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Abstract. The stockpiling of waste mining by-products, i.e. steel furnace slag 

(SFS) and coal wash (CW) has brought significant environmental hazard and at-

tracted research attention to reuse them in a more innovative way. In recent 

years, SFS+CW mixtures have been successfully applied in geotechnical pro-

jects, while the inclusion of rubber crumb (RC, from waste tyres) will extend 

them into dynamic projects. Thus the investigation of the geotechnical proper-

ties of SFS+CW+RC mixtures under dynamic loading is in urgent need. In this 

paper, the dynamic properties (i.e. shear modulus and damping ratio) have been 

explored based on extensive drained cyclic triaxial tests. The influences of 

number of loading cycles, RC contents, shear strain level, and the effective con-

fining pressure have been presented. The dynamic properties of SFS+CW+RC 

mixtures presented in this paper will be essential for the application of the mix-

tures in the seismic isolation projects or railway foundation. 

Keywords: Waste materials, Dynamic loading, Shear modulus, Damping ratio. 

1 Introduction 

Steel furnace slag (SFS) and coal wash (CW) are by-products from steel making and 

coal mining industries, respectively. They are very common waste materials in Aus-

tralia, and in the Wollongong region (Australia) alone, the production of SFS and CW 

could be several million tons per year [1]. Rubber crumbs (RC) are granulated materi-

als from waste tires. The stockpiles of waste tires can lead to serious environmental 

hazards and have caused great public concern to reuse them. One of the best ways to 

deal with this problem is to reuse these waste materials into civil engineering projects. 

 As the detrimental properties of these waste materials (i.e. the swelling potential 

of SFS, the particle breakage of CW, and the low shear strength and high deformation 

of RC), they are usually blended with other materials when used in civil engineering. 

For instance, SFS are usually mixed with fly ash or cement to be served as landfill or 

used in unbound pavements [2, 3], and the SFS+CW mixtures have been successfully 

used in practical engineering applications such as port reclamation [1, 4] and landfill 
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projects [5, 6]. With the high damping property, RC is usually blended with sand or 

other soils applied in seismic conditions or as an integral part of vibration damping 

systems for machine foundations and railroads [7, 8]. Moreover, Indraratna et al. [9] 

developed an energy absorbing layer for subballast by adding RC into SFS+CW mix-

tures.  

Since subballast is subjected to cyclic loading, it is of great importance to under-

stand the cyclic loading behavior of SFS+CW+RC mixtures, especially the shear 

modulus and damping ratio. The aim of this paper is to investigate the influence of 

RC contents ��(%), the loading cycles, the shear strain level, and the effective confin-

ing pressure on the shear modulus and damping ratio of SFS+CW+RC mixtures based 

on drained cyclic loading triaxial tests. 

2 Laboratory investigations 

2.1 Materials 

The SFS and CW used in this study were provided by Illawarra Coal and Australia 

Steel Milling Services, respectively. RC was from waste tires and three different sizes 

(0-2.3mm, 0.3-3mm, and 1-7 mm) were used. The particle size distribution (PSD) of 

SFS, CW, and RC are shown in Fig.1. According to the unified soil classification 

system, SFS and CW can be classified as well-graded gravel with silty-sand (GW-

GM), and well-graded sand with gravel (SW), respectively, while RC can be referred 

to as granulated rubber. 

2.2 Specimen preparation and testing program 

To exclude the influence of gradation, all the mixtures tested in this study were mixed 

to the same gradation (the target PSD), also shown in Fig.1. Please note that the waste 

materials (i.e. SFS, CW, and RC) were blended by weight, and the content rate of SFS 

and CW was set to be SFS:CW=7:3 as with this rate the waste mixtures can maintain 

higher shear strength and less particle breakage [9], then 0%, 10%, 20%, 30%, and 

40% RC were added to the SFS+CW mixtures. All the specimens were prepared at 

the optimum moisture content and compacted to achieve an initial dry unit weight 

equivalent to 95% of their maximum dry density to simulate typical field conditions 

of subballast. 

A series of stress-controlled drained cyclic triaxial tests were carried out for the 

SFS+CW+RC mixtures following the procedure suggested by ASTM 

D5311/D5311M [10]. The specimens were compacted in three layers and had 50 mm 

in diameter by 100 mm high. In this study, an appropriate range of effective confining 

pressure  (i.e. �′�	= 10, 40, and 70 kPa) was used to simulate the field conditions of 

railway subballast depending on the typical axle loads (heavy haul) and heights of 

track embankments in the state of NSW [11, 12]. Moreover, to simulate the good 

drainage condition and the long term permanent settlement response of the subballast 

layer, the cyclic loading tests were conducted under drained condition, which was in 

agreement with Suiker et al. [15]. 
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Fig.1 PSD of SFS, CW, RC, and the target PSD for SFS+CW+RC mixtures 

Cyclic loading tests were conducted following three stages, i.e. saturation, consolida-

tion, and cyclic loading. During the saturation stage, the specimens were flooded with 

de-aired water and then the back pressure was applied at an increasing rate of 1 

kPa/minute until 500 kPa was reached. This stage was completed when the Skemp-

ton’s B-value exceeded 0.98, and then isotropic consolidation was carried out under 

the desired effective confining pressure of 10, 40 or 70 kPa. After consolidation, the 

cyclic loading stage was conducted at CSR=0.8 (cyclic stress ratio, Equation 1), using 

a loading frequency of � = 5	
�. The deviator stress used in this study is governed by 

�′� and cyclic stress ratio, CSR. For CSR=0.8, the confining pressures of �′� =
10, 40,	and	70	��� correspond to deviator stresses of 16, 64, and 112 kPa, respective-

ly. These values are in line with the observed stress conditions generated in typical 

freight tracks [12]. All the cyclic loading tests were continued for 50000 cycles. 

 
��� =

��

2�′�
 

(1) 

Where, CSR is the cyclic stress ratio; σ� is the peak cyclic axial stress; and σ′� is the 

effective confining pressure. 

3 Test results 

The shear modulus G and the damping ratio D are the two key parameters needed to 

estimate the stiffness and energy absorbing capacity of soil. Damping is the loss of 

energy within a vibrating or a cyclically loaded system which is usually dissipated in 

the form of heat or breakage for granular materials; it is commonly used to measure 

the damping capacity for energy dissipation during dynamic or cyclic loading. The 

definition of the shear modulus and damping ratio is presented in Fig.2; where the 
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area of the hysteretic loop �� in the shear stress-shear strain plain represents the ener-

gy dissipated during a loading cycle, while four times the area of the triangle �� is the 

maximum elastic energy absorbed during the cycle [13]. 

 

Fig. 2 Definition of shear modulus and damping ratio (after Kokusho [13]) 

3.1 The effects of ��(%) and the effective confining pressure 

Fig.3 shows the shear modulus and damping ratio of SFS+CW+RC mixtures with 

different ��(%) versus loading cycles in logarithm. It can be noted that the addition of 

RC has a significant influence on the shear modulus and damping ratio of 

SFS+CW+RC mixtures. As with previous studies of rubber-sand mixtures (e.g. [7, 8, 

14]), the shear modulus decreases with increasing ��(%) because of the low stiffness 

of rubber materials. Unlike shear modulus, the damping ratio of SFS+CW+RC mix-

tures increases with ��(%) indicating the high damping properties of rubber materials. 

However, the SFS+CW+RC mixtures with �� ≥ 10% tend to achieve a similar 

damping ratio after 10000 cycles (Fig.3a). This is because the inclusion of RC in-

creases the area of the hysteretic loop, but as �� increase the hysteretic loop becomes 

more inclined, which then causes a rapid increase in the area of the triangle ��, and 

this also suggests that the damping capacity of the waste mixtures with �� ≥ 10% is 

similar at high loading cycles, while for the waste mixtures without rubber the value 

of the damping ratio is stable albeit a little fluctuation after 10 cycles. 

The shear modulus calculated from the test result of traditional subballast (well-

graded sand with gravel) tested by Suiker et al. [15] is also shown in Fig.3(b). The test 

conditions were the same with this study except the deviator stresses applied were 

different. Here only the result of ! = 175	�"#	91	��� are presented. It can be seen 

that the shear modulus increases as the deviator stress increases, and thus it can be 

estimated that when ! = 112	��� at �′� = 70	��� (same with this study), the value 

of the shear modulus of subballast would be similar with SFS+CW+RC mixtures 

having 0% RC. Therefore, only the waste mixtures with �� ≤ 10% have acceptable 

stiffness comparing with traditional subballast.  
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The influence of effective confining pressure �′� on the shear modulus and damping 

ratio of SFS+CW+RC mixtures is presented in Fig.4 (a) and (b), respectively. It is 

clear that with the same ��(%), as �′� increases the shear modulus of the waste mix-

tures increases while the damping ratio decreases. 

 
Fig.3 Cyclic loading results of traditional subballast and SFS+CW+RC mixtures with 

different ��(%): (a) damping ratio, and (b) shear modulus 

Fig.5 shows the evolution of the shear modulus and damping ratio at 1000 and 

10000 cycles varying with ��(%) and �′�. It is evident from Fig.5 that of the variation 

of shear modulus and damping ratio with �� at 1000 cycles is similar to that at 10000 

cycles. Note that the effect of confining pressures on shear modulus weakened as �� 

increases, which in line with past studies such as Nakhaee & Marandi [16]. This is 

because as more RC included, the waste mixes tend to behave more elastic, and the 

influence of the confining pressure become insignificant [7]. Obviously, the behav-

iour of shear modulus and the damping ratio is governed mainly by ��. When 

�� < 20%, the shear modulus decreases and the damping ratio increases as �� in-

crease. However, when �� > 20% both the shear modulus and the damping ratio only 

change a little indicating that the rubber crumbs has formed the skeleton of the speci-

men and the specimen behaves rubber-like. It is worthy to note that when �� increas-

es in the range of 10% ≤ �� ≤ 20%, only a minor increase happens to the damping 

ratio, suggesting that 10% RC is sufficient for the purpose of energy absorbing. 
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Fig.4 Cyclic loading results of SFS+CW+RC mixtures with R)=10% under different 

confining pressures: (a) shear modulus, and (b) damping ratio 

3.2 The effects of cyclic loading cycles 

The effect of cyclic loading cycles on the shear modulus and damping ratio of 

SFS+CW+RC mixtures can be observed in Fig.3-4. It can be seen that at �′� =
70	��� the shear modulus of the waste mixtures with �� ≥ 10% stays stable during 

the first 10 cycles and increases at a reducing rate after 10 cycles suggesting that the 

stiffness of these waste mixtures increases with the contraction of the specimen. For 

the waste mixtures with �� = 0% the shear modulus fluctuates marginally after 10 

cycles indicating a stable stiffness of the waste mixtures with no rubber. In Fig.3 (a) 

and Fig.4 (b), note that the damping ratio of SFS+CW+RC mixtures with �� ≥ 10% 

decreases as the loading cycles increase albeit at a reducing rate, while the damping 

ratio of the waste mixture without rubber keep stable as the cyclic test continuing. It is 

worthy to note that both the shear modulus and the damping ratio of SFS+CW+RC 

mixtures stabilized after 10000 cycles.  
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Fig.5 Shear modulus and damping ratio of waste mixtures (SFS:CW=7:3) changing 

with R) at (a) N=1000 cycles, and (b) N=10000 cycles 

3.3 The effects of shear strain level 

Fig.6 (a and b) shows the effect of shear strain level on the shear modulus and damp-

ing ratio of the waste mixtures as well as traditional subballast (after Suiker et al.[15]) 

and sand-RC mixtures (after Li et al.[8]). It is evident from Fig.6 (a) that G decreases 

with an increase in the shear strain regardless of the magnitude of RC. The variation 

of G with shear strain for SFS+CW+RC compares well with the subballast material 

reported by Suiker et al. (2005). The value of shear modulus for sand-RC mixtures 

decreases as the RC contents increase and the confining pressure decreases, therefore 

it can be argued that with �� ≤ 10% and at �′� = 70	���, the shear modulus of the 

sand-RC mixtures is much lower than SFS+CW+RC mixtures. Fig.6 (b) shows the 

damping ratio of SFS+CW mixtures increases with shear strain level and a sharp in-
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crease occurs when the shear strain reach a certain level. In addition, the damping 

ratio at this level of RC (10%) is comparable to that obtained with sand-RC mixtures 

(Fig.6). 

 

 

Fig.6 Shear modulus of SFS+CW+RC mixtures changing with shear strain amplitude 

and comparison with traditional subballast (Suiker et al.[15]) and sand-RC mixtures 

(Li et al.[8]); (b) Damping ratio of SFS+CW+RC mixtures changing with shear strain 

amplitude 

4 Conclusions 

This paper investigates the influence of ��, �′�, and the cyclic loading cycles on the 

shear modulus and damping ratio of SFS+CW+RC mixtures (SFS:CW=7:3) based on 
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drained cyclic loading triaxial tests. The test result reveals that the addition of RC 

caused the shear modulus to decrease and the damping ratio to increase indicating that 

the stiffness of the waste mixtures decreased, while the absorbed energy dissipated to 

heat or breakage became more efficient. It was also found that the behavior of shear 

modulus and damping ratio was controlled by the percentage of the waste mixtures 

inside the mixtures. The particles that form the skeleton of the specimens changed 

from rigid particles (SFS and CW) to RC gradually as �� increased, and the transition 

point was around �� = 20%. By comparing the shear modulus with traditional sub-

ballast, the SFS+CW+RC mixture having 10% RC is a promising structural fill to be 

used as a subballast layer. Moreover, increasing the confining pressure will cause 

shear modulus to increase and damping ratio to decrease. The shear modulus decreas-

es with the shear strain level, while the damping ratio increases as the shear strain 

increases. The shear modulus and damping ratio of all the specimens stabilized after 

10000 cycles.  
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