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The molecular bases of repressive
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to macrophage polarization are not well

understood. Czimmerer et al. show that in

alternatively polarized macrophages, IL-

4-activated STAT6 represses a large set

of enhancers modulating the

transcriptional program. STAT6-

repressed enhancers are characterized

by reduced chromatin accessibility,

eRNA expression, LDTF, and p300

binding. IL-4-STAT6-mediated

repression limits the inflammatory

responsiveness including inflammasome

activation, IL-1b production, and

pyroptosis. Thus, the IL4-STAT6 pathway

establishes an epigenomic signature to

selectively repress the macrophage

inflammation program.
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SUMMARY

The molecular basis of signal-dependent transcrip-
tional activation has been extensively studied in
macrophage polarization, but our understanding re-
mains limited regarding the molecular determinants
of repression. Here we show that IL-4-activated
STAT6 transcription factor is required for the direct
transcriptional repression of a large number of genes
during in vitro and in vivo alternative macrophage
polarization. Repression results in decreased line-
age-determining transcription factor, p300, and
RNA polymerase II binding followed by reduced
enhancer RNA expression, H3K27 acetylation, and
chromatin accessibility. The repressor function of
STAT6 is HDAC3 dependent on a subset of IL-4-
repressed genes. In addition, STAT6-repressed
enhancers show extensive overlap with the NF-kB
p65 cistrome and exhibit decreased responsiveness
to lipopolysaccharide after IL-4 stimulus on a subset
of genes. As a consequence, macrophages exhibit
diminished inflammasome activation, decreased
IL-1b production, and pyroptosis. Thus, the IL-4-
STAT6 signaling pathway establishes an alternative
polarization-specific epigenenomic signature result-
ing in dampened macrophage responsiveness to
inflammatory stimuli.
Immunity 48, 75–90, J
This is an open access article und
INTRODUCTION

Macrophage plasticity is ensured by dynamic and partially

reversible responsiveness to pathogen-derived molecules as

well as the cytokine and lipid microenvironment. The two well-

characterized extreme functional outcomes of macrophage

polarization are T helper 1 (Th1) cell-type cytokine interferon-

gamma (IFN-g)-induced classical or M(INF-g)-type polarization

with enhanced bactericidal capacity and Th2 cell-type cytokine

interleukin-4 (IL-4)-induced alternative or M(IL-4)-type polariza-

tion with anti-inflammatory properties, but complex molecular

cues can generate an entire spectrum of different activation

states (Gordon and Martinez, 2010; Murray et al., 2014).

The major determinant of macrophage plasticity is their spe-

cific transcriptional program dictated primarily by lineage-deter-

mining transcription factors (LDTFs) including ETS-domain

transcription factor PU.1, CCAAT/enhancer binding proteins

(C/EBPs), activator protein 1 (AP-1), or Runt-related transcription

factor 1 (RUNX1) as well as extracellular signal-dependent tran-

scription factors (SDTFs) including LPS-activated nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB) or AP-1,

IFN-g-activated signal transducer and activator of transcription

1 (STAT1), or IL-4- and IL-13-activated STAT6; for a review see

Glass and Natoli (2016). Despite the fact that polarization signals

repress large sets of genes, the repressive activity of polariza-

tion-specific transcription factors has not been studied in detail

(Bhatt et al., 2012; Martinez et al., 2013). Recently, a whole

new spectrum of next-generation sequencing-based methods

has evolved, enabling the characterization of the molecular
anuary 16, 2018 ª 2017 The Authors. Published by Elsevier Inc. 75
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. The IL-4-STAT6 Signaling Pathway Induced Gene Expression during Mouse Alternative Macrophage Polarization

(A) Heatmap of IL-4-regulated (p value% 0.05, FCR 2) gene expression clusters inWTmurine BMDMs. Data represent the average fold changes of four individual

animals.

(B) The average fold change from the IL-4-repressed gene cluster at the indicated time points following IL-4 stimulation in WT (n = 4) and Stat6�/� (n = 2) BMDMs.

Error bars represent means ± SD.

(C) RT-qPCR analysis of gene expression on a set of IL-4-repressed genes in WT and Stat6�/� BMDMs. BMDMs were treated with IL-4 for 6 hr. Data are

representative of five individual animals per genotype from two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant change. Error bars

represent means ± SD.

(legend continued on next page)
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features of transcriptional repression in macrophages at an

unprecedented level (Hah et al., 2015; Kang et al., 2017).

IL-4- or IL-13-induced alternative macrophage polarization

occurs in a number of pathological processes including nema-

tode infection, tumor development, lung inflammation, and

fibrosis (Gordon and Martinez, 2010). Given the complex immu-

nological milieu that characterizes each of these conditions,

alternatively polarized macrophages are likely to encounter

inflammatory stimuli as well (Fort et al., 2001; Ruffell et al.,

2012). It has been shown that in vitromodeling of complex immu-

nological microenvironment by IL-4 and IFN-g co-stimulation

leads to the attenuation of IFN-g-induced transcriptional activa-

tion due to the effects of IL-4 on restrictive set of auxiliary

transcription factors in mouse macrophages (Piccolo et al.,

2017). These results suggest that alternatively polarized macro-

phages exhibit an altered responsiveness to inflammatory

signals. The underlying crosstalk at the epigenomic and tran-

scriptional levels remained largely unexplored. One of the

effector functions of macrophages is the integration of different

danger signals with NLRP3 inflammasome activation (Rathinam

and Fitzgerald, 2016). Inflammasomes play key roles in the gen-

eration of secreted forms of proinflammatory IL-1b and IL-18

from their precursors. In parallel, macrophages undergo active

NLRP3 inflammasome-dependent cell death termed ‘‘pyropto-

sis’’ (Rathinam and Fitzgerald, 2016). The integration of this pro-

cess to inflammatory epigenomic signaling is also not known.

We sought to address these questions regarding the integra-

tion and regulation of the alternatively polarized macrophage

phenotype by carrying out systemic genome-wide studies.

RESULTS

IL-4 Induces Transcriptional Activation and Repression
via STAT6
We determined the STAT6-dependent IL-4-regulated genes in a

time course in wild-type (WT) and Stat6�/� bonemarrow-derived

macrophages (BMDMs) using RNA-seq (Figure S1A). First, we

examined the gene expression pattern of the 1,614 IL-4-regu-

lated genes (Fc R 2, p value < 0.05) and identified four IL-4-

induced gene expression clusters based on expression

dynamics and fold induction (Figures 1A and S1B; Table S1).

We also found that a high proportion of IL-4-responsive genes

(39%) were repressed. Repression by IL-4 was observed after

3 hr and remained attenuated at later time points (6, 24 hr)

(Figure 1A, cluster E; Table S1). IL-4-mediated repression is

dependent on STAT6 (Figure 1B). For validation, we measured

the mRNA level of six IL-4-repressed (Abca1, Clec4d, Fos,

Tlr2, Cd14, and Nlrp3) and three activated (Klf4, Hbegf, and

Edn1) genes with RT-qPCR, and we confirmed the IL-4-medi-

ated and STAT6-dependent regulation (Figures 1C and S1C).

Filarial nematode infection is associated with the accumulation

of alternatively polarized macrophages, exhibiting elevated

expression ofYm1 and Fizz1/RELM-a (Anthony et al., 2006). In or-
(D) GSEA analysis of IL-4-repressed genes (in vitro) against a ranked list of genes

compared to the intraperitoneal thioglycollate-administrated mice-derived perito

(E) Expression of IL-4-repressed genes in the Brugia malayi-implanted mice-deriv

mice-derived peritoneal macrophages (Thio-Mac). Reads per kilobase per million

per group quantified by RNA-seq. *p < 0.05, **p < 0.01, ***p < 0.001.
der to determine whether transcriptional repression in response

to alternative polarization signals occurs in vivo, we compared

the gene expression profile of peritoneal macrophages from Bru-

gia malayi nematode-implanted mice (Ne-Mac) and thioglycol-

late-elicited peritoneal macrophages (Thio-Mac) utilizing publicly

available RNA-seq data (Thomas et al., 2012). Gene set enrich-

ment analysis (GSEA) showed that the in vitro IL-4-repressed

gene set was significantly enriched (FDR q-value < 0.1, NER:

�2.38) among the genes that were downregulated in response

to nematode infection in peritoneal macrophages (Figure 1D).

In addition, all selected IL-4-STAT6-repressed genes were

significantly downregulated during Brugia malayi-induced in vivo

alternative macrophage polarization compared to thioglycollate-

elicited peritoneal macrophages (Figure 1E).

Next, we determined whether IL-4-STAT6 signaling represses

gene expression at the transcriptional or post-transcriptional

level. We assessed the immediate early effect of IL-4 on two

serine phosphorylated forms of RNA polymerase II (RNAPII), the

active histone mark H3K27Ac using chromatin immunoprecipita-

tion sequencing (ChIP-seq), and nascent RNA expression by

Global Run-On sequencing (GRO-seq) after 1 hr of exposure.

Elongation-specific RNAPII-pS2 ChIP-seq revealed 5,931 gene

bodies, exhibiting significantly changing read enrichments

(3,008 downregulated and 2,923 upregulated, p % 0.1) (Fig-

ure S2A and Table S2). RNAPII-pS2 binding showed positive cor-

relation with transcription initiation-specific RNAPII-pS5 binding,

H3K27Ac enrichment, and nascent RNA expression at the gene

bodies (Figure S2B). Importantly, the gene bodies of IL-4-

repressed genes (cluster E) showed attenuated RNAPII-pS2,

RNAPII-pS5, andH3K27Ac enrichment and nascentRNA expres-

sion (Figures 2A, 2B, and S2C). In contrast, IL-4-dependent in-

duction of RNAPII-pS2, RNAPII-pS5, and H3K27Ac enrichment

as well as nascent RNA expression was detected at gene bodies

of IL-4-induced genes (clusters A–C) (Figures 2A, S2C, and S2D).

These results indicate that IL-4-STAT6 signaling directly re-

presses gene expression, primarily at the transcriptional level dur-

ing alternative macrophage polarization in vitro and in vivo.

IL-4-Activated STAT6 Binding Is Required for
Transcriptional Repression
We also determined the STAT6 cistrome using a time course of 1,

6, and 24 hr of IL-4 stimulation (Figure S1A). STAT6 binding was

negligible in unstimulated BMDMs (Figure 3A), but as little as

1 hr of stimulation dramatically induced the binding of STAT6,

which was followed by a decline after 24 hr (Figure 3A).

Comparing the STAT6 cistrome (20,119 genomic regions in

IL-4-stimulated cells) to the RNAPII-pS5-positive genomic re-

gions revealed that 60.5% of STAT6 peaks overlapped with the

union of those genomic regions bound by RNAPII-pS5 in resting

or IL-4-treated BMDMs (Figure 3B), suggesting that transcription

could be directly regulated by STAT6 at these sites. Therefore, we

next classified the RNAPII-pS5-positive STAT6 peaks based on

IL-4-dependent regulation of RNAPII-pS5 binding, and we
regulated in the Brugia malayi-implanted mice-derived macrophages (Ne-Mac)

neal macrophages (Thio-Mac).

ed macrophages (Ne-Mac) and the intraperitoneal thioglycollate-administrated

values (RPKM) are presented as the mean and SD of three individual animals
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Figure 2. Changes in RNAPII and H3K27Ac

Enrichments as well as Nascent RNA Tran-

scription Are Immediate Early Markers of

IL-4-STAT6-Regulated Transcription

(A) Metagene plot of RNAPII-pS5-, RNAPII-pS2-,

and H3K27Ac-specific ChIP-seq enrichments and

GRO-seq signals on the gene bodies of regulated

gene clusters (Figure 1A) in the presence of IL-4 in

WT BMDMs (TSS, transcription start site; TTS,

transcription termination site). Coverage is

defined as read count per million mapped reads.

Data (H3K27Ac, RNAPII-pS2, and RNAPII-pS5)

are combined from two independent biological

replicates.

(B) H3K27Ac, RNAPII-pS5, and RNAPII-pS2 ChIP-

seq signals at the selected IL-4-repressed gene

bodies. ChIP-seq signals are visualized by the

Integrative Genomics Viewer. Data are represen-

tative of two independent biological replicates.

BMDMs were treated with IL-4 for 1 hr.
divided the STAT6-bound genomic regions into three different

clusters: ‘‘repressor,’’ ‘‘neutral,’’ and ‘‘activator’’ STAT6 peak

clusters (Figure 3C and Table S3). We noted that repressor and

neutral STAT6 peaks showed typically lower occupancies if

compared to the IL-4-induced RNAPII-pS5-associated activator

STAT6 peaks (Figure S3A). Interestingly, IL-4-dependent regula-

tion of RNAPII-pS2 binding as well as H3K27Ac enrichments

showed similar patterns to RNAPII-pS5 in all threeSTAT6 clusters

(Figures 3C and 3D). These findings support the conclusion that

IL-4-activated STAT6 can be associated with either transcrip-

tional activation or repression at different genomic loci.

Next we assigned STAT6-bound genomic regions to genes

in order to assess the correlation between IL-4-repressed

enhancer activity (RNAPII-pS5 by ChIP-seq) and gene expres-

sion (mRNA by RNA-seq). For this analysis, we predicted the

sub-topologically associated domains (subTADs) in which

gene regulation by STAT6 might take place, using CTCF and

RAD21 ChIP-seq datasets from BMDM, utilizing a previously

described algorithm (Daniel et al., 2014; Rao et al., 2014). As

shown in Figure 3E, we found that repressor STAT6 peaks

were tightly associated with the IL-4-repressed gene cluster

(cluster E). In contrast, activator STAT6 peaks were associ-
78 Immunity 48, 75–90, January 16, 2018
ated with the immediate early IL-4-

induced genes represented by clusters

A–C (Figure 3E). These results suggest

a tight connection between STAT6-

dependent regulation of enhancer activ-

ity and neighboring gene expression in

the same genomic compartment or

transcription unit.

To understand the IL-4-STAT6 signaling-

mediated transcriptional regulation inmore

detail, we carriedout analyseson individual

genes and enhancers. For the selected

repressed and activated genes, we identi-

fied at least one STAT6-bound enhancer

showing reduced and induced H3K27

acetylation and RNAPII binding, respec-
tively (Figure 3F). Enhancer RNA (eRNA) expression is a reliable

marker of enhancer activity (Natoli and Andrau, 2012). Therefore,

we measured eRNA expression at the repressor and activator

STAT6 peaks by RT-qPCR. The expression of eRNAs were regu-

lated in a similar manner as the enrichment of RNAPII-pS5 and

RNAPII-pS2 and changes of H3K27Ac levels at the repressor

and activator STAT6 sites in WT BMDMs (Figures 3F, 3G, and

S3B). Importantly, IL-4-mediated regulation of eRNA expression

was abolished in the absence of STAT6 at the examined en-

hancers (Figures 3G and S3B). Taken together, these results

show that IL-4-activated STAT6 is required for the transcriptional

repression characterized by decreasing RNAPII binding, histone

acetylation, and consequently enhancer activity.

STAT6 Binds to Repressed Sites in the Absence of a
Canonical Binding Motif
In order to investigate whether the functional characteristics of

STAT6 peaks (activator versus repressor) are influenced by their

genomic localization and/or the DNA sequences they are asso-

ciated with, we analyzed the genomic distribution of STAT6

peak clusters. We found only minor differences between the

distinct STAT6 peak clusters regarding genomic localization
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relative to genes (Table S4). The majority of STAT6 peaks were

localized in intergenic and intronic regions in the genome in all

three clusters, and only about 10% of STAT6 binding sites

were detected in promoter-proximal regions (Table S4). We

also examined the enrichment of active histone mark H3K4m1

at the STAT6-bound genomic regions using a publicly available

ChIP-seq dataset (Ostuni et al., 2013). Although H3K4m1 enrich-

ment was observed at more than 98% of STAT6-bound genomic

regions, it was not influenced by IL-4 treatment (Table S4, Fig-

ure S3C). These findings suggest that STAT6 primarily binds

enhancers and that the functional characteristics of different

STAT6 peak clusters cannot be explained by their genomic local-

ization relative to genes.

Next, we carried out de novo motif enrichment analysis of the

sequences under the STAT6 peaks. PU.1, TRE, RUNX, and

C/EBPmotifs were enriched under all three clusters (Figure S3D).

However, the canonical STAT6 motif was significantly under-

represented under repressor and neutral STAT6 peaks if

compared to the activator STAT6 peaks (Figures 3H and S3D).

Plotting the motif scores for PU.1, TRE, RUNX, and C/EBP re-

vealed no significant differences between the different STAT6

peak clusters (Figure S3E). In contrast, motif score for STAT6

was lower in the repressor and neutral STAT6 peak clusters

compared to the activator STAT6 peak cluster (Figure 3I).

Considering that the presence of STAT6 is needed for repression

(Figure 1B), these findings raise the possibilities that STAT6 is

bound without direct DNA contact or that it recognizes non-ca-

nonical STAT6-binding motifs at repressed enhancers.

STAT6-Mediated Repression of Enhancer Activity Is
Accompanied by Decreased Chromatin Accessibility
and Lineage-Determining Transcription Factor Binding
We investigated whether chromatin accessibility is affected at the

STAT6-bound genomic regions by performing Assay for Trans-

posase-Accessible Chromatin using sequencing (ATAC-seq)

experiments. Our genome-wide analyses showed increasedchro-

matin accessibility at the activator STAT6-bound sites (Figure 4A),

while significant reduction was detected in chromatin accessibility
Figure 3. RNAPII-pS5-Based Characterization of IL-4-Activated STAT6

(A) Histograms of the average coverage of STAT6 peaks at the indicated period

(B) Pie chart of the RNAPII-pS5-positive and -negative STAT6-bound regulatory

(C) Read distribution plot of ChIP-seq intensities for STAT6 and RNAPII-pS5 aroun

STAT6-RNAPII-pS5 co-bound genomic regions was based on the usage of DiffBin

each cluster (right). Boxes encompass the 25th to 75th percentile RPKMs. Whisk

(D) Boxplots of RNAPII-pS2 and H3K27Ac read enrichments (RPKM) around the id

percentile RPKMs. Whiskers extend to the 10th and 90th percentiles.

(E) Heatmap of correlations between STAT6 peak (C) and IL-4-regulated gene clu

prediction.

(F) Integrative Genomics Viewer snapshots of STAT6, H3K27Ac, RNAPII-pS5,

genomic loci.

(G) RT-qPCR measurements of eRNA expression at IL-4-repressed enhancers in

(H) Bar plots showing the percentage of the STAT6 motif-positive STAT6 peaks

Dashed line indicates background (Bg: 9.51%).

(I) Boxplot of STAT6 motif scores at the functionally distinct STAT6 peak clusters.

the 10th and 90th percentiles.

BMDMs (B–D, F, and G) were treated with IL-4 for 1 hr. Data in (A)–(D) are combine

significant at p < 0.00001 using paired t test and an average fold change cut off v

significant difference, n.s. indicates not significant change. Data in (F) are represen

five individual animals per genotype from two independent experiments. *p < 0

mean ± SD.
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at the repressor STAT6-boundgenomic regions (Figure 4A). These

results suggest that both STAT6-mediated enhancer activation

and repression are associated with the modification of chromatin

structure during alternative macrophage polarization.

Chromatin openness determines enhancer activity in different

cell types (Shlyueva et al., 2014). Moreover, binding of macro-

phage LDTFs, PU.1, JUNB, IRF8, and C/EBPa are associated

with active enhancers in macrophages (Glass and Natoli,

2016). In addition, their binding motifs were among the most

enriched transcription factor motifs under STAT6 peaks (Fig-

ure S3D). Therefore, we decided to determine whether IL-4-

STAT6 signaling-mediated repression is associated with modi-

fied binding of LDTFs and examined their binding at repressed

enhancers in the presence or absence of IL-4 using ChIP-seq.

A high portion of the STAT6 cistrome overlapped with the exam-

ined LDTF cistromes except for JUNB, which showed moder-

ated overlap (Table S4). Intriguingly, PU.1, JUNB, and C/EBPa

binding was significantly decreased, while IRF8 binding was

not modulated at the repressed STAT6-bound genomic regions

after 1 hr IL-4 treatment in BMDMs (Figures 4B and S4A). In

contrast, all four LDTFs showed significantly elevated binding

at the IL-4-activated enhancers following IL-4 stimulation (Fig-

ures 4B and S4A). These findings suggest that IL-4-STAT6

signaling pathway modulates the binding of LDTFs at STAT6-

activated and -repressed enhancers to opposite directions.

IL-4-STAT6 Signaling Pathway-Mediated Repression of
Enhancers Is Characterized by an Altered
p300:HDAC Ratio
The acetylation status and thus the activity of enhancers are

tightly controlled by histone acetyltransferase (HAT) and histone

deacetylase (HDAC) enzymes (Calo andWysocka, 2013). There-

fore, we examined the binding of the histone acetyltransferase

p300 as well as classical histone deacetylases, including

HDAC1, 2, and 3 at the STAT6-bound genomic regions after

1 hr of IL-4 exposure by ChIP-seq. We found that the majority

of STAT6-bound genomic regions were either pre-loaded by

p300 and classical HDACs or recruited these factors upon IL-4
Cistrome in Mouse Macrophages

of time following IL-4 treatment in WT BMDMs.

regions, 1 hr of IL-4 stimulation.

d the summit of the detected STAT6 peaks in a 4 kb window (left). Clustering of

d analysis (p% 0.05). Boxplots of the average RPKM values for RNAPII-pS5 in

ers extend to the 10th and 90th percentiles.

entified STAT6 peak clusters inWT BMDMs. Boxes encompass the 25th to 75th

sters (Figure 1A) based on genomic proximity and functional chromatin domain

and RNAPII-pS2 ChIP-seq signals on a set of IL-4-repressed and activated

WT and Stat6�/� macrophages.

in the clusters on (C). The STAT6 binding motif was used for targeted search.

Boxes encompass the 25th to 75th percentile motif scores. Whiskers extend to

d from two independent biological replicates. Changes in (D) were considered

alue of R 1.15 was used between control and IL-4-treated samples. # means

tative of two independent biological replicates. Data in (G) are representative of

.05, **p < 0.01, ***p < 0.001, ns, not significant change. Error bars represent
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Figure 4. IL-4-Induced Changes at

Repressor and Activator STAT6 Sites and

the Role of HDAC3 in IL-4-STAT6-Mediated

Repression

(A–D) Boxplots of ATAC-seq (A) and ChIP-seq

(B–D) signals for PU.1 (B), p300 (C), HDAC1 (D),

HDAC2 (D), and HDAC3 (D) on the repressor and

activator STAT6 sites in WT BMDMs. Boxes

encompass the 25th to 75th percentile RPKMs.

Whiskers extend to the 10th and 90th percentiles.

(E) Boxplots of the expression of IL-4-HDAC3-

dependent repressed genes in WT (n = 3) and

Hdac3fl/fl Lyz2 Cre (n = 3) BMDMs using publicly

available microarray results. Boxes encompass

the 25th to 75th percentile changes. Whiskers

extend to the 10th and 90th percentiles.

(F) Metagene plots of RNAPII-pS5 and RNAPII-

pS2 signals at the gene bodies of IL-4-HDAC3-

dependent repressed genes. Coverage is defined

as read count per million mapped reads.

(G) Read distribution plot of ChIP-seq intensities

for RNAPII-pS5, STAT6, HDAC3, NCoR, and

SMRT around the summit of the detected STAT6

peaks at the IL-4-repressed enhancers (n = 325) in

the subTADs of HDAC3-dependent repressed

genes, 1 hr of IL-4 stimulation.

(H) Boxplot of the average HDAC3 binding in-

tensity on the genomic regions (G). Boxes

encompass the 25th to 75th percentile RPKMs.

Whiskers extend to the 10th and 90th percentiles.

(I) Normalized microarray signal intensity of Fos,

Lyz1, Lyz2, and Smad3 in control or IL-4-stimu-

lated WT and Hdac3fl/fl Lyz2 Cre BMDMs.

(J) RT-qPCR measurements of Fos, Lyz1, Lyz2,

and Smad3 expression in control or IL-4-stimu-

lated WT and Ncor1fl/fl Lyz2 Cre iBMDMs.

BMDMs were treated with IL-4 for 1 hr (A–D, F–H)

or 24 hr (E, I, and J). Data (A–D, F, and H) are

combined from two independent biological repli-

cates. Changes (A–D and H) were considered

significant at p < 0.00001 using paired t test and an

average fold change cut off value of R 1.15 was

used between control and IL-4-treated samples.

# means significant difference, ns indicates not

significant change. Data (I) represent themean and

SD of three independent biological replicates.

*p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant

difference. Error bars represent means ± SD. Data

(J) represent the mean and SD of three indepen-

dent biological replicates. *p < 0.05, **p < 0.01,

***p < 0.001, ns, no significant difference. Error

bars represent means ± SD.
stimulation (Table S4). The binding of p300 was significantly

increased at STAT6-activated enhancers, but significantly

reduced at STAT6-repressed enhancers upon IL-4 treatment

(Figure 4C). Interestingly, genome-wide analysis of IL-4-modu-

lated HDAC binding showed significantly enhanced HDAC1, 2,

and 3 occupancy at STAT6-activated enhancers, while STAT6-

repressed enhancers showed no effect to IL-4, but exhibited

HDAC binding at the basal state (Figure 4D). Collectively, these

results show that STAT6-repressed enhancers are bound by

both HATs and HDACs at the steady state and that p300 binding

is selectively reduced by IL-4, resulting in a changed equilibrium

favoring HDAC activity.
The Presence of HDAC3 Is Required for IL-4-STAT6-
Mediated Repression on a Subset of Genes
Direct interactions between classical HDACs and STAT tran-

scription factors have been observed previously in numerous

cell types influencing STAT-mediated direct transcriptional regu-

lation (Icardi et al., 2012; Nusinzon and Horvath, 2003). In addi-

tion, HDAC3 has been shown to participate in the regulation of

alternative macrophage polarization in vitro and in vivo (Mullican

et al., 2011). Thus, we hypothesized that HDAC3, which is pre-

sent at repressed enhancers (Figure 4D), might also contribute

to IL-4-STAT6-induced repression. Therefore, we decided to

examine the role of HDAC3 using a dataset from Mullican et al.
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(2011). Applying K-mean clustering method, we found 1,628 IL-

4-repressed genes (p % 0.05) in WT BMDMs (Figure S4B) and

identified an IL-4-repressed gene cluster (cluster III, 371 genes)

that showed attenuated repression inHdac3fl/fl Lyz2 CreBMDMs

following IL-4 treatment (Figures 4E and S4B). Although the

basal expression of these genes did not show major differences

between WT and Hdac3fl/fl Lyz2 Cre BMDMs, the IL-4-induced

repression was partially or completely abolished in the absence

of HDAC3 (Figures 4E and S4B). In addition, enrichments of

RNAPII-pS5 and RNAPII-S2 were reduced at these gene bodies

after 1 hr of IL-4 treatment in WT BMDMs (Figure 4F). Interest-

ingly, 325 STAT6-repressed enhancers were found within the

subTADs of IL-4-HDAC3-repressed genes (Figure 4G). These

enhancers were bound by HDAC3, but HDAC3 occupancy was

not altered by IL-4 stimulation (Figures 4G and 4H). Our results

indicate that HDAC3 is required for the IL-4-induced repression

of a specific subset of genes.

Due to the fact that HDAC3 is one of the key components of

NCoR and SMRT corepressor complexes (Karagianni and

Wong, 2007), we decided to determine whether the NCoR-

SMRT complex itself participates in IL-4-STAT6-HDAC3-medi-

ated repression as well. First, we determined the occupancy of

NCoR and SMRT at HDAC3-bound enhancers using ChIP-seq

data generated by others (Barish et al., 2012). We found that

the IL-4-STAT6-HDAC3-repressed enhancer set was bound by

both NCoR and SMRT in unstimulated BMDMs (Figure 4G).

Next, we investigated the requirement of NCoR in the IL-4-

STAT6-HDAC3-mediated repression using Ncor1fl/fl Lyz2 Cre

immortalized bone marrow-derived macrophages (iBMDMs).

We selected four genes for this analysis (Fos, Lyz1, Lyz2, and

Smad3) based on their IL-4-STAT6-HDAC3-dependent repres-

sion (Figures 4I, S4C, and S4D) and due to the fact that their en-

hancers were bound by HDAC3, NCoR, and SMRT (Figure S4C).

Gene expression analysis showed that Fos and Lyz1 were ex-

pressed at a significantly higher level in unstimulated iBMDMs

in the absence of NCoR compared to WT iBMDMs, while the

basal expression of Lyz2 and Smad3 were not affected by

NCoR (Figure 4J). In addition, IL-4-mediated repression of these

genes was diminished in Ncor1fl/fl Lyz2 Cre iBMDMs (Figures 4J

and S4E). In contrast, the basal expression and IL-4-induced

repression of HDAC3-independent genes were not affected by

NCoR, except for Abca1 (Figure S4F). Taken together, our find-

ings suggest that IL-4-activated STAT6 mediates transcriptional

repression via the NCoR-HDAC3 complex at a subset of genes

representing one of the molecular mechanisms for STAT6-

dependent transcriptional repression.

IL-4-STAT6-Mediated Direct Transcriptional
Repression Affects the LPS-Induced Inflammatory
Program of Macrophages
Next we were wondering whether the repressive action of IL-4-

STAT6 leaves its footprint on the epigenome and affects the sub-

sequent response of the cells to other stimuli. Using KEGG

pathway analysis, we identified 12 signaling pathways whose

overrepresentation was specific to IL-4-repressed genes (Fig-

ure S5A). NOD-like receptor signaling and Toll-like receptor

signaling among the top hits, which are known to be two major

regulators of the inflammatory response (Figure S5A; Chen

et al., 2009; Takeda et al., 2003). In addition, upstream transcrip-
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tional regulator analysis with Ingenuity Pathway Analysis (IPA)

software revealed that the LPS-activated p65 (RelA) is one of

the most significantly inhibited transcriptional regulators upon

IL-4 stimulation (Figure S5B). Interestingly, the majority of IL-4-

STAT6-repressed genes included several members of NOD-

like and Toll-like receptor signaling pathways showing attenu-

ated mRNA expression following 24 hr of IL-4 stimulation and

reduced STAT6 binding at the repressed enhancers (Figures

1A, 1B, S5C, and S5D). These results raised the possibility that

IL-4 is able to modulate the subsequent inflammatory response

of the macrophage epigenome via directly repressed enhancers

following the dissociation of STAT6.

In order to determine whether prior activation of IL-4-STAT6

signaling is able to influence the inflammatory program of mac-

rophages, we performed RNA-seq as well as RNAPII-pS5-,

RNAPII-pS2-, and p65-specific ChIP-seq experiments on IL-4-

pretreated and LPS-activated BMDMs (Figure 5A). Our global

transcriptome analysis identified 1,350 LPS-activated genes (p

% 0.05) in BMDMs (Figure 5B, Table S5). Intriguingly, 520 genes

showed significantly attenuated (p % 0.05) LPS responsiveness

following IL-4 pretreatment including the above examined Tlr2,

Cd14, Clec4d, and Nlrp3 (Figure 5B, Table S5). In addition,

LPS-mediated induction of 686 genes was not influenced signif-

icantly by IL-4 pretreatment, while 144 genes showed signifi-

cantly elevated LPS activation in IL-4-pretreated BMDMs (Fig-

ure 5B and Table S5), suggesting that the interaction between

the two pathways is not a general interference or attenuation,

but it takes place on selective genomic regions. Interestingly,

6 out of 12 IL-4-repressed signaling pathways were also signifi-

cantly overrepresented among the genes that were less induced

by LPS following IL-4 pretreatment, including NOD-like receptor

and Toll-like receptor signaling pathways (Figure S5E). Next, we

investigated whether IL-4-STAT6 signaling modulates LPS-

dependent activation of inflammatory genes at the transcrip-

tional or post-transcriptional level. We examined the IL-4- and

LPS-regulated binding of RNAPII-pS2 at the gene bodies of

LPS-induced genes using ChIP-seq. RNAPII-pS2 binding

showed a similar pattern to ‘‘steady-state’’ mRNA level in all

three gene expression clusters, suggesting that IL-4 pretreat-

ment modulates LPS-induced gene expression primarily at the

transcriptional level (Figure 5C). In order to investigate whether

the IL-4-attenuated inflammatory response is STAT6 dependent,

we measured the expression of Tlr2, Cd14, Clec4d, and Nlrp3 in

WT and Stat6�/� BMDMs after 24 hr of IL-4 pretreatment fol-

lowed by 3 hr of LPS activation. As expected, IL-4 pretreatment

failed to inhibit the LPS response of these genes in the absence

of STAT6 (Figure 5D), raising the possibility that IL-4-activated

STAT6 can directly modulate LPS responsiveness in macro-

phages via transcriptional repression of certain components of

the inflammatory program.

To determine whether the crosstalk between IL-4-STAT6

signaling and inflammation-activated signaling pathways can

also be observed at the enhancer level, we compared the IL-4-

activated STAT6- and LPS-activated p65 cistromes in the sub-

TADs of IL-4-attenuated LPS-responsive genes. 961 genomic

regions were identified with overlapping STAT6 and p65 peaks

revealing a partial overlap between the STAT6 and p65 cis-

tromes (Figures 6A and 6B). Next, we decided to investigate

whether IL-4-STAT6 and inflammatory signaling pathways are
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Figure 5. Selective Repression of LPS-Activated Inflammatory Program by IL-4-Activated STAT6

(A) Schematic representation of the experimental system.

(B) Boxplot of the fold changes of LPS-activated genes (RNA-seq). Clusteringwas based on the different LPS-induced gene expression effects on IL-4-pretreated

and untreated BMDMs (p < 0.05). Data represent the average fold changes of three individual animals from two independent experiments. Boxes encompass the

25th to 75th percentile changes. Whiskers extend to the 10th and 90th percentiles.

(C) Metagene plot of RNAPII-pS2 signals over the gene bodies of the genes in the clusters (B). Coverage is defined as read count per million mapped reads. Data

are combined from two independent biological replicates.

(D) RT-qPCR measurements of basal and LPS-induced expression of the inflammation-associated genes in IL-4-pretreated and unstimulated WT and Stat6�/�

BMDMs. Data are cumulative of four individual animals per genotype from two independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant

difference. Error bars represent means ± SD.

BMDMs were pretreated with IL-4 for 24 hr followed by LPS exposure for 3 hr (B and D) or 1 hr (C).
able to interact with each other using RNAPII-specific ChIP-seq

analysis. 641 out of 961 genomic regions were associated with

significantly elevated RNAPII-binding following LPS activation

(Figure 6B). Intriguingly, 70% (448/641) of LPS-activated en-

hancers showed significantly reduced basal and LPS-induced

RNAPII binding after 24 hr of IL-4 pretreatment (Figures

6B–6E). To further explore the mechanism of IL-4-STAT6-atten-

uated inflammatory responsiveness, we determined LPS-

induced p65 binding at this enhancer set in IL-4-pretreated

and unstimulated BMDMs. Based on p65 binding, we could
identify two subsets of these enhancers including IL-4-insensi-

tive and IL-4-attenuated p65 binding-associated enhancers (Fig-

ures 6E and 6F). LPS-induced p65 binding was significantly

reduced at 74 IL-4-repressed enhancers, while IL-4-repressed

inflammatory response was not associated with modulated

p65 binding at 374 enhancers (Figures 6E and 6F). To investigate

the STAT6 dependency of IL-4-repressed enhancer activity and

p65 binding, we selected three enhancers for both analyses.

RT-qPCR-based eRNA expression analysis confirmed IL-4-

mediated and STAT6-dependent repression of basal and
Immunity 48, 75–90, January 16, 2018 83
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(legend continued on next page)
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LPS-induced activity at the selected enhancers (Figure S6A). By

performing ChIP-qPCR on the selected IL-4-reduced p65 bind-

ing-associated enhancers, we confirmed that IL-4-dependent

reduction of LPS-induced p65 bindingwas completely abolished

in the absence of STAT6 (Figure S6B).

Taken together, these findings suggest that the activation of

IL-4-STAT6 signaling is able to attenuate the inflammatory

response of macrophages through selective, direct repression

of a distinct LPS-activated enhancer set.

IL-4-Mediated Repression of Inflammatory Response
Results in Attenuated Inflammasome Activation,
Decreased IL-1b Production, and Pyroptosis
Genes showing antagonistic regulation by IL-4 and LPS were

mostly associated with inflammation-associated pathways,

including NOD-like and Toll-like receptor signaling (Figure S5E).

It is known that NOD-like receptors are required for inflamma-

some activation leading to IL-1b secretion and inflammasome-

associated cell death, pyroptosis (Rathinam and Fitzgerald,

2016). As shown above, IL-4-STAT6 was able to reduce the

basal and LPS-induced expression of a key inflammasome

component, Nlrp3 (Figures 1C and 5D). Therefore, we investi-

gated whether IL-4-STAT6 signaling is able to influence IL-1b

production and pyroptosis. First, we examined the transcrip-

tional regulation of Il1b expression in IL-4-pretreated and LPS-

activated BMDMs. Reduced basal and LPS-induced RNAPII-

pS2 and RNAPII-pS5 binding at Il1b gene body as well as Il1b

mRNA expression were found in IL-4-pretreated BMDMs (Fig-

ures 7A and 7B).Moreover, Il1b_�9.7Kb enhancer locatedwithin

the predicted subTAD of Il1b showed antagonistic regulation by

LPS and IL-4 (Figure 7A). Intriguingly, LPS-induced p65-binding

at the STAT6-bound Il1b_�9.7Kb enhancer (in case of one out of

two p65 peaks) was partially attenuated by IL-4-STAT6 signaling

pathway similarly to Fcgr1_�7.7Kb and Il18_+25Kb enhancers

described above (Figures 7A and 7C). Accordingly, IL-4-depen-

dent repression of basal and LPS-induced eRNA expression was

observed at the Il1b_�9.7Kb enhancer (Figure 7D). The IL-4-

dependent repression of basal and LPS-induced Il1b mRNA

and eRNA expression were completely abolished in the absence

of STAT6 (Figures 7B and 7D). LPS-induced NLRP3 and pro-IL-

1b expression were also attenuated at the protein level by IL-4-

STAT6 signaling (Figures 7E and S7A), while the expression of

other inflammasome components including proCaspase-1 and

ASC was not altered following IL-4 and LPS stimulation of

BMDMs (Figures 7E and S7A).

In order to determine whether IL-4-dependent repression of

Nlrp3 expression is associated with decreased inflammasome

activity, we analyzed the LPS and ATP-induced Caspase-1 ac-

tivity in IL-4-pretreated and unstimulated mouse BMDMs using

laser scanning cytometry. As expected, Caspase-1 activation

in WT BMDMs was induced dramatically by LPS and ATP costi-

mulation (Figure 7F). Interestingly, LPS- and ATP-induced Cas-

pase-1 activity was reduced significantly following 24 hr of IL-4
(F) Genome browser views of the IL-4 repressed regulatory regions showing atten

pS5, RNAPII-pS2, and p65 are shown.

BMDMs were pretreated with IL-4 for 24 hr followed by 1 hr LPS exposure (A–E).

(D, E) were considered significant at p < 0.00001 using paired t test and an average

samples. # means significant difference, ns indicates not significant difference. D
pretreatment, which was completely dependent on STAT6 (Fig-

ure 7F). To assess the functional consequence of IL-4-STAT6-

dependent reduction of inflammasome activation, we measured

the secretion of IL-1b in the presence of LPS andATP in IL-4-pre-

treated and untreated WT and Stat6�/� BMDMs. IL-1b secretion

was induced dramatically in WT and Stat6�/� BMDMs following

LPS treatment (Figure 7G). However, LPS-dependent induction

of IL-1b secretion was partially inhibited by IL-4 pretreatment

in a STAT6-dependent manner (Figure 7G). Next, we investi-

gated the role of IL-4-STAT6 signaling pathway in inflammasome

activation-induced macrophage cell death, pyroptosis. A hall-

mark of pyroptosis is the insertion of pores into the plasma

membrane that can be detected via LDH activity measurement

from BMDM supernatants and propidium iodide (PI) staining.

IL-4 pretreatment was able to effectively inhibit both LPS-

induced LDH release and PI uptake in WT, but not in Stat6�/�

BMDMs (Figures 7H and 7I).

Finally, we determined whether the inflammatory responsive-

ness ofNlrp3 and Il1b is influenced in vivo by nematode infection

triggered alternative macrophage activation. Therefore, we in-

fected mice with Heligmosomoides polygyrus (H. polygyrus)

and injected LPS or Salmonella Typhimurium into the peritoneal

cavity 9 days after nematode infection. As expected, the number

of the M2 macrophage marker Ym1-positive macrophages was

highly induced in peritoneal macrophages of H. polygyrus-in-

fected mice, confirming alternative macrophage activation

following nematode infection (Figure S7B; R€uckerl et al., 2017).

In addition, inflammatory marker NOS2-positive macrophage

number was dramatically elevated in control and H. polygyrus-

infectedmice following LPS injection or Salmonella Typhimurium

infection, showing the emergence of infection (Figure S7B).

Although Nlrp3 was not induced in the applied experimental

system by LPS injection or Salmonella Typhimurium infection,

steady-state expression was significantly inhibited by

H. polygyrus infection, and the inhibitory effect of nematode

infection was sustained in the presence of inflammatory stimuli

(Figure 7J). Nematode infection did not result in Il1b expression

by peritoneal macrophages but both LPS injection and Salmo-

nella Typhimurium infection resulted in a robust induction of

Il1b expression. This elevated expression was significantly

diminished in macrophages from H. polygyrus-infected mice

(Figure 7J).

These results suggest that prior in vitro or in vivo alternative

macrophage polarization are able to restrain the subsequent in-

flammatory response of macrophages, including inflammasome

activation and IL-1b secretion as well as pyroptosis due to direct

repression of Nlrp3 and Il1b gene expression by IL-4-STAT6

signaling.

DISCUSSION

We unraveled an unsuspected repressor activity of the macro-

phage polarizing transcription factor, STAT6. We identified the
uated LPS response in IL-4-pretreated BMDMs. ChIP-seq signals for RNAPII-

Data (A–E) are combined from two independent biological replicates. Changes

fold change cut off value ofR 1.15 was used between control and IL-4-treated

ata (F) are representative of two independent biological replicates.
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target enhancers of repressor STAT6, as well as the major com-

ponents of the repressive mechanisms and its biological

consequences.

Macrophages exhibit great functional diversity and the ability

to undergo rapid reprogramming depending on the changing

molecular milieu in physiological and pathological conditions

(Mosser and Edwards, 2008; R€uckerl et al., 2017). The epige-

nomic and molecular mechanisms of transcriptional activation

by inflammatory mediators, cytokines, and lipids have been

intensively studied in macrophages (for a review see Glass and

Natoli, 2016). In contrast, the mechanistic background of macro-

phage polarization signal-mediated transcriptional repression is

less understood, though LPS-reduced nascent RNA expression

was described (Bhatt et al., 2012). In addition, LPS- and TNFa-

dependent reduction of enhancer activity was also observed in

macrophages and adipocytes in the absence of inflammation-

activated NF-kB-p65 binding (Hah et al., 2015; Schmidt et al.,

2015). In contrast, we show that the IL-4-STAT6 signaling

pathway represses a significant portion of macrophage tran-

scriptome via STAT6-bound enhancers, providing evidence

that direct transcriptional repression also occurs during alterna-

tive macrophage polarization.

Although the global transcriptional repressor activity of the key

TFs for macrophage polarization (NF-kB, AP-1, and STATs) is

not fully understood, several other SDTFs have been shown to

possess distinct repressor activities. Ligand-activated nuclear

receptors including PPARs and LXRs are able to reduce the ac-

tivity of inflammatory SDTFs through transrepression carried out

by direct protein-protein interactions without direct DNA binding

(Glass and Saijo, 2010). It has also been described that a specific

NF-kB-binding motif is present in the promoter regions of tolero-

genic inflammatory genes regulating LPS tolerance via recruit-

ment of the p50-NCoR-HDAC3 repressosome (Yan et al.,

2012). Our findings show that repressed enhancers exhibit lower

STAT6 occupancy and underrepresented STAT6 de novomotifs

compared to activated enhancers. These observations suggest

that STAT6 acts as a transcriptional repressor either (1) without
(B) RT-qPCR-based measurement of basal and LPS-induced Il1b expression in IL

of four individual animals per genotype from two independent experiments. *p <

means ± SD.

(C) ChIP-qPCR measurement of p65 binding at Il1b_�9.7Kb enhancer from W

replicates. +p < 0.1, ns, not significant change.

(D) RT-qPCR measurement of basal and LPS-induced Il1b_�9.7Kb eRNA expre

cumulative of four individual animals per genotype from two independent experim

represent means ± SD.

(E) Western blot determination of basal and LPS-regulated Nlrp3, pro-IL-1b, pro-C

and Stat6�/� BMDMs. Data are representative of five individual animals per gen

(F) Contour map representation of laser-scanning imaging cytometry of Caspas

pendent experiments.

(G) ELISA measurement of IL-1b secretion in IL-4-pretreated and unstimulated

individual animals. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant change.

(H) Lactate dehydrogenase activity assay measurement of LPS and ATP co-st

Stat6�/� BMDM supernatants. LDH release expressed as the percentage of Trito

individual animals. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant change.

(I) Contour map representation of laser-scanning imaging cytometry analysis of PI

experiments.

(J) Basal, LPS, and Salmonella Typhimurium (SL3261)-induced expression of Nlrp

infected mice-derived peritoneal macrophages. Each data point represents the

***p < 0.001, ns, no significant change.

BMDMs were pretreated with IL-4 for 24 hr followed by LPS exposure for 1 hr (A
direct DNA binding or (2) by recognizing non-canonical STAT6-

binding motifs. It remains to be identified which mechanism is

at play and, if STAT6 binding to the DNA is indirect, which

DNA-bound factor interacts with STAT6. Our motif analysis sug-

gests that the lineage-determining factors (PU.1 and C/EBPa)

are the most likely candidates though PU.1 and C/EBPa binding

also decreased at STAT6-repressed enhancers. Thus this

requires further investigations.

STAT6-mediated repression appears to be distinct from other

repressive mechanisms. Histone acetylation and gene expres-

sion tightly depends on the cofactor composition (HAT:HDAC

ratio) (Calo and Wysocka, 2013). Several findings show the

extensive participation of co-repressor proteins and HDACs in

the inhibition of transcriptional activation by cytokine-activated

STAT proteins (Icardi et al., 2012). However, the molecular

mechanisms of STAT6-mediated direct transcriptional repres-

sion following IL-4 activation have not been described. Our

cistromic studies show diminished p300 binding at STAT6-

repressed enhancers in IL-4-exposedmacrophages, suggesting

that reduced p300 binding is likely to be a key mechanism in the

IL-4-STAT6 signaling pathway-mediated transcriptional repres-

sion. In addition, STAT6-repressed enhancers were occupied

by HDAC1, 2, and 3, though their binding was not altered

following IL-4 stimulation. Nevertheless, our findings show

evidence for the participation of NCoR-HDAC3 corepressor

complex in the IL-4-STAT6-induced transcriptional repression

in a distinct subset of IL-4-repressed genes. Our data suggest

that either the changed equilibrium between HATs and HDACs

or perhaps the activity of HDAC3 are regulated upon IL-4 stim-

ulus. Potential mechanisms for the latter include posttransla-

tional modifications and allosteric regulation. The mechanisms

of non-HDAC3-dependent repression also remain to be

identified.

Alternatively, polarizedmacrophages are required for effective

protection against different nematode infections reducing

parasite number and inhibiting nematode-induced tissue

damage (Allen and Sutherland, 2014). However, nematode
-4-pretreated and unstimulated WT and Stat6�/�BMDMs. Data are cumulative

0.05, **p < 0.01, ***p < 0.001, ns, no significant change. Error bars represent

T and Stat6�/� BMDMs. Data represent the mean and SD of two biological

ssion in IL-4-pretreated and unstimulated WT and Stat6�/� BMDMs. Data are

ents. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant change. Error bars

aspase1, ASC, and b-actin expression in IL-4-pretreated and unstimulatedWT

otype from two independent experiments.

e-1 activity in WT and Stat6�/� BMDMs. Data are representative of two inde-

WT and Stat6�/� mouse BMDMs. Data represent the mean and SD of three

imulation-induced LDH release in IL-4-pretreated and unstimulated WT and

n X-100-liberated total LDH release. Data represent the mean and SD of three

-labeledWT and Stat6�/�BMDMs. Data are representative of two independent

3 and Il1b expression in naive and Heligmosomoides polygyrus (H. polygyrus)-

mean and SD of five to six individual animals per group. *p < 0.05, **p < 0.01,

and C), 3 hr (B, D, E, F, H, and I), or the indicated period (G).
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infection-induced Th2 cell-type inflammation can also influence

the immune response against other pathogens and the preva-

lence of autoimmune or inflammatory diseases (Elliott and

Weinstock, 2012; R€uckerl et al., 2017). Therefore, a better under-

standing of the potential interactions between Th2 and Th1

cell-type inflammation-activated signaling pathways has a great

importance in macrophage biology and also in immune-inflam-

matory pathologies. It has been recently published that the

IL-4-STAT6 signaling pathway can partially suppress IFN-

g-induced transcriptional program in macrophages following

IL-4 and INF-g co-treatment (Piccolo et al., 2017). However,

our findings provide evidence that IL-4-STAT6 signaling pathway

induces epigenetic changes that persist following the release of

STAT6 from the DNA, leading to attenuated activation of inflam-

matory enhancers. The consequence of IL-4 priming-induced

repression of inflammatory enhancers is the decreased respon-

siveness to inflammatory signals via diminished basal and

LPS-induced expression of several components of Toll-like

andNod-like receptor signaling pathways. In addition, themajor-

ity of IL-4-STAT6-repressed genes show diminished expression

in macrophages derived from Brugia malayii-implanted mice

compared to thioglycollate-elicited macrophages. This formally

suggests that alternative polarization likely induces partial

desensitization of macrophages to further inflammatory signals

in vivo. Accordingly, M2-type macrophages have been shown

to protect mice against chemically induced colitis and a growing

body of evidence indicates that clinically controlled helminth

infection is able to ameliorate inflammatory bowel disease

(IBD) (Weinstock and Elliott, 2013).

These studies suggest that complex bidirectional interactions

exist between different polarization signals that determine the

overall sensitivity and responsiveness of macrophages toward

environmental stimuli. Our findings provide insights into this

cross-talk at the level of individual enhancers and raise the

intriguing possibility that IL-4-STAT6 signaling, through direct

transcriptional repression of inflammatory enhancers, induces

desensitization of macrophages to microbial-, stress-, and

damage-associated endogenous signals.
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role in innate immunity and inflammatory disease. Annu. Rev. Pathol. 4,

365–398.

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA

elements in the human genome. Nature 489, 57–74.

Daniel, B., Nagy, G., Hah, N., Horvath, A., Czimmerer, Z., Poliska, S., Gyuris,

T., Keirsse, J., Gysemans, C., Van Ginderachter, J.A., et al. (2014). The active

enhancer network operated by liganded RXR supports angiogenic activity in

macrophages. Genes Dev. 28, 1562–1577.

Elliott, D.E., and Weinstock, J.V. (2012). Helminth-host immunological interac-

tions: prevention and control of immune-mediated diseases. Ann. N Y Acad.

Sci. 1247, 83–96.

Fort, M., Lesley, R., Davidson, N., Menon, S., Brombacher, F., Leach, M., and

Rennick, D. (2001). IL-4 exacerbates disease in a Th1 cell transfer model of co-

litis. J. Immunol. 166, 2793–2800.

Gandino, L., and Varesio, L. (1990). Immortalization of macrophages from

mouse bone marrow and fetal liver. Exp. Cell Res. 188, 192–198.

Glass, C.K., and Natoli, G. (2016). Molecular control of activation and priming

in macrophages. Nat. Immunol. 17, 26–33.

Glass, C.K., and Saijo, K. (2010). Nuclear receptor transrepression pathways

that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol.

10, 365–376.

Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages:

mechanism and functions. Immunity 32, 593–604.

Hah, N., Benner, C., Chong, L.W., Yu, R.T., Downes, M., and Evans, R.M.

(2015). Inflammation-sensitive super enhancers form domains of coordinately

regulated enhancer RNAs. Proc. Natl. Acad. Sci. USA 112, E297–E302.

Hoiseth, S.K., and Stocker, B.A. (1981). Aromatic-dependent Salmonella

typhimurium are non-virulent and effective as live vaccines. Nature 291,

238–239.

Huang, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integra-

tive analysis of large gene lists using DAVID bioinformatics resources. Nat.

Protoc. 4, 44–57.

Icardi, L., Mori, R., Gesellchen, V., Eyckerman, S., De Cauwer, L., Verhelst, J.,

Vercauteren, K., Saelens, X.,Meuleman, P., Leroux-Roels, G., et al. (2012). The

Sin3a repressor complex is a master regulator of STAT transcriptional activity.

Proc. Natl. Acad. Sci. USA 109, 12058–12063.

Johnston, C.J., Robertson, E., Harcus, Y., Grainger, J.R., Coakley, G., Smyth,

D.J., McSorley, H.J., and Maizels, R. (2015). Cultivation of Heligmosomoides

polygyrus: an immunomodulatory nematode parasite and its secreted prod-

ucts. J. Vis. Exp. e52412.

Kang, K., Park, S.H., Chen, J., Qiao, Y., Giannopoulou, E., Berg, K., Hanidu, A.,

Li, J., Nabozny, G., Kang, K., et al. (2017). Interferon-g represses M2 gene

expression in human macrophages by disassembling enhancers bound by

the transcription factor MAF. Immunity 47, 235–250.e4.
Karagianni, P., andWong, J. (2007). HDAC3: taking the SMRT-N-CoRrect road

to repression. Oncogene 26, 5439–5449.

Kestler, H.A., M€uller, A., Kraus, J.M., Buchholz, M., Gress, T.M., Liu, H., Kane,

D.W., Zeeberg, B.R., and Weinstein, J.N. (2008). VennMaster: area-propor-

tional Euler diagrams for functional GO analysis of microarrays. BMC

Bioinformatics 9, 67.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

Martinez, F.O., Helming, L., Milde, R., Varin, A., Melgert, B.N., Draijer, C.,

Thomas, B., Fabbri, M., Crawshaw, A., Ho, L.P., et al. (2013). Genetic pro-

grams expressed in resting and IL-4 alternatively activated mouse and human

macrophages: similarities and differences. Blood 121, e57–e69.

Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macro-

phage activation. Nat. Rev. Immunol. 8, 958–969.

Mullican, S.E., Gaddis, C.A., Alenghat, T., Nair, M.G., Giacomin, P.R., Everett,

L.J., Feng, D., Steger, D.J., Schug, J., Artis, D., and Lazar, M.A. (2011). Histone

deacetylase 3 is an epigenomic brake in macrophage alternative activation.

Genes Dev. 25, 2480–2488.

Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S.,

Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., et al. (2014).

Macrophage activation and polarization: nomenclature and experimental

guidelines. Immunity 41, 14–20.

Natoli, G., and Andrau, J.C. (2012). Noncoding transcription at enhancers:

general principles and functional models. Annu. Rev. Genet. 46, 1–19.

Nusinzon, I., and Horvath, C.M. (2003). Interferon-stimulated transcription and

innate antiviral immunity require deacetylase activity and histone deacetylase

1. Proc. Natl. Acad. Sci. USA 100, 14742–14747.

Ostuni, R., Piccolo, V., Barozzi, I., Polletti, S., Termanini, A., Bonifacio, S.,

Curina, A., Prosperini, E., Ghisletti, S., and Natoli, G. (2013). Latent enhancers

activated by stimulation in differentiated cells. Cell 152, 157–171.

Piccolo, V., Curina, A., Genua, M., Ghisletti, S., Simonatto, M., Sabò, A., Amati,
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without magnetic beads

Nugen 0344NB-32

TruSeq ChIP SamplePreparation Kit - Set A Illumina IP-202-1012

Nextera DNA Sample Preparation Kit

(24 Samples)

Illumina FC-121-1030

NEBNext Multiplex Small RNA Prep Set for

Illumina (Set1)

Illumina E7300 S

IL-1b ELISA kit R&D System DY401-05

FLICA 660 far-red fluorescence

Caspase-1 Assay Kit

ImmunoChemistry Technologies 9122

Deposited Data

RNA-seq, ChIP-seq, GRO-seq and

ATAC-seq

This paper GEO: GSE106706

Microarray data from WT and HDAC3

KO BMDMs

(Mullican et al., 2011) GEO: GSE33609

SMRT and NCoR ChIP-seq (Barish et al., 2012) GEO: GSE27060

H3K4m1 ChIP-seq (Ostuni et al., 2013) GEO: GSE38379

(Continued on next page)

Immunity 48, 75–90.e1–e6, January 16, 2018 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CTCF and RAD21 ChIP-seq (Daniel et al., 2014) SRA: SRP019970

RNA-seq data from Thio-Mac and Ne-Mac (Thomas et al., 2012) ArrayExpress: E-MTAB-995

Experimental Models: Cell Lines

primary bone marrow-derived macrophages WT C57BL/6 and Stat6�/� mice N/A

immortalized bone marrow-derived

macrophages

WT C57BL/6 and Ncor1fl/flLys2

Cre mice

N/A

Experimental Models: Organisms/Strains

C57BL/6 The Jackson Laboratory N/A

Stat6�/� The Jackson Laboratory N/A

Ncor1fl/fl Prof. Johan Auwerx N/A

Oligonucleotides

Primers for mRNA expression This paper see Table S6

Primers for eRNA expression This paper see Table S6

Primers for ChIP-qPCR experiments This paper see Table S6

Software and Algorithms

GraphPad Prism GraphPad Software, Inc https://www.graphpad.com/

Ingenuity Pathway Analysis QIAGEN https://www.qiagenbioinformatics.com/

products/ingenuity-pathway-analysis/

TopHat (Trapnell et al., 2013) http://cole-trapnell-lab.github.io/

projects/tophat/

Cufflinks (Trapnell et al., 2013) http://cole-trapnell-lab.github.io/

projects/cufflinks/

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) http://software.broadinstitute.org/

gsea/index.jsp

DAVID 6.8 (Huang et al., 2009) https://david.ncifcrf.gov/tools.jsp

Burrows-Wheeler Alignment Tool (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

MACS2 (Zhang et al., 2008) https://github.com/taoliu/MACS

DiffBind v2.0.5 (Ross-Innes et al., 2012) https://bioconductor.org/packages/

release/bioc/html/DiffBind.html

VennMaster (Kestler et al., 2008) http://sysbio.uni-ulm.de/

?Software:VennMaster

IGV2.3 (Thorvaldsdóttir et al., 2013) http://software.broadinstitute.org/

software/igv/igv2.3

ngs.plot (Shen et al., 2014) https://github.com/shenlab-sinai/

ngsplot

Other

Heligmosomoides polygyrus Prof. Richard Grencis University of Manchester
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Laszlo

Nagy (lnagy@sbpdiscovery.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All strains are on C57BL/6 genetic background. Stat6�/� is a full body knockout and it was purchased from The Jackson Laboratory.

Animals were housed under minimal disease conditions and the experiments were carried out under institutional ethical guidelines

and licenses.
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Bone Marrow-Derived Macrophages
Isolation and differentiation were completed as described earlier (Daniel et al., 2014). Isolated bonemarrow-derived cells were differ-

entiated for 6 days in the presence of L929 supernatant. Differentiated BMDMs were treated with IL-4 (20 ng/ml), LPS (100 nM) and

ATP (5mM) for the indicated period of time.

Immortalization of mouse bone marrow-derived macrophages
Bone marrow-derived cells were immortalized using the J2 cell line continuously producing the J2 virus encoding v-raf and v-myc

oncogenes (Gandino and Varesio, 1990). J2 cells were grown in DMEM containing 20% FBS. Bone marrow cells were seeded in

immortalization media I. (90% J2 supernatant, 5% HyClone FBS, 10ug/ml Polybrene 0.1%, L929 supernatant 5%) and incubated

overnight. On the second day supernatant was collected and spun down to pellet floating cells. Adherent cells were scraped and

re-plated in a new Petri dish using immortalization media II. (20% J2 supernatant, 10% HyClone FBS, 10ug/ml Polybrene 0.1%,

L929 supernatant 10%, 60% DMEM) and incubated for 6 days. After the immortalization cells were kept in regular macrophage

differentiation media (20% FBS, 30% L929 supernatant and 50% DMEM containing 1% antibiotics).

METHOD DETAILS

RNA-seq
cDNA library for RNA-Seq was generated from 1 mg total RNA using TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA,

USA) according to the manufacturer’s protocol. Briefly, poly-A tailed RNAs were purified by oligodT conjugated magnetic beads and

fragmented on 94 C degree for 8 minutes, then 1st strand cDNA was transcribed using random primers and SuperScript II reverse

transcriptase (Lifetechnologies, Carslbad, CA, USA). Following this step second strand cDNA synthesized, double stranded

cDNA end repaired and 30 ends adenylated then Illumina index adapters were ligated. After adaptor ligation enrichment PCR was

performed to amplify adaptor ligated cDNA fragments. Fragment size distribution and molarity of libraries were checked on Agilent

BioAnalyzer DNA1000 chip (Agilent Technologies, Santa Clara, CA, USA). Paired read 100bp sequencing runs were performed on

Illumina HiScan SQ instrument (Illumina, San Diego, CA, USA).

ChIP-seq and ChIP-qPCR
ChIP was performed essentially as previously described (Daniel et al., 2014). Libraries were prepared either with Ovation Ultralow

Library Systems (Nugen) or TruSeq ChIP library systems (Illumina) according to the manufacturer’s instructions. The following anti-

bodies were used: H3K27Ac (ab4729), P300 (sc-585), PU.1 (sc-352), JunB (sc-46x), IRF8 (sc-32528x), STAT6 (sc-981), C/EBPa

(sc-61X), HDAC1 (ab7028), HDAC2 (ab7029), HDAC3 (ab4729), RNA PolII-pS5 (ab5131) and RNA PolII-pS2 (ab5095), p65

(sc-372). Primer sequences for ChIP-qPCR are available in Table S6.

ATAC-seq
ATAC-seq was carried out as described earlier with minor modification (Buenrostro et al., 2013). Cells were scraped and counted to

achieve 50k/ml in ice-cold PBS. Cell suspensionwas further diluted to 25k/ml and nuclei were isolated with ATAC-LB (10mMTris-HCl

pH7.4, 10mMNaCl, 3mMMgCl2, 0.1% IGEPAL). Nuclei from 25k cells were used for tagmentation using Nextera DNA Library Prep-

aration Kit (Illumina) from two biological replicates. After tagmentation DNAwas purified withMinelute PCR Purification Kit (QIAGEN).

Tagmented DNA was amplified with Kapa Hifi Hot Start Kit (Kapa Biosystems) using 9 PCR cycle. Amplified libraries were purified

again with Minelute PCR Purification Kit. Fragment distribution of libraries was assessed with Agilent Bioanalyzer and libraries

were sequenced on a HiSeq 2500 platform.

GRO-seq
GRO-seq was performed as described earlier (Daniel et al., 2014), but the libraries were prepared with NEBNext Small RNA Library

Prep set for Illumina.

Real-Time Quantitative PCR for enhancer RNA and mRNA detection (qPCR)
RNA was isolated with Trizol reagent (Ambion). RNA was reverse transcribed with High-Capacity cDNA Reverse Transcription Kit

(Applied Biosystems) according to manufacturer’s protocol. Transcript quantification was performed by qPCR reactions using

SYBR green master mix (BioRad). Transcript levels were normalized to Ppia. Primer sequences are available in Table S6.

LDH release
LDH activity was measured in the supernatants of unstimulated and IL-4-pretreated WT and STAT6KO bone marrow-derived mac-

rophages after IL-4 pretreatment and/or LPS/ATP costimulation (LPS-exposed BMDMs were treated with ATP for 30 min) by

commercially available LDH UV assay on Cobas c 501 instrument (Roche Diagnostics, Mannheim, Germany). This measurement

is based on the conversion of L-lactate to pyruvate along with the reduction of NAD+ to NADH. The initial rate of the NADH formation

was directly proportional to the catalytic LDH activity determined by photometrically measuring the absorbance increment at 340 nm.
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Measurement of IL-1b production
LPS-exposed BMDMs were treated with ATP for 45 min. Supernatants from ATP-treated macrophages were collected, centrifuged

and stored at �20�C until further use. IL-1b was measured from samples using ELISA kit (DY401-05, R&D System) according to the

manufacturer’s instructions and analyzed on FlexStation 3 Microplate Reader (Molecular Devices). The minimum detectable dose is

15.6 pg/ml.

Western Blot analysis
Cells were harvested and centrifuged, then they were lysed in loading buffer (62,5mM Tris pH = 8.8, 25% glycerol, 2% SDS, 1%

b-mercaptoethanol and 1% BPB). Before loading all samples were boiled for 10 minutes. Proteins were separated by SDS-PAGE

and transferred onto nitrocellulose membranes. Membranes were then blocked with 5% non-fat milk, washed briefly, incubated

with primary antibodies at 4�C overnight. Pro-IL-1b (AF401-NA) was from R&D System, ASC (sc22514-R) was from Santa Cruz,

pro-caspase-1 (AG-20B-0042) and NLRP3 (AG-20B-0014) antibodies were obtained from AdipoGen. Primary antibodies were incu-

bated with corresponding horseradish peroxidase-conjugated secondary antibodies from BioRad for 1 hour at room temperature.

Proteins were visualized by Supersignal West-Pico peroxide/luminol enhancer solution from Pierce. To verify the loading of equal

amount of protein sample, the b-actin (Sigma-Aldrich) expression was detected.

Laser Scanning Cytometry
Caspase-1 activity and pyroptotic cell death by propidium iodine staining wasmeasured in single cells using imaging Laser Scanning

Cytometry (LSC). Mouse macrophages were cultured, treated, stained and imaged in 8 well IBIDI (Martinsried, Germany) slides with

an initial concentration of 15,000 cells per well. Sub-vital staining was performed in culture medium at room temperature for

20 minutes by Hoechst 34580 (10 microg/ml), propidium iodine (10 microg/ml), Alexa 488 tagged Annexin V (1 microg/ml) and cas-

pase-1 specific FLICA� 660 (FLICA� 660 far-red fluorescence Caspase-1 Assay Kit was used according to the description of manu-

facturer; ImmunoChemistry Technologies, LLC). In some experiments specific Caspase-1/ICE Inhibitor Z-WEHD-FMK (R&D

Systems, Inc. Minneapolis, MN, USA) was also used before FLICA labeling. For LSC imaging an iCys Research Cytometer (formerly

CompuCyte; Thorlabs Imaging Systems, Sterling, VA) was usedwith its iNovator Application Development Toolkit software. Hoechst,

Alexa, PI and FLICA fluorescence dyes were excited separately with 405, 488, 488, 633 nm laser lines and detected at 430-470,

515-545, 650-700, 650 and above nanometers, respectively. Single cell data were gated according to their area, DNA content

and nuclear shape and fluorescence pixel integral, maximum pixel intensity and average pixel intensity parameters with raw images

were recorded for all dyes. For cytoplasmic caspase-1 activity measurements dynamic background subtraction was applied. Gated

single cell FCS data were exported from LSC software and contour plots were generated in FCS Express 5 flow and image cytometry

data analysis software (De Novo Software, Glendale, CA, USA).

In vivo infection model
Heligmosomoides polygyrus life cycle was maintained in house and infective thirdstage larvae (L3) were obtained as described else-

where (Johnston et al., 2015). Mice were infected with 200 H polygyrus L3 by oral gavage. The attenuated, aroA deficient Salmonella

enterica enterica serovar Typhimurium strain SL3261 (Hoiseth and Stocker, 1981) was cultured as stationary overnight culture from

frozen stock in Luria-Bertani broth. Co-infections were carried out as described previously (R€uckerl et al., 2017). Briefly, animals were

injected i.p. with �1x10^6 CFU Salmonella Typhimurium diluted in PBS or received 1 mg/kg LPS from Salmonella enterica ser. Min-

nesota (Sigma Aldrich L4641) 9 days after H.polygyrus infection. 6h after bacterial inoculation peritoneal macrophages were isolated

by lavage, purified by adherence for 2 h to cell culture plastic and total RNA extracted.

Flow cytometry
All antibodies were purchased from Biolegend UK unless otherwise indicated. Equal numbers of cells were stained with LIVE/DEAD

cell viability assay (Life Technologies) and blocked with 5 mg/mL anti CD16/32 (2.4G2, BD Biosciences) and heatinactivated normal

mouse serum (1:10) in FACS buffer (0.5% BSA and 2 mM EDTA in Dulbecco’s PBS) before surface staining with antibodies to F4/80

(BM8), SiglecF (E502440), Ly6C (HK1.4), Ly-6G (1A8), TCRb (H57-597), CD11b (M1/70), CD11c (N418), I-A/I-E (M5/114.15.2), CD19

(6D5) and CD115 (AFS98). Detection of intracellular Ym1 and NOS2 was performed directly ex vivo. Cells were stained for surface

markers then fixed with 2% paraformaldehyde (Sigma Aldrich), permeabilized using Permeabilization Buffer (eBioscience) and

stained with directly labeled antibodies to NOS2 (CXNFT; eBioscience) or biotinylated polyclonal goat antiYm1 (R&D Systems)

followed by streptavidin-PerCP (Biolegend). Expression of Ym1 and NOS2 was determined relative to appropriate polyclonal or

monoclonal isotype controls.

Samples were acquired on a BD LSR II using BD FACSDiva software (BD Bioscience) and post-acquisition analysis performed

using FlowJo v9 software (Tree Star Inc.). Macrophages were identified as lineage negative (CD19-,TCRb-,Ly6G-,SiglecF-),

CD11b+ CD115+.
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QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq analysis
TopHat and Cufflinks toolkits (Trapnell et al., 2013) were used for mapping spliced reads to the mm10 mouse assembly with default

parameters, making transcript assemblies, and getting and sorting gene expression data. Geneswith at least 1 FPKM (Fragments Per

Kilobase per Million mapped reads) expression value in at least one sample were considered to be expressed. In the downstream

analysis 2-way anova and post hoc tests were performed onWT and Stat6�/� macrophages exposed to IL-4 for 1, 3, 6 and 24 hours

in R using the aov() and TukeyHSD() functions of the MASS package. Differences were considered statistically significant at p value <

0.05 and FC > 2. For IL-4 pretreatment-LPS datasets, LPS-induced genes were considered statistically significant at p value < 0.05

compared to the control and then these genes were clustered based on their sensitivity (p value < 0.05) to IL-4 pretreatment as

follows: attenuated response - Cluster 1; insensitive - Cluster 2; increased response - Cluster 3. K-means clustering was performed

in R using the function kmeans from package stats. Gene Set Enrichment Analysis was done by GSEA v2.2.0 (Subramanian et al.,

2005). KEGG pathway enrichment analyses were done using the DAVID web application (Huang et al., 2009). Heatmaps were drawn

using the R package pheatmap.

ATAC-seq, ChIP-seq and GRO-seq analyses
The primary analysis of the ATAC-seq, ChIP-seq and GRO-seq raw sequence reads was carried out using our ChIP-seq analysis

command line pipeline (Barta, 2011). Briefly, Burrows-Wheeler Alignment Tool (BWA, (Li and Durbin, 2009)) was used to align the

reads to mm10 genome assembly with default parameters. MACS2 (Zhang et al., 2008) (with ‘-B’ and ‘-SPMR’ options) was used

for predicting transcription factor peaks and nucleosome free regions (q-value% 0.01), and findPeaks.pl (with ‘-size 1000’, ‘-minDist

2500’ and ‘-style histone’ options) for histone regions. Artifacts were removed using the ENCODE blacklist (ENCODE Project Con-

sortium, 2012). Predicted peaks were sorted by average coverage (RPKM, Reads Per Kilobase per Million mapped reads). Average

coverage of the predicted peaks and significantly changing regions (p value% 0.05) were calculated by DiffBind v2.0.5 (Ross-Innes

et al., 2012). Intersections, subtractions and merging of the predicted peaks were made with BedTools. Proportional Venn diagrams

were generated with VennMaster (Kestler et al., 2008). Genome coverage files (bedgraph files) for visualization were generated by

makeUCSCfile.pl (HOMER) and then converted into tdf files using igvtools with ‘toTDF’ option. De novo motif discovery was per-

formed on the 100 bp vicinity of the peak summits using findMotifsGenome.pl with options ‘–len ‘‘10,12,14,16’’’ and ‘-size 200’

on the repeat-masked mouse genome (mm10r) from HOMER. The HOMER option ‘-style groseq’ was used for GRO-seq samples.

Integrative Genomics Viewer (IGV2.3, Broad Institute) was used for data browsing (Thorvaldsdóttir et al., 2013) and creating repre-

sentative snapshots. Normalized tag counts for Meta histograms and RD plots were generated by annotatePeaks.pl from HOMER

(with option ‘-hist 10’ for histograms andwith options ‘-ghist’ and ‘-hist 10’ for RD plots) and visualized by R using package ggplot2 or

by Java TreeView, respectively. Gene bodymetaplots were created using ngs.plot software (Shen et al., 2014). Pearson’s correlation

coefficients between GRO-seq, PolII S2, PolII S5 and H3K27ac ChIP-seq data (fold change of RPKM values upon 1h IL-4 treatment

on the merged replicates using a custom bash script) were calculated in R using function cor() from package stats. Changes on box-

plots were considered significant at p < 0.00001 using paired t test and the average of fold differences at the individual

enhancers R 1.15.

Domain prediction
ChIP-seq raw reads of 47 CTCF and 42 Cohesin (RAD21, SMC1/3 or SA1/2) samples were downloaded from the Sequence Read

Archive of NCBI and processed using our ChIP-seq analysis command line pipeline (Barta, 2011). Consensus CTCF peak summits

were defined as the average genomic location of at least two summits within 51 bp. Consensus peak summits for Cohesin were

defined in the same manner. Insulator peak summits were determined from those consensus CTCF peak summits that were closer

to a consensusCohesin peak summit than 51 bp.Motif enrichments were calculated in two rounds by findMotifsGenome.pl (HOMER)

from the 100 bp region around the 5000 most ubiquitous insulator peak summits. Having mapped the putative elements matching

with the CTCFmotif of the first search by annotatePeaks.pl (HOMER), we used those top 5000 regions that lacked these hits. Score 6

was set as a threshold for both CTCF motif matrices, and to filter putative CTCF elements in the case of multiple occurrences at the

same region those hits were preferred that followed the direction of the CTCF/Cohesin peak location compared to each other (Rao

et al., 2014) and had the highest motif score. Insulators showing clear protein-binding direction without predicted element were also

included in domain prediction. Average coverage (RPKM) of CTCF and RAD21 ChIP-seq derived from bone marrow-derived mac-

rophages was calculated on the 100 bp region around insulators, and those regions were filtered out that had an RPKM value

exceeding the hundred-thousandth of the summed density of all regions per sample in both samples. The closest insulators showing

convergent direction within 1Mb distance but farther than 1kb were assigned to each other and called domains if their coverage

showed less than 2-fold difference for both proteins. In the case of overlapping domains, those were filtered having the highest insu-

lator coverage. ‘‘Negative’’ domains with divergent insulators were defined between the final convergent domains. Association

scores between STAT6-bound enhancers and IL-4-regulated gene clusters were calculated and visualized by package pheatmap

using option scale = ’’column’’ (scaling by RNA-seq clusters).
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Statistical analysis
Statistical analysis for qRT-PCR, ChIP-qPCR, ELISA, LDH-release assay, FACS analysis and densitometry analysis of western blot:

the error bars represent standard deviation (SD). The two-tailed Student’s t test was used to evaluate the significance of differences

between two groups. Quantification and alignments of NGS analysis for RNA-seq, ChIP-seq and ATAC-seq are also described in

more detail in the methods section above.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq, ChIP-seq, GRO-seq, and ATAC-seq data reported in this paper is GEO: GSE106706.

Microarray and RNA-seq datasets were downloaded from NCBI GEO depository (GSE33609) and ArrayExpress (E-MTAB-995).

ChIP-seq datasets were downloaded from NCBI GEO depository (GSE27060 and GSE38379) as well as Sequence Read Archive

(SRP019970). The used genome-wide datasets are collected in Table S7.
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