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Abstract 

The dynamics of perceptual bistability, the phenomenon in which perception switches 

between different interpretations of an unchanging stimulus, are characterised by very 

similar properties across a wide range of qualitatively different paradigms. This suggests 

that perceptual switching may be triggered by some common source. However, it is also 

possible that perceptual switching may arise from a distributed system, whose components 

vary according to the specifics of the perceptual experiences involved. Here we used a visual 

and an auditory task to determine whether individuals show cross-modal commonalities in 

perceptual switching. We found that individual perceptual switching rates were significantly 

correlated across modalities. We then asked whether perceptual switching arises from some 

central (modality-) task-independent process or from a more distributed task-specific 

system. We found that a log-normal distribution best explained the distribution of 

perceptual phases in both modalities, suggestive of a combined set of independent 

processes causing perceptual switching. Modality- and/or task-dependent differences in 

these distributions, and lack of correlation with the modality-independent central factors 

tested (ego-resiliency, creativity, and executive function), also point towards perceptual 

switching arising from a distributed system of similar but independent processes. 
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Introduction 

Unravelling the perceptual strategies used by the brain to make sense of the world remains 

an ongoing challenge, not least because people differ both in their intrinsic makeup and life 

experiences which help to shape their individual information processing systems. A 

perceptual phenomenon which provides some help in this respect is that of perceptual bi- 

or multi-stability 1,2. Qualitative changes in perceptual experience in response to an 

unchanging sensory input as well as consistent individual differences in perceptual 

behaviour 3-6 can provide insights into perceptual grouping and decision-making processes. 

Although bistability exists in different modalities – visual, auditory, and even olfactory – it 

remains unknown whether perceptual switches in the different modalities are governed by 

a central mechanism or by separate, modality-specific systems. Similar fundamental 

properties of perceptual bistability are observed both in vision and audition 7,8, suggesting 

that common processes may be involved. However, there is little evidence for cross-modal 

commonality at the individual level. Here, we show that perceptual switching in vision and 

audition arises from highly similar but independent sources. 

The same principles of perceptual alternation, e.g., general properties of exclusivity, 

inevitability, and stochasticity 2, and Levelt’s propositions 9,10, are observed in many 

different visual paradigms 11-13. Perceptual switching behaviour consistent with these 

principles is also observed in the auditory modality 14,15. These principles have formed the 

basis for a number of models of perceptual bistability both in vision 16-18 and audition 19. 

However, in general the models are expressed at a rather abstract level, and are agnostic as 

to how their processes might map onto brain structures and processing systems. 



Brain-imaging studies show a widespread network of areas (primarily in right hemisphere) 

that typically appear in transition-related contrasts in fMRI studies of visual bistability, 

including inferior frontal cortex (IFC), dorsolateral prefrontal cortex (DLPFC), frontal eye 

fields (FEF), temporoparietal junction (TPJ), and intraparietal sulcus (IPS) 20; IPS was also 

identified in a fMRI study of auditory bistability 21. However, there is controversy 

surrounding interpretation of these findings. Various fMRI studies (e.g., 22,23,24) identified a 

network of early visual and frontoparietal regions whose activity was time-locked to 

perceptual switches, but some more recent studies 25-29 have suggested that at least the 

frontal activity may be related to response generation rather than perception. Studies 

manipulating parietal activity with transcranial magnetic stimulation (TMS) have 

demonstrated different causal roles for separate parietal sub-regions in perceptual 

switching, with stimulation of a posterior locus prolonging the time between switches 30 and 

stimulation of a more anterior locus decreasing it 31,32. As these parietal regions are not 

strictly visual, the results support the possibility of a distributed, high-level network involved 

in the control of bistability across modalities. However, application of TMS to non-visual 

bistability has not yet been reported. 

Perceptual switching is typically characterised by the distribution of perceptual phase 

durations (i.e. periods during which one interpretation is experienced); generally reported 

as a gamma 9 or log-normal distribution 33. A recent meta-analysis by Cao, et al. 34 showed, 

furthermore, that perceptual phase durations exhibit so-called scale free properties across 

many different visual and auditory paradigms. Therefore, they suggested that perceptual 

switching might best be explained by changes in the combination of discrete states across a 

finite set of independent processes, such as switches between up and down states in 



cortical columns; i.e., a highly distributed system in which the specifics depend on the brain 

areas involved in the task. 

To date, three studies have investigated correlations between perceptual switching in visual 

and auditory tasks 7,14,35. Small but significant within-individual correlations were reported 

between visual and auditory perceptual switching in one study 14. In contrast, Pressnitzer 

and Hupé 7 found that although the general properties of bistability were similar in the two 

modalities, the number of perceptual switches was not significantly correlated across 

modalities at the individual level. In their next study 36, participants were required to report 

their perceptions of the visual and auditory bistable stimuli concurrently. They found no 

significant evidence that switching in one modality predicted switching in the other. To 

some extent these data favour interpretation in terms of a distributed system of perceptual 

switching, but the results so far are somewhat equivocal.  

In the present study we aimed to compare perceptual switching behaviour within 

individuals using the visual ambiguous structure-from-motion 37 and auditory streaming 38 

tasks. In the experiment reported in the main text, participants were required to classify 

their perceptions using two perceptual categories (bistability); in the supplementary 

material we report a three-category (multistable) version of the experiment.  

Support for a distributed stimulus-driven system might be found if any of the commonalities 

are present by default and not as a result of some central process like attention. If a central 

system sensitive to top-down effects is an important source of commonality between visual 

and auditory perceptual switching, then we would expect to observe far higher correlations 

across modalities when participants are asked to bias their perception in some way, than in 

a neutral condition, because the instruction to bias leads to tighter top-down control, which 



would affect the central switching mechanism. A combination of top-down and stimulus-

driven effects have been assumed in some previous models of bistability; e.g. 39,40. 

Therefore, we correlated individual switching rates across modalities in three conditions, a 

Neutral condition, and two biased conditions (Hold – participants were asked to hold onto 

each percept for as long as possible, and Switch – participants were asked to switch as 

quickly as possible between alternative percepts). 

Another possible central source of correlation would be some form of switching control 

centre generating switching signals that are fed back down to the sensory areas, as 

suggested by some of the brain imaging and manipulation studies, reviewed above. If there 

is such a modality-independent central switch generator involved (previous evidence has 

been specifically for vision), then we would expect the properties of perceptual switching in 

the two modalities to be very similar indeed, right down to the detailed level of perceptual 

phase distributions. Finding correlations between perceptual switching behaviour and 

modality-neutral central factors, such as ego-resiliency, creativity, or executive function, 

would also be consistent with a central, modality-independent source of switching. 

Finally, a different source of commonality may lie at the microcircuit level, conceptually 

hypothesised previously in computational theories 16,17, and recently supported by the 

analysis and model of Cao, et al. 34. Common microcircuit properties across the different 

sensory modalities within an individual could produce similar switching properties across 

tasks and modalities. However, while there may be strong similarities in perceptual 

switching behaviour overall, we would expect there to be observable differences at the 

detailed level of perceptual phase distributions. To distinguish between the central and 

distributed system hypotheses, we analysed the phase duration data in detail. First, we 



established the type of distribution that best characterised the phase durations in each 

modality. Next, we calculated the parameters describing those distributions. Finally, at the 

most detailed level of comparison, we examined the relationships between successive 

phase durations at a range of lags. 

Results 

Condition and modality  

The influence of the attentional manipulation and modality on the average number of 

switches was assessed using a 2 (modality: visual, auditory) x 3 (condition: Neutral, Hold, 

Switch) repeated-measures analysis of variance (rmANOVA; the Greenhouse-Geisser 

correction was applied to violations of sphericity). The main effect of condition was 

significant (F(2,64) = 27.182, p < .001, η2
partial = .459, ε = .581). This shows that participants 

were able to bias their perception according to instructions, leading to longer durations in 

the Hold condition and shorter durations in the Switch condition, compared to the Neutral 

condition (Figure 1). Neither the effect of modality (F(1,32) = 2.060, p = .161) nor the 

modality/condition interaction (F(2,63) = 1.252, p = .287) were significant. Thus, participants 

switched similarly across modalities (possibly due to the choice of stimulus parameters 

rather than inherent cross-modal commonalities; e.g., in visual bistability (Necker cube), 

switching rates decrease with increasing stimulus size 39, in auditory steaming, switching 

rates decrease with increasing frequency difference and with decreasing presentation rate 

41), and the effect of attentional bias was similar for the two modalities.  



 

Figure 1. Mean number of perceptual switches during a 180-second block in each condition 

and modality. Error bars indicate 95% confidence intervals.  

Correlations across modalities 

Cross-modal relationships between number of switches were tested with Pearson 

correlations separately for each condition (Figure 2). Correlations between the two 

modalities were significant in all three conditions: Neutral (r(33) = .456, p = .008, CI95 = .134-

.691), Hold (r(33) = .550, p = .001, CI95 = .255-.752), and Switch (r(33) = .626, p < .001, CI95 = 

.361-.798). The correlation coefficients observed for the Hold (z = -0.490, p = .624) and 

Switch (z = -0.940, p = .347) conditions did not significantly differ from those of the Neutral 

condition. The correlation observed in the Neutral condition is not significantly different (z = 

0.238, p = .782) from the auditory-visual correlation (r(23) = .400, p = .060, r2 = .160) 

reported by Pressnitzer and Hupé 7. No significant correlations were found between the 



number of switches in the Neutral condition and any measures in the creativity, ego-

resiliency, and Stroop tasks. 

 

Figure 2. Correlations in the number of perceptual switches across modalities, separately for 

each condition; shading indicates 95% confidence intervals of the slope of the regression line. 

Individual consistency 

We restricted the rest of our analyses to the Neutral data as the correlations between 

switching in the visual and auditory task did not differ between the neutral and biased 

conditions and there was no modality × bias interaction in the ANOVA, allowing us to 

assume that similar processes are at work in the neutral and biased conditions. 

To explore individual consistency in switching across modalities, percepts were first 

reorganized into dominant/non-dominant categories (i.e., percepts were relabelled block-

by-block according to their dominance to allow comparisons between the two modalities). 

We then constructed participant transition matrices 42 from the relabelled data (see 

Supplementary Material for details). Intra-modal consistency was measured as the Kullback-

Leibler (K-L) 43 divergence between participants’ auditory and visual transition matrices. 

Inter-participant consistency was measured by comparing the K-L distances between a 



participant’s transition matrices and the transition matrices of all other participants. The 

distributions of intra-modal and inter-participant distance measures were compared using a 

one-tailed Wilcoxon’s Rank Sum test. The result of the test (z = -2.913, p = .002) indicates 

that participants’ perceptual switching behaviour is more similar across the two modalities 

(M = .042, CI95 = .028-.057) than the variation across participants (M = .093, CI95 = .088-

.098). In short, participants responded consistently within and across modalities. 

Comparison of the distributions of phase durations across modalities 

Raw phase durations from the Neutral condition were pooled across participants separately 

for each modality. First, we tested whether the distribution of the phase durations was 

gamma or log-normal. Examination of Q-Q-plots 44 indicated that the log-normal distribution 

fits our data better than the gamma distribution (Figure 3). The Akaike Information AIC, 45 

also indicated that the log-normal distribution fits the data better than gamma for both the 

auditory (AIClog-normal = 16474, AICgamma = 17024) and visual (AIClog-normal = 17070, AICgamma = 

17504) modalities.  



Figure 3. QQ-plots of gamma (left) and log-normal (right) distributions for phase durations 

from the Neutral conditions in the auditory (upper row) and visual (lower row) modalities.  

We then compared the auditory and visual phase distributions in two steps. First, phase 

distributions from the two modalities were compared using a Two-Sample Kolmogorov-

Smirnov test. The result indicated that the auditory and visual distributions were 

significantly different (D = .047, p = .003). Second, to examine the factors underlying this 

difference, the mu and sigma parameters of the log-normal distributions (which determine 

the central tendency and variance, respectively), were calculated for phase durations 

separately for the auditory and visual modalities with 95% confidence intervals (Figure 4). 

While the confidence intervals of the mu parameter overlap across the two modalities, the 

confidence intervals of the sigma parameter do not. This shows that although phase 



durations in the auditory and visual modalities can both be described by the same type of 

distribution (log-normal), the details of the distributions are different.  

 

 

Figure 4. Mu and Sigma parameters of the log-normal distribution with 95% confidence 

intervals.  

Correlations between successive phases 

Relationships between the duration of each perceptual phase and the durations of 

perceptual phases at one, two and three lags were tested with a mixed-level linear 

regression where participant identity was included as a random effect. Raw phase durations 

from the Neutral condition were log10-corrected in accordance with their log-normal 

distribution. This allowed us to meet not only the normality but also the linearity and 



heteroscedasticity assumptions of the test. All lags were significant in the auditory modality, 

whereas non-significant models were observed for the visual modality in half of the cases. 

The explained variance (R2) is higher, whereas the Akaike (AIC) and Bayesian Information 

Criterion (BIC) values are lower for the auditory modality compared to the visual modality; 

see (Table 1).  

Modality Transition Lag R2 AIC BIC Unstandardized b t r 
Auditory D/ND #1 20.27% 512.75 533.10 .249 (.197-.300) 9.516*** .450 

N = 1198 #2 20.34% 625.13 645.48 .186 (.132-.240) 6.775*** .451
#3 13.71% 583.16 603.52 .092 (.039-.144) 3.407** .370 

ND/D #1 21.36% 712.49 732.89 .240 (.183-.298) 8.208*** .462 
N = 1213 #2 13.97% 578.63 599.03 .155 (.100-.209) 5.588*** .374 

#3 20.30% 653.81 674.21 .153 (.096-.209) 5.337*** .451
Visual D/ND #1 14.85% 829.93 850.37 .149 (.100-.199) 5.940*** .385 

N = 1222 #2 5.77% 1158.48 1178.91 .239 (.184-.293) 8.652*** .240 
#3 13.48% 909.05 929.48 -.023 (-.074-.028) -0.878 .361

ND/D #1 10.68% 1147.29 1167.75 .147 (.085-.208) 4.648*** .327 
N = 1231 #2 14.05% 885.74 906.21 .060 (.005-.116) 2.131* .375 

#3 8.29% 1151.43 1171.89 .037 (-.025-.098) 1.156 .288 

Table 1. Relationship between successive phase durations in the auditory and visual 

modalities. “Transition” refers either to the Dominant/Non-Dominant (D/ND) or the Non-

Dominant/Dominant (ND/D) transitions. “Lag” refers to the number of intervening percept 

durations: for example, lag 1 refers to the correlation with the percept duration immediately 

following each individual duration. R2 refers to the explained variance of the model, whereas 

AIC and BIC refer to the Akaike or Bayesian Information Criterion, respectively. 

“Unstandardized b” refers to the slope of the model with CI95 values included in parenthesis. 

“t” refers to the t-test examining the slope’s difference from zero and asterisks are indicating 

the level of significance (*** p < .001, ** p < .01, * p < .05). “r” refers to the correlation 

coefficient between the two phases estimated from the R2. 



Discussion 

Our aim was to investigate commonalities between visual and auditory bistability using two 

well-studied exemplar tasks, visual ambiguous structure-from-motion and auditory 

streaming. We found strong similarities in the perceptual switching behaviour of individuals 

across modalities when viewed at a coarse level of description, but differences when viewed 

at a finer level of detail. 

The main evidence for similarity comes from the strong correlations between the number of 

switches participants reported over the same duration in the visual and auditory tasks in all 

three conditions (Neutral, Hold and Switch). The correlations we found in the Neutral 

condition do not differ significantly from those reported by Pressnitzer and Hupé 7, although 

in our study the correlation reached statistical significance, presumably thanks to the 

greater statistical power afforded by our larger sample. In accord with this finding, 

comparisons of the transition matrices (which can be used to characterise perceptual 

switching behaviour at a finer level of detail than the gross number of perceptual switches 

Denham, et al. 42) showed that individual participants were consistent in their behaviour 

across blocks and across modalities, despite the well-known stochasticity of perceptual 

bistability. Furthermore, attentional manipulations affected perceptual switching similarly in 

both modalities. While the visual-auditory correlations were numerically larger when 

attentional manipulations were introduced, the differences between the correlations found 

in the different conditions were not significant, showing that the correlations observed are 

unlikely to arise principally from some attention-related top-down effect. 

The distribution of phase durations in the two modalities was also quite similar. However, in 

contrast to the assumption of the gamma distribution used in many previous studies 



(e.g.,2,9,18,46,47) we observed a log-normal distribution in both modalities. Our observations 

are consistent with the findings of Rubin and Hupé 48 and Lehky 33 who also noted that their 

data was often better fit by a log-normal distribution. While a single, stochastic process 

would yield a gamma distribution, a log-normal distribution suggests that within each 

modality, switching is triggered by a multiplicative combination of a set of independent 

stochastic processes. This provides quite tight constraints on possible architectures. Recent 

theoretical considerations by Cao, et al. 34 have shown that the distributions observed in 

many bistability experiments are better explained by the combination of a finite set of 

independently switching processes. The generalised Ehrenfest process they used in their 

analysis yields a log-normal-like distribution. Our findings are thus consistent with their 

proposals and have important implications for understanding and modelling the 

mechanisms underlying perceptual bistability. 

Differences between the two modalities were found when the log-normal distributions 

characterising the phase durations in each modality were examined in more detail. Firstly, 

we found that the distributions were different (two-sample Kolmogorov Smirnov test). 

Secondly, we found that while the means of the distributions were similar, the spread 

(sigma) was not. Together, these findings support the hypothesis that perceptual switching 

in the two tasks depends on similar but distinct processes. 

A similar conclusion emerges from considering the relationships between successive 

perceptual phases. Successive phase durations have often been assumed to be independent 

(i.e. consistent with phase durations having a gamma distribution) 9, and this has influenced 

both theories and models of bistability (e.g.,46,49). However, more recent work has shown 

that there are small but significant correlations between successive phases both in vision 46 



and audition 50. The relationships we found were larger than those reported previously, 

likely because of differences in the analysis methods (see the Supplementary material for 

more details). The finding of significant correlations between successive phase durations 

points towards some form of memory with longer duration than considered in previous 

modelling work, something that may be interesting to explore in future work. The 

relationships between successive phases were higher for the auditory than for the visual 

data. This reinforces the emerging conclusion that while the very strong similarities between 

perceptual bistability in vision and audition imply that perceptual switching is generated in a 

very similar way in the two modalities, nevertheless, the precise source of switching differs. 

There was no correlation between perceptual switching and any of the modality-neutral 

central factors tested (creativity, ego-resiliency, and executive function). While the absence 

of correlations with these tasks is not evidence of a distributed system, these findings 

certainly provide no support for a unified central source of switching. Since we have only 

used one exemplar task in each modality, we cannot distinguish between the existence of 

modality-dependent sources of switching, or a more distributed system in which switching 

arises from task-dependent sources. However, the log-normal distribution of perceptual 

phases that we found does point toward the latter interpretation. We also make no any 

specific claims about what the underlying mechanisms might be; adaptation, increased 

inhibition, increased noise are all possibilities, but our experiment was not designed to 

distinguish between them. Thus, one possible extension of the current research is to test 

what roles each of these mechanisms might play in a distributed system such as that 

indicated by our results 



Conclusion 

Fundamentally similar properties characterise both auditory and visual perceptual bistability 

suggesting that the way perceptual switching is generated is very similar in both modalities. 

However, differences in the details of the phase distributions argue against a modality-

independent central switch generator. Rather, they suggest a more distributed system in 

which switching is generated in very similar ways in different brain areas. Individual 

consistency within and across modalities, as well as the fact that the best fit function for 

describing the distribution is log-normal, suggest that generic circuit properties rather than 

purely stochastic processes, may lie at the heart of the switching process.  

Method  

Experimental Design 

We adopted a mixed design in which each participant took part in one session. A complete 

session consisted of preliminary procedures followed by a period of training and three 

experimental conditions interleaved with a set of supplementary tasks; the experimental 

design is summarised in Table 2 below. Experimental conditions were distinguished by the 

task instructions given to participants: Neutral (should not try to influence their 

perceptions), Hold (should try to hold onto each percept they experienced for as long as 

possible), and Switch (should try to switch to a new percept as quickly as possible). Each 

condition comprised eight stimulus blocks, four visual (V) and four auditory (A). In the visual 

task, participants were asked to report the direction of motion of the front face of a rotating 

sphere (ambiguous structure-from-motion), while in the auditory task, they were asked to 

report on the perceptual grouping of tones in a sequence (auditory streaming). In the 



experiment reported here, participants were asked to report their perceptions using two 

perceptual categories. In the supplementary material we report a similar experiment in 

which participants were asked to report their perceptions using three perceptual categories; 

the principal effects are the same for both.   

Stage Activity Description

1 Preliminary steps Consent, handedness questionnaire 51, hearing check

2 Training 

- Visual task 
- Auditory task 

Response categories

LEFT, RIGHT 

INTEGRATED, SEGREGATED 

3 Test Condition 1: Neutral 8 stimulus blocks: VVVVAAAA (AAAAVVVV) 

4 Supplementary activity  Ego-resiliency questionnaire, (creativity questionnaire, 
Stroop task) 

5 Test Condition 2: Hold (Switch) 8 stimulus blocks: VVVVAAAA (AAAAVVVV) 

6 Supplementary activity  Creativity questionnaire (Stroop task, ego-resiliency 
questionnaire) 

7 Test Condition 3: Switch (Hold) 8 stimulus blocks: VVVVAAAA (AAAAVVVV) 

8 Supplementary activity  Stroop task (ego-resiliency questionnaire, creativity 
questionnaire) 

Table 2. Experimental design, showing the eight stages in an experimental session. The order 

of the following was counterbalanced across participants: a) modality ordering of stimulus 

blocks, VVVVAAAA or AAAAVVVV, b) biased test conditions Hold/Switch in stages 5 and 7, c) 

supplementary task order ego-resiliency/creativity/Stroop in stages 4, 6 and 8. 

Participants 

The study was run at two separate locations (Hungary: Research Centre for Natural Sciences 

of the Hungarian Academy of Sciences (RCNS); U.K.: University of Plymouth (UoP)), partly for 

practical reasons, and partly to reduce the risk of biasing the data by the specifics of the labs 



or their personnel. A total of 44 adults participated in this study (RCNS, 24 adults: 18 

females, Mage = 21.5, SDage = 1.98; UoP, 20 adults: 16 females, Mage = 22.9, SDage = 9.52). The 

study was approved by the local ethics committee (Hungary: Unified Committee for 

Psychological Research Ethics (EPKEB); U.K.: Faculty of Health and Human Sciences 

Research Ethics Sub Committee, University of Plymouth). The research was performed in 

accordance with relevant regulations. Informed consent was obtained from each participant 

prior to beginning the experiment. All participants had normal or corrected-to-normal vision 

and normal hearing, and gave written informed consent. Participants received modest 

payment or course credits in return for their participation.   

Training 

Visual Task 

Participants viewed 500 dots (each subtending a viewing angle of 4.7 arcmin) projected onto 

a computer screen. The dots’ position changed from one frame to the next as if they were 

located at random positions on a rotating sphere, which subtended a viewing angle of 3.3 

degrees. A chin rest was used to fix the distance of the head relative to the screen. At RCNS, 

the visual stimuli were presented on a Samsung 17" TFT 740B screen with a resolution of 

1280 x 1024 pixels, and at UoP on a Dell screen with a resolution of 1920 x 1080 pixels; 

stimulus parameters were adjusted to generate the same size sphere (same viewing angle) 

for the same screen to chin-rest distance. The virtual sphere rotated about a central vertical 

axis at an angular velocity of 75 degrees/second. Due to structure-from-motion effects, the 

moving dots create a vivid impression of a three-dimensional rotating sphere 37. Because 

there are no depth cues indicating which dots belong to the front or the back of the sphere, 

the direction in which the sphere rotates is ambiguous, and alternates periodically.  



Participants were instructed to report LEFT (by holding down a key) for as long as they 

perceived the front face of the rotating sphere moving leftwards, and RIGHT (by holding 

down a different key) for as long as they perceived it moving rightwards. These 

interpretations were demonstrated to participants using disambiguated examples (see 

Training Procedure, below). The corresponding mnemonics shown in Figure 5 were used as 

reminders. The “Enter” and “Shift” keys located on the right-hand side of a standard 

computer keyboard were used as response keys, with key-response assignment 

counterbalanced across participants.  

 

Figure 5. Mnemonics for the perceptual interpretations of the ambiguous structure-from-

motion stimulus; LEFT, RIGHT and the key assignment. 

Auditory Task 

Participants listened to a cyclically repeating sequence of tones, ordered low-high-low, with 

a brief gap before repeating (LHL_LHL_ ..), according to the auditory streaming paradigm 38. 

Sinusoidal tones of 75 milliseconds (ms) duration were used; the frequency of the L tone 

was 400 Hz and the H tone was 504 Hz, a difference of 4 semitones. The stimulus onset 

asynchrony (SOA, onset to onset time interval) was 125 ms. The sounds were delivered 

through Sennheiser HD600 headphones at both locations. Most commonly, listeners either 



perceive this sequence as if all tones belong together, termed INTEGRATED (i.e., they form a 

single coherent sound stream  with a typical galloping rhythm caused by the triplet 

pattern0, or they hear the tones splitting apart into two separate isochronous streams of 

sounds, L_L_L .. and H___H___H.., termed SEGREGATED.  

Participants were instructed to report INTEGRATED (by holding down a key) for as long as 

they perceived a single coherent sound stream and SEGREGATED (by holding down a 

different key) for as long as they perceived two streams, one containing low and the other 

high tones. These interpretations were demonstrated to participants using disambiguated 

examples (see Training Procedure, below).  The corresponding mnemonics shown in Figure 

7 were used as reminders. The “Enter” and “Shift” keys located on the right-hand side of a 

standard computer keyboard were used as response keys, with key-response assignment 

counterbalanced across participants. 

 

Figure 6. Mnemonics for the perceptual interpretations of the tone sequence; INTEGRATED, 

SEGREGATED, and the key assignment. 

Training Procedure 

Training in the two modalities was carried out separately, using a standardized procedure to 

ensure consistency. First, the perceptual categories were explained and demonstrated using 

stimuli in which the relevant category was disambiguated (visual disambiguation: to bias 



perception towards LEFT (RIGHT), luminance of rightward (leftward) moving dots was 

reduced; auditory disambiguation: to bias perception towards INTEGRATION 

(SEGREGATION), frequency difference between L and H tones was reduced (increased) to 1 

(H = 424 Hz) and 10 (H = 713 Hz) semitones, respectively). Next, participants practiced 

continuously responding to 60-second versions of the test stimuli to each of which a short 

segment of a disambiguated sequence was concatenated; feedback on the proportion of 

time they correctly categorised the disambiguated section was provided. They also practised 

categorising sequences formed only from concatenated disambiguated stimuli, with 

feedback on the proportion of correct categorisation for each segment. Once participants 

understood and could easily categorise their perceptions, they proceeded to the test phase. 

No participant was rejected because they failed to understand the training requirements. 

Testing 

The main experiment consisted of three conditions. In each condition, there were four 

contiguous 180-second visual blocks and four contiguous 180-second auditory blocks 

(VVVVAAAA or AAAAVVVV), with order counterbalanced across participants. At the end of 

each test block, there was an eight-second long disambiguated segment randomly chosen 

from LEFT, RIGHT (for visual) or INTEGRATED, SEGREGATED (for auditory). Responses to the 

disambiguated segments were used to monitor participant performance. A key press 

initiated the start of each block, so it was possible for participants to take short breaks 

between blocks. The initiating key press triggered an instruction screen sequence that 

prepared them for the block; this consisted of a 1s blank screen, followed by a 10s 

instruction screen showing category mnemonics and key assignment, then a 2s blank screen 

followed by a 2s central fixation cross before the stimuli for the block commenced. 



Conditions 

Conditions were defined by differences in the task instructions. In the Neutral instruction 

condition (which always ran first, to avoid carry-over effects from the other two conditions), 

participants were asked to report their perceptions without trying to influence them in any 

way. In the Hold condition, participants were asked to report their perceptions while at the 

same time trying to hold onto each percept for as long as possible. In the Switch condition, 

participants were asked to report their perceptions while at the same time trying to switch 

to a new percept as quickly as possible. The order of the Hold and Switch conditions were 

counterbalanced across participants. Instruction screens reminded participants of their 

current task. 

Data extraction 

Perceptual reports were recorded by polling the key status every 10ms for the duration of 

the stimulus, and the resulting data were processed to extract the sequences of continuous 

periods during which the same perceptual category was reported. This resulted in a 

sequence of perceptual phases together with the start time for each, relative to the start of 

the stimulus. The reports from the disambiguated segments were extracted separately and 

used as a measure of how well a participant understood the perceptual categories and the 

key assignments. To allow for a delay in reacting to the stimulus change 52,  the first two 

seconds of each disambiguated segment were ignored. Any participant who scored an 

average of less than 30% in a category, or less than 60% over both categories was excluded 

from further analysis. 11 participants were excluded from the analysis based on poor 

categorisation of disambiguated segments. Exclusion is based on a previous study 53 

showing, for the auditory task, that participants who correctly labelled the disambiguated 



segments showed greater internal consistency overall.  The analysis reported here is based 

on 33 participants (25 females; 19–25 years; Mage = 21.45, SDage = 1.82). The rejection rate is 

similar to previous studies using the same procedure 54,55. For the analysis, we used the 

number of perceptual switches in each block and the phase durations.  

Supplementary tasks and data analysis 

Full details of each of the supplementary tasks (the ego-resiliency and creativity 

questionnaires, and the Stroop task) and the data analysis are reported in the 

Supplementary Material. 
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