
Formal Definitions for Design Spaces and Traces
Judy Bowen

Dept. of Computer Science
The University of Waikato

New Zealand
Email: jbowen@waikato.ac.nz

Anke Dittmar
Institute of Computer Science

University of Rostock
Germany

Email: anke.dittmar@uni-rostock.de

Abstract—Within the domain of interactive system develop-
ment and design, particularly for safety-critical systems, there
is an inherent tension between formalisms used for software
engineering methodologies and the creative aspects of design. In
this paper we consider how we might better unify these by way of
a framework for design spaces and design artefacts. We present
formal definitions for simple and complex design spaces and then
describe how they are incorporated into traces. We then discuss
how these can be used to reason about considerations such as
preservation of requirements and iterative changes throughout
the design process and provide some small examples of this.

I. INTRODUCTION

Software engineering supports the creation of high-quality
software, and it is widely assumed that the quality of a
software product depends on both its inherent characteristics
(or fitness for purpose) and also on the quality of the design
and development process [1]. As a result numerous process
models have been suggested in the literature which are used
for two main purposes. Prescriptive models provide “how-to”
support by telling us which activities or sub-activities have
to be performed in which (however elaborated) order to get
a good product. On the other hand, descriptive models help
us to record and reflect upon actual design processes. It is the
latter mode of use we are especially interested in in this paper.

We want to investigate how a framework for complex design
spaces, such as that introduced in [2], can be used to track
selective elements within interaction design processes for later
analysis of performed design activities and their outcomes. A
general benefit of formal process models and frameworks is
that they come with well-defined concepts which allow us to
understand the differences and similarities of observed design
processes and to systematically capture their elements from
certain perspectives. Our previous work has shown, though,
that common assumptions in formal software engineering
approaches need to be revisited to better embrace the richness
of interaction design processes.

Central to most existing formal software development ap-
proaches is the concept of refinement. Looking through the
lens of refinement, design and development processes are
seen as (not necessarily linear) transformation from initial
specification to final implementation. Consequently, observed
design processes are typically captured in terms of evolving
specifications which are expressed in some formal notation to
enable formal reasoning about properties of both the product

and the design process. However, successful interactive sys-
tem design requires collaboration between multi-disciplinary
teams, which is characterised by an elaborated division of
labour and by heterogeneous design practices which become
tangible in the diverse design artefacts that are used by the
different sub-teams. For example, user interface sketches,
prototypes, task and context descriptions, formal specifications
of the user interface or the functional core of the application
etc. In order to achieve quality design, different design options
have to be explored and compared and choices should be
informed by the viewpoints and expertise of the relevant sub-
teams. Our framework of complex design spaces (described
in more detail in the next section) addresses these issues by
taking a broader view on how designers create and relate
design artefacts while maintaining the assumption that they
need to meet some initial or emerging expectations of the users
(e.g., requirements or assumptions about the environment).

The central idea of this paper is to use traces in conjunction
with the framework of complex design spaces to follow
the evolution of an actual design process in terms of the
distributed creation, modification and discarding of design
artefacts and their relationships. Traces, in this context, have a
complex structure and parts of them can be folded or unfolded
depending on the focus of the analysis. This can be seen as an
alternative to the tracking of design processes based on formal
refinement which works for only some of the artefacts within
the process. We further argue that the suggested tracking
approach supports a ‘reflection-on-action’ [3] by allowing us
to identify such factors as when decisions or choices are made,
when alternative design ideas are discarded or whether specific
requirements remain in a design process. We begin with a
discussion of related work in the areas of design notations
in software engineering. This is followed by an introduction
to our existing framework for design spaces. We then present
new formal definitions for simple and complex design spaces
and their uses. We show how we can use traces to consider
specific properties of these design spaces and the uses of this.
Finally we give conclusions and discuss future work.

II. RELATED WORK AND BACKGROUND

Design is about deliberate changes in the world to improve
it [4]. Design activities are described in [5] “as the reasoning
from a set of needs, requirements and intentions to a new bit
of reality, consisting of a (physical) structure and an intended

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/158268552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


use”, and hence there is a need to model the future in design
[4]. Diaper goes even further by stating that design requires
two types of models of the world: “models of possible future
worlds need to be based on models of the current world” [4].
In this section we will briefly discuss how formal software
design approaches mainly focus on descriptions of possible
future (software) systems and how this influences capturing
approaches of actual design processes. Then, the framework
of complex design spaces is presented by way of formal
definitions and examples.

A. Design and Formal Software Engineering Methods

“As software engineers, we use our knowledge of com-
puters and computing to help solve problems”, Pfleeger [1]
states in her textbook. Most software development approaches
including formal methods are strongly rooted in the rational
problem solving paradigm. Design is about understanding the
problem and then solving it This view is to be found in the
first stepwise refinement methods [6] which consider software
development as a sequence of small transformations (steps)
from abstract specifications of the software system to be built
to more concrete specifications by ensuring correctness. But
it is also to be found in more recent formal approaches.

For example, Garcı́a-Duque et al. [7] reject the idea of
pure incremental refinement because “some design decisions
may have to be reconsidered after they have been taken”.
The authors consider instead three basic types of specification
evolution: refinement, abstraction, and retrenchment. While
refinement adds knowledge to the current specification by
preserving all knowledge from previous stages, abstraction
results in discarding part of current knowledge or augmenting
the set of allowed behaviours. Two specifications are retrench-
ments if they have a common abstraction. In other words,
retrenchment allows us to revise a specification in a controlled
way which preserves knowledge from previous stages. It also
supports the exploration of different possible solutions by
going back (abstraction) and forth (refinement). Garcı́a-Duque
et al. understand design processes as processes of knowledge
construction. However, they apply their approach only at the
level of requirements specifications. The explicit tracking of
the relationships between the evolving specifications supports
the stakeholders’ understanding of what has been accepted,
refined, or discarded.

Bosse et al. [8] use traces within a temporal logic approach
to capture dynamic properties of a design process. A trace
describes the history of a design process as a sequence of
design states (S1,S2) over time, with S1 being a requirements
state (problem description) and S2 being a design object
description state (solution specification). The example prop-
erties that are given in [8] reveal much of the underlying
assumptions on design processes. It is assumed, for example,
that requirements ‘stabilise’ and become fixed at some point
of time. While Bosse et al’s work is aimed at the design
of re-usable components rather than interactive systems (and
therefore a different set of design criteria) there are common
properties to our framework. For example the revision of

design objects and co-ordination of different processes within
a design task. However their solution specification assumes
a full problem specification that must be satisfied rather than
the co-evolution of problem and solutions that we consider.
Moreover the elements within their specification space are
all of corresponding types and can therefore be considered
using refinement relations, which is not the case in our
heterogeneous design spaces.

Our work is influenced by Morgan’s [9] uniform approach to
refinement in which he does not distinguish between require-
ments, specifications and implementations but calls everything
a program. A program is seen as a contract between a client
and a programmer which has to be negotiated. Refinement
in this context concerns the maintenance of utility: the client
gets at least what they had before or even better. Although
Morgan stays within the problem solving paradigm for design,
by assuming a hierarchical decomposition and refinement of
programs (resulting in programs that are executable on a
computer), he emphasises that stakeholders often act in both
roles - the role of client and programmer. As such, in our
framework we consider all stakeholders to be involved in
complex networks of user-designer relationships. So that, for
example, a designer in one part of the process becomes the
user for some other design team in a separate part of the
process.

B. Interactive System Design and the Framework of Complex
Design Spaces

Interaction design processes put more emphasis on the
intended use of the system to be designed. This not only
concerns the usefulness or usability of the interactive software
system itself but also real-world consequences [4]. Interaction
design, in a broader sense, is about shaping interaction spaces
between multiple people and devices in a complex web of
interactions [10]. As mentioned in the introduction, people
with diverse viewpoints and expertise are needed and this may
be one reason why interaction design research and practices
developed from many influences, including ideas from design
rationale [11] and from the reflective practice paradigm [3]. We
discuss the background of our framework of complex design
spaces in more detail in [2], [12]. Here, those aspects of the
framework are briefly presented which are essential for the
suggested definitions and use of traces.

The central concepts of our framework are design spaces
populated by design artefacts, and the relationships that exist
between those artefacts. The design artefacts themselves are
any (and all) artefacts used within the design process, irrespec-
tive of their nature. So, for example, a formal specification, a
task analysis model or a sketched prototype of a dialog are all
considered at the same level of abstraction and importance as
an artefact. It is this heterogeneity of artefacts (which reflects
the heterogeneity of the design process and design teams) that
motivates us to look beyond traditional refinement methods
which is restricted to specific artefacts only.

There is a need then to consider the ability of designers
to relate these different artefacts in a cohesive manner, which



ensures that requirements and expectations (both those of the
end-user and those of the other design teams) are adhered
to. This can be used to compare different design options
and make decisions/choices resulting in the discarding of
some artefacts and the refinement of others (where here we
use refinement in its broadest sense). A design space is the
conceptual space of a design team with a ‘contract’ with users
and with a specific ‘design culture’. This ‘design culture’ or
‘distinct design practice’ concerns the type of design goals,
which design artefacts are in use and types of relationships
(e.g., ensure safety properties as a typical design goal, formal
specifications as artefacts, refinement as a means to relate them
in a ‘formal method-culture’). A design space is the conceptual
gathering together of all design artefacts (and the relationships
between them) that are provided, created, modified, discarded
by the team in order to fulfill the contract.

A design space has an entry point and an exit point, with
the artefacts at those points representing the contract. In some
sense we can consider them the pre- and post-conditions of
the space. Design artefacts provided by the users via the entry
point express their expectations and assumptions; designers
deliver their resulting artefacts via the exit point to the users.
Provided artefacts can represent multiple viewpoints which
may contradict each other (we discuss this further below).
The design spaces have a recursive structure. They can consist
of sub-spaces assigned to sub-teams, describing the division
of labour. Members of sub-groups are typically not disjoint
and the complex design space describes the network of user-
designer relationships people are involved in as well as the
total set of artefacts under consideration.

Within our framework we also consider the distinction
between design alternatives and variants. These describe
local choices between design options within a sub-space and
delayed choices by providing options to other sub-teams to in-
clude their viewpoints and expertise. Such distributed decision
making is important, as every new idea (or refinement) that
occurs within a design sub-space can introduce side effects
which need to be considered at a more global level.

III. DESIGN SPACES AND TRACES

The above description of design spaces suggests a static
view, where all spaces can be considered at a single point
in time. The reality, however, is that the process is inherently
temporal, with sub-spaces existing for only parts of the process
and dynamic changes over time. Our initial formal definition
for static design spaces was given in [2], but here we expand
these definitions within our trace theory which enables us
to consider different user groups and multiple viewpoints as
well as temporal properties. Using traces in this way allows
for further reasoning about the design process as it occurs
throughout the design spaces.

Our goal is to follow the evolution of a design process in
order to identify such factors as: when decisions or choices
are made; when alternatives are discarded; when variants
are generated; when decisions are finalised; whether specific
requirements remain.

A. Traces for Simple Design Spaces

Our trace concept is based on states of design spaces. Let
D be a global set of design artefacts created and used in the
context of a design project,R a global set of relationship types
between design artefacts from D and S the set of involved
stakeholders. We first consider simple spaces and define their
states as follows.

Definition 1 (State of a simple design space): A simple
design space state DS is a 5-tuple (DT,Us,Dentry,Dexit,DRel),
where
• DT ⊆ S is the design team.
• Us = {U1,U2, ...} with Ui ⊆ S (i = 1, 2...) is a finite

set of user groups.
• Dentry ⊆ Us × D with (U, d) ∈ Dentry if user group U

provides design artefact d to the design team DT .
EntryDS = ran Dentry is the set of design artefacts in the
entry point representing external design constraints and
requirements from multiple viewpoints.

• Dexit ⊆ D × Us with (d,U) ∈ Dexit if design team DT
provides design artefact d to the user group U.
ExitDS = dom Dexit is the set of design artefacts in the
exit point representing the design outcome.

• DRel ⊆ R× EntryDS × ExitDS with (r, d1, d2) ∈ DRel if
there is a relationship of type r between design artefacts
d1 and d2 from the entry and exit point.

♦

Fig. 1. A simple design space.

Figure 1 depicts an abstract simple design space. At this
stage, two user groups U1,U2 have expressed their expecta-
tions on the design team DT1 by means of design artefacts
D1,D2 and the team has provided D3,D4 as outcome. The
figure indicates that the design team may have created artefacts
within the design space (Di1,Di2...) to interpret the multiple
views of the user groups and to develop and compare design
ideas. Those internal artefacts and their relationships (not
shown in figure 1 for the sake of clarity) are hidden to the
users and they are not considered in the state definition which
views a simple design space as a ‘black box’. We refer to
such artefacts as local. However, the relations between design
artefacts from the entry and exit point (DRel in the above
definition) are also based on internal relations and how they are
propagated. Such propagation is straightforward in a formal



refinement approach. If in figure 1, for example, D1 v Di2
and Di2 v D3, then D1 v D3 ∈ DRel (assuming that v is
transitive). Design artefacts that exist in both Dentry and Dexit

are considered global as they are visible in a wider context.
Some refinement relationships between design artefacts are

discussed in our previous work and mentioned here in brief
only. Refinement can be based on a) formal methods (to build
the system in the right way), b) lightweight notions (for a
transition between informal and formal designs), c) validation
techniques (to build the right system), and d) on reflection
(to ensure that the design process is right). In this paper, the
existence of certain relationship types between design artefacts
(set R above) and corresponding propagation mechanisms
are assumed, but not further elaborated here. A propagation
mechanism p in this context is a mapping p : Seq R → R.

Now, a trace of a simple design space (in short, simple trace)
is a time-indexed sequence 〈t1 : DS1, t2 : DS2, ...〉 of states
DS1,DS2, ... of this space with 〈t1, t2, ...〉 a linearly ordered
sequence of points of time (t1 < t2...). Such traces allow
us to capture the dynamics of design spaces by identifying
what happens at entry and exit points over time, taking into
account both iterations within a design space and also the
fact that different users may provide additional artefacts at
different points in time. It allows us explicitly identify when
design artefacts are replaced by others, created or discarded,
and also when there are changes in the user groups over time.
We discuss such reasoning about design spaces shortly.

B. Traces for Complex Design Spaces

A design space is called complex if it consists of sub-
spaces which are design spaces themselves. Figure 2 illus-
trates a complex design space with three simple sub-spaces
assigned to sub-teams DT11,DT12,DT13. In complex spaces,
new designer-user relationships typically develop between the
design sub-teams. In figure 2 sub-teams DT12,DT13 are users
of design outcomes of sub-team DT11 and this results in new
requirements and constraints for DT11 (indicated by design
artefacts Di3,Di4 as un-shaded ellipses).

We now introduce different views on states of complex
design spaces to be able to consider traces of design processes
at different levels of granularity. In particular, we distinguish
between the unfolded form and the folded form of a state,
shortly referred to as unfolded/folded state. An unfolded state
DS of a complex design space consisting of n sub-spaces is
defined as tuple (DS1,DS2, ...,DSn) with DSi being the states
of the sub-spaces (i = 1, 2, ..., n). Due to the recursive nature
of complex spaces, their states are described by nested tuples
of unfolded sub-states until the level of simple design space
states (defined above). Figure 2 illustrates this ‘unfolded view’.

In contrast, figure 3 depicts the complex design space
of figure 2 as a black-box hiding sub-spaces and internal
designer-user relationships and corresponding artefacts. Here,
the complex space is viewed as a simple space and this is
reflected in the following definition of folded states. Similarly
to definition 1, sets D, R, and S are given. Furthermore, let

PR be a set of propagation mechanisms over R as introduced
in the previous sub-section.

Fig. 2. A complex design space with three sub-spaces.

Fig. 3. Complex design space of figure 2 as blackbox.

Definition 2 (Folded state of a complex design space):
Let DS = (DS1,DS2, ...,DSn) be the unfolded state of a
complex design space. DSFold = (DT,Us,Dentry,Dexit,DRel)
is the folded state of DS if the following conditions are hold.
• DSFold

i = (DTi,Usi,Rentryi ,Rexiti ,DReli) are the folded
states of the unfolded sub-states DSi (i = 1, 2, .., n).

• DT ⊆ S with DT =
⋃

i=1..n DTi.
• Us = {U | ∃ i = 1..n • U ∈ Usi, 6 ∃ j = 1..n • U = DTj}.
• Dentry = {(U, d) | ∃ i = 1..n • (U, d) ∈ Dentryi , U ∈ Us}

and EntryDS = ran Dentry.
• Dexit = {(d,U) | ∃ i = 1..n • (d,U) ∈ Dexiti , U ∈ Us}

and ExitDS = dom Dexit.
• DRel ⊆ R× EntryDS × ExitDS

with (r, d1, dn) ∈ DRel if ∃(r1, d1, d2), (r2, d2, d3), ...,
(rn−1, dn−1, dn) ∈

⋃
i=1..n DReli and ∃ p ∈ PR with

p(〈r1, r2, .., rn−1〉) = r.
♦

Similar to simple design spaces, the dynamics of complex
design spaces is tracked by time-indexed sequences of space
states (based on linearly ordered sequences of points of time
〈t1, t2, ...〉). But in contrast to simple spaces, complex spaces
can be captured at different levels of granularity. A first
distinction can be made between unfolded and folded traces.
• An unfolded trace tr is a sequence 〈t1 : DS1, t2 : DS2, ...〉

of unfolded states DS1,DS2, ... of a complex design
space.



• A folded trace trFold is a sequence 〈t1 : DSFold
1 , t2 :

DSFold
2 , ...〉 of folded states DSFold

1 ,DSFold
2 , ... of a complex

design space.
However, the definition of unfolded and folded states enables
a whole array of state descriptions. For example, sub-states
can be unfolded to a specified depth in the recursive structure
of sub-spaces (denoted as DSn, with n being the number of
unfolded levels), or alternatively, single sub-states only could
be unfolded/folded. Correspondingly, traces of complex spaces
can contain an amalgamation of both folded and unfolded state
descriptions of sub-spaces and thus detail only those parts of a
design process which are of particular interest in the analysis.

C. Reasoning about Design Spaces

We now describe, in general terms, how we might use the
definitions above to elicit information about the design process
such as where/when decisions have occurred that affect the
global state space of design artefacts. We might consider these
as the points where certain aspects of the design are finalised,
where choices are made or where specific requirements are
introduced, removed or resolved. We illustrate the description
with some specific examples.

1) Reasoning about Simple Space States: For simple design
spaces we use a state description, which hides internal decision
making. However, where the design artefacts at the entry and
exit points are related (see DRel in the definition) we can draw
conclusions. The following examples concern the persistence
of design artefacts and underlying requirements, constraints or
design ideas.
• Let d1 ∈ EntryDS. If there is no tuple (r, d1, dx) ∈ DRel,

where dx ∈ ExitDS then we can consider that d1 has
been discarded or ignored. In some cases d1 may not be
considered or in any way changed (depending on the type
of artefact, is it a design constraint or prototype etc.) but
rather just leave the design space in its original state. In
such cases we will have what we refer to as the ‘identity
relation’, given by the tuple (r, d1, d1) ∈ DRel which
makes this explicit.

• Conversely, if for d1 ∈ EntryDS there is a tuple (r, d1, dx)
∈ DRel, where dx ∈ ExitDS then the artefact d1 has been
changed into, or used to inform, a new design artefact
dx, and has therefore been in some sense, preserved. The
exact nature of this preservation depends on the nature of
the artefacts and their relationship r. Design specifications
may be refined, but d1 could also be a design constraint
or requirement which is preserved in a design product dx

as part of its design rationale.
2) Reasoning about Complex Space States: For complex

design spaces our folded states allow us to treat design
spaces in the same ways as for simple spaces (at the same
level of detail). However the unfolded states (where different
levels of unfolding are possible, as discussed) allow for some
reasoning about internal decision making and how things are
finalised across states of sub-spaces. In the following (abstract)
examples, let DSS1 and DSS2 be the states of two sub-spaces
which form part of a complex design space.

• If there are design artefacts d1, d2, d3 such that
(r, d1, d2) ∈ DRel1 and (r, d2, d3) ∈ DRel2 (r not being
the identity relation) then we can consider d1 as having
been refined or utilised in DSS1, but not finalised. That
is d1 is preserved (in its new form d2) to form part of
further work within DSS2.

• Let d1 ∈ EntryDSS1 , dx1 ..dxn ∈ ExitDSS1 and dx1 ..dxn ∈
EntryDSS2 where (r, d1, dxi) ∈ DRel1 (i = 1..n) and
all are discarded in DSS2 with the exception of dxj

(j ∈ {1, .., n}). Then we can consider d1 as having been
refined or utilised in a delayed decision process across
DSS1 and DSS2.

In previous work we have introduced the concepts ‘alter-
native’ and ‘variant’ to discuss distributed decision making
among different options as indicated in the second example
above. Alternatives refer to local processes of generating ideas
and decision making which are hidden by simple spaces and
their states, variants require global decision making and are
visible in unfolded states of complex spaces. We do not discuss
this further here, a more thorough discussion is beyond the
scope of this paper.

3) Reasoning about Traces: Traces reveal something about
the nature of a specific design process and the progress over
time. From simple traces, and likewise from folded traces of
complex design spaces we can, for example, draw conclusions
about how the view on requirements and design constraints has
changed during a design process. This is illustrated by the fol-
lowing (abstract) example where 〈t1 : DS1, t2 : DS2, t3 : DS3〉
is a trace capturing three iterations in a simple design space
of design team DT as follows.
DS1 :Us = {U1,U2}, Dentry = {(U1, d1), (U2, d2), (U2, d3)},
Dexit = {(d′1,U1), (d′1,U2)}, DRel = {(r, d1, d′1), (r, d2, d′1),
(id, d3, d3)}
DS2 :Us = {U1,U2}, Dentry = {(U1, d1), (U1, d4), (U2, d2),
(U2, d3)}, Dexit = {(d′2,U1), (d′2,U2)}, DRel = {(r, d1, d′2),
(r, d4, d′2), (id, d3, d3)}
DS3 :Us = {U1}, Dentry = {(U1, d1), (U1, d5)}, ...
For simplicity, imagine d1, d2, d3 to be requirements imposed
by two user groups U1 and U2. After the first iteration
(represented by trace〈t1 : DS1〉), d1 and d2 are preserved
in the design outcome d′1 provided to both users. The state
DS2 captured at time t2 reveals that in the second iteration an
additional requirement d4 by user U1 emerged. While d4 is
preserved in the revised design outcome d′2 the needs of U2

are now ignored (d2) or still not considered (d3). The state DS3
captured at time t3 shows that user U2 has withdrawn from the
design process. Furthermore, U1 replaced d4 by requirement
d5. While simple traces allow us to identify when design
artefacts have been replaced by others there is no knowledge
about the relationships between these old and new design
artefacts.

Unfolded (or partly unfolded) traces of complex design
spaces support reasoning about distributed design activities,
occurring sequentially or in parallel, with local and global
iterations within and across sub-spaces. Traces allow us to
detect inconsistencies between sub-spaces in their use of de-



sign artefacts, for example, whether/when revisions of design
artefacts are lost again in a complex space.

As another example of an inconsistent situation, consider
three sub-spaces assigned to teams DT1,DT2 and DT3. Let
us assume that, at time t1, DT1 has provided design outcome
d′1 which preserves d1 and d2 and team DT2 has provided
outcome d′2 which preserves d1 and d3. Both outcomes are
part of the entry point of sub-team DT3. A design iteration is
performed in sub-space DT1, initiated by the replacement of
d1 by d4 in the entry point. The revised outcome d′4 replaces
d′1 in the entry point of sub-space DT3. However, d1 is still
preserved in d′2 provided to DT3 by DT2.
The detection of such inconsistencies can not only inform
the design of the interactive system under consideration but
also a redesign of the design process itself (leading to a
reconfiguration of sub-spaces).

IV. DISCUSSION

Interactive systems are typically designed with an iterative
approach, acknowledging that quality design is rarely achiev-
able without iteration of design solutions and without an active
involvement of users and other stakeholders. Reasoning about
traces of design spaces in the manner shown provides a method
of eliciting properties of the design based on the changing
nature of those artefacts, i.e. it reflects this iteration. It also
highlights the attention that is paid to the interests of individual
user groups and stakeholders.

Some of the limitations of our proposed approach arise
from the detail within (particularly complex) spaces and the
recursive depths that may occur. However, our examinations
of mapping actual design processes to the framework [13] (in
limited form only) do not suggest that this will be the case.
That is, while the number of design spaces may be large,
the recursive nesting within complex spaces is fairly shallow.
Further investigations are required to satisfy ourselves that this
is likely to be the majority case.

While the overhead of creating and using the traces is fairly
low, in that it provides a lightweight abstraction at the highest
levels, the details of the underlying relations and artefacts is in
reality far more detailed. However, many of the relationships
are typically already visible within the engineering processes
(by way of refinements of specifications and the design history
for prototypes etc.) so that we might rely on capturing these
existing details rather than having to create everything from
scratch.

The benefits are the ability to provide both high and low
level views of the emergence, introduction, discarding and
finalising of various artefacts within the process. This enables
us to track particular design properties (particularly useful in
safety-critical systems) and ensure that requirements that may
not be traceable via the formal specification and refinement
processes directly can still be tracked. In addition we can better
reflect on collaboration within complex design processes and
detect potential weak points. For example, we can identify
where some sub-spaces are not provided with the necessary

design artefacts or where a redesign of sub-spaces would be
useful (a refinement of the design process itself).

V. CONCLUSION AND FUTURE WORK

In this paper we have presented formal definitions for simple
and complex design spaces as well as traces which can be used
to consider the evolution that occurs within a design process.
We have also given examples to show how these might be used
to consider properties (such as persistence and finalisation)
of design artefacts that may be important when reflecting
upon the process as a whole. This is particularly pertinent
for the design of safety-critical interactive systems where
traceability within the design process (especially with respect
to safety requirements) may form part of the engineering
process requirements.

The work described here forms part of ongoing research,
and as such presents the detail of just one aspect of this work
which is currently under investigation. Our next steps are to
incorporate these findings with previous work to consider a
real-world example from the domain of safety-critical inter-
active systems to demonstrate the applicability of our work
in this area as well as the ability to identify known problems
from existing case-studies.

REFERENCES

[1] S. L. Pfleeger, Software Engineering: Theory and Practice, 2nd ed.
Prentice Hall, 2001.

[2] J. Bowen and A. Dittmar, “A semi-formal framework for describing
interaction design spaces,” in 8th ACM SIGCHI symposium on Engi-
neering interactive computing systems. ACM, 2016, pp. 229–238.

[3] D. Schön, The Reflective Practioner: How Professionsal Think in Action.
Basic Books, 1983.

[4] D. Diaper, in The Handbook of Task Analysis for Human-Computer
Interaction, D. Diaper and N. Stanton, Eds. L. Erlbaum Associates
Inc., 2004, ch. Understanding Task Analysis for Human-Computer
Interaction.

[5] K. Dorst, “On the Problem of Design Problems - problem solving and
design expertise,” J. of Design Research, vol. 4, no. 2, 2004.

[6] N. Wirth, “Program Development by Stepwise Refinement,” Commun.
ACM, vol. 14, no. 4, pp. 221–227, 1971.

[7] J. Garcı́a-Duque, J. J. Pazos-Arias, M. López-Nores, Y. Blanco-
Fernández, A. Fernández-Vilas, R. P. Dı́az-Redondo, M. Ramos-Cabrer,
and A. Gil-Solla, “Methodologies to evolve formal specifications
through refinement and retrenchment in an analysis-revision cycle,”
Requirements Engineering, vol. 14, no. 3, pp. 129–153, 2009.

[8] T. Bosse, C. M. Jonker, and J. Treur, “Formal analysis of design process
dynamics,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, vol. 24, no. 3, pp. 397–423, Aug. 2010.

[9] C. Morgan, Programming from Specifications (2nd ed.). Prentice Hall
International (UK) Ltd., 1998.

[10] T. Winograd, in Beyond Calculation, P. J. Denning and R. M. Metcalfe,
Eds. New York, NY, USA: Copernicus, 1997, ch. The Design of
Interaction, pp. 149–161.

[11] H. Rittel and M. Webber, “Dilemmas in a General Theory of Planning,”
Policy Sciences, vol. 4, pp. 155–169, 1973.

[12] J. Bowen and A. Dittmar, “Coping with design complexity: A concep-
tual framework for design alternatives and variants,” in Interact2017.
Springer, 2017.

[13] ——, “Identifying the interplay of design artifacts and decisions in
practice: A case study,” in Interact2017. Springer, 2017.


