

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/158268544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchcommons.waikato.ac.nz/

The Algebraic Properties of if-then-else

with Commutative Three-Valued Tests

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science in Mathematics

at

The University of Waikato

by

Roger Chi-Wei Su

2018

Abstract

This thesis studies an algebraic model of computable programs and the if-then-else

operation. The programs here are considered deterministic, but not assumed to be always

halting, so they are modelled by a semigroup of partial functions, with several extra

operations in addition to the original binary operation of the semigroup.

The if-then-else operation involves not only programs, but logical tests too. Hence,

it calls for a separate algebra of tests. Evaluating a test often requires running another

program, so the tests are also possibly non-halting. When tests do not always halt, the

results of conjunctions (logical ‘and’) and disjunctions (logical ‘or’) can differ, depending

on whether sequential or parallel evaluation is applied. The parallel evaluation is what

this thesis adopts.

The overall ‘program algebra’ consists of two sorts, one of programs and the other

of tests. Each sort has its own operations, and there are hybrid operations such as

if-then-else which involve both sorts. This thesis establishes the axioms of all these

operations by building an embedding from the abstract program algebra into a concrete

one. At the end is a discussion on the algebra of tests without the programs, where the

differences between the two evaluation paradigms are explored in detail.

Acknowledgements

To my supervisor, Dr. Tim Stokes, am I most grateful. Throughout this past year, he has

shared his vast knowledge and given me insightful guidance on the academic subjects,

and has provided me much friendly advice on the practice of research. In addition,

his courses I took in my undergraduate days were among the sparks which ignited my

academic passion, and I thank him for this too.

I am much obliged to Assoc. Prof. Stephen Joe. Ever since I started university five

years ago, I somehow kept getting myself embroiled in enrolment issues, but he has pa-

tiently cleared away those troubles with deep expertise and experience with the university

regulations. I also thank him for his powerful LATEX package, which has given this thesis

its elegant design with little of my effort.

Mrs. Glenys Williams also deserves special mention. After 25 years as the secretary

of the Department of Mathematics, she has recently left her post and embarked afresh.

I am indebted to her for all her kindness and administrative help, especially for letting

me from time to time escape the dreadful windowless students’ study, and shelter in the

sunny breezy meeting room. I wish her all the best with her new phase in life!

Of course, my gratitude extends to everyone in the department (and the faculty) too.

Many thanks for having taught me, or just being friendly company!

On the institutional level, I thank the Faculty of Computing and Mathematical Sci-

ences for the espresso machine and the endless supply of tea and milk and coffee, and I

am also grateful to the University of Waikato for providing financial assistance with the

Research Masters Scholarship.

Finally, I sincerely express my gratitude to my family for their confidence in me and

their constant support.

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Universal Algebra . 6

2.2 Semigroups . 8

2.3 Left Restriction Semigroups . 10

2.4 Lattices . 14

2.5 Filters and Ideals . 17

2.6 Many-Sorted Algebras . 19

2.7 Axiomatisation . 20

3 Operations 22

3.1 Programs as Functions . 22

3.2 Operations Purely on Programs . 23

3.3 Tests . 23

3.4 The if-then-else Operation . 25

3.5 The Halt Test and the Domain Operation 25

3.6 Testing for Equality . 27

3.7 Summary . 27

4 Programs 29

4.1 Domain Join . 29

4.2 Determinative Pair in General . 31

4.3 Determinative Pair in Context . 34

4.4 Separating Congruences and Filters . 36

4.5 Final Embedding . 41

5 Tests 47

5.1 Components of a Test . 47

5.2 General if-then-else . 51

iv

6 Equality Test 57

6.1 Operation of Agreement . 58

6.2 Operation of Disagreement . 60

7 Three-Valued Logic 62

7.1 Earliest Generalisations . 62

7.2 Conditional Logic . 63

7.3 Kleene Algebras . 64

7.4 Representation of Kleene Algebras . 65

Bibliography 68

Chapter 1

Introduction

The 1950s saw the birth of high-level programming languages such as FORTRAN and ALGOL.

These languages contain the conditional statement of if-then-else, a feature which has

prevailed to this day. An if-then-else statement consists of a test (or guard) α, which

is simply a logical proposition, and two programs p and q. The statement

if (α) then {p} else {q}

says that ‘if α is true, apply p; otherwise, apply q’, and it will be denoted as α[p, q]

throughout this thesis. This suggests that modelling if-then-else involves bridging the

world of tests and the world of programs. The tests, being logical propositions, have

operations such as ‘and’, ‘or’ and ‘not’. The programs, on the other hand, have the

concatenation operation which executes one program after another.

In the practical setting, programs do not always successfully terminate, and they may

continue running indefinitely. Evaluating a test often invokes another program, so just

like programs, tests may not halt either. Hence, the result of a test may be neither true

nor false, so rather than the classical two-valued logic, algebraic models of programs often

use three-valued tests (which will be explained in detail later).

Not long after the emergence of these programming languages, in 1963, McCarthy

(himself one of the designers of ALGOL) proposed a set of axioms for if-then-else in

[27]. He treated both programs and tests as the same type (i.e. one-sorted), with the

2

values ‘true’ T and ‘false’ F being distinguished elements. This model is rather limited

because it only involves if-then-else , and neither logical connectives on the tests nor

concatenation of programs are treated.

Later on in 1983, Bloom and Tindell picked up this subject in [4], and studied the

axiomatisation of four one-sorted variants of if-then-else . Similar to McCarthy, Bloom

and Tindell only focused on the if-then-else operation. Afterwards, their work was

further generalised and elaborated by Guessarian and Meseguer [13], Melker and Nelson

[28], and Pigozzi [30]. These works all carry a logical flavour, with an emphasis on terms,

proof systems, syntactic consequence (`), semantic entailment (�) and so on.

In the 1990s, Bergman [1] and Manes [26] initiated two lines of research. Bergman used

sheaf theory to study the action of a Boolean algebra (tests) on a set (programs), and

Manes used category theory to study if-then-else with both two- and three-valued

tests. Both of these two works focus on how the logical connectives interact with the

if-then-else operation, but do not cover program concatenation.

Around 2000, Kozen [23] and Desharnais et al. [9] took a relational perspective. They

viewed both programs and tests as binary relations, and modelled them by a Kleene

algebra. They not only treated logical connectives and program concatenation; with the

closure operator in a Kleene algebra, they also modelled the iterative while-do construct.

However, this approach yielded no finite axiomatisation.

Finally, there is the two-sorted algebraic approach started by Jackson and Stokes

[17, 19]. These authors first studied a version similar to those of Bergman and Manes,

with logical connectives on two-valued tests but no program concatenation. The novelty

of their works was that they established the axioms purely algebraically. Using the same

method, they also studied a more furnished version, where both logical connectives (still

on two-valued tests) and program concatenation were treated.

More recently, Panicker et al. [29] generalised Jackson and Stokes’ work [17] to three-

valued tests, and they viewed the binary connectives ‘and’ and ‘or’ as being evaluated

sequentially.

Sequential evaluation, also known as short-circuit evaluation, starts by evaluating

3

the first argument, and proceeds to evaluate the second argument only if the first is

not enough to determine the overall value. If the first argument has not halted, the

entire statement would not halt either, even if the second argument alone can deter-

mine the result. Therefore, in the presence of non-halting tests, the result of sequential

evaluation depends on the order of the arguments, and the binary connectives become

non-commutative. This sequential evaluation strategy is the paradigm widely used in

real-life programming languages.

On the other hand, the binary connectives can also be evaluated in parallel. This

strategy looks at both arguments, and the evaluation would finish as soon as one of

the arguments halts and is sufficient to determine the overall result. The order of the

arguments does not matter when parallel evaluation strategy is employed, so the binary

connectives are commutative.

This thesis will follow the algebraic approach by Jackson and Stokes, and generalise

their works to three-valued tests. However, opposite to Panicker et al., this thesis will

view the connectives as being evaluated in parallel.

Organisation of this Thesis This thesis begins with the preliminaries in Chapter 2.

Then, Chapter 3 introduces the algebraic structures and operations which will be studied,

and explains the motivations behind them.

Next come the chief parts of this thesis. Chapter 4 studies the algebra of the programs

alone, and Chapter 5 brings in the tests and the if-then-else operation. Afterwards,

Chapter 6 covers the equality test, a particular type of tests which is commonly seen and

hence deserves attention.

Finally, Chapter 7 ends the thesis by looking at the algebra of tests on its own, without

the presence of the programs. It covers the historical background of different systems of

three-valued logic, and then establishes the type of algebras which correspond to the

commutative three-valued logic used in this thesis.

Chapter 2

Preliminaries

This chapter will begin with some fundamental concepts of relations and functions. Then,

it will outline the basics of universal algebra, semigroups and lattices. At the end, this

chapter will also discuss many-sorted algebras and axiomatisation.

Definition 2.1. A (binary) relation θ between the sets X and Y is a set of ordered

pairs:

{(x, y) | x ∈ X, y ∈ Y }.

Elements x ∈ X and y ∈ Y are said to be related by θ if and only if (x, y) ∈ θ, which

can also be written as x θ y.

A relation on X means that it is defined between X and X. There are two important

special types of relations on a single set X — equivalence relations and partial orders.

Definition 2.2. The relation ∼ on X is an equivalence relation when it satisfies the

following three criteria for all x, y, z ∈ X:

• x ∼ x; (Reflexive)

• x ∼ y if and only if y ∼ x; (Symmetric)

• x ∼ y and y ∼ z implies x ∼ z. (Transitive)

The most trivial example of an equivalence relation is equality.

5

When the set X has an equivalence relation ∼, the equivalence class of some x ∈ X

is defined to be x = {y ∈ X | x ∼ y}. All of the equivalence classes are disjoint, and

their union is the whole of X, so the set of equivalence classes in fact forms a partition

of the original set X:

X/∼ = {x | x ∈ X}.

Definition 2.3. The relation ≤ on X is a partial order when it satisfies the following

three criteria for all x, y, z ∈ X:

• x ≤ x; (Reflexive)

• x ≤ y and y ≤ x imply x = y; (Anti-Symmetric)

• x ≤ y and y ≤ z imply x ≤ z. (Transitive)

A set X with a partial order ≤ is called a partially ordered set
〈
X,≤

〉
, or a poset.

The most common example of a partial order is the ‘less-than-or-equal-to’ relation on

the set of real numbers.

Definition 2.4. The relation f between X and Y is called a (partial) function from

X to Y when it satisfies the following criterion for all x ∈ X and y1, y2 ∈ Y :

(x, y1) ∈ f and (x, y2) ∈ f imply y1 = y2.

When (x, y) ∈ f , this criterion enables y to be unambiguously written as xf . Further-

more, an ordered pair (x, y) in a function is also called a maplet.

Given a function f from X to Y , the domain of f , denoted dom(f), is the following

subset of X:

{x ∈ X | ∃y ∈ Y : (x, y) ∈ f}.

Definition 2.5. The function g between X and Y is a total function (or transforma-

tion) when dom(g) = X.

Finally, the following are some notes on the notations used in this thesis.

6

Notation 2.6. Let X be a set. Then,

• P(X) denotes the set of all (partial) functions from X to itself;

• T (X) denotes the set of all total functions from X to itself.

Consequently, T (X) ⊆ P(X), and in this thesis, the term function includes partial

functions.

Notation 2.7. In this thesis, function applications are written on the right. For example,

xf means ‘f applied to x’, and fg means ‘first f , then g’.

2.1 Universal Algebra

This section summarises the basic concepts in universal algebra which are needed in the

later parts of this thesis. Universal algebra is a rich and deep subject in its own right,

and a detailed exposition can be found in the classic text by Grätzer [12], or in the book

by Denecke and Wismath [8].

Definition 2.8. An n-ary operation ρ on a set A is a total function which takes n

elements of A and returns a single element of A. This number n is called the arity of ρ.

Different arities are given different names as follows.

• Nullary: zero argument (constant).

• Unary: one argument (e.g. the ‘inverse’ of a real number).

• Binary: two arguments (e.g. the ‘addition’ of numbers).

• Ternary: three arguments (e.g. if-then-else).

Notation 2.9. In contrast with functions between sets or algebras in Notation 2.7, oper-

ations are written in prefix or infix notation. For example, an n-ary operation ρ applied

to x1, . . . , xn is written as ρ(x1, . . . , xn). If the operation ρ2 is binary, then ρ2(x1, x2) is

also written as x1 ρ2 x2.

7

Definition 2.10. An algebra is a tuple
〈
A; ρ1, ρ2, . . . , ρk

〉
, where A is called the base

set (or the carrier set), and the ρi’s are the operations. Each of the operations has its

own arity ni, and the tuple (n1, n2, . . . , nk) is called the type of the algebra.

Examples A group
〈
G; ·, x−1, 1

〉
is an algebra of type (2, 1, 0), and a lattice

〈
L;∧,∨

〉
is an algebra of type (2, 2).

Subalgebras and Quotient Algebras

Definition 2.11. A non-empty subset B ⊆ A is a subalgebra of A when it has the

same type as A, and is closed under every operation, i.e. for every n-ary operation ρ:

∀x1, . . . , xn ∈ B : ρ
(
x1, . . . , xn

)
∈ B.

The beginning of this chapter introduced the concept that an equivalence relation

partitions a set into equivalence classes; in an algebra A with an arbitrary equivalence

relation θ, however, A/θ may not form an algebra because a valid operation may not be

definable. For A/θ to be a well defined algebra, θ needs to be a congruence.

Definition 2.12. A congruence on an algebra A is an equivalence relation θ which

satisfies the following. For every n-ary operation ρ, and for all a1, . . . , an and b1, . . . , bn ∈

A, if a1 θ b1 , . . . , an θ bn, then

ρ(a1, . . . , an) θ ρ(b1, . . . , bm).

Definition 2.13. When θ is a congruence on the algebra A, the quotient algebra is the

algebra which has the same type as A, has A/θ as its base set, and each of its operations

ρ (assumed n-ary) is defined to be:

∀x1, . . . , xn ∈ A/θ : ρ(x1, . . . , xn) = ρ(x1, . . . , xn).

8

Homomorphisms and Embeddings

From now on, let A and B be two algebras with the same type.

Definition 2.14. A homomorphism is a function φ : A → B which ‘preserves every

operation’. In other words, for every operation ρ and x1, . . . , xn ∈ A,

(
ρA(x1, . . . , xn)

)
φ = ρB(x1φ, . . . , xnφ).

Various special types of homomorphisms are given special names. In this thesis, a

particularly important type is defined below.

Definition 2.15. An embedding is an injective homomorphism.

2.2 Semigroups

The algebraic study of total functions with function composition gave rise to the notion

of the semigroup.

Definition 2.16. A semigroup is an algebra
〈
S ; ·

〉
with one binary operation which

satisfies the associativity axiom: for all x, y, z ∈ S,

• (xy)z = x(yz).

For example, both P(X) and T (X) are semigroups, with function composition as

their binary operations. (See Notation 2.6.)

Modelling the identity function gives rise to the notion of a monoid.

Definition 2.17. A monoid is an algebra
〈
S ; · , 1

〉
with one binary operation and an

identity (nullary operation), which satisfy the following axioms. For all x, y, z ∈ S:

• (xy)z = x(yz);

• x1 = 1x = x.

For example, both P(X) and T (X) are monoids, with function composition as before,

and the full identity function as the identity.

9

Other than the identity, another very common nullary operation is the zero, denoted

as 0, and it satisfies ∀x ∈ S : x0 = 0x = 0.

Finally, if every element of a monoid has an inverse, the result corresponds to the

notion of the group. The elements of a group model bijections.

Definition 2.18. A group is an algebra
〈
S ; · , ·−1, 1

〉
, where · is a binary operation,

·−1 is a unary operation called the inverse, and 1 is a nullary operation called the identity.

The axioms of a group are the following. For all x, y, z ∈ S:

• (xy)z = x(yz);

• x1 = x = 1x;

• xx−1 = 1 = x−1x.

Functions are not the only motivation behind semigroups, and there is the notion of

a semilattice.

Definition 2.19. A semigroup
〈
S ; ·

〉
is called a semilattice if it satisfies the following

additional properties. For all x, y ∈ S:

• xy = yx;

• xx = x.

Semilattices are closely related to lattices, which are the subject of Section 2.4.

Earlier in this chapter, Section 2.1 introduced the concepts of sub-algebras and con-

gruences. Here, the remainder of this present section will describe these concepts in the

context of a semigroup S.

Definition 2.20. A subsemigroup H is a non-empty subset of S which is closed under

the semigroup operation, i.e. for all x, y ∈ H, (xy) ∈ H. This ensures that H is itself a

semigroup.

Rephrasing Definition 2.12 in the context of semigroups, a congruence on a S is an

equivalence relation θ which satisfies

∀a1, a2, b1, b2 ∈ S : a1 θ b1 , a2 θ b2 =⇒ a1a2 θ b1b2.

10

Similarly for Definition 2.13, when θ is a congruence on S, the set of θ-classes forms

a well-defined semigroup, with the operation defined to be

∀x, y ∈ S/θ : x · y = xy,

and this semigroup S/θ is called the quotient semigroup.

2.3 Left Restriction Semigroups

There is also a special type of semigroup which has a unary operation representing the

domain. In P(X), this domain operation D takes a function f to the restriction of the

identity function to dom(f), i.e.

D(f) = {(x, x) | x ∈ dom(f)}.

A semigroup with such a domain operation is called a left restriction semigroup.

Definition 2.21. A left restriction semigroup is an algebra
〈
S ; · , D

〉
where · satisfies

the associativity law, and D satisfies the following axioms. For all x, y ∈ S.

(R1) D(x)x = x

(R2) D(x)D(y) = D(y)D(x)

(R3) D
(
D(x)

)
= D(x)

(R4) D(xy) = D(x)D(xy)

(R5) xD(y) = D(xy)x

The concept of left restriction semigroups has many different guises; these guises, in

addition to the generalisation of the left restriction, are explored by Gould in [11].

The notation and results in this thesis originate from the paper An Invitation to

C-Semigroups [16] by Jackson and Stokes, and this approach is also followed in these

authors’ other works [18, 19].

11

As the title of [16] suggests, the object studied there is the C-semigroup. It is a

semigroup equipped with a unary operation C, which satisfies axioms similar but different

to those of the left restriction semigroup. However, a left restriction semigroup
〈
S ; ·, D

〉
is in fact equivalent to a twisted C-semigroup

〈
S ;×, C

〉
(see [16, Section 3]) by letting

a · b = b× a for all a, b ∈ S.

The next proposition contains some useful properties which can be further derived

from these axioms. These properties have been previously established in [16, Proposition

1.2].

Proposition 2.22. Let S be a left restriction semigroup, then the following are true for

all x, y ∈ S.

(R6) D(x)D(y) = D
(
D(x)D(y)

)
(R7) D(x)D(x) = D(x)

(R8) D(x)D(y) = D
(
D(x)y

)
(R9) D(xy) = D

(
xD(y)

)
An important subset of a left restriction semigroup is the set of domain elements:

D(S) = {D(x) | x ∈ S}

= {y ∈ S | D(y) = y}.

These two definitions are equivalent due to (R3).

Proposition 2.23. For a semigroup S, the subset D(S) forms a subsemigroup, which is

a semilattice.

This subsemigroup of domain elements has also been previously established in [16].

If the left restriction semigroup has 0 as one of its operations, then the following

additional axiom is required:

(R0) D(0) = 0.

12

This axiom asserts that 0 ∈ D(S), which is true in the cases of P(X) because the empty

function is the restriction of the identity function to the empty set.

On the other hand, if the left restriction semigroup contains the identity 1, then

1 = D(1) · 1 (R1)

= D(1), (identity law)

so 1 ∈ D(S) follows directly.

The next two propositions are useful in a later part of this thesis.

Proposition 2.24. Let x, a, b ∈ S with a, b ∈ D(S). Then, D(xab) = D(xa) ·D(xb).

Proof. Starting from the right-hand side:

D(xa) ·D(xb) = D
(
D(xa) · xb) ·D(xa) (R5)

= D
(
D(xa)x · b) ·D(xa)

= D
(
xD(a) · b) ·D(xa) (R5)

= D(xab) ·D(xa) (because D(a) = a)

= D(xa) ·D(xab) (R2)

= D(xab) (R4)

13

Proposition 2.25. Let x, y, a, b ∈ S same as above. Then,

D(xay) ·D(xby) = D(xaby).

Proof. Starting from the left-hand side:

D(xay) ·D(xby) = D
(
D(xay) ·D(xby)

)
(R6)

= D
(
D(xay) · xby

)
(R9)

= D
(
D(xay)x · by

)
= D

(
xD(ay) · by

)
(R5)

= D
(
x ·D(ay)b · y

)
= D

(
x · bD(ay) · y

)
(R2)

= D
(
xb ·D(ay) · y

)
.

Now, note that

D(ay) = D
(
a ·D(y)

)
(R9)

= D
(
D(a) ·D(y)

)
(because a = D(a))

= D(a) ·D(y) (R6)

= a ·D(y). (because a = D(a))

So, back to the main argument:

D
(
xb ·D(ay) · y

)
= D

(
xb · aD(y) · y

)
= D

(
xba ·D(y)y

)
= D

(
xaby

)
(R2) on ab and (R1)

14

2.4 Lattices

This section outlines the theory of lattices, covering the basic definitions and standard

results required in the later parts of this thesis. More detailed discussions on lattices can

be found in the book by Davey and Priestley [7].

Definition 2.26. A lattice is an algebra
〈
L;∧,∨

〉
with two binary operations, and

satisfying the following axioms. For all x, y, z ∈ L:

(L1) (x ∧ y) ∧ z = x ∧ (y ∧ z); (Associativity)

(x ∨ y) ∨ z = x ∨ (y ∨ z);

(L2) x ∧ y = y ∧ x; (Commutativity)

x ∨ y = y ∨ x;

(L3) x ∧ x = x; (Idempotence)

x ∨ x = x;

(L4) x ∧ (x ∨ y) = x; (Absorption)

x ∨ (x ∧ y) = x.

The operation ∧ is called meet, and ∨ is called join.

Note that each of the above axioms contains two equations. One of the two equations

is called the dual of the other. Given one equation, the dual can be obtained simply by

replacing each ∧ with ∨, or vice versa.

Note that
〈
L;∧

〉
and

〈
L;∨

〉
are both semilattices. Hence, if

〈
S;∧

〉
and

〈
S;∨

〉
are

semilattices which satisfy ∀x, y ∈ S : x ∧ (x ∨ y) = x ∨ (x ∧ y) = x, then
〈
S;∧,∨

〉
is a

lattice.

Lattices are not only purely algebraic structures, but are also closely related to par-

tially ordered sets which were introduced in the beginning of Chapter 2.

Given a poset
〈
L,≤

〉
, the least upper bound of x, y ∈ L is denoted as lub{x, y}, and

is the smallest element in L which satisfies x ≤ lub{x, y} and y ≤ lub{x, y}. On the other

hand, the greatest lower bound, glb{x, y}, is defined dually. If every pair of elements in a

15

poset L has a least upper bound and a greatest lower bound, then this poset is a lattice

by defining

x ∧ y = glb{x, y} and x ∨ y = lub{x, y}.

A routine check can easily verify that this definition of ∧ and ∨ fulfills the axioms of a

lattice.

Conversely, any lattice has an intrinsic partial order, as demonstrated by the following

connecting lemma [7, Lemma 2.8, page 39].

Lemma 2.27. Let L be a lattice and x, y ∈ L. Then the following are equivalent:

(i) x ≤ y;

(ii) x ∧ y = x;

(iii) x ∨ y = y.

In a partially ordered set, there can be elements which are not comparable. However,

when every two elements are comparable, the relation is called a total order.

Definition 2.28. A total order on a set L is a partial order ≤ which satisfies

∀x, y ∈ L : (x, y) ∈ L or (y, x) ∈ L.

A totally ordered set is also called a chain.

We often encounter lattices with additional properties, and below are some of these.

Definition 2.29. A lattice is bounded when it has a top element 1 and a bottom

element 0, which satisfy the identity laws x ∧ 1 = x and x ∨ 0 = x for all x ∈ L.

Using the absorption law (L4), the above identity laws are equivalent to the following

alternative rules.

x ∨ 1 = (x ∧ 1) ∨ x = 1 and

x ∧ 0 = (x ∨ 0) ∧ x = 0.

16

Definition 2.30. A distributive lattice is a lattice L which satisfies one of the following

distributivity laws. For all x, y, z ∈ L:

(DL1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

(DL2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In fact, these two distributivity laws are equivalent in the presence of the absorption

law, as the following proposition shows [7, Lemma 4.3].

Proposition 2.31. A lattice L satisfies (DL1) if and only if it satisfies (DL2).

Two of the most commonly-met lattice-like structures are sets with intersection and

union, and propositional logic with ‘and’ and ‘or’. Other than join and meet, both of

these have an additional operation of complement.

Definition 2.32. Let L be a bounded lattice. An element b ∈ L is a complement of

a ∈ L when a ∧ b = 0 and a ∨ b = 1.

This is the most general definition, where an element of a lattice may have no com-

plement. The following is a stronger notion.

Definition 2.33. A complemented lattice is a bounded lattice in which every element

has at least one complement.

Complements are unique in the presence of the distributivity laws.

Proposition 2.34. In a distributive complemented lattice, complements are unique.

Now, we can finally define the notion of Boolean algebras, which captures the prop-

erties of classical propositional logic and the algebra of sets.

Definition 2.35. A Boolean algebra is a complemented distributive lattice. In other

words, it is an algebra
〈
B;∧,∨,¬, 0, 1

〉
where

•
〈
B;∧,∨, 0, 1

〉
forms a distributive lattice, and

• ¬ satisfies x ∨ ¬x = 1 and x ∧ ¬x = 0.

17

2.5 Filters and Ideals

Filters and ideals are special kinds of sublattices which are useful in the applications of

lattice theory. Let
〈
L;∧,∨

〉
be a lattice.

Definition 2.36. A filter F ⊆ L is a non-empty subset which satisfies:

(F1) for all a, b ∈ F , a ∧ b ∈ F ;

(F2) for all a ∈ F and x ∈ L, a ≤ x implies x ∈ F .

‘Ideal’ is simply the dual concept of ‘filter’.

Definition 2.37. An ideal J ⊆ L is a non-empty subset which satisfies:

(I1) For all a, b ∈ J , a ∨ b ∈ F ;

(I2) For all a ∈ J and x ∈ L, x ≤ a implies x ∈ J .

Since filters and ideals are dual concepts, it is sufficient to investigate one or the other,

so the remainder of this section focuses on filters only. In any case, only filters are used

in later parts of this thesis. There are several special and important types of filters, and

these are introduced below.

Definition 2.38. For any specific element a ∈ L, the principal filter generated by a

is defined to be

↑ a = {x ∈ L | x ≥ a}.

This notion can be generalised from a single element to a subset of the lattice, although

in the latter case, the resultant set may not be a filter.

Definition 2.39. For a subset Q ⊆ L, the up-set generated by Q is defined to be

↑ Q = {x ∈ L | ∃q ∈ Q : x ≥ q}.

Here is a lemma for a later part of this thesis.

18

Lemma 2.40. Let F be a filter of a lattice L. Given some a ∈ L \ F , define G = ↑

{a ∧ c | c ∈ F}. Then, G is a filter which includes a and properly contains F .

Proof. Firstly, we show that G is a filter. Let x, y ∈ G, i.e. x ≥ a∧ dx and y ≥ a∧ dy for

some dx, dy ∈ F . Then,

x ∧ y ≥ (a ∧ dx) ∧ (a ∧ dy)

= a ∧ (dx ∧ dy).

As (dx ∧ dy) ∈ F , x ∧ y indeed belongs to G.

In addition, let x ∈ G and z ≥ x. Then, as x ≥ a ∧ dx, transitivity of our partial

order directly implies that z ≥ a ∧ dx, and this simply means that y ∈ G.

Finally, every f ∈ F satisfies f ≥ a ∧ f , so f ∈ G and hence F ⊆ G. Moreover,

a ≥ a ∧ g for any g ∈ F , so a ∈ G. Since a /∈ F , it follows that F is a proper subset of

G.

Definition 2.41. A maximal filter F in L is a filter which satisfies the following: if

G is a filter which strictly contains F , then G = L. A maximal filter is also called an

ultrafilter.

Definition 2.42. A prime filter P in L is a filter which satisfies the following: for all

a, b ∈ L, a ∨ b ∈ P implies a ∈ P or b ∈ P .

In distributive lattices, the maximality and primeness properties of filters are closely

related, and the following theorem explores this connection. (See [7, Theorem 10.11, page

233].)

Theorem 2.43. Let L be a distributive lattice with bottom element 0. Then, every

maximal filter in L is prime.

Zorn’s lemma is a vital tool for inferring the existence of maximal filters, and it often

requires the following theorem, with which this section closes.

19

Theorem 2.44. Let L be a lattice, and C a chain of filters in L, ordered by set inclusion.

Then, the set

U =
⋃
F∈C

F

is still a filter of L.

Proof. Let x, y ∈ U . Then, there are some F1, F2 ∈ C such that x ∈ F1 and y ∈ F2.

Since C is a chain, it can be assumed without loss of generality that F1 ⊆ F2, and hence

x, y ∈ F2. As F2 is a filter, x ∧ y is contained in F2; therefore, x ∧ y ∈ U .

Let x ∈ U and z ∈ L with z ≥ x. Then, there is an F ∈ C which contains x. Since F

is a filter, z is contained in F and hence in U .

Therefore, U is indeed a filter.

2.6 Many-Sorted Algebras

The program algebra studied in this thesis is two-sorted, as it has a test sort K and a

program sort S. Each of these two sorts has its own operations: K has the usual logical

connectives, and S has functional composition. In addition, there are hybrid operations

such as the ternary if-then-else, which has type K × S × S → S.

Another familiar example of a two-sorted algebra is the vector space. One of its sorts

is the field of scalars F, which has the usual operations and axioms of a field. The other

sort is the vectors V , whose operations include vector addition V × V → V . The scalar

multiplication is a hybrid operation, which has type F× V → V . All of these operations

satisfy a certain set of axioms.

The two examples above belong to the theoretical framework of many-sorted (or

heterogeneous) algebras, which is the generalisation of the single-sorted (or homogeneous)

universal algebra briefly summarised in Section 2.1. Nevertheless, as Birkhoff and Lipson

laid out in [3], the concepts of single-sorted algebras carry over into many-sorted ones in

a natural way.

20

2.7 Axiomatisation

An abstract algebra is often a model of some concrete objects in the real world, and

the deducible theorems in the abstract algebra should correspond to truths about the

concrete objects. For instance:

• a group is a model of a set of permutations with composition and inversion,

• a left restriction semigroup is a model of a set of partial functions with composition

and domain, and

• a Boolean algebra models a set of subsets of a set with union, intersection and

complementation [7].

As an example, how are the axioms of a group determined? Firstly, a set of permuta-

tions satisfies the axioms, i.e. the set of permutations is itself a group. This step merely

involves routine checking. Next, we show that every group is a permutation group by

constructing an embedding from any group G to the group of permutations on some set.

This is in fact the well-know Cayley’s Theorem.

Theorem. Every group G is isomorphic to a subgroup of Sym(G), the symmetric group

acting on G. (Alternatively, G is embeddable in Sym(G).)

The isomorphism map φ : G→ Sym(G) required to prove this theorem is defined by

∀g ∈ G : gφ = ψg, where ψg : G→ G and ∀x ∈ G : xψg = xg. Then, it remains to be

shown that:

• Each ψg is really a permutation;

• ∀g, h ∈ G : gφ · hφ = (gh)φ;

• 1φ is really the identity in Sym(G);

• ∀g ∈ G : (g−1)φ =
(
gφ
)−1

;

• φ is injective.

21

This definition of φ mapping g to ‘right-multiplication by g’ is called the Cayley-style

representation. This same representation also works for semigroups with identity, and it

embeds every semigroup S into P(S).

In the more general setting of relational algebras, the steps required to axiomatise are

outlined by Schein [31, page 53]:

‘At first, one must “guess” the right axioms (the guess is not quite arbi-

trary, and a good method simplifies the task very considerably). Secondly, one

must verify the necessity of the axioms. This step is the easiest: one checks

the axioms on proper relation algebras. The most difficult step is the third

one: the proof of sufficiency. There is given an algebraic system satisfying

the axioms, and one must construct a proper relation algebra of the given

class isomorphic to the given system.’

Most generally, how do we determine the set of axioms of a particular algebra? The

axioms are what ‘characterise’ the abstract algebra, so they should enable a direct corre-

spondence between the abstract and the concrete algebras. This involves two directions:

1. the concrete algebra satisfies the axioms of the abstract algebra,

i.e. concrete =⇒ abstract;

2. the abstract algebra is isomorphic to a concrete algebra,

i.e. abstract =⇒ concrete.

The first direction is sometimes called the soundness of the axioms, and the second the

completeness. Moreover, in the second point, the isomorphism from the abstract to the

concrete is called a representation.

Chapter 3

Operations

This chapter will introduce the algebraic structures and operations which will model the

programs and the tests. At the end, it will give a preview of all the axioms which will be

studied in the later chapters.

3.1 Programs as Functions

Every program takes a start state from the state space, and arrives at an end state if

the program is well defined on this input. In this thesis, programs are assumed to be

deterministic, so the end state is unique if it exists. This suggests that programs can be

viewed as functions.

Given certain inputs, a program may continue running indefinitely without halting.

When a program is viewed as a function, this situation will be considered as the function

being undefined at these inputs. Since a program may not be defined for every possible

input, programs will be viewed specifically as partial functions.

Another possible bad situation is when a program terminates without completing a

valid computation, i.e. the program ‘crashes’ or ‘aborts’. This thesis will not consider

the situation of ‘abort’, and will focus only on non-halting programs.

23

3.2 Operations Purely on Programs

An important operation on programs is concatenation, which executes one program

straight after another. Since programs are viewed as functions, this operation is sim-

ply the usual function composition, which is associative by nature. Hence, programs

with composition form a semigroup.

In addition to composition, there are two nullary operations which represent the

special programs of skip and loop. The skip program is the one that always outputs

the same value as its input. It makes no effect when composed with other programs, so

it will be the identity element which satisfies 1 · p = p · 1 = p for all programs p. On

the other hand, the loop program is the one that never halts. A possible form of such a

program is

while (true) { }.

When loop is composed with other programs, no matter the order, the resulting program

is still always non-halting, so loop behaves like the zero constant 0, which satisfies 0 ·p =

p · 0 = 0 for all programs p.

3.3 Tests

Now, logical tests will be brought into the picture.

A halting test is a predicate on the state space X, and a (total) predicate is a total

function from X to the truth set {T, F}. Extending this idea, a possibly non-halting test

is a partial predicate, which is a partial function from X to {T, F}, and the states at

which a partial predicate is undefined represent where the evaluation of a test has not

halted. Partial predicates possess all the usual operations which total predicates have,

namely the connectives ‘and’ ∧, ‘or’ ∨ and ‘not’ ¬, as well as the constants ‘true’ T and

‘false’ F .

When the tests have the possibility of not halting, the results of binary connectives ∧

and ∨ become dependent on how these connectives are evaluated: whether sequentially

or in parallel. The differences between these two evaluation strategies were introduced in

24

Chapter 1, and will be explained in more detail in Chapter 7. Meanwhile, the following

tables show how the connectives are defined under parallel evaluation, which this thesis

employs. Note that U denotes the situation when a test ‘has not halted’.

∧ T F U

T T F U

F F F F

U U F U

∨ T F U

T T T T

F T F U

U T U U

¬

T F

F T

U U

A convenient means to specify partial predicates is the notion of disjoint pairs. A

partial predicate α has a ‘true’ part αT = {x ∈ X | xα = T}, as well as a ‘false’ part

αF = {x ∈ X | xα = F}. Both of these are subsets of X, and αT ∩ αF = ∅ because

nothing can be both true and false at once.

Definition 3.1. The set of disjoint pairs over a set X is

{〈
A,B

〉
| A,B ⊆ X ; A ∩B = ∅

}
,

and the operations on these are defined as follows.

•
〈
A,B

〉
∧
〈
C,D

〉
=
〈
A ∩ C,B ∪D

〉
•
〈
A,B

〉
∨
〈
C,D

〉
=
〈
A ∪ C,B ∩D

〉
• ¬

〈
A,B

〉
=
〈
B,A

〉
• T =

〈
X, ∅

〉
and F =

〈
∅, X

〉
Furthermore, two disjoint pairs

〈
A,B

〉
and

〈
C,D

〉
are equal if and only if both A = C

and B = D.

Since the algebra of subsets of a set correspond directly to a Boolean algebra, a set

of disjoint pairs can also be defined on a Boolean algebra.

There is in fact an isomorphism between partial predicates and disjoint pairs, stated

as the next proposition.

25

Proposition 3.2. Let Γ be a mapping from the set of partial predicates on X to the set

of disjoint pairs, and define Γ by αΓ =
〈
AT , AF

〉
, where

AT = {x ∈ X | xα = T} and

AF = {x ∈ X | xα = F}.

Then, this mapping Γ is an isomorphism.

This can be verified by very routine checking, so the proof is omitted.

3.4 The if-then-else Operation

The first hybrid operation which involves both tests and programs is if-then-else,

which was introduced in the very start of Chapter 1. Formally, if S denotes the programs

and K denotes the tests, then the if-then-else is a ternary operation

· [· , ·] : K × S × S → S.

When the test halts and produces either T or F , the behaviour of if-then-else is

T [p, q] = p, and

F [p, q] = q.

If the test does not halt, the if-then-else statement would be trying to evaluate the

test indefinitely, so the whole statement behaves like loop. Hence, U [p, q] = 0.

3.5 The Halt Test and the Domain Operation

Since a program may be undefined at certain inputs, it is natural to ask ‘whether a

program terminates’. This is the halt test, denoted H, and it takes a program p as input

and returns a test H(p) as output. When p halts, the result H(p) will be T ; however,

26

when p has not halted, there is no way to tell whether or not p will halt at a later time,

so H(p) will continue running indefinitely. This is one instance of how a non-halting test

can arise.

Note that this halt test can never return false. Asking whether H(p) is false is the

same as asking whether p is non-halting. This is exactly the halting problem, which is

well known not to be computable. Since this thesis models computable programs, such

non-computable statements must not be expressible.

In the language of functions and partial predicates, for a function f on the set X, the

halt test is defined as follows for all x ∈ X:

x
(
H(f)

)
=

T if xf is defined;

F nowhere;

U if xf is undefined.

The halt test H(p) gives rise to the domain operation on programs via the expression(
H(p)

)
[1, 0], which represents ‘the restriction of the identity function to where p is de-

fined’. The domain operation D(p) is thus defined by
(
H(p)

)
[1, 0]. Conversely, H can be

implicitly expressed in terms ofD: H(p) is exactly the test α which satisfies α[1, 0] = D(p)

and α[0, 1] = 0. Therefore, in order to study H, investigating D is necessary.

Now, given two programs p and q, both H(p) ∧ H(q) and H(p) ∨ H(q) are also

tests, and
(
H(p) ∧ H(q)

)
[1, 0] and

(
H(p) ∨ H(q)

)
[1, 0] should represent the restriction

of the identity function to ‘where both p and q are defined’ and ‘where either p or q is

defined’ respectively. This brings the need of lattice operations join and meet on the set

of identity restrictions. In the previous chapter, Proposition 2.23 showed that meet on

identity restrictions is exactly functional composition. On the other hand, however, join

needs to be studied as an additional operation. Hence, the algebra of programs will have

an extra operation ∨ called the domain join.

27

3.6 Testing for Equality

Very often, the test used in an if-then-else statement involves testing the equality of

two values, both of which can be results of other programs. This brings about the equality

test, which takes two programs p and q and results in a test (p = q). The equality test

determines whether two programs produce the same output, given the same input. If both

programs halt, we can proceed to test the equality between the two outputs. However, if

one of the programs does not halt, then the equality test would not halt either.

In terms of functions and partial predicates, the equality test of functions f and g on

the set X is defined as follows for all x ∈ X:

x(f = g) =

T if both xf and xg are defined, and xf = xg;

F if both xf and xg are defined, but xf 6= xg;

U if either xf or xg is undefined.

3.7 Summary

To summarise, the programs are modelled by an algebra
〈
S ; · ,∨, D, 1, 0

〉
, and this

algebra satisfies:

•
〈
S ; · , 1

〉
is a monoid (Definition 2.17);

•
〈
S ; · , D

〉
is a left restriction semigroup (Definition 2.21);

• 0 is the zero element (after Definition 2.17).

Moreover,
〈
S ; · ,∨, D

〉
satisfies the following. For all a, b, c ∈ D(S) and x, y ∈ S:

(D1) (a ∨ b) ∨ c = a ∨ (b ∨ c)

(D2) a ∨ b = b ∨ a

(D3) a ∨ a = a

(D4) a ∨ (ab) = a · (a ∨ b) = a

28

(D5) a ∨ (bc) = (a ∨ b) · (a ∨ c)

(D6) D
(
x(a ∨ b)

)
= D(xa) ∨D(xb)

(D7) ax = ay and bx = by imply (a ∨ b)x = (a ∨ b)y

Then, let
〈
K;∧,∨,¬, T, F

〉
be the algebra of tests, and · [· , ·] : K × S × S → S

the if-then-else operation. Together, the two sorted algebra which consists of S, K

and the if-then-else operation is called the program algebra in the remainder of this

thesis, and it satisfies all the axioms of S above, plus the following.

(T1) (α ∨ β)[1, 0] = α[1, 0] ∨ β[1, 0]

(α ∧ β)[1, 0] = α[1, 0] · β[1, 0]

(T2) (α ∨ β)[0, 1] = α[0, 1] · β[0, 1]

(α ∧ β)[0, 1] = α[0, 1] ∨ β[0, 1]

(T3) (¬α)[s, t] = α[t, s] for all s, t ∈ S

(T4) α[1, 0] · α[0, 1] = 0

(T5) α[1, 0], α[0, 1] ∈ D(S)

(T6) α[1, 0] = β[1, 0] and α[0, 1] = β[0, 1] implies that α = β

(G1) α[1, 0] · s = α[1, 0] · α[s, t]

α[0, 1] · t = α[0, 1] · α[s, t]

(G2) (α[1, 0] ∨ α[0, 1]) · α[s, t] = α[s, t]

These axioms will be proven sound and complete in the subsequent two chapters.

Chapter 4 will deal with axioms (D1) to (D7), and Chapter 5 will study (T1) to (T6)

and (G1) to (G2).

The equality test will be treated in isolation later in Chapter 6.

Chapter 4

Programs

This chapter will study the algebra of programs S, which is a left restriction semigroup

with domain join, 1 and 0. It will establish the soundness and completeness of the axioms

(D1) to (D7) in Section 3.7 by constructing a representation from this algebra of programs

to an algebra of functions.

4.1 Domain Join

Earlier, Section 3.5 explained the need for an additional operation ∨, called the domain

join. Let ∨ : D(S) ×D(S) → D(S) be a binary operation on D(S), which satisfies the

following axioms. For all a, b, c ∈ D(S) and x, y ∈ S:

(D1) (a ∨ b) ∨ c = a ∨ (b ∨ c);

(D2) a ∨ b = b ∨ a;

(D3) a ∨ a = a;

(D4) a ∨ (ab) = a · (a ∨ b) = a;

(D5) a ∨ (bc) = (a ∨ b) · (a ∨ c);

(D6) D
(
x(a ∨ b)

)
= D(xa) ∨D(xb);

(D7) ax = ay and bx = by imply (a ∨ b)x = (a ∨ b)y.

30

This partial operation on D(S) can then be extended into a total operation on the

whole of S, by setting x ∨ y to be D(x) ∨D(y) for any two x, y ∈ S.

Identity restrictions, being functions, can be viewed as sets of maplets. However,

compared to arbitrary functions, the maplets of an identity restriction have the special

form of (x, x). Hence, every identity restriction f can be mapped to the subset dom(f),

and every subset A can be mapped to the identity restriction {(x, x) | x ∈ A}. This is

a direct correspondence between identity restrictions and subsets, so the existing facts

about sets establish the soundness of the first five axioms.

The axiom (D6) is a stronger version of distributivity in D(S), and is required in a

later proof. Let α and β be identity restrictions, and f an arbitrary partial function,

all of which operate on some set X. Since both sides of the fourth axiom are identity

restrictions, it is enough to show that the domains of both sides are equal, i.e.

dom
(
f · (α ∨ β)

)
= dom

(
fα
)
∪ dom

(
fβ
)
.

Given two partial functions g and h, x ∈ dom(gh) if and only if x ∈ dom(g) and

xg ∈ dom(h). Using this fact,

x ∈ dom
(
f · (α ∨ β)

)
⇐⇒ x ∈ dom

(
f
)

and xf ∈ dom
(
α ∨ β

)
= dom

(
α
)
∪ dom

(
β
)

⇐⇒
(
x ∈ dom

(
f
)

and xf ∈ dom
(
α
))

or
(
x ∈ dom

(
f
)

and xf ∈ dom
(
β
))

⇐⇒ x ∈ dom
(
fα
)

or x ∈ dom
(
fβ
)

⇐⇒ x ∈ dom
(
fα
)
∪ dom

(
fβ
)
,

and this justifies the soundness of (D6).

31

In fact, (D6) implies the following simpler version of distributivity:

(D6’) ∀a, b, c ∈ D(S) : a(b ∨ c) = ab ∨ ac,

and using (D1) to (D5), together with (D6’), it follows by definition that D(S) forms a

distributive lattice.

Moreover, by taking the constants 1 and 0 into account,
〈
D(S) ; · ,∨, 1, 0

〉
forms a

bounded distributive lattice.

Finally, for (D7), let α and β be identity restrictions, and f and g arbitrary partial

functions on X. Suppose (x, y) ∈ (α ∨ β)f ; then, x ∈ dom(α) ∪ dom(β) and xf = t.

Without loss of generality, assume that x ∈ dom(α); then (x, y) ∈ αf . Now, by one of

the premises αf = αg, it must be the case that (x, y) ∈ αg too, and then it follows that

(x, y) ∈ (α ∨ β)g.

Using the same argument for the other direction, the soundness of (D7) can be estab-

lished.

4.2 Determinative Pair in General

The goal of this chapter is to construct a representation of the algebra of programs, which

at its core is a semigroup. Earlier, Section 2.7 introduced the Cayley-style representation,

which works for groups and semigroups with 1. However, this representation technique

does not always work when the semigroup (with 1) has additional operations, such as D

and ∨ in this thesis, or other operations which arise from different studies of function

semigroups. To deal with this obstacle, a new representation technique of determinative

pairs was developed by Schein in [32].

This section introduces the principle of determinative pairs, and demonstrates that

general determinative pairs preserves the semigroup operation, 1 and 0. The remaining

operations D and ∨ will be treated in the next section, which studies a specific determi-

native pair.

First, below are some basic notions on a semigroup S.

32

Definition 4.1. A relation ∼ on a semigroup S is right-regular when it satisfies the

following:

a ∼ b ⇐⇒ ∀x ∈ S : ax = bx.

A right-regular equivalence relation is called a right congruence, as in [15, p.22].

Definition 4.2. A right ideal is a subsemigroup J ⊆ S which satisfies the following:

∀a ∈ J, x ∈ S : ax ∈ J .

Then, a determinative pair is defined in terms of these basic notions.

Definition 4.3. Let S be a semigroup. A determinative pair is of the form
〈
ε,W

〉
,

where

• ε is a right congruence on S, and

• W ⊂ S is a union of ε-classes, and is also a right ideal.

Now, a general determinative pair induces a semigroup homomorphism from an arbi-

trary semigroup S to a semigroup of partial functions on a quotient semigroup of S.

Theorem 4.4. Let S be a semigroup, and
〈
ε,W

〉
a determinative pair. Then, define the

base set X to be
(
S \W

)
/ε. For every x ∈ S, define ψx ∈ P(X) by

∀s ∈ X : sψx =

sx if sx /∈ W ;

undefined otherwise.

Then, the map φ : S → P(X) which maps x to ψx is a semigroup homomorphism.

Proof. First, given x ∈ S, we show that ψx is a well defined function. Consider s, t ∈ S

such that s = t. Hence, s ε t, and by the right-regular property, sx ∼ tx.

sψx = sx = tx = tψx.

Hence, the function ψx is indeed well defined.

33

Next, we show that f is a homomorphism, i.e. ∀x, y ∈ S : (xy)φ = xφ · yφ. By the

definition of f , this is equivalent to showing ψxy = ψxψy.

Suppose ψxψy is undefined at s ∈ X, and this means either that s is undefined for

ψx, or that sψx = sx is undefined for ψy. Thus, either sx ∈ W or (sx)y ∈ W . In the first

case, since W is a right ideal, sx ∈ W implies that (sx)y ∈ W . Then, given sxy ∈ W ,

we can conclude that s is undefined for ψxy.

Now we have shown that the domains of ψxy and ψxψy are equal, we can consider

s ∈ X where s is defined for both sides. Then,

sψxy = s(xy)

= (sx)y

= (sx)ψy

= (sψx)ψy

= sψxψy,

so indeed (xy)φ = xφ · yφ, and this completes the proof.

In fact, the map φ in the previous theorem preserves the constants 1 and 0 too.

Corollary 4.5. If 1 is the identity in S, then 1φ = ψ1 is the total identity function on

X.

Proof. Note that a right ideal such as W never contains 1: if 1 ∈ W , we can let x ∈

(S \W). As 1 · x = x /∈ W , the condition of a right ideal is violated, so it must be the

case that 1 /∈ W .

Using this fact, for any s ∈ X (i.e. s /∈ W), s · 1 = s /∈ W , so ψ1 is defined at every

s ∈ X. Then, sψ1 = s1 = s, so ψ1 is indeed the total identity function.

Corollary 4.6. If 0 is the zero in S, then 0φ = ψ0 is the empty function on X.

Proof. Note that a right ideal such as W always contains 0: if 0 /∈ W , then let a ∈ W

and 0 ∈ S. As a · 0 = 0 /∈ W , the condition of a right ideal is violated, so it must be the

case that 0 ∈ W .

34

Using this fact, for any s ∈ X, s · 0 = 0 ∈ W , so ψ0 is undefined at any s ∈ X.

Therefore, ψ0 is indeed the empty function.

So far, a general determinative pair provides a homomorphism which preserves com-

position, 1 and 0, but not ∨ and D. Also, the homomorphism induced by a general

determinative pair is not necessarily injective. The operations ∨ and D, as well as injec-

tivity, depend on which specific determinative pair is used, and this is the subject of the

remainder of this chapter.

4.3 Determinative Pair in Context

After the general principle of determinative pairs was introduced, this section applies it

to the current context by specify a suitable right congruence and right ideal. It turns out

that the determinative pair used by Jackson and Stokes in [19] works well in the context

of this thesis, so the definitions and results in this section and the next are adopted from

[19] and included for completeness.

Definition 4.7. Let F be a proper filter of D(S). Define a binary relation θF on S by

x θF y ⇐⇒ ∃e ∈ F : ex = ey.

In addition, define WF = {a ∈ S | D(a) /∈ F}.

Notation 4.8. For the purpose of clarity, the using of symbols will follow the convention

below. Given a left restriction semigroup S and a filter F ⊆ D(S),

• x, y, z and s, t denote general elements of S,

• a, b, c denote elements of D(S), and

• e, f, g denote elements of F .

35

Lemma 4.9. 〈θF ,WF 〉 forms a determinative pair.

Proof. The following statements need to be established:

(i) θF is an equivalence relation.

(ii) θF is right-regular.

(iii) WF is a union of equivalence classes in S/θF .

(iv) WF is a right ideal.

And these will be proven one by one.

(i) Since every f ∈ F and every x ∈ S satisfy fx = fx, it is true that x θF x, so θF is

indeed reflexive. Also, the symmetry of equality directly implies the symmetry of θF .

Finally, for transitivity, suppose that xθFy and yθF z. This means that there exist

some f, g ∈ F such that fx = fy and gy = gz. Now, as the semigroup operation is

associative, and is commutative in F ⊂ D(S),

(fg)x = g(fx)

= g(fy)

= f(gy)

= f(gz)

= (fg)z,

But F being a filter means that (fg) ∈ F , so xθF z.

(ii) Let x, y ∈ S such that xθFy, i.e. fx = fy for some f ∈ F . For any s ∈ S,

(fx)s = (fy)s, and by associativity, f(xs) = f(ys), so xsθFys.

(iii) This statement is the same as the following: Given x, y ∈ S, if x /∈ WF and xθFy,

then y /∈ WF .

36

Suppose that x ∈ WF and hence D(x) /∈ F . Assume also that ex = ey for some

e ∈ F .

D(y) ≥ eD(y) the property of meet

= D(e)D(y) because e ∈ D(S)

= D(ey) (R4)

= D(ex) by assumption

= D(e)D(x) (R4)

= eD(x) because e ∈ D(S)

Both e and D(x) belong to the filter F , so eD(x) ∈ F . Hence D(y) ∈ F too, and this is

equivalent to y /∈ WF .

(iv) Let a ∈ WF , and this means that D(a) /∈ F . Now, take any x ∈ S and consider

D(ax). By Axiom (R4), D(ax) = D(a)D(ax), so D(ax) ≤ D(a).

If D(ax) ∈ F , this inequality would imply that D(a) ∈ F because F is a filter.

However, D(a) /∈ F , so it must be the case that D(ax) /∈ F . Therefore, ax ∈ WF , which

means that WF is indeed a right ideal.

This section shows that a proper filter of D(S) gives rise to a particular determinative

pair, without much detail on the filter itself. The next section is devoted to the specifics

of how such a filter is chosen.

4.4 Separating Congruences and Filters

Earlier, Theorem 4.4 established a homomorphism from a semigroup (with 1 and 0) into

P(X) for some set X. However, this homomorphism may not be injective. Hence, this

section provides a remedy by introducing the notion of the (s, t)-separating property,

which turns out to be crucial to achieving injectivity.

Definition 4.10. Let A be an algebra, and s, t ∈ A with s 6= t. Then, an (s, t)-separating

equivalence relation σ is one that satisfies (s, t) /∈ σ.

37

In Definition 4.7, the right congruence is specified by a filter. If an (s, t)-separating

right congruence is to be specified using a filter in the same way, then what properties

must this filter have? This leads to the definition of an (s, t)-separating filter.

Definition 4.11. Let S be a left restriction semigroup, and s, t ∈ S with s 6= t. Then, a

filter F in D(S) is (s, t)-separating when

• D(s) ∈ F , and

• ¬∃e ∈ F : es = et.

Then, it immediately follows that given an (s, t)-separating filter F , the corresponding

θF is an (s, t)-separating right congruence.

For conciseness, an (s, t)-separating congruence or filter will be simply referred to as

a separating congruence or filter, when no ambiguity can arise.

After defining the correct concept of separating filters, we must also show that these

filters do exist. This is the next lemma, which is adopted from the passage preceding [19,

Lemma 2.4].

Lemma 4.12. Let S be a left restriction semigroup, and s, t ∈ S with s 6= t. Then there

exists an (s, t)-separating filter in D(S).

Proof. Since s 6= t, we can let s � t without loss of generality. Consider the principal

filter generated by D(s):

↑D(s) = {e ∈ D(S) | D(s) ≤ e},

where the order is induced by viewing multiplication as meet, i.e. x ≤ y ⇐⇒ xy = x.

38

Is this filter (s, t)-separating? Suppose for contradiction that it is not, which means

that there exists an e ∈ ↑D(s) such that es = et. Then,

s = D(s) · s (R4)

=
(
D(s)e

)
· s e ∈ ↑D(s) =⇒ e ≥ D(s)

= D(s) · (es)

= D(sa) · (et)

=
(
D(s)e

)
· t

= D(s) · t,

and this means that s ≤ t, which contradicts our assumption of s � t. Hence, ↑ D(s) is

indeed an (s, t)-separating filter, and this finishes the proof.

In addition, the maximality of these separating filters turns out to be a crucial property

that enables the representation to work.

Definition 4.13. A maximally (s, t)-separating filter is an (s, t)-separating filter which

is not properly contained in any other (s, t)-separating filter.

Note that a maximally separating filter is not necessarily a maximal filter. A max-

imally separating filter may well be contained in another proper filter, with this other

proper filter not separating.

Building on Lemma 4.12 and using Zorn’s lemma, we can infer the existence of a

maximally separating filter. Like Lemma 4.12, the next lemma is also adopted from the

passage preceding [19, Lemma 2.4].

39

Lemma 4.14. Let S be a left restriction semigroup, and s, t ∈ S with s 6= t. Then there

exists a maximally (s, t)-separating filter in D(S).

Proof. Using the fixed s and t mentioned in the statement, consider the set F of all

(s, t)-separating filters in D(S), ordered by set inclusion. Zorn’s lemma will be employed,

and it requires that

• this set is non-empty, and

• every chain has an upper bound in F .

The first statement is already covered by Lemma 4.12.

Secondly, let C be a chain in F . Consider the union of all filters in C,

U =
⋃
F∈C

F .

By Theorem 2.44, the set U is certainly a filter. Since all of the filters in C are (s, t)-

separating, by definition, none of them contains D(s). Also, none of them contains any

element e such that es = et, so their union U cannot contain such an element. Therefore,

U is (s, t)-separating.

Moreover, every F ∈ C is a subset of U , so U is indeed an upper bound of the chain

C.

Therefore, as both criteria (i) and (ii) are satisfied, Zorn’s lemma implies that the set

F has a maximal element, i.e. a maximally (s, t)-separating filter does exist.

This section culminates in the following lemma, which demonstrates the importance

of the maximality of separating filters: maximally separating filters are prime. (See

Definition 2.42.)

Lemma 4.15. Let S be a left restriction semigroup, s, t ∈ S with s � t, and F ⊂ D(S)

a maximally (s, t)-separating filter. Then, F is prime.

Proof. Let a, b ∈ D(S), and assume for contradiction that a ∨ b ∈ F with a /∈ F and

b /∈ F . Since a /∈ F , we can consider Ga = ↑{af | f ∈ F}. According to Lemma 2.40,

40

Ga is a filter which properly contains a and F . Hence, Ga cannot be a maximally (s, t)-

separating filter because F already is one, and F ⊂ Ga. This means that there exists

some ga ∈ Ga such that gas = gat. Moreover, ga ≥ afa for some fa ∈ F , so afa = afaga,

and

(afa)s = (afaga)s

= afa(gas)

= afa(gat)

= (afaga)t

= (afa)t.

Similarly for b, we can obtain (bfb)s = (bfb)t for some fb ∈ F .

Then, multiplying both sides of (afa)s = (afa)t by fb, and dually for b, we get

(afafb)s = (afafb)t

(bfafb)s = (bfafb)t.

Now, consider afafb ∨ bfafb. By distributivity of (D6’), this equals to (a ∨ b)fafb,

which is in F because all of (a ∨ b), fa and fb are in F .

However, (D7) implies that

(
(a ∨ b)fafb

)
s =

(
(a ∨ b)fafb

)
t,

and this contradicts our assumption of F being (s, t)-separating.

Therefore, given a ∨ b ∈ F , at least one of a and b must be in F , so F is indeed a

prime filter.

Finally, Lemmas 4.14 and 4.15 combine to give the following concise statement.

Corollary 4.16. Given s, t ∈ S with s � t, there exists a prime filter F of D(S) which

is maximally (s, t)-separating.

41

4.5 Final Embedding

This section is the crux of this chapter. Bringing the previous sections together, it

defines the ultimate mapping, which is later proven to be injective and preserves all of

the operations.

Let F be a prime filter of D(S). By Definition 4.3, this F induces a determinative pair.

Then, by Theorem 4.4, this determinative pair gives rise to a semigroup homomorphism

from S into P(XF) for some set XF . Denote this semigroup homomorphism by letting it

take every x ∈ S to ψFx , where

∀z ∈ XF : zψFx =

zx if D(zx) ∈ F ;

undefined otherwise.

Then, define Ψx to be
⋃
Fprime ψ

F
x , the union of all ψFx where F ranges through all the

different prime filters.

An intuitive picture of this potentially obscure concept is the following. Given a prime

filter F , every x ∈ S is taken to ψFx , which is a set of maplets on a set of blocks XF .

Given another prime filter G, every x ∈ S is taken to ψGx , which is another set of maplets

on another set of blocks XG.

By ‘pasting’ the functions x 7→ ψFx and x 7→ ψGx together, the resulting function is

one that takes every x ∈ S to ψFx ∪ ψGx , which is itself a set of maplets on the combined

set of blocks XF ∪XG.

This combined set of maplets on XF ∪XG remains a valid function because:

1. each of ψFx and ψGx is itself a function;

2. XF and XG are disjoint.

When we need to show that a statement holds for Ψx, it is enough to show that the same

statement holds for ψGx , where G is any arbitrary prime filter of D(S).

Finally, define our ultimate embedding candidate Φ : S →
⋃
FprimeP(XF) by letting

it map every x ∈ S to Ψx.

42

This map Φ is in fact the same one used in [19], and some parts of the proofs below

are adopted from the proofs of [19, Lemma 2.6 and Theorem 2.7].

Theorem 4.17. The above map Φ is a homomorphism of a semigroup with ∨, D, 1 and

0.

Proof. The following need to be shown. For all x, y ∈ S:

(i) xΦ · yΦ = (xy)Φ;

(ii) xΦ ∨ yΦ =
(
x ∨ y

)
Φ;

(iii) D(xΦ) =
(
D(x)

)
Φ;

(iv) 1Φ is the full identity function on the base set
⋃
FprimeP(XF);

(v) 0Φ is the empty function on the base set.

The first statement is equivalent to Ψx ·Ψy = Ψxy, and as mentioned earlier, it is enough

to show that ψFx · ψFy = ψFxy for an arbitrary prime filter F . This principle applies to the

other statements too.

(i,iv,v) These statements are the same as ψF preserving the semigroup operation, 1

and 0, which was already established by Theorem 4.4 and Corollaries 4.5 and 4.6.

(iii) To prove that ψFD(x) = D(ψFx), firstly their domains must be equal. This is true

because

z ∈ dom
(
ψFD(x)

)
⇐⇒ D

(
zD(x)

)
∈ F

⇐⇒ D(zx) ∈ F

⇐⇒ z ∈ dom
(
ψFx
)

= dom
(
D(ψFx)

)
.

Then, note that D(ψFx) is an identity restriction; what does ψFD(x) do as a function? Let

ψFD(x) be defined at z ∈ XF ; then zψFD(x) = zD(x) and D(zx) ∈ F . Now, focusing on the

43

relationship between z and zD(x),

D(zx) · z = zD(x) (R5)

= D
(
zD(x)

)
· zD(x) (R1)

= D(zx) · zD(x). (R9)

The above reasoning shows that z θF zD(x), so z = zD(x). As zψFD(x) = zD(x) = z,

ψFD(x) is an identity restriction.

Therefore, since ψFD(x) and D(ψFx) have the same domain and are both identity re-

strictions, these two functions are indeed equal.

(ii) Firstly, recall that x ∨ y is defined to be D(x) ∨D(y) when x and y are arbitrary

elements in S. Hence, let a denote D(x) and b denote D(y), where both a, b ∈ D(S).

Then, the left-hand side of (ii) can be rewritten as

xΦ ∨ yΦ = D
(
xΦ) ∨D

(
yΦ
)

=
(
D(x)

)
Φ ∨

(
D(y)

)
Φ (item (iii) above)

= aΦ ∨ bΦ.

Similarly, the right-hand side of (ii) can be rewritten as

(x ∨ y)Φ =
(
D(x) ∨D(y)

)
Φ

= (a ∨ b)Φ.

Therefore, in order to prove (ii), we must show that ∀a, b ∈ D(S) : aΦ∨bΦ = (a∨b)Φ,

which in turn requires us to prove ψFa∨b = ψFa ∪ ψFb .

Since both sides of this latest statement are identity restrictions, it is enough to show

44

that the domains of both sides are equal.

z ∈ dom
(
ψa∨b

)
⇐⇒ D

(
z(a ∨ b)

)
∈ F

⇐⇒ D
(
za
)
∨D

(
zb
)
∈ F . (D4)

Here, F is a prime filter, so D
(
za
)
∪ D

(
zb
)
∈ F means that either D

(
za
)
∈ F or

D
(
zb
)
∈ F . Therefore, either z ∈ dom

(
ψa
)

or z ∈ dom
(
ψb
)
; in other words,

z ∈ dom
(
ψa
)
∪ dom

(
ψb
)

= dom
(
ψa ∪ ψb

)
.

The above argument works in the reverse direction too, so we can now conclude that

dom(ψa∨b) = dom(ψa ∪ ψb), and hence ψa∨b = ψa ∪ ψb.

Now that a homomorphism is achieved, the next theorem establishes injectivity.

Theorem 4.18. The above map Φ is injective.

Proof. Let s, t ∈ S with s � t (and hence s 6= t), where the order is induced by viewing

the semigroup operation as meet, i.e. a ≤ b if and only if a · b = a. Also, let F be a prime

filter which separates s and t. Use this F to define ψFx where x ∈ S. It will be shown

that for this F , ψFs 6= ψFt , and hence sΨ 6= tΨ.

Firstly, D(s) ∈ F by Definition 4.11, and

D
(
D(s) · s

)
= D(s)

∈ F ,

so ψFs is defined at D(s), and hence ψFs
(
D(s)

)
= s.

Now, we show that ψFt is not equal to ψFs .

45

Case 1: Assume D(t) ∈ F , and note that

D
(
D(s) · t

)
= D

(
D(s) ·D(t)

)
(R9)

= D(s) ·D(t) (R6)

∈ F ,

so ψFt is defined at D(s). Then, are ψFs
(
D(s)

)
and ψFt

(
D(s)

)
equal? Assume (for

contradiction) that they are, and this leads to

s = D(s)t.

By the definition of our congruence θF , there would be an e ∈ F which satisfies

e · s = e ·D(s)t.

However, e · s = e ·D(s)s, so we have

eD(s)s = eD(s)t,

where eD(s) ∈ F because both e and D(s) are in F . This would contradict the premise

that F is an (s, t)-separating filter, so it must be the case that ψFs 6= ψFt as they disagree

on D(s).

Case 2: Assume D(t) /∈ F .

The property of filters implies that any element ‘smaller’ than D(t) cannot be in F . We

know from the Case 1 that D
(
D(s)t

)
= D(s)D(t) ≤ D(t), so D

(
D(s)t

)
cannot be in F ,

and hence ψFt is undefined at D(s). Therefore, ψFs 6= ψFt .

In conclusion, as ψFx is a subset of Ψx for all x ∈ S, the above has shown that

ψFs 6= ψFt , which implies sΦ 6= tΦ. Therefore, Φ is injective.

46

Finally, Theorems 4.17 and 4.18 together lead to the following corollary.

Corollary 4.19. The above map Φ is an embedding from the algebra of programs (i.e.

a semigroup with ∨, D, 1 and 0) into a same algebra of partial functions (i.e. P(X) for

some set X).

This statement, being the culmination of this entire chapter, asserts that there is a

representation of the algebra of programs. On this important note, this chapter con-

cludes.

Chapter 5

Tests

After the previous chapter established a representation for the algebra of programs, this

chapter will proceed to study the tests and the if-then-else operation by proving that

the axioms (T1) to (T6) and (G1) to (G2) are sound and complete.

In this chapter, let S be a semigroup (with ∨, D, 1 and 0) as before, and let K be an

algebra of tests with the operations ∧, ∨, ¬, T and F .

5.1 Components of a Test

Earlier, Section 3.3 showed that non-halting tests are partial predicates, which can be

written as disjoint pairs. The components of a disjoint pair are subsets of the state set,

which correspond directly to identity restrictions, as Section 4.1 explained. Therefore, a

disjoint pair can in fact be represented by mapping its components to domain elements

(i.e. elements of D(S)), and then the existing semigroup embedding Φ of Corollary 4.19

can be used.

Firstly, the ‘true’ and ‘false’ parts of an arbitrary test are identified using the if-then-else

operation. The ‘true’ part of a test α is α[1, 0], and its ‘false’ part is α[0, 1]. The following

are the axioms involving these parts.

48

(T1) (α ∨ β)[1, 0] = α[1, 0] ∨ β[1, 0]

(α ∧ β)[1, 0] = α[1, 0] · β[1, 0]

(T2) (α ∨ β)[0, 1] = α[0, 1] · β[0, 1]

(α ∧ β)[0, 1] = α[0, 1] ∨ β[0, 1]

(T3) (¬α)[s, t] = α[t, s] for all s, t ∈ S

(T4) α[1, 0] · α[0, 1] = 0

(T5) α[1, 0], α[0, 1] ∈ D(S)

(T6) α[1, 0] = β[1, 0] and α[0, 1] = β[0, 1] implies that α = β

Note also that these axioms are all sound under our functional interpretation: (T1)

to (T3) follow from the discussion at the end of Section 3.3, (T4) ensures that α[1, 0] and

α[0, 1] do form a disjoint pair, (T5) asserts that these parts are indeed domain elements,

and (T6) enables us to uniquely identify a test by its two parts.

Before venturing forth, we define a new notation for conciseness.

Notation 5.1. For every α ∈ K, let αT = α[1, 0] and αF = α[0, 1].

Now, we define the representation of K.

Definition 5.2. Extend the mapping Φ from Chapter 4 to cover the tests K, and for all

α ∈ K, define αΦ to be
〈
αTΦ, αFΦ

〉
.

Since Φ is already a semigroup homomorphism (Theorem 4.17),

αTΦ · αFΦ = (αT · αF)Φ

= 0Φ (T4)

= 0,

so αTΦ and αFΦ are disjoint, and hence the extended Φ does map K to a set of disjoint

pairs. Next comes the main theorem of this section.

49

Theorem 5.3. The extended mapping Φ on K in Definition 5.2 is an embedding from

K to a set of disjoint pairs.

Proof. Note that

(α ∧ β)Φ =
〈(

(α ∧ β)T
)
Φ,
(
(α ∧ β)F

)
Φ
〉
, and

(α)Φ ∧ (β)Φ =
〈
(αT)Φ, (αF)Φ

〉
∧
〈
(βT)Φ, (βF)Φ

〉
=
〈
(αT)Φ · (βT)Φ, (αF)Φ ∪ (βF)Φ

〉
.

In order to show that these two are the same, both of their components will be shown

equal.

For the first component, we show (αT)Φ · (βT)Φ =
(
(α ∧ β)T

)
Φ, which amounts to

ψGαT
∩ ψGβT = ψG(α∧β)T , where G is any prime filter in D(S). Suppose that x ∈ dom

(
ψGαT
∩

ψGβT
)
. This is equivalent to

x ∈ dom
(
ψGαT

)
and x ∈ dom

(
ψGαT

)
⇐⇒ D(xαT) ∈ G and D(xβT) ∈ G

⇐⇒ D(xαT) ·D(xβT) ∈ G.

But, D(xαT) ·D(xβT) = D(xαTβT)

= D
(
x · (α ∧ β)T

)
.

So, D(xαT) ·D(xβT) ∈ G ⇐⇒ D
(
x · (α ∧ β)T

)
∈ G

⇐⇒ x ∈ dom
(
ψGα∧β

)
.

The above reasoning established that dom
(
ψGαT
∩ ψGβT

)
= dom

(
ψG(α∧β)T

)
, and since these

functions are all identity restrictions, it follows that ψGαT
∩ ψGβT = ψG(α∧β)T .

50

On the other hand, for the second component, we show ψGαF
∪ψGβF = ψG(α∨β)F . Suppose

that x ∈ dom
(
ψG(α∨β)F

)
, which is equivalent to D

(
x · (α ∨ β)F

)
∈ G.

D
(
x · (α ∨ β)F

)
= D

(
x · (αF ∨ βF)

)
(T2)

= D(xαF) ∨D(xβF), (D5)

so D(xαF) ∨ D(xβF) ∈ G. Since G is prime, either D(xαF) ∈ G or D(xβF) ∈ G,

which means that x ∈ dom
(
ψGαF

)
∪ dom

(
ψGβF

)
. The above showed that dom

(
ψG(α∧β)F

)
=

dom
(
ψGαF

)∪ dom
(
ψGβF

)
, and as these functions are all identity restrictions, it follows that

ψGαF
∪ ψGβF = ψG(α∧β)F .

Now that the case of (α ∧ β)Φ is done, the dual case of (α ∨ β)Φ can be established

in a similar way.

What about (¬α)Φ? Note that

(¬α)Φ =
〈
ψG(¬α)T , ψ

G
(¬α)F

〉
and ¬(αΦ) =

〈
ψGαF

, ψGαT

〉
,

so we need to show ψGαF
= ψG(¬α)T . Again, as both of these are identity restrictions, it is

enough to consider their domains. Starting from the right-hand side,

x ∈ dom(ψG(¬α)T
)
⇐⇒ D

(
x · (¬α)T

)
∈ G.

However, x · (¬α)T = x · αF by extending (T3), so

D
(
x · αF

)
∈ G ⇐⇒ x ∈ dom(ψGαF

)
.

Therefore, it is indeed true that ψGαF
= ψG(¬α)T .

51

As for the constants T and F :

TΦ =
〈
1Φ, 0Φ

〉
=
〈
1, 0
〉

FΦ =
〈
0Φ, 1Φ

〉
=
〈
0, 1
〉
,

so these are correctly represented too.

Finally, we prove that the test homomorphism Φ is injective. Let α, β ∈ K such that

αΦ = βΦ. Then, 〈
αTΦ, αFΦ

〉
=
〈
βTΦ, βFΦ

〉
.

By the definition of equality of disjoint pairs (Section 3.3), the above equation is equivalent

to

αTΦ = βTΦ and αFΦ = βFΦ.

These latest equations only involve programs, and since Φ is a program embedding, it

follows that

αT = βT and αF = βF .

Now, by axiom (T6) and Notation 5.1, we can conclude that α and β are equal, and

hence Φ is a test embedding.

5.2 General if-then-else

This section defines how Φ acts on if-then-else expressions, and proves that Φ preserves

the if-then-else operation.

An expression like α[s, t] contains both a test and programs, so it is convenient to

recast such an expression into one which contains only programs. Intuitively, α[s, t] should

be the same as (αT · s) ‘or’ (αF · t), where αT , αF , s and t are all programs. However, the

abstract program algebra does not have an ‘or’ or ‘union’ operation between two arbitrary

functions, as functions are not closed under union in general. Hence, the rule of evaluating

if-then-else expressions is only defined in the image of the representation. Only after

52

the representation maps the abstract program algebra into the realm of concrete functions

can we use the set-theoretic union operation.

In short, the first goal of this section is to establish the following equation.

(α[s, t])Φ = (αT s)Φ ∪ (αF t)Φ (5.1)

Here, even though ∪ is not generally well defined for arbitrary functions, the above

equation turns out a special case where the union is in fact valid. To prove the above

equation, we show its equivalent:

ψGα[s,t] = ψGαT s
∪ ψGαF t

, (5.2)

where G is any prime filter in D(S).

The required axioms for this section are:

(G1) αT · s = αT · α[s, t]

αF · t = αF · α[s, t]

(G2) (αT ∨ αF) · α[s, t] = α[s, t]

The justification of these axioms’ soundness is as follows. The first equation of (G1)

means that ‘restricting the partial function α[s, t] to where α is true’ is the same as

‘restricting the partial function s to where α is true’. In other words, let x be an element

of the state set such that xα = T , i.e. xαT = x. Then, x(αT · s) = (xαT)s = xs, and

x(αT · α[s, t]) = (xαT)α[s, t]

= x(α[s, t])

= xs.

On the other hand, if y is an element of the state set such that yα = F , then αT is

undefined at y, and hence both sides are undefined at y. Therefore, αT · s = αT ·α[s, t] is

true under our functional interpretation. The soundness of the second equation of (G1)

53

can be achieved using the same argument.

As for (G2), the term (αT ∨αF) denotes ‘the identity restricted to where α is defined’,

so the whole equation means that ‘restricting α[s, t] to where α halts’ is the same as

α[s, t] itself. This is again clearly true under our functional interpretation. Therefore,

both (G1) and (G2) are sound.

Now, a useful proposition can be further derived from these two axioms.

Proposition 5.4. D(α[s, t]) = D(αT · s) ∨D(αF · t)

Proof. Apply the D operator on both sides of (G2).

D
(
(αT ∨ αF) · α[s, t]

)
= D

(
αT · α[s, t]

)
∨D

(
αF · α[s, t]

)
(D6’)

= D
(
αT s

)
∨D

(
αF t
)

(G1)

To show that Equation 5.2 holds, the next three lemmas are established first.

Lemma 5.5. dom(ψGαT s
) ∩ dom(ψGαF t

) = ∅.

Proof. Assume that x is in dom(ψGαT s
)∩dom(ψGαF t

), which means that both D(xαT s) and

D(xαF t) are in G. Consider their product:

D(xαT s) ·D(xαF t) = D
(
x ·D(αT s)

)
·D
(
(x ·D(αF t)

)
(R9)

= D
(
x ·D(αT s) ·D(αF t)

)
Proposition 2.24

= D
(
x · αTD(s) · αFD(t)

)
(R8) and αT = D(αT)

= D
(
x ·D(s) · (αT · αF) ·D(t)

)
= D

(
x ·D(s) · 0 ·D(t)

)
(T4)

= 0

The above reasoning shows that 0 ∈ G. However, G is assumed to be a proper filter,

so it cannot contain 0. Therefore, it must be the case that both D(xαT s) and D(xαF t)

cannot be in G at once.

54

Lemma 5.6. dom(ψGα[s,t]) = dom(ψGαT s
) ∪ dom(ψGαF t

).

Proof. Consider the join of D(xαT s) and D(xαF t).

D(xαT s) ∨D(xαF t) = D
(
xD(αT s)

)
∨D

(
xD(αF t)

)
(R9)

= D
(
x
(
D(αT s) ∨D(αF t)

))
Distributivity

= D
(
xD(α[s, t])

)
Proposition 5.4

= D
(
xα[s, t]

)
(R9)

Finally, D(xαT s) ∨ D(xαF t) = D(xα[s, t]) means that D(xαT s) is in G if and only if

either D(xαT s) or D(xαF t) is in G, and this is exactly the lemma statement.

Lemma 5.7. If x ∈ dom(ψGαT s
) ∪ dom(ψGαF t

), then x
(
ψGαT s

∪ ψGαF t

)
= xψGα[s,t].

Proof. Firstly, assume that x ∈ dom(ψGαT s
). We prove that xψGαT s

= xψGα[s,t], i.e. xαT s =

x · α[s, t], by finding some d ∈ G such that d·(xαT s) = d·(x·α[s, t]). In fact, d = D(xαT) is

a suitable choice. The assumption of x ∈ dom(ψGαT s
) means that D(xαT s) ∈ G. Moreover,

D(xαT) ·D(xαT s) = D(xαT s),

so D(xαT) ≥ D(xαT s), and hence D(xαT) ∈ G. Now,

D(xαT) · (xαT s) =
(
D(xαT) · xαT

)
s

= xαT · s (R1)

= x · αT s

= x · αTα[s, t] (G1)

= x ·D(αT) · α[s, t] (because D(αT) = αT)

= D(xαT) · x · α[s, t], (R5)

so indeed xαT s is related to xα[s, t].

55

Finally, assume that x ∈ dom(ψGαF t
), and we prove that xψGαF t

= xψGα[s,t]. However,

this can be established simply using the same argument as above, and therefore the proof

is now complete.

The three lemmas above culminate in the following theorem.

Theorem 5.8. The embedding Φ satisfies
(
α[s, t]

)
Φ =

(
αT s

)
Φ ∪

(
αF t
)
Φ.

Proof. As discussed at the start of this section, this theorem amounts to proving Equation

5.2:

ψGα[s,t] = ψGαT s
∪ ψGαF t

.

Firstly, Lemma 5.5 showed that the two functions on the right-hand side have disjoint

domains, so that the functional union is valid.

Then, Lemma 5.6 proved that the domains of both sides are equal, and Lemma 5.7

demonstrated that the functions on both sides ‘do the same action’.

Therefore, the functions on both sides of Equation 5.2 are indeed equal, so the theorem

statement follows.

Next comes the second goal of this section, which is to show that Φ preserves the

if-then-else operation. Let α ∈ K and x, t ∈ S. Then, the expression (αΦ)[sΦ, tΦ]

is legal because Φ is a representation of both tests and programs. Furthermore, using

Definition 5.2, (αΦ)[sΦ, tΦ] can be written as
〈
αTΦ, αFΦ

〉
[sΦ, tΦ]. From this, we make

the following definition.

Definition 5.9. The expression
〈
αTΦ, αFΦ

〉
[sΦ, tΦ] is equal to

(
αTΦ · sΦ

)
∪
(
αFΦ · tΦ

)
.

The validity of this definition is justified as follows. Firstly, since Φ is a semigroup

homomorphism (Theorem 4.17),

(
αTΦ · sΦ

)
∪
(
αFΦ · tΦ

)
= (αT · s)Φ ∪ (αF · t)Φ.

56

Secondly, for the right-hand side of the above equation, Lemma 5.5 implies that the union

is well defined because the domains are disjoint, so Definition 5.9 is indeed correct.

At last, we state the main theorem of this section.

Theorem 5.10. The mapping Φ preserves the if-then-else operation. In other words,

(
α[s, t]

)
Φ = (αΦ)[sΦ, tΦ].

Proof. Starting with the left-hand side:

(
α[s, t]

)
Φ = (αT s)Φ ∪ (αF t)Φ Theorem 5.8

=
(
αTΦ · sΦ

)
∪
(
αFΦ · tΦ

)
(because Φ is a homomorphism)

=
〈
αTΦ, αFΦ

〉
[sΦ, tΦ] Definition 5.9

= (αΦ)[sΦ, tΦ]. Definition 5.2

In conclusion, this chapter established the soundness and completeness of the axioms

(T1) to (T6) and (G1) to (G2). Section 5.1 started by arguing that the axioms (T1) to

(T6) are sound, and went on to build a representation from the tests to disjoint pairs,

using the existing representation from Chapter 4. Then, Section 5.2 defined the repre-

sentation of if-then-else expressions, and demonstrated that this definition preserves

the if-then-else operation.

Overall, up to this point in the thesis, Chapters 4 and 5 culminated in a two-sorted

representation Φ of the program algebra, as this Φ injectively maps both abstract pro-

grams and abstract tests to their concrete counterparts, while preserving every operation.

Therefore, the set of the axioms listed in Section 3.7 is indeed sound and complete.

Chapter 6

Equality Test

As introduced in Chapter 3, one of the most common tests in if-then-else statements

is the equality test :

(· = ·) : S × S → K.

Given two functions f and g on X and x ∈ X, the equality test of f and g is the partial

predicate defined by:

x(f = g) =

T if both xf and xg are defined, and xf = xg;

F if both xf and xg are defined, but xf 6= xg;

U if either xf or xg is undefined.

Just like general tests, the equality test is studied by identifying its true and false

parts. This further gives rise to two operations on the semigroup S:

(f ∗ g) = (f = g)[1, 0] and

(f 6= g) = (f = g)[0, 1],

so (f ∗ g) is the identity restriction to where f and g are both defined and equal, and

(f 6= g) is that to where f and g are both defined but not equal.

The above shows that ∗ and 6= can be defined in terms of the = operation. In fact,

58

the other direction is also true. Given the operations ∗ and 6=, the equality test (f = g)

is implicitly defined to be the operation whose ‘true’ and ‘false’ parts are (f ∗ g) and

(f 6= g) respectively.

Therefore, axiomatising the equality test simply involves studying these two new

operations, which in fact was already done by Jackson and Stokes [19, Sections 2.2 and

2.3]. The next two sections respectively list the axioms of both these operations, and the

proofs are outlined using stepping stones from [19].

6.1 Operation of Agreement

As briefly mentioned in the beginning of this chapter, ‘the restriction of the identity to

where both functions are defined and equal’ corresponds to a binary operation ∗ on a

left restriction semigroup S, and this operation satisfies the following axioms. For all

x, y, z, w ∈ S:

(A1) (x ∗ x)x = x;

(A2) x ∗ y = y ∗ x;

(A3) (x ∗ y)x = (x ∗ y)y;

(A4) (x ∗ y)(z ∗ w) = (z ∗ w)x ∗ y;

(A5) x(y ∗ z) = (xy ∗ xz)x.

Note that the domain operation D can be expressed in terms of ∗ by D(x) = x ∗ x.

The proof of completeness requires the following two lemmas, which are [19, Lemma

2.10 and Lemma 2.11] respectively.

Lemma 6.1. For every x, y ∈ S, the element (x ∗ y) is the maximum of all a ∈ D(S)

(with respect to the ordering induced by the semilattice meet) such that

• a ≤ D(x) ·D(y);

• ax = ay.

59

Lemma 6.2. If F is any filter of D(S) and x, y ∈ S, then the following are equivalent:

• D(x) ∈ F and ∃f ∈ F : fx = fy;

• (x ∗ y) ∈ F .

Note that in the context of determinative pairs (Section 4.3), the first statement in

this lemma is the same as ‘F not (x, y)-separating’, or ‘x and y are not related by θF ’.

Theorem 6.3. The mapping Φ is a homomorphism with respect to ∗, i.e. xΦ ∗ yΦ =

(x ∗ y)Φ.

Proof. As before, it is sufficient to show that ψFx ∗ψFy = ψFx∗y for any prime filter F ⊂ D(S).

Let z ∈ dom(ψFx∗y); equivalently, D
(
z(x ∗ y)

)
∈ F . Now,

D
(
z(x ∗ y)

)
= D

(
(zx ∗ zy)z

)
(A5)

= (zx ∗ zy) ·D(z) (R8)

=
(
D(z)zx

)
∗ zy (A4)

= zx ∗ zy, (R1)

so (zx ∗ zy) ∈ F .

Furthermore, by Lemma 6.2, (zx ∗ zy) ∈ F is equivalent to

D(zx), D(zy) ∈ F and zx = zy

⇐⇒ z ∈ dom(ψFx) and z ∈ dom(ψFy) and zψFx = zψFy

⇐⇒ z ∈ dom(ψFx ∗ ψFy),

and this shows that the domains of (ψFx ∗ψFy) and ψFx∗y are the same. Since both of these

two functions are identity restrictions, they are indeed equal.

60

6.2 Operation of Disagreement

Contrary to the previous section, ‘the restriction of the identity to where both functions

are defined but not equal’ corresponds to another binary operation 6= on a left restriction

semigroup S with 0, and it satisfies the following axioms. For all x, y, z ∈ S and a ∈ D(S):

(Z1) D(x 6= y) = (x 6= y);

(Z2) x(y 6= z) = (xy 6= xz)x;

(Z3) (x ∗ y)(x 6= y) = 0;

(Z4) a(x 6= y) = (ax 6= ay);

(Z5) (x ∗ y) ≤ a and (x 6= y) ≤ a imply D(x)D(y) ≤ a.

(These axioms are labelled with the letter Z because this operation of disagreement is

antithetical to the operation of agreement in the previous section.)

The proof of this section’s main theorem requires the following lemma, which is ex-

tracted from the proof of [19, Theorem 2.17].

Lemma 6.4. Let s, t ∈ S with s 6= t. If F is a maximal filter in D(S) with respect to

(s ∗ t) /∈ F , and x, y ∈ S with D(x), D(y) ∈ F , then (x ∗ y) /∈ F ⇐⇒ (x 6= y) ∈ F .

Finally, the next theorem establishes the completeness of the axioms (Z1) to (Z5). Its

proof uses a similar argument to [19, Theorem 2.17].

61

Theorem 6.5. The mapping Φ is a homomorphism with respect to 6=, i.e. xΦ 6= yΦ =

(x 6= y)Φ.

Proof. As before, it is sufficient to show that ψFx 6= ψFy = ψFx6=y for any prime filter

F ⊂ D(S).

z ∈ dom(ψFx 6= ψFy)

⇐⇒ z ∈ dom(ψFx) and z ∈ dom(ψFy) and zψFx 6= zψFy

⇐⇒ D(zx), D(zy) ∈ F and zx 6= zy

⇐⇒ (zx ∗ zy) /∈ F Lemma 6.2

⇐⇒ (zx 6= zy) ∈ F Lemma 6.4

⇐⇒ D
(
z(x 6= y)

)
∈ F (Z1) and (Z2)

⇐⇒ z ∈ dom(ψFx 6=y)

The above reasoning shows that the domains of both (ψFx 6= ψFy) and ψFx 6=y are equal, and

since both of these are identity restrictions, the proof is now complete.

Chapter 7

Three-Valued Logic

This thesis will conclude with a study of three-valued logic on its own, for the algebra of

commutative three-valued tests is interesting in itself. In Chapter 5, the tests were studied

in the presence of programs, and the laws satisfied by the tests alone were never explicitly

stated, as these laws must follow from the laws of the program algebra. However, what

are the axioms of the tests in the absence of programs? This is the subject of this chapter.

This chapter will begin with a brief historical survey on the various generalisations

from two-valued to three-valued logic, with an emphasis on the differences between the

non-commutative and commutative three-valued logics. These two systems stem from

the sequential and parallel evaluation paradigms, respectively. Finally, this chapter will

establish an algebraic representation of the commutative three-valued logic.

7.1 Earliest Generalisations

The study of three-valued logic emerged at the beginning of the 20th Century, and the

earliest work was the 1920 paper [25] by Lukasiewicz. Not long afterwards, Kleene also

introduced his three-valued logic in his 1938 paper [21], and later, he elaborated his study

of three-valued logic in his 1952 book [22].

The basic logical connectives in Lukasiewicz’s logic are identical to those in Kleene’s

logic, as shown in the following tables. The way these connectives are defined is the same

as the parallel evaluation strategy.

63

∧ T F U

T T F U

F F F F

U U F U

∨ T F U

T T T T

F T F U

U T U U

¬

T F

F T

U U

Despite the same basic connectives, Lukasiewicz’s and Kleene’s logics differ in their

interpretations of logical implication. Lukasiewicz’s logic defines U =⇒ U to be T ,

while Kleene’s logic defines U =⇒ U to be U . In this thesis, U =⇒ U is considered

equivalent to ¬U ∨ U , as in the classical two-valued logic. Since ¬U ∨ U evaluates to U ,

Kleene’s logic is adopted by this thesis.

This branch of generalised logic has now grown into a number of vast subject areas

such as many-valued logic and fuzzy logic, and a more detailed history and survey can

be found (for example) in the book [2] by Bergmann.

7.2 Conditional Logic

Another branch of generalisation of Boolean logic was initiated by McCarthy in his 1963

paper [27]. In this paper, he not only presented some axioms of if-then-else, but

also gave an interpretation of the three-valued logical connectives using the short-circuit

evaluation strategy, which is common in most mainstream programming languages.

The following tables show the behaviour of these short-circuit logical connectives.

∧ T F U

T T F U

F F F F

U U U U

∨ T F U

T T T T

F T F U

U U U U

¬

T F

F T

U U

The main differences between Kleene’s logic and conditional logic are the expressions

U ∨ T and U ∧ F . Using the former as an example, suppose that p and q are programs

which should return Boolean values, and that p does not halt and q returns T . When a

computer with sequential strategy evaluates p ∨ q, it evaluates p first, and since p does

64

not halt, the evaluation of the entire expression does not halt either. Hence, U ∨ T is U

under the sequential strategy. On the other hand, using parallel strategy on the same

p∨q, both p and q are evaluated; as soon as q returns T , the value of the entire expression

is straightaway determined to be T , even though p has not returned an answer. Hence,

U ∨ T is T under the parallel strategy.

The algebraic equivalent of this non-commutative conditional logic is the C-algebra,

where the ‘C’ here stands for ‘conditional’. The paper [14] by Guzmán and Squire studied

C-algebras on their own, and a number of papers on the algebra of programs (such as

[26] and [29]) incorporated the C-algebra as their algebra of tests.

7.3 Kleene Algebras

Just like two-valued logic corresponds to Boolean algebras, and conditional logic to C-

algebras, the commutative three-valued logic adopted in this thesis should have an alge-

braic parallel too. Such an algebraic parallel turns out to be the Kleene algebra.

Definition 7.1. A Kleene algebra is an algebra
〈
K;∧,∨, ′, 0, 1

〉
of type (2, 2, 1, 0, 0) such

that
〈
K;∧,∨, 0, 1

〉
forms a distributive bounded lattice, and the pseudo-complement ′

satisfies:

1. (a ∧ b)′ = a′ ∨ b′ (De Morgan’s Laws)

(a ∨ b)′ = a′ ∧ b′

2. a′′ = a (Involution)

3. a ∧ a′ ≤ b ∨ b′ (Kleene Property)

(It is important to note that this Kleene algebra has no relation to the Kleene algebra

of regular languages!)

This very algebraic object has in fact been extensively studied, albeit under many

different guises. In 1958, Kalman called this the normal i-lattice [20]. The 1991 book by

Cleave [6, Chapter 7] and the 1982 paper by Dunn [10] both term it the normal quasi-

Boolean algebra. On the other hand, the 2008 book by Bergmann [2] and the 2017 paper

65

by Kumar and Banerjee [24] both use the name Kleene algebra. This thesis adopts this

latest, most recent name.

The main difference between the Kleene algebra and the Boolean algebra is that the

law of excluded middle (x ∧ x′ = 0 and x ∨ x′ = 1) may not hold in a Kleene algebra.

Still, a Kleene algebra still satisfies all the properties which hold in a bounded distributive

lattice.

In fact, both Kleene algebras and Boolean algebras can be placed in the following

chain of generalisation.

Boolean algebras ⊂ Kleene algebras ⊂ De Morgan algebras ⊂ Ockham algebras

A more thorough explanation of these various generalisations of Boolean algebras can be

found in the book Ockham Algebras by Blyth and Varlet [5, pages 4-5].

7.4 Representation of Kleene Algebras

This section shows that the Kleene algebra just described can be represented by the

disjoint pairs from Section 3.3. Here, let B∧ denote the set of disjoint pairs over a

Boolean algebra B.

In [24], Kumar and Banerjee has shown that for any Kleene algebra K, there is always

a Boolean algebra BK such that K can be embedded into B
[2]
K , where

B
[2]
K = { [a, b] | a, b ∈ BK ; a ≤ b},

and its operations are

• [a, b] ∧ [c, d] = [a ∧ c, b ∧ d]

• [a, b] ∨ [c, d] = [a ∨ c, b ∨ d]

• ¬[a, b] = [¬b,¬a]

• > = [1, 1] and ⊥ = [0, 0]

66

Although B[2] and our goal B∧ are different, they bear a strong similarity. Intuitively,

the disjoint pair
〈
a, b
〉

identifies a partial predicate by its ‘true’ part a and ‘false’ part b,

while an element [c, d] ∈ B[2] identifies one by its ‘true’ part c and its ‘non-false’ part d.

This motivates the following isomorphism.

Theorem 7.2. Let B be a Boolean algebra. Then, the set of disjoint pairs B∧ is isomor-

phic to B[2] just defined above, using the isomorphism µ : B∧ → B[2], which maps every〈
a, b
〉
∈ B∧ to [a,¬b] ∈ B[2].

Proof. We first show that all operations are preserved. Let
〈
a, b
〉
,
〈
c, d
〉
∈ B∧. Then,

(〈
a, b
〉
∧
〈
c, d
〉)
µ =

〈
a ∧ c, b ∨ d

〉
µ

= [a ∧ c,¬(b ∨ d)]

= [a ∧ c,¬b ∧ ¬d]

= [a,¬b] ∧ [c,¬d]

=
〈
a, b
〉
µ ∧

〈
c, d
〉
µ,

so ∧ is preserved, and the same reasoning applies to the dual ∨ too.

As for negation,

(
¬
〈
a, b
〉)
µ =

〈
b, a
〉
µ

= [b,¬a]

= ¬[a,¬b]

= ¬
(〈
a, b
〉
µ
)
.

Furthermore,
〈
1, 0
〉
µ = [1,¬0] = [1, 1] and

〈
0, 1
〉
µ = [0,¬1] = [0, 0], so the top and

bottom elements are preserved.

Next, we show that µ is bijective. Firstly, suppose
〈
a1, a2

〉
µ =

〈
b1, b2

〉
µ. Then,

[a1,¬a2] = [b1,¬b2], so a1 = b1 and a2 = b2. Hence,
〈
a1, a2

〉
=
〈
b1, b2

〉
, so µ is indeed

injective.

67

Also, given [a1, a2] ∈ B[2], it follows from definition that a1 ∧ a2 = a1, and hence

a1 ∧ a′2 = (a1 ∧ a2) ∧ a′2 (replacing a1 by a1 ∧ a2)

= a1 ∧ (a2 ∧ a′2)

= a1 ∧ 0

= 0.

This shows that (a1, a
′
2) belongs to B∧, and

〈
a1,¬a2

〉
µ = [a1, a2], so µ is surjective.

Therefore, this completes the proof of B[2] ∼= B∧.

As K is embeddable into B
[2]
K and B[2] ∼= B∧, we can at last conclude that our algebra

of partial predicates is indeed a Kleene algebra!

The axioms of a Kleene algebra were not needed by the algebra of test studied in

Chapter 5, since other laws were used to construct the representation. Nevertheless, the

laws of a Kleene algebra must be consequences of the previous laws.

References

[1] G. M. Bergman. Actions of boolean rings on sets. Algebra Universalis, 28(2):153–187,

1991.

[2] M. Bergmann. An Introduction to Many-Valued and Fuzzy Logic. Cambridge Uni-

versity Press, 2008.

[3] G. Birkhoff and J. D. Lipson. Heterogeneous algebras. Journal of Combinatorial

Theory, 8(1):115–133, 1970.

[4] S. L. Bloom and R. Tindell. Varieties of “if-then-else”. SIAM Journal of Computing,

12(4):677–707, 1983.

[5] T. S. Blyth and J. C. Varlet. Ockham Algebras. Oxford University Press, 1994.

[6] J. P. Cleave. A Study of Logics. Oxford University Press, 1991.

[7] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, 2002.

[8] K. Denecke and S. L. Wismath. Universal Algebra and Applications in Theoretical

Computer Science. CRC Press, 2002.

[9] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM Trans-

actions on Computational Logic, 7(4):798–833, 2006.

[10] J. M. Dunn. A relational representation of quasi-Boolean algebras. Notre Dame

Journal of Formal Logic, 23(4):353–357, 1982.

[11] V. Gould. Notes on restriction semigroups and related structures; formerly (weakly)

left E-ample semigroups. Retrived from http://www-users.york.ac.uk/~varg1/

restriction.pdf, 2010.

[12] G. Grätzer. Universal Algebra. Springer Verlag, 1979.

[13] I. Guessarian and J. Meseguer. On the axiomatization of “if-then-else”. SIAM

Journal of Computing, 16(2):332–357, 1987.

69

[14] F. Guzmán and C. C. Squire. The algebra of conditional logic. Algebra Universalis,

27(1):88–110, 1990.

[15] J. M. Howie. Fundamentals of Semigroup Theory. Oxford University Press, 1995.

[16] M. Jackson and T. Stokes. An invitation to C-semigroups. Semigroup Forum,

62(2):279–310, 2001.

[17] M. Jackson and T. Stokes. Semigroups with if-then-else and halting programs. In-

ternational Journal of Algebra and Computation, 19(7):937–961, 2009.

[18] M. Jackson and T. Stokes. Modal restriction semigroups. International Journal of

Algebra and Computation, 21(7):1053–1095, 2011.

[19] M. Jackson and T. Stokes. Monoids with tests and the algebra of possibly non-halting

programs. Journal of Logical and Algebraic Methods in Programming, 84(2):259–275,

2015.

[20] J. A. Kalman. Lattices with involution. Transactions of the American Mathematical

Society, 87(2):485–491, 1958.

[21] S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic,

3(4):150–155, 1938.

[22] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

[23] D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages

and Systems, 19(3):427–443, 1997.

[24] A. Kumar and M. Banerjee. Kleene algebras and logic: Boolean and rough set

representations, 3-valued, rough and perp semantics. Studia Logica, 105(3):439–469,

2017.

[25] J. Lukasiewicz. On three-valued logic. In L. Borkowski, editor, Selected works, pages

87–88. North-Holland, 1970.

[26] E. G. Manes. Adas and the equational theory of if-then-else. Algebra Universalis,

30(3):373–394, 1993.

[27] J. McCarthy. A basis for a mathematical theory of computation. In Computer

programming and formal systems, pages 33–70. North-Holland, 1963.

[28] A. H. Mekler and E. M. Nelson. Equational bases for if-then-else. SIAM Journal of

Computing, 16(3):465–485, 1987.

70

[29] G. Panicker, K. V. Krishna, and P. Bhaduri. Axiomatization of IF-THEN-ELSE over

monoids of possibly non-halting programs and tests. International Journal of Algebra

and Computation, 27(3):273–298, 2017.

[30] D. Pigozzi. Equality-test and if-then-else algebras: axiomatization and specification.

SIAM Journal of Computing, 20(4):766–805, 1991.

[31] B. M. Schein. Relation algebras and function semigroups. Semigroup Forum, 1(1):1–

62, 1970.

[32] B. M. Schein. Lectures on semigroups of transformations. In Twelve Papers in Logic

and Algebra, volume 113 of AMS Translations Series 2, pages 123–181. American

Mathematical Society, 1979.

