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Abstract 

Predictive processing of information is essential for goal-directed behavior. We offer an account of 

auditory perception suggesting that representations of predictable patterns, or ‘regularities’, 

extracted from the incoming sounds serve as auditory perceptual objects. The auditory system 

continuously searches for regularities within the acoustic signal. Primitive regularities may be 

encoded by neurons adapting their response to specific sounds. Such neurons have been observed 

in many parts of the auditory system. Representations of the detected regularities produce 

predictions of upcoming sounds as well as alternative solutions for parsing the composite input into 

coherent sequences potentially emitted by putative sound sources. Accuracy of the predictions can 

be utilized for selecting the most likely interpretation of the auditory input. Thus in our view, 

perception generates hypotheses about the causal structure of the world.  
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Prediction underlies adaptive behavior 

Achieving one’s goals in constantly changing environments requires actions directed at future states 

of the world. For example, when crossing a street, one has to anticipate the location of cars at the 

moment when one is likely to intersect their trajectories. Predicting future events is essential for 

everything we do, from taking into account the immediate sensory consequences of our own actions 

to signing up to a pension plan. The realization that we constantly interact with the future led to 

recent theoretical proposals for predictive descriptions of cognitive processes and their 

implementation in the brain in various domains of cognitive neuroscience. These theories are 

typically informed by concepts from Bayesian inference and consider that the ‘purpose’ of 

perception is to generate testable hypotheses about the causal structure of the external world, 

based both on prior knowledge and the current sensory input1. The various theories differ in their 

emphasis, spanning the range from cognitive, functional approaches2, 3 through approaches focusing 

on the two-way transfer of information along sensory hierarchies4 to system approaches specifying 

details of the architecture and computations involved5. 

In this review, we draw on the notion that prediction underlies perception. We focus on the auditory 

modality, stressing the importance of the representation of temporal regularities as intrinsic to 

prediction. We argue that regularity representations play an essential role in parsing the complex 

acoustic input into discrete object representations and in providing continuity for perception by 

maintaining a cognitive model of the auditory environment. We review evidence showing that some 

processing of regularities occurs at quite low levels in the auditory system and suggest that auditory 

perceptual objects are mental constructs based on representations of temporal regularities which 

are inherently predictive, continuously generating expectations of the future behavior of sound 

sources. Finally, we examine the role of focused attention in forming auditory object 

representations. 

 

We conclude that the auditory objects appearing in perception are based on detecting regular 

features within the acoustic signal. Regularity representations provide alternative interpretations of 

the acoustic input. Testing the predictions of these representations against incoming sounds guides 

selection of the dominant (perceived) alternative. 

 

Predictive representations in analyzing the auditory scene 

Orderly perception of complex auditory scenes requires them to be broken down into internally 

coherent constituents.  According to Bregman’s theory6 (see Box 1), auditory scene analysis (ASA) 

consists of two phases; the first phase is concerned with the formation of alternative sound 

organizations, while the second is concerned with selecting one of the alternatives to be perceived. 

Although perceptually it is difficult to separate these processes, the existence of the two phases was 

demonstrated using event-related brain potentials (ERPs)7, 8. Winkler and colleagues8 found two 

distinct ERP components elicited in sound sequences whose perception spontaneously alternated 

between two different organizations. The earlier component was elicited when stimulation 

parameters promoted one organization irrespective of which organization was perceived, whereas 

the later component only accompanied the actual perception of this organization. The results were 

interpreted as reflecting the initial formation of alternative interpretations and, separately, the 

selection of one sound organization. 
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How does the initial sound organization emerge? In the absence of contextual influences, 

segregation can be initially based on simultaneous grouping cues (see Box 1). For example, Alain and 

colleagues9 discovered an event-related brain potential (ERP) component (termed Object Related 

Negativity – ORN), which is elicited when one harmonic of a complex tone is sufficiently mistuned, so 

that it is perceived as separate from the rest of the tone. However, simultaneous cues are 

insufficient for resolving most natural scenes, and auditory scene analysis also utilizes regularities 

which link multiple sound events. The key to this process is the formation of a representation which 

captures the regularities common to a coherent sequence of sounds; a ‘model’ of a putative sound 

source. This notion of regularity representation stems from the Gestalt principles of perception10. 

However, in addition to encoding a regularity, this representation is predictive of the sounds that the 

source is likely to emit and hence can underpin the formation of an identifiable perceptual unit 

(object) as well as its separation from other units11. Direct ERP correlates of stimulus prediction are 

limited to the initial 80 ms of sound processing12, suggesting fast generation and processing of the 

predictions. Although regularity detection is mainly stimulus-driven13, some types of regularities can 

only be detected by persons with previous specialized training (such as learning to speak a language 

or playing a musical instrument)14-16. 

Those regularities which are easiest to discover are extracted first and hence determine the 

organization that is initially perceived. For example, in the auditory streaming paradigm (see Box 1), 

the initial links are most often those between temporally adjacent tones. Later, links are formed 

between tones sharing some stimulus parameter17, such as frequency in the example in Box 1.  

Competition between these links determines the perception of either a single sequence (when the 

links between temporally adjacent tones are dominant) or the perception of two sequences (when 

the links between same-feature tones dominate)18. Encoding the links has possible neuronal 

correlates in the responses of auditory neurons to the two different sounds. When many neurons 

respond to both sounds, the links between temporally adjacent sounds are presumably stronger and 

a single sequence is perceived, whereas if most neurons respond only to one or to the other, but not 

to both sounds, two streams are formed. Neural adaptation to repeating sounds can be stimulus-

specific19-21. Thus, even neurons that initially respond similarly to both sounds may eventually 

develop an imbalance, a weakening of the temporally-adjacent links in favor of the repeating-feature 

ones. Although the location of the neurons encoding these links is debated19-21, the model accounts 

well for the effects of the acoustic parameters on the time course of the build-up of streaming6, 22, 23 

It predicts faster onset for streaming with larger feature differences and with faster presentation 

rates, since both lead to faster and stronger adaptation. 

The build-up of streaming has been interpreted as the gathering of evidence in favor of the 

segregated organization6. Within the present framework, we interpret this as competition between 

alternative sequential associations18. In accordance with our view, when listeners are presented with 

long unchanging sound sequences, such as in the auditory streaming paradigm, their perception 

fluctuates between the alternative organizations even when the stimulus parameters strongly 

promote one or the other organization13, 18, 24. The neuronal model, described above, while 

accounting for the build-up, is as yet insufficient to account for the continued perceptual switching.  

We argue that in addition, it is necessary to assume that competition between alternative sequential 

associations is a constant feature of ASA18. 
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Thus predictive regularity representations provide initial hypotheses for the constituents of the 

complex auditory input (i.e., they are putative auditory objects). The formation and dynamical 

behavior of these representations can be related to neural mechanisms observed in several stations 

of the auditory system. 

Maintaining the representation of the auditory scene 

Once possible object representations are formed, inconsistencies between them need to be resolved 

while preferably maintaining the continuity of perception. Figure 1 shows a conceptualization of 

ASA. First-phase grouping processes are represented on the left with simultaneous and sequential 

grouping processes separately marked (bottom left box). Sequential grouping is based on predictions 

produced by representations encoding the previously detected acoustic regularities (upper left box).  

Competition between alternative sound groupings is resolved in the second phase of ASA (bottom 

right). Bregman6 describes this process as “voting” by the grouping processes supporting one or 

another alternative. Representations reflecting the selected organization are passed onto higher 

level processes, such as conscious perception. Thus, we always experience sounds as part of some 

pattern and as belonging to a given stream (lower right arrow). 

The various grouping primitives probably have different weights in the voting procedure. Weights 

reflect confidence in the grouping process. Figure 1 emphasizes the online adjustment of weights 

according to the reliability of the predictions based on the given regularity representation (Figure 1, 

upper right). Weights are adjusted after predictions are matched against the parsed input. When a 

prediction fails, the weight of the corresponding regularity representation is decreased. This process 

is probably reflected in the Mismatch Negativity (MMN) event-related potential11, 25 (see Box 2). 

Switching between alternative sound organizations can result from dynamical fluctuations of the 

weights when both alternatives are strongly supported18 or from active exploration of alternative 

interpretations of the input (conveyed by top-down biasing). MMN elicitation has been shown to 

correspond to the actually perceived sound organization13. 

The auditory system is thought to use an “old+new” strategy in parsing the sound input6. Once 

continuation of the previously detected streams is accounted for, the residue (unexplained input) is 

regarded as originating from a newly activated source (Figure 1, upper right). Some of the exogenous 

ERP responses (P1, N1, P2) may reflect the emergence of new auditory streams. These responses are 

sensitive to large changes in stimulus energy, which is a prime cue for the activation of a new sound 

source. Furthermore, they shortly follow the initial 80 ms of the processing of an incoming sound for 

which direct ERP correlates of prediction were observed12, and within which the residue is probably 

estimated. The N1 wave26 (see Box 2) may be the best candidate, because its frontal subcomponent 

can be linked to the attentional capture often resulting from the detection of a new object in the 

environment. In terms of our model of ASA (Figure 1), residue detection feeds into the processes 

forming new sequential associations (see the previous section). 

Our analysis suggests that competition between alternative sound organizations is resolved by 

taking into account the within-context predictive reliability of the competing regularity 

representations. New streams are detected by processing the residual acoustic signal, i.e. that which 

could not be explained by continuation of the previously detected streams. 
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Neural bases for detecting change and deviance 

Possible neural correlates of the processes that are reviewed in the previous sections may be found 

in various stations of the auditory system. The 'core' auditory pathway (Figure 2) seems to keep a 

high-fidelity representation of sounds at least up to the level of the primary auditory cortex, 

although contributions to the buildup of streaming could occur as early as the cochlear nucleus21. In 

the primary auditory cortex itself, a number of response features may already encode information 

that is related to the formation of auditory objects. For example, the discrete events that are the 

subject of sequential grouping may be marked by eliciting well-timed onset responses in auditory 

cortex. These onset responses correspond to the perception of temporal edges27 and can be linked 

with the N1 wave and, possibly, with ORN (Figure 1). 

Recently, stimulus-specific adaptation (SSA) has been intensively studied in the ascending auditory 

pathways. SSA is the reduction in the responses of a neuron to a common sound which does not 

generalize to other, rare, sounds28-31. SSA may be a neural correlate of regularity-based change 

detection32; a process underlying the maintenance and update of auditory representations. In the 

core ascending pathway of the auditory system, it seems that ubiquitous SSA first appears in A128, 29. 

However, strong SSA is present in non-lemniscal stations of the auditory system (Figure 2), starting 

as early as the external nuclei of the inferior colliculus31. The properties of SSA (its high sensitivity to 

small deviations and its fast time course) make it a prime candidate for encoding inter-sound 

relationships and detecting deviations. SSA has been linked to the ERP components associated with 

various processes of ASA25, 29, 33 (N1, ORN, and MMN; see Fig. 1). However, subcortical and cortical 

SSA activity occurs earlier than any of these ERP responses32. Thus, the SSA observed in animals 

presumably lies upstream of the generation of these ERPs. 

As suggested by the short survey above, neural correlates of auditory scene analysis and change 

detection abound in the auditory system (Figure 2). It may be that they are constructed 

hierarchically, with the earlier stations using the more obvious stimulus properties and higher 

stations using derived properties. Alternatively, neural correlates of high-level processes in 

subcortical stations may be at least partially a reflection of the strong descending system of 

projections that is present in all sensory systems. These issues will have to be resolved in future 

experiments. 

Predictive regularity representations as perceptual objects 

We have argued that auditory regularity representations supported by the SSA mechanism 

observable in many parts of the auditory system play an essential role in parsing complex auditory 

scenes. Here we examine whether regularity representations may form the core of auditory object 

representations. Recent theories of auditory object representation34, 35 emphasize the requirement 

of common characteristics for object representations across different modalities. So, what do we 

expect of perceptual objects? 1) In natural everyday environments, almost no sound occurs in 

isolation. Therefore, object representations must span multiple acoustic events. 2) An object is 

described by the combination of its features. 3) An object is a unit which is separable from other 

objects. Therefore, auditory object representations should specify which parts of the acoustic signal 

belong to the given object. 4) The actual information arriving from an object to our senses is quite 

variable in time. Therefore, object representations must generalize across the different ways the 
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same object appears to the senses. 5) Finally, in accord with Gregory’s1  theory of perception, we 

expect object representations to predict parts of the object for which no input is currently available. 

The predictive regularity representations fit all of these criteria.  

(1) Auditory regularity representations are temporally persistent; they have been shown to connect 

sounds separated by up to circa 10 seconds36 and persist for at least 30 seconds37. 

(2) Auditory regularity representations encode all sound features with a resolution comparable to 

perception, since perceptually discriminable deviations elicit MMN (for a review, see38). Importantly, 

MMN is also elicited by rare sounds differing from two or more frequent sounds only in the 

combination of two auditory features39, 40. Thus, auditory regularity representations describe sounds 

by the combination of their features. 

(3) When two sound streams are perceptually separated, MMN reflects the perceived sound 

organization11, its elicitation dynamically follows perceptual fluctuations between two alternative 

sound organizations and the effects of priming sequences on perception13. Critically, if two 

concurrent auditory streams are characterized by separate regularities, then deviant sounds only 

elicit an MMN with respect to the stream to which they belong perceptually41, 42. Thus regularity 

representations correspond to the perceptually separable units of the auditory input. 

(4) Regularities are extracted from acoustically widely different exemplars in a sequence43-45, 

including the natural variation of environmental sounds46. Moreover, regularities governing the 

variation of sounds are also extracted from a sound sequence (e.g., “the higher the pitch the softer 

the tones in the sequence”; see47). Thus auditory regularity representations generalize across 

different instances of the same object. 

(5) Violations of predictive rules have been shown to elicit the MMN (for recent reviews, see11, 48, 49). 

For example, delivering a low tone after a short one elicited the MMN, when for most tones the rule 

“short tones are followed by high-pitched tones, long tones by low-pitched tones” held50, 51. Direct 

evidence for the generation of predictions was obtained by Bendixen and colleagues12, who 

observed short-latency ERP correlates of auditory anticipation. Compatible results were obtained 

with a wide variety of stimulus paradigms52-56. Thus it appears that auditory regularity 

representations provide predictions of future sound events. 

We therefore suggest that representations of auditory regularities serve as perceptual objects. That 

is, auditory objects are described in the brain by predictive rules linking together coherent 

sequences of sounds. Although there are obvious modality-specific phenomena, the notion of 

describing objects by the rules binding them into a unit could also be applicable in other modalities. 

Many Gestalt principles appear to work similarly in different modalities and the requirement for 

object representations to interpolate and extrapolate from the available data was initially conceived 

largely on the basis of visual evidence1. Violating visual and somatosensory temporal regularities 

elicits visual and somatosensory analogues of the auditory MMN, respectively57, 58 . Very recently, an 

MMN-like component has been observed in response to violating an audiovisual regularity59, 60. Thus 

it appears that regularity representations are formed and utilized even in cross-modal integration. 
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Auditory object representations and attention 

The hypothesis that auditory object representations are representations of the regularities linking 

together sounds forming a coherent sequence allows us to reexamine the long-standing debate in 

psychology regarding whether object formation requires focused attention61, 62. Within the present 

framework, we should ask whether forming regularity representations requires attention. Several 

studies suggest that deviations from auditory regularities are detected even when attention is not 

focused on the sounds38, 63, including regularities based on the conjunction of auditory features39, 40, 

a focal point of the debate about the role of attention in object formation. Furthermore, auditory 

streams may also be formed outside the focus of attention64. Most convincingly, acoustic regularities 

are detected in comatose patients65 and in sleeping newborns66. For example, neonates detect 

violations of the beat in a rhythm with natural variations67 and the ratio of different constituent 

sounds within sound patterns68. Stream-formation dependent regularity detection was also 

observed in newborns69. Thus it appears that in the auditory modality, forming predictive regularity 

representations does not require focused attention. This may also be true for vision. Summerfield 

and Egner70 argue that expectation and attention have complementary functions in visual perception 

and that they are produced by separate neural mechanisms71. 

However, it is unknown whether sleeping newborns or comatose patients form perceptual object 

representations. Furthermore, attention can affect auditory deviance detection72, feature binding39, 

resetting of stream segregation23, and determining which streams are segregated within a complex 

auditory scene73. Thus it seems plausible that although object representations can be formed 

outside the focus of attention, attentive processes have a strong modulating effect. 

Conclusions 

We have argued that predictive representations of temporal regularities constitute the core of 

auditory objects in the brain. This notion of auditory object formation is compatible with recent 

accounts of perception in other modalities3, 70, with theories of motor control74, and the interaction 

between motor control and perception75. Although there are several outstanding questions 

regarding the mechanisms underlying the proposed model (Box 3), it appears that predictive 

processing occurs at all levels of cognitive function in the human brain5. We therefore hypothesize 

that auditory sensory memory and predictions are but the two sides of the same coin. 
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Box 1: Auditory scene analysis and the auditory streaming paradigm 

The pressure waves which we experience as sounds are a combination of all the sounds present in 

the environment at any time. If we are to make sense of the auditory world and interact with it 

effectively, it is necessary for the brain to isolate the information relating to different sound sources. 

The phrase ‘auditory scene analysis’ was coined by Bregman6 to describe this basic problem, and 

processing strategies which allow the brain to segregate sounds have been extensively investigated 

(for recent reviews, see22, 76, 77). 

Essentially, grouping strategies fall into two classes, simultaneous (used to assign concurrently active 

features to one or more objects) and sequential (used to form associations between discrete sound 

events). Spectral regularity, harmonicity and common onset are primary simultaneous grouping 

cues. However, sequential grouping actually turns out to be the more important, in that it can 

override the organisations formed by simultaneous grouping cues. Ecologically this makes sense as 

most informative sounds, especially communication sounds, are intermittent, and it is necessary to 

form associations between events which may be separated in time by fairly long intervals; i.e. there 

is a trade-off between global and local decisions, and the global context constrains local decisions. 

Sequential grouping has often been investigated using the auditory streaming paradigm (see Figure I 

below) to determine the physical parameters which govern the associations formed between 

alternating sounds. The importance of this approach is that the same sequence of sounds can be 

perceived in (typically two) different ways depending on the sequential grouping decision, and there 

are salient perceptual differences between the different groupings. For example, if all sounds 

illustrated in the figure below are considered to belong to the same group (integration), then 

subjects perceive and report a galloping rhythm; however, if the sounds marked red form a separate 

group from the sounds marked green, then the galloping rhythm is no longer heard, and one sound 

sequence pops into the perceptual foreground (streaming or segregation), while the other falls into 

the background. It turns out that although differences in frequency are probably the most important 

factor, virtually any type of detectable difference can trigger streaming17. There is also a trade-off 

between featural differences and the time intervals between successive sounds, with shorter 

intervals increasing the tendency to report streaming. 

 

Box 1 Figure Legend 

Figure I. The auditory streaming paradigm78. The same sequence of alternating sounds can be 

perceived as belonging to a single perceptual object (top) or to two separate objects (bottom), one 

occupying the foreground and the other the background. 
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Box 2: The auditory N1 and the mismatch negativity (MMN) event-related brain potentials 

Event-related brain potentials (ERPs) are usually analyzed in terms of components, i.e. “the 

contribution to the recorded waveform of a particular generator process” (p. 376 in ref26). The 

auditory N1 deflection appears with negative polarity over the frontocentral scalp, typically peaking 

between 100 and 120 ms from stimulus onset (Figure I). N1 is elicited by sudden changes in sound 

energy, such as sound onset or an abrupt change in the spectral make-up of a continuous sound. In 

short, the auditory N1 is elicited by acoustic change. A large part of the auditory N1 is generated 

bilaterally within primary auditory cortical areas. However, the auditory N1 is not a single 

component as it has multiple generators both within and outside the auditory cortex, which are 

differentially affected by stimulus parameters26. Increasing the inter-stimulus interval increases the 

N1 amplitude up to at least 10 s and the auditory N1 is sensitive to most sound features. These 

findings suggest that the neuronal generators of N1 are involved in the temporary storage of 

auditory information. However, the N1 is not sensitive to combinations of auditory stimulus 

features. Therefore, the neural generators of auditory N1 cannot implement a full memory 

representation of a sound36. 

The scalp topography of the mismatch negativity (MMN) ERP component (Figure II; for a recent 

review, see79) is similar to that of the auditory N1, although the generator locations of the two ERP 

responses can be distinguished from each other80. MMN is elicited by violating some regular feature 

of a sound sequence and it typically peaks ca. 100-140 ms from the onset of the deviation. Violations 

of both simple and complex regularities elicit the MMN, whereas MMN is not elicited by isolated 

sounds or a sound change occurring in the beginning of a sequence. In short, the MMN is elicited by 

sounds deviating from a detected regularity. The current interpretation of MMN suggests that MMN 

reflects the detection of failed auditory predictions11. There has been a debate in the literature as to 

whether or not the auditory N1 and MMN are based on separate neural processes33, 80, 81. Converging 

evidence suggests that the two ERP responses are partly but not fully based on common neural 

mechanisms25, 82. 

 

Box 2 Figure Legend 

Figure II. The auditory N1 and MMN responses elicited in an oddball paradigm. Sequences composed 

of frequent (90% probability; “standard”) low-pitched (300 Hz fundamental frequency) and 

infrequent (10%; “deviant”) high-pitched (600 Hz) missing-fundamental complex tones of 500 ms 

duration were presented in a random order and with a 400 ms constant inter-stimulus interval to 12 

young healthy participants. Participants were reading a book during the stimulus presentation. 

Group-average frontal (Fz) ERP responses are shown separately for the standard (thin line) and 

deviant (thick line) tones. The latency of the N1 deflection was significantly modulated by the 

spectral make-up of the tones (shorter peak latency for the higher-pitched tone); the difference is 

marked in yellow. Deviant tones elicited a negative-going second peak in the 200-260 ms interval 

from stimulus onset, which was not present in the standard-tone responses. Although this latency 

range is later than that typical for MMN (due to the specific make-up of the tones), the differential 

response (marked in light blue) was identified as MMN. (Figure adapted from83).  
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Box 3: Outstanding questions 

 What are the neural processes that are involved in forming sequential associations and 

extracting regularities? 

 Are regularities explicitly represented in neural activity, or implicitly in the pattern of 

synaptic connections that is plastically adapted to each situation? 

 What kind of regularities can be detected without attention being focused on the 

sounds? 

 Do representations of complex sequential rules help in segregating auditory streams or 

are they only involved in stabilizing and maintaining streams separated by simple 

feature cues? 

 How many auditory objects can be concurrently represented? Is the limit related to the 

“capacity” of short-term or working memory? 

 Are the neural substrates of auditory sensory memory and predictive processes 

separate? 

 Can we find a causal link between the neurons showing SSA and the encoding of 

regularities (especially complex ones)? 
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Glossary 

Auditory Scene Analysis (ASA) 

The process of analyzing a complex mixture of sounds to isolate the information relating to 

different sound sources.   

Auditory streaming 

A perceptual phenomenon in which a sequence of sounds is perceived as consisting of two or 

more auditory streams. When streaming occurs, perceivers experience difficulty in extracting 

inter-sound relationships across streams, such as the order between two sounds belonging to 

different streams. 

Build-up of auditory streams 

The perception of segregated auditory streams (see Box 1) takes some time to develop. The 

buildup of streaming refers to the tendency for the probability of subjects reporting streaming 

to increase from the onset of the sound sequence for 4-8 s depending on the stimulus 

parameters. 

Complex tone 

A tone that contains multiple frequency components (in contrast to a simple or pure tone, 

which is a sine wave with a single frequency). 

Feature binding 

Linking together the features of a perceptual unit; e.g., the color, shape, etc. of an object seen. 

Harmonicity 

The property of a sound composed of harmonics (pure tone components whose frequencies 

are integer multiples of a greatest common divisor frequency, called the fundamental 

frequency, commonly within the pitch existence region of 30 – 4000 Hz). 

Mismatch Negativity (MMN) 

A frontally negative going component human auditory ERP elicited by sounds violating some 

of the detected regularities of the preceding sound sequence (see Box 2). 

Missing fundamental complex tone 

A harmonic complex tone which does no contain its own fundamental frequency (see 

harmonicity). 

N1 

A frontally negative-going exogenous wave of the human ERP. The auditory N1 is elicited by 

sudden changes in sound energy or spectral make-up (see Box 2). 

Neural adaptation 

The reduction in neural responses following the repetition of a stimulus 

Object Related Negativity (ORN) 

A component of the event-related potentials that is elicited when two concurrent sounds are 

separated by simultaneous cues, such as detecting a non-harmonic frequency alongside with a 

complex harmonic tone. 

P1 

A frontally positive-going exogenous human ERP component elicited by sound onsets. The 

auditory P1 is generated in primary auditory cortex and in adults, it usually peaks between 40 

and 80 ms from stimulus onset. 

P2 
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A frontally positive-going human exogenous ERP component following the N1 wave by 20 to 

60 ms. The main neural generators of P2 are located in auditory cortex. 

Regularity (auditory) 

A repeating property of a sound sequence. Regularities can be as simple as the cyclical 

repetition of a sound or as complex as the rule that “short tones are followed by high-pitched 

tones, long tones by low-pitched tones”. In terms of auditory processing, only those 

regularities, which can be detected by the brain, matter (e.g., setting the frequencies of 

consecutive sounds in a sequence according to some arbitrary mathematical formula would 

not necessarily result in the brain detecting any regularity in the sequence). Detection of a 

regularity requires that 1) the given feature is analyzed and encoded and 2) further 

occurrences of the feature are matched with the retained code. Thus regularity detection 

involves memory and (possibly implicit) learning. 

Sequential grouping of sounds 

Linking together sounds, whose onsets are separated in time. These processes require 

memory of the history of auditory stimuli. 

Simultaneous grouping of sounds 

Linking together concurrent sounds by common properties, such as harmonicity or common 

onset. In contrast to sequential grouping, these processes do not require memory of the 

history of auditory stimuli. 

Stimulus-driven processing 

Information processing in the brain, which is determined by the incoming stimuli irrespective 

of the mental state or current goals of the organism. 

Stimulus-specific adaptation (SSA) 

The reduction in neural responses to a repetitive sound, which does not generalize to other 

(rare) sounds. 

Temporal edge 

The onset time of an auditory event 
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Figure Legends 

Figure 1. Box model of Auditory Scene Analysis (ASA). First phase of ASA (left; magenta): Auditory 

information (lower left) enters initial grouping (lower left box). Predictive regularity representations 

(upper left box) support sequential grouping, whereas segregation by simultaneous cues does not 

require memory resources. Second phase of ASA (right; orange): Competition between candidate 

groupings is resolved by selecting the alternative supported by grouping processes carrying the 

highest confidence (lower right box). Confidence in those regularity representations whose 

predictions failed is reduced and the unpredicted part of the auditory input (residue) is parsed for 

new regularities (upper right boxes). ERP components associated with some of the ASA functions 

(light blue circles linked to the corresponding function by “≈” signs): ORN reflects the detection 

mistuned partials, which is an important spectral cue for segregating sound sources. N1 (see Box 2) 

is marked by an asterisk, because it stands for the exogenous components possibly reflecting the 

detection of a new stream. MMN (see Box 2) is assumed to reflect the process of adjusting the 

confidence weight of those regularity representations, whose predictions were not met by the actual 

input. Top-down effects modulating ASA (marked violet at the affected processes): Training and 

contextual information (i.e., previous experience or knowledge regarding the given context, such as 

identifying a given sequence as speech) allow one to detect some complex acoustic regularities (such 

as speech- and music-specific regularities). Actively searching for the emergence of some new or a 

specific expected object increases the sensitivity of detecting the corresponding regularity. When 

multiple alternative organizations receive approximately equal support (ambiguous stimulus 

configurations), selecting the dominant organization can be voluntarily biased. (Figure adapted 

from11). 

Figure 2. Schematic representation of the ascending auditory pathways. Auditory nerve fibers from 

the cochlea terminate in the cochlear nucleus, the first central station of the auditory pathways. 

Some neurons in the cochlear nucleus already show correlates of the buildup of streaming. A 

complex set of stations in the brainstem, including the nuclei of the superior olivary complex (which 

are the first locus of binaural integration) and the nuclei of the lateral lemniscus (who are involved in 

high-resolution encoding of stimulus onsets and in binaural processing) projects to the inferior 

colliculus, the major midbrain auditory center (which doesn't have homologues in other sensory 

systems). Brainstem connectivity is only partially displayed, to make the figure easier to read. 

Collicular neurons project to the auditory station in the thalamus, the medial geniculate body, which 

in turn projects to auditory cortex. Binaural interactions occur in the superior olive, but in addition 

there are substantial connections between the ICs of both sides and between auditory cortical fields 

on both sides of the brain (marked by thick black arrows). The inferior colliculus, medial geniculate 

body and auditory cortex are complexes containing multiple subdivisions. Each has a 'core' division 

(the central nucleus of the inferior colliculus, ICc, the ventral division of the medial geniculate body, 

vMGB, and primary auditory cortex, all marked in dark blue). ICc projects heavily to vMGB which is 

the major auditory input to primary auditory cortex, forming the core (or lemniscal) pathway. Many 

neurons along the core pathway have short latency and narrow V-shaped tuning curves. Surrounding 

the core subdivisions, the belt or non-lemniscal stations, include the external nuclei of the inferior 

colliculus, the dorsal and medial divisions of the MGB, and some non-primary fields (marked in light 

blue). Red arrows indicate stations in which strong SSA has been documented. These include 

primarily the extralemniscal divisions of the IC and MGB (although weak forms of SSA may be found 

in the core stations as well) and primary auditory cortex. 
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