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ABSTRACT

We investigate the individual activity coefficients of ions in LaCl3 using our theory that is based

on the competition of ion-ion (II) and ion-water (IW) interactions (Vincze et al., J. Chem. Phys.

133, 154507, 2010). The II term is computed from Grand Canonical Monte Carlo simulations on

the basis of the implicit solvent model of electrolytes using hard sphere ions with Pauling radii.

The IW term is computed on the basis of Born’s treatment of solvation using experimental

hydration free energies. The results show good agreement with experimental data for La3+.

This agreement is remarkable considering the facts that (i) the result is the balance of two

terms that are large in absolute value (up to 20kT ) but opposite in sign , and (ii) that our

model does not contain any adjustable parameter. All the parameters used in the model are

taken from experiments: concentration dependent dielectric constant, hydration free energies,

Pauling radii.
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1. Introduction

A well-known experimental fact in the world of electrolytes is that the activity coefficient (the

excess chemical potential) depends on the electrolyte concentration non-monotonically; it de-

creases near infinite dilution according to the Debye-Hückel (DH) limiting law [1], goes through

a minimum, and increases at high concentrations close to saturation. Many theoretical works

tried to explain this behavior from various empirical modifications [2–9] of the DH theory [1]

to advanced statistical mechanical approaches based on the model of charged hard spheres

immersed in an implicit-water dielectric solvent [5, 6, 10–20].

In most of these papers before 2010, the dielectric constant was either constant (fixed at its

value at infinite dilution, e.g., the dielectric constant of water) or changing with concentration

but the change in the interaction with the solvent ignored. A few notable exceptions are the

papers of Abbas et al. [5] and Inchekel et al. [20]. In 2010, we proposed the II+IW theory [21–25]

in which we split the excess chemical potential into two components

µEX
i = µII

i + µIW
i , (1)

where the II and IW terms describe the ion-ion and ion-water interactions, respectively (sub-

script i refers to an ionic species). This equation implies the approximation that these two terms

can be computed independently.

In this theory we took into account the experimental fact that the dielectric constant of the

electrolyte changes with concentration due mainly to dielectric saturation (see Fig. 1) [3, 26–

37]. If the properties of the surrounding solvent change, the interaction of the ion with this

environment also changes. This is reflected in the IW term. This is the term that was ignored

by many authors [12, 13, 16–19]. We proposed, similarly to other authors [5, 20], that this term

can be estimated with the Born-theory of solvation [38].

As far as the II term is concerned, several possibilities are available. It can be calculated

with Grand Canonical Monte Carlo (GCMC) simulations [39, 40] as we did in our previous

papers and in this work. The mean spherical approximation (MSA) can also be used as we

demonstrated [21]. Recently, the concept of the concentration-dependent dielectric constant

captured the imagination of Shilov and Lyashchenko [9] who followed Hückel [41] (who advocated

this concept as early as 1925) and extended the DH theory for this case. In our comment [25] to

the paper of Shilov and Lyashchenko, we have shown that our IW term is equivalent with their

solvation term and shown that the extended DH theory gives better results if we use the Born

radius in this solvation term. In another recent paper, the concentration dependent dielectric

constant was built into the model in the Poisson-Fermi theory of Liu and Eisenberg [8].

The main message of the II+IW theory is that the non-monotonic behavior of the activity
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coefficient is the result of the competition of the II and IW terms. In earlier works, where the

dielectric constant was unchanged, this behavior was reproduced by assigning unrealistically

large radii to the hard sphere ions. The non-monotonic behavior in this case was the result of

the balance of volume exclusion (hard sphere) and electrostatic terms.

It was said that the increased radius is a “solvated ionic radius” that takes solvation into

account by including the hydration shell of tightly connected and oriented water molecules

around the ion. We criticized the concept of the “solvated radius” in our previous papers [21–25]

and pointed out that important configurations corresponding to cations and anions in contact

are excluded from the statistical sample with this artificial concept. The enlarged solvated radius

is primarily useful when we talk about the interactions of ions with water. That is why the Born-

radius is used in the calculation of the IW term (this is equivalent with fitting the IW term to

experimental hydration free energies). In the II term, however, we use the Pauling radii [42] of

the “bare” ions.

Similarly to our previous papers [24, 25], we also present results for activity coefficients

of individual ions in this work. We are aware of the turbulence about the measurability (and

even the existence) of the single ion activities within the electrochemistry community. There is

a recent debate in the literature involving Malatesta [43–47], Zarubin [48–50], and the group

of Vera and Wilczek-Vera [51–60]. We do not discuss this issue here; the reader is directed to

our previous paper [24]. We just use the single-ion activity coefficients published by the Vera–

Wilczek-Vera group [51] and Hurlen [61] for comparison with our theoretical results. When

judging accuracy of theories, however, the reader should be aware that experiments for the

determination of single-ion activities are uncertain and subjects of unknown errors hidden in

the junction potential.

We emphasize that the II+IW theory in its present form does not contain any adjustable

parameters. All the results shown in this work have been obtained using experimental hydration

energies, experimental concentration dependent dielectric constant, and the Pauling radii. It is

quite remarkable that the theory in its bare form can reproduce the non-monotonic behavior. It

especially works well for 2:1 electrolytes, where the excess chemical potentials (and especially the

II and IW terms) vary in a wide range measured in kT . We believe that it is more appropriate

to build the competition of opposing forces into the theory through additive free energy terms.

The fact that the sum of a large positive (IW) and a large negative (II) term estimates the EX

term so well justifies using the concentration dependent dielectric constant as a link between

these two terms.

In this paper, we make a step further and report results for a 3:1 electrolyte, LaCl3, for

which we managed to find all the necessary experimental data. The range in which the balance

of the IW and II terms produces the qualitatively correct behavior of the EX term is even wider,
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∼ 40kT in the case of La3+.

Studying concentrated electrolytes containing multivalent ions has fundamental importance

for many reasons. Concentrated electrolytes tend to be present in confined systems. The selec-

tivity filter of ionic channels, for example, can contain crowded ions attracted by the charged

groups of the protein. It is a common view that the electrolyte inside the pore has a reduced

dielectric constant compared to the bulk solution [62]. Divalent ions play a special role in biology

[63]. They are general messenger particles due to their low concentration and double charge.

Energy storage in electrochemical double layer capacitors has a promising prospect when a

superconcentrated electrolyte is present in narrow pores [64]. How ions behave under such cir-

cumstances is a relevant question especially that the confined systems are in equilibrium with

bulk solutions. The correct description of bulk solutions is, therefore, necessary to describe the

complete system properly.

2. The II+IW theory

The individual activity coefficient, γi, in an electrolyte solution describes the deviation from

ideality through the excess chemical potential

µEX
i = kT ln γi (2)

that is defined by

µi = µ0
i + kT ln ci + µEX

i , (3)

where µi is the chemical potential of species i, ci is its concentration, µ0
i is a reference chemical

potential independent of the concentration, k is Boltzmann’s constant, and T is the temperature

(298.15 K in this work). The reference point is chosen in such a way that limc→0 µ
EX
i = 0, where

c is the salt concentration [65]. The salt concentration is defined as c = c+/ν+ = c−/ν− with ν+

and ν− being the stoichiometric coefficients of the cation and the anion in a simple electrolyte

with the stoichiometry

Cν+Aν− 
 ν+Cz+ + ν−Az− , (4)

where C and A refer to cations and anions, while z+ and z− are the valences of the ions. The

mean activity coefficient is defined as

γ± = γ
ν+/ν
+ γ

ν−/ν
− , (5)
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Figure 1. Concentration dependent dielectric constant from measurements. The equations of the fitted

curves are ε(c) = 78.37− 15.45 c+ 3.76 c3/2 for NaCl [37], ε(c) = 78.37− 34 c+ 10 c3/2 for CaCl2 [29, 30],

and ε(c) = 78.37 − 46.48 c + 8.21 c3/2 for LaCl3, where c is the electrolyte (cation) concentration. The

equation for LaCl3 has been fitted to the data of Hasted et al. [26], while the point of Bockris [3] was

found afterwards.

where ν = ν+ + ν−. Accordingly, the mean excess chemical potential is computed as

µEX
± =

ν+

ν
µEX

+ +
ν−
ν
µEX
− . (6)

The mean quantities, γ± and µEX
± , can be measured accurately [2–4].

2.1. Calculation of the II term

The II term is calculated on the basis of the Primitive Model (PM) of electrolytes, where the

ions are modeled as charged hard spheres, while the solvent is modeled as a dielectric continuum

Ion zi Ri/Å ∆Gs
i/kJmol−1 RB

i /Å

Na+ 1 0.95 -424 1.62

Ca2+ 2 0.99 -1608 1.71

La3+ 3 1.05 -3145 1.96

Cl− -1 1.81 -304 2.26
Table 1. Experimental parameters of ions studied in this work: the valence, zi, the Pauling radius [42], Ri, the hydration

Gibbs free energy, ∆Gs
i (taken from Fawcett for Na+, Ca2+, and Cl− [4], and from Marcus for La3+ [66]), and the Born

radius, RB
i (computed from ∆Gs

i on the basis of Eq. 10 with εw = 78.37).

5



with a dielectric constant ε(c). The pair-potential describing the II interaction can be given as

uPM
ij (r) =


∞ for r < Ri +Rj
zizje

2

4πε0ε(c)r
for r ≥ Ri +Rj ,

(7)

where Ri is the radius of ionic species i, ε0 is the permittivity of vacuum, and r is the distance

between the ions. The radius is the Pauling radius in this work, although other choices are also

possible [23]. The Pauling radii and other data are collected in Table 1.

The experimental dielectric constant, ε(c), is shown in Fig. 1 as a function of concentration.

The equations fitted to the experimental data are found in the caption of the figure. Note

that these data are also to be considered with restrictions, because they are obtained from

extrapolations to zero frequency using impedance measurement data. For example, the results

reported by Barthel et al. [29, 30] from the 1970s for NaCl are quite different from the data

of Buchner et al. [37] from 1999, who used lower frequencies (200 MHz vs. 1 GHz). In our

previous work, however, we showed that small changes in the ε(c) function has little effect on

the activities, because these changes have effects of opposite signs in the II and IW terms that

tend to cancel each other. In any case, this effect is smaller than the accuracy of the theory.

We used the the Adaptive-GCMC simulation method of Malasics et al. [39, 40] to determine

the II excess chemical potentials of individual ions that correspond to prescribed concentrations.

It is an iterative algorithm based on repeated GCMC simulations. The core of the algorithm

uses the assumption that the kT ln ci term changes more than the µEX
i term over a little change

in the state point. In the case of large (c > 1 M) concentrations of LaCl3, this assumption does

not hold, because of the strong correlations between ions (due to the small dielectric constant

and the presence of the trivalent cation that correlates strongly with the anions). For larger

concentrations, therefore, we used the simple method of performing several GCMC simulations

on a grid and determining the chemical potentials from interpolation.

2.2. Calculation of the IW term

The IW term is computed from

µIW
i (c) = ∆Gs

i

ε(c)− εw
ε(c) (εw − 1)

, (8)

where εw = 78.37 is the dielectric constant of water. This equation contains only experimental

data (∆Gs
i and ε(c)) and is obtained from Born’s treatment of solvation [38]. It is equivalent

with equation

µIW
i (c) =

z2
i e

2

8πε0RB
i

(
1

ε(c)
− 1

εw

)
. (9)
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Figure 2. Mean activity coefficients for NaCl, CaCl2, and LaCl3 as obtained from experiments and the

II+IW theory. Experimental data are taken from the following sources: from Wilczek-Vera et al. [51] for

NaCl, from several works [51, 67–69] for CaCl2, and from Hurlen [61] and Fang et al. [70] for LaCl3.

Equation 8 is obtained by writing up the Born-equation for infinite dilution

∆Gs
i =

z2
i e

2

8πε0RB
i

(
1

εw
− 1

)
, (10)

and eliminating RB
i (the Born-radius, see Table 1) from Eqs. 9 and 10. The main point of Eq. 8

is to describe the ε(c)-dependence of the IW term in a way that it reproduces the experimental

hydration free energies in the c→ 0 limit.

The fact that the ions have different radii in the II and IW calculations should not bother

the reader. The Pauling radii are actual physical radii of the charged hard spheres present in

the particle simulations. The Born radius, on the other hand, is not a physical radius, but

rather an effective parameter with which we can make the results of a simple theory match the

experimental hydration free energy.

3. Results

It is reasonable to present the results for the 3:1 electrolyte together with data for 2:1 and 1:1

systems. We chose to present results for NaCl and CaCl2 taken from our previous paper [24].

Results for other 1:1 and 2:1 electrolytes can be found in that work. The data for NaCl and

CaCl2 represent these systems well as far as the order-of-magnitude comparison between 1:1,

2:1, and 3:1 systems is concerned.

Figure 2 shows the results for the mean activity coefficients. Note that we plot the logarithm

that is just the excess chemical potential in kT unit: ln γ± = µEX
± /kT . The II+IW theory

reproduces the non-monotonic behavior qualitatively for all cases without fitting.
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Figure 3. Individual activity coefficients of (A) the cations and (B) the anions in NaCl, CaCl2, and LaCl3

as obtained from experiments and the II+IW theory. Experimental data are taken from Wilczek-Vera et

al. [51] for NaCl and CaCl2, and from Hurlen [61] for LaCl3.

The minimum of the ln γ±(c) curve is deeper for electrolytes containing multivalent ions. It

is deeper for CaCl2 and even deeper for LaCl3. This behavior can be understood by looking at

the activity coefficients of the individual ions, especially the cations. Panels A and B of Fig. 3

show the results for cations and anions, respectively.

The excess chemical potentials of Ca2+ and La3+ vary in a wider range than those of Cl−

due to their larger valence. The cation term is responsible for the more negative values of the

mean excess chemical potentials. The minimum for La3+ is about −4kT . Although the excess

chemical potential of Cl− appears in the mean with a larger weight (see Eq. 6), this term is

restricted to a more narrow range, typically between 0 and −1kT .

In what case can we consider the quantitative agreement good? Looking at the figures (Figs.

2 and 3), the picture is quite diverse (it gets even more diverse if we look at all the electrolytes

published in Ref. [24]). In some cases, the agreement is excellent (Ca2+ and Cl− in CaCl2, Na+

in NaCl). In some cases, there is a systematic deviation (Cl− in NaCl and in LaCl3). In some

cases, the relative deviation is considerable, but we feel the qualitative agreement appealing

(La3+).

Interestingly, the cases, when the absolute value of ln γi is small (below 1) seem to be the

difficult cases. These are the cases of the monovalent ions (Na+ and Cl−). The two cases that

are the most interesting for us are those of the multivalent cations (Ca2+ and La3+). In these

cases the energies involved are so large that we value the qualitative agreement and we are not

bothered by the quantitative disagreement too much.

The quantitative explanation of all these “feelings” and “considerings” is that the non-

monotonic behavior is the result of the balance of two competing effects. In our model, these
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Figure 4. The II and IW components of the individual activity coefficients (denoted by EX) of (A)

La3+ and (B) Cl− in LaCl3 as obtained from the II+IW theory. The II component has been obtained

from GCMC simulations using the Pauling radii (Table 1) for the charged hard spheres, while the IW

component has been obtained from the Born-theory using experimental hydration free energies (Table

1) in Eq. 8. Experimental data are taken from Hurlen [61].

competing effects are the II and IW interactions. If we increase concentration, ε(c) decreases

(Fig. 1) and the Coulomb interactions get less screened (Eq. 7). At larger concentrations, the ions

are closer to each other on average. Therefore, the II term becomes more and more negative as

c increases. The IW term, on the other hand, increases with increasing c, because the dielectric

environment gets less and less favorable for the ion as ε(c) decreases. At small to moderate

concentrations, the II term decreases faster, while at larger concentrations above the minimum

point, the IW term catches up and increases faster; hence the non-monotonic behavior.

These two balancing terms are plotted in panels A and B of Fig. 4 for La3+ and Cl−,

respectively, in LaCl3. This figure explains why the qualitative agreement for La3+ is so valuable

(the corresponding figure for Ca2+ can be found in our previous papers [24, 25]). The II term

goes down to −20kT and the IW term goes up to 20kT at concentrations close to saturation.

Their sum (EX) is so close to the experimental value (within 0.5kT ) that we consider the

agreement remarkable especially in the light of the fact that our model does not contain any

adjustable parameters. Looking at the results for many 1:1 and 2:1 electrolytes [24], deviations

are usually in the range of a few tenth of kT s. That seems to be a natural limit to the accuracy

of our very simplified model.

The situation with Cl− is the opposite. Here, the II and IW terms are within 3kT and the

sum is smaller than 1kT , so there is a more delicate balance in this case. Any error in the II

and IW terms separately has a larger impact here, but its effect on the mean is less, because

the cation dominates the mean.

9



2 4 6 8 10

r / Å

1

10

g ij(r
)

Cl
-
-Cl

-

La
3+
-Cl

-

La
3+
-La

3+

(A)

Figure 5. (A) Radial distribution functions for c = 1.2 M obtained from canonical MC simulations.

Profiles for lower concentrations are similar but with lower peaks. (B) A snapshot from the simulation.

For LaCl3, results are shown only for concentrations up to 1.2 M. At larger concentrations,

close to 1.2 M, the interactions between ions become stronger due partly to the reduced dielec-

tric constant, partly to the shorter average distance between the ions. Because of the strong

interactions, successful insertions and deletions of ions (especially, La3+) are very rare, and sam-

pling in GCMC simulations becomes inadequate above 1.2 M. Recent studies using molecular

dynamics simulations, spectral graph theory, and various experimental techniques imply the

presence of ion aggregates from ion pairs to networks in NaCl and KSCN [71–76]. There is no

reason to be surprised that strongly correlated ions in ordered structures appear as we approach

the solubility limit [77, 78]. The ions of the electrolyte, however, can be considered solvated even

if these structures are present. The radial distribution functions of Fig. 5A for c = 1.2 M show a

fluid-like behavior at long distance, while large first peaks indicate the increased probability of

ions forming aggregates. Their nature is revealed by the snapshot shown in Fig. 5B. These ag-

gregates, however, are not solid structures, but momentary groups of ions that are forming and

breaking up during thermal motion. The formation of these is closely related to the disruption

of the hydrogen-bond network of water, so the simulation study of the phenomena is probably

beyond the scope of the implicit solvent framework used here. The solubility of electrolytes,

a closely related problem, has been thoroughly investigated by several research groups [79–84]

using explicit-water models.

Summarized, we feel that the relatively good agreement of the individual excess chemical

potential with experiments for multivalent cations (results for Mg2+ and Ba2+ are found in our

previous work [24]) is a strong evidence that supports our theory. In these cases, the absolute

values of the competing II and IW terms are so large that the error in the sum is dwarfed by

them.
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