ≤ ni −

⌊
ni

3

⌋
1
2

for i = 26, . . . , 75 and j > ni −
⌊
ni

3

⌋
j

2ni
for i = 76, . . . , 100 and j = 1, · · · , ni,

(5.42)



166

and

xij2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j−(ni+1)/2
2ni

for i = 1, . . . , 50 and j = 1, · · · , ni

0 for i = 51, . . . , 100 and j ≤ ni/2

1
2

for i = 51, . . . , 100 and j > ni/2,

(5.43)

where ⌊q⌋ denotes the largest integer ≤ q.

Next, for the selection of the nonparametric function in secondary covariates zij ∼

U [j − 0.5, j + 0.5], we choose the same function as in the past chapters. That is,

ψ(zij) = 0.3 + 0.2

(
zij −

ni + 1

2

)
+ 0.05

(
zij −

ni + 1

2

)2

.

With regard to the selection of the parameters of the model, we choose the same

fixed regression and dynamic independence parameters as in Section 4.2.4. That is,

β1 = β2 = 0.5 and θ = 1.0,−1.0,−3.0. However, for the additional random effect

variance parameter σ2
τ , we choose

σ2
τ = 0.5, 1.0, 2.0 and 3.0. (5.44)

Our main objective in this section is to examine the effect of σ2
τ in the estimation of

the other parameters and nonparametric function of the mixed model.

For data generation, as in the mixed model for count data discussed in Section

3.4.2, we first generate random effects τ ∗i ∼ N(0, σ2
τ ) for a given value of σ2

τ from

(5.44). We then use (5.1) to generate data for all selected values of βββ and θ.

The estimation approaches given in Section 5.2 require computing statistic means

over τi as in Eqs. (5.5) and (5.7). To calculate such statistic means over τi by averaging

over a large sample of τi is too time-consuming to be practical. Instead in this work
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we applied a binomial approximation approach as described in Appendix A.2.

5.4.1 Estimation performance for ψ(·) and ααα = (βββ⊤, θ, σ2τ)
⊤ for

various σ2τ

We now examine the performance of the proposed SGQL and SML approaches dis-

cussed in Section 5.2 for the estimation of ψ(zij), and the parameters βββ, θ and σ2
τ for

σ2
τ = 0.5, 1, 2, 3, respectively. We consider 4 (ni = 4, i = 1, · · · , K) repeated binary

responses from each of K = 100 independent individuals. All estimates (simulated

mean, SM) along with their simulated standard errors (SSE) and mean square errors

(MSE) are obtained based on 1000 simulations. The results for parameters βββ, θ and

σ2
τ are provided in Tables 5.1 and 5.2. The SCQL estimates for the function ψ(·)

are displayed in Figs. 5.1 - 5.4. Here the bandwidth in ψ(·) estimation is chosen

as b = c0K
−1/5 with c0 = σz ≈

(
z range

4

)
as mentioned in Section 4.2.2.1. For the

integrations over τi, we used the binomial approximation proposed in Appendix A.2,

with number of trials equal to 5. Whenever the estimated σ̂2
τ was negative, it was set

to 10−8, and the iterative algorithm continued until convergence.

The results from Tables 5.1 and 5.2 show that the SGQL and SML approaches

give almost the same SMs, SSEs and MSEs for the estimation of all the parameters

βββ, θ and σ2
τ in all the parameter combinations considered, and the estimates of the

nonparametric function in Figs. 5.1 - 5.4 with parameters estimated by these 2 ap-

proaches also coincide with each other, indicating the strength and advantage of the

proposed SGQL approach, as SGQL is considerably easier to implement, and spends

much less computer time in getting convergent estimates. Because of the closeness of

the estimation results from these two approaches, we will concentrate on only SML

when discussing the performance of these two approaches.

As seen in Tables 5.1 and 5.2, the estimates are in general good agreement with
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Figure 5.1: Estimated nonparametric function for SBDML model. Using σ2
τ = 0.5

and ni = 4 for all i.
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Figure 5.2: Estimated nonparametric function for SBDML model. Using σ2
τ = 1.0

and ni = 4 for all i.

the corresponding true values of the parameters. To be specific, the SML approach

appears to produce almost unbiased estimates for the dynamic dependence parameter.

For example, θ = 1.0 is estimated as 1.0144 and θ = −3.0 is estimated as −3.0516
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Figure 5.3: Estimated nonparametric function for SBDML model. Using σ2
τ = 2.0

and ni = 4 for all i.
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Figure 5.4: Estimated nonparametric function for SBDML model. Using σ2
τ = 3.0

and ni = 4 for all i.

when σ2
τ = 3.0. As far as the estimation of regression effects is concerned, when σ2

τ

is as small as 0.5 and 1.0, similar to the situation for SBDL model in Section 4.2.4,

βββ estimates are less biased when dynamic dependence is negative. For example, for
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σ2
τ = 0.5, the β2 = 0.5 estimate is 0.5354 when θ = 1.0, but the estimate is found to

be 0.5288 when θ = −1.0, and 0.5042 when θ = −3.0. However, when σ2
τ is as large

as 2.0 and 3.0, situation becomes more complicated. For example, when σ2
τ = 2.0, the

β2 = 0.5 estimate is 0.5370 for θ = 1.0, gets as better as 0.4940 for θ = −1.0, and then

becomes 0.4556 for θ = −3.0, which is worse than both results for θ = 1.0 and −1.0.

Further note that the estimates for β2 are in general considerably worse than those

for β1, which can be because there are more variations in covariate xij1 than in xij2.

With regard to the estimation of random effect variance, in all the cases considered,

σ2
τ estimate is less biased with smaller standard error and mean square error when

dynamic dependence goes to negative. For example, when σ2
τ = 3.0, for θ = 1.0,−1.0

and −3.0, the σ2
τ estimates are 3.3317, 3.0270 and 3.0119 with SSEs 2.0502, 1.2153

and 1.1147, and MSEs 4.3092, 1.4761 and 1.2415, respectively. Notice that when

θ = 1.0 and σ2
τ = 0.5, the estimate of σ2

τ is 0.6012 with a large bias. This is because

the negative estimates of σ2
τ are set to 10−8, causing the distribution of σ̂2

τ right tilted.

In practice, sample size is usually quite large, and the dynamic dependence parameter

θ is also smaller than 1.0, then the proposed estimation approaches will be adequate

in fitting the model.

Next, Figs. 5.1 - 5.4 show that the SCQL approach estimates the true nonpara-

metric curve well when σ2
τ and |θ| are not too large. The estimated curves almost

coincide with the true curve when θ = −1.0 for all σ2
τ values from 0.5 to 3.0. When

θ = 1.0, the curve estimate is good for σ2
τ = 0.5, but shows slight underestimation of

ψ(·) value in the right part of the range of secondary covariate z for large σ2
τ values

such as 1.0, 2.0 and 3.0. When absolute value of θ is large, such as −3.0, but σ2
τ is as

small as 0.5, the estimated nonparametric function still closely follows the true curve.

However, when σ2
τ is also large, that is, when σ2

τ = 1.0, 2.0 and 3.0, there appears con-

siderable bias in the range approximately from 1.1 to 2.9, and this bias increases as
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σ2
τ gets larger. The bias in nonparametric function estimation comes from the second

term in (5.28), or more specifically, from

p†ijyi,j−1
(zij)− p†ijyi,j−1

(z) . (5.45)

So for the covariate and nonparametric function configuration in this simulation study,

when θ = −3.0 and σ2
τ are large, (5.45) is negatively biased from 0 in the second time

point with zi2 ∈ [1.5, 2.5] and xi2 = (xi21, xi22)
⊤ given by (5.42) and (5.43). This bias

will decrease to 0 when sample size gets larger, according to the asymptotic results

given in Section 5.3. Also, in practice it should be rare for a large random effect

variance and a large-magnitude negative dynamic dependence parameter to happen

together, even though they may happen separately, so a satisfying estimation for

the nonparametric function will be anticipated for the application of our models and

estimation approaches to real data analysis.
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Table 5.1: Simulated means (SMs), simulated standard errors (SSEs) and mean square
errors (MSEs) of SGQL and SML estimates of the parameters βββ, θ and σ2

τ , under
SBDML model (5.1) for selected parameter values with K = 100, ni = 4, and 1000
simulations.

Methods Quantity β1 β2 θ σ2
τ

True Value 0.5 0.5 1.0 0.5

SGQL SM 0.5334 0.5350 1.0062 0.6032
SSE 0.4439 1.0386 0.4721 0.6825
MSE 0.1980 1.0789 0.2227 0.4760

SML SM 0.5332 0.5354 1.0062 0.6012
SSE 0.4433 1.0373 0.4716 0.6753
MSE 0.1974 1.0761 0.2222 0.4658

True Value 0.5 0.5 −1.0 0.5

SGQL SM 0.5133 0.5290 −1.0364 0.5245
SSE 0.3827 0.8490 0.3669 0.3747
MSE 0.1465 0.7209 0.1358 0.1409

SML SM 0.5131 0.5288 −1.0365 0.5246
SSE 0.3829 0.8488 0.3664 0.3741
MSE 0.1466 0.7206 0.1354 0.1404

True Value 0.5 0.5 −3.0 0.5

SGQL SM 0.5073 0.5048 −3.0800 0.5110
SSE 0.4057 0.9416 0.4538 0.3700
MSE 0.1645 0.8858 0.2122 0.1369

SML SM 0.5071 0.5042 −3.0811 0.5121
SSE 0.4060 0.9424 0.4539 0.3698
MSE 0.1647 0.8872 0.2124 0.1367

True Value 0.5 0.5 1.0 1.0

SGQL SM 0.5188 0.5431 1.0509 1.0902
SSE 0.4805 1.1288 0.5048 0.9719
MSE 0.2310 1.2747 0.2572 0.9517

SML SM 0.5180 0.5426 1.0517 1.0848
SSE 0.4798 1.1249 0.5037 0.9552
MSE 0.2303 1.2659 0.2562 0.9187

True Value 0.5 0.5 −1.0 1.0

SGQL SM 0.5111 0.5476 −1.0394 1.0425
SSE 0.4370 0.9442 0.3883 0.5241
MSE 0.1909 0.8929 0.1521 0.2763

SML SM 0.5107 0.5474 −1.0393 1.0421
SSE 0.4374 0.9447 0.3880 0.5245
MSE 0.1913 0.8939 0.1519 0.2766

True Value 0.5 0.5 −3.0 1.0

SGQL SM 0.5085 0.4930 −3.0539 1.0092
SSE 0.4595 1.0124 0.4817 0.5148
MSE 0.2110 1.0239 0.2347 0.2648

SML SM 0.5084 0.4919 −3.0562 1.0117
SSE 0.4599 1.0110 0.4803 0.5131
MSE 0.2113 1.0212 0.2336 0.2632
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Table 5.2: Table 5.1 continued.

Methods Quantity β1 β2 θ σ2
τ

True Value 0.5 0.5 1.0 2.0

SGQL SM 0.5130 0.5366 1.0449 2.1779
SSE 0.5661 1.2877 0.5470 1.4623
MSE 0.3204 1.6578 0.3009 2.1677

SML SM 0.5116 0.5370 1.0473 2.1628
SSE 0.5645 1.2866 0.5453 1.4246
MSE 0.3185 1.6549 0.2993 2.0540

True Value 0.5 0.5 −1.0 2.0

SGQL SM 0.4821 0.4949 −1.0166 2.0361
SSE 0.5064 1.0859 0.4157 0.8409
MSE 0.2565 1.1779 0.1729 0.7077

SML SM 0.4813 0.4940 −1.0160 2.0343
SSE 0.5062 1.0870 0.4150 0.8387
MSE 0.2563 1.1804 0.1723 0.7039

True Value 0.5 0.5 −3.0 2.0

SGQL SM 0.4875 0.4570 −3.0407 1.9938
SSE 0.5205 1.1654 0.4819 0.7670
MSE 0.2708 1.3586 0.2337 0.5878

SML SM 0.4875 0.4556 −3.0447 1.9988
SSE 0.5197 1.1643 0.4839 0.7683
MSE 0.2700 1.3561 0.2359 0.5896

True Value 0.5 0.5 1.0 3.0

SGQL SM 0.5184 0.5965 1.0147 3.3345
SSE 0.6270 1.4056 0.5810 2.0506
MSE 0.3931 1.9831 0.3374 4.3126

SML SM 0.5196 0.5981 1.0144 3.3317
SSE 0.6266 1.4091 0.5809 2.0502
MSE 0.3926 1.9932 0.3373 4.3092

True Value 0.5 0.5 −1.0 3.0

SGQL SM 0.4930 0.5291 −1.0236 3.0353
SSE 0.5674 1.1750 0.4350 1.2315
MSE 0.3216 1.3802 0.1896 1.5163

SML SM 0.4909 0.5285 −1.0215 3.0270
SSE 0.5661 1.1754 0.4334 1.2153
MSE 0.3203 1.3809 0.1881 1.4761

True Value 0.5 0.5 −3.0 3.0

SGQL SM 0.5040 0.4527 −3.0459 3.0025
SSE 0.5891 1.2594 0.5248 1.0998
MSE 0.3467 1.5868 0.2773 1.2084

SML SM 0.5033 0.4477 −3.0516 3.0119
SSE 0.5887 1.2583 0.5283 1.1147
MSE 0.3463 1.5845 0.2815 1.2415
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5.4.2 Naive estimation of βββ, θ and ψ(·) (ignoring σ2τ)

Note that when data are generated under the present SBDML model (5.1) following

the aforementioned specifications, but one ignores the presence of random effect in

the model and makes an attempt to estimate the parameters βββ and θ as well as the

nonparametric function ψ(·) by treating the data as though they were generated from

the SBDL model (4.39)−(4.40), the estimates are bound to be biased. We examine the

performance of such naive SML (NSML) estimators by repeating the data generation

1000 times and computing the simulated mean (SM), simulated standard error (SSE),

and mean square error (MSE) of the NSML estimates for βββ and θ, and the simulated

mean of the SCQL estimates of the function ψ(·). The parameter values and their

simulated estimates are shown in Table 5.3. The true nonparametric function, and

its estimates by assuming SBDL and SBDML models are displayed in Fig. 5.5.

Table 5.3: Simulated means (SMs), simulated standard errors (SSEs) and mean square
errors (MSEs) of NSML estimates of parameters βββ and θ, with data generated un-
der SBDML model for selected parameter values with K = 100, ni = 4, and 1000
simulations.

Methods Quantity β1 β2 θ σ2
τ

True Value 0.5 0.5 1.0 1.0
NSML SM 0.3541 0.3366 1.6777

SSE 0.3706 0.9015 0.3256
MSE 0.1585 0.8387 0.5652

True Value 0.5 0.5 −1.0 1.0
NSML SM 0.3779 0.4226 −0.2711

SSE 0.3480 0.7705 0.2685
MSE 0.1359 0.5991 0.6032

True Value 0.5 0.5 −3.0 1.0
NSML SM 0.3966 0.4500 −2.1750

SSE 0.3799 0.8471 0.3227
MSE 0.1549 0.7194 0.7846

As expected, the results in Table 5.3 show that the estimates of βββ and θ are highly
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Figure 5.5: Estimated nonparametric function for SBDML model.

biased. For example, when σ2
τ = 1.0, for the true regression parameter βββ = (0.5, 0.5)⊤

and dynamic dependence parameter θ = 1.0, the estimated values of βββ and θ are found

to be (0.3541, 0.3366)⊤ and 1.6777, respectively. The naive estimates of the function

ψ(·) in Fig. 5.5 also show large bias on almost the whole range of ψ(·). Clearly

all of these naive estimates computed by ignoring the random effect are useless, and

hence one must take the random effect into account in estimating these regression and

dynamic dependence parameters, and the nonparametric function. This will require

the consistent estimation of the random effect variance σ2
τ , which was discussed in

Section 5.2.

Note that the estimating equations are constructed by minimizing the generalized

distance between the estimated individual means and the data. As a result, sometimes

wrong models can still give close estimates of the true means. To further investigate

the difference in estimating the true means between fitting SBDML and SBDL models,

we plotted in Figs. 5.6, 5.7 and 5.8 the true means (black solid lines), the means

computed with estimated parameter values and nonparametric function by fitting
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Figure 5.6: (Color online) True and estimated means for SBDML model. The black
solid lines are the true means, the red dashed lines are the means estimated by fitting
SBDML model, and the black dotted lines are the means estimated by fitting SBDL
model.
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Figure 5.7: (Color online) True and estimated means for SBDML model. The black
solid lines are the true means, the red dashed lines are the means estimated by fitting
SBDML model, and the black dotted lines are the means estimated by fitting SBDL
model.
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Figure 5.8: (Color online) True and estimated means for SBDML model. The black
solid lines are the true means, the red dashed lines are the means estimated by fitting
SBDML model, and the black dotted lines are the means estimated by fitting SBDL
model.

SBDML model with SML approach (red dashed lines), as given in Table 5.1 and Fig.

5.2, and the means computed with parameters and nonparametric function estimated

by fitting SBDL model with SML approach (black dotted lines), as given in Table

5.3 and Fig. 5.5. The figures show that the means estimated under true SBDML

model are in general considerably closer to the true means, as compared to the means

estimated under SBDL model, especially for the first several time points, and the

mean estimation under SBDML model remains good from starting time 1 to ending

time 4, while the mean estimation under SBDL model improves as time increases.

For example, in Fig. 5.8, the means estimated under SBDML model almost overlap

with the true mean for time 1, 2 and 3, while the means estimated under SBDL

model frequently oscillate away from the true means, showing comparatively not small

differences between the true means and the estimated means for most individuals.

Only at the last time point, time 4, the mean estimates from the two models have
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similar distances from the true mean. Also clear in this figure is that the estimates

from fitting SBDL model become better with time increase.

5.4.3 Estimation performance of the proposed approaches for

a single data set

Notice that the simulation results presented in Figs. 5.1 − 5.4 and Tables 5.1 and 5.2

are average performance of the estimates based on 1000 simulated data sets. However,

in practice, usually only 1 data set is available. So it is necessary for us to explore the

performance of the proposed model and estimation approaches on a single data set.

Particularly, since the semi-parametric fixed models and SGEE estimating approach

for binary panel data have been studied before this work (see Lin and Carroll, 2001,

for example), while the corresponding mixed models are left untouched, we would like

to explore here the performance of SBDML model on a single data set, and compare

it with that of SBDL model. To be specific, we generated a single data set from

SBDML model (5.1) with β1 = β2 = 0.5, θ = 0.2, and σ2
τ = 1.0 and 3.0, estimated the

parameters and nonparametric function by applying SBDL and SBDML models with

SML approach, and compared the estimation results. Note that the SML approach

for SBDL model is just the SML approach for SBDML model with the random effect

variance σ2
τ = 0. Here the series length for the ith individual, ni, is chosen to be 6 and

10. The regression covariates are still given by (5.42) and (5.43), and the secondary

covariate (zij) generation and the nonparametric function definition still follow the

design described at the start of this simulation section.

Table 5.4 gives the estimated parameter values. For all the four cases, β1 estimates

with SBDML model are all considerably better than those with SBDL model. This is

also almost true for θ estimation, except the case with σ2
τ = 1.0 and ni = 6, where the

θ estimates from the two models have nearly the same distance from the true value
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(0.6193 for SBDL, and 0.6669 for SBDML). Only for β2, SBDL gives better estimates

than SBDML in the four cases. This becomes understandable when referring to Tables

5.1 and 5.2, where, for a similar covariate configuration, and the same sample size K,

β2 estimates always have much larger standard errors than β1 and θ estimates, that

is, β2 estimate bears more randomness, and hence there can be more cases that wrong

models give better estimates of β2 than the true model. Whereas, in Table 5.4, the

overall performance of SBDML is better than that of SBDL.

Table 5.4: The parameter estimates for SBDML model. Here one data set is gener-
ated with SBDML model for each parameter value combination. The parameters are
estimated using SBDL and SBDML models.

Methods Quantity β1 β2 θ σ2
τ ni

True Value 0.5 0.5 0.2 1.0 6
SBDL Estimation 0.0354 1.1961 0.8193
SBDML Estimation 0.3489 1.7027 −0.4669 2.3876

True Value 0.5 0.5 0.2 3.0 6
SBDL Estimation −0.1581 0.4606 1.8889
SBDML Estimation 0.0983 0.2602 0.1798 4.3419

True Value 0.5 0.5 0.2 1.0 10
SBDL Estimation 0.4980 0.7246 0.9590
SBDML Estimation 0.5005 0.8130 0.6285 0.4149

True Value 0.5 0.5 0.2 3.0 10
SBDL Estimation 0.2179 −0.2521 2.0486
SBDML Estimation 0.5535 −0.6137 0.6018 3.1533

The estimated nonparametric functions, along with the true ones, are displayed

in Figs. 5.9 and 5.10. By checking these graphs, one may obtain the following ob-

servations. The SBDML estimates of the function ψ(·) are fairly closer to the true

ones than the SBDL estimates. When random effect variance σ2
τ gets larger, SBDL

estimates of ψ(·) become worse. This is reasonable since when σ2
τ gets larger, the

difference between the wrong SBDL and true SBDML models becomes larger. On

the contrary, SBDML estimates of ψ(·) may not become worse (as in Fig. 5.9), or
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even becomes better (as in Fig. 5.10), as σ2
τ gets larger. To explain this phenomenon,

we can look at SBDML model (5.1). When estimating the function ψ(·), the random

effect σττi behaves as a confounder, and the difference between the smooth function

ψ(·) and the randomly varying σττi grows as σ
2
τ increases, which makes it easier for

the SCQL algorithm to abstract the smooth ψ(·) from the random σττi.
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Figure 5.9: The true and estimated non-parametric functions for a single data set
generated from the SBDML model (5.1) with ni = 6, β1 = β2 = 0.5, θ = 0.2, and
σ2
τ = 1.0 and 3.0. The estimates are obtained by fitting SBDL and SBDML models.

To futher compare the performances of SBDL and SBDML for single data sets, we

also plotted the average estimated means from SBDL and SBDML models, as well as

the average response values, at each time point j for the cases of (ni = 6, σ2
τ = 3.0)

and (ni = 10, σ2
τ = 3.0) in Figs. 5.11 and 5.12, respectively. The average response

values and the average estimated means are calculated by

ȳj =

∑K
i=1 yij
K

¯̂µj =

∑K
i=1 µ̂ij(α̂αα, ψ̂(zi, α̂αα))

K
, (5.46)
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Figure 5.10: The true and estimated non-parametric functions for a single data set
generated from the SBDML model (5.1) with ni = 10, β1 = β2 = 0.5, θ = 0.2, and
σ2
τ = 1.0 and 3.0. The estimates are obtained by fitting SBDL and SBDML models.

respectively. Notice that the average estimated means based on SBDML model are

considerably closer to the average response values for the first several time points,

especially for the first 2 time points, as compared to those based on SBDL model.

While for larger time points, the average estimated means from the two models are

close to each other, and to the average response values. The difference between the

estimates from the 2 models at larger time points increases as σ2
τ becomes larger.

In practice, the individual series length ni can be small, which is especially true for

unbalanced data sets, where ni can be quite small for parts of individuals. Under

such circumstances, the better performance of SBDML model for initial time points

will show its advantage over SBDL model.
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Figure 5.11: The average of the estimated means and the average of response values
at each longitudinal time point for a single data set generated from the SBDML model
(5.1) with ni = 6, β1 = β2 = 0.5, θ = 0.2 and σ2

τ = 3.0. The estimates are obtained by
fitting SBDL and SBDML models.
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Figure 5.12: The average of the estimated means and the average of response values
at each longitudinal time point for a single data set generated from the SBDML model
(5.1) with ni = 10, β1 = β2 = 0.5, θ = 0.2 and σ2

τ = 3.0. The estimates are obtained
by fitting SBDL and SBDML models.



Chapter 6

Conclusion

Longitudinal data analysis for discrete such as count and binary data has been an

important research topic over the last three decades. Because of the efficiency draw-

backs (Crowder, 1995; Sutradhar and Das, 1999; Sutradhar, 2011, Chapter 6) of the

GEE (generalized estimating equation) approach (Liang and Zeger, 1986) in dealing

with such data, there have been alternative studies using a parametric class of au-

tocorrelations, where the GQL (generalized quasi-likelihood) (Sutradhar, 2003, 2010,

2011) approach is used for inferences about the main parameters of the model. The

GEE approach later on was extended to deal with longitudinal semi-parametric mod-

els (Severini and Staniswalis, 1994, Lin and Carroll, 2001). Recently, this type of

semi-parametric model for linear data was studied by Warriyar and Sutradhar (2014)

using parametric correlations based GQL approach. Furthermore, Sutradhar et al.

(2016) have extended the longitudinal semi-parametric models for linear data to the

count data setup. We have summarized these studies in Chapter 2.

Note that the aforementioned studies on semi-parametric models for longitudinal

data were confined to fixed effect cases. However, because of the importance of mixed

regression effects in longitudinal setup (Manski, 1987, Wooldridge, 1999, Honoré and
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Kyriazidou, 2000, Sutradhar and Bari, 2007, Sutradhar et al., 2008, 2010), we have

extended these longitudinal mixed models to the semi-parametric setup for count data

in Chapter 3. Some of the results dealing with longitudinal semi-parametric mixed

models for count data are also available in Zheng and Sutradhar (2016).

In Chapter 4, we studied the longitudinal semi-parametric fixed effect models

for binary data. We have considered two specific correlation models, namely SLDCP

(semi-parametric linear dynamic conditional probability) and SBDL (semi-parametric

binary dynamic logit) models. In studying these models, we have noticed an unde-

sirable feature of the SGEE approaches used by Lin and Carroll (2001) (see Section

4.1.4.1). Specifically, we found that UNS (unstructured) based SGEE approach used

by these and other authors produces less efficient estimates than simpler approaches

based on the independence assumption. The proposed SGQL inference technique

under the SLDCP model does not suffer from this type of inefficiency problems. Fur-

thermore, the BDL model (Sutradhar and Farrell, 2007; Sutradhar, 2011, Chapter

7) was extended to the semi-parametric setup in Section 4.2. Detailed asymptotic

properties and finite sample results are studied for both SLDCP and SBDL models.

These models and SGQL and SML (semi-parametric maximum likelihood) inference

techniques were illustrated by using the binary infectious disease data (see also Lin

and Carroll, 2001).

Finally, in Chapter 5, we have studied the analysis of longitudinal binary data by

using semi-parametric longitudinal mixed models. More specifically, we have modeled

such binary data using the SBDML (semi-parametric binary dynamic mixed logit)

models. Step by step estimation for the nonparametric function and parameters of

the models were given. Both finite sample and asymptotic properties of the estimators

were also discussed in details.

We remark that even though the estimates for the nonparametric function and
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variance components of the random effects were found reasonable for moderately large

variance component in the mixed model setup, these estimates specifically for large

variance component could be improved using some bias corrections to the present

inference techniques. However, this type of bias correction is deferred to future stud-

ies. Furthermore, in longitudinal studies, there can be missing responses causing

difficulties for the inferences about nonparametric function and regression and other

parameters. This is also beyond the scope of the present thesis. Finally, our future

studies can also include, but not limited to, comparing our method of bandwidth

selection, namely b = σzK
−1/5, with cross-validation and generalized cross-validation,

simulation studies regarding the model misspecification with respect to the choice of

the kernel bandwidth and the distribution of random effects, and application of a

parametric piecewise constant model for the effects of the secondary covariate instead

of the nonparametric model.



Appendix A

Computational details for SCQL,

SGQL and SML estimating

equations under SBDML model in

Chapter 5

A.1 Higher order (conditional and unconditional)

moments computation

Recall from Section 5.3.2 that the SGQL approach requires the computational for-

mulas for higher order such as third and fourth order moments. For convenience, we

provide the formulas for these moments as follows:

Lemma A.1. The third and fourth order conditional moments of the ith individual,
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given random effect τi, are given by

E[YijYikYim|τi] = µ∗
imµ

∗
ij

(
1− µ∗

ij

) [ k∏
l=j+1

(p∗il1 − p∗il0)

]
+ (1− µ∗

ik)µ
∗
ij

(
1− µ∗

ij

) [ m∏
l=j+1

(p∗il1 − p∗il0)

]

+ µ∗
ijµ

∗
ik (1− µ∗

ik)

[
m∏
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]
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∗
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∗
im = δ∗ijkm , say,

(A.1)

with j < k < m, and

E[YijYikYimYin|τi] = µ∗
ijµ

∗
im

(
1− µ∗

ij

)
(1− µ∗

im)

[
k∏

l=j+1

(p∗il1 − p∗il0)

][
n∏

l=m+1

(p∗il1 − p∗il0)

]

+ µ∗
ijµ

∗
ikµ

∗
im (1− µ∗

im)

[
n∏

l=m+1

(p∗il1 − p∗il0)

]
+ µ∗

ijµ
∗
ik (1− µ∗

ik) (1− µ∗
im)

[
n∏

l=k+1

(p∗il1 − p∗il0)

]

+ µ∗
ijµ

∗
ikµ

∗
in (1− µ∗

ik)

[
m∏

l=k+1

(p∗il1 − p∗il0)

]
+ µ∗

ij

(
1− µ∗

ij

)
(1− µ∗

ik) (1− µ∗
im)

[
n∏

l=j+1

(p∗il1 − p∗il0)

]

+ µ∗
ijµ

∗
in

(
1− µ∗

ij

)
(1− µ∗

ik)

[
m∏

l=j+1

(p∗il1 − p∗il0)

]
+ µ∗

ijµ
∗
imµ

∗
in

(
1− µ∗

ij

) [ k∏
l=j+1

(p∗il1 − p∗il0)

]

+ µ∗
ijµ

∗
ikµ

∗
imµ

∗
in = φ∗

ijkmn , say, (A.2)

with j < k < m < n, respectively.

Proof. By applying formula (5.9) recursively, the third and fourth order conditional

central moments can be obtained as: for j < k < m,

E[
(
Yij − µ∗

ij

)
(Yik − µ∗

ik) (Yim − µ∗
im) |τi] = (1− 2µ∗

ik)µ
∗
ij

(
1− µ∗

ij

) [ m∏
l=j+1

(p∗il1 − p∗il0)

]
,

(A.3)
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and for j < k < m < n,

E[
(
Yij − µ∗

ij

)
(Yik − µ∗

ik) (Yim − µ∗
im) (Yin − µ∗

in) |τi]

= (1− 2µ∗
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ij
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]
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ij
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im)

[
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(p∗il1 − p∗il0)

][
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(p∗il1 − p∗il0)
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. (A.4)

Then applying the second order moment based result (5.6) (see also Farrell and Su-

tradhar, 2006, for example), Equations (A.1) and (A.2) follow from expanding left

hand sides of (A.3) and (A.4).

Lemma A.2. The third and fourth order unconditional moments are given by

δijkm ≡ E[YijYikYim] =

∫ ∞

−∞
δ∗ijkm(τi)φ(τi)dτi ≃ 1

N

N∑
w=1

δ∗ijkm(τiw) , and

φijkmn ≡ E[YijYikYimYin] =

∫ ∞

−∞
φ∗
ijkmn(τi)φ(τi)dτi ≃ 1

N

N∑
w=1

φ∗
ijkmn(τiw) , (A.5)

respectively.

A.2 Unconditional moments using binomial approx-

imation

For the SGQL estimation of parameters in Section 5.2.2.1, we need to calculate the

unconditional moments such as δijkm and φijkmn as in (A.5), which are cumbersome to

simplify the normal integral over τi’s. This type of normal integral is also needed in the

SML estimation of parameters given in Section 5.2.2.2 and the SCQL estimation of the

nonparametric function given in Section 5.2.1. A simpler way to compute the desired
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normal integral is to approximate it by a binomial approximation (see Ten Have and

Morabia (1999), eqn. (7), for example). For example, one may compute µij as

µij ≃
V∑

νi=0

µ∗
ij(τi)

⎛⎜⎝ V

νi

⎞⎟⎠(1

2

)νi (1

2

)V−νi
, (A.6)

where for a known reasonably big V such as V = 5, νi ∼ binomial(V, 1/2), and hence

it has a relation to τi as τi =
νi−V (1/2)√
V (1/2)(1/2)

. In the same way, we can calculate other

moments as
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2
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,
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⎛⎜⎝ V

νi

⎞⎟⎠(1

2

)νi (1

2

)V−νi
. (A.7)

A.3 Derivatives of the estimated nonparametric func-

tion ψ̂(z,ααα) with respect to ααα

Lemma A.3. The first order derivatives of the estimated nonparametric ψ̂(z,ααα) with

respect to βββ, θ and σ2
τ are given by

∂ψ̂(z,βββ, θ, σ2
τ )

∂βββ
= −

K∑
i=1

ni∑
j=1

wij(z)σ
−2
ijyi,j−1

(z)Uij xij

K∑
i=1

ni∑
j=1

wij(z)σ
−2
ijyi,j−1

(z)Uij

, (A.8)
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∂ψ̂(z,βββ, θ, σ2
τ )
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, and (A.9)
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(A.10)

respectively, where
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Proof. Derivative of the estimation equation (5.12) with respect to βββ gives

K∑
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×
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(A.11)

We then solve for ∂ψ̂(z,ααα)/∂βββ to obtain (A.8).

Similarly, by taking the derivative of the estimation equation (5.12) with respect

to θ and σ2
τ , and solving for ∂ψ̂(z,βββ, θ, σ2

τ )/∂θ and ∂ψ̂(z,βββ, θ, σ
2
τ )/∂σ

2
τ respectively, we

obtain (A.9) and (A.10).

Lemma A.4. The second order derivatives of the estimated nonparametric ψ̂(z,ααα)

with respect to βββ, θ and σ2
τ are given by
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respectively, where
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(z)
]
v3ijyi,j−1

(z) ,

gijyi,j−1
(z) =

∞∫
−∞

(
1− 2p∗ijyi,j−1

(ααα, ψ(z), τi)
)
p∗ijyi,j−1

(ααα, ψ(z), τi)
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(
1− p∗ijyi,j−1

(ααα, ψ(z), τi)
)( τi

2στ
+
∂ψ̂(z,ααα)

∂σ2
τ

)2

φ(τi)dτi , and

mK =
K∑
i=1

ni∑
j=1

wij(z)σ
−1
ijyi,j−1

(z) v2ijyi,j−1
(z). (A.13)

Proof. By taking the derivative of Eq. (A.11) with respect to βββ⊤, and neglecting the

quantities containing {yij − pijyi,j−1
(z)}, we obtain

−
K∑
i=1

ni∑
j=1

wij(z)bij

(
xij +

∂ψ̂(z,ααα)

∂βββ

)(
x⊤
ij +

∂ψ̂(z,ααα)

∂βββ⊤

)
−mK

∂2ψ̂(z,ααα)

∂βββ∂βββ⊤ ≃ 0 ,

leading to the result for ∂2ψ̂(z,ααα)/∂βββ∂βββ⊤ as in (A.12). The other two second order

derivatives in (A.12) can also be obtained using the same procedure.

A.4 Derivatives of log-likelihood under SBDMLmodel

Lemma A.5. The components of ∂ log L̃/∂ααα for (5.26) under the SBDML model have

the forms:

∂ log L̃

∂βββ
=

K∑
i=1

ni∑
j=1

[
yij −

Aij
Ji

][
xij +

∂ψ̂(zij,ααα)

∂βββ

]
,

∂ log L̃

∂θ
=

K∑
i=1

ni∑
j=1

[
yij −

Aij
Ji

][
yi,j−1 +

∂ψ̂(zij,ααα)

∂θ

]
, and

∂ log L̃

∂σ2
τ

=
K∑
i=1

Mi

Ji
, (A.14)

respectively, where

Aij =

∫ ∞

−∞
exp(σττisi)∆i p̃

∗
ijyi,j−1

(ααα, ψ(zij), τi)φ(τi)dτi , and
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Mi =

∫ ∞

−∞
exp(σττisi)∆i

ni∑
j=1

(
τi
2στ

+
∂ψ̂(zij,ααα)

∂σ2
τ

)(
yij − p̃∗ijyi,j−1

(ααα, ψ(zij), τi)
)
φ(τi)dτi .

(A.15)

Proof. Proof is straightforward and omitted.

Lemma A.6. The components of ∂2 log L̃/∂ααα∂ααα⊤ for (5.27) are given by

∂2 log L̃

∂βββ∂βββ⊤ =
K∑
i=1

{
−1

J2
i

(
JiAiβ + JiβJ

⊤
iβ

)
+

ni∑
j=1

(
yij −

Aij
Ji

)
∂2ψ̂(zij,ααα)

∂βββ∂βββ⊤

}
,

∂2 log L̃

∂θ2
=

K∑
i=1

{
−1

J2
i

(
JiAiθ + J2

iθ

)
+

ni∑
j=1

(
yij −

Aij
Ji

)
∂2ψ̂(zij,ααα)

∂θ2

}
, and

∂2 log L̃

∂σ2
τ
2 =

K∑
i=1

1

J2
i

(
JiMiσ2

τ
−MiJiσ2

τ

)
, (A.16)

where

Jiβ =

ni∑
j=1

Aij

[
xij +

∂ψ̂(zij,ααα)

∂βββ

]
,

Aiβ =

∫ ∞

−∞
exp(σττisi)∆i

{
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

(
1− p̃∗ijyi,j−1

(ααα, ψ(zij), τi)
)

[
xij +

∂ψ̂(zij,ααα)

∂βββ

][
x⊤
ij +

∂ψ̂(zij,ααα)

∂βββ⊤

]
−

(
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

[
xij +

∂ψ̂(zij,ααα)

∂βββ

])
·(

ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

[
x⊤
ij +

∂ψ̂(zij,ααα)

∂βββ⊤

])}
φ(τi)dτi ,

Jiθ =

ni∑
j=1

Aij

[
yi,j−1 +

∂ψ̂(zij,ααα)

∂θ

]
,

Aiθ =

∫ ∞

−∞
exp(σττisi)∆i

{
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

(
1− p̃∗ijyi,j−1

(ααα, ψ(zij), τi)
)
·

[
yi,j−1 +

∂ψ̂(zij,ααα)

∂θ

]2
−

(
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

[
yi,j−1 +

∂ψ̂(zij,ααα)

∂θ

])2
⎫⎬⎭φ(τi)dτi ,
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Jiσ2
τ
=

∫ ∞

−∞
exp(σττisi)∆i

[
τi
2στ

si −
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

(
τi
2στ

+
∂ψ̂(zij,ααα)

∂σ2
τ

)]
φ(τi)dτi ,

Miσ2
τ
=

∫ ∞

−∞
exp(σττisi)∆i

{[
ni∑
j=1

(
yij − p̃∗ijyi,j−1

(ααα, ψ(zij), τi)
)( τi

2στ
+
∂ψ̂(zij,ααα)

∂σ2
τ

)]
·[

τi
2στ

si −
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

(
τi
2στ

+
∂ψ̂(zij,ααα)

∂σ2
τ

)]

−
ni∑
j=1

p̃∗ijyi,j−1
(ααα, ψ(zij), τi)

(
1− p̃∗ijyi,j−1

(ααα, ψ(zij), τi)
)( τi

2στ
+
∂ψ̂(zij,ααα)

∂σ2
τ

)2

+

ni∑
j=1

(
yij − p̃∗ijyi,j−1

(ααα, ψ(zij), τi)
)(∂2ψ̂(zij,ααα)

∂σ2
τ
2 − τi

4σ3
τ

)}
φ(τi)dτi . (A.17)

Proof. Proof is straightforward and omitted.
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