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Abstract 

In the structural optimization of a ring-stiffened cylindrical shell the unknown variables are the 

shell thickness as well as the thickness and the number of flat rings. The shell diameter enables to 

realize a belt-conveyor structure inside of the shell.  The uniformly distributed vertical load consists 

of dead and live load. The design constraints relate to the local shell buckling strength, to the panel 

ring buckling and to the deflection of the simply supported bridge. The cost function includes the 

material and fabrication costs. The fabrication cost function is formulated according to the 

fabrication sequence and includes also the cost of forming of shell elements into the cylindrical 

shape as well as the cost of cutting of the flat plate ring-stiffeners. Since the shell thickness does not 

depend on number of ring-stiffeners (n), the nopt is calculated for a selected region of n. 
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List of symbols 

 

Ar    cross-sectional area of a ring stiffener 

AT   thermal impulse due to welding 

Aw   cross-sectional area of a weld 

C      coefficient Eq. 17 

c0     specific heat 

E      elastic modulus 

fy     yield stress 

hr     stiffener height 

I       arc current 

Ir      moment of inertia of a ring stiffener 

Ix     moment of inertia of the shell cross-section 

K     cost 

KM  material cost 

KF   fabrication cost 

kM  material cost factor 

kF   fabrication cost factor 

L     span length 

Le   shell effective width 

Lr    distance of rings 

M     bending moment 

n     number of ring stiffeners 

p     factored load intensity 

p0   unfactored load intensity 

QT  specific heat input caused by welding 

R     shell radius 

R0   radius Figure 1 

Ta, Tb   times Table 1 

t      thickness 

tr     ring stiffener thickness 

U    arc voltage 

umax  maximal radial deformation 

V    volume 

vw  welding speed 



w     deflection 

yG   distance of the gravity centre 

Z      factor Eq.17 

0    coefficient of thermal expansion 

β      reduction factor Eq.15 

0     coefficient of thermal efficiency 

κ      number of elements to be assembled 

Θ     difficulty factor 

λ     Eq.6 

ρ     material density 

0   factor Eq.18 

σ     normal stress 

E   buckling stress 

cr   critical buckling stress 

ψ     coefficient Eq.18 

ω     quotient Eq.21 

 

1. Introduction 

 

Stiffened shells are widely used in offshore structures, bridges, towers, etc. Rings and/or stringers 

can be used to strengthen the shape of cylindrical shells. Shells can be loaded by axial compression, 

bending, external or internal pressure or by combined load. 

  Design rules for the shell buckling strength have been worked out by ECCS [1], API [2] and 

DNV [3]. The optimum design of stiffened shells has been treated in some of our articles [4, 5, 6]. 

The optimum design of a stiffened shell belt-conveyor bridge has been treated in [7]. The buckling 

behaviour of stiffened cylindrical shells has been investigated by several authors, e.g. Harding [8], 

Dowling and Harding [9], Ellinas et al [10], Frieze et al [11], Shen et al [12], Tian et al [13] 

  In the calculation of shell buckling strength the initial imperfections should be taken into 

account. These imperfections are caused by fabrication and by shrinkage of circumferential welds. 

A calculation method for the effect of welding has been worked out by the first author [14] and it is 

used in the calculation of the local shell buckling strength. 

  In the present study the design rules of Det Norske Veritas (DNV) are used for ring-stiffened 

cylindrical shells. The shape of rings is a simple flat plate, which is welded to the shell by double 



fillet welds. In the calculation of the fabrication cost the cost of forming the shell elements into the 

cylindrical shape and the cutting of the flat ring-stiffeners is also taken into account. 

  The shell is a supporting bridge for a belt-conveyor, simply supported with a given span 

length of L = 60 m and radius of R = 1800 mm (Figures 1,2). The intensity of the factored 

uniformly distributed vertical load is p = 16.5 N/mm + self mass. Factored live load is 12 N/mm, 

dead load (belts, rollers, service-walkway) is 4.5 N/mm. For self mass a safety factor of 1.35 is 

used, which is prescribed by Eurocode 3 (note that ECCS gives 1.3). The safety factor for variable 

load is 1.5. The flat plate rings are uniformly distributed along the shell. Note that the belt-conveyor 

supports are independent of the ring stiffeners, they can be realized by using local plate elements.  

The unknown variables are as follows: shell thickness t, stiffener thickness tr and number of 

stiffeners n. 

  We do not consider the case of an unstiffened shell, since to assure a stable cylindrical 

shape, a certain number of ring-stiffeners should be used. In the present study we consider a range 

of ring numbers n = 6 – 30. The range of thicknesses t and tr is taken as 4 – 20 mm, rounded to 1 

mm. 

 

2. The design constraints 

 

2.1 Local buckling of the flat ring-stiffeners (Fig. 1.) 

 

According to DNV 
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Considering this constraint as active one, for E = 2.1x105 MPa and yield stress fy = 355 MPa one 

obtains  

  hr = 9tr.           (2) 

 

2.2 Constraint on local shell buckling (as unstiffened) (Fig. 3.) 
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Figure 1. (a) A simply supported belt conveyor bridge constructed as a ring stiffened cylindrical 

shell, (b) the cross-section of a ring stiffener including the effective width of the shell 
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The factor of (1.5-50  ) in Eq. (6) expresses the effect of initial radial shell deformation caused by 

the shrinkage of circumferential welds and can be calculated as follows [14]. 

The maximum radial deformation of the shell caused by the shrinkage of a circumferential weld  is 

  tRAu T /64.0max =           (8) 

where ATt is the area of specific strains near the weld. According to our results [15] 
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Figure 2. Cross-section of a belt conveyor bridge with two belt conveyors and a service walkway in 

the middle. 

 

For steels it is 

  TT QxtA 310844.0 −=   (ATt in mm2,  QT in J/mm)      (10) 
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For manually arc welded butt welds it is 

  WT AQ 7.60=  (AW in mm2)         (12) 

When  10t  mm, AW = 10t         (13) 

When  t> 10 mm,      45.105.3 tAW           (14) 

 

 

Figure 3. Top-view of the shell with local buckling 

 

Introducing a reduction factor of   for which 
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and the imperfection factor for shell buckling strength should be multiplied by )505.1( − . 
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It can be seen that  E  does not depend on Lr , since in Eq. (6)  Lr
2  is in nominator and in C 

(Eq.17) it is in denominator. The fact that the buckling strength does not depend on the shell length 

is first derived by Timoshenko and Gere [16]. Note that API design rules [2] give another formulae. 

On the contrary, in the case of external pressure the distance between ring-stiffeners plays an 

important role [4,6]. 

 

2.3. Constraint on panel ring buckling (Fig. 4.) 

Requirements for a ring stiffener are as follows: 
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Figure 4. Top-view of panel ring buckling 



2.4 Deflection constraint 
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The unfactored load is  

  p0 = 12/1.5 + 4.5/1.35 + (2 )rR t nA  + = 11.33  + (2 )rR t nA  + .   (25) 

 

3 The cost function 

 

The cost function is formulated according to the fabrication sequence. A possible fabrication 

sequence is as follows: 

 

(1) Fabricate 20 shell elements of length 3 m without rings (using 2 end ring stiffeners to assure the 

cylindrical shape). For one shell element 2 axial butt welds are needed (GMAW-C). The welding of 

end ring stiffeners is not calculated, since it does not influence the variables. The cost of the 

forming of the shell element to a cylindrical shape is also included (KF0). According to the time data 

obtained from a Hungarian production company (Jászberényi Aprítógépgyár, Crushing Machine 

Factory, Jászberény) for plate elements of 3 m width (Table 1.), the times (Ta + Tb) can be 

approximated by the following function of the plate thickness (Eq. 26).  

 

Table 1. Time for forming the shell elements of 3m width into circular shape (Ta) ,as well as for 

reducing the initial imperfections due to forming (Tb). 

 

t (mm) Ta (min) Tb (min) Ta+ Tb (min) 

6 270 184 454 

8 336 204 540 

10 395 228 623 

15 495 304 799 

20 588 374 962 

25 680 442 1122 

30 744 538 1282 

40 834 692 1526 
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The cost of welding of a shell element is 

  ( )3 2
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where   is a difficulty factor expressing the complexity of the assembly and   is the number of 

elements to be assembled 

  12; 2 3000; 2V R tx = = =          (28) 

The first term of Equation 27 expresses the time of assembly and the second calculates the time of 

welding and additional works [18]. 

(2) Welding the whole unstiffened shell from 20 elements with 19 circumferential butt welds 

  ( )3 2

2 120 1.3 0.2245 10 19 2F FK k V x x t x x R −=  +      (29) 

(3) Cutting of n flat plate rings with acetylene gas [17] 

  crccFF LtCkK
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where c , Cc and Lc are the difficulty factor for cutting, cutting parameter and length respectively, 

c =3, Cc= 1.1388, ( )2 2c rL R n R h n  + − . 

(4) Welding n rings into the shell with double-sided GMAW-C fillet welds. Number of fillet welds 

is 2n 

  ( )( )3 2

4 21 1.3 0.3394 10 4F F WK k n V x x a x R n −=  + +      (31) 

aW = 0.5tr, but aWmin = 3 mm.  2 120 2
2

r
r r

h
V V R h t n

 
= + − 

 
     (32) 

aW is taken so that the double fillet weld joint be equivalent to the stiffener thickness. 

The total material cost is 2M MK k V=         (33) 

The total cost is 0 1 2 320( )M F F F FK K K K K K= + + + + + KF4     (34) 

kM = 1 $/kg;   kF = 1 $/min 

 

4. Results of the optimum design 

 

The optimization has been worked out using the Hillclimb technique [18]. Results can be found in 

Table 2. Those results for which the place of stiffeners coincides with the circumferential welds of 

the shell segments are not applicable for fabrication reasons ( n = 9, 19). 

 



Table 2. Computational results: the number of stiffeners, thickness of the stiffeners, material and 

total costs in the case of optimum shell thickness t = 7 mm. The optimum solution is marked by 

bold letters. 

 

n tr KM K 

6 21 39291 76041 

7 19 39211 75870 
8 18 39266 76296 

9 17 39278 76531 

10 16 39252 76595 

11 16 39448 77640 

12 15 39365 77446 

13 15 39538 78384 

14 14 39404 77965 

15 14 39555 78803 

16 13 39379 78191 

17 13 39509 78935 

18 13 39640 79679 

19 12 39409 78819 

20 12 39520 79476 

21 12 39632 80132 

22 12 39744 80787 

23 11 39451 79646 

24 11 39545 80222 

25 11 39639 80796 

26 11 39733 81370 

27 11 39827 81943 

28 10 39470 80505 

29 10 39547 81005 

30 10 39625 81505 

 

 

Table 3. Cost distribution for the optimum solution 

 

n tr 20 KF0 20 KF1 KF2 KF3 KF4 KM K 
7 19 19991 4707 3459 1076 7425 39211 75870 
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Figure 5. Cost distribution for the optimum solution (t = 7, tr = 19, n = 7). 

 

Table 3 shows the value of the different cost elements and Fig. 5 gives the percentage of them.  

 



Conclusions 

 

The shell thickness is determined by the constraints on local shell buckling as well as on deflection. 

Since the number of ring-stiffeners does not influence these constraints, in order to assure a stable 

circular shell shape, a certain number of rings should be used. Since the design rules do not give any 

prescriptions for the minimum number of ring-stiffeners, for the investigated case we have selected 

a ring number domain of n = 6 – 30 and have performed the optimization in this domain.  

The Det Norske Veritas design rules give suitable formulae for the design of rings, the 

dimensions of which decrease with the increase of the number of rings. 

  The initial radial deformation of the shell caused by the shrinkage of circumferential welds 

affects the local shell buckling strength significantly. Cost calculation methods are proposed for the 

forming of shell elements into circular shape and for the cutting of flat plate ring-stiffeners. The 

cost function is formulated according to the fabrication sequence. 

  The optimization results (Table 2) show that, due to the cutting and welding costs of 

stiffeners, the smaller number of stiffeners is more economic. The optimum ring number is 7, which 

minimizes the total mass (material cost) and the total cost. Material cost is about half of the total 

one and is insensitive to the variation of ring numbers. The forming cost of the shell elements (KF0) 

is significant. The difference between the best and worst optima indicated in Table 2 is 7 %, thus it 

is worth to use an optimization process in the design stage. The result is greatly dependent on local 

situation, parameters, but this numerical evaluation and comparison show the benefit of optimum design. 
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