
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+ University of Wollongong Thesis Collections

2017

Data-driven conceptual modeling: how some knowledge drivers for the Data-driven conceptual modeling: how some knowledge drivers for the

enterprise might be mined from enterprise data enterprise might be mined from enterprise data

Metta Santiputri
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Santiputri, Metta, Data-driven conceptual modeling: how some knowledge drivers for the enterprise might
be mined from enterprise data, Doctor of Philosophy thesis, School of Computing and Information
Technology, University of Wollongong, 2017. https://ro.uow.edu.au/theses1/234

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F234&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA-DRIVEN CONCEPTUAL MODELING:

HOW SOME KNOWLEDGE DRIVERS FOR

THE ENTERPRISE MIGHT BE MINED FROM

ENTERPRISE DATA

A Dissertation Submitted in Fulfilment of
the Requirements for the Award of the Degree of

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Metta Santiputri

School of Computing and Information Technology
Faculty of Engineering and Information Sciences

2017

c© Copyright 2017

by

Metta Santiputri

ALL RIGHTS RESERVED

CERTIFICATION

I, Metta Santiputri, declare that this dissertation, submitted in fulfilment of the re-
quirements for the award of Doctor of Philosophy, in the School of Computing and
Information Technology, Faculty of Engineering and Information Sciences, University
of Wollongong, is wholly my own work unless otherwise referenced or acknowledged.
The document has not been submitted for qualifications at any other academic insti-
tution.

Metta Santiputri
21 March 2017

Table of Contents

List of Tables . v
List of Figures/Illustrations . vi
Abstract . vii
Acknowledgements . ix
List of Publications . x

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 8
1.3 Research contributions . 10
1.4 Thesis structure . 12

2 Background 14
2.1 Goal-oriented requirements modeling 15

2.1.1 KAOS framework . 16
2.1.2 i* frameworks . 18

2.2 Goal elicitation . 22
2.3 Business process modeling . 26

2.3.1 BPMN . 28
2.3.2 Semantically annotated process model 30
2.3.3 Process mining . 32

2.4 The ArchiMate modeling languange . 34
2.5 Sequential pattern and sequential rule mining 37

2.5.1 Frequent pattern mining . 38
2.5.2 Sequential pattern mining . 45

2.6 Mining of enterprise models . 52
2.7 Datasets . 62

2.7.1 Event logs . 62
2.7.2 Process logs . 64
2.7.3 Effect logs . 64
2.7.4 Message logs . 65
2.7.5 Noise . 66
2.7.6 Synthetic datasets . 67

2.8 Research gap . 69

i

TABLE OF CONTENTS ii

3 Mining task post-conditions: Automating the acquisition of process
semantics 71
3.1 Introduction . 72
3.2 Example . 75
3.3 An event ontology . 79
3.4 Mining post-conditions . 81
3.5 Validation . 85
3.6 Abductive repair . 89
3.7 Evaluation . 92
3.8 Related works . 96
3.9 Summary . 100

4 Requirement model extraction 102
4.1 Introduction . 102
4.2 The Dependency Extraction (DE) technique 105
4.3 The Task-Dependency Correlation Extraction (TDCE) technique . . . 108
4.4 Evaluation . 113

4.4.1 Evaluation of DE technique . 114
4.4.2 Evaluation of TDCE technique 116
4.4.3 Improving requirements quality: Evaluation 119

4.5 Related works . 123
4.6 Summary . 125

5 Towards data-driven enterprise architectures: Discovering correla-
tions between the business and application layers in ArchiMate 127
5.1 Introduction . 128
5.2 Data-driven enterprise architectures: A general approach 130
5.3 Event logs . 135
5.4 Mapping between logs and layer components 136
5.5 Frequent closed sequential pattern . 138
5.6 Generating joined log . 139
5.7 Mining the sequence patterns . 142
5.8 Evaluation . 149
5.9 Related works . 153
5.10 Summary . 155

6 Goal orchestrations: Modelling and mining flexible business pro-
cesses 157
6.1 Introduction . 158
6.2 Goal orchestration models and semantics 159
6.3 Executing goal orchestrations . 162

6.3.1 Goal Consistency . 165
6.4 Mining Goal Orchestrations . 166
6.5 Evaluation . 169

TABLE OF CONTENTS iii

6.5.1 Evaluation with synthetic process models 169
6.5.2 Evaluation with real-life dataset 170

6.6 Summary . 178

7 Conclusion and future work 179
7.1 Conclusion . 179
7.2 Limitation . 182
7.3 Future work . 182

References 212

List of Tables

2.1 An excerpt of Holiday Booking process event log 63
2.2 An excerpt of Holiday Booking process log 64
2.3 An excerpt of Holiday Booking process effect log 65
2.4 An excerpt of Holiday Booking process message log 66

3.1 Records of patient’s treatment . 77
3.2 Records of patient’s conditions . 78
3.3 An example of joined ProcessEvent-StateTransitionEvent table 86
3.4 An example of cumulative joined ProcessEvent-StateTransitionEvent

table . 86
3.5 The recall and precision measures from the evaluation 94
3.6 Excerpt from the process event log provided by the user 97
3.7 Excerpt from the state transition event log provided by the user 97

4.1 Example of process log . 109
4.2 Candidate generation . 110
4.3 Controlled Environment kinteraction = 10% and kmessage = 10% 115

5.1 Mapping Between Logs and Layer Components 138
5.2 Frequent sequence vs. frequent closed sequence 139
5.3 Unique task setting . 143
5.4 Concurrent task setting . 144
5.5 Concurrent task setting . 147
5.6 Concurrent task setting . 148
5.7 A small section of the telephone repair event log 150
5.8 The business processes, application functions, and application compo-

nents and their correlations . 150
5.9 Log4 Result . 153

6.1 An example of event log with corresponding non-deterministic cumula-
tive effect sequence . 168

6.2 Evaluation result with synthetic data 171
6.3 Ticket examples . 173
6.4 Event sequences identified in the log 174
6.5 Goal assertions for the goal model . 174

iv

LIST OF TABLES v

6.6 Goal sequence for effect trace . 175

List of Figures

1.1 Overview of the models and the data generated in an enterprise 8
1.2 Overview of this thesis . 13

2.1 Possible goal model with its goals and constraints for the Meeting Sched-
uler case study [157, 56, 256, 255] . 19

2.2 Possible SD and SR model for the Meeting Scheduler case study [281, 50] 23
2.3 BPMN main elements . 29
2.4 Three main types of process mining [250] 33
2.5 Core concepts of the ArchiMate language [240] 35
2.6 Summary of the concepts of the ArchiMate language [240] 35
2.7 Relationships between Business Layer and Application Layer Elements [240] 36
2.8 ArchiSurance, an ArchiMate example, taken from [135] 37

3.1 Clinical process for treatment of juveniles with head injuries [191] . . . 76
3.2 Precision measures with noise in the effect log 95
3.3 Precision measures after validation with length parameter 2 and 3 . . . 95
3.4 A semantic annotated BPMN process model for Holiday Booking process 96

4.1 An i* SR model for a meeting scheduler system (adapted from [281]) . 114
4.2 Precision relative to log size . 117
4.3 Precision relative to min support . 117
4.4 Model from user . 119
4.5 Extracted model-1 . 120
4.6 Extracted model-2 . 121

5.1 Microsoft Windows Event Viewer, an instance of event log in the appli-
cation layer . 137

5.2 ArchiMate Business and Application Layer 154

6.1 Treatment for children sustaining head injury with low blood sugar level 164
6.2 Goal orchestrations for business process model in Figure 6.1 164
6.3 Ticket handling process . 172
6.4 Goal orchestrations for ticket handling process 176

vi

Abstract

As organizations perform their business, they analyze, design and manage a variety of
processes represented in models with different scopes and scale of complexity. Speci-
fying these processes requires a certain level of modeling competence. However, this
condition does not seem to be balanced with adequate capability of the person(s) who
are responsible for the task of defining and modeling an organization or enterprise
operation.

On the other hand, an enterprise typically collects various records of all events
occur during the operation of their processes. Records, such as the start and end of
the tasks in a process instance, state transitions of objects impacted by the process
execution, the message exchange during the process execution, etc., are maintained
in enterprise repositories as various logs, such as event logs, process logs, effect logs,
message logs, etc. Furthermore, the growth rate in the volume of these data generated
by enterprise process execution has increased manyfold in just a few years.

On top of these, models often considered as the dashboard view of an enterprise.
Models represents an abstraction of the underlying reality of an enterprise. Models
also served as the ”knowledge driver” through which an enterprise can be managed.
Data-driven extraction offers the capability to mine these knowledge drivers from
enterprise data and leverage the mined models to establish the set of enterprise data
that conforms with the desired behaviour.

This thesis aimed to generate models or knowledge drivers from enterprise data to
enable some type of dashboard view of enterprise to provide support for analysts. The
rationale for this has been started as the requirement to improve an existing process
or to create a new process. It was also mentioned models can also serve as a collection
of effectors through which an organization or an enterprise can be managed.

The enterprise data refer to above has been identified as process logs, effect logs,
message logs, and invocation logs. The approach in this thesis is to mine these logs to
generate process, requirement, and enterprise architecture models, and how goals get
fulfilled based on collected operational data.

The above a research question has been formulated as “whether it is possible to
derive the knowledge drivers from the enterprise data, which represent the running
operation of the enterprise, or in other words, is it possible to use the available data
in the enterprise repository to generate the knowledge drivers?”.

In Chapter 2, review of literature that can provide the necessary background knowl-
edge to explore the above research question has been presented. Chapter 3 presents

vii

how process semantics can be mined. Chapter 4 suggest a way to extract a require-
ments model. The Chapter 5 presents a way to discover the underlying enterprise
architecture and Chapter 6 presents a way to mine how goals get orchestrated. Over-
all finding have been discussed in Chapter 7 to derive some conclusions.

viii

Acknowledgements

I would like to express my deepest gratitude to my supervisors, Prof. Aditya Ghose
and Dr. Hoa Khanh Dam, for the immeasurable support and guidance throughout my
study. Their patience, encouragement, and insights have helped me immensely during
the time of research and writing of this thesis and all related publications. I would
also like to thank all my colleagues in Decision Systems Lab (DSL) research group for
their support, discussions and comments on my work.

I would like to thank my institution, State Polytechnic of Batam, Indonesia, for
giving me the opportunity to pursue PhD education. I am also obliged to the Gov-
ernment of Indonesia who provides me with the scholarship which allow me to finish
this study.

I am eternally grateful to my family, my husband, Uuf Brajawidagda, and our
daughter, Annika, for their love and support during our time here. Without them,
none of this would be possible. Also my deepest gratitude to my parents in Indonesia
who always believe in me and support me unconditionally.

Lastly, I would like to express my heartfelt thanks to all of those who supported
me during the completion of this thesis.

ix

List of Publications

• Metta Santiputri, Aditya Ghose, and Hoa Khanh Dam. Mining Task Post-
Conditions: Automating the Acquisition of Process Semantics. In Paul Johan-
nesson, Mong Li Lee, Stephen W. Liddle, Andreas L. Opdahl, and Óscar Pastor
López, editors, Data & Knowledge Engineering Journal volume 109, pages 112-
125. DOI 10.1016/j.datak.2017.03.007.

• Metta Santiputri, Aditya Ghose, and Hoa Khanh Dam. Goal Orchestrations:
Modelling and Mining Flexible Business Processes. In Mayr H., Guizzardi
G., Ma H., Pastor O, editors, Conceptual Modeling, volume 10650 of Lecture
Notes in Computer Science, pages 373-387. Springer Cham, October 2017. DOI
10.1007/978-3-319-69904-2.

• Metta Santiputri, Aditya Ghose, Hoa Khanh Dam, and Xiong Wen. Mining
Process Task Post-Conditions. In Paul Johannesson, Mong Li Lee, Stephen
W. Liddle, Andreas L. Opdahl, and Óscar Pastor López, editors, Conceptual
Modeling, volume 9381 of Lecture Notes in Computer Science, pages 514-527.
Springer Berlin Heidelberg, October 2015. DOI 10.1007/978-3-319-25264-3.

• Suman Roy, Metta Santiputri, and Aditya Ghose. Annotation and Mining for
Effects of Processes. In Isabelle Comyn-Wattiau, Katsumi Tanaka, Il-Yeol Song,
Shuichiro Yamamoto, and Motoshi Saeki, editors, Conceptual Modeling, volume
9974 of Lecture Notes in Computer Science, pages 302-311. Springer Berlin
Heidelberg, November 2016. DOI 10.1007/978-3-319-46397-1.

• Aditya Ghose, Metta Santiputri, Ayu Saraswati, and Hoa Khanh Dam. Data-
driven Requirements Modeling: Some Initial Results with i*. In Georg Gross-
mann and Motoshi Saeki, editors, Proceedings of the Tenth Asia-Pacic Confer-
ence on Conceptual Modelling (APCCM 2014). Conferences in Research Prac-
tises in Information Technology (CRPIT) Volume 154, pages 55-64. Auckland,
New Zealand, January 2014.

x

Chapter 1

Introduction

In any organization, an assortment of models with variety of scopes and complexity

are executed each day. The volume of data generating from these processes give

an opportunity to mine many useful information to gain insight of the organization.

Among many possible information that can be mined from the enterprise data are the

models that describes the intended or correct behaviour of the organization.

This observation gives the motivation behind this thesis. More detail on this moti-

vation presented in Section 1.1. This possibility to derive the knowledge from available

data leads to the research question in Section 1.2. To address these questions, the con-

tributions of this thesis is provided in Section 1.3. The structure of the remainder of

this thesis is described in Section 1.4.

1.1 Motivation

The requirement to improve an existing process or to create a new process was one of

the main push behind business process work in most organizations. Leading organiza-

tions invested more than $1 million on business process analysis, process management,

monitoring, redesign and improvement, some even reportedly spent over $10 millions

1

1.1. Motivation 2

in the year 2015 alone [113].

As organizations develop and deliver products and/or services, they build a number

of functions and operations necessary to improve or create a new line of business. The

range of functions and operations are varied and can be modeled with different scopes

and scales of complexity [217]. This variety of models may also covers all different

types of models from different phases in system and/or product development within

the organization [217]. Several examples of models developed in an enterprise are listed

below.

• Process models

Process models represent the flow of activities in a particular business or organi-

zational unit in order to achieve some goals. A process model is a combination of

activities, decisions, and sequence flow. To better understand the goals that the

process aim to achieve, a process model is complemented with a declarative spec-

ification to provide process semantics. By adding semantic descriptions to the

process model, analysts can perform reasoning over the annotated activities [88].

To construct semantically annotated business process models, analysts annotate

activities in the model with descriptions of the changes that occur as a result

or outcome of the activity execution (or effect) [123, 88, 184]. For each activity

or event, state semantics can be annotated using a formal language. Though a

lot of interest has been put to define the semantics of process modeling (such

as [138, 149, 66, 27]), nevertheless to perform semantic annotation of process

models is a complex and time-consuming task (more so with a complex process

model), especially for non-expert modeler. We describe the process models using

BPMN notations, which is explained further in Section 2.3 of Chapter 2.

Task outcome, represented as effects, and goal realizations can be further com-

bined to represent the goals achieved during process enactment. Representing a

1.1. Motivation 3

process model as a coordination of goals (referred as goal orchestration) allows

the process to be executed in flexible and context sensitive ways. As the actors

will be able to realize a goal in multiple different ways, it will enable a flexible

process management.

• Requirement models

Requirement models define precise specifications of software behavior based on

the real-world goals for, functions of, and constraints on software systems. They

provide the basis for analyzing requirements, validating that they are indeed

what stakeholders want, defining what designers have to build, and verifying

that they have done so correctly upon delivery. One of the most prominent

frameworks in goal-oriented requirement modeling is the i* framework. This

framework is a framework for early-phase requirements modeling. It describes

the requirements as a set of dependencies between actors and the tasks from

each actor that contributes to that particular dependency. More details on the

requirement modeling frameworks will be presented in Section 2.1 of Chapter 2.

However, requirements acquisition/elicitation has been a well-known challenges

(recognize as an instance of the knowledge acquisition bottleneck) which mostly

originated from the difficulty to articulate users’ requirements. This phenomenon

leads to the requirements elicitation process becoming a time consuming human

task of considerable complexity .

• Enterprise architecture

Enterprise architecture describes an overall view of an enterprise, including the

structure and behavior of the system. One of the enterprise architecture modeling

framework that has gained an increasing popularity is ArchiMate, first proposed

by the Open Group in 2009. It describes the enterprise architecture in three

different layers, i.e., business, application and technology layers, and connections

1.1. Motivation 4

between elements from different layers to express the structure of the system from

an abstract view to the implementation level. Section 2.4 of Chapter 2 presents

an introduction to the ArchiMate modeling language.

However, a costly investment, both in effort and time, is required during data

acquisition to describe the enterprise setting, especially in a complex and diverse

environment, for instance when the environment covers both virtual and phys-

ical applications and infrastructures in several different locations [12, 68, 140].

Furthermore, in the event of rapid change, EA is difficult to maintain [12].

As a matter of fact, the requirement to improve an existing process or to cre-

ate a new process was one of the main push behind business process work in most

organizations. As process models were considered as a major value chain in these

organizations, specific managers were assigned to specific processes, major or other-

wise. However, only a fraction of these managers was frequently trained to analyze,

design and manage business processes [113]. A survey conducted by BPTrends in

2016 [113] reported that their respondents (from a variety of industries, functions,

organization’s size, and locations) indicated that 99% of their organizations invested

in business process management and the process models defined for 97% of the major

value chains in the organization. Moreover, 86% of the respondents from the same

survey also indicated that their organization has process managers who are responsi-

ble for process. However, almost 20% of these managers were never been trained to

analyze, design and manage business processes. The survey also inquired about the

organization willingness to hire outside consultants to help with their business process

management. The answers given were 42% stated that they would hire consultants to

develop an enterprise process architecture, 52% indicated that the consultants would

responsible for defining the relationship between strategy and process, and 49% would

hire consultants to coordinate and manage the business process management projects

1.1. Motivation 5

and programs.

From these results alone, it can be concluded that the business process management

considered as highly crucial in an organization, however it does not follow that their

manager were equipped with the capacity to analyze, design and manage business

processes and that more organizations were willing to hire outside consultants to make

up for the lack of this competency.

A large body of research have addressed this challenge of modeling as a com-

plex, time-consuming process where the required competence of the analysts is not

met. Most studies tackled this challenge by providing guidelines for analysts to build

comprehensive models, such as SEQUAL [150], GoM [26], ISO-9126 compliant frame-

work [182], 7PMG [177] and 4EM [217]. The emergence of these studies highlighted

the fact that describing or defining the processes that need to be supported become

the main predicament in system development, instead of the actual implementation

or programming aspect of the system. However, despite a number of adequate guid-

ance towards modeling, they typically required a certain level of modeling compe-

tence. What missing from these guides are elicitation approaches that can be adopted

to help analysts to start with model building, especially for novices and non-expert

modelers. 4EM [217] does include a selection of elicitation approaches, but they rely

heavily on the approaches that have been applied mainly in requirements elicitations,

such as interviews [4, 126, 93, 175, 209, 31], observation [21, 209, 32, 272], and work-

shops [274, 166, 96].

Many medium to large organizations run hundreds or even thousands of business

process models in their operation. Using a miscellaneous of logging tools, these process

executions can generate a multitude of data. Reports has shown that the number of

data volume collected during the system operation has increased manyfold in just a

few years [28, 83, 104, 132, 270]. Not just in volume, the data also comprises of various

1.1. Motivation 6

types, such as:

• Event logs

Event logs have been utilized as a basis for process analysis in many different

settings, most notably in the process mining [249, 251, 105, 267]. Essentially,

event logs record any event occurrences during process execution. Each record

is time-stamped and refers to an event of a particular process instance.

During a process execution, the events that occur can be viewed in general terms

as being of two types: (1) events that correspond to the execution of the process

tasks, i.e., start or end of a process task, and (2) events that correspond to

the impact of a process task execution, i.e., the state changes in the objects as

the outcome of the process execution. In general, the information enclosed in a

record in the event logs usually consists of: (a) instance/case identifier, which

describe the process instance an event is related to, (b) event descriptor, which

contains the event description, such as a task ID or a state transition, and (c) a

time-stamp. Other information, such as the originator or the person responsible

for the event, can also be found though not as regular as the former.

• Process logs

We refer to the subset of event logs that record the events which signify the start

or end of the process tasks execution as process logs. We make distinction of this

type of logs with the next type of logs (i.e., effect logs) to emphasis the difference

between the two types of events. A variety of business process management tools

with event logging capability can be utilized to generate process logs.

• Effect logs

Effect log is also a subset of event logs. These logs record events that correspond

to the outcome or impact of the process execution. The name effect log is pre-

ferred in view that the state transitions being recorded are considered as the

1.1. Motivation 7

impact or effect of the process. In many settings, these logs can be generated by

the same tools as process logs, however in other settings, an object state monitor

has to be installed to specifically obtain them.

• Message logs

Message logs record all form of communications in an organization, such as email

or any other message exchange applications. In the enterprise context, these

type of logs are frequently maintained and any process logging tool can be used

to generate them. Because the message exchange occurs between actors in an

organization, these logs usually documented in natural language and require

NLP techniques to process them.

We acknowledge that there are other sources of data in an organization reposi-

tory, for example enterprise level documents such as standard operating procedures

of the organization; other process related logs such as exceptions/error logs, or pro-

vision/resourcing logs; or any other data sources. However, they are outside of the

scope of this thesis.

The models developed by an enterprise and the data generated by the process

execution is summarize in Figure 1.1.

System models often viewed as an abstract collections of sensors through which

one can observe a complex underlying reality. On the other hand, models can also

serve as a collection of effectors through which an organization or an enterprise can

be managed. Models defines the “to-be” or desired enterprise operational, then lever-

age the mined models to determine specific organization data/repositories one would

require such that these, if mines using the same approach, would yield the desired

operation. Using these understanding, these models are referred as a collection of

“knowledge driver”. One approach to achieve these is by performing data-driven ex-

traction, which can enable a type of dashboard view of an organization where one can

1.2. Research questions 8

Figure 1.1: Overview of the models and the data generated in an enterprise

mine these knowledge drivers from enterprise data as an abstraction of the underlying

reality and furthermore, the mined models can be leveraged to establish the set of

enterprise data that conforms with the desired behaviour.

1.2 Research questions

Given the ability of system models as knowledge drivers to give a dashboard view of

an enterprise and data-driven extraction approach as one possible mean to realize it,

gives rise to the question whether it is possible to derive the knowledge drivers from the

enterprise data, which represent the running operation of the enterprise, or in other

words, is it possible to use the available data in the enterprise repository to generate

the knowledge drivers?.

In this thesis, we turn to the machine learning and data mining fields of research

and leverage methods in both areas to mine the knowledge drivers. Relating to the

1.2. Research questions 9

models and the data in Figure 1.1, the research questions are specifically identified as

follow:

1. Mining process semantics

(a) How the context-independent effects/outcomes of each task in the process

model are mined from process logs and effect logs?

(b) How the mined effects are validated?

(c) What can be done when mined effects are found to be unsound or incom-

plete according to the validation result?

2. Requirement model extraction

(a) How the inter-actor dependencies in the requirement model are mined from

message logs?

(b) How the tasks/goals associated with each (mined) dependency are mined

from process logs and message logs?

(c) How the methods are evaluated in regards to their effectiveness?

3. Enterprise architecture mining

(a) What settings can be identified in relation to concurrent task execution in

an enterprise?

(b) How the correlation of the business and application layers in an ArchiMate

model are mined from event logs?

(c) How the methods are evaluated in regards to their effectiveness?

4. Goal orchestrations

(a) How the business process model is represented as a coordination of goals?

1.3. Research contributions 10

(b) How a goal orchestration model is extracted from event logs (specifically

effect logs)?

1.3 Research contributions

The main contribution of this thesis is the formulation of approaches to mine some

knowledge drivers from data generated by the operational process execution by leverag-

ing methods from the machine learning and data mining fields of research. Support for

the analysts are provided by generating “first-cut” models, which then can be adjusted

to the analysts’ intentions and used as the base to improve the process. More specifi-

cally, the main contribution can be broken down into a number of points as outlined

below.

• Development of a method for mining process semantics from process

logs and effect logs

To describe the process semantics, the formalization of the task effects and the

effect accumulation was adopted from previous works in [123, 88, 184, 86]. By

leveraging sequential rule mining method, the context-independent effects were

mined from process logs and effect logs. This contribution corresponds to re-

search questions number 1(a). The available data, i.e., process logs and effect

logs, were also leveraged to validate the mined effects, or in other words, to de-

termine if the mined effects predict the state transitions seen in the data. This

contribution relates to research questions number 1(b). The guidance to modify

the mined effects were provided by formulating the problem as abductive prob-

lem. By formulating it as abductive problem, it can be determined what effects

to be augmented (in the case where the mined effects are found to be incomplete)

or contracted (in the case where the mined effects are found to be unsound). This

contribution corresponds to research questions number 1(c).

1.3. Research contributions 11

• Development of a method for mining inter-actor dependencies in a

requirement model from process logs and message logs

The i* framework describes the requirements as a set of dependencies between

actors in an organization. The approach mined the inter-actor dependencies and

the tasks involved in a particular dependency from message logs and process logs.

It mainly mined a domain model, or a model of the “as-is”, and does not intent

to mine requirements or goals in the minds of stakeholders that have no manifes-

tation in data. The approach leveraged the sequential pattern mining method to

mine patterns in the logs that signify the dependency. This contribution relates

to the research questions number 2(a) and 2(b). A proof-of-concept evaluation

was provided using two settings, i.e., using synthetic data and by leveraging

expert user, to determine the effectiveness of the method. This contribution

corresponds to the research questions number 2(c).

• Development of a method for mining the relationships between layers

in an enterprise architecture from event logs

Within an enterprise, four different settings were defined, i.e., complete timestamp-

unique task setting, complete timestamp-concurrent task setting, partial time-

stamp-unique task setting, and partial timestamp-concurrent task setting, which

relates to research question number 3(a). For each setting, the approach sup-

ported the enterprise architecture modeling by mining the relationship between

business layer and application layer. It determine the relationships automatically

by leveraging the event logs using the frequent closed sequential pattern mining

method. This contribution corresponds to research question number 3(b). To

evaluate the method, a proof-of-concept evaluation was provided. This contri-

bution relates to research question number 3(c).

1.4. Thesis structure 12

• Development of a process model representation as a coordination of

goals

A goal-oriented representation of a business process as the sequence of goals

achieved, called a goal orchestration model, was provided. Goal model, which

contains available goals, provides the vocabulary for the effects which represents

the task outcome. This contribution relates to research question number 4(a).

• Development of a method for mining a goal orchestration model from

event logs

The sequence of effects, recorded in event logs, combined with a goal model are

mined to extract a goal orchestration model. The approach adopted a similar

method with the alpha algorithm to generate the model. If the goal model is

specific to an actor or a processs instance, then the goals will be recognized and

mined specific to the process or actor in question. This contribution corresponds

to research questions number 4(b).

The contributions of this thesis is presented as a framework in Figure 1.2.

1.4 Thesis structure

This chapter is concluded by summarizing the structure of this thesis.

Chapter 2 provides the background concepts that we use throughout this theses,

including business process management, goal modeling, and sequential pattern

mining and sequential rule mining.

Chapter 3 introduces the method to mine the effects or post-conditions of a process

task. The definition of semantic effect annotation and the validation technique

to exercise these mined effects are also introduced.

1.4. Thesis structure 13

Figure 1.2: Overview of this thesis

Chapter 4 introduces an approach to mine the dependency in the i* model.

Chapter 5 explains a method to mine the correlations between multiple layers in the

enterprise architecture model, namely ArchiMate model.

Chapter 6 presents the concept of goal orchestration, a process model representation

through sequence of goal satisfaction. In addition, it also provides the method

to mine them using similar approach to the effect mining.

Chapter 7 finally concludes the thesis with some final remarks.

Chapter 2

Background

This thesis aims to explore the possibility to derive the knowledge drivers from the

enterprise data. The first model intended to be mined is the requirement models,

given the history that goal elicitation is considered to be a difficult process. Another

possibility presented is to mine the process semantic or semantic annotated process

model. Although there is a large volume of languages and frameworks in business

process modeling, BPMN maintain as the most prominent framework to describe the

process. An example of a field of research similar with this thesis is process mining. It

mine the process model from event logs and the process model use BPMN notation,

however it does not describe the semantic of the process. Architecture model is another

possible model to be mined from available data. It describes an enterprise as layers of

different abstractions. ArchiMate is the standard notation of enterprise architecture.

In this thesis, the mining of different models are performed using methods in se-

quential pattern and sequential rule mining. These methods takes an important role

in this work considering that the analysis are based on the patterns or rules that are

discovered from the data source.

Section 2.1 and Section 2.2 examines the goal-oriented requirement engineering as

the basic approach in the requirement modeling that will be mined and the various

14

2.1. Goal-oriented requirements modeling 15

method for goal elicitation that has been employed to identify goals. These sections

gives an understanding of the goal models and the methods to construct these models.

Section 2.3 presents the introduction to BPMN and semantic annotation to process

model in BPMN. Section 2.4 introduces the Archimate modeling language that was

applied to represent an enterprise architecture. In section 2.5 sequential pattern mining

and sequential rule mining are discussed and different algorithms in both areas are

overviewed to showcase various alternatives of mining methods.

2.1 Goal-oriented requirements modeling

The key steps of the Requirements Engineering (RE) process are domain analysis,

elicitation, negotiation and agreement, specification, specification analysis, documen-

tation, and evolution [252, 189, 230, 148, 204]. They are intertwined and may span

the entire life cycle of software development. The requirements for a software system

maybe spread across the system, including problem owners, stakeholders, documen-

tation, and other existing systems, which requires an elicitation process. The basic

techniques for requirements elicitation includes many different methods such as inter-

views [4, 126, 93, 175, 209, 31], observation [21, 209, 32, 272], scenarios [236, 1, 141],

workshops [274, 166, 96], focus groups [151], protocols [93, 187, 175], prototypes [229],

and models [188, 24, 25, 216].

Requirements elicitation was started with the questions such as “what the sys-

tem requirements are”. However, the RE research has been move towards address-

ing questions like “why the software is needed” and “why the design is justified”

[252, 282]. By exploring these “why” questions, requirements analysts are able to

model the intentions and purpose of the systems being designed. These research

projects marked the recognition of goal significance in the RE process and formed the

branch of RE research known as Goal-Oriented Requirements Engineering (GORE)

2.1. Goal-oriented requirements modeling 16

[254, 252, 253, 277, 210, 185, 142]. In this section we will explore further about KAOS

methodology [54, 55, 56, 157] and i* framework [279, 281, 282], two most popular

goal-oriented approaches [128].

2.1.1 KAOS framework

The KAOS methodology (stands for Knowledge Acquisition in autOmated Specifica-

tion [55] or Keep All Objects Satisfied [257]) was proposed by Dardenne, van Lam-

sweerde and Fickas [54, 55]. It was the first widespread approach to goal-oriented

requirements engineering [79]. The methodology was aimed at supporting the require-

ments elicitation process [54, 55, 56, 157].

The KAOS methodology consists of three components, i.e., (a) the specification

language that provides constructs to capture various types of concepts, (b) the elab-

oration method to elaborate high-level goals into KAOS specification systematically,

and (c) the meta-level knowledge for guidance during the elaboration processes [157].

A goal is defined as “non-operational objective to be achieved by the composite

system” [55, 56] or “an objective the composite system should meet, usually through

the cooperation of multiple agents” [54, 57, 58, 157]. Each goal has a name, a natural

language definition which describes the set of temporal sequence of states of the system

that satisfying the goal, and an optional formal definition in temporal logic formula

which describes the same set of temporal sequence of states [157].

Goals can be linked to a set of subgoals using AND/OR-refinement links. In an

AND-refinement, the sufficient condition to satisfy a goal is by satisfying all of its

subgoals while in an OR-refinement, the sufficient condition to satisfy a goal is by

satisfying one of its subgoals [157, 56, 57, 58]. The goal refinement structure can be

described using an AND/OR directed acyclic graph, denoted as goal model [30, 255,

157]. Figure 2.1 illustrate an example of a goal model for the Meeting Scheduler case

2.1. Goal-oriented requirements modeling 17

study adapted from [157, 56, 256, 255]. Goal refinement ends up when terminal goals

are reached and these terminal goals are assignable to individual agents. Goals can be

considered as requirements or assumptions dependent on whether they are assigned to

the software agent or to an environment agent, respectively [54, 55, 157, 255].

Based on the concept being specified, the generic construct of a KAOS struc-

ture can be instantiated to specific types of links and assertion languages [54, 55,

157, 255]. For example, consider the specification for ParticipantsConstraintsKnown

goal in Figure 2.1. The declaration part introduces a goal named ParticipantsCon-

straintsKnown with the required property that should eventually hold (denoted with

Achieve verb) and refers to objects Meeting, Participant, Scheduler. The specification

also contains the links to its parent goal, MeetingRequestSatisfied, and its refinement

into subgoals, ParticipantsConstraintsRequested, ParticipantsConstraintsProvided, Partic-

ipantsAgendaUpToDate, and ParticipantsConstraintsKnownFromAgenda. The goal is de-

scribed using both informal statement and formal assertion. The formal assertion is

written in a real-time temporal logic or using the bounded version of the temporal

operators [30, 255, 157]. For example, in Figure 2.1, the operator ♦≤d refers to some

time in the future within some deadline d.

Based on their temporal behavior, goals can be classified into four patterns [157,

56, 256], namely:

– Achieve goals, i.e., goals requiring that some property eventually holds, corre-

sponds to temporal formula P ⇒ ♦Q

– Cease goals, i.e., goals requiring that some property eventually stops to hold,

corresponds to temporal formula P ⇒ ¬♦Q

– Maintain goals, i.e., goals requiring that some property always holds, corresponds

to temporal formula P ⇒ Q

– Avoid goals, i.e., goals requiring that some property never holds, corresponds to

temporal formula P ⇒ ¬Q

2.1. Goal-oriented requirements modeling 18

Goals are also classified according to the type of requirement they express with

respect to the agents concerned (e.g., SatisfactionGoals are goals concerned with sat-

isfying agent requests; InformationGoal are goals concerned with making an agent

informed about object states; SafetyGoal are goals concerned with avoiding hazardous

states) [157, 56, 256].

2.1.2 i* frameworks

The i* framework [279, 278, 282, 280, 281, 283] was proposed by Eric Yu. It was

developed for modeling and reasoning about organizational environments and the

stakeholders including their objectives and their relationships. The main concepts

of i* were introduced in [282] and finalized in [280]. Since then, the version of i* has

evolved and was updated into a wiki document, the iStar-wiki1. The latest standard,

the iStar 2.0 Language Guide, is published on June 2016 [50]. This standard contains

a core language (focusing on concepts and relationships) to be spread for research, ed-

ucation and technology transfer purposes. According to this latest standard, “iStar”

is preferred instead of “i*” to allow better indexing through search engines. In the

remainder of this section, all the definitions refer to the iStar 2.0 Language Guide.

The main notion of the i* framework is the intentional actors and intentional

dependency. It models the actors’ goals, the means available to achieve these goals, and

how it depends to other actors to achieve their goals. Actors depend on each other for

goals to be achieved, tasks to be performed, resources to be furnished and performance

measures to be optimized. Goals that are difficult or impossible for an actor, may be

achieved by means of dependency with other actors. However, the downside of this

dependency is that if the depended-on actors do not deliver, it becomes a vulnerability.

Actors are defined as “active, autonomous entities that aim at achieving their goals

1http://istarwiki.org

http://istarwiki.org

2.1. Goal-oriented requirements modeling 19

Goal Achieve [MeetingRequestSatisfied]
Concerns Meeting, Initiator, Participant
RefinedTo ParticipantsConstraintsKnown, MeetingPlanned, ParticipantsNotified
InformalDef Every meeting request should be satisfied within some deadline associated with

the request. Satisfying a request means proposing some best meeting date/location to the
intended participants that fit their constraints, or notifying them that no solution can be
found with those constraints.

FormalDef
(∀ r: Initiator, m: Meeting, p: Participant)

Requesting (r,m) ∧ Feasible (m) ⇒ ♦≤d Scheduled (m)
∧ Invited (p,m) ⇒ ♦≤d Knows (p,m)

Goal Achieve [ParticipantsConstraintsKnown]
Concerns Meeting, Participant, Scheduler
Refines MeetingRequestSatisfied
RefinedTo ParticipantsConstraintsRequested, ParticipantsConstraintsProvided, Partici-

pantsAgendaUpToDate, ParticipantsConstraintsKnownFromAgenda
InformalDef A meeting scheduler should know the constraints of the various participants invited

to the meeting within some deadline d after invitation.
FormalDef
(∀ m: Meeting, p: Participant, s: Scheduler)

Invited (p,m) ∧ Scheduling (s,m) ⇒ ♦≤d Knows (s,p.Constraints)

WeakConstraint Maintain [AgendaUpToDate]
InstanceOf ConsistencyConstraint
UnderResponsibilityOf Participant
FormalDef
(∀ p: Participant, tp: TimeInterval)

Agenda (p,-) ∧¬Free (p,tp) ⇔ tp ∈ Agenda[p,-].BusyPeriods

StrongConstraint Achieve [BestSchedule]
Operationalizes Achieve [MeetingPlannedWithNegotiation], Maximize [ScheduleConvenience],

Minimize [DeadEnds]
FormalDef
(∀ r: Initiator, m: Meeting, s: Scheduler)

Requesting (r,m) ∧ Scheduling (s,m)
⇒ ♦≤d [Feasible (m) ⇒ Scheduled (m) ∧ Preferred (m)
∧ NearlyFesible (m) ⇒ ScheduledByNegotiation (m)
∧¬Feasible (m) ∧ ¬NearlyFeasible (m) ⇒ DeadEnd (m)]

Figure 2.1: Possible goal model with its goals and constraints for the Meeting Scheduler
case study [157, 56, 256, 255]

2.1. Goal-oriented requirements modeling 20

by exercising their know-how, in collaboration with other actors”[50]. Actors can be

human, organizations, technical systems (hardware, software), or any combination of

them. Actor can be used in the model without specialization (i.e., generic actor) or can

be distinguished into two types, i.e., Role which represents an abstract characteriza-

tion of an actor’s behavior within some context or domain, or Agent which represents

an actor with concrete, physical manifestations. The relationships between actors are

described using two types of actor links, i.e., is-a which represents the concept of gen-

eralization/specialization, and participates-in which represents any kind of association,

other than generalization/specialization, between two actors.

Actor’s intention is identified by the intentional elements within their boundary.

Four types of elements are defined, namely:

– Goal: a state of affairs that the actor wants to achieve and that has clear-cut

criteria of achievement;

– Quality: an attribute for which an actor desires some level of achievement;

– Task: represents actions that an actor wants to be executed, usually with the

purpose of achieving some goal;

– Resource: a physical or informational entity that the actor requires in order to

perform a task.

A dependency represents a relationship between two actors with five arguments:

– depender is the actor that depends for something (the dependum) to be provided;

– dependerElmt is the intentional element within the dependers actor boundary

where the dependency starts from, which explains why the dependency exists;

– dependum is an intentional element that is the object of the dependency;

– dependee is the actor that should provide the dependum;

– dependeeElmt is the intentional element that explains how the dependee intends

to provide the dependum.

Based on the type of dependum, the dependencies can be classified into four types:

2.1. Goal-oriented requirements modeling 21

– Goal dependency: the dependee is expected to achieve the goal, and is free to

choose how;

– Quality dependency: the dependee is expected to sufficiently satisfy the quality,

and is free to choose how;

– Task dependency: the dependee is expected to execute the task in a prescribed

way;

– Resource dependency: the dependee is expected to make the resource available

to the depender.

Intentional elements can be related using four types of links:

– Refinement is an n-ary hierarchical relationship between goals and tasks. In

AND-refinement, all the children must be fulfilled to fulfill the parent, while in

OR-refinement, at least one child must be fulfilled to make the parent fulfilled.

– NeededBy relates a task with a reasource to indicate that the actor needs the

resource to execute the task.

– Contribution represents the effects of intentional elements on qualities. Posi-

tive effects will result in qualities being fulfilled or satisfied, on the other hand,

negative effects will result in qualities being denied. Based on the effects, the

Contribution link can be categorized in four types, i.e., Make (strong positive ef-

fects), Help (weak positive effect), Hurt (weak negative effect), and Break (strong

negative effect).

– Qualification links a quality to its subject: a task, goal, or resource to express

a desired quality over the execution of a task, the achievement of a goal, or the

provision of the resource.

The iStar 2.0 framework introduces of three model views:

Strategic Dependency (SD) model is used to describe dependency relationships

between actors within the boundary of an organization. It provides a set of

2.2. Goal elicitation 22

concepts for modeling processes in terms of the intentional dependency among

actors.

Strategic Rationale (SR) model is used to describe the interests and concerns of

actors in the model and how they can be addressed or impacted by different

system configurations. It provides an intentional description of processes in

terms of process elements and the rationales behind them.

Hybrid SD/SR is a combination of SD/SR views that focus on the strategic ratio-

nale of a particular set of actors.

Figure 2.2 shows an example of SD and SR model for Meeting Scheduler case study

adapted from [281] with iStar 2.0 notations [50].

2.2 Goal elicitation

Goals are often difficult to identify [256, 17, 115, 212, 253, 155]. In some cases, goals

are readily available and explicitly stated in the preliminary documents or other ma-

terials. However, in most cases, goals are often implicit. Therefore the process of goal

elicitation is needed in order to identify goals.

Goal models have been transformed to and from a broad range of languages and

artifacts. The technique to transform from business artifacts to goal models is be-

ginning to rise in the last ten years, while from software artifacts to goal models

is remained relatively low [128]. Goal models can be elicited from: business arti-

facts, such as business process [60, 80, 81], architecture enterprise [235], and sce-

narios [276, 211, 212, 258, 52, 53]; software artifacts, such as features [22], web

services [137], and code [284, 264]; UML modeling language, such as use case [15];

non-UML modeling language, such as EPC [35, 186], BPMN [147, 61], CPMM [293],

BGR [34], BPCM [80], DIS [101], HAM [101], Nomos [225], Future Wheels [202],

2.2. Goal elicitation 23

Figure 2.2: Possible SD and SR model for the Meeting Scheduler case study [281, 50]

2.2. Goal elicitation 24

and UCM [84]; requirements, such as other goal models [202], NFR [42], and natural

language [14, 16, 171, 130, 134, 143, 156, 206, 137, 133, 137]; and architecture [235].

De la Vara, Sánchez and Pastor [60] and Gao and Krogstie [81, 80] investigate

the correlation between goal models and buiness process models and define a set of

guidelines to derive a goal model from a business process model. The guidelines maps

elements and patterns in the business process model to elements in the goal model.

Sunkle, Kulkarni and Roychoudhury [235] also provides the mapping from and to

goals, but instead of business process model, they use the core elements of enterprise

architecture and the mapping is performed through i* intentional metamodel. Another

business artifact in the form of scenario also used in goal elicitation. The CREWS-

L’Ecritoire approach by Rolland et al. [211, 212] used goal-scenario coupling (called

“requirement chunk”) as a mean to discover goals. They performed AND (compo-

sition) and OR (alternative) operations to the goal-scenario pair to elaborate goals

and build the goal model. Another method by Yang, Prasanna and King [276] called

goal-directed information analysis (GDIA) translates scenarios to goal structure using

seven clearly defined and repeatable steps, including task analysis. Formal specifica-

tion of goals also obtained from scenarios by Van Lamsweerde et al. [258] and Damas

[52, 53] using inductive inference.

Another approach to discover goals is to transform from software artifacts. Batista

et al. [22] established method for software product line development which incorporates

trasnformation from features to goals and softgoals. Jung et al. [137] used a set of

NLP techniques to obtain functional-goals from web services’ descriptions. Source

code is also used to elicitate goals. Yu et al. [284] and Wang et al. [264] proposed a

method to discover goal models from source code using program slicing and refactoring

techniques.

Antón et al. [15] deriving goals from these use cases created based on the Software

2.2. Goal elicitation 25

Requirements Specification (SRS) document. Bögl et al. [35] proposed an algorithm to

construct a hierarchical goal tree from Event-driven Process Chains (EPC) and its an-

notation. Neiger and Churilov [186] presented a formalization of the relation between

business process modeling and decision modeling, thus enabled transition between

EPC process model and goal model within decision modeling framework. Koliadis et

al. [147] mapped BPMN to i* model to support change propagation between the two

models. The mapping includes a step to identify organizational objectives/goals that

are not explicitly represented in the BPMN notation. González and Diáz [61] mapped

business process goals into system goals for strategic alignment reason using certain

heuristics. Zdravkovic, Svee and Giannoulis [293] transformed consumer preferences

to i* models that represent consumer value of interest. The obtained i* models are

then transformed to feature model that represent the product configurations. Bleis-

tein, Cox and Verner [34] mapped Motivation Model entities, which describes the

organization’s business strategy, to i* entities, thus making the Motivational Model

conceptual framework operational via i*. Grau, Franch and Maiden [101] propose

PRiM (Process Reengineering i Method) that provides guidelines for the prescriptive

construction of i models. The i* elements are obtained from Human Activity Models

(HAMs) that represents the situated behaviour of human actors in the process and

Detailed Interaction Script (DIS), which is a simplified notation for process scenarios.

Siena et al. [225] proposed Nomos, a framework that includes a process to derive law-

compliant system requirements to i* metamodel, including goals of the stakeholders.

Pimentel et al. [202] proposed an approach that derives the goals and softgoals from an

extended Future Wheel model and use it to enrich the goal model. Ghanavati, Amyot

and Peyton [84] mapped the goal and business process models of the legislation and

of organizations with Use Case Maps (UCM) that define the business processes that

implement organizational policy.

2.3. Business process modeling 26

Cardoso et al. [42] using the NFR catalogues as a tool in goal elicitation which is

useful to identify goals that did not arise during initial interviews. Islam, Mouratidis

and Wagner [134] introduced a framework to assist the elicitation and management

of security and privacy requirements from relevant laws and regulations. Kiyavitskaya

and Zannone [143] transformed requirements specifications expressed in natural lan-

guage into semi-structured specifications and generate SI* models, an extended version

of i* model. Lee and Liu [156] extracting user intention from the original Web service

request terms, using lexical dictionary and domain ontology. Prat [206] discovered

goals using semantic functions and formalized goals inside parameters. Ingolfo, Siena

and Mylopoulos [133] improved requirements, expressed in i* and Nomos, through

compliance checking and proposed a revision to non-compliant requirements. Anton

et al. [14] performed comprehensive heuristics to discover goals from requirements and

policy documents and converting them into operational requirements. They also de-

fined a taxonomy to categorize the goals and construct a goal model [16]. To extract

the goals from the documents, they use automatic text mining technique such as tf-idf

and LDA [171]. Similar to the approach by Anton et al., is the implementation of

information extraction techniques used by Hui et al. [130]. This approach uses in-

formation extraction techniques, such as frequency word, title-keyword, location and

syntactic criteria to extract certain parts of a document.

2.3 Business process modeling

Different literatures provide variations on the definition of business process. In the

dictionary, the word “process” means a series of actions that produce something or

that lead to a particular result [65]. Curtis, Kellner and Over [48] defined process as

“a set of partially ordered steps intended to reach a goal”. Hammer and Champy [107]

defined business processes as “a set of activities that, together, produce a result of

2.3. Business process modeling 27

value to the customer”. Business process is also defined as “A set of one or more

linked procedures or activities which collectively realise a business objective or policy

goal, normally within the context of an organisational structure defining functional

roles and relationships” by The Workflow Management Coalition [242]. Weske [269]

defined business process as a set of activities that are performed in coordination in an

organizational and technical environment.

Ould [192] argues that business process modeling is useful to describe, analyze and

enacting a process. Van der Aalst et al. [248] also shared similar view that business

process modeling is important and may reduce the risk and the cost of corrections.

Since business processes is complex, different business process modeling was pro-

posed to serve different purposes, represent different things and focusi on different

aspects [48, 269]. Curtis [48] identified four views on modeling business process, i.e.,

(1) the functional view—describes the functional dependencies between process ele-

ments, (2) the dynamic (behavioural) view—presents the sequence and control infor-

mation of the process, (3) the informational view—describes the entities that produced,

consumed, or manipulated by the process, and (4) the organizational view—provides

the actor that performs each task and their position in the organization. However

most modeling methods represent more than one view [179].

Mili et al. [179] classified the business process modeling language/framework into

four categories, i.e.: (a) traditional process modeling languages—mostly come from in-

formation engineering and business process engineering, typically not formal including

IDEF [214], Petri Nets [246, 247], Event Process Chains (EPC) [221], Role Activ-

ity Diagrams [192], Resource-Event-Agent (REA) [173], and Business Process Mod-

eling Language [41], (b) object-oriented languages—use object-oriented paradigm and

notations to represent businees process, such as Unified Modeling Language (UML)

2.0 [238] and Enterprise Distributed Object Computing (EDOC) [237], (c) dynamic

2.3. Business process modeling 28

process modeling language—focus on dynamic view, emphazise on a serialized format

for model interchange, represent standarization by indutrial body, including Work-

flow Process Definition Language (WPDL) [138], Business Process Modeling Notation

(BPMN) [190], Web Services Business Process Execution Language (WS-BPEL) [136],

and Business Process Definition MetaModel (BPDM) [239], and (d) process integration

languages—intended for integrating the processes of two or more business partners,

such as RosettaNet [213], Electronic Business XML (ebXML) [285], and Web Services

Choreography Description Language (WS-CDL) [261].

Although there is a large volume of languages and frameworks in business process

modeling, several survey reported that BPMN maintain as the most prominent frame-

work among its peers [167, 168, 113, 201]. As such, it is preferred by the industry and

become the de-facto standard for business process modeling. For most of our work,

we also use BPMN to represent business process models. In the next section, we will

briefly describe BPMN.

2.3.1 BPMN

BPMN describes business process using flowchart-based graphical models. The main

building blocks of a BPMN model are Flow Objects (which consist of Activities, Events,

and Gateways), Data (represented with Data Objects, Data Inputs, Data Outputs, and

Data Stores), Connecting Objects that connects flow objects (that consists of Sequence

Flows, Message Flows, Associations, and Data Associations), Swimlanes (with two

alternatives: Pools or Lanes), and Artifacts (currently there are two types: Group and

Text Annotation) [190].

An Event represents anything occurs during the execution of a business process

that may influence the flow of the process. It usually has a trigger or an impact

(result). The three types of events are Start, Intermediate, and End. An Activity

2.3. Business process modeling 29

is the task that organization perform. It can be atomic or compound (composed of

other activities). There are two types of activity: Task and Sub-Process. For Sub-

Process, and additional small plus sign in the bottom center of the Activity notation is

added. A Gateway controls the splitting and joining of Sequence Flow, as well as the

decisions. The type of the gate is indicated by the sign or marker inside the notation.

A Sequence Flow describes the sequence that activities will be executed in a process.

Thus it represents the control flow of a business process. A Message Flow represents

the message flow between two entities/roles, whose content is represented as a Message.

An Association connects BPMN elements with artifacts or other information. A Pool

or a Lan is used as a container to organize Activities in order to clarify the participants

in a business process. A Group is also used to group elements in a BPMN model. A

Text Annotation provides additional information for any element in a model. Figure 2.3

presents the notations for BPMN main elements.

Figure 2.3: BPMN main elements

Ghose et al. [86] and Hinge et al. [123] provide the semantic descriptions of business

process modeled in BPMN. In their work, the tasks in the process model are annotated

with the effects of the tasks. We use this semantic annotation in our work for reasoning

over a BPMN model, particularly for validation of mining results and detection of goal

satisfactions. A detailed description of the semantic effect annotation is provided in

the next section.

2.3. Business process modeling 30

2.3.2 Semantically annotated process model

Our approach relies on the semantically annotated process model where task or event

in a process is associated with effects. Previous works on semantic process effects [86,

123, 184] have defined the semantic effect and the accumulation of the semantic effects

in the business process model.

A semantic effect (or effect) is the result (i.e. product or outcome) of an activ-

ity being executed. Effects are written as conjunctive normal form sentences in the

underlying formal state description language, which might be propositional or first-

order. For convenience, multiple effects (e.g. α ∧ β) are expressible as a set of effects

interchangeably (e.g. {α, β}). Each task or event has context-independent immediate

effects e that can be contextualized via iterated applications of a state update operator

as in [86] and [123]. The contextualized effects of an activity is referred as cumulative

effects, denoted by E.

The contextualized effects are non-deterministic—at any given point in a pro-

cess, the actual effects that might accrue would be one of a set of effect scenar-

ios {es1, es2, . . .}. This support for non-determinism is necessary for two reasons.

First, in any process with XOR-branches, one might arrive at a given task via mul-

tiple paths, and the contextualized effects achieved must be contingent on the path

taken. Since this analysis is done at design time, we need to admit the possibility of

non-deterministic effects since the specific path taken can only be determined at run-

time. Second, many state update operators generate non-deterministic outcomes, since

inconsistencies (that commonly appear in state update) can be resolved in multiple

different ways. Of the two well-known state update operators in the literature—the

Possible Models Approach (PMA) and the Possible Worlds Approach (PWA)—our

work leverages the PWA [90]. Specifically, we use the operator ⊕ defined below.

In the following, we assume that all consistency checks implicitly include a back-

2.3. Business process modeling 31

ground knowledge base (KB) containing rules and axioms. Thus, the statement that

e′i∪ ej is consistent effectively entails the statement that e′i∪ ej∪ KB is consistent. We

omit references to KB for ease of exposition.

For two effects ei and ej, and the knowledge base KB, if ei 6|= ⊥ and ej 6|= ⊥, then

the pair-wise effect accumulation (or state update) ei ⊕ ej is defined as:

ei ⊕ ej = {ej ∪ e′i | e′i ⊆ ei ∧ e′i ∪ ej ∪ KB 6|= ⊥ ∧

there does not exist e′′i such that e′i ⊂ e′′i ⊆ ei ∧

e′′i ∪ ej ∪ KB 6|= ⊥}

The outcome of the state update operation is not a unique effect specification, but

a set of non-deterministic effect scenarios. To see why this might be the case, consider

a task T with a single associated effect scenario given by {p, q} which is followed by

task T ′ whose immediate effect is to make r true. Given a background knowledge base

consisting of a single rule r → (¬p ∨ ¬q), the ⊕ operator would give us two distinct

outcomes: {p, r} and {q, r}.

To obtain a complete annotation of a process model, we repeatedly apply the ⊕

operator over pairs of contiguous tasks in a process model, with the first argument

being an effect scenario associated with the prior task and the second argument being

the immediate effect of the later task. Special techniques are provided for dealing with

XOR and AND gateways in proposals such as [86], [123] and [265]. We briefly explain

the technique to accumulate effects by using 2-way joins as an example. The technique

can be generalized to handle n-way joins.

Let T and T ′ be two tasks immediately preceding a join. Let their cumulative

annotations be ET = {esT1, . . . , esTm} and ET ′ = {esT ′1, . . . , esT ′n}, respectively. Let

T ′′ be the task that immediately follow the join with eT ′′ as its immediate effect and

ET ′′ as its cumulative effect.

2.3. Business process modeling 32

For AND-joins, we define ET ′′ = {(esT i ⊕ e) ∪ (esT ′j ⊕ e)}, where esT i ∈ ET

and esT ′j ∈ ET ′ . The result of the effect accumulation in this setting is denoted as

ANDacc(ET , ET ′ , e). Note that we do not consider the possibility of a pair of effect

scenarios in AND-joins being inconsistent, since this would only happen in the case of

intrinsically and obviously errouneously constructed process models. For XOR-joins,

we define ET ′′ = esk ⊕ e, where esk ∈ ET or esk ∈ ET ′ . The result of the effect accu-

mulation in this setting is denoted as XORacc(ET , ET ′ , e). For OR-joins, the result

of the effect accumulation is denoted by ORacc(ET , ET ′ , e) = ANDacc(ET , ET ′ , e) ∪

XORacc(ET , ET ′ , e).

2.3.3 Process mining

Alongside the exploration of the semantic aspect of a business process, there is a vast

area of research in mining the structural of the process itself, namely process mining.

Unlike the approach of traditional BPM technologies which aimed at improving the

effectiveness of a business process through its artifacts (models, data, and systems), the

main goal of process mining is to improve the operational processes themselves [250].

Process mining has emerged in the last decade [249] as a comprehensive discipline that

offers insights into business processes and supports for process improvements.

Van der Aalst [250] defines three main types of process mining as illustrated in

Figure 2.4, they are:

• discovery: Given an event log that represents example executions, a discovery

method produces a model without the need of any additional information. An

example of discovery method is α-algorithm [249]. The input for this algorithm

is an event log. The algorithm then constructs a Petri net without any prior

knowledge. In addition to petri net, a discovery technique may also produces

other resource-related models, such as social network showing interactions be-

2.3. Business process modeling 33

Figure 2.4: Three main types of process mining [250]

tween people in an organization. Other examples of discovery technique are

heuristic miner [267] and fuzzy miner [105].

• conformance: Conformance checking is used to investigate if the process ex-

ecutions in reality, recorded in an event log conforms to the existing process

model, and vice versa. A conformance checking technique compares the event

log of a process with the model of the corresponding process. The result of this

comparison may discover deviations, furthermore a conformance checking tech-

nique can also locate and measure the severity of these deviations. An example

of conformance checking is the algorithm in [215].

• enhancement: The main objective with enhancement is utilizing information

about the actual process enclosed in some event log to improve the existing

process model. The improvement may be one of two types, i.e., repair (namely

modifying the model with reference to the log) and extension (which is adding

a new information to the process model in relation with the reality recorded in

2.4. The ArchiMate modeling languange 34

the log).

2.4 The ArchiMate modeling languange

The ArchiMate language was realized as part of a collaborative research project on

enterprise architecture, funded partly by the Dutch government and involving sev-

eral Dutch research institutes, as well as governmental and financial institution [154].

In February 2009, the ArchiMate language was transferred to the Open Group who

adopted it as a technical standard and published its first version specification. The

latest version, the ArchiMate 3.0 Specification [240], was released in June 2016.

ArchiMate [240, 154] is a standardized notation for describing enterprise archi-

tectures. In an Archimate model, an enterprise architecture is represented through

multiple distinct layers, and via relations between elements in adjoining layers. Archi-

Mate separates the architecture into three layers that are connected to each other

through services where the higher layers make use of services that are provided by the

lower layers. The layers in ArchiMate are: (1) Business layer represents the products

and services offered to the external customer, which will be performed by business

processes; (2) Application layer represents the software applications that supports the

business layer and realized by (software) application components; (3) Technology layer

represents the infrastructure needed to run applications in application layer and real-

ized by computer and communication devices and system software.

The core concept in each layer is illustrated in Figure 2.5. The ArchiMate distin-

guishes the structural or static aspect and the behavioral or dynamic aspect. There is

a close relationship between these aspects: behavioral concepts are assigned to struc-

tural concepts, to depict who or what performs the behaviour. The active structure

elements on the right side show the actual behavior. On the left side, the passive

structural elements, which represents objects on which behavior is performed in terms

2.4. The ArchiMate modeling languange 35

of information objects or physical objects. ArchiMate also makes distinction between

an external view (on the top) and an internal view (on the bottom) on systems. The

service concept represents a unit of essential functionality that some entity e.g. sys-

tem, organization or department, makes available to its environment. Services are

accessible through interfaces, which illustrated in Figure 1 as the external view on the

structural aspect. Figure 2.6 presents the structure of the ArchiMate language and

the relevant layer-specific concepts.

Figure 2.5: Core concepts of the ArchiMate language [240]

► ArchiMate Core Summary

B
u

si
n

e
ss

A
p

p
lic

a
tio

n
A

p
p

lic
a

tio
n

T
e

ch
n

o
lo

g
y

Information Behaviour Structure

Figure 2.6: Summary of the concepts of the ArchiMate language [240]

There are two main types of relationships between these layers as illustrated in

2.4. The ArchiMate modeling languange 36

Figure 2.7:

1. Serving relationships which illustrate the support from the applications for the

business, both in behavioral and structural aspects. Examples of the serving

relationships including relationships between application service and business

behavior elements, and between application interface and business role; relation-

ships between business service and application behavior elements, and between

business interface and application components.

2. Realization relationships which indicate that an object is a realization or a repre-

sentation of another object. Examples of the realization relationships including

relationships between an application process or function and a business process

or function; relationships between a data object or a technology object with

a business object, which indicate that the data object is a digital representa-

tion of the corresponding business object, or the technology object is a physical

representation of the business object.

In addition, there may be an aggregation relationship between a product and an

application or technology service, and a data or technology object, to indicate that

these services or objects can be offered directly to a customer as part of the product.

Figure 2.7: Relationships between Business Layer and Application Layer Ele-
ments [240]

Figure 2.8 illustrate these relationships in an example of an ArchiMate model. The

application services in the application layer serves business processes in the business

2.5. Sequential pattern and sequential rule mining 37

layer. For instance, the application layer provides Claim Administration services that

serves Notify Additional Stakeholder, Validate and Investigate business processes. In

turns, the application services are realized by the application components. Continuing

with our example, the Claim Administration service is realized by the Home & Away

Policy Administration. The application components use services in the technology

layer, which are realized by system softwares. In our example, the Home & Away

Policy Administration component is supported by Messaging Service and Data Access

Service, which are realized by the Message Queueing system and DBMS, respectively.

Figure 2.8: ArchiSurance, an ArchiMate example, taken from [135]

2.5 Sequential pattern and sequential rule mining

Since first presented by Agrawal, Imieliński, and Swami in [8], the problem of finding

the frequent pattern of items and the relationships among the items are one of the

most investigated field in data mining [5, 43, 92, 108, 162, 183]. As an intensively

2.5. Sequential pattern and sequential rule mining 38

researched problem, a vast amount of studies have contributed to its progress in terms

of methodologies and applications development.

In [8], Agrawal et al. formulated the problem of market basket analysis to under-

stand purchasing behaviour as an association rule mining problem [5, 43, 92, 108]. The

analysis consists of two parts [5, 43]. First, finding the frequent itemsets or patterns

within the dataset. Second, finding the relationship between items within these item-

sets. However, the majority of the research in this area concentrated on discovering

the frequent patterns as the first step since the level of complexity is more challenging

than determining the associations [5, 43, 92, 108].

Closely related to frequent pattern mining is the problem of sequential pattern

mining where the items follows a temporal order. Agrawal and Srikant first presented

the problem of discovering sequential patterns in [10] and later in [232]. As in the area

of frequent itemsets mining, a large number of research have investigated numerous

techniques in sequential pattern mining, where some of the algorithms are modifica-

tions of known frequent pattern mining methods [5, 108, 162, 183]. Also similar to

association rules, sequential rules derived from sequential patterns are considered as

“second-stage” output [5].

2.5.1 Frequent pattern mining

The problem of frequent pattern mining is defined as follows [5, 8, 43, 92, 108].

Let T = {T1, T2, . . . , Tn} be a transaction database, where each Ti ∈ T , ∀i =

{1 . . . n} consists of a set of items, say Ti = {i1, i2, i3, . . . , il}. A set P ⊆ Ti is called

an itemset. The number of transactions containing P is referred to as the support

of P . A pattern P is defined to be frequent if its support is at least equal to the

minimum threshold.

Research in frequent pattern mining can be categorized into four different fields [5]:

2.5. Sequential pattern and sequential rule mining 39

(1) research that investigates a more efficient algorithms for frequent pattern mining,

i.e., technique-centered; (2) research that specifically study on managing the scalability

of the data, i.e., scalability management; (3) studies on numerous variants of algorithms

to handle different data types and various tasks, i.e., advanced data types; (4) studies

on the applications of frequent pattern mining in different domains such as chemical

and biological domains, i.e., applications. Our work falls into the fourth category,

applications, since we apply different algorithms into our specific domain, which is

business process management.

Aggarwal, Bhuiyan and Hasan in [5] defined the baseline algorithm for frequent pat-

tern mining as presented in Algorithm 1. The inputs to the algorithm are the database

that contains the transactions T and a user-defined minimum support threshold s.

First, all 1-item frequent patterns are generated and included into FP , a data store

to hold all the frequent patterns. Then the algorithm generates a candidate pattern

based on the frequent patterns already in FP and computes its support. If the sup-

port is equal or higher than s, then the candidate pattern is considered as frequent

and stored in FP . This process continues until all frequent patterns are explored.

Algorithm 1: Baseline Frequent Pattern Mining [5] (Database: T , Minimum
support: s)

begin
FP = {}
insert length-one frequent pattern in FP
for all frequent patterns in FP do

generate a candidate pattern P from one (or more) frequent pattern(s)
in FP

if support(P , T) ≥ s then
add P to frequent pattern set FP

end

end

end

Most frequent pattern mining algorithms follows this baseline algorithm. The dif-

2.5. Sequential pattern and sequential rule mining 40

ference among these algorithms mainly lies in the pattern exploration and the support

calculation strategy. While some algorithms generates the pattern by level-wise or

breadth-first exploration where all frequent patterns of k-length must be generated

first before generating (k+1)-length patterns [11], other prefer enumeration trees as

their exploration method which enables different strategies for exploration, such as

depth-first, breadth-first, or other hybrid strategies [3]. This exploration strategy also

has impact on how the irrelevant and redundant or duplicate candidate patterns are

eliminated or pruned. Additionally, the exploration strategy also determines how an

algorithm counts the support of each pattern, such as whether the calculation on a

level can be reused in another level, which will reduce the effort needed. Based on

the candidate generation and pattern exploration, Aggarwal and Han [5] categorized

the frequent pattern mining algorithms into three groups: (1) join-based algorithms,

(2) prefix-tree-based algorithms, and (3) suffix-tree-based algorithms.

(1) Join-based algorithms

Included in this group are all algorithms where the candidate is generated by

joining frequent pattern to form a new pattern. The Apriori algorithm [9] is the most

basic join-based algorithm. It mainly exploits the anti-monotone Apriori property of

frequent patterns [6, 8, 11] that every subset of a frequent pattern is also frequent, or

in other words, if any k-length pattern is not frequent, then none of its (k+1)-length

super-patterns can be frequent.

Based on this property, the Apriori algorithm generates the candidate patterns

by joining k-length frequent patterns to form a (k+1)-length candidate patterns. A

candidate pattern may be pruned if not all its k-length subsets are frequent. The

candidate pattern must also be validated by counting its support against the minimal

support threshold. Accordingly, the basic Apriori algorithm consists of four steps: (i)

2.5. Sequential pattern and sequential rule mining 41

joining the already discovered frequent patterns to generate (k+1)-length candidate

patterns, (ii) pruning the (k+1)-length candidates whose all of its subsets are not

frequent, (iii) determining if the (k+1)-length pattern is frequent by validating them

against the minimum support threshold. The algorithm is terminated when there are

no frequent patterns discovered in a given iteration (which means that there are no

more candidate patterns that can be generated).

Computing the support of the candidate pattern is the most computationally ex-

pensive part of the Apriori algorithm. Several optimizations have been suggested to

improve the efficiency of the algorithm, including the AprioriTid and AprioriHybrid

algorithm from the same author [9], Direct Hashing and Pruning (DHP) algorithm

by Park, Chen and Yu [195] and Apriori LB by Bayardo [23], while other research

proposed alternatives on the implementation level, such as studies by Borgelt and

Kruse [36], by Mannila, Toivonen and and Verkamo [164].

(2) Tree-based algorithms

All the algorithms in this group explicitly introduce an enumeration tree or prefix

tree or lexicographic tree [3] to generate the candidates. As the name suggested, the

lexicographic tree is developed based on the lexicographic ordering of the items in the

database and built on the prefixes. The root of the tree is the empty set. All 1-length

patterns are attached to the root node. Any k-length pattern node is attached to

its (k-1)-prefix node. The tree can be grown both ways, either in breadth-first or

depth-first order.

By introducing enumeration tree explicitly, algorithms are able to explore candi-

dates in a more flexible way. It also enable the algorithm to achieve more efficiency in

counting strategy by avoiding re-doing the counting work. With enumeration tree, the

only factor that effects the difference of the number of candidates between different

2.5. Sequential pattern and sequential rule mining 42

algorithms is the pruning method.

In IAS algorithm by Agrawal et al. [6, 8], the tree is constructed in level-wise

fashion and a transaction database is implemented to calculate the number of any

corresponding itemsets at a given level without any optimization in counting strat-

egy. Meanwhile other algorithms use recursive database projections called TreeProjec-

tion [2, 3]. The number of counting work can be scaled down by performing projection

to limit the database size that is used for support calculation. Another method to

achieve more efficient counting strategy is by using a vertical representation of the

transaction database, such as Eclat by Zaki [288] (and its variant, dEclat by Zaki

and Gouda [291]) and VIPER by Shenoy, Haritsa, Sudarshan, Bhalotia, Bawa, and

Shah [223].

(3) Recursive suffix-based growth

The suffix-based algorithms also using enumeration tree, but instead of using prefix-

based method to build the tree, they apply suffix-based method using extended fre-

quent patterns suffixes.

The FP-Growth method by Han, Pei, Yin and Mao [111] does not require any

candidate generation to discover the complete set of frequent itemsets due to the im-

plementation of FP-Tree to represents the conditional transaction database that is

used to store the frequent items. The FP-Tree starts with length-1 pattern. The

conditional FP-tree is constructed by combining the set of prefix paths in the FP-

tree that co-occurred with the suffix pattern to produce the conditional pattern base.

This frequent patterns from the conditional FP-tree is then concatenated with the

suffix pattern. This operation is performed recursively to discover all frequent pat-

terns. There have been many studies for more efficient runtime and space [193, 287, 95,

98, 99, 152, 158, 208, 207, 233, 234], especially since database keeps growing in volume.

2.5. Sequential pattern and sequential rule mining 43

Maximal and closed frequent patterns

Frequent pattern mining often produces a large volume of frequent patterns be-

cause every subpattern of a frequent pattern is also frequent itself. This leads to a

considerable effort spent to count redundant patterns. To resolve this problem, closed

frequent pattern mining and maximal frequent pattern mining were proposed. Closed

frequent pattern mining was first introduced by Pasquier et al. in [196], while maximal

frequent pattern mining was first presented by Bayardo in [23].

Let T = {T1, T2, . . . , Tn} be a transaction database. A pattern P ⊆ Ti is a maximal

frequent pattern if P is frequent and there exists no frequent superset of P in T . A

pattern P ⊆ Ti is a closed frequent pattern if P is frequent and there exists no superset

pattern of P that has the same support as P in T .

The first algorithm to mine the maximal frequent patterns was proposed by Ba-

yardo in the same paper [23] called the MaxMiner algorithm. This algorithm is based

on the Apriori algorithm with level-wise, breadth-first exploration method and addi-

tional optimization in pruning strategy by introducing superset frequency pruning and

subset infrequency pruning. On the other hand, the DepthProject algorithm by Agar-

wal [3], another maximal frequent pattern mining algorithm, is a depth-first algorithm

based on the lexicographic tree. The algorithm uses a pruning strategy where a subtree

is pruned because all patterns in them are frequent and therefore reduces the search

space and improves the counting efficiency. Burdick et al. [39] introduced another

method called MAFIA algorithm that improve the counting efficienty by adopting

vertical bitmap to represent an itemset.

The first algorithm to mine frequent closed itemsets was also based on the Apriori

algorithm, called Close by Pasquier et al. in [196]. To reduce the search space, this

algorithm uses the closed itemset lattice and applies the closure function (all subset of

2.5. Sequential pattern and sequential rule mining 44

a frequent closed pattern are frequent) iteratively in candidate generation and support

counting. CHARM by Zaki and Hsiao [139] uses the closure checking operation in-

troduced in Eclat [288]. On the other hand, to avoid candidate generation, CLOSET

by Pei, Han and Mao [199] and CLOSET+ by Wang, Han and Pei [263] use FP-Tree

structure proposed in FP-Growth method [111], as well as its mining procedure. FP-

Tree stucture is also used in FPclose algorithm by Grahne and Zhu [100], although

the later combined it with FP-array technique and various optimization techniques.

DCI Closed by Lucchese, Orlando and Perego [160] introduced a searching strategy

that can detect and eliminate duplicate patterns during runtime.

Association rule mining

The problem of association rule mining is closely related to finding frequent pattern

and introduced together by Agrawal et al. in [6, 8]. In general, most studies derive

association rules from frequent patterns and therefore take frequent pattern mining as

the imperative step in association rule mining.

The problem of association rule mining is defined as follows [5, 8, 6, 43, 108].

Let T = {T1, T2, . . . , Tn} be a transaction database, P is a frequent pattern where

P ⊆ Ti. An association rule is an implication of the form X ⇒ Y , where X, Y ⊂ P

and X ∩ Y = ∅. The confidence of an association rule is defined as the ratio of the

support of the pattern X ∪ Y to the support of X. The rule X ⇒ Y holds in T if its

confidence is at least equal to the minimum threshold.

The most basic algorithm for association rule mining, follows from the algorithm

for frequent pattern mining [8, 6, 290], presented in Algorithm 2. To generate rules, for

every frequent pattern P , find all non-empty subpattern of P . For every such subset

SP , output a rule of the form SP ⇒ (P − SP) if ratio of support P to support SP is

at least equal to minimum threshold c.

2.5. Sequential pattern and sequential rule mining 45

Algorithm 2: Baseline Association Rule Mining [8, 6, 290] (Database: T , Fre-
quent patterns: FP , Minimum confidence: c)

begin
for all frequent pattern P in FP do

for all subpattern SP of P do
if confidence(P ,SP) ≥ c then

output SP ⇒ (P − SP)
end

end

end

end

2.5.2 Sequential pattern mining

The sequential pattern mining was first addressed by Agrawal and Srikant in [10].

The problem of sequential pattern mining is similar to the frequent pattern mining,

however the main difference is that in sequential pattern mining, the mining methods

are applied over temporal database [6, 8, 10, 43, 162, 183].

The problem of sequential pattern mining is defined as follows [10, 183, 162, 43].

Let I = {i1, i2, i3, . . . , in} be a set of all items. An event (or an itemset) is a

non-empty unordered collection of items (without loss of generality, items of an event

are sorted in lexicographic order), denoted as (i1i2 . . . lm), where ij is an item. A

sequence is an ordered list of events. A sequence α is denoted as 〈a1a2 . . . aq〉 where

ai is an event. A sequence α = 〈a1a2 . . . an〉 is a subsequence of another sequence

β = 〈b1b2 . . . bm〉 and β is a super-sequence of α, denoted by α v β, if there exist

integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that a1 ⊆ bj1, a2 ⊆ bj2, . . . , an ⊆ bjn.

The database D for sequential mining consists of a set of input-sequences. The

support of a sequence α, denoted supportD(α), is defined as as the total number (or

proportion) of input sequences in the databaseD that contain α. Given a user-specified

threshold called minimum support, denoted min sup, a sequence α is said to be frequent

if supportD(α) ≥ min sup. A sequence with k items, where k =
∑

j |aj| is called a

2.5. Sequential pattern and sequential rule mining 46

k-sequence. The set of frequent k-sequence is denoted as Fk.

Several studies on sequential pattern mining algorithms group the algorithms into

two categories [5, 162, 183]: (1) Apriori-based algorithms and (2) Pattern growth algo-

rithms. Most of the algorithms are Apriori-based and depend on the Apriori property,

while the pattern growth algorithms improve the efficiency of the Apriori-based al-

gorithms by avoiding candidate generation, as also the case in the frequent pattern

mining.

(1) Apriori-based algorithms

AprioriAll algorithm [10] was proposed by Agrawal and Srikant. It consists of four

steps, namely: (1) sorts the database with sequence id as the major key and timestamp

as the minor key, (2) finds the frequent itemsets (the set of all itemsets that satisfy

minimum support), (3) transforms each transaction to a set of frequent itemsets from

previous step, (4) generates candidate sequence using similar method as in Apriori

algorithm, where a candidate sequences is formed from previously mined frequent se-

quences, until either no candidates are generated or no candidates meet the minimum

support. GSP algorithm [232] was also introduced by Srikant and Agrawal. It extends

the AprioriAll algorithm by adding time constraints, sliding time windows and tax-

onomies. However, it still employs the same multiple-pass, candidate-generation-and-

test approach. This general approach is also adopted by the PSP algorithm introduced

by Masseglia, Cathala, and Poncelet [170], however, for retrieval efficiency, PSP uses a

prefix-tree for organizing candidate sequences. Any branch of the prefix-tree, from the

root to a leaf, represents a candidate sequence, and the terminal node of any branch

provides the support of the corresponding sequence.

The previous three algorithms use horizontal data format that requires them to

maintain support count for each subsequence being mined in each iteration. There-

2.5. Sequential pattern and sequential rule mining 47

fore to improve efficiency, some Apriori-based algorithms uses vertical representation.

SPADE [290] and its variant cSPADE [289] by Zaki applies a vertical data format to

represent the sequence database combined with lattice-based search techniques. In

these algorithms, to find (k+1)-sequence, they join two frequent k-sequence that share

the same identifier and their timestamps are sequentially ordered. To discover all

frequent sequences, both SPADE and cSPADE break down the search space (called

lattice) into smaller segments (called sub-lattices). These sub-lattices are then searched

either by breadth-first or depth-first algorithm. SPAM (Sequential PAttern Mining)

by Ayres, Flannick, Gehrke, and Yiu [20] improves the efficiency in the counting pro-

cess by representing data using a vertical bitmap representation. It introduces an

effective pruning method into a depth-first search algorithm. The candidate sequences

are stored in a lexicographic tree and generated by extending the sequence either

with a new transaction consisting of a single item in the end or with an item in the

last itemset. IBM (Indexed Bit Map for mining frequent sequences) by Savary and

Zeitouni [220] maps distinct sequences to a bit map and stores its frequency in an

NB table. All ordered combinations of sequences are encoded using an SV vector.

Candidate generation is conducted in the same manner as GSP, PSP and SPAM.

The candidate support is determined by first accessing the cell where the size of the

sequence in question is encoded and then using the SV vector to determine if the

candidate is contained in subsequent lines of the IBM.

(2) Pattern-growth algorithms

The main disadvantage of Apriori-based algorithms is its high-consumption of

memory to store large number of candidate sequence during the mining process, espe-

cially when the sequence database or the sequence patterns are large either in volume

or in length [109, 111]. Pattern growth algorithms solve this problem by eliminating

2.5. Sequential pattern and sequential rule mining 48

the candidate generation and prune steps and dividing the search space into smaller

section which are mined separately. This way the algorithm can perform faster when

given large volumes of data.

FreeSpan (Frequent pattern-projected Sequential pattern mining) by Han, Pei,

Mortazavi-Asl, Chen, Dayal and Hsu [110] uses projection of frequent items into a se-

quence database to produce a smaller one and generates subsequence fragments in each

projected database. PrefixSpan (Prefix-projected Sequential Pattern mining) by Pei,

Han, Mortazavi-Asl, Pinto, Chen, Dayal, and Hsu [200], based on FreeSpan, but only

the prefix subsequences are checked and only their corresponding suffix subsequences

are projected into the database. As a result, only local frequent sequences that are

required to be explored to generate sequential patterns in each projected database.

The major advantage is that it does not generate and test any candidate sequences

that do not exist in a projected database. SLPMiner (Sequential pattern mining with

Length-decreasing suPport) by Seno and Karypis [222] also uses the projection-based

approach but it employs length-decreasing support constraint to find both short se-

quences with high support and long sequences with a lower support.

Maximal and closed sequential patterns

In the frequent pattern mining, when the candidate generation and test techniques

and a very low support threshold is used, the algorithm performance degrades. Several

algorithms then proposed to mine frequent closed itemsets which has been explored in

Section 2.5.1. Similar situation also occurs in the sequential pattern mining, which led

to the introduction of algorithms to mine the closed sequential patterns.

Let FS be a set of frequent sequences. A sequence α ∈ FS is a maximal sequence

if there exists no supersequence of α in FS. A sequence α ∈ FS is a closed sequence

if there exists no supersequence of α that has the same support as α in FS.

2.5. Sequential pattern and sequential rule mining 49

CloSpan (Closed Sequential pattern mining) by Yan, Han and Afshar [275] based

on the PrefixSpan algorithm. It stores the candidate sequences using a lexicographic

tree. The candidate sequence is generated using the same method as in SPAM, either

by extending the sequence by adding a new transaction consisting of a single item

in the end or adding an item in the last itemset. Then to filter out any non-closed

sequences, the algorithm uses post-prunning. BIDE by Wang and Han [262] applies a

closure checking method called BI-Directional Extension to grow the prefix patterns

and its closure both in the forward and backward direction. ClaSP (Closed Sequential

Patterns algorithm) by Gomariz, Campos, Marin, and Goethals [94] mine the closed

sequences based on the vertical database format. It uses the same procedure as SPADE

but with additional step to eliminate non-closed patterns. The elimination procedure

uses a hash function with the support of a pattern as key and the pattern itself as value.

If two patterns have the same support, the algorithm check if one is subsequence of

the other, and if this condition is satisfied, the shorter pattern is removed. The ClaSP

algorithm is further improved by CM-ClaSP by Fournier-Viger, Gomariz, Campos,

and Thomas [74]. It integrates a pruning mechanism called co-occurence pruning in

the ClaSP algorithm [94] during the SEARCH procedure.

For dense database or database with long sequences, sometimes the set of closed

patterns is still too large [78, 77]. Therefore the set maximal sequential patterns is

introduced as the set of all closed sequential pattern that is not a subsequence of

another closed sequential pattern. However, the mining of this set is computationally

expensive and a number of algorithms has been proposed [78, 77].

MSPX by Luo and Chung [161] discovers maximal sequential patterns by determin-

ing the potentially infrequent candidates using various samples. The new candidates

are generated using the remaining candidates after removing all potentially infrequent

candidates. DIMASP (Discover all the Maximal Sequential Patterns) algorithm by

2.5. Sequential pattern and sequential rule mining 50

Garćıa-Hernández, Mart́ınez-Trinidad and Carrasco-Ochoa [82] stores all the distinct

pairs of contiguous items and its frequency, then uses this data structure to extract

the maximal frequent patterns based on the user-specified threshold. By storing the

contiguous items and its frequency, when a new sequence is added, the algorithm does

not require to repeat all the work to discover all the maximal sequential pattern, but

only only preprocesses the related part. While MSPX and DIMASP need to maintain

the intermediate candidates in the memory during mining process, MaxSP (Maximal

Sequential Pattern miner) by Fournier-Viger, Wu and Tseng [78] discovers all maximal

sequential patterns without storing intermediate candidates in main memory. It uses

a checking mechanism to determine if a pattern can be extended either in forward or

backward direction. If a pattern can be extended in either way, then it is not maxi-

mal, otherwise the pattern is maximal. Therefore with this method, a maximal pattern

can be discovered without having to compare with previously found patterns. VMSP

(Vertical mining of Maximal Sequential Patterns) by Fournier-Viger, Wu, Gomariz

and Tseng [77] uses different approach. This algorithm uses a vertical representation

with a depth-first approach of the search space. It stores the set of discovered maximal

patterns and then each time a candidate is generated, the algorithm checks whether a

super-pattern and/or a sub-pattern of the candidate is already found. The algorithm

also uses the item co-occurrence information for pruning the search space.

Sequential rule mining

Similar to the association rule mining problem, once the frequent sequences are

known, they can be used to obtain the sequential rules to describe the relationship

between different sequence item.

The problem of sequential rule mining is defined as follows [290, 76, 59, 163, 114, 75].

Let D is a database consists of a set of input-sequences, S is a frequent sequence

2.5. Sequential pattern and sequential rule mining 51

where S ⊆ D. A sequential rule X ⇒ Y is defined as a relationship between two

sequence X, Y ⊆ S such that X ∩ Y = ∅ and X, Y 6= ∅.

The interpretation of a rule X ⇒ Y is that if the items of X occur in a sequence,

then items in Y will occur afterward in the same sequence. The support of a rule

X ⇒ Y is how many sequences contains the items from X followed by the items from

Y . The confidence of a rule X ⇒ Y is the support of the rule divided by the number

of sequences containing the items from X.

Given a user-specified minimum support and minimum confidence, several algo-

rithms has been proposed to generate sequential rules. The algorithm of Das et al. [59]

and MOWCATL (Minimal Occurrences With Constraints And Time Lags) algorithm

by Harms et al. [114] both mine rules occurring frequently in sequences but are in-

adequate for discovering rules shared by different sequences. CMRules algorithm by

Fournier-Viger, Faghihi, Nkambou and Nguifo [73] wsas built based on the observa-

tion that if the temporal information of a sequence database is removed, then all

rules discovered also holds in the original sequence database. Therefore, it applies

an association rule mining algorithm such as Apriori [8] after removing the temporal

information to discover the sequential rules. In the same paper, the authors also in-

troduced another algorithm, CMDeo [73], a variant of an algorithm by Deogun and

Jiang [62]. Using the same level-wise method similar to Apriori [8], the algorithm re-

cursively finds larger candidate rules by combining smaller rules. Fournier-Viger also

proposed another algorithm using pattern-growth approach called RuleGrowth [76]

based on the method in PrefixSpan [200]. It starts with rules between two single items

and then recursively expands them by adding single items from the database, either

to the left or right part of the rule. To avoid repeated database projection opera-

tion, the author then introduced algorithm for dense database or database with long

sequences that uses a vertical representation of the database, ERMiner (Equivalence

2.6. Mining of enterprise models 52

class based sequential Rule Miner) algorithm [75]. It explores the search space of rules

using equivalence classes of rules having the same antecedent or consequent. A slightly

different approach by Lo, Khoo and Wong [159] and Zang, Xu and Li [292] mines the

sequential rules from the closed set of sequential patterns.

2.6 Mining of enterprise models

Several requirements elicitation techniques and methods that has been used to mine

goals and construct goal model including scenarios [12,13,47,48,53], textual documents

such as requirements or policy documents [1,3], and source code [56,61].

The Crews-LEcritoire approach by Rolland et al. [47,48] used goal-scenario cou-

pling (called ”requirement chunk”) as a mean to discover goals. They performed AND

(composition) and OR (alternative) operations to the goal-scenario pair to elaborate

goals and build the goal model. This way goals are discovered simultaneously with

scenarios. However, the goal coupling can only be applied if the complete goal and

scenario are defined; otherwise the composition, alternative and refinement opera-

tions cannot be performed. Once the goal and scenario is defined, the software tool

LEcritoire will be able to discover new (goal,scenario) pair using the composition and

alternative operations. Users then can choose the appropriate goals and scenarios

based on their preferences.

The approach by Van Lamsweerde et al. [53] and Damas [12,13] covers both posi-

tive or desired scenarios and negative or undesired scenarios to infer a temporal logic

specification. They use scenario because it is considered as an instance of system us-

age and it provides sequences of interaction steps between the intended software and

its environment. This method takes scenarios as examples/counterexamples, induc-

tively infers a set of candidate goals/requirements that cover all ex ample scenarios

and exclude all counterexample scenarios and generates a set of goal specifications in

2.6. Mining of enterprise models 53

temporal logic that covers all positive scenarios and excluding all negative ones. Sce-

narios are expressed as event trace diagram and the result specifications are expressed

in the KAOS goal-based language.

Anton et al. performed several heuristics to discover goals from requirements and

policy documents [1]. They take the assumption that goals have not been documented

or explicitly elicited therefore to identify goals, the analysts must work from existing

documentations, such as process flow diagrams, transcript interviews, etc. There-

fore they introduce comprehensive heuristics for discovery and identification of goals

and converting goal into operational requirements, although it lacks formal semantics.

They also defined a taxonomy to categorize the goals and construct a goal model [2].

To extract the goals from the documents, they use automatic text mining technique

such as tf-idf and LDA [37].

Similar to the approach by Anton et al. is the implementation of information ex-

traction techniques used by Hui et al. [37]. This approach uses information extraction

techniques, such as frequency word, title-keyword, location and syntactic criteria to

extract certain parts of a document. The research takes scientific research papers and

patents documents as input and extracts conceptual models from these papers. The

three steps in the research were preprocessing, segmentation, and merging. In the

preprocessing step, excerpts from a document, which included abstract, introduction

and conclusion sections, were extracted. In the next step, these sections were catego-

rized into pre-defined template slots. In the last step, these categorized sentences were

refined further by removing unused parts, such as common cue word, and merging

similar sentences. Conceptual model were then produced, based on these sentences.

Another approach to discover goal and build the goal model is by Yu et al. [61]

and Wang et al. [56]. This techniques based on concepts in the NFR framework where

goal has an intended function (intention) and associated topic (subject matter). In

2.6. Mining of enterprise models 54

their approach, the goal models are discovered from source code using program slicing

and refactoring techniques. These techniques convert source code into a more abstract

form by delimiting comments and produce a Hammock graph for each statement block.

At the entry and exit of the Hammock graph, pre- and post-condition define allowable

classes of input/output states. These states and transitions form a statechart. In this

statechart, the action of the a state transition is considered as its function and the

contextual state of the statechart is considered as its topic. Therefore a structured

statechart can be viewed as a goal model. The goal model produced from this technique

closely resembles a class diagram where it shows the connection between methods in

the codes rather than the actual goals.

Dalpiaz et al. [10] also introduce a method to build goal model. Their approach

is slightly different because they separate the goal model into two different model:

design-time goal models to design a system and runtime goal models to analyze a sys-

tem’s runtime behavior with respect to its requirements. They build the runtime goal

model based on the design-time goal model with runtime artifacts such as states and

fulfillment of goals. Since system behavior is characterized a sequence of events, re-

lated to goal instances, therefore the runtime goal model annotated with runtime event

traces and constraint. Later on these traces can be used to monitor goal fulfillment.

Another approach for goal mining involve several techniques in the knowledge dis-

covery and data mining such as association rule mining, process mining, and techniques

from information extraction [1]. In this approach, to determine relations between two

actors in a goal model, association rule mining can be used to perform the search for

any patterns which correlates between one set on events with another set of events in

a log. But in a dependency between two actors in a model, one actor acts as dependee

and another one will act as depender, therefore the order they appear in a sequence

is important. Thereof the sequential pattern mining technique is more appropriate in

2.6. Mining of enterprise models 55

this case. Any pattern discovered can be interpreted as indication of the existence of

a dependency between two actors or tasks. One of the technique available for sequen-

tial pattern mining is Generalized Sequential Pattern (GSP) algorithm by Srikant et

al. [51]. Information extraction techniques is also another approach to discover goals

[1,30], such as tf-idf which can determine the importance of a word in a corpus. The

most important keywords then can be interpreted as the goal or the intention of the

whole corpus. For both sequential pattern mining and information extraction method,

we use off-the-shelf readily available tools, such as StanfordNLP [27], and incorporate

the libraries available in the tools for our purpose.

The growing ubiquity of data, the ability to access large-scale sensor instrumen-

tation and the availability of ”big data” tools gives another opportunity to perform

requirements elicitation through ”mining” these data to capture the requirements of

the system. Both data and the tools required to instrument the data infrastructures

that can generate vast quantities of data are now available, either within the enter-

prise boundaries or publicly available [23]. For example consider logs from within the

enterprise, such as process logs that describe the execution of business process of the

enterprise, interaction/message logs that represents communications that occurred ei-

ther internally or with external parties, and object state monitors that represents the

range of objects and their states in the enterprise. Moreover open data source such as

the textual content of the web or government-mandate logs can also serve as important

source.

Furthermore by utilizing requirements model as dashboard of the system, we can

gain multiple benefits. First, the requirements model serves as a visualization of the

system’s behaviour. In a system, goals are sometimes abstract and implicit [34]. The

ability to ”mine” these goals and visualize them into a model that is understandable

to the user is important, not just to understand the behaviour of the system itself, but

2.6. Mining of enterprise models 56

also to be able to discover when the system behaviour deviates from its requirements

model [49]. Second, the requirements model can also act as effector, where the changes

in the models are reflected to the corresponding data in the system (when we use the

word change, we refer to insertions, updates, or deletions that may occur to any of

goals). With changes or modification at the model level we would like to be able to

reflect only the necessary changes to the system.

Utilizing requirements model as dashboard also implies that the requirements must

be represents during run-time. Moreover if the system has the ability to hold the

requirements models in memory, when changes occur in the model, the system can

react or adapt according to the new model [4]. Sawyer et al. in [49] proposed that

such issues can be resolved off-line, but it requires the developers to have full access

to the requirements models which they can reason and reach resolution decisions.

One of the approach in representing and modeling requirements during run-time

was by the insertion of code into a running system. These codes takes form as mon-

itors [20,46], annotation [11,57], claim [59], or a boolean value [26] and monitored

during the system run-time to determine whether the running system complies with

the requirements model. However, although these are easy to monitor because they

capture actual program behavior, they are difficult to trace back to original stake-

holder requirements, and therefore is not easy to adapt when there are changes in the

goal model.

Sawyer et al. [49] and Johnson et al. [32] suggested to provide the system with

primitives for the goal-based requirements meta-model to cope with the changes, such

as primitive for add goal, delete goal, replace goal, obtain agent from goal, and as-

sign agent to goal. To achieve this, they introduce two different layers, the base layer

consisting of requirements models and meta-level where dynamic access and manipula-

tion of the requirements objects happens. The requirement objects refers to all objects

2.6. Mining of enterprise models 57

related to requirements, such as stakeholders’ goals, goal refinements, and domain as-

sumption. Therefore, the primitives are defined to allow the meta-level to modify the

goal-based requirements models in the base-level.

Inverardi et al. [31] implemented this approach in their framework where they build

a generic meta-layer to manage requirements entities at run-time. This meta-layer is

generic and independent from the language used in the implementation. It defines the

operations to manage manipulations on the requirements models defined during design

time. The operations are to add and delete a requirement and to check satisfiability

of a requirement. On top of that, this framework also able to determine whether any

inconsistency arise when a requirement is added or deleted from the system. Therefore

it also provides operation to validate a requirement with respect to the correspondent

implementation.

Instead of defining the primitives to adapt to the changes in the goal models,

Goldsby et al. [25] handle adaptation by enumerating all alternative paths at design

time. This approach called Levels of RE for Modeling (LoREM). In this approach,

during the first phase (goal and requirements phase), the system developer identifies a

set of steady-state systems, such that each steady-system is suitable and satisfies the

goals, and a requirement model for each steady-state system by describing require-

ments that the steady-state system should satisfy to achieve goals.

Later on, during system execution, when any failures of any requirements detected,

the system will be able to select between existing alternative systems to continually

meet its goals.

The previous approach by Goldsby et al. [25] is able to choose among existing

correct alternatives that are already defined, but on the other hand it does not de-

fine the solutions for unanticipated changes. Ernst et al. [17] propose to overcome

these unanticipated changes by using a knowledge base in a logic-based goal-oriented

2.6. Mining of enterprise models 58

requirements modeling language called Techne. It finds solutions to requirements

changes and minimize the effort to implement new solution by re-using as much of

the old solution as possible. Every time a changes happens, which include changes

to all aspects of requirement including the goals, tasks, etc., the solution is searched

incrementally, which means that it starts from the current solution and try to move

towards one that meets the problem captured in the new requirement. The obvious

benefit of this approach is that the complexity of the calculations is not repeated more

than is necessary.

While Ernst et al. [17] using logic-based approach to minimize the effort for new

solution, another approach by Nakagawa et al. [41] perform similar task of minimizing

effort by localizing the impact of changes only to corresponding part of the system

represents as control loops. By localizing the impact of changes, they can minimize

increases in code complexity and help to limit influence of changes. They use elabo-

ration process for impact analysis on implementation artifacts once the changes has

been identified. This elaboration process involves adding entities to the goal model,

merging similar goals and extracting control loops for these goals. If requirements are

changed or added, the goal model is updated to accommodate them and perform the

elaboration process on it again. As a result, the corresponding control loops acquire

new or modified goals. The impact of the changes is analyzed by checking changes in

relevant control loops and their dependencies.

Cleland-Huang et al. [9] implement different approach to manage changes. In-

stead of handling the changes when they occur in the system, they predict the effect

before any changes are implemented and based on this prediction, the stakeholders

will be able to decide whether the change is carried out or not. Using this approach,

goals that effected by the changes are identified along with the level of the impact and

appropriate strategies to manage them are developed. To do this, they build a proba-

2.6. Mining of enterprise models 59

bilistic network model links between classes and elements. Using these links, whenever

a change is proposed, the impact will be propagated throughout related regions and

evaluated to determine its effect on system goals. The evaluation result then used by

the stakeholders to determine if the change should be implemented or not.

Similar approach using probabilistic network is also used by Cailliau et al. in [7],

but instead of using it to predict the effect of changes, they use it to determine the

impact in case there is obstacle to a goal in the system. The impact is calculated from

leaf obstacles (correspond to obstacles to a leaf goal in the goal model) up to root

obstacles (corresponds to obstacles to the root goal in the goal model). The refine-

ment patterns defined in [15] are used to determine the probabilities of the obstacle

consequences from a leaf goals to higher-level goals. This shows a method to propa-

gate any impact upwards in a goal model. Just as the method from Cleland-Huang et

al. [9], this method is also able to determine any obstacles to the system’s goals and

calculate the impact therefore the stakeholders can implement the most appropriate

countermeasures to be integrated in the system goal model.

Another approach is to explicitly build separate goal model during design and

runtime. This approach is used by Dalpiaz et al. [10]. They separate the goal model

into two different model: design-time goal models to design a system and runtime

goal models to analyze a system’s runtime behavior with respect to its requirements.

They build the runtime goal model based on the design-time goal model with runtime

artifacts such as states and fulfillment of goals. In the runtime goal model, each non-

leaf goal is annotated with goal annotation that describe the expected behavior of its

subgoals. Therefore any invalid trace in the runtime goal model will indicate a failure

in the system.

Di Francescomarino [5] leverage the semantically labelled business processes to au-

tomatically verify if business processes fulfill a set of given constraints, and to formu-

2.6. Mining of enterprise models 60

late queries that involve both knowledge about the domain and the process structure.

Ghose and Koliadis [11] provide a semantic characterization of a minimal revision

strategy that capable to detect and partially automate compliance resolution using

a notion of compliance patterns and obtain compliant process models from models

that might be initially non-compliant. Happer and Stojanovic [15] propose a semantic

business process management, Ontoprocess, to provide means for automatically check-

ing the compliance of business processes with business rules by combining semantically

described business processes with SWRL rules by a set of shared ontologies. Hoffmann

et al. [24] propose a framework where processes are annotated to capture the seman-

tics of task execution, and compliance is checked against a set of constraints posing

restrictions on the desirable process states. Morrison et al. [] propose a framework for

strategic alignment to understanding of the relationship between a set of processes and

the realization of a set of strategies and the optimal set of processes that can achieve

these strategies using a semantically annotated process model.

Weber et al. [42] suggest Semantic Business Process Validation (SBPV), an ap-

proach that take take the annotations and the underlying ontology into account in

order to determine whether the tasks are consistent with respect to each other, and

with respect to the underlying workflow structure. Taking inspiration from the se-

mantic of Petri Net, logical information is propagated through the workflow. Wong

and Gibbons [44] propose a relative-timed semantic model for BPMN by introducing

the notion of relative time in the form of delays to their model. The semantics is de-

fined in the language of Communicating Sequential Processes (CSP). The annotated

process model allows behavioural properties of BPMN diagrams to be mechanically

verified. Koliadis et al. [30] propose an approach to analyse change against high-level

models of the organization. The proposed approach use model annotations to asses

relationships between business process and organizational models to improved analy-

2.6. Mining of enterprise models 61

sis against higher-level organizational structures, motivations, inter-dependencies and

capabilities. Born and Dörr [2] extend the SAP Research modeling tool ”Maestro for

BPMN” with a flexible a flexible annotating semantics in a user-friendly way. The

extension exposes ontological knowledge to the business user in appropriate forms and

employs matchmaking and filtering techniques to display options with high relevance

only. ProcessSEER [23] by Hinge et al. provides a user-friendly framework for an-

alysts to explicitly annotate business process model and automatically computes the

post-conditions associated with tasks selected by the user. Hornung et al. [25] propose

a recommender system that suggests a list of correct and fitting process fragments for

an edited business process model, which can be used to complete the process model

being edited.

In regards of assisting designers and analysts, many studies have emerged in har-

nessing historical data, specifically on software repositories, to discover useful informa-

tion from various data sources. MI (Mining programmer Interaction histories) [31], a

recommendation system by Lee et al., mining finer-grained association rules in software

revision histories to recommend files to edit using programmer interaction histories.

ROSE (Reengineering of Software Evolution) tool [46] by Zimmermann et al. mining

association rules from version histories in order to guide programmers along related

changes. Ying et al. [45] propose an approach that applies data mining techniques

to determine change patterns (sets of files that were changed together frequently in

the past) from the change history of the code base. Remail [1] a plugin for Eclipse by

Bacchelli, is a is a recommendation system for emails that integrates email archives

in the IDE and allows developers to easily retrieve discussions related to the chosen

code entities. Reverb [37] proposed by Sawadsky et al. is also a recommendation

system for developer that recalls and displays pages that are similar to code under

active development by the developer based on code-related web pages perused by the

2.7. Datasets 62

developer in a web browser. Logical Structural Diff (LSDiff), a tool built by Kim and

Notkin to support software engineers on inspecting program differences by inferring

systematic structural differences as logic rules and noting anomalies as exceptions to

the logic rules.

2.7 Datasets

As previously discussed in Chapter 1, various types of data are generated by organiza-

tions using a miscellaneous of logging tools. The followings are some of the logs used

in this thesis.

2.7.1 Event logs

Event logs have been utilized as a basis for process analysis in many different settings,

most notably in the process mining [249, 251, 105, 267]. Essentially, event logs record

any event occurrences during process execution. Each record is time-stamped and

refers to an event of a particular process instance.

In general, the information enclosed in a record in the event logs usually consists

of: (a) instance/case identifier, which describe the process instance an event is related

to, (b) event descriptor, which contains the event description, such as a task ID or a

state transition, and (c) a time-stamp. Other information, such as the originator or

the person responsible for the event, can also be found though not as regular as the

former.

During a process execution, the events that occur can be viewed in general terms

as being of two types: (1) events that correspond to the execution of the process tasks,

i.e., start or end of a process task, and (2) events that correspond to the impact of

a process task execution, i.e., the state changes in the objects as the outcome of the

process execution.

2.7. Datasets 63

An example of event log is illustrated in Table 2.1. It shows an event log generated

by a Holiday Booking process followed by a travel agent. Each record represents one

event (either a start of an activity or an observed state). For instance, the first event

in the log is the start of activity Receive Itinerary of cust4 on January 1st, 2011 on

11:09.06. The second event represents a state where airline preferences of a customer

becomes known (represented by the airline-preferences-known state).

Table 2.1: An excerpt of Holiday Booking process event log

CustID Timestamp Event

cust4 21-01-2015 11:09.06 Receive Itinerary
21-01-2015 11:11.04 airline-preferences-known

cust3 21-01-2015 11:16.01 Receive Itinerary
cust3 21-01-2015 11:16.32 Check Flight Availability

21-01-2015 11:17.31 airline-preferences-known
21-01-2015 11:17.43 airline-classoftravel-known
21-01-2015 11:18.23 departure-preferences-known

cust1 21-01-2015 11:19.07 Receive Itinerary
21-01-2015 11:21.10 arrival-preferences-known

cust4 21-01-2015 11:35.02 Check Flight Availability
21-01-2015 11:35.22 airline-classoftravel-known

cust1 21-01-2015 11:40.06 Check Hotel Availability
21-01-2015 11:40.20 departure-preferences-known
21-01-2015 11:40.23 arrival-preferences-known

cust3 21-01-2015 11:41.25 Check Hotel Availability
21-01-2015 11:43.08 hotel-available-known
21-01-2015 11:43.25 hotel-available-known

cust3 21-01-2015 11:44.04 Check Tour Availablity
cust4 21-01-2015 11:47.09 Determine Feasible Itineraries

21-01-2015 11:52.00 feasible-itinerary-known
cust4 21-01-2015 11:53.18 Consult Customer

21-01-2015 11:54.24 customer-confirmation
cust3 21-01-2015 11:57.05 Consult Customer
cust6 21-01-2015 12:02.49 Receive Itinerary

21-01-2015 12:05.23 customer-confirmation
21-01-2015 12:07.31 hotel-booking
21-01-2015 12:09.08 tour-available

2.7. Datasets 64

2.7.2 Process logs

We refer to the subset of event logs that record the events which signify the start or

end of the process tasks execution as process logs. We make distinction of this type

of logs with the next type of logs (i.e., effect logs) to emphasis the difference between

the two types of events. A variety of business process management tools with event

logging capability can be utilized to generate process logs.

Continuing with the example from the previous section, Table 2.2 shows an example

of process log. It includes only the events that signify the start of an activity.

Table 2.2: An excerpt of Holiday Booking process log

CustID Timestamp Activity

cust4 21-01-2015 11:09.06 Receive Itinerary
cust3 21-01-2015 11:16.01 Receive Itinerary
cust3 21-01-2015 11:16.32 Check Flight Availability
cust1 21-01-2015 11:19.07 Receive Itinerary
cust4 21-01-2015 11:35.02 Check Flight Availability
cust1 21-01-2015 11:40.06 Check Hotel Availability
cust3 21-01-2015 11:41.25 Check Hotel Availability
cust3 21-01-2015 11:44.04 Check Tour Availablity
cust4 21-01-2015 11:47.09 Determine Feasible Itineraries
cust4 21-01-2015 11:53.18 Consult Customer
cust3 21-01-2015 11:57.05 Consult Customer
cust6 21-01-2015 12:02.49 Receive Itinerary

2.7.3 Effect logs

Effect log is also a subset of event logs. These logs record events that correspond to

the outcome or impact of the process execution. The name effect log is preferred in

view that the state transitions being recorded are considered as the impact or effect

of the process. In many settings, these logs can be generated by the same tools as

process logs, however in other settings, an object state monitor has to be installed to

specifically obtain them.

2.7. Datasets 65

As with the previous example, Table 2.3 illustrate the subset of the records in

Table 2.1 that are identified as the observed states of the process.

Table 2.3: An excerpt of Holiday Booking process effect log

Timestamp Effect

21-01-2015 11:11.04 airline-preferences-known
21-01-2015 11:17.31 airline-preferences-known
21-01-2015 11:17.43 airline-classoftravel-known
21-01-2015 11:18.23 departure-preferences-known
21-01-2015 11:21.10 arrival-preferences-known
21-01-2015 11:35.22 airline-classoftravel-known
21-01-2015 11:40.20 departure-preferences-known
21-01-2015 11:40.23 arrival-preferences-known
21-01-2015 11:43.08 hotel-available-known
21-01-2015 11:43.25 hotel-available-known
21-01-2015 11:52.00 feasible-itinerary-known
21-01-2015 11:54.24 customer-confirmation
21-01-2015 12:05.23 customer-confirmation
21-01-2015 12:07.31 hotel-booking
21-01-2015 12:09.08 tour-available

2.7.4 Message logs

Message logs record all form of communications in an organization, such as email or

any other message exchange applications. In the enterprise context, these types of

logs are frequently maintained, and any process logging tool can be used to generate

them. Because the message exchange occurs between actors in an organization, these

logs usually documented in natural language and require NLP techniques to process

them.

Message logs, along with process logs, are widespread. A corporate email repository

can be viewed as a message log, although the messages are entirely unstructured. In

many cases, messages are structured such as in a variety of Electronic Data Exchange

(EDI) languages, or in more recent standards such as RosettaNet and ebXML. The

general message structure consists of: (a) Message ID (MID): a universally unique nu-

2.7. Datasets 66

merical identifier that represents a specific message; (b) Response ID (RID): a number

to identify if a message is original or as a reply or forward of another message. If the

message is original, then RID is 0; else RID is identical to the MID of the message it

replied or forwarded; (c) Time (T): the date and time when the message was sent; (d)

Sender (S): the actor that sends the message; (e) Recipient(s) (R): the actor(s) that

receive(s) the message; (f) Content: The content of the message.

Table 2.4 illustrates a message log of a travel agent during the Holiday Booking

process.

Table 2.4: An excerpt of Holiday Booking process message log

MID RID Timestamp Sender Receiver Content

id0 0 21-01-2015 11:11.04 cust4 travel agent Could you find any interesting
holiday destination for us?

id1 id0 21-01-2015 11:17.31 travel agent cust4 I will send you several interesting
destinations with available pack-
ages.

id3 0 21-01-2015 11:17.43 cust9 travel agent Could you find any holiday des-
tination in Europe?

id2 id1 21-01-2015 11:18.23 travel agent cust4 Please find attached list of inter-
esting holiday destination.

id4 id3 21-01-2015 11:21.10 travel agent cust9 I will send you a list of destina-
tions in Europe.

id6 0 21-01-2015 11:35.22 travel agent cust4 Please send the preferred date to
travel.

id5 id4 21-01-2015 11:40.20 travel agent cust9 Please find attached list of in-
teresting holiday destinations in
Europe.

id7 id0 21-01-2015 11:40.23 cust4 travel agent The travel date is around June.
id16 0 21-01-2015 11:43.08 travel agent cust9 Please send me the preferred

date to travel.
id17 id16 21-01-2015 11:43.25 cust9 travel agent The travel date is around Au-

gust.

2.7.5 Noise

The evaluations in the following sections involved exercises where noises are introduced

into the logs. The intent was to simulate the execution of an imperfect system/process,

2.7. Datasets 67

whose behaviour would be represented by the interleaved logs. In each case, a log was

generated using any established machinery. These generated logs are considered as the

correct behaviour of a process model, where all instances are precisely following any

trace determined in the model. Later on, noise is introduced into these correct logs

by: (a) randomly selecting any number of traces in the log; (b) changing either the

sequence of activity; or (c) changing the observed state; (d) interleaved the correct and

incorrect traces. Therefore, the log contains error, whether in the structural (wrong

sequence of activity) or semantical (wrong states are observed) aspect.

The number of noise introduced in the log can also be increased from one exercise

to another. Considering the number of records in the log, the number of noise is

calculated in percentage. For example, in the log with 100 records, a 10% noise is

introduced into the log, which means 10 records are modified such that it represents

incorrect behaviour.

2.7.6 Synthetic datasets

Some of the evaluations performed in this thesis use synthetic datasets. These datasets

were generated to reflect the correct behavior of a process model, or in other words,

it simulates the execution of the process model without any deviation or without any

error. The main purpose of this synthetic dataset is for the proof-of-method evaluation,

therefore to show that the machinery built to implement the methods is performed as

expected and to show that the method produces the result as expected.

The synthetic datasets were generated using a simple machinery of Java program-

ming, taking advantage of the multi-thread capability of the language to simulate the

running of multiple instances of one or more process models. By varying the number

of running instances or the number of process models, the dataset can be generated

to illustrate different temporal settings.

2.7. Datasets 68

A thread is a light-weight smallest part of a process that can run concurrently

with the other parts (other threads) of the same process. Threads are independent

because they all have separate path of execution that is the reason if an exception

occurs in one thread, it does not affect the execution of other threads. All threads of a

process share the common memory. A multi-threaded program contains two or more

parts that can run concurrently, and each part can handle a different task at the same

time making optimal use of the available resources specially when your computer has

multiple CPUs.

By definition, multitasking is when multiple processes share common processing

resources such as a CPU. Multi-threading extends the idea of multitasking into ap-

plications where you can subdivide specific operations within a single application into

individual threads. Each of the threads can run in parallel. The OS divides processing

time not only among different applications, but also among each thread within an

application. Multi-threading enables to write in a way where multiple activities can

proceed concurrently in the same program.

Therefore, in the machinery to generate the dataset, the process models are defined

and will be executed. Since a thread executes according to its main program, each

thread represents one instance of the process model. With multi-thread programming,

it is possible to have several independent instances of the same process model running

simultaneously. It is also possible to have multiple process models defined and when

the multi-thread programming is executed, each thread chooses randomly which trace

or process model it is executed. For each thread or each process instance, an ID is

given as the identifier and the start time is recorded to represent the timestamp in the

event log. The result is a dataset in the form of event log which consists of multiple

process instances, running independently of each other. Each record consists of an

event identifier and a timestamp that signify the start time of the event.

2.8. Research gap 69

2.8 Research gap

The idea to utilize history data of process execution as a data source is not new. One

research area where this idea grows rapidly is process mining. Process mining is a

research discipline that discovers, monitors and improves real processes by extracting

knowledge from event logs readily available from today’s system. It links the mod-

eled behavior on one hand and the observed behavior on the other hand. There are

three types of process mining techniques: discovery, conformance, and enhancement.

Process discovery techniques take an event log as input and produces model that best

described the behavior observed in the log, mostly to provide insights into what occurs

in reality. Conformance checking techniques takes a process model and an event log of

the same process as input and compares the observed behavior in the log with the be-

havior allowed by the model to identify where and when deviations occur and measure

the severity of such deviations. Enhancement techniques take a process model and an

event log as input to extend and improve the model with information extracted from

the log.

In regards of assisting designers and analysts, many studies have emerged in har-

nessing historical data, specifically on software repositories, to discover useful informa-

tion, with data such as programmer interaction history [23], software revision history

[36,35], email history [1], visited web pages [27], and bug reports [19]. Particularly

in business process modeling, there are extensive studies on process mining that ex-

ploit the historical data of process model executions, i.e. event logs. Process mining

algorithms–such as alpha algorithm [31], heuristic miner [33], and fuzzy miner [12]–

extract the structure of the process model.

The mining of the historical execution data is the starting point of this thesis, which

looks at different models that are possible to be mined and addresses one specific as-

pect: the data-driven conceptual modeling. This thesis explores different methods to

2.8. Research gap 70

assist analysts in developing different models for an enterprise by leveraging the al-

ready available data. Furthermore, this thesis complements the findings from previous

research concerning the process model described in BPMN. This research introduces

the mining of process semantic to build a semantic-annotated process model.

In summary, most of the prior research on the developing mining from the enterprise

data either has focused on one model of the enterprise nor does it leverage the execution

data from the running process. On the other hand, the previous research which has

used the execution data, in the form of event logs, are mainly interested in mining the

structural aspect of the process. Furthermore, none of these methods is concerning on

mining the goal satisfaction of a running process and modeling the enterprise based

on this insight.

Chapter 3

Mining task post-conditions:

Automating the acquisition of

process semantics

A large and growing body of work explores the use of semantic annotation of business

process designs [70, 123, 227, 265, 63, 86]. A large body of work also addresses the

problem of semantic annotation of web services in a similar fashion [169, 178, 181, 226].

Common to all of these approaches is the idea that semantic annotation of process

tasks or services provides value in ways that the process or service model alone cannot.

The focus in this chapter is on post-conditions of tasks in the context of process models

(pre-conditions are also of interest and we believe that an extension of the machinery

presented here can address these, but are outside the scope of the present work).

However, the modeling and acquisition of these post-conditions poses a particularly

difficult challenge. It is generally recognized that process modeling involves significant

investment in time and effort, which would be multiplied manyfold if there were an

additional obligation to specify semantic annotations.

Section 3.1 provides an introduction into the approach. Section 3.2 introduces the

71

3.1. Introduction 72

data sources that were exploited in the method. The data-driven approach to mining

the semantic annotations is provided in Section 3.4 and to validate these annotations

in Section 3.5. An abductive approach to repair any incomplete or unsound mined

effects is presented in Section 3.6. An empirical evaluation to the method is provided

in Section 3.7. Lastly, this chapter is summarized in Section 3.9.

3.1 Introduction

Ideally process designs annotated with post-conditions help answer the following ques-

tion for any part of a process design: what changes will have occurred in the process

context if the process were to execute upto this point? Arguably, a sufficiently detailed

process model (for instance one that decomposes tasks down to the level of individ-

ual read or write operations) will require no additional information to answer this

question. However, process models are most valuable when described at higher lev-

els of abstraction, in terms of concepts and activities that stakeholders are familiar

with. Processes annotated with post-conditions thus serve a crucial modeling func-

tion, providing an effective summary of a substantial body of knowledge regarding

the “lower-level” workings of a process. Annotation with post-conditions can also

help solve a range of problems such as process compliance management [86], change

management [144], enterprise process architectures [106] and the management of the

business process life cycle [146].

The modeling and acquisition of these post-conditions poses a particularly diffi-

cult challenge. It is generally recognized that process modeling involves significant

investment in time and effort, which would be multiplied manyfold if there were an

additional obligation to specify semantic annotations. Analysts also tend to find se-

mantic annotation difficult, particularly if the intent is to make these formal (as is

required by all of the use cases referred to above). This chapter seeks to address this

3.1. Introduction 73

challenge by offering a set of techniques that mine readily available data associated

with process execution to generate largely accurate “first-cut” post-conditions for pro-

cess tasks or activities (we use the terms “task” and “activity” interchangeably in this

chapter).

The approach leverages the generally understood notion of event logging. The

events that occur in a process execution context can be viewed in general terms as

being of two types: (1) events that describe the start or end of the execution of process

tasks and (2) events that describe state changes in the objects impacted by a process.

In many settings, the existing event logging machinery is capable of logging both kinds

of events. In other settings, we need to instrument object state monitors (for either

physical objects or computational objects, or both) to obtain events of the second kind.

One such approach on event logging is the event processing framework for business

process management by Herzberg et al. [118, 119, 120, 121, 122].

These two types of logs were leveraged in juxtaposition, and the time-stamped

sequences of task execution events and state-change events thus obtained, to generate

the sequence database taken as input by a sequential rule miner (CMRules [73] in this

instance, but others could be used instead). The key idea is to identify commonly

occurring patterns of activity execution events, followed by sequences of state change

events. As we show, the approach is generally quite effective. We also define techniques

which leverage a state update operator (that defines how a specification of a state of

affairs is updated as a consequence of the execution of an action) and the actual

history of process execution provided by the juxtaposed activity executions and state

changes to determine whether the mined post-conditions, if accumulated using the

state update operator, would indeed generate the available execution histories. This

forms a validation step for the mined results.

Our intent is to mine the context-independent post-conditions (or immediate out-

3.1. Introduction 74

come) of each activity. These are contextualized via iterated applications of the state

update operator to obtain the context-dependent post-conditions of each activity (in

the context of a process model)—a complete collection of these for each activity or

event provides a semantically annotated process model. For instance, the outcome of

turning a switch on is to complete a circuit. In the context of a light bulb circuit,

the context-dependent post-conditions of this activity would be to turn the bulb on.

In the context of a switching circuit for a chemical reactor, the context-dependent

post-conditions of that same activity would be to bring the chemical reactor to an

operational state. We envisage the machinery we present below being used in the fol-

lowing manner: given as input a set of events that describe the execution of activities,

a set of state-change events, a process model (or a set of process models in the event

that the logs describe the execution of instances of multiple process designs) and a

state update operator, the machinery would generate the post-conditions of each ac-

tivity referred to in the recorded events. These post-conditions could be used directly

in annotating process models, or might be viewed as “first-cut” specifications, to be

edited and refined by expert analysts.

The problem we solve can be summarized as follows. Given: (1) a log of process

events, (2) a log of object state transition events, (3) a process model or models

whose execution generated these logs and (4) a state update operator, the context-

independent post-conditions of every task/activity referred to in the process event log.

Inputs (1) and (2) are used in the mining phase, while inputs (3) and (4) are used in

the validation phase.

This chapter extends the results presented in [218] in a number of important ways.

First, this work presents a more sophisticated approach to validation. Second, it offers

a novel abductive framework for repairing mined post-conditions, based on soundness

and completeness analysis contained in the validation approach. Third, the work

3.2. Example 75

presents more extensive empirical analysis.

3.2 Example

Process designs are intended to be abstract, enabling users to get a handle on a complex

underlying reality. Thus the effects or impact of a process is often not directly reflected

in the high-level abstractions contained in a process design. The proposal offers a

means of mining these effects and correlating these with elements of a process design.

Compelling examples of such processes can be found in domains such as medicine,

logistics, financial services and so on. We will use a clinical process as the running

example in this chapter.

Specifically, we will focus on a clinical process for the treatment of juveniles with

head injuries, drawn from [191]. Figure 3.1 illustrates the complete process of head

injury treatment. Initial evaluation aims to quickly determine the severity of injury

and to initiate the appropriate treatment immediately. After the primary and sec-

ondary survey, the patient with head injury is treated according to the risk category.

Patients with high risk of intracranial injury have to undergo a head CT scan and a

consultation with a paediatric expert. Any abnormalities observable on a CT scan

should be treated according to neurosurgical advice. In the absence of abnormalities,

a period of prolonged observation is required due to the risk of cerebral oedema or

delayed bleeding. This extended period of observation also applies for any patients

displaying features of an intermediate risk group. If an acute deterioration or any

persistent symptoms (vomiting, headache, irritability, abnormal behavior or unsteady

gait) is detected at six hours after injury, a head CT is indicated. Otherwise, the

patient may be discharged.

Consider four patients with different conditions. We describe the process instances

for two of these patients below, while Table 3.1 describes the task sequence that applied

3.2. Example 76

Figure 3.1: Clinical process for treatment of juveniles with head injuries [191]

to all four patients:

patient1 Patient presented as a member of the high risk group (abnormal cardio-

respiratory function, loss of consciousness for more than 5 minutes, retrograde

amnesia more than 5 minutes, abnormal behaviour, abnormal drowsiness, seizure

although the patient is non-epileptic, non-accidental injuries, persistent headache,

co-morbidity, fall from higher than 3 m height, laceration on the head, low GCS,

oxygen saturation less than 95%, intubated). After the patient had undergone a

head CT, the results indicated intra-cerebral bleeding, therefore the patient was

transferred to the paediatric unit.

patient2 Patient presented as a member of the high risk group (normal cardio, abnor-

mal respiratory, loss of consciousness for more than 5 minutes, retrograde am-

nesia more than 5 minutes, with abnormal behaviour, abnormal drowsiness,

seizure al- though the patient is non-epileptic, non-accidental injuries, persistent

headache, co-morbidity, victim of motor vehicle accident, swelling and lacera-

tion on the head, low GCS, oxygen saturation less than 95%, intubated). After

the patient underwent a head CT, the results came back as normal, therefore

the patient was put under observation for 4-6 hours. During the observation

period, there was no further deterioration and the symptoms resolved, therefore

3.2. Example 77

the patient was discharged.

Table 3.1 shows an event log that records the sequence of clinical interventions for

each of patient1, patient2, patient3 and patient 4.

Table 3.1: Records of patient’s treatment

Time Patientid Treatment

t1 patient1 primary survey and resuscitation
t5 patient2 primary survey and resuscitation
t27 patient2 secondary survey and stabilisation
t30 patient1 secondary survey and stabilisation
t54 patient3 primary survey and resuscitation
t77 patient4 primary survey and resuscitation
t82 patient3 secondary survey and stabilisation
t84 patient4 secondary survey and stabilisation
t105 patient1 urgent head CT and consult paediatric expert
t124 patient4 discharge
t126 patient2 urgent head CT and consult paediatric expert
t135 patient3 observe 4-6 hours and consult paediatric expert
t141 patient2 observe 4-6 hours and consult paediatric expert
t148 patient1 urgent admission/transfer to paediatric unit
t154 patient2 discharge
t162 patient3 urgent head CT and consult paediatric expert
t173 patient3 urgent admission/transfer to paediatric unit

Table 3.2 stores the condition of each patient (for ease of exposition, we only show

the records for patient1 and patient2). Every change in a patients condition is recorded

in this table together with a time-stamp. We use an underlying clinical vocabulary (or

a state description language) to represent a patients condition. For instance, in the first

record, at time t1, patient1s heart rate and blood pressure are measured and catego-

rized as normal (represented as heart rate(patient1, normal) ∧ blood pressure(patient1,

normal)). The condition of patient2 is much the same when assessed at time t5 (rep-

resented as heart rate(patient2, normal) ∧ blood pressure(patient2, normal)). At time

t11, patient1 is intubated. The most obvious effect of this clinical intervention is

recorded in the table as intubated(patient1).

3.2. Example 78

Table 3.2: Records of patient’s conditions

Time Patientid Conditions

t1 patient1 heart rate(patient1, normal) ∧ blood pressure(patient1, normal)
t2 patient1 normothermia(patient1)
t3 patient1 ¬oxygen saturation(patient1, normal) ∧ ¬PaO2 level(patient1, normal) ∧

¬PaCO2 level(patient1, normal)
t4 patient1 GCS(patient1, low)
t5 patient2 heart rate(patient2, normal) ∧ blood pressure(patient2, normal)
t6 patient2 normothermia(patient2)
t7 patient2 ¬oxygen saturation(patient2, normal) ∧ ¬PaO2 level(patient2, normal) ∧

¬PaCO2 level(patient2, normal)
t8 patient2 GCS(patient2, low)
t9 patient2 cervical spine(patient2, immobilise)
t10 patient1 cervical spine(patient1, immobilise)
t11 patient1 intubated(patient1)
t12 patient1 systemic blood pressure(patient1, adequate)
t13 patient1 maintenance fluids administered(patient1)
t14 patient1 opiates administered(patient1)
t15 patient1 sedation score(patient1, high)
t16 patient1 blood glucose(patient1, normal)
t17 patient1 analgesia administered(patient1)
t18 patient1 anti emetics administered(patient1)
t19 patient2 intubated(patient2)
t20 patient2 systemic blood pressure(patient2, adequate)
t21 patient2 maintenance fluids administered(patient2)
t22 patient2 opiates administered(patient2)
t23 patient2 sedation score(patient2, high)
t24 patient2 blood glucose(patient2, normal)
t25 patient2 analgesia administered(patient2)
t26 patient2 ¬anti emetics administered(patient2)
t27 patient2 loss of consciousness(patient2)
t28 patient2 ¬anterograde amnesia(patient2) ∧ retrograde amnesia(patient2)
t29 patient2 mild agitation(patient2) ∧ altered behaviour(patient2) ∧

¬abnormal drowsiness(patient2)
t30 patient1 loss of consciousness(patient1)
t31 patient1 ¬anterograde amnesia(patient1) ∧ retrograde amnesia(patient1)
t32 patient1 ¬mild agitation(patient1) ∧ ¬altered behaviour(patient1) ∧

abnormal drowsiness(patient1)
t33 patient1 vomiting without other cause(patient1)
t34 patient1 seizure(patient1) ∧ non epileptic(patient1)
t35 patient2 vomiting without other cause(patient2)
t36 patient2 seizure(patient2) ∧ non epileptic(patient2)
t37 patient2 non accidental injury(patient2)
t38 patient2 headache(patient2)
t39 patient2 co-morbidities(patient2)
t40 patient2 ¬age under 1yr(patient2)
t41 patient2 motor vehicle accident(patient2) ∧ ¬fall(patient2)
t42 patient2 GCS(patient2, low)
t43 patient2 focal neurological abnormality(patient2)
t44 patient2 ¬penetrating injury(patient2)
t45 patient2 ¬suspected depressed skull fracture(patient2) ∧

¬suspected depressed base of skull fracture(patient2)
t46 patient2 ¬scalp bruise(patient2) ∧ swelling(patient2) ∧ laceration(patient2)
t47 patient2 ¬tense fontanelle(patient2)
t48 patient1 non accidental injury(patient1)
t49 patient1 headache(patient1)
t50 patient1 co-morbidities(patient1)

3.3. An event ontology 79

3.3 An event ontology

The approach was derived from the event processing framework for business process

management by Herzberg et al. [118, 119, 120, 121, 122]. In this framework, a process

model is correlated with a set of data objects and each data object has a defined life

cycle. The notion of a data object permits us to abstract information (of various kinds

including information that reflects states in the life-cycle of real-world objects) being

processed or manipulated during process execution [121].

During process execution, a wide variety information about changes or exceptions

in the business process environment can be represented through event objects, e.g.

the start of a ceratain activity, the state change of certain data object, etc. In this

work, we focus on only two types of event objects: (1) process events which record the

start of the execution of a task or activity, and (2) object state transition events that

describe the impact of process execution via state changes in the impacted objects

(which could be computational objects, such as data items, or real-world objects, such

as a piece of machinery or a switch). We are only interested in recording the state of

these objects that are the result of the state transitions, and do not record the prior

states.

Since object state transition events represent the effects of executing a process, we

will on occasion use the terms object state transition and effect interchangeably.

We can now relate these event types to the running example from the previous

section. The process events in that example are recorded in Table 3.1. The object

state transition events in that example are recorded in Table 3.2. It is useful to note

that these latter events essentially describe the condition of a patient. For example,

the first row at Table 3.1 indicates that activity primary survey and resuscitation was

started at time t1. The first row in Table 3.2 indicates at time t1 the condition of

patient1 as heart rate(patient1, normal) ∧ blood pressure(patient1, normal)). In this

3.3. An event ontology 80

example, the objects are the patients and the object state transition events describe

various aspects of the state of a patient after a particular activity/medical intervention

has been performed.

These event objects can be obtained by instrumenting the process environment with

object state monitors (both for physical objects as well as for computational/business

objects). For this purpose, we describe the state changes or transitions using the state

description language that might involve propositional state variables–the changes to

describe would then be propositions becoming true or false, or more generally as

disjunctions (in case state monitors have limited sensing capabilities). The underly-

ing language might also admit non-Boolean state variables, in which case the states

recorded would be the new value assignments to these objects. When annotating

a process model with object state transitions cause by each task, it is convenient

to use first-oder sentence schemas. Thus, we would use a sentence schema such as

heart rate(Patient, Status), which would be instantiated with a ground sentence such

as heart rate(patient1, normal) in a log of object state transitions.

In the head injury treatment example, the “primary survey and resuscitation” ac-

tivity would lead to a ground instance of the sentence schema normothermia(patient1)

becoming available. In this setting, the precise grounding of the Patient objects are

not of particular interest. Indeed, recording the actual values of these objects would

lead to the procedure treating different groundings as distinct objects, when in fact

we are only interested in recording the fact that a ground instance of that sentence

schema has become available. For states of this sort, we only record a propositional

effect of the form normothermia-known. In a similar fashion, it is sufficient to record

patient-heart-rate-known rather than the fact that patient1 has a normal heart-rate

(as described in heart rate(patient1, normal)). In other settings, we are interested in

the precise instan-tiations of the objects in a sentence schema of the form p(X, Y),

3.4. Mining post-conditions 81

in which case the full ground instance of p(X, Y) is recorded in the object transition

events table.

The approach to mine the activity post-conditions involves (1) correlating pro-

cess events and object state transition events as represented in the database (in this

section), and then (2) filtering these by validating them (in the next section).

3.4 Mining post-conditions

The approach to post-conditions mining is predicated on the observation that the state

transitions of objects impacted by executing an activity occur soon after the execution

of the activity. State transitions that manifest a long period after the execution of

an activity are typically not the effect of that activity alone, but of that activity plus

some others (e.g., one may think of the arrival of a traditional “snailmail” letter 3 days

after posting as an outcome of the action of letter-posting, when it actually involves

several other activities executed by the postal service). The key pattern we leverage in

mining post-conditions is the sequence that involves the execution of an activity and

the manifestations of its object state transitions, using a sequential pattern miner. We

are interested in identifying all the state transitions that occur always (or most of the

time) after each activity is executed. Since the process executions are recorded as event

objects and the state transitions occurrences are recorded as object transition events,

we must first establish the correlations between the two tables that records both events

to obtain a joined table that serves as the sequence database for a sequential rule miner.

We use the CMRules algorithm [73] although a number of other candidates exist (see

Section 2.5), and the framework is flexible enough to allow the use of any of these.

While the focus is on the sequential patterns that relate event objects to object state

transitions, we are not interested in the relative sequencing amongst state transitions.

Indeed, it is undesirable for this purposes to have the sequential rule miner to view

3.4. Mining post-conditions 82

the sequences 〈T, p, q〉 and 〈T, q, p〉 as being distinct. We therefore enforce the rule

that a contiguous sequence of state transitions in the sequence database must always

be represented in lexicographic order (this would require the second sequence above

to be re-written as the first sequence).

We consider the problem of post-conditions mining in two settings: (1) Settings

characterized by the unique activity assumption which stipulates that only one

activity may be performed at any point in time. This permits us to correlate all of the

state transitions observed between the execution of a given activity and the start of

the next activity with the first activity. (2) Settings characterized by the concurrent

activity assumption which admits the possibility of multiple activities executing

concurrently (these could be activities associated with distinct instances of the same

process or associated with different processes). The second setting is more general, but

the first setting simplifies the post-conditions mining problem, and is worth considering

if appropriate. We will apply the CMRules algorithm in both settings.

In general, a sequential rule X → Y consists of two parts: the antecedent X and the

consequent Y , which are both assumed to be sequences of transactions. The rule states

that if the elements of X occur in a given sequence in the sequence database being

mined, then the elements of Y will follow in the same sequence and in a manner that

preserves the sequential relations between the elements of X and between the elements

of Y . All sequential rules must also satisfy certain criteria regarding their accuracy

(minimum confidence) and the proportion of the data that they actually represent

(minimum support). The CMRules algorithm takes as input a sequence database

along with a user-specified thresholds: minimum support (minSeqSup) and minimum

confidence (minSeqConf). It outputs the set of all sequential rules that satisfy the

minSeqSup and minSeqConf thresholds. The algorithm consists of two steps. The

first step involves obtaining a transaction database from a sequence database without

3.4. Mining post-conditions 83

considering the sequential information. The algorithm then finds all association rules

from the transaction database using an association rule mining algorithm, such as

Apriori [8]. All association rules discovered must satisfy the minimum support and

minimum confidence thresholds which is set equal to minSeqSup and minSeqConf .

In the next step, the algorithm then scans the original sequence database to calculate

the support and confidence of each association rule, and eliminates the rules that

do not satisfy minSeqSup or minSeqConf . The rules that satisfy both thresholds

are considered as sequential rules. To apply this algorithm in this setting, we must

first combine the process event log and the object state transition log into a sequence

database.

Both in settings with the unique activity assumption and in set-

tings with concurrent activities, we create a joined table from

the event objects and the object transition events of the form:

〈〈〈T1, 〈〈e11〉, . . . , 〈e1n〉〉〉, . . . , 〈Ti, 〈〈ei1〉, . . . , 〈eim〉〉〉, . . . 〈Tp, 〈〈ep1〉, . . . , 〈epk〉〉〉 where

each 〈Ti, Ti+1〉 pair represents contiguous activities and each eij represents the

j-th state transition observed after the start of activity Ti and before the start of

activity Tj. We shall henceforth refer to this table as the Joined ProcessEvent-

StateTransitionEvent table. This table serves as the sequence database provided as

input to the sequential rule miner. A special provision is needed for the last activity

in case it does not have any subsequent activity. Instead of using the last record in the

event objects table as the end timestamp, we assume that we have prior information

about the maximal time of process execution, ε, and use it as the end time of the last

activity in any case.

We then apply the CMRules algorithm, with the best results obtained when the

values of minSeqSup and the minSeqConf are bounded from below by the number of

distinct case-ID in which a specific activity occurs (as with any association rule min-

3.4. Mining post-conditions 84

ing technique, minSeqSup and minSeqConf represent the support and confidence

respectively–higher values of these can give us more reliable results but rule out po-

tentially interesting rules and vice versa). In unique activity settings with no noise,

the sequence of state transitions following the execution of each activity and prior to

the execution of the next activity in the process instance should be largely identical if

the process design is fixed–we apply CMRules mainly to mitigate the effects of noise.

In concurrent activity settings, these could vary significantly since the state transitions

that follow an activity might not be the output of that particular activity but those

of a distinct concurrent activity. In these settings, the sequential rule miner is essen-

tial to identify the commonly occurring patterns of state transitions following a given

activity.

For example, consider patient1 in Table 3.2. The first activity, primary

survey and resuscitation has timestamp t1 and the next activity for the same

patient, secondary survey and stabilisation, has timestamp t30; therefore, we

associate activity primary survey and resuscitation with all state transitions ob-

served between the timestamps t1 until t30. This gives us the sequence (primary

survey and resuscitation)(heart-rate-known)(blood-pressure-known)(normothermia-

known)(oxygen-saturation-known)(PaO2-level-known)(PaCO2-level-known)(GCS-

known), etc. Similarly, activity secondary survey and stabilisation is associated with

all state transitions with timestamps between t30 until t105, and so on. Applying the

same process to all the other cases, we obtain the sequences for all activities in the

process instance for patient1. Next, these sequences are grouped into a sequence

databases based on their activity name. For example, the sequence for activity

primary survey and resuscitation for patient1 goes into the same sequence database

with the sequence for the activity primary survey and resuscitation sequence for

patient2 (along with activity primary survey and resuscitation sequences for other

3.5. Validation 85

patients).

Although the CMRules algorithm is able to generate all sequential rules from the

sequence databases, further post-processing is required. Since we are interested only

in relations between an activity and state transitions, only rules with a single activity

name as antecedent are included in the results and all other rules are discarded.

3.5 Validation

We can use the state update operator and the available data to validate the mined

post-conditions. The intuition is to leverage available data to determine if the mined

post-conditions predict the object state transitions seen in the data. We offer tests

for soundness and completeness, and an abductive framework to guide the repair of

mined post-conditions. We consider two settings, the first mainly for tesing purposes

and the second because it reflects real-life operations.

Unique activity assumption: The analysis described below can be performed

in settings satisfying the unique activity assumption which precludes multiple

concurrently executing process instances. Note that such settings are rare in practice.

This analysis is nonetheless useful for two reasons. First, it is possible to create test

runs of processes that satisfy this assumption. Second, this affords the opportunity

to develop the overall validation approach, which is subsequently specialized for the

more practical setting.

A joined ProcessEvent-StateTransitionEvent table associates with each task a set

of effects that occured after the execution of that task and prior to the execution

of the next task in the execution sequence. We use the following procedure to ob-

tain, from a given joined ProcessEvent-StateTransitionEvent table, a cumulative joined

ProcessEvent-StateTransitionEvent table. Each row in the latter associates with each

task the set of accumulated effects of all tasks executed upto this point. Note that the

3.5. Validation 86

remainder of the exposition ignores the initial state that accrued at the start of the

process (mainly to reduce the complexity of the formalization), but this can be triv-

ially added if required. Let each row in the joined ProcessEvent-StateTransitionEvent

table be of the form 〈Ti, Ei〉 where Ei is a set of literals (i.e., indicators of object state

transition events). We assume that there is also a background knowledge base KB

defined in the same language as that in which the effects are described.

The procedure involves the following steps:

• We set the first entry of the cumulative joined ProcessEvent-StateTransitionEvent

table to be 〈Ti, {Ei}〉.

• We obtain each subsequent entry in the cumulative joined ProcessEvent-State-

TransitionEvent table (of the form 〈Ti,Ei〉 from the prior entry using the follow-

ing rule: Ei+1 = Ei

⊕
Ei+1.

The following example illustrates how this is done (we use this procedure to obtain

Table 3.4 from Table 3.3).

Table 3.3: An example of joined ProcessEvent-StateTransitionEvent table

Ti Ei

T1 p, q
T2 r, s
T3 t

Table 3.4: An example of cumulative joined ProcessEvent-StateTransitionEvent table

KB : t→ ¬(p ∧ r)
Ti Ei

T1 {{p, q}}
T2 {{p, q, r, s}}
T3 {{p, q, s, t}, {r, q, s, t}}

3.5. Validation 87

An element of the joined ProcessEvent-StateTransitionEvent table can be

viewed as a semantic execution trace (i.e., a sequence of tasks inter-

leaved with observed effects after each task), or part of one, of the form:

〈〈〈T1, 〈〈e11〉, . . . , 〈e1n〉〉〉, . . . , 〈Ti, 〈〈ei1〉, . . . , 〈eim〉〉〉, . . . 〈Tp, 〈〈ep1〉, . . . , 〈epk〉〉〉

for a process instance (case) with p activities, with each Ti representing an activity

ID and each eij representing the result of the j-th state transition associated with

activity Ti. An element of the cumulative joined ProcessEvent-StateTransitionEvent

table associates with each task both the effects observed after the execution of that

task and the effects of prior tasks that persist. These are obtained, as shown above, by

applying the state update operator. Since the outcome of the application of the state

update operator can be non- deterministic in general, we associate with each task a

set of sets of effects (as illustrated with task T3 in Table 3.4 above). We shall refer to

the sequence of activities 〈T1, . . . , Tp〉 as the signature of the semantic execution trace

above, and note that multiple semantic execution traces might be obtained for the

same signature (due to the fact that we might find the process in one of many possible

non-deterministic states after the execution of a sequence of activities).

To validate the post-conditions mined using the procedure described in the previous

section, it is useful to establish:

• Soundness: The soundness condition states that the mined post-conditions are

correct, i.e., observed in the data. In other words, mined post-conditions, accu-

mulated via the state update operator upto a given point in a process must be

included in the observed set of accumulated post-conditions at that point in the

process. Formally, for each semantic execution trace manifested in a cumulative

joined ProcessEvent-StateTransitionEvent table and for each activity Ti there

must exist an associated set of observed (accumulated) effects esi (the entry in

the cumulative joined ProcessEvent-StateTransitionEvent table corresponding to

3.5. Validation 88

Ti), such that the following holds: esi∪KB |= e for some e ∈ eT1⊕ eT2⊕ . . .⊕ eTi

where each eTi
denotes the mined post-conditions of activity Ti (recall that the

application of the ⊕ operator can lead to multiple non-deterministic outcomes,

making eT1 ⊕ eT2 ⊕ . . . ⊕ eTi
a set). or a sufficiently extensive collection of pro-

cess and object state transition events, we may also require that there must

exist, for every e ∈ eT1 ⊕ eT2 ⊕ . . . ⊕ eTi
, some entry in the cumulative joined

ProcessEvent-StateTransitionEvent table with an esi associated with Ti such

that esi ∪ KB |= e.

• Completeness: The completeness condition requires that all observed post-conditions

are mined. This is essentially the reverse of the previous entailment relation (i.e.,

e ∪ KB |= esi).

Concurrent activities: In settings which permit multiple active process instances

and where multiple activities might be concurrently executed, we cannot guarantee

that the post-conditions observed between the start of an activity and the start of the

next activity in the same process instance are necessarily the post-conditions of the

former activity (since concurrent activities from other process instances might have

led to these). In such settings, we validate by creating modified sequence databases,

parameterized by an activity sequence length parameter n for use with CMRules. For

instance, when the activity sequence length parameter is 2, for each contiguous pair of

activities 〈Ti, Tj〉, we take sequences of the form 〈Ti, ei1, . . . , ein〉 and 〈Tj, ej1, . . . , ejm〉

where the activities belong to the same process instance and where the timestamps

associated with each eik is earlier than the start of Tj and create an entry in this

modified sequence database of the form 〈Ti, Tj, τ(ei1∧ei2∧. . .∧ein⊕ej1∧ej2∧. . .∧ejm)〉1.

The result of applying τ represents the result of performing state update on the post-

1τ is a function that takes a sentence in conjunctive normal form and outputs a sequence con-
sisting of its conjuncts (recall that the relative sequencing between these is of no interest from this
perspective). Thus τ(ei1 ∧ ei2 ∧ . . . ∧ ein) = 〈ei1, ei2, . . . ein〉

3.6. Abductive repair 89

conditions of Ti with the post-conditions of Tj. If the state update operation leads

to multiple non-deterministic outcomes, we create separate entries for each (sharing

the same prefix 〈Ti, Tj〉). We use CMRules to obtain rules of the form 〈Ti, Tj〉 →

〈e1, . . . , ep〉 with the support and confidence being set as earlier to refer only to those

process instances where Ti and Tj appear contiguously. We can now use the following

soundness condition: There exists a modified sequence database entry with the prefix

〈Ti, Tj〉 such that the corresponding suffix (viewed as the conjunction of its elements)

e1 ∧ . . . ∧ en ∪ KB |= e for every e ∈ eTi
⊕ eTj

. We can similarly state a completeness

condition: For every modified sequence database entry with the prefix 〈Ti, Tj〉 and a

corresponding suffix e1∧ . . .∧en (as before, we view the suffix as the conjunction of its

elements), there must exist an e ∈ eTi
⊕ eTj

such that e∪KB |= e1∧ . . .∧ en (note that

this will work only if we deal with contiguous sequences activities starting with the

first activity). The approach generalizes to activity sequences of arbitrary length, but

we omit details for ease of exposition. A general validation strategy is to consider all

activity sequences of length i = 1, . . . , n where n is the length of the longest activity

sequence that conforms to the process design.

3.6 Abductive repair

We now consider the problem of what needs to be done when mined post-conditions

are found to be unsound or incomplete according to the tests described above. An easy

solution is to seek more data and mine again. More interestingly, we can offer guidance

to analysts in manually modifying the first-cut post-conditions mined from available

data by using a simple formulation as an abductive problem. The discussion focuses

on settings with concurrent tasks, but the approach easily extends to the simpler class

of settings satisfying the unique activity assumption.

We consider first the case where the mined set of activity post-conditions are found

3.6. Abductive repair 90

to be incomplete. If we start the analysis with activity sequences of length 2, let

〈Ti, Tj〉 be the first pair of contiguous activities for which we violate the completeness

condition. A finding of incompleteness entails that there are post-conditions (object

state transitions) observed in the data which are not predicted by the mined immediate

post-conditions. In other words, the mined post-conditions need to be augmented

to redress this. We need to decide now what post-conditions to add and to which

activity. Formally, the abductive problem is to identify the minimal (with respect to

set inclusion) a ⊆ A where A is the set of abducibles (in this case the vocabulary of

post-conditions being used), given mined post-conditions eTi
and eTj

for tasks Ti and

Tj such that at least one of the following hold:

• There exists an e ∈ (eTi
∧ a) ⊕ eTj

for every modified sequence database entry

with the prefix 〈Ti, Tj〉 and a corresponding suffix e1 ∧ . . . ∧ en (from here on

we will view effect sequences as the conjunction of their elements for simplicity)

such that e ∪ KB |= e1 ∧ . . . ∧ en

• There exists an e ∈ eTi
⊕ (eTj

∧ a) for every modified sequence database entry

with the prefix 〈Ti, Tj〉 and a corresponding suffix e1∧ . . .∧en such that e∪KB |=

e1 ∧ . . . ∧ en

The first condition above corresponds to augmenting the post-conditions of Ti with

a while the second corresponds to augmenting the post-conditions of Tj with a. If both

conditions can be satisfied, we make a non-deterministic choice of any one task (and

augment its post-conditions).

We consider next the case where the mined set of post-conditions are found to be

unsound. If we start the analysis with activity sequences of length 2, let 〈Ti, Tj〉 be

the first pair of contiguous activities for which we violate the soundness condition.

A finding of unsoundness entails that there are mined post-conditions that are not

3.6. Abductive repair 91

observed in the data. In other words, we need to restrict or contract one or more sets

of post-conditions to redress this. We need to identify e′Ti
⊆ eTi

and e′Tj
⊆ eTj

such

that both of the following hold:

• There exists an e ∈ e′Ti
⊕ e′Tj

for every modified sequence database entry with

the prefix 〈Ti, Tj〉 (with a corresponding suffix e1 ∧ . . . ∧ en) such that e1 ∧ . . . ∧

en ∧ KB |= e

• There exists no e′′Ti
where e′Ti

⊂ e′′Ti
⊆ eTi

which satisfies the condition that there

exists an e ∈ e′′Ti
⊕e′′Ti

for every modified sequence database entry with the prefix

〈Ti, Tj〉 (with a corresponding suffix e1∧ . . .∧en) such that e1∧ . . .∧en∧KB |= e

The e′Ti
and/or e′Tj

identified via this analysis are set as the new post-conditions of Ti

and Tj respectively.

We need to start this analysis with the first activity T1 (since the modified sequence

database includes the accumulated post-conditions of all tasks starting with the first),

then incrementally expand the sequence of contiguous activities. Thus the first se-

quence of activities considered would be 〈T1, T2〉, then 〈T1, T2, T3〉 and so on. Once

we have ensured that a given sequence of mined post-conditions 〈eTi
, . . . eTi

〉 is sound

and complete, we expand the sequence by one activity, obtaining 〈eTi
, . . . eTi

, eTi+1
〉.

Ensuring the new mined post-condition (i.e., eTi+1
) is sound and complete is simpler,

since only one candidate set of post-conditions needs to be either augmented or con-

tracted. As above, repairing eTi+1
for incompleteness involves identifying the minimal

(with respect to set inclusion) a ⊆ A where A is the set of abducibles (in this case

the vocabulary of post-conditions being used), given mined post-condition eTi
, . . . eTi

which are known to be sound and complete such that at least one of the following

hold: There exists an e ∈ eT1 ⊕ . . . ⊕ eTi
⊕ (eTi+1

∧ a) such that for every modified

sequence database entry with the prefix T1, . . . , Ti, Ti+1 and a corresponding suffix

3.7. Evaluation 92

e1 ∧ . . .∧ en, e∪KB |= e1 ∧ . . .∧ en. Similarly, repairing eTi+1
for unsoundness we need

to identify e′Ti+1
⊂ eTi+1

such that both of the following hold:

• There exists an e ∈ eT1 ⊕ . . . ⊕ eTi
⊕ e′Ti+1

or every modified sequence database

entry with the prefix 〈T1, . . . , Ti, Ti+1〉 (with a corresponding suffix e1 ∧ . . . ∧ en

such that e1 ∧ . . . ∧ en ∧ KB |= e

• There exists no e′′Ti+1
where e′Ti+1

⊂ e′′Ti+1
⊆ eTi+1

which satisfies the condition

that there exists an e ∈ e1⊕ eTi
⊕ e′′Ti

for every modified sequence database entry

with the prefix 〈T1, . . . , Ti, Ti+1〉 (with a corresponding suffix e1 ∧ . . . ∧ en) such

that e1 ∧ . . . ∧ en ∧ KB |= e

The e′Ti+1
identified via this analysis is set as the new post-condition of Ti+1.

A number of abductive reasoning techniques can be used to support automation

of this analysis, but we leave this outside the scope of this work (see [197] for a good

survey of available techniques).

3.7 Evaluation

Evaluation with synthetic process models: The aim is to establish that the

approach generates reasonably reliable results. We ran the first set of experiments

with a synthetic semantically annotated process model (i.e., a hand-crafted one with

T1, T2, . . . etc, for task names and p, q, . . . for effects). The model had 8 activities, with

an AND-split nested inside an XOR-split and with each task semantically annotated

with 1 or 2 literals (in the 2 literal case, the states were conjunctions of the 2 literals),

and one rule in the KB. We simulated a large number of possible execution traces of

this model, and obtained process and state transition events. These events involved

the execution of multiple concurrent process instances. There were multiple possible

states associated with some of the tasks in the process design, owing to the fact that

3.7. Evaluation 93

XOR gateway contributed to alternative flows that could have led to the same point

(none of the states were generated by alternative means of resolving inconsistency in

the state update operator). We then investigated the effect of scaling up the complexity

of the process model, by generating a second synthetic process model with 12 activities

with an XOR-split leading to two alternative flows, one of which included a nested

AND-split and the other a nested XOR-split. The semantic annotations were 2 or 3

literals long and involved a mix of conjunctions and disjunctions. The background KB

had 4 rules. There were multiple effect scenarios associated with most of the tasks and

these were generated both by alternative flows that could lead to a task (on account

of XOR gateways) and by alternative resolutions of inconsistency by the state update

operator.

Table 3.5 below describes the results of 4 experiments with each of these two process

models. We used progressively larger numbers of overlapping instances of each process

(i.e., Ti in instance 2 would start after the start of Ti in instance 1, but before the start

of Ti+1 in instance 1, and so on). We note that the problem would be no harder if

the multiple concurrent process instances were of multiple distinct process models. We

obtained progressively larger sizes of the sequence database. We recorded the precision

(number of correct post-conditions mined over the total number of post-conditions

mined) and recall (the number of correct post-conditions mined over the total number

of actual post-conditions). Although not entirely monotonically improving, the results

for process 2 confirm the intuition that better results are obtained with larger datasets.

The results for process 2 also showed that the post-conditions mined tended to be

incorrect for the last activity in a process instance (in those settings where precision

and recall values were less than 1). This was due to the sequence of post-conditions

for the final task not being bounded by the start of the next activity, but rather by

the end of the log (artificially determined by length of the longest process).

3.7. Evaluation 94

Table 3.5: The recall and precision measures from the evaluation

Process model 1 Process model 2

Number of instances 5 10 100 500 5 10 100 500
Size of sequence DB 48 100 1082 5352 66 133 1297 6512
Recall 1.0 1.0 1.0 1.0 0.953 1.0 0.981 0.989
Precision 1.0 1.0 1.0 1.0 1.0 0.988 1.0 1.0

The synthetic process and state transition events used in these examples considered

all possible flows. Real-life data might involve more imperfections (such as certain

XOR flows never being executed, certain activities never being executed and so on).

We have also considered cases where noise is artificially added to the entries - as

expected, precision and recall suffer as noise increases. We performed experiments

with 500 instances of the second model. The proportion of noise in the complete effect

log ranges from 5 to 20%. We plotted the performance of the technique (in terms

of recall and precision) against this parameter. As expected, recall and precision

decreases as the amount of noise increases. The results in Figure 3.2 were consistently

the same.

We took the mined post-conditions and used the validation technique from the

previous section to repair the post-conditions (in the case of abductive repair we did

not use any automated abductive framework, but used the abductive repair guidelines

to perform manual repair). The result shown in Figure 3.3 suggests that the approach

is effective in identifying inaccurate post-conditions (and repairing them) leading to

an increase in precision measures.

User-mediated evaluation: User-mediated evaluation: To evaluate the approach

in a more real-life setting, we took a real-life semantically annotated process model

that illustrates a Holiday Booking process followed by a travel agent in Figure 3.4 and

obtained a set of process and state transition events from an expert process modeler.

We obtained a log of process events describing 10 execution instances (many of them

with temporal overlaps) with a total of 110 entries, and a state transition events log

3.7. Evaluation 95

Noise percentage Precision

5 1.00
10 0.83
15 0.78
20 0.50

Figure 3.2: Precision measures with noise in the effect log

Noise Precision Precision
percentage (before) (after)

5 1.00 1.00
10 0.83 0.83
15 0.78 0.79
20 0.50 0.67

Figure 3.3: Precision measures after validation with length parameter 2 and 3

3.8. Related works 96

with 154 entries. Excerpts of both tables are presented in Table 3.6 and Table 3.7. In

Table 3.7 we do not use real airline or hotel names.

Figure 3.4: A semantic annotated BPMN process model for Holiday Booking process

We found that in about 1 in 9 activities, the post-conditions mined were incorrect,

in the sense that the mined post-conditions did not correspond to the post-conditions

provided by the expert process modeler. The best explanation of this appears to be

the fact that in the user-generated process events, there were other activities that were

exactly concurrent with the activity for which the wrong post-conditions were mined.

3.8 Related works

Artifact-centric business process modeling. An approach in the space of artifact-

centric business process modeling is the GSM (Guard-Stage-Milestone) model by Hull

et al. [51, 131]. In the GSM model, the state of an artifact at any given point

during the execution of the model is described using three elements: (a) milestone,

which represents a business objective with achieving and/or invalidating conditions;

3.8. Related works 97

Table 3.6: Excerpt from the process event log provided by the user

Time Customerid Activity

46 cust4 Receive Itinerary
47 cust9 Receive Itinerary
53 cust3 Receive Itinerary
53 cust3 Check Flight Availability
72 cust1 Receive Itinerary
72 cust4 Check Flight Availability
77 cust1 Check Hotel Availability
78 cust3 Check Hotel Availability
81 cust4 Check Tour Availability
87 cust7 Receive Itinerary
93 cust5 Receive Itinerary
99 cust6 Receive Itinerary
106 cust9 Check Hotel Availability
116 cust1 Check Flight Availability
116 cust6 Check Tour Availability
125 cust3 Check Tour Availability
130 cust6 Check Hotel Availability

Table 3.7: Excerpt from the state transition event log provided by the user

Time Observed states

87 airline-preferences(cust4,Airline-23)
90 airline-classoftravel(cust4,ClassOfTravel-1)
114 departure-preferences(cust4,DepartTime-9)
117 arrival-prefs(cust4,ArriveTime-3)
120 meal-constraints(cust4,MealConstraints-47)
121 freq-flyer(cust4,FreqFlyer-53)
133 hotel-pref(cust4,Hotel-75)
137 room-prefs(cust4,RoomPref-95)
144 tour-prefs(cust4,TourPref-71)
155 hotel-available(Hotel-75,Dates-16)
173 flight-available(Flight-7,Airline-23,ClassOfTravel-1,DepartTime-9,ArriveTime-3)
191 tour-available(Tour-34,DepartTime-9,DepartLoc-35,Route-6 Stops-3)
203 feasible-itinerary(Flight-7,Hotel-75,Tour-71,CustPref-2)
220 customer-confirmation(cust4,Itinerary-30)
224 hotel-booking(cust4,Itinerary-30,Hotel-75,Dates-16)
233 flight-booking(cust4,Itinerary-30,Flight-7,Airline-23

ClassOfTravel-1,DepartTime-9,ArriveTime-3)
237 tour-booking(cust4,Itinerary-30,DepartTime-9,DepartLoc-35,Route-6,Stops-3)

3.8. Related works 98

(b) stage, which consists of a cluster of activities to achieve a milestone (in the atomic

level, a stage consists of one activity); (c) guard, that controls whether a stage is

active/open or not. Status change of a milestone and/or a stage is triggered by an

incoming event in the form of a request or a task termination notification from the

environment. Artifact-centric approaches such as GSM are of interest in the context

mainly because of their focus on artifact lifecycles (in this vocabulary: object state

transition events).

Semantically annotated process model. A number of proposals in the lit-

erature consider semantic annotations of processes in a manner similar to ours, and

would stand to benefit from implementations of the framework. A few examples of

the benefits that can be exploited from semantically annotated business process mod-

els including compliance checking, management level strategic alignment of business

processes, and exception handling [85]. Di Francescomarino [63] leverage the seman-

tically labelled business processes to automatically verify if business processes fulfill a

set of given constraints, and to formulate queries that involve both knowledge about

the domain and the process structure. Ghose and Koliadis [144] provide a semantic

characterization of a minimal revision strategy that capable to detect and partially

automate compliance resolution using a notion of compliance patterns and obtain com-

pliant process models from models that might be initially non-compliant. Happel and

Stojanovic [112] propose a semantic business process management, Ontoprocess, to

provide means for automatically checking the compliance of business processes with

business rules by combining semantically described business processes with SWRL

rules by a set of shared ontologies. Hoffmann et al. [124] propose a framework where

processes are annotated to capture the semantics of task execution, and compliance is

checked against a set of constraints posing restrictions on the desirable process states.

Morrison et al. [184] propose a framework for strategic alignment to understand the

3.8. Related works 99

relationship between a set of processes and the realization of a set of strategies and

the optimal set of processes that can achieve these strategies using a semantically

annotated process model.

A number of proposals add semantics to specify the dynamic behaviour of the

business process, such as those by Weber et al. [265] and by Wong and Gibbons [273].

Semantic Business Process Validation (SBPV) [265] by Weber et al. is an approach

that takes the annotations and the underlying ontology into account in order to deter-

mine whether the tasks are consistent with respect to each other, and with respect to

the underlying workflow structure. Wong and Gibbons [273] propose a relative-timed

semantic model for BPMN by introducing the notion of relative time in the form of

delays to their model. The semantics is defined in the language of Communicating

Sequential Processes (CSP). The annotated process model allows behavioural proper-

ties of BPMN diagrams to be mechanically verified. Koliadis et al. [144] propose an

approach to analyse change against high-level models of the organization. Semantic

EPC [243] by Thomas and Fellmann is a semantic extension of event-driven process

chains.

A number of proposals seek to leverage semantics in assisting business analysts

and process designers model business processes. Born and Dörr [37] extend the SAP

Research modeling tool Maestro for BPMN. ProcessSEER [123] by Hinge et al. pro-

vides a user-friendly framework for analysts to explicitly annotate business process

models and automatically computes the post-conditions associated with tasks selected

by the user. Hornung et al. [129] propose a recommender system that suggests a list

of correct and fitting process fragments for an edited business process model, which

can be used to complete the process model being edited.

Mining process execution data: A large body of work on process mining

algorithms–such as the alpha algorithm [249], heuristic miner [267], and fuzzy miner [105]–

3.9. Summary 100

offer the capability to extract the structure of the process model. Unlike this body of

work, the focus is only on mining task post-conditions.

The research integrates the two approaches of: (1)mining historical data to dis-

cover useful process information and (2)adding semantics to business process models,

to obtain richer descriptions of business process designs which in turn can be used to

support a variety of process analysis tasks such as compliance checking and resolu-

tion [86], goal satisfaction analysis [205] and so on.

3.9 Summary

This chapter offers an approach to mining business process task post-conditions from

process and state changes events in process execution histories. Specifying post-

conditions is notoriously difficult for process analysts, yet these post-conditions are

critical to a variety of process analysis tasks such as process compliance manage-

ment [86], goal satisfaction analysis [205], change management [144], enterprise pro-

cess architectures [145] and the management of the business process life cycle [146].

The proposal involves the innovative use of sequential pattern mining on event logs.

The proposal also leverages event data and the state update notion implicit in process

execution to achieve a sophisticated validation technique, which in turn supports an

abductive approach to the repair of the mined post-conditions. The empirical evalu-

ation suggests that the results are generally reliable, pointing to prospects for further

development of techniques that leverage these post-conditions in semantic analysis.

Acknowledgment: This section has been published in Data & Knowledge Engi-

neering Journal vol. 109. This was a collaboration work between the author (Metta

Santiputri) with the author’s supervisors (Prof. Aditya Ghose and Dr. Hoa Khanh

Dam). The author’s supervisors provided the guidance specifically in the direction

of the work and the final reviews before the publication. All the other works were

3.9. Summary 101

performed by the author.

Chapter 4

Requirement model extraction

One of the knowledge driver in an enterprise is the requirement models. However, the

connection between requirements and data has been largely under-explored. Yet the

growing volume of data, the ability to access large-scale sensor instrumentation and the

availability of ”big data” tools has thrown up significant opportunities for developing

a new generation of data-driven requirements engineering (RE) tools. This chapter

provides a method to leverage process execution histories in the form of process logs

and message logs to mine the requirements model represented in i* framework.

Section 4.1 provides the introduction to the approach. The first part of the method,

the DE technique, is presented in Section 4.2, while the second part, the TDCE tech-

nique, is presented in Section 4.3. Section 4.4 provides an evaluation for our method.

We summarize this chapter in Section 4.6.

4.1 Introduction

The connection between requirements and data has been largely under-explored. Yet

the growing ubiquity of data, the ability to access large-scale sensor instrumentation

and the availability of “big data” tools has thrown up significant opportunities for

102

4.1. Introduction 103

developing a new generation of data-driven requirements engineering (RE) tools. These

opportunities come in many forms.

First, data can alleviate the well-known challenges associated with requirements

acquisition/elicitation [174]. Organizations are often unable to leverage the benefits

of conceptual modeling and the principle use of enterprise architecture because of the

(often steep) investment required. The phenomenon is an instance of the knowledge

acquisition bottleneck - a problem with an even longer pedigree [29]. Conceptual mod-

eling is a time consuming human task of considerable complexity. In this chapter,

we argue that developing a capability to “mine” requirements from data can pay rich

dividends. Earlier work [87] suggests that tools that extract “snippets” of models (or

proto-models) by mining legacy text and model artefacts (these latter being in different

notations) can significantly improve modeler productivity (with some empirical results

pointing to about a two-thirds reduction in modeler effort).

Second, data-driven requirements monitoring provides the ability to improve the

quality of requirements specifications, which in turn lead to improvements in the qual-

ity of the systems delivered. Execution data provides the basis for extracting require-

ments (which may be viewed as abstract descriptions of the data that these are mined

from). Deviations between the mined requirements and those originally specified by

stakeholders can flag problems. Similarly, we might cluster data associated with the

particularly ”desirable” (as determined by stakeholders) parts of execution histories,

and extract requirements from these. The requirements thus obtained would represent

more accurate encodings of stakeholder intent.

Third, clustering data associated with “undesirable” instances of execution histo-

ries (again, determined by stakeholders) can help us mine requirements anti-patterns.

Within the context of a given RE exercise, these anti-patterns would identify “no-go”

areas (i.e., requirements that lead to undesirable consequences).

4.1. Introduction 104

Finally, the ability to establish an online, real-time correlation between require-

ments and data can help us use requirements models as dashboards.

What we have outlined above are effectively four distinct hypotheses about how

data (specifically, behaviour histories) can deliver value in the requirements engineering

exercise. In this chapter, we put the first two of these hypotheses to the test. We focus

on a well-regarded early-phase requirements modeling language of long standing - the

i* notation [281]. The use of i* makes the case for data-driven requirements engineering

more compelling, for several reasons. i* is particularly effective in modeling high-level

strategic requirements, and also supports distributed goal modeling. Consequently i*

serves as a natural representation of complex organizational contexts. This chapter

presents some initial steps toward an evaluation, by devising and evaluating techniques

that permit us to (partially) ”mine” i* models from execution data. We restrict our

attention to mining dependencies and the tasks within the depender and dependee

actors that each dependency is associated with. We present two techniques: the

Dependency Extraction (DE) technique which mines dependencies from message logs

and the Task-Dependency Correlation Extraction (TDCE) technique which mines the

tasks/ goals in an i* SR model that are associated with each dependency from process

logs.

Our focus on message logs and process logs is realistic. Message logs are rou-

tinely maintained within the enterprise context. Sometimes, these manifest as email

repositories, but our current work does not address the deployment of sophisticated

NLP techniques that would be required to mine these. Instead, we use an abstract,

generalized messaging format that resembles a number of industry-standard electronic

messaging formats such as RosettaNet [198], ebXML [89] and a host of EDI formats.

These are clearly easier to mine than natural language message logs, but nonetheless

provide a useful basis for a proof-of-concept tool. Process logs are also routinely main-

4.2. The Dependency Extraction (DE) technique 105

tained by firms. A variety of business process management tools as well as bespoke

process logging tools can be leveraged to obtain these. Unlike process mining tools,

however, we do not seek to extract process designs from process logs, but instead mine

for patterns of task activations that point to the existence of a dependency.

We also simplify matters by assuming that the only i* models of interest are those

that involve only goal dependencies. This avoids defining separate extraction tech-

niques for each distinct type of dependency. This is also not an unreasonable assump-

tion. A task dependency may be viewed as a goal dependency where the goal is to

execute a task. A resource dependency may be viewed as a goal dependency where the

goal is to obtain the relevant resource. We keep softgoals entirely outside the purview

of our current discussion (but these represent an important direction for future work).

These techniques only support the mining of partial i* models, specifically inter-

actor dependencies, and tasks/goals associated with each dependency.We present two

different evaluations of these techniques. First, we evaluate their effectiveness (in

terms of precision and recall) in mining partial i* models from behaviour histories

that simulate the execution of an initial complete i* model. Second, we validate the

hypothesis that it is possible to generate better quality (i.e., more accurate) models

by mining behaviour histories of imperfect “as-is” contexts that have been filtered by

stakeholders (to remove behaviour traces that are undesirable). Much more detailed

evaluation is possible, and is the focus of future work, but our preliminary results are

encouraging.

4.2 The Dependency Extraction (DE) technique

The Dependency Extraction (DE) technique is intended to mine message logs for i*

dependencies, and is based on the following intuitive observations. All dependencies

manifest themselves in messages, such as a request from the depender to the dependee

4.2. The Dependency Extraction (DE) technique 106

at the creation of a dependency, and a message in the reverse direction when the depen-

dency is fulfilled. Hence, a message log that maintains a record of all messages (over

a certain period) between the actors of interest represents a rich repository of clues

about these dependencies. Message logs are ubiquitous. A corporate email repository

can be viewed as a message log, although the messages are entirely unstructured. In

many cases, messages are structured such as in a variety of Electronic Data Exchange

(EDI) languages, or in more recent standards such as RosettaNet and ebXML. Our

current approach assumes a structured message log. We use a generalized message

format in our evaluation, inspired by (and representing the common core of) the mes-

saging standards discussed above. For our purposes, a message log is a sequence of

messages consisting, at a minimum, the following components:

• An interaction ID, which is used to identify a conversation or interaction, but

not an individual message.

• Sender ID

• Receiver ID

• A timestamp which describes the time when a message is sent or received (we

assume message transmission to be instantaneous).

• A message type, which would involve types such as requests, responses etc.

• A message payload, consisting of the semantic content of the message (which

might be imperative or descriptive or a variety of other speech acts).

In the spirit of RosettaNet, we assume that all messages that involve responses

to an initial message (that starts a conversation, such as a service request) refer to a

unique ID generated by the initial message. We shall refer to the set of all messages

pertaining to such a unique ID as an interaction, the unique ID as the interaction ID.

4.2. The Dependency Extraction (DE) technique 107

Given the availability of unique interaction IDs, it is easy to extract complete

interactions from a noisy message log where multiple interactions might be interleaved.

Our next task is to extract the goal (e.g., the service request or product order) that is

the object of the conversation. Goals are often represented in natural language using

verb phrases. The information extraction techniques used for extracting verb phrases

admit considerable complexity. For the purposes of our proof-of-concept evaluation,

we assume an even simpler textual format, consisting of 〈verb, noun〉 pairs (such as

buy book, supply product, assess claim etc.). Our technique for extracting these is as

follows:

• We extract the set of all 〈verb, noun〉 pairs that appear in a given interaction.

• We annotate each element of this set with the number of messages that it appears

in.

• We identify the element with the highest frequency and if it passes the threshold

kmessage, it referred to as the goal designator associated with the dependency.

We use the following procedure to identify dependencies from message logs:

• We partition the set of all interactions extracted from a message log into sets

the share the same goal designator.

• We assume that a significance threshold kinteraction is provided by the user. If

a cluster of interactions (with the same goal designator) represents kinteraction%

or higher of the set of all interactions, we treat that cluster as significant and

indicative of a dependency.

4.3. The Task-Dependency Correlation Extraction (TDCE) technique 108

4.3 The Task-Dependency Correlation Extraction

(TDCE) technique

In this section, we will present the the Task-Dependency Correlation Extraction (TDCE)

technique that identifies the task in the depender actor and the task in the dependee

actor that are associated with a given dependency. This information will be mined

from the process logs.

The mining of task dependency correlations starts with process logs from different

actors where the execution of each actor generates a distinct log. It comprises of a list

of tasks executed by an actor over time. Multiple process logs from different actors

could be combined into one process log shown in the example Table 4.1. This process

log lists all tasks executed by all actors (either as the depender or as the dependee).

By examining this log, we can observe that when actor i activates task a at time tx,

within some n units of time in the future, at time tx + n, actor j activates task b.

When this particular pattern of task activation become frequent (or satisfy certain

threshold), then there is an indication of a dependency between task a in actor i as

the depender and task b in actor j as the dependee.

Each entry in the process log consists of:

• a taskID, which is used to identify certain task in an actor.

• a timestamp which describes the time when a task is activated by the actor.

The timestamp of the first entry is t0 which indicated the initial time and the

timestamp of subsequent entries is increased each by one unit time.

The list of these entries will comprise a process log.

In this example, from the first row, we can observe that at the initial time t0, there

are three different actors, each of which activates a task, i.e. actor A activates task a0,

4.3. The Task-Dependency Correlation Extraction (TDCE) technique 109

actor B activates task b1, and actor C activates task c0. In the second row, the time

is increased by one time unit to become t0 + 1. At time t0 + 1, actor A does nothing,

actor B activates task b4, and actor c activates task c1, and so on.

In the process log shown in the example above, we can determine which of these

task that has an indication of dependency by examining the task sequence pattern

that occurs in the process log. We adapt the GSP (Generalised Sequential Patterns)

algorithm in order to mine this sequence pattern. It generates pairs of tasks sequences

where the first task is from the depender actor and the second task is from the dependee

actor. For example a pair 〈(a0)(c2)〉 means that there is a pattern between 〈(a0)〉 and

〈(c2)〉 which indicates that there is a dependency between those two tasks with task

〈(a0)〉 as the depender and task 〈(c2)〉 as the dependee. Then it will determine how

frequent this pattern is in the log by counting the number of occurrence of each pair.

This number of occurrence of each pair is called its support and the predetermined

threshold is the minimum support.

The GSP (Generalised Sequential Patterns) algorithm was proposed by Srikant

and Agrawal (1996). The algorithm takes as input a process log which consists of set

of tasks ordered by time. It finds all sequences of tasks whose support is greater than

the minimum support threshold specified by the user. In addition to the minimum

support threshold, there are timing constraints that must satisfied, namely the maxi-

Table 4.1: Example of process log

Time
Task name

actor A actor B actor C

t0 a0 b1 c0
t0 + 1 − b3 c1
t0 + 2 a0 b2 c2
t0 + 3 a2 b0 −
t0 + 4 a1 b1 c3
t0 + 5 a0 b3 c2

4.3. The Task-Dependency Correlation Extraction (TDCE) technique 110

Table 4.2: Candidate generation

Frequent sequences Candidates of length 2
of length 1 after join after pruning

〈(a0)〉 〈(a0)(b1)〉, 〈(a0)(b3)〉, 〈(a0)(c2)〉 〈(a0)(c2)〉
〈(b1)〉 〈(b1)(a0)〉, 〈(b1)(b3)〉, 〈(b1)(c2)〉 〈(b1)(a0)〉, 〈(b1)(c2)〉
〈(b3)〉 〈(b3)(a0)〉, 〈(b3)(b1)〉, 〈(b3)(c2)〉 −
〈(c2)〉 〈(c2)(a0)〉, 〈(c2)(b1)〉, 〈(c2)(b3)〉 −

mum time difference between the earliest and latest task activation and the minimum

and maximum gaps between adjacent task. We leverage this algorithm, providing as

input a process log ordered by time and obtaining as output all sequential patterns in

the log.

The algorithm makes multiple passes in the log. The initial constraint for this

part is that we are only interested in the result that consists of two tasks because we

only want to discover any dependency that occurs between two tasks. Therefore we

limit the pass to k = 2. The first pass of the algorithm finds all the sequence with

single task in it along with their occurrence count (support). The output is 1-task long

sequences or L1. On the second pass, the algorithm generates 2-tasks-long candidate

sequences C2 with L1 as its seed. This is motivated by the fact that for a sequence

to be frequent, all of its subsequences must also be frequent. As the support counts

is determined, the sequences with support greater than the determined threshold are

included in L2.

There are two main phases that are explained in detail below, in terms of how

candidates are generated and how their support are counted.

1. Join phase. In this phase, we generates all candidates starting from candidate of

length 1. The process is straightforward as all the tasks that were in the process

log are placed in this set of candidates L1. To generate the candidates of length

2, L2, a task from L1 is joined with another that is also in the L1. Assume that i

4.3. The Task-Dependency Correlation Extraction (TDCE) technique 111

and j are tasks belong to L1, then task j is added to i. But for all candidates of

length 2, there is one more constraint i.e. any two tasks in a dependency must

not happens in the same time, therefore any dependency between two tasks that

activates in the same time must be excluded from the result. Initially task j

should be added as an task-set (〈(i j)〉) and as a separate task (〈(i)(j)〉), but

because of this constraint, we only add j as a separate task.

In our example from Table 4.1, we start with all candidates of length 1, L1. It

would consists of 〈(a0)〉, 〈(a1)〉, 〈(a2)〉, 〈(b0)〉, 〈(b1)〉, 〈(b2)〉, 〈(b3)〉, 〈(c0)〉, 〈(c1)〉,

〈(c2)〉, and 〈(c3)〉.

Next we need to eliminate these candidates according to the value of minimum

support in the prune phase.

2. Prune phase. We must eliminate candidates according to our constraints:

(a) Since any dependency must be occurs between two different tasks from two

different actors, any pattern that contains tasks from the same actor must

be excluded from the result.

(b) All the candidates with less than minimum support is excluded from the

result.

Note that constraint (a) only applied to 2-task-long candidates and does not

applied to 1-task-long candidate. On the other hand, constraint (b) applied for

both cases.

Back to our example, we have generated L1, and now all tasks in the L1 must

be examined against constraint (b), which is compared to the minimum support

value. For this example, we set the minimum support as 2, which means that

any task or set of task to be classified as frequent, it must occurs minimum two

times. In the log in Table 4.1, for actor A there are three different tasks (a0, a1,

4.3. The Task-Dependency Correlation Extraction (TDCE) technique 112

and a2). The support for each of these task are 3, 1, and 1 respectively. Because

support for a1 and a2 are less than the minimum support, they do not included

in the sequence of 1-task. We repeat this for all task and the result is shown in

the first column of Table 4.2.

We continue to search for all candidates of length 2 by repeating the join and prune

phases. This step is illustrated in Table 4.2. In the join phase, we start with the first

candidate 〈(a0)〉 in the first column. Thus, all sequences of form 〈(a0)(X)〉, where

X is any task, are searched. Remember that we do not search for 〈(a0, X)〉 because

it implies that the two tasks occurs at the same time. By combining 〈(a0)〉 with

the second candidate 〈(b1)〉, we find 2-task-candidate 〈(a0)(b1)〉. Similar procedure

is repeated for all sequences of the first column. All 2-task-long candidate sequences

generated in the join phase are shown in the second column.

Next, according to constraint (a) in the pruning phase, we begin by determining

whether the two events are executed by the same actor, and if they do, then the

sequence is eliminated. For example in the second row, sequence 〈(b1)(b3)〉, both tasks

are executed by the same actor, namely actor B, therefore the sequence is eliminated

by constraint (a). Thus the remaining candidates for the second row are 〈(b1)(a0)〉

and 〈(b1)(c2)〉. The same also applies to sequence 〈(b3)(b1)〉 in the third row. We

then determined the support count for each of the remaining candidates. The first

candidate 〈(a0)(b1)〉 has support count 1, which is less than the minimum support - it

is therefore eliminated. Next candidate, 〈(a0)(b3)〉, also has support count of 1, and is

also eliminated. Candidate 〈(a0)(c2)〉 has support count of 2 - it is therefore included

in the result. In the second row, we have two remaining candidates, 〈(b1)(a0)〉, and

〈(b1)(c2)〉. Both have a support count of 2 and are thus included in the result. We

repeat this procedure for the rest of the candidates. The result is shown in the third

column of Table 4.2.

4.4. Evaluation 113

The result patterns of this algorithm are all sequential pattern that occurs between

two tasks in the process log. For our process log example in Table 4.1, these are

〈(a0)(c2)〉, 〈(b1)(a0)〉, and 〈(b1)(c2)〉.

4.4 Evaluation

The purpose of the evaluation exercise is to establish the following:

• The Dependency Extraction (DE) technique and the Task-Dependency Correla-

tion Extraction (TDCE) technique generate reasonably reliable results.

• Both these techniques can be leveraged to improve the quality of i* models

(assessed in terms of how closely a model corresponds to the ”ideal” model, and

hence to the reality being modeled) by leveraging user tagging (or filtering) of

the logs recording the behaviour of an ”as-is” system or process that the target

system is intended to replace. Since i* is also particularly effective as a domain

modeling tool, an improvement in model quality might also entail obtaining a

better representation of the context in which the target system is to be situated

(or even more generally, a better model of the organizational context).

Our evaluation involved the generation of simulated behaviour histories (message

logs plus process logs) given an i* model. To achieve this, we randomly executed

these models, the sense described below. For each distinct dependency in an i* model,

we generated a large number of interactions (specific numbers in the following sub-

sections), with configurable levels of noise (thus we had noisy messages within inter-

actions, and we had entirely noisy interactions that would not point to any reasonable

goal dependency). The non-noise components involves messages and interactions that

were deliberately constructed to conform to the i* model at hand. The sum total of

these interactions provided the message log that we mined. We similarly generated

4.4. Evaluation 114

process logs by randomly selecting tasks/goals from the i* model and allocating ran-

dom timestamps to them. We, however, ensured that each dependency in the model

was reflected at least once in the process log. In other words, if there was a dependency

relating task ai in actor A to talk bj in actor B in the model, we would ensure that

the process log contained at least one entry for task bj at a time point after that for

task ai.

4.4.1 Evaluation of DE technique

We started with the i* model shown in Figure 4.1, originally used in [281]. The model

consists of 3 actors and 6 dependencies.

Figure 4.1: An i* SR model for a meeting scheduler system (adapted from [281])

To simplify the process of obtaining goal designator, we assume that it consists of

〈verb, noun〉 pairs. When processing the payload, we extracted the pair by getting the

first 〈verb〉 in the payload and the first 〈noun〉following said verb. We used the Stanford

Log-linear Part-Of- Speech Tagger v3.2.0 [103] for tagging message payloads. The

4.4. Evaluation 115

tagger takes a sentence such as This is a sample sentence and assign parts of speech,

e.g., noun verb, adjective,etc, like so This DT is VBZ a DT sample NN sentence NN.

These tags conform to the Penn Treebank Tagset [165] where tag starting with V is

verb and tag N is noun. So we can parse our payload with these tags to find the 〈verb,

noun〉 pattern.

We performed experiments with 4 parameters. nmessage describes the proportion

of noise messages in the complete message log (all non-noise messages permitted the

extraction of the correct goal designator). ninteraction describes the proportion of noisy

interaction in the set of all interactions in the message log, where a noisy interaction

is one which does not lead to any single identifiable goal designator. kmessage and

kinteraction are as defined in Section 4. We initially created a message log with no

noise (i.e., neither noisy messages nor noisy interactions) consisting of 7381 interac-

tions. Setting kinteraction = 10%andkmessage = 10%, we were able to extract all of the

dependencies, as shown in Table 4.3.

Table 4.3: Controlled Environment kinteraction = 10% and kmessage = 10%

Depender Dependee Goal Designator
Interaction

Percentage

Meeting Scheduler Meeting ParticipantA Enter AvailDates 15.13%

Meeting Scheduler Meeting ParticipantA Agreement 18.02%

Meeting Initiator Meeting ParticipantA Attends Meeting 17.18%

Meeting Scheduler Meeting ParticipantA Propose Date 15.76%

Meeting Initiator Meeting Scheduler Meeting BeScheduled 17.55%

Meeting Initiator Meeting Scheduler Enter DateRange 16.37%

Total interaction 7381

We plotted the performance of the DE technique (in terms of recall - there were no

false positives and hence precision was always 1) against each of these parameters. We

show 3 of the 4 results below (the final graph was omitted due to space considerations).

4.4. Evaluation 116

As expected, recall decreases as the amount of noise increases (i.e., as nmessage and

ninteraction increase). Similarly, recall decreases as we get more selective in identifying

dependencies (i.e., as kinteraction increases). These results were generated using message

logs that were between 25000 to 30000 messages long, with about 2000 interactions.

The results were consistently the same.

4.4.2 Evaluation of TDCE technique

Given a set of tasks as the input of our tool, we use two sets: the set of expected

dependencies which were in the input model and the set of dependencies actually

discovered in the result. Recall is defined by the number of correct dependencies

discovered by our technique divided by the total number of expected dependencies in

the result.

In this evaluation, we execute the input model including all of the dependencies.

The task activation log will be created with the depender, dependee, the tasks and the

dependencies from the input i* model as the expected result along with other tasks

4.4. Evaluation 117

Figure 4.2: Precision relative to log size Figure 4.3: Precision relative to min support

from the input model as noise. The task activation log for each actor was created

randomly but we deliberately input the execution of every dependencies. Then we ran

this log against our tool.

There are two inputs that we will use as variable in this evaluation of the TDCE

technique: (a) the number of entries in the process log; and (b) the minimum support.

We performed separate experiments for each of those variable by varying the value of

one variable and keeping the other fixed.

From the result, the precisions is 1.0 indicating that every dependency in the

expected result set is discovered. This can be explained by the fact that if there is a

dependency between two tasks, there are frequent patterns between those two tasks

in the log and it will be detected.

On the other hand, in addition to the expected dependencies, there are other

dependencies that were discovered in the actual result but were not in the input model.

This might happen because one factor that might affects the result is the interleaved

of the entries in the process log. For example lets assume that we have a log consisting

of two actors (let say actor A and actor B) with one dependency between these two

actors (between task a0 of actor A and task b0 of actor B). Since the algorithm will find

all the sequence in the log, there can be two different dependency discovered depends

on the order of the entry in the log.

The minimum support count for our evaluation in the first scenario is fix at 1.0

4.4. Evaluation 118

which means that support count = 1.0 * the number of execution. For example if

we execute 10 times, then the support count is 10, so that any pattern that occurs

10 times or more is included in the result. For the second scenario, we use a process

log with 2000 entries. The two graphs in Figure 4.2 and 4.3 show the recall of our

technique in two different scenarios. As can be seen in Figure 4.2, with small log, the

recall is not very accurate (given just ten entries, recall is only 0.39). But with larger

log, the recall is increasing up to 0.82. Recall remains relatively constant at 0.82 when

the log reach 1500 entries or more. While in Figure 4.3, the higher minimum support

will give more accurate result. For example, given the support of 1.0, recall reach up

to 0.82 but recall drop to 0.5 when support is set to 0.9 and keep decreasing until

under 0.1 with support of 0.7 or less. Hence the result suggest that both the number

of the entries in the process log and the minimum support are very influential to the

accuracy of the result. Therefore if we want to get more accurate result, we can do

two things, either increase the volume of the data or increase the minimum support

count.

Since in this evaluation we artificially created the process log and deliberately

executed all dependencies in the input model, we acknowledge that they would not

be representative for all possibilities of process log in practice. For instance, there

might be a case where a dependency in the input model was not executed at all or

was executed but in a number of times which was lower that the minimal support. In

such cases, our technique might not be able to detect it.

Another limitation of this technique involves settings where multiple dependencies

exist between the same pair of actors. Our current approach works well if we have a

guarantee that only one dependency would exist between a given pair of actors. Thus,

when we determine that a pair of tasks are related via a dependency, we are able to

leverage the DE technique to identify what the goal designator for that dependency is.

4.4. Evaluation 119

In the case of multiple dependencies between the same two actors, the DE technique

would suggest multiple goal designators, while the TDCE technique would suggest

multiple task pairs, but we would not have the wherewithal to associate the task pairs

with the goal dependencies identified by the DE technique.

4.4.3 Improving requirements quality: Evaluation

Figure 4.4: Model from user

A key contribution of this work is the ability to achieve data-driven improvements

in the quality of requirements models. There are two approaches to this that we

explore. In the first, we explore settings where the user is able to describe the ideal

behaviour (for our purposes, a behaviour will be described via a combination of a

message log and a process log) of the system in question. We extract models from these

idealized behaviours, as opposed to the noisy behaviours that have been the focus of

4.4. Evaluation 120

Figure 4.5: Extracted model-1

the previous parts of the evaluation. In the second approach, we explore settings

where the requirements engineering exercise is conducted in the context of an existing,

“as-is” system or process(es), the behaviour of which we are able to log. The user

filters this (potentially imperfect) behaviour generated by the existing system/process

(by removing entries from the message and process logs that (in the perception of

the user) represent manifestations of imperfect bahviour, and the machinery extracts

models from these filtered logs. The evaluation involved a trained i* modeler, who

was asked to generate a model (Figure 4.4) which was not revealed to the research

team. This model played the role of the “ideal” model against which the quality of the

extracted models was evaluated. The quality of an extracted model was evaluated by

either: (1) assessing how closely it conformed to the user’s “ideal” model (which was

revealed to the research team after the model extraction phase was completed) or (2)

4.4. Evaluation 121

Figure 4.6: Extracted model-2

obtaining input from the user suggesting that some dependencies that existed in the

user’s intuitive understanding of the domain (and had been manifested in the idealized

behaviours supplied by the user, but not in the “ideal” model) has been discovered by

the machinery.

User-generated idealized behaviours: With the model in Figure 4.4 in mind, the i*

modeler gave us a message log with 12 entries (each of which was a request message)

and a process log with 35 entries. The machinery then extracted a partial i* model

with the following characteristics. Of the 23 dependencies in the original user model,

we discovered 19 dependencies (relating the correct pairs of actors and tasks). We also

extracted 9 new dependencies that were not part of the user’s original model. Figure

4.5 shows the model that was extracted. The bold lines denote false positives and the

dashed lines denote false negatives.

4.4. Evaluation 122

User-filtered “as-is” behaviours: In this part of the evaluation, the i* modeler

revealed the idealized model to the research team. This was used to generate 5 be-

haviours (i.e., 5 sets of 〈 message-log, process-log 〉 pairs). The message logs varied

in length from 2 to 10 messages per log. The process logs varied in length from 9 to

13 entries. We additionally generated 5 incorrect behaviours, by randomly selecting

1 dependency in each case and randomly changing either the depender or dependee

actor, or the source or target task. We then interleaved the 5 correct and 5 incor-

rect behaviours and presented these to the i* modeler. Our intent was to simulate

the execution of an imperfect system/process, whose behaviour would be represented

by the interleaved logs. The i* modeler was then asked to remove from the message

and process logs entries that did not correspond to the intuitions that were repre-

sented in the idealized model. We then applied the machinery to extract a partial i*

model from the filtered logs. We discovered 19 of the original 23 dependencies in the

idealized model (this was an identical result to the evaluation using user-generated

idealized behaviours) and 10 new dependencies. Of these 10 new dependencies, 6 were

distinct to the dependencies extracted in the evaluation using user-generated idealized

behaviours. The i* modeler also suggested that 9 of the new dependencies discovered

were largely in accord with his intuitions about the domain being modeled, but had

not been reflected in the idealized model that he had initially generated. This suggests

that this approach can help surface implicit requirements via the filtering of noisy be-

haviours. The extracted model is shown in Figure 4.6 below. As before, the bold lines

denote false positives and the dashed lines denote false negatives.

As discussed in the previous section, the existence of multiple dependencies between

the same pair of actors in this model prevented us from correlating the task pairs gen-

erated by the TDCE technique with the dependencies generated by the DE technique.

The net upshot was that we had several “unnamed” dependencies. Nonetheless, discov-

4.5. Related works 123

ering the existence of dependencies, even in the absence of goal designators, provides

valuable insights.

Overall, this part of the evaluation suggests that there is merit in the general idea

of using this machinery to improve the quality of requirements extracted, although the

machinery missed some dependencies and generated some false positives.

4.5 Related works

The idea to utilize history data of process execution as a data source is not new [7, 45,

46, 249]. One research area where this idea grows rapidly is process mining. Process

mining is a research discipline that discovers, monitors and improves real processes

by extracting knowledge from event logs readily available from today’s system [245].

It links the modeled behavior on one hand and the observed behavior on the other

hand. There are three types of process mining techniques: discovery, conformance, and

enhancement. Process discovery techniques take an event log as input and produces

model that best described the behavior observed in the log, mostly to provide insights

into what occurs in reality. Conformance checking techniques takes a process model

and an event log of the same process as input and compares the observed behavior in

the log with the behavior allowed by the model to identify where and when deviations

occur, and measure the severity of such deviations. Enhancement techniques take

a process model and an event log as input to extend and improve the model with

information extracted from the log.

The research reported in this chapter is related in some ways to the process discov-

ery techniques, in that we use process logs as one of several data sources. But unlike

process mining, we use the process log to discover the correlation between tasks of

different actors in a dependency.

Other area that also exploits this idea is the requirements elicitation process. Men-

4.5. Related works 124

dizabal et. al [176] proposed an approach to leverage web server logs as a represen-

tation of realistic user behaviors to support non-functional requirements elicitation

and prioritization. It uses basic statistic analysis and application usage information to

automatically identify the most relevant requirements. Although this approach shares

the same intuitions with our work, but in this work, we use different techniques, such

as sequential patterns mining, to extract the requirements model.

Requirements elicitation can also be performed by extracting the intentions or

goal designator from natural language texts. A body of existing work, such as [38, 72],

proposed and implemented this approach. Breaux and Anton [38] implemented the

extraction of requirements in terms of rights and obligations in privacy and security

setting. They developed a methodology called Semantic Parameterization that is used

to map words that describe concepts from simple sentences into first-order predicate

logic expressions. Fliedl et al. [72] presented heuristics that support the automatic

generation of conceptual dynamic schemas based on textual scenarios. They introduce

a conceptual schema model to collect functional requirements and support the associ-

ation of a conceptual primitive to a given natural language phrase. Our work also uses

logs in natural language as a source to extract goal designator, however the evaluation

use simpler proof-of-concept implementation.

The Business Intelligence Model (BIM) [127] has the ability to serve as a data-

driven dashboard for enterprise. It represents the internal and external business and

environment by providing different views of the system and a range of analyses to

support managers in making decisions at each level of management. BIM extends the

notion of conceptual schema to include strategic objectives, business processes, risks

and trends. This ability as enterprise dashboard bears some relation to our proposal

in that our work also owns the ability to presents goal or intentions modeling as an

internal abstract level view of a system.

4.6. Summary 125

Approaches to run-time adaptation also relevant to our work. Several approaches

have been proposed including run-time adaptation through advance design tools [18] or

dynamic modeling language [102]. Ardagna and Pernici [18] presented an approach to

manage adaptation design-time and runtime execution by providing advanced design

tools and separating the design from the run-time part in the composition process.

Another approach to run-time adaptation by Grossmann et al. [102] proposed to re-

configure the design of a service process in case of a run-time failure and to consider new

alternative services in the composition. They defined a dynamic modelling language

to support the dynamic structure of models and models changes without generating

code.

4.6 Summary

In this chapter preliminary evidence was provided to support the hypotheses that

data-driven extraction of requirements models can be effective, and that this approach,

coupled with user involvement in identifying undesirable behaviour traces, can lead to

more accurate models. This evaluation was performed in the context of i* models, and

have further simplified the problem by focusing not on extracting complete i* models,

but only the dependencies and the task dependency correlations.

Acknowledgment: This section has been published in the Tenth Asia-Pacic Con-

ference on Conceptual Modelling (APCCM 2014) at Auckland, New Zealand on Jan-

uary 2014. This was a collaboration work between the author (Metta Santiputri) with

the author’s supervisors (Prof. Aditya Ghose and Dr. Hoa Khanh Dam) and another

colleague (Ayu Saraswati). The author’s supervisors provided the guidance specifi-

cally in the direction of the work and the final reviews before the publication. The

development of the methods and the evaluation were mainly performed by the author,

while the implementation of the methods into a working program was divided equally

4.6. Summary 126

between the author and the colleague.

Chapter 5

Towards data-driven enterprise

architectures: Discovering

correlations between the business

and application layers in ArchiMate

It is generally acknowledge that enterprise architecture (EA) is a valuable asset to an

enterprise [140, 153, 286]. However, organizations often reluctant from devoting their

resources in these tasks, either because the investment considered to be relatively high,

or EA is difficult to maintain. Several studies have developed techniques for develop-

ing EA using automatic data acquisition, such as [40, 68, 125], but these techniques

required significant effort to map the collected data into elements of an EA [68].

In this chapter, an approach to mine the relationships between two layers of enter-

prise architecture, i.e. business layer and application layer is presented. The method

is introduced in Section 5.1. Two logs were leveraged in the method as explained in

Section 5.3. The mapping of the data sources to the model is further explained in

Section 5.4. Section 5.5 introduces the mining method that was used in the approach.

127

5.1. Introduction 128

Four different settings used in the approach are presented in detail in Section 5.6

while the mining of the relationships is presented in Section 5.7. An evaluation to the

method is provided in Section 5.8. Section 5.10 presents a summary of this chapter.

5.1 Introduction

An enterprise architecture gives an organization a broad and complete representation

of all of its resources, both physical and conceptual, relationships between them, and

how they help the enterprise achieve their objectives [153, 286]. With the aid of a

well-defined EA, an enterprise may gain insights into opportunities and innovations,

as well as determine any needs for change and asses any impact of the proposed

change [140, 286].

However, even though the benefits of developing and maintaining an EA are self-

evident, organizations often reluctant from devoting their resources in these tasks. Two

main reasons according to [219] are as follows. First, the opinion that the investment

in developing and maintaining EA is relatively high compares to the benefits, although

this mostly has to do with the lack of recognition of the true nature of these benefits.

It is a well known fact that a costly investment, both in effort and time, is required

during data acquisition to describe the enterprise setting, especially in a complex

and diverse environment, for instance when the environment covers both virtual and

physical applications and infrastructures in several different locations [12, 68, 140].

Second, in the event of rapid change, EA is difficult to maintain. By the time an EA

conclude its development, it is possible that it does not reflect the underlying reality

due to constant transformation of the environment [12].

Therefore, mechanism to produce an EA from enterprise data, such as business pro-

cess execution histories, would be beneficial for an enterprise (albeit a semi-automatic

one) as it would be able to mitigate these drawbacks in EA development and mainte-

5.1. Introduction 129

nance, either in resource, cost or time as discussed above. Ideally, with this mechanism,

the resource and cost it took to develop and maintain an EA would be drastically re-

duced. Furthermore, with reduced time, an EA development would be able to adjust

to a rapid changing environment.

Several studies have developed techniques for developing EA using automatic data

acquisition, such as [40, 68, 125]. However these techniques required significant effort to

map the collected data into elements of an EA [68]. Some techniques such as [40, 125]

capture some elements of different layers in an EA, namely application and technology

layers, using network scanner to discover the network topology. Next, the resulting

elements are mapped into services in both layers. Process mining [249, 268] also

provides some assistance to generate the higher abstraction layer, namely the business

layer. However, these research only extract elements in each layer and there have been

no studies into extracting the relationships between multiple layers.

One of the most prominent EA modeling framework is the ArchiMate frame-

work [240]. It provides a graphical notation to represent entities in an enterprise

and their relationships in a hierarchical fashion. An ArchiMate model thus consists

of three layers, i.e., the business layer, the application layer, and the technology layer,

which corresponds to the abstraction hierarchy in a model, with the business layer as

the highest abstraction, the application is in the lower abstraction, and the technol-

ogy layer being the lowest abstraction level in a model. One of the main advantage

in ArchiMate is that it offers a formal notation, with which we are able to leverage

in our work, as well as its tool support and widespread adoption. Nonetheless, the

conceptual discovery that we identify are also suitable with different frameworks.

The contribution of this chapter is a data-driven method to determine the cor-

relations between multiple layers in an ArchiMate model, namely the business and

application layers. The input of the method is a timestamped record of events that

5.2. Data-driven enterprise architectures: A general approach 130

describe the start or end of a process task or function, usually referred as event log.

We distinguish two types of event log based on their abstraction level, an event log

that corresponds to events in the higher level of abstraction (i.e., business layer) and

an event log that represents events from the lower abstraction level (i.e., application

layer). The proposed method combines time correlation heuristics [69] and frequent

closed sequence pattern mining [94, 262, 275] to discover the relationships between

components in multiple levels of abstraction. The correlations discovered using our

proposed method creates a preliminary (“first-cut”) version of partial EA. Nonethe-

less, this preliminary version are able to assist enterprise architects to build or develop

EA as it will provide the basic model that can be edited accordingly.

5.2 Data-driven enterprise architectures: A gen-

eral approach

We present a general framework for leveraging enterprise data in the development and

management of enterprise architectures. The specific technical proposal (presented

over the next several sections) can then be viewed as an instantiation of a specific

component of this general framework. The following discussion is not specific to any

particular enterprise architecture framework, but draws freely on elements of the Zach-

man framework [28], TOGAF [9] and Archimate for examples.

The motivations for a data-driven approach to enterprise architectures are ad-

dressed first. Given the growing body of sophisticated data analysis tools, a data-

driven approach to enterprise architecture can deliver value in a number of ways.

• The acquisition bottleneck: It is generally acknowledged that building an enter-

prise architecture involves significant investments in time and effort. Organi-

zations sometimes choose not to make the investment, possible because their

5.2. Data-driven enterprise architectures: A general approach 131

limited understanding of the long-term value of building and maintaining an en-

terprise architecture does not suggest a clear return on investment. The problem

is a version of the well-known knowledge acquisition bottleneck. Enterprise data

can be mined to obtain first-cut or draft enterprise architecture models, which

can be further refined by enterprise architects to obtain a more accurate repre-

sentation of the enterprise. The intent is therefore to generate adequate first-cut

models that can be easily edited, rather than“perfect” ones. The emphasis is

on improving the productivity of enterprise architects, and thus reducing the

investment required to acquire enterprise architectures.

• Characterizing the “to-be” enterprise: Enterprise data can be curated in ways

that can reveal a desired enterprise architecture - i.e., a picture of the enterprise

as it was when it operated optimally, and thus a pointer to how the enterprise

must look like in a normatively “ideal” mode. This approach has previously been

deployed in the context of business processes [7] and enterprise models in the

i* language [6]. The approach relies on the extraction from execution histories

of desirable executions, i.e., data that reflects the operations of the enterprise

when things went well. Ex- tracting enterprise architectures from this subset of

past execution histories ensures that we obtain desired enteprise architectures, as

opposed enterprise architectures extracted from data capturing periods of both

optimal and sub-optimal enterprise performance. If past execution histories are

annotated with performance indicators (these could be of a wide variety, includ-

ing the full repertoire of key performance indicators that feature in the Balanced

Scorecard framework [14]) then automating the extraction of this subset is rela-

tively easy.

• Anti-patterns: In the same way that execution histories that reflect periods of

optimal enterprise performance provide a good basis for mining desired enterprise

5.2. Data-driven enterprise architectures: A general approach 132

architecture models, execution histories from periods of sub-optimal enterprise

performance can form the basis for mining enterprise architectures that describe

what not to do (or enterprise configurations to be avoided). These play much the

same role as anti-patterns [2], and can provide valuable management guidance.

• Enterprise architecture governance: Enterprise architecture frameworks such as

TOGAF and Archimate provide detailed governance. A data-driven approach

to enterprise architecture can support almost the full range of governance func-

tions that these guidelines stipulate. In our discussion below, we will focus

on two aspects of enterprise architecture governance where data analytics has,

arguable, the most compelling impact: monitoring/conformance analysis and

strategic alignment. We consider monitoring and conformance analysis first.

The execution of any artefact that encodes a specification of behaviour can be

monitored to ensure that actual, observed behaviour satisfies the properties spec-

ified. A related term, more commonly used in the context of process mining is

conformance, where the intent is to ensure that there is no deviation from the

normative behaviour specified. An enterprise architecture can also be viewed as

a highly abstract specification of enterprise behaviour (but also structure, capa-

bilities etc.). Viewed thus, it also makes sense to analyze enterprise architecture

conformance, i.e., determine whether actual enterprise behaviour corresponds

to the normative behaviour stipulated in the enterprise architecture. A data-

driven approach can enable this analysis by extracting an observed enterprise

architecture from available data, which can then be placed in juxtaposition to

the normative enterprise architecture to determine if and where deviations or

discrepancies have occurred. Similarly, temporal co-occurrence or co- variance

patterns relating strategy fulfillment with the execution of elements of an enter-

prise architecture (in a manner similar to the technical proposal we present in

5.2. Data-driven enterprise architectures: A general approach 133

the next several sections) can provide clues to strategic alignment.

• The enterprise architecture as a lever for change: An enterprise architecture

is often viewed as a dashboard that provides an abstract collection of sensors

through which a complex underlying reality can be viewed. Data-driven extrac-

tion of enterprise architectures can enable a sensor dashboard view of the enter-

prise. More interestingly, it can support the use of an enterprise architecture as

a collection of effectors, i.e., levers through which an enterprise can be managed.

One approach is to use enterprise architecture abstractions to define the to-be

enterprise, then leverage the mined enterprise architecture-data correlations to

determine the specific execution histories/enterprise data one would require such

that these, if mined using the same approach, would yield the specified (desired)

enterprise architecture.

It is useful consider next the types of enterprise data that can be leveraged for

mining enterprise architectures:

• Process/event logs: Process or event logs can be a valuable source of information

about thebehaviour of the enterprise. These are the most readily available form of

execution histories that were referred to in the preceding discussion. In addition

to recording task execution events, event logs can also record a wider repertoire

of events such as object state transitions, the invocation of functions, the open-

ing and closing of application programs, the receipt or despatch of messages and

so on. These events provide a rich source of information about enterprise be-

haviour. Typically, each entry in such logs contains the following: (1) A case

identifier that describes which process instance a given event is associated with

(e.g., the particular claim that an instance of a insurance claim handling process

addressed) (2) An event descriptor which could simply be a tack/activity ID,

5.2. Data-driven enterprise architectures: A general approach 134

or a description of object state transition and (3) A time-stamp. That latter is

particularly interesting, since it allows us to determine the sequence in which

various behaviour milestones were achieved, and analyze temporal co-occurrence

and co-variance of the events logged.

• Resourcing logs: Information on who did what (and when) is available in a variety

of enterprise data sources. For instance, process/event logs, as discussed above,

often contain information on the resources used for executing a given task. Task

assignment sheets (or their electroning variants), staff rosters and the like also

record similar information. Data of this kind can be valuable in determining role

models, organizational structures, business architectures and so on.

• Message logs: Organizations routinely log phone calls, social media posts, emails

and other forms of messages (including messages in various standards such as

ebXML). The actual payload of messages, the time messages were sent or re-

ceived and identities (and organizational unit affiliations) of the senders and

recipients can serve as a rich source of information for mining a variety of enter-

prise architecture elements including strategies/goals, capabilities, roles as well

relationships between a range of enterprise architecture elements.

• Enterprise social media: Posts on enterprise social media also provide a rich

source of information on most of the aspects of enterprise architecture discussed

above.

• Enterprise document repositories: Organizations typically maintain repositories

(and for most modern organizations, in electronic form) of a range of documents

such as requirements documents, policy and legal documents, manuals, standard

operating procedures, investor- and stakeholder-oriented documents (such as a

prospectus), strategy documents and so on. These contain clues to various as-

5.3. Event logs 135

pects of an enterprise architecture and can be effectively text-mined (although

a document itself can sometimes form part of an enterprise architecture).

As with all forms of modeling, defining an enterprise architecture involves specifying

concepts/entities (such as a role, a service, a task or a goal) and their inter-relationships

(such as the relationship between a role and a task or between elements of a TOGAF

business architecture and a TOGAF information systems architecture). In abstract

terms, the problem of extracting an enterprise architecture from data reduces to two

distinct exercises: (1) Mining concepts/entities and (2) Mining relationships. A simple

means of mining lower-level (infrastructure-level and application-level) entities is to

use networks scanners or network crawlers (prior work has addressed the acquisition

of enterprise architecture elements using such tools [21, 26]). Concepts or entities such

as roles, goals/strategies, capabilities, business services, organizational units can also

be identified by text mining some of the textual data sources (message logs, document

repositories and enterprise social media, for instance) discussed above. Some concepts

and entities, such as tasks or capabilities and roles can be directly extracted from data

sources such as event logs and resourcing logs. A more complex challenge is to extract

relationships between concepts/entities. Clues about such relationships can be mined

from textual sources but can also be extracted from event logs by exploiting sequential

or co-occurrence relationships between events of various types (our specific technical

proposal in this research is an instance of this general approach).

5.3 Event logs

We distinguish two types of event log based on their abstraction level, an event log

that corresponds to events in the higher level of abstraction (i.e., business layer) and

an event log that represents events from the lower abstraction level (i.e., application

layer). For convenience, we refer to the log that records the events in the business

5.4. Mapping between logs and layer components 136

layer as process log and the event log from the application layer simply as event log.

Presumably both type of logs, process log and event log, are available.

A process log is a set of tuples 〈timestamp, ID, task, actor〉. The timestamp value

indicates the time the task is executed while ID identified the process instance that

the task belongs to. The actor records the user executing the task. At any given

time, there possibly many process instances (of the same process design or distinct

process designs) to be executed concurrently. We also define ε as the execution time

of a task. Event log is identical to process log, however instead of tasks, an event

log records events related to the functions. An event log consists of a set of tuples

〈timestamp, function, source〉 where timestamp signify the time when the function

is started and source identify the application, service, or component that executed

or logged the function. The process log can be generated using a variety of business

process management tools or process logging tools. On the other hand, the event

log can be obtained from any operating systems where function calls are recorded.

One such example is the Application log which can be accessed from the Microsoft

Windows Event Viewer.

5.4 Mapping between logs and layer components

Before we can mine the correlations between the business and application layer, first

we need to map the components in the process and event log to the components in

the ArchiMate layers.

The mapping between process log and the business layer is clear-cut. A task rep-

resents the activity or work (atomic or non-atomic) that needs to be performed by an

actor in an organization. In ArchiMate, the actual work that must be performed (by

actors and their associated roles) is defined in the business behavior concept. There-

fore, the mapping between process log and ArchiMate are as follows: the combination

5.4. Mapping between logs and layer components 137

Figure 5.1: Microsoft Windows Event Viewer, an instance of event log in the applica-
tion layer

of ID and task is mapped to the business process and the actor who perform the task

is mapped to business actor.

The mapping between event log and application layer is not so straightforward.

The external view of application layer is represented by the application service where

application service serves the business process and exhibit the external behavioral

concept of application layer. In the event log, a function is started when there is a

request from external user thus it represents the behavior that is accessible to external

user which is similar to the external behavioral concept in ArchiMate. Therefore we

mapped the function in the event log to the application service in the ArchiMate appli-

cation layer. Application component in ArchiMate is defined as a modular, deployable,

and replaceable part of a software system that encapsulates its behavior and data. In

the event log, we recognize this concept as similar to the Source field of the function

invocation where the source represents the application, service, or component that the

function belongs to. Therefore the source is mapped to the application component in

5.5. Frequent closed sequential pattern 138

ArchiMate application layer.

The mapping between the logs and the ArchiMate layers are presented in Table 5.1.

Table 5.1: Mapping Between Logs and Layer Components

Process log Business layer

ID
task

actor

Event log Application layer

function

source

Therefore we can infer the correlation between ArchiMate layers from the relation-

ship between the process log and the event log, more specifically between (ID,task)-

combination in the process log and function in the event log.

5.5 Frequent closed sequential pattern

We particularly interested in the sequential pattern mining techniques because the

logs consists of sequential events. There is a large volume of research that propose

techniques to discover sequential pattern (see Section 2.5.2 for a number of example

of established techniques), such as SPADE [290]. They generate all permutation of

sequences and count the number of their occurrences in the data set. Only the sequence

whose frequency exceed a specified threshold (refer as pre-defined minimum support

(minsupport)) is returned.

Similar to sequential pattern algorithms, closed sequential pattern algorithms also

generate all permutation of sequence patterns and then examine their frequency against

the minimum support value, however only the sequence that do not contain any sub-

sequence with the same support will be returned. Few examples of such algorithms

are CloSpan [275], BIDE+ [262], ClaSP[94] and CM-ClaSP [74],

5.6. Generating joined log 139

Given two pattern, S and S ′, both has the same frequency (assumed that this

frequency exceeds the minimum support) and S ′ is a subsequence of S, then both S

and S ′ are considered as frequent sequence, however only S is considered as frequent

closed sequence.

Table 5.2: Frequent sequence vs. frequent closed sequence

Sequences = {CAABC, ABCB,CABC,BBCA}
Frequent sequences = {A:4, AA:2, AB:4, ABB:2,
ABC:4, AC:4, B:4, BB:2, BC:4, C:4, CA:3, CAB:2,
CABC:2, CAC:2, CB:3, CBC:2, CC:2}
Frequent closed sequences = {AA:2, ABB:2, ABC:4,
CA:3, CABC:2, CB:3}

Table 5.2 shows a data set consists of four sequences. Assume that the minimum

support is set to 50% i.e., 2. As a result, frequent sequential pattern mining algorithms

and frequent closed sequential pattern mining return different set. For instance, both

CBC and CABC are considered as frequent sequence, however only sequence CABC is

considered as frequent closed sequence, however CBC is not a frequent closed sequence

because both has the same support, i.e., 2, and the pattern CBC is a subsequence of

CABC.

5.6 Generating joined log

We examine the problem of mining the relationship between the process log and the

event log in two different scenarios: (1) a complete timestamp scenario where the

start and end times of all tasks are available in the process log; and (2) a partial

timestamp scenario where for each task only the start time is known but not the

end time.

We assume that all possible behaviours of task and function fall under these two

scenarios. During its execution, a task may required that a set of functions to accom-

5.6. Generating joined log 140

plish its operation. Depending on the underlying system, some protocol, such as TCP,

may require the function to return an acknowledgment to the task. In this case, the

completion of the function can be recorded. However, in the setting where the com-

munication model is connectionless, such as in UDP protocol, these acknowledgment

is never exist, thus the completion of a function can not be recorded.

In relation to task execution, we consider two different settings: (1) a unique task

setting which stipulates that only one task may be executed at any given time; and

(2) a concurrent task setting admits the possibility of multiple tasks executing at

the same time. The latter setting may be of interest if the process being executed

admits parallel flows, or if multiple instances (of one or more process designs) are

executed at the same time.

In all four possible setting combinations, to determine the correlation be-

tween the process log and the event log, we first create a joined log of

the form: 〈〈〈p1, 〈〈f11〉, . . . , 〈f1n〉〉〉, . . . , 〈pi, 〈〈fi1〉, . . . , 〈fim〉〉〉, . . . 〈pj, 〈〈fj1〉, . . . , 〈fjk〉〉〉

where each 〈pi, pi+1〉 pair represents contiguous tasks and each fij represents the j-

th function invoked during task execution time, εpi . This joined log represents the

sequence database provided as input to the frequent closed sequential pattern miner.

The difference between these four settings lies in the generation of the joined log,

more specifically on how we define ε in each setting. This point is important because

any function serves any particular task must be invoked during the execution duration

of the corresponding task. To illustrate this point, an example for each setting is

presented in Table 5.3 and 5.4.

Let us consider the first example in the complete timestamp-unique task setting

presented in Table 5.3(a). There are two process instances with ID ID1 and ID2,

each process instance consists of three tasks P = {p1, p2, p3}. There is also a set of

functions F = {f1, f2, f3, f4}. The corresponding process log and event log are shown

5.6. Generating joined log 141

in Table 5.3(a)(1) and Table 5.3(a)(2). Since in this setting, the process log records

the start and end time for task pi, thus ε for any task pi is the duration time between

start and end time. Because all functions that serves task pi is invoked during ε,

therefore in this setting, for both process instances, the first sequence is 〈p1, 〈f1, f2〉〉

because functions 〈f1, f2〉 are started during the execution period of task p1. The

second sequence is generated for task p2 with functions 〈f4, f2〉 as well as functions

〈f2, f3〉 with task p3. The joined log is shown in Table 5.3(a)(3).

In the case where the complete time assumption is relaxed, we obtain the partial

timestamp setting. In this setting, the start time of a task is known, but the end

time is not recorded. However, with the unique task setting, it is guaranteed that in

any given time, there is only one single task being executed. Therefore, although the

end time of task is not recorded, we use the start time of the subsequent task as the

surrogate end time, as illustrated in the timeline in Table 5.3(b). With the start and

end time of task established, we can determine ε of each task and use it to generate

the joined log. In the example, the process log and event log are shown in Table

Table 5.3(b)(1) and Table 5.3(b)(2), respectively. The joined log from both these logs

is presented in Table 5.3(b)(3). We observe that the result joined log is identical with

the complete timestamp-unique task setting in the previous example. However, we

also observe that since the last task does not have any subsequent task, we must make

an assumption. In that case, we use the end of the log as the surrogate end time.

In the concurrent task setting, we admit the possibility of multiple tasks may

be performed at the same time. First we consider the complete timestamp scenario.

With this scenario, the ε of any given task can be established and the functions invoked

during ε can be determined. The main difference with the unique time setting being

that not all function invocations during that duration may be related to that particular

task. However, the joined log is generated in identical manner. Looking at the timeline

5.7. Mining the sequence patterns 142

in Table 5.4(c) and the process log and event log in Table 5.4(c)(1) and Table 5.4(c)(2),

we generate the joined log in Table 5.4(c)(3).

In the last setting, i.e., partial timestamp-concurrent task setting, we can not use

the same assumption as in the unique task setting where we use the subsequent task

start time as the surrogate end time. The end of the process log also acts as the end

of all task. The joined log generated using this provision has a cascading pattern as

shown in Table 5.4(d)(3). Furthermore, depends on the size of the log, the sequence

would potentially infinitely long, however this is unavoidable.

5.7 Mining the sequence patterns

We then use the joined log from the previous section as the input to the frequent

closed sequence pattern miner. In our instance, we will apply BIDE+ algorithm, but

other similar algorithms could be used instead. The miner then returns the sequence

〈pi, 〈fi1, . . . , fin〉〉 whose frequency is over the threshold to represent the correlation

of task pi and function sequence 〈fi1, . . . , fin〉. The threshold (minsupport) is bounded

from below by the number of distinct cases in which a specific task prefix pi occurs.

Back to the settings explained in the previous section, in the first three settings

(i.e., complete timestamp-unique task setting, partial timestamp-unique task setting,

and complete timestamp-concurrent task setting) we can apply the pattern miner to

the joined log directly. As previously mentioned, to guarantee that we pick up the

correct function sequence correlated to a particular task, we use the number of distinct

cases with the task as prefix as threshold, or in other word, for each task, we set the

threshold for all sequences with the that particular task prefix to 100%.

Let us consider our example. In the first joined log in Table 5.3(a)(3), for p1, we get

sequences {〈p1, 〈f1, f2〉〉, 〈p1, 〈f1, f2〉〉}. Using the pattern miner with 100% threshold,

we get the result 〈p1, 〈f1, f2〉〉, which is interpreted that task p1 is related to functions

5.7. Mining the sequence patterns 143

Table 5.3: Unique task setting

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25
time (t)

[ID1]p
start
1 [ID1]p

end
1

[ID1]p
start
2

[ID1]p
end
2

[ID1]p
start
3

[ID1]p
end
3

[ID2]p
start
1

[ID2]p
end
1

[ID2]p
start
2

[ID2]p
end
2

[ID2]p
start
3

[ID2]p
end
3

ε[ID1]p1
ε[ID1]p2

ε[ID1]p3
ε[ID2]p1

ε[ID2]p2
ε[ID2]p3

f1 f2 f4 f2 f2 f3 f1 f2 f4 f2 f2 f3

(1) Process log (2) Function log (3) Joined log

timestamp ID task

t0 ID1 pstart1

t3 ID1 pend1

t4 ID1 pstart2

t7 ID1 pend2

t8 ID1 pstart3

t11 ID1 pend3

t12 ID2 pstart1

t15 ID2 pend1

t16 ID2 pstart2

t19 ID2 pend2

t20 ID2 pstart3

t23 ID2 pend3

timestamp function

t1 f1
t2 f2
t5 f4
t6 f2
t9 f2
t10 f3
t13 f1
t14 f2
t17 f4
t18 f2
t21 f2
t12 f3

sequence

〈p1, 〈f1, f2〉〉
〈p2, 〈f4, f2〉〉
〈p3, 〈f2, f3〉〉
〈p1, 〈f1, f2〉〉
〈p2, 〈f4, f2〉〉
〈p3, 〈f2, f3〉〉

(a) Complete timestamp-unique task setting

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25
time (t)

[ID1]p
start
1 [ID1]p

start
2 [ID1]p

start
3 [ID2]p

start
1 [ID2]p

start
2 [ID2]p

start
3

ε[ID1]p1

ε[ID1]p2

ε[ID1]p3

ε[ID2]p1

ε[ID2]p2

ε[ID2]p3

f1 f2 f4 f2 f2 f3 f1 f2 f4 f2 f2 f3

(1) Process log (2) Function log (3) Joined log

timestamp ID task

t0 ID1 pstart1

t4 ID1 pstart2

t8 ID1 pstart3

t12 ID2 pstart1

t16 ID2 pstart2

t20 ID2 pstart3

timestamp function

t1 f1
t2 f2
t5 f4
t6 f2
t9 f2
t10 f3
t13 f1
t14 f2
t17 f4
t18 f2
t21 f2
t22 f3

sequence

〈p1, 〈f1, f2〉〉
〈p2, 〈f4, f2〉〉
〈p3, 〈f2, f3〉〉
〈p1, 〈f1, f2〉〉
〈p2, 〈f4, f2〉〉
〈p3, 〈f2, f3〉〉

(b) Partial timestamp-unique task setting

5.7. Mining the sequence patterns 144

Table 5.4: Concurrent task setting

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25
time (t)

[ID1]p
start
1 [ID1]p

end
1

[ID2]p
start
1

[ID2]p
end
1

[ID1]p
start
2

[ID1]p
end
2

[ID1]p
start
3

[ID1]p
end
3

[ID2]p
start
2

[ID2]p
end
2

[ID2]p
start
3

[ID2]p
end
3

ε[ID1]p1

ε[ID2]p1

ε[ID1]p2
ε[ID1]p3

ε[ID2]p2

ε[ID2]p3

f1 f2 f1 f4 f2 f2 f2 f3 f4 f2 f2 f3

(1) Process log (2) Function log (3) Joined log

timestamp ID task

t0 ID1 pstart1

t4 ID2 pstart1

t5 ID1 pend1

t8 ID1 pstart2

t11 ID2 pend1

t13 ID1 pend2

t15 ID1 pstart3

t18 ID2 pstart2

t19 ID1 pend3

t21 ID2 pstart3

t22 ID2 pend2

t25 ID2 pend3

timestamp function

t1 f1
t2 f2
t7 f1
t9 f4
t10 f2
t12 f2
t16 f2
t17 f3
t19 f4
t20 f2
t23 f2
t24 f3

sequence

〈p1, 〈f1, f2〉〉
〈p1, 〈f1, f4, f2〉〉
〈p2, 〈f4, f2, f2〉〉
〈p3, 〈f2, f3, f4〉〉
〈p2, 〈f4, f2〉〉
〈p3, 〈f2, f3〉〉

(c) Complete timestamp-concurrent task setting

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25
time (t)

[ID1]p
start
1 [ID2]p

start
1 [ID1]p

start
2 [ID1]p

start
3 [ID2]p

start
2 [ID2]p

start
3

ε[ID1]p1

ε[ID2]p1

ε[ID1]p2

ε[ID1]p3

ε[ID2]p2

ε[ID2]p3

f1 f2 f1 f4 f2 f2 f2 f3 f4 f2 f2 f3

(1) Process log (2) Function log (3) Joined log

timestamp ID task

t0 ID1 pstart1

t4 ID2 pstart1

t8 ID1 pstart2

t15 ID1 pstart3

t18 ID2 pstart2

t21 ID2 pstart3

timestamp function

t1 f1
t2 f2
t7 f1
t9 f4
t10 f2
t12 f2
t16 f2
t17 f3
t19 f4
t20 f2
t23 f2
t24 f3

sequence

〈p1, 〈f1, f2, f1, f4, f2, f2, f2, f3, f4, f2, f2, f3〉〉
〈p1, 〈f1, f4, f2, f2, f2, f3, f4, f2, f2, f3〉〉
〈p2, 〈f4, f2, f2, f2, f3, f4, f2, f2, f3〉〉
〈p3, 〈f2, f3, f4, f2, f2, f3〉〉
〈p2, 〈f4, f2, f2, f3〉〉
〈p3, 〈f2, f3〉〉

(d) Partial timestamp-concurrent task setting

5.7. Mining the sequence patterns 145

f1 and f2, or in ArchiMate terms, that f1 and f2 serve task p1. Next, we move to

the next task, which is task p2, with sequences {〈p2, 〈f4, f2〉〉, 〈p2, 〈f4, f2〉〉}, and we

will get the result 〈p2, 〈f4, f2〉〉. The same method can be applied to the joined table

in Table 5.3(b)(3) for the next setting, partial timestamp-unique task setting, and we

will get the same result. The joined table in Table 5.4(c)(3) for complete timestamp-

concurrent task setting is slightly different, but applying the same method generates

the same result.

In the last setting, partial timestamp-concurrent task setting, we need to adjust the

application of the miner to serve the cascading pattern that emerge as the consequence

of the missing end time of the task. In [219], the author proposed an approach to mine

the patterns from this type of log. The method suggested to start from the last task

(refer as plast) in the log and gradually working backwards. The last task is chosen

as the starting point because the last task always has the shortest sequence. All

sequences that contains plast as its prefix then used as input to the miner and get a

function sequence (refer as Fplast) as the result. Moving to the previous task in the log,

first we have to remove all subsequence Fplast from the sequence, times the number

of subsequent plast in the process log. The result sequences is then put through the

miner to get the function sequence. This method is repeated until we reach the first

task in the log. However, we acknowledge that this method rely heavily on the fact

that all functions related to tasks other than plast are invoked before the start time of

plast and all functions invoked after the start time of plast are only functions related

to plast. In this chapter, we propose an improvement of the method by employing two

heuristics for mining correlations in the partial timestamp-concurrent task setting.

Window Related Heuristic: We resolve the cascading patterns in the joined

table by introducing the sliding window, as introduced by Srikant and Agrawal in [232].

Using sliding window, the sequence contributes to the support only when the difference

5.7. Mining the sequence patterns 146

in transaction-times is less than the user-specified window-size. In our setting, we

define the window that represents all possible function invocations for a particular task

(ωpi) as the maximum of the execution times of all task pi in the log (i.e., Max(εpi)).

So, with respect to pstarti , all functions related to pi must be invoked during pstarti until

pstarti + ωpi . In turn, any function invoked during during pstarti until pstarti + ωpi might

be related to pi (but not necessarily). With the introduction of the sliding window,

we can reduce this problem to be in the same domain as the complete timestamp-

concurrent task setting. Thus with our example in Table 5.4(d), adding the sliding

window, we get the timeline as illustrated in Table 5.5 and the joined table becomes

Table 5.5(3). We then can apply the pattern miner to generate the function sequence

related to each task.

Instance Related Heuristic: We consider that the full concurrency occurs on

process level, but not in the instance level. Therefore, multiple instances (from the

same process design or not) may executed at any given time, but inside an instance,

there is no concurrent task execution. Hence at any given time, in a particular instance,

only one task is executed. Hence, we can use the same method as in the partial

timestamp-unique task setting to determine the surrogate end time, where the end

time of a task is equal to the start time of the subsequent task ([IDj]p
end
i = [IDj]p

start
i+1 ,

where pi and pi+1 are subsequent tasks in an instance with ID = IDj). However, in

the case of the last task in an instance, since it does not have any subsequent task,

we still have to use the end of the log as its end time. Thus with our example in

Table 5.4(d), with this consideration, we get the timeline as illustrated in Table 5.6

and the joined table becomes Table 5.6(3). We then can apply the pattern miner to

generate the function sequence related to each task.

5.7. Mining the sequence patterns 147

Table 5.5: Concurrent task setting

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25
time (t)

[ID1]p
start
1 [ID2]p

start
1 [ID1]p

start
2 [ID1]p

start
3 [ID2]p

start
2 [ID2]p

start
3

ωp1

ωp1

ωp2

ωp3

ωp2

ωp3

f1 f2 f1 f4 f2 f2 f2 f3 f4 f2 f2 f3

(1) Process log (2) Function log (3) Joined log

timestamp ID task

t0 ID1 pstart1

t4 ID2 pstart1

t8 ID1 pstart2

t15 ID1 pstart3

t18 ID2 pstart2

t21 ID2 pstart3

timestamp function

t1 f1
t2 f2
t7 f1
t9 f4
t10 f2
t12 f2
t16 f2
t17 f3
t19 f4
t20 f2
t23 f2
t24 f3

sequence

〈p1, 〈f1, f2, f1〉〉
〈p1, 〈f1, f4, f2〉〉
〈p2, 〈f4, f2, f2〉〉
〈p3, 〈f2, f3, f4, f2〉〉
〈p2, 〈f4, f2, f2〉〉
〈p3, 〈f2, f3〉〉

(d) Partial timestamp-concurrent task setting

5.7. Mining the sequence patterns 148

Table 5.6: Concurrent task setting

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25
time (t)

[ID1]p
start
1 [ID2]p

start
1 [ID1]p

start
2 [ID1]p

start
3 [ID2]p

start
2 [ID2]p

start
3

ε[ID1]p1

ε[ID2]p1

ε[ID1]p2
ε[ID1]p3

ε[ID2]p2
ε[ID2]p3

f1 f2 f1 f4 f2 f2 f2 f3 f4 f2 f2 f3

(1) Process log (2) Function log (3) Joined log

timestamp ID task

t0 ID1 pstart1

t4 ID2 pstart1

t8 ID1 pstart2

t15 ID1 pstart3

t18 ID2 pstart2

t21 ID2 pstart3

timestamp function

t1 f1
t2 f2
t7 f1
t9 f4
t10 f2
t12 f2
t16 f2
t17 f3
t19 f4
t20 f2
t23 f2
t24 f3

sequence

〈p1, 〈f1, f2, f1〉〉
〈p1, 〈f1, f4, f2, f2, f2, f3〉〉
〈p2, 〈f4, f2, f2〉〉
〈p3, 〈f2, f3, f4, f2, f2, f3〉〉
〈p2, 〈f4, f2〉〉
〈p3, 〈f2, f3〉〉

(d) Partial timestamp-concurrent task setting

5.8. Evaluation 149

5.8 Evaluation

We perform the evaluation with an event log of a telephone repair process1. This

example describes a business process in a telephone repair company. When a customer

sends their telephone to be repaired, it is registered as a new case. The telephone

is then sent to the Problem Detection (PD) department. In this department, the

telephone is analyzed and its defect is categorized. After the problem is identified,

the telephone is sent to the Repair (R) department. Meanwhile, a letter is sent to the

customer to inform them about the problem. The Repair department has two teams:

one team to fix simple defects and another team to resolve more complex defects.

Once the telephone is fixed, it is sent to the Quality Assurance (QA) department to

be checked if the defect was indeed repaired or not. If the defect is not fixed yet,

the telephone is sent back to the Repair department. If the telephone is repaired, the

telephone is sent to the customer and the case is archived.

The event log consists of eight activities, which for simplicity we called them p1 to

p8. The log consists of 5460 events that represent 500 cases. Table 5.7 shows a small

section of the event log.

We consider this event log as the process log for our evaluation. However, this

log does not have the accompanied event log. Therefore, for our purpose we need to

simulate the event log based on the settings we need to evaluate. We generate applica-

tion service and their corresponding application components with notation Appn and

fi respectively. We then couple them with the business process that they serve. The

complete list is shown in Table 5.8.

We use the start event and complete event timestamp as the start time and the

end time of the activity, respectively. However upon closer inspection, we notice that

not all activity has a start event, although all activities have a complete event. We

1http://www.processmining.org/ media/tutorial/repairexample.zip

5.8. Evaluation 150

Table 5.7: A small section of the telephone repair event log

Case id Time Activity Event type Resource

0 2012-01-02T21:23:00+10:00 p1 complete System
0 2012-01-02T21:23:00+10:00 p2 start Tester3
0 2012-01-02T21:30:00+10:00 p2 complete Tester3
0 2012-01-02T21:31:00+10:00 p3 start SolverC1
0 2012-01-02T21:49:00+10:00 p3 complete SolverC1
0 2012-01-02T21:49:00+10:00 p5 start Tester3
0 2012-01-02T21:55:00+10:00 p5 complete Tester3
0 2012-01-02T22:10:00+10:00 p7 complete System
0 2012-01-02T22:10:00+10:00 p8 complete System
1 2012-01-01T20:09:00+10:00 p1 complete System
1 2012-01-01T20:09:00+10:00 p2 start Tester2
1 2012-01-01T20:15:00+10:00 p2 complete Tester2
1 2012-01-01T20:35:00+10:00 p4 start SolverS1
1 2012-01-01T20:42:00+10:00 p4 complete SolverS1
1 2012-01-01T20:42:00+10:00 p5 start Tester6
1 2012-01-01T20:48:00+10:00 p5 complete Tester6
1 2012-01-01T20:54:00+10:00 p6 complete System
1 2012-01-01T20:54:00+10:00 p4 start SolverS2
1 2012-01-01T20:55:00+10:00 p7 complete System
1 2012-01-01T21:03:00+10:00 p4 complete SolverS2
1 2012-01-01T21:03:00+10:00 p5 start Tester4
1 2012-01-01T21:09:00+10:00 p5 complete Tester4
1 2012-01-01T21:14:00+10:00 p8 complete System

.

Table 5.8: The business processes, application functions, and application components
and their correlations

Business Application
process function

p1 〈f1, f2〉
p2 〈f3, f4〉
p3 〈f5, f6, f7〉
p4 〈f5, f6〉
p5 〈f8, f9〉
p6 〈f10〉
p7 〈f11, f12〉
p8 〈f12〉

Application Application
component function

App1 f1, f2
App2 f3, f4, f5
App3 f6, f7, f8
App4 f9, f10, f11, f12

5.8. Evaluation 151

particularly need the start time because all scenarios or settings require that all tasks

have start time. There are three activities in particular that does not have a start

time, i.e., p1, p6, p7, and p8. Therefore we have to generate the start time for each

of these activities so that we can determine the task execution time, ε. We use the

following provision to calculate epsilon for tasks without start time:

εpi =

if i = 0

∑n
i=1 εpi/n and pstarti = pendi − εpi

if i > 0 pendi − pstarti , where pstarti = pendi−1

After we add in the start time for all activities, the log now contains 7152 entries.

Next we use this log in four different settings as defined in Section 5.6. For sequence

pattern mining, BIDE+ [262], a frequent sequential pattern mining algorithm from

SPMF pattern mining library [259] is used.

The process log now represents the complete timestamp scenario. The correspond-

ing event log was generated by assigning a random timestamp to related functions in

the duration of task execution, i.e., after task start time and before the end time. This

simulates functions that must be started for a task completion. We then apply the

method in Section 5.6 to generated the joined log on the complete timestamp - unique

task setting (we refer to this log as Setting1 log) and then use the sequence pattern

miner to mine the task-function correlation.

The log was then modified to reflect the second setting, partial timestamp - unique

task setting. In this setting, we remove the end time of all tasks. Following the method

explained in Section 5.6, we generate the joined log (we refer to this log as Setting2

log) and use it as the input to the pattern miner.

In the next setting, complete timestamp - concurrent task setting, to reflect the

concurrent task setting, we sorted the log by the timestamp in ascending order. Again,

we simulated the function call where its timestamp is between the start of the task

5.8. Evaluation 152

and task completion. Using the method described in the Section 5.6, the joined log

(refer as Setting3 log) is generated and use as input to the sequence pattern miner.

For the last setting, partial timestamp - concurrent task setting, we generated the

joined log (referred as Setting4 log) using the process log from the previous setting and

removed the end time of each task. Similar to the previous setting, we also simulated

the corresponding event log with random timestamp later than the start time of the

task. We use the assumption where the end of sequences is the end of the log (the log

was relatively small thus the sequences were not considerably long.)

Recall and precision value of every discovered correlation were used to measured the

performance of the technique. Perfect recall (where recall value is 100%) for a correla-

tion means that all functions that were invoked or started to accomplish task pi were

discovered in the generated sequence 〈pi, 〈fl, ..., fk〉〉. For instance, the recall for discov-

ered sequence 〈Archive User,〈〈f11, f12〉〉 is 100% for correlation 〈Archive User,〈〈f11〉〉.

Perfect precision (precision=100%) for task-function correlation means that only the

functions that were invoked or started to accomplish task pi were discovered in the

generated sequence 〈pi, 〈fl, ..., fk〉〉. For example, the precision for discovered sequence

〈Archive User,〈〈f11, f12〉〉 is 50% for correlation 〈Archive User,〈〈f11〉〉.

In our settings, Setting1 log measured in 100% both for recall and precision.

Setting1 log represents the setting where the complete timestamp was recorded in

the log thus all correlations are expected to be discovered correctly. Furthermore,

Setting1 log guaranteed that at any given time, only a single task is being executed,

thus all the functions correlated to any particular task would be started before the task

completion time. Thus, all function sequence always occurred during task execution

period and no other task may interfere with the execution of any particular task. For

these reason, we considered Setting1 log as our baseline in this evaluation. We get the

same results for Setting2 and Setting3 logs where both settings also produce 100%

5.9. Related works 153

value for both recall and precision.

Table 5.9 shows the result for Setting4 log. The average recall for this setting is

less than 100%. We conclude that this is due to the limitations of the pattern mining

library. In our case study, tasks p3 and p4 shared functions {f5, f6}. This caused some

repetitions in the sequence which seems to not be able to be picked up properly by

the pattern mining library.

Table 5.9: Log4 Result

Task Function Discovered Recall Precision
Sequence Sequence

p1 〈f1, f2〉 〈f1, f2〉 1 1
p2 〈f3, f4〉 〈f3, f4〉 1 1
p3 〈f5, f6, f7〉 〈f5, f6〉 0.67 1

〈f5, f7〉 0.67 1
p4 〈f5, f6〉 〈f5, f6〉 1 1
p5 〈f8, f9〉 〈f8, f9〉 1 1
p6 〈f10〉 〈f10〉 1 1
p7 〈f11, f12〉 〈f11, f12〉 1 1
p8 〈f12〉 〈f12〉 1 1

Average 0.98 1

We utilized the assistance of the ProM framework [241], a process mining tool, to

construct the business layer. As we mentioned earlier, we considered Setting1 log as

our baseline, thus the generated model based on Setting1 log is also used as our base-

line. Setting2, Setting3 and Setting4 logs also resulted in identical models as Setting1

log. Figure 5.2 shows the resulting EA model extracted from Setting1, Setting2 and

Setting3 logs (which returned perfect recall and precision) that represents business

and application layers and their relationships.

5.9 Related works

A number of Enterprise Architecture (EA) tools has been marketed for EA modeling.

Most of them are equipped with data collection mechanism to build EA. TOGAF

5.9. Related works 154

Figure 5.2: ArchiMate Business and Application Layer

ADM Tools [260] provide visual assistance through every development phases of en-

terprise architecture. Features of the tool includes actionable activities for developing

all deliverables, auto deliverable composer, and auto versioning. BiZZdesign Enter-

prise Studio [33] is a modelling, visualisation, analysis and documentation of enter-

prise architecture tool that supports ArchiMate 3.0. It also supports automatic data

collection from office applications to build the architecture model. Another another

modeling tool for enterprise architecture is Enterprise Architect [231]. It offers sup-

ports in developing enterprise architecture through simulation and traceability. Corso

Agile Enterprise Architecture [47] provides analysts with a collaborative platform to

build an enterprise architecture. It also provides tools to build multiple diagrams and

roadmaps necessary to develop an enterprise architecture. Planview Enterprise [203]

is another modeling tool for enterprise architecture for visualisation across multiple

views. It also offers a library of component and relationship types to model enterprise

data and a data collection feature to import information from databases using SQL

queries. ARIS Architect and Designer [228] is a visualisation tool that also supports

model analysis and provides data analysis and process monitoring using KPIs . How-

5.10. Summary 155

ever, these modeling tools generate partial EA model where the resulting models of

these modeling tools do not completely include all elements of EA, for instance in-

frastructure services, and a significant effort of its abstraction is dependent on the EA

modeller.

As we mention previously, our work closely related to [219], where both works

focusing on discovering the correlations between multiple layers in EA. We extend this

study by proposing different mechanisms in generating joined log in different settings

and heuristics in more specific setting. By applying these heuristics, we can avoid the

problem of long sequences due to the length of the log.

In this section, we focus on two layers of EA, business layer and application layer.

However, we do not discuss the mining of the elements in those layer itself, instead

we concentrate on the correlation between the two. The mining of the elements in

both layers themselves has been presented in several studies. Process mining repre-

sents a vast amount of research to mine business processes from event log. With a

variety of mining methods, such as α-algorithm [249], heuristic miner [267], and fuzzy

miner [105], one can employ these algorithms to mine business processes (and business

actors) in the business layer. For the application layer, Holm et al. [125] and Buschle

et al. [40] propose a technique to map automatically collected data (acquired using

network scanners) to an ArchiMate model. In this technique, the collected data only

represented elements in the application layer. Thus, the information provided is not

enough to infer about elements in multiple layers or the inter-relationships between

different layers.

5.10 Summary

In this chapter, preliminary evidence was provided to support the hypotheses that

the relationship between business and application layer of ArchiMate can be inferred

5.10. Summary 156

from process and event logs within the enterprise. The proposed technique combines

the time correlation heuristic and frequent closed sequential pattern mining. The

evaluation result, as a proof-of-concept, shows that this technique is able to extract

the correlations between multiple layers in an ArchiMate model.

Acknowledgment: This section was a collaboration work between the author

(Metta Santiputri) with the author’s supervisors (Prof. Aditya Ghose and Dr. Hoa

Khanh Dam). The author’s supervisors provided the guidance specifically in the direc-

tion of the work and the final reviews before the publication. This work also developed

with a collaboration with other colleagues (Ayu Saraswati and Chee Fon Chang) who

were provided the initial ideas. However the elaboration of this initial ideas and the

development of this work has been performed by the author.

Chapter 6

Goal orchestrations: Modelling and

mining flexible business processes

Goals in an enterprise and its achievement are considered as knowledge driver. An

insight into an enterprise can be gain from readily available data is the goals that

needs to be achieved. Therefore, the process in an enterprise are described as the

coordination of goals instead of the coordination of tasks. The objective in this chapter

is to formalize this alternative approach to process modeling via goal orchestrations.

It provides a more natural means of modeling behaviour (or processes) and to ease the

human understanding.

This chapter presented the approach in method in goal-oriented business process

modeling. The chapter starts with an introduction in Section 6.1. The goal orches-

tration modeling and semantics is presented in Section 6.2. Section 6.3 gives more

details about goal orchestration execution. A method to mine goal orchestration is

provided in Section 6.4. An evaluation using both synthetic process models and a

real-life dataset is presented in Section 6.5. This chapter is summarized in Section 6.6.

157

6.1. Introduction 158

6.1 Introduction

Typically, in an application domain, a business process is described as a set of tasks to

be performed. However, in many domains, it is more natural to think of a process as

a coordination model of goals to be achieved. Take for example in the clinical domain.

For a physician, they act based on the outcome they want to achieve, such as to lower a

patient’s blood pressure or to raise a patient’s blood sugar, rather than just following

a sequence of given actions, such as give medicine A or perform procedure B. This

example illustrates a goal-driven system, where the goals dictate what the actions to

be taken, and a knowledge-intensive system, where the background knowledge of an

actor in the system influence the choice of actions that they perform. Therefore, in

these domain settings, it is preferable to define goals and alternative ways to realize a

goal are given.

In any system, goals encompass the various objectives that the system should

achieve. A goal model constructs these goals into a hierarchy that describes the rela-

tions between goals and its subgoals. With goal decompositions or refinements, a goal

model also defines the alternative realizations of each goal.

These goals are then translated into a series of tasks or activities to be performed.

Given the post-conditions after a task or an activity is executed, we can determine

whether a goal has been achieved. However, the outcome of an activity is context sensi-

tive, which means that the result of the current activity is also depends on the outcome

or result from the previous activity. Therefore, this notion of non-deterministic caused

by context sensitivity of the task post-conditions also influence the realization of a goal.

Combining both the flexibility of goal realizations described in the goal model and

the context sensitivity of a task outcome, our idea is to represent the business process

model as a coordination of goals. This representation allows us to enact processes both

in flexible and context sensitive ways. Moreover, by representing a business process in

6.2. Goal orchestration models and semantics 159

this fashion and thus giving the actors enough independent to realize a goal in multiple

different ways, we enable a flexible process management.

6.2 Goal orchestration models and semantics

A goal can be represented in any truth-functional language that comes equipped with

machinery for checking satisfiability (and hence entailment). In the remainder of the

chapter, we will implicitly refer to achievement goals when we refer to a goal. A goal

orchestration is best viewed as a process graph, as commonly used in the literature,

with the tasks/activities replaced with goals. Formally, a goal orchestrations is a

pair GC = (N,F) where N = G ∪ Γ ∪ E (G is a set of goal assertions, Γ is a set

of gateways, and E = Es ∪ Ef is a set of special events, with Es representing start

events and Ef denoting end events); F ⊆ (N\E × N\E)
⋃

(Es × N\E)
⋃

(N\E

× Ef) corresponds to sequence flows connecting goal assertions with goal assertions,

goal assertions with gateways, gateways with goal assertions, start events with goal

assertions and goal assertions with end events.

We will now describe the semantics by specifying under what circumstances an

event log will be deemed to satisfy a goal orchestration. Recall that an event log is a

set of pairs of the form 〈event, timestamp〉. We order an event log from the earliest

timestamp to the latest, obtaining a sequence of the form 〈e1, e2, . . . , en〉, where each

element of the sequence is of the form ei = 〈εi, τi〉 (εi) is the i-th event and τi is

the corresponding timestamp) and for every adjacent pair of elements in the sequence

〈ei, ei+1〉, τi ≤ τi+1.

At a fundamental level, every event involves one or more state transitions (a task

object transitions from an incomplete state to a completed state, or a business object

such as an insurance claim transitions from a not-determined state to an accepted state

etc.). The effects of some events persist (an insurance claim once accepted remains in

6.2. Goal orchestration models and semantics 160

the accepted state) while others do not (a light that is initially switched on is eventually

switched off). An event log describes the changes but not the non-changes. In other

words, such a log describes new events as they occur but does not describe which

prior events have persistent effects. In the following, we will not distinguish between

an event and its effects - thus the description of an event is also the description of

its effects. To obtain a sequence of states (or partial states) from an event log, we

accumulate effects using a state update operator in a manner similar to the approach

adopted in [266, 123]. Recall that a state update operator takes a state description and

the effects of an action to generate one or more descriptions of the state that would

accrue from executing this action in the input state. Some well-known state update

operators are the Possible Worlds Approach (PWA) [90] and the Possible Models

Approach (PMA) [271]. Given a set of accumulated effects (representing a possibly

partial description of the state of the operating environment), and a new effect, we use

the state update operator to determine what new set of accumulated effects should be

(in our evaluation, we use the PWA operator, but others could be used without loss

of generality). The application of the state update operator (we shall refer to it with

the symbol ⊕) leads to non-deterministic outcomes. Thus, if s1 and s2 are even effect

assertions, then e1⊕ e2 is a set of event/effect assertions (the intuition being that any

one of these could be the result of making e2 true in state e1).

The idea, now, is to generate from an event log a sequence of sets of states or partial

states (the non-deterministic nature of the state update operator making it necessary

to consider sequences of sets of states as opposed to sequences of states). Given a set

of prior states and a set of posterior states (i.e., those obtained from the prior set via

state update), it is important to note that a state in the posterior set can be arrived

at only from some (but possibly not all) of the states in the prior set. In other words,

there is a predecessor-successor relationship between temporally adjacent sets of states

6.2. Goal orchestration models and semantics 161

that is important to record. We will therefore first extract from an event log a state

set sequence consisting of pairs of states, where the first element is the predecessor and

the second element is the successor. Given an event log 〈e1, e2 . . . , en〉, we compute

a state set sequence 〈StateSet1, StateSet2, . . . , StateSetn〉, where each StateSeti is of

the form {StatePair1, StatePair2, . . . , StatePairk} and each StatePairi is of the form

〈statepred, statesucc〉 (i.e., these are predecessor-successor pairs) as follows:

• We set StateSet1 = {〈∅, ε1〉} (where 〈ε1, τ1〉 is the first entry in the temporally

ordered event log).

• We set StateSet2 = {〈ε1, s〉 | s ∈ ε1 ⊕ e2}

• For i = 3 . . . n, StateSeti = {〈si−1, si〉 | si−1 ∈ StateSeti−1 and si ∈ si−1 ⊕ ei}

A state sequence 〈s1, s2, . . . , sn〉 is supported by a state set sequence

〈StateSet1, StateSet2, . . . , StateSetn〉, if and only if:

• StateSet1 = {〈∅, s1〉}

• Every adjacent pair 〈si−1, si〉 in the state sequence must be an element of StateSeti

in the corresponding state set sequence.

Given a state sequence 〈s1, s2, . . . , sn〉 and a goal model with a goal set {g1, g2, . . . , gk},

we compute a goal sequence 〈G1, G2, . . . , Gn〉 by setting each Gi = {gi | si |= gi}. Note

that a goal sequence is a sequence of sets of goals. We define a goal orchestration

trace as a sequence of goals 〈g1, . . . , gm〉 satisfying the constraints of the corresponding

goal orchestration model (much like a trace through a process model). Given a goal

orchestration model and a trace 〈g1, . . . , gm〉, we will say that the trace is supported

by a goal sequence 〈G1, G2, . . . , Gn〉 if it is the case that n ≥ m and every gi ∈ Gi.

Given a goal model (and thence, the set of goals contained in it), an event log

satisfies a goal orchestration model if and only if a goal sequence can be obtained from

6.3. Executing goal orchestrations 162

the event log and the goal model in the manner described above such that the goal

sequence supports a trace for the goal orchestration model.

6.3 Executing goal orchestrations

For a goal orchestration approach to enable flexible process execution, we require

tasks/activities or enterprise capabilities to be annotated with post-conditions (spec-

ified in the same ontology as the goals). More generally, one can view this as an

instance of a generic scheme that permits us to relate task execution to the func-

tional outcomes that are used to specify goals. A number of recent proposals sug-

gest that leveraging task post-condition annotations can be effective and practical

[70, 71, 117, 123, 64, 227, 266, 64, 86]. Still more recent results [218] suggest that task

post-conditions can be relatively reliably mined from readily available enterprise data.

The first question we need to address is whether a goal orchestration is feasible with

respect to an enterprise capability library. We shall view the latter as a repertoire of

tasks or capabilities annotated with post-conditions. A goal orchestration is strongly

feasible if and only if for every trace admitted by the orchestration, there exists a

task/capability sequence 〈t1, . . . , tn〉 with a corresponding sequence of post-conditions

〈p1, . . . , pn〉 such that this latter, if viewed as an event log (this can be easily done by

inserting time-stamps with each each post-condition that respects the relative order-

ing), generates (given a goal model) a goal sequence that support that trace. In the

case of weak feasibility, we only require that there exist a task sequence that generates

a goal sequence that supports at least one trace. The subsequent analyses will only be

performed for goal orchestrations that are (strongly or weakly) feasible with respect

to the available enterprise capability library.

Practical deployment of goal orchestrations must ideally be done with a goal model

at hand. A goal model, typically an AND-OR goal tree, is critical in offering alternative

6.3. Executing goal orchestrations 163

means of arriving at the same outcome. We will refer to any goal related to a parent

goal g in the goal model via an OR-link as an OR-refined child goal, and the OR-

refined children of these and so on as the OR-refined descendants of g. We shall refer

to the set of all OR-refined descendants of a goal g as the OR-alternatives of g. Given

a goal orchestration model GOM, the set OR-Alt(GOM) of OR-alternatives of GOM

consists of all goal orchestration models obtained by replacing at least one goal in

GOM with an OR-alternative.

Executing a goal orchestration model consists of computing an optimal suffix for

a partially executed task sequence (empty at the start of execution). By introducing

a current state into the problem, one can deal with the problem of semantic compen-

sation [97], where a process deviates from the functionality it is expected to deliver

(manifested via events/effects) and where the challenge is to compute a new sequence

of activities that will restore the process to semantic conformance (where it delivers

the expected effects) and achieve the final goals. Formally, given: (1) The current state

S of the process and its environment, (2) a goal orchestration model and (3) the cur-

rent sequence of goals achieved 〈g1, . . . , gi〉, compute: a sequence of tasks 〈tj, . . . , tm〉

drawn from the enterprise capability library such that the corresponding sequence of

task post-conditions 〈pj, . . . , pm〉, when concatenated with the achieved goal sequence

〈g1, . . . , gi〉 generates a sequence of events 〈g1, . . . , gi, pj, . . . , pm〉 which can be viewed

as an event log (with the appropriate insertion of sequence-maintaining time-stamps,

as before) generates a goal sequence that supports a goal trace through the input goal

orchestration model.

Figure 6.2 shows the goal orchestrations of the treatment for a child with a head

injury as described in Figure 6.1. This model contains the goal assertions that repre-

sents the goals to be achieved by performing any task in the procedure. For example,

the goal of administering IV bolus of dextrose is to maintain the blood glucose level

6.3. Executing goal orchestrations 164

Figure 6.1: Treatment for children sustaining head injury with low blood sugar level

on normal range. By administering extra dextrose, the body fluid balance is achieved.

The administration of analgesia is aim to reduce pain and stress. To observe the chest,

pelvis, and spine for precaution on trauma cases is perform using x-rays. Therefore

the goal assertions are Maintain patient’s blood glucose level, Maintain patient’s body

fluids, Reduce patient’s pain and stress and Observe patient’s chest, pelvis and spine

as illustrated in the goal orchestration.

Figure 6.2: Goal orchestrations for business process model in Figure 6.1

Observe that ‘Administer Paracetamol’, ‘Administer a bolus of IV morphine (50-

100 microgram/kg) and a morphine infusion (20-40 microgram/kg/hr)’, and ‘Sedation’

tasks are represented by one goal, i.e. Reduce patient’s pain and stress, seeing as these

tasks has identical purpose and performing any of these tasks aims for that purpose.

In this example, we progress through each possible trace and compare the post

conditions of each task with every goals. By identifying the links between tasks in the

process model to goals by way of the post conditions, the goal orchestration obtained

in previous example represent the normative satisfaction links.

6.3. Executing goal orchestrations 165

6.3.1 Goal Consistency

Another monitoring aspect in the goal satisfaction is in the sequence of which the

goals are satisfied. An execution trace is a sequence of tasks or activities, where each

task or activity execution is intended to achieve goal(s), therefore each goal in the

sequence must be achieved before its successor goal. Based on the refinement of goals

in the goal model and the sequence on which the goal is realized, there is a temporal

constraint between goals.

By definition, any sub-goals has precedence before its parent goal, which means

that in any execution the sub-goals must be satisfied before the parent goal is satisfied.

This is true both in AND and OR-refinements. In AND-refinement, to satisfied the

parent goal, all the sub-goals must be satisfied beforehand. While in OR-refinement,

one of the sub-goal must be satisfied to satisfy the parent goal, thus in any trace, one

of the sub-goals must be satisfied before the parent goal.

One might argue that this is not always the case, specifically in the occasion where

the parent goal is an abstract goal in which case there is no task or activity to be

executed that bring about the resulted state. However, since in our representation we

focus on observations of the state of the objects, we can maintain that it is always the

case that when all sub goals are achieved (as indicated by the observation of the state

of some objects), then we can observe that these states also indicated that the parent

goal has been achieved, even without any execution of any task or activity.

In any execution, the trace must conform to the goal model (any path in the

process is executed to realize or satisfy any one of the goal in the goal model) and the

precedence of goals (the trace must reflect the hierarchy in the goal model). Otherwise

the trace is considered as an exception.

6.4. Mining Goal Orchestrations 166

6.4 Mining Goal Orchestrations

Obtaining the data:

• Pre-defined instance-object associations: In settings where we know a priori the

set of objects associated with and impacted by a given instance, we can partition

an effect log based on the identifier of the instance (i.e., the case ID), predicated

on the assumption that every effect is associated with an object or a set of

objects.

• In some settings, the complete set of objects impacted by a process might not be

known a priori (we might in fact be interested in discovering what these objects

might be)

In this section, we show how goal orchestrations can be mined from event logs. A

formal statement of the problem is as follows. Given: (1) An event log and (2) a goal

model, compute: a goal orchestration that best explains the behaviour encoded in the

event log. Recall that an event log records two kinds of events: events that flag the

execution of a task and events that describe state transitions in objects impacted by

a process. Our interest is in the latter kind of event (we shall refer to these as effects).

It is useful to note that we do not need case IDs associated with effects. Given a set

of effects, we are only interested in their temporal ordering, but not which process

instance, or actor/agent, might have generated. Our intent is to identify the sequence

of goals achieved (and thence a goal orchestration model) from the sequence of effects

manifested. The vocabulary of available goals (as provided in the input goal model)

provides the lens through which we view the effects. If the goal model is specific to an

actor or a process instance, then the goals we will recognize and mine will be specific

to the process or actor in question.

Mining goal orchestrations from event logs involves a sequence of pre-processing

6.4. Mining Goal Orchestrations 167

steps, followed by the application of an off-the-shelf process mining tool (in the em-

pirical evaluation presented in the next section, we use AlphaMiner from the ProM

toolkit [241]. The steps involved are as follows:

• Processing event logs (specifically effect logs) to obtain a non-deterministic cu-

mulative effect sequence.

• Extracting a set of cumulative effect sequences from the non-deterministic cu-

mulative effect sequence.

• Extracting goal sequences from cumulative effect sequences.

• Extracting a set of ordering assertions from each goal sequence identified in the

previous step.

• Running an off-the-shelf process mining tool with the goals playing the role of

tasks.

Let the event log be the form 〈e1, e2, . . . , en〉. We assume that there is also a back-

ground knowledge base KB defined in the same language as that in which the effects

are described. The non-deterministic cumulative effect sequence can be obtained by:

• We set the first element of the non-deterministic cumulative effect sequence to

be {e1}

• We obtain each subsequent element in the non-deterministic cumulative effect

sequence (of the form {Ei}) from the prior element using the following rule:

Ei+1 = Ei ⊕ ei+1.

The following example illustrates how this is done.

The non-deterministic notion of the cumulative effect sequence is the result of the

application of the state update operator which can be non-deterministic in general.

6.4. Mining Goal Orchestrations 168

Table 6.1: An example of event log with corresponding non-deterministic cumulative
effect sequence

KB : t→ ¬(p ∧ r)
ei non-deterministic

cumulative effect sequence
{p, q} {{p, q}}
{r, s} {{p, q, r, s}}
{t} {{p, q, s, t}, {r, q, s, t}}

Thus an element of the non-deterministic cumulative effect sequence is a set of sets of

effects.

We extract a set of cumulative effect sequences that is supported by the non-

deterministic cumulative effect sequence by following the condition that every ad-

jacent pair 〈Ei−1,Ei〉 in the cumulative effect sequence must be an element of the

corresponding non-deterministic cumulative effect sequence. Thus from our example

in Table 6.1, the cumulative effect sequences are {{p, q}, {p, q, r, s}, {p, q, s, t}} and

{{p, q}, {p, q, r, s}, {r, q, s, t}}.

Given a goal model with a goal set {g1, g2, . . . , gk} and a cumulative effect sequence

{E1,E2, . . . ,Em}, we compute a goal sequence 〈G1, G2, . . . , Gn〉 where Gi = {gi | Ei |=

gi}.

The extraction of ordering assertions from a goal sequence proceeds as follows:

• o1 > o2 if and only if there is a traceability links tr such that tr = 〈G1, G2, . . . , Gm〉

and Gi = o1 and Gi+1 = o2

• o1 → o2 if and only if o1 > o2 and o1 6> o2

• o1#o2 if and only if o1 6> o2 and o2 6> o1

• o1||o2 if and only if o1 > o2 and o2 > o1

Using these relations, we use the adaptation of alpha algorithm [249] to discover

the goal orchestrations. The main difference in our approach to discover goal orches-

6.5. Evaluation 169

trations is that the input of the algorithm is not a set of event trace, but instead the

input is a set of traceability links.

6.5 Evaluation

The purpose of the evaluation is to establish that our approach is capable of the

following:

• mining the goal orchestration from the readily available data

• identifying different alternatives to achieve a goal based on the execution history

We present two cases to perform our evaluation. The first case involve a synthetic

dataset and the second evaluation using a real-life dataset from a ticket handling

process.

6.5.1 Evaluation with synthetic process models

Our aim is to establish that our approach discovers the goal orchestration from the

data. We ran the first experiment with a synthetic semantically annotated process

model using T1, T2, . . . etc, for task names and p, q, . . . for effects. The model consists

of 12 tasks with an XOR-split leading to two alternative flows, one of which included

a nested AND-split and the other a nested XOR-split. The semantic annotations

were 2 or 3 literals long and involved a mix of conjunctions and disjunctions. For this

exercise, we omitted the knowledge base, i.e. we did not have any rule in the knowledge

base. We generated a large number of possible execution traces of this model, and

obtained the synthetic log using BIMP (The Business Process Simulator)1 (with a

small process model, performing the execution by hand also produced similar logs).

We also investigated the effect of scaling up the complexity of the process model, by

1http://bimp.cs.ut.ee/

6.5. Evaluation 170

generating a second synthetic process model with 20 tasks with and XOR-split leading

to four alternative flows, one flow included a nested AND-split, two included XOR-

split (one leading to two alternative flows and the other leading to three alternative

flows), and the other was a sequence.

We randomly assign effects to tasks, then perform the pre-processing steps to

obtain goal sequences, and from there, the goal orchestration. In this exercise, we

have access to the ground truth (by maintaining the original process models together

with its assignments of effects associates with each task and the goal sequence of each

trace in the process model) thus we can determine the fitness and precision values for

the mined goal orchestration.

Table 6.2 below describes the results of the experiments with each of these two

process models. We measure the fitness and precision of the goal orchestrations gen-

erated from the log. Fitness evaluates whether the observed process complies with the

control flow specified by the process, while precision indicates how precisely the model

describes the observed process. In both process model, the results shows that the goal

orchestrations generated from the mining conform to the data. The results also shows

that there is an insignificant number of possible incorrect in the link between task and

goal which cause an incorrect goal sequence in the traceability link.

The synthetic effect logs used in these examples considered all possible flows. Real-

life data might involve more imperfections (such as certain XOR flows never being

executed, certain tasks never being executed and so on).

6.5.2 Evaluation with real-life dataset

An important part of the evaluation of the feasibility of the overall approach to goal

orchestration was to gain experience in using it in with a real-life dataset in a large

complex practical setting. Our intent was to test several key elements of our pro-

6.5. Evaluation 171

Table 6.2: Evaluation result with synthetic data

Process model 1
of instances # of events Fitness Precision Time (ms)

100 1520 1.0 1.0 52
500 7540 1.0 1.0 160
1000 15094 1.0 1.0 257
5000 75640 1.0 1.0 548
10000 151080 0.99 1.0 1,149

Process model 2
of instances # of events Fitness Precision Time (ms)

100 1810 1.0 1.0 95
500 9008 1.0 1.0 287
1000 18026 1.0 1.0 377
5000 90040 0.99 1.0 1,170
10000 180540 0.99 1.0 3,147

posal, including the processing (and pre-processing) of event logs, the identification of

goals and goal sequences and eventual use of process mining to obtain explicit goal

orchestration models. Specifically, we looked at data from a team in one of the world’s

largest IT companies that supports IT infrastructure management as an outsourced

service. Much of its activities involves the handling and resolution of problem tickets

generated by customers. These can span the spectrum of complexity from a simple

password reset to dealing with a complete ATM network that might have gone down.

The dataset we analyzed described how 65000 distinct problem tickets were handled.

The ticket handling process is illustrated in Figure 6.3. In this process, when a

member of a client firm faces IT-related problems or has queries about the IT systems

whose management has been outsourced, they raise a ticket. The ticket handling

system maintains records of ticket status from the opening of a ticket until the closing

of it, responds with an acknowledgment to the user along with a notification to a

system engineer who is assigned to handle the ticket. Also further input from the user

may be requested. At this stage, if the problem can be resolved, the ticket is closed.

6.5. Evaluation 172

In case the problem can not be resolved, the system checks to see whether there is any

update from the user. If no update is provided and the ticket is not re-opened within

a stipulated time, then the problem is considered as resolved and it is automatically

closed. If the ticket is updated with new information then the system checks the

nature of the ticket, whether it is incident or request, depending on which the ticket

is serviced or resolved respectively.

Figure 6.3: Ticket handling process

The ticket handling system recorded all events related to a ticket in the process.

Each record represents all attributes of a ticket, such as incident number or ticket

number to identify any particular ticket, the identity of the user or employee that

raised the ticket, the timestamp of when the ticket is raised (open date attribute),

when the problem is resolved (resolve date attribute), when the system sends a

response to the user and the engineer (respond date attribute), when the ticket is

closed (close date attribute), an attribute to signify if the ticket is reopened, etc.

These attributes will be used to identify the current state of the ticket. For example,

a ticket in the Open state signifies that the ticket has been received and currently at

6.5. Evaluation 173

the start of the ticket handling process. Similarly, a ticket in Close or Auto-close

state signifies that it is at the end of the process, etc.

The 65000 tickets in our dataset were created or submitted during December 2013.

Three ticket instances in Table 6.3 illustrate how time-stamped milestones (such as

“Open Date” or “Receive Date”) together with ticket attributes can be used to gener-

ate an event log for each ticket. From the 65000 tickets, we identify 16 distinct effect

sequences, shown in Table 6.4.

Table 6.3: Ticket examples

In this ticket, the open,resolve, respond and close events have already been executed
and their timestamps have been recorded. The close attribute signifies that the ticket
is already closed (the value of the close attribute is ‘1’). Therefore, we conclude that
the current state of the ticket is close and based on the timestamp of each event,
the event log/sequence for this ticket is {open,respond,resolve,close}.

In this second ticket, the open and resolve events have already been executed and
their timestamps have been recorded but the close event has not been executed yet.
However the close attribute the value of the close attribute is ‘1’ which signifies
that the ticket is closed. Therefore, we conclude that the current state of the ticket is
auto-close (close automatically by system by the system) and based on the times-
tamp of each event, the event log/sequence for this ticket is {open,resolve,auto-close}.

In this last example, the open and respond events have already been executed.
The close attribute value is ‘1’ which means that the ticket is closed but in the
reopened or not attribute, the value is ‘1’ which signifies that the ticket has been re-
opened. Therefore, we conclude that the ticket is reopened and the event log/sequence
for this ticket is {open,respond,reopen,auto-close}.

We use the goal assertions in Table 6.5 to recognize goal sequences from event se-

quences (these goal assertions were provided by domain experts from the organization

- the authors might have articulated these goals somewhat differently).

We extract a goal sequence for each event sequence in Table 6.4. Recall that a goal

is recognized in an event if the formal representation of the event entails the formal

assertion of the goal. The complete list of goal sequences thus obtained is presented

6.5. Evaluation 174

Table 6.4: Event sequences identified in the log

Event sequence Event sequence # of
name sequences

TR1 {open}, {open,respond} 1299
TR2 {open}, {open,respond,¬receive} 4546
TR3 {open}, {open,respond}, {open,respond,close} 2
TR4 {open}, {open,respond}, {open,respond,resolve},

{open,respond,resolve,close}
53296

TR5 {open}, {open,resolve}, {open,resolve,auto-close} 128
TR6 {open}, {open,approved} 70
TR7 {open}, {open,respond}, {open,respond,receive},

{open,respond,receive,¬reopen,auto-close}
25

TR8 {open} 296
TR9 {open}, {open,¬approved} 383
TR10 {open}, {open,respond}, {open,respond,rejected},

{open,respond,rejected,close}
1

TR11 {open}, {open,respond}, {open,respond,reopen,auto-close} 37
TR12 {open}, {open,respond}, {open,respond,receive},

{open,respond,receive,incident,resolve,auto-close}
1195

TR13 {open}, {open,respond}, {open,respond,receive},
{open,respond,receive,resolve,auto-close}

3169

TR14 {open}, {open,respond}, {open,respond,¬reopen,auto-close} 12
TR15 {open}, {open,respond}, {open,respond,receive} 531
TR16 {open}, {open,respond}, {open,respond,¬instock} 10

Table 6.5: Goal assertions for the goal model

Goal Goal assertion

Ticket Handled (G0) close ∨ auto-close

Ticket Initiated (G1) open

Ticket Acknowledged and Problem Assigned (G2) respond

Requirements provided (G3) approved ∨ receive ∨ instock

DM Approval Acquired (G5) approved

User Input Acquired (G6) receive

Stock Acquired (G7) instock

Unresolved Problem Handled (G9) auto-close

Problem Resolved (G10) resolve

Request Fulfilled (G11) request ∧ resolve

IncidentResolved (G12) incident ∧ resolve

New Ticket Created (G13) reopen

Problem Closed (G14) ¬reopen

6.5. Evaluation 175

in Table 6.6.

Table 6.6: Goal sequence for effect trace

Event sequence Goal sequence
name

TR1 (G1),(G1,G2)

TR2 (G1),(G1,N/A)

TR3 (G1),(G1,G2),(G1,G2,G0)

TR4 (G1),(G1,G2),(G1,G2,G10),(G1,G2,G10,G0)

TR5 (G1),(G1,G10),(G1,G10,G9),(G1,G10,G9,G0)

TR6 (G1),(G1,G5)

TR7 (G1),(G1,G2),(G1,G2,G6,G3),(G1,G2,G6,G3,G14,G9,G0)

TR8 (G1)

TR9 (G1),(G1,N/A)

TR10 (G1),(G1,G2),(G1,G2,N/A),(G1,G2,N/A,G0)

TR11 (G1),(G1,G2),(G1,G2,G13,G9,G0)

TR12 (G1),(G1,G2),(G1,G2,G6,G3),(G1,G2,G6,G3,G12,G0)

TR13 (G1),(G1,G2),(G1,G2,G6,G3),(G1,G2,G6,G3,G11,G0)

TR14 (G1),(G1,G2),(G1,G2,G14,G9,G0)

TR15 (G1),(G1,G2),(G1,G2,G6,G3)

TR16 (G1),(G1,G2),(G1,G2,N/A)

For this exercise, the first check is towards the end effect scenario of each trace

where in all traces, the end effect must satisfy any one of the goal in the goal model.

We can determine from Table 6.6 that among the 16 distinct traces, the end effect

of TR2, TR8, TR9 and TR16 do not conform to any goal. Therefore these four traces

are considered as exception. Upon closer inspection, it reveals that some of these

traces are not fault or error, but the process is not finished yet and the effects are

simply some kind of intermediate state. For example in TR2 where the end effect is

¬receive, the state is to identify that the process is still waiting for user input and

has not received any at the observed time.

The next check would be whether any one of the effect in the trace conform to a

goal. By annotating each effect, we discover that the effect rejected of TR10 does

not conform to any goal, therefore we annotate this trace as exception, while the 12

other traces are annotated as normal.

The last check is to examine whether in the normal trace, the goal precedence

constraints in each trace is preserved. We perform the checking between any two

consecutive goals (pair-wise) in the trace. From eight normal traces, we found that all

6.5. Evaluation 176

of them are preserving the goal precedence constraints.

Based on our examination, we omit the TR2, TR8, TR9 and TR16 as exceptions and

only TR10 is considered as an exception that need to be handled further. We need to

find any other normal trace with identical prefix and suffix of the effect rejected. We

found this in trace TR4. The prefix open and respond and the suffix close are iden-

tical. Therefore we conclude that TR10 might be an alternative to trace TR4. We also

check the number of ticket with this state and we discover that among 65000 tickets,

there is only one ticket with this distinct trace and it will need further input from the

IT team or the company to decide whether the state will be considered as another

goal and incorporated in the goal model, or categorized as error or fault and should

not be encounter again in the future. In the case that the state is regarded as a goal,

it should be considered as an alternative of the Resolve Problem goal (probably as

Reject Problem) and inserted with OR-refinement under the Handle Problem goal.

Mining Exercise. After we obtains goal sequences from the normal traces in the log,

next we build the goal orchestrations based on them using the algorithm in Section 6.4.

For this exercise, we only use the complete trace, that is all traces that end in the

highest goal (G0), therefore we have eight traces to build the orchestrations. Note

that we do not take into consideration the frequency of each trace, only the ordering

of goals in a trace. We utilize ProM [241] to mine the workflow net and convert the

result goal orchestrations using the conversion plugin.

Figure 6.4: Goal orchestrations for ticket handling process

6.5. Evaluation 177

To determine the consistency between discovered the goal orchestrations with the

goal model, we need to establish that all goals in the goal orchestrations presents in

the goal model and all transitions preserves the goal precedence constraints in the goal

model.

Looking at the goal orchestrations in Figure 6.4, there are 13 goals in the goal or-

chestrations. We confirm that they are also goals in the goal model. The next checking

compares the precedence constraints in our library with the transitions in the discov-

ered model. There are 23 transitions between goals in the goal orchestration. Eight of

the transitions have a precedence constraint related to them. The checking reveals that

these transitions conform to the precedence constraints. The rest of the transitions do

not have any constraints related to them. Take for instance, the transitions between

G1 and G2. In the goal model, both are sub-goals of G0, thus both have precedence over

their parent goal, but there is no constraint defined between G1 and G2. Since there is

no violation against the goal precedence constraints, we conclude that the discovered

goal orchestrations is consistent with the goal model.

Generalization and the threats to validity. Firstly, in our evaluation, we as-

sume that the semantic annotations or the post-conditions of the tasks or activities in

the business process model and the formulation of goals are applicable for any given

domain. We demonstrate this in our evaluation by adopting the states and state tran-

sitions directly from the available records. The records describe the execution history

and contain standard property associated with events or activities. Secondly, the con-

sistency checking is performed in two parts, the first is between the available execution

data, in the form of effect traces, with the goal model, and the second is between the

discovered model with the goal model. Our approach in this aspect is generalized in

terms of goal models or event logs of any scale or any domain. This is demonstrated

6.6. Summary 178

with the scale of our case study involving 65000 records. Therefore, we argue that

the threat to its validity (both construct and internal) in terms of systematic errors

or data measurement is minimal. The main limitation we recognize in our approach

is incompletely annotated process models, which will produce uncomplete or incorrect

logs, or incompletely annotated goal models, which will contributes in incomparable

effects between logs and goals. However, ensuring the completeness of annotations can

help address this limitation and will contribute in correctly correlate goal models and

available event logs.

6.6 Summary

In this chapter, a representation of business process as a coordination of goals called

goal orchestrations, is proposed. This representation gives us a flexible and context sen-

sitive enactment of processes and convenient for a goal-driven and knowledge-intensive

process. A simple method of mining goal orchestrations from event logs is also pre-

sented. This method is illustrated using a real world setting of a ticket handling

system. In the future work, we would like to further explore the mining of goal orches-

trations and implement the concept in other application domains, more specifically in

clinical setting.

Acknowledgment: This section has been published in the 36th International

Conference on Conceptual Modelling (ER 2017) at Valencia Spain on November 6th-

9th, 2017. This was a collaboration work between the author (Metta Santiputri) with

the author’s supervisors (Prof. Aditya Ghose and Dr. Hoa Khanh Dam). The author’s

supervisors provided the guidance specifically in the direction of the work and the final

reviews before the publication. All the other works were performed by the author.

Chapter 7

Conclusion and future work

This thesis is summarized with a number of conclusions in Section 7.1. Limitations

of the current approach are discussed in Section 7.2. These limitations give further

opportunities for future works, as outlined in Section 7.3.

7.1 Conclusion

In this thesis, the aim is to generate models or knowledge drivers from enterprise

data to enable some type of dashboard view of enterprise and to provide supports for

analysts. The questions in Chapter 1 are addressed by leveraging process execution

histories recorded in an enterprise repositories and performing the methods to produce

reasonable results. The details of each remark are presented below.

1. Semantic annotation of business process model in the business process designs

has been addressed in a large and growing body of work, but these annotations

can be difficult and expensive to acquire. We presented a data-driven approach

to mining and validating these annotations (and specifically context-independent

semantic annotations). We leverage events in process execution histories which

describe both activity execution events (recorded in process logs) and state up-

179

7.1. Conclusion 180

date events (recorded in event logs). A sequential rule mining algorithm and

abductive approach were applied in the approach. An empirical evaluation were

also presented, which suggests that the approach provides generally reliable re-

sults.

2. With regards to identifying process semantics, a formalization of annotation of

process models were also provided by way of accumulating effects of individual

tasks specified by analysts using belief bases and computing the accumulated

effect up to the point of execution of the process model in an automated man-

ner. This technique permits the analyst to specify immediate effect annotations

in a practitioner-accessible simple propositional logic formulas and generates a

sequence of tasks along with cumulative effects.Further a method were proposed

in which given an effect log, it discovered the process model with effect annota-

tions of individual tasks which is close to the original annotated process model

using algorithm which exploits the temporal sequence of the effects.

3. Requirements acquisition is widely recognized as a hard problem, requiring sig-

nificant investments in time and effort. Given the availability of large volumes of

data and of relatively cheap instrumentation for data acquisition, the prospect of

data-driven model extraction in the context of i* models, an early-phase require-

ments modeling framework, were explored. The techniques were presented for

extracting dependencies from message logs, and for extracting task-dependency

correlations from process logs by performing a sequential pattern mining algo-

rithm to the logs. A domain model, or a model of the “as-is”, were mined, but

not requirements or goals in the minds of stakeholders that have no manifestation

in data.

4. Key challenges in defining an enterprise architecture are specifying concepts/enti-

7.1. Conclusion 181

ties (such as a role, a service, a task or a goal) and their inter-relationships (such

as the relationship between a role and a task or between elements of different

layers in an architecture). Of the two, extracting relationships between con-

cepts/entities is more challenging. A method to mine the relationships between

business layer and application layer of an ArchiMate model from events recorded

in process logs and the corresponding function calls recorded in invocation logs

was presented. A closed sequential pattern mining algorithm was leveraged in

the method.

5. In many application domains, it is more natural to think of a process as a

coordination model of goals to be achieved rather than tasks or activities to

be performed. Replacing tasks or activities with goals in process models allows

us to enact processes in flexible, context-sensitive ways. It was showed how a

goal orchestrations and a goal model constraint each other, and how these enable

flexible process management. A simple means of mining goal orchestrations from

readily available event logs was also provided.

The results of the points above conclude that it is possible to derive the knowledge

drivers from the enterprise data. The data referred here is the historical data in the

running operation of the enterprise, in the form of event log, process log, effect log,

message log and invocation log. The models that were mined from these data represent

the desired enterprise operational or “knowledge drivers”. By mining these knowledge

drivers through data-driven extraction, the abstraction of the underlying reality can

be acquired.

7.2. Limitation 182

7.2 Limitation

The main drawback in the approach and methodology currently is caused by the lack

of open large-scale comprehensive case study to test the framework in entirety. This

difficulty was accomplished by evaluating each section of the framework independently.

Nevertheless, it was maintained that the evaluation is adequate as a proof-of-concept

tool. However, the availability of a single case study for the whole framework will help

the for better evaluations.

With respect to the models that extracted or mined through the approach, some

of the elements or aspects were not addressed. For example, in the i* model, out of

four types of dependencies, only one type of dependency, i.e., goal dependency, was

defined. It was argued that the current approach is enough for the objective, however

this leaves room for further improvement.

7.3 Future work

With regard to the limitations, we outline several lines of research towards improve-

ment of the approach. First, performing experiments or evaluations using a compre-

hensive case-studies, preferably taken from a real-life industry, should be considered.

With the coverage of the case-study, it should be able to specifically improve the evalu-

ation of the approach. Second, if the case study also provides data other than the ones

we have explored in this thesis, it will allow future research to improve the framework

towards mining either more elements of the current models, such as in the i* model

previously mentioned, or additional models, such as goal models. Third, in respect to

mining more elements of the current models, there are also a possible research towards

refining the current method with more advance algorithms or methods, such as more

sophisticated NLP techniques in goal mining.

References

[1] Camille Ben Achour, Mustapha Tawbi, and Carine Souveyet. Bridging the Gap Between Users

and Requirements Engineering: the Scenario-Based Approach. Technical Report CREWS Re-

port Series 99-07, CRI Université de Paris 1 - Sorbonne, Paris, France, 1999.

[2] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth First Generation of Long

Patterns. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’00, pages 108–118, Boston, Massachusetts, USA, 2000.

ACM.

[3] Ramesh C. Agarwal, Charu C. Aggarwal, and V.V.V. Prasad. A tree projection algorithm for

generation of frequent item sets. Journal of Parallel and Distributed Computing, 61(3):350–371,

2001.

[4] Ritu Agarwal and Mohan R Tanniru. Knowledge Acquisition Using Structured Interviewing:

An Empirical Investigation. Journal of Management Information Systems, 7(1):123–140, 1990.

[5] Charu C Aggarwal and Jiawei Han. Frequent Pattern Mining. Springer, 2014.

[6] R. Agrawal, T. Imielinski, and A. Swami. Database Mining: A Performance Perspective. IEEE

Transactions on Knowledge and Data Engineering, 5(6):914–925, December 1993.

[7] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models from work-

flow logs. In Proceedings of the 6th International Conference on Extending Database Technology:

Advances in Database Technology, pages 469–483. Springer-Verlag, 1998.

[8] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining Association Rules between Sets

of Items in Large Databases. In ACM SIGMOD Record, volume 22, pages 207–216. ACM, 1993.

183

References 184

[9] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, A Inkeri Verkamo,

et al. Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining,

12(1):307–328, 1996.

[10] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Proceedings of the

Eleventh International Conference on Data Engineering, ICDE’95, pages 3–14, Washington,

DC, USA, 1995. IEEE Computer Society.

[11] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association rules. In

Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[12] Stephan Aier, Bettina Gleichauf, and Robert Winter. Understanding Enterprise Architecture

Management Design An Empirical Analysis. Wirtschaftsinformatik Proceedings 2011, January

2011.

[13] Budoor Allehyani and Stephan Reiff-Marganiec. Maintaining Goals of Business Processes dur-

ing Runtime Reconfigurations. In Proceedings of the 8th ZEUS Workshop, 2016., pages 21–28,

Vienna, Austria, January 2016.

[14] Annie I. Antón. Goal-Based Requirements Analysis. In Proceedings of the 2nd International

Conference on Requirements Engineering, RE’96, pages 136–144, Colorado Springs, Colorado,

USA, 1996. IEEE Computer Society.

[15] Annie I. Antón, Ryan A. Carter, Aldo Dagnino, John H. Dempster, and Devon F. Siege.

Deriving Goals from a Use-Case Based Requirements Specification. Requirements Engineering,

6(1):63–73, 2001.

[16] Annie I. Antón and Julia Brande Earp. A Requirements Taxonomy for Reducing Website

Privacy Vulnerabilities. Requirements Engineering, 9(3):169–185, 2004.

[17] Annie I. Antón and Colin Potts. The Use of Goals to Surface Requirements for Evolving

Systems. In Proceedings of the 20th International Conference on Software Engineering, ICSE

1998, pages 157–166, Kyoto, Japan, April 1998. ACM.

[18] Danilo Ardagna and Barbara Pernici. Adaptive Service Composition in Flexible Processes.

IEEE Transactions on Software Engineering, 33(6):369–384, 2007.

[19] Paul Arkley and Sean Riddle. Tailoring Traceability Information to Business Needs. In Pro-

ceedings of the 14th IEEE International Requirements Engineering Conference, RE’06, pages

239–244, Minneapolis-St. Paul, Minnesota, USA, September 2006. IEEE Computer Society.

References 185

[20] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential PAttern Mining Using a

Bitmap Representation. In Proceedings of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’02, pages 429–435, Edmonton, Alberta,

Canada, 2002. ACM.

[21] Linden J. Ball and Thomas C. Ormerod. Putting Ethnography To Work: The Case For A Cog-

nitive Ethnography Of Design. International Journal of Human-Computer Studies, 53(1):147–

168, 2000.

[22] Tháıs Vasconcelos Batista, M. Cecilia Bastarrica, Sérgio Soares, and Lyrene Fernandes da Silva.

A Marriage of MDD and Early Aspects in Software Product Line Development. In Proceedings

of the 2008 Workshop on Early Aspects: Aspect-Oriented Requirements and Architecture for

Product Lines, Second Volume, EA@SPLC.08, in conjunction with SPLC 2008, pages 97–103,

Limerick, Ireland, September 2008.

[23] Roberto J. Bayardo, Jr. Efficiently Mining Long Patterns from Databases. In Proceedings of the

1998 ACM SIGMOD International Conference on Management of Data, SIGMOD ’98, pages

85–93, Seattle, Washington, USA, 1998. ACM.

[24] Kent Beck and Ward Cunningham. A Laboratory for Teaching Object Oriented Thinking.

SIGPLAN Notes, 24(10):1–6, 1989.

[25] Kent Beck and Ward Cunningham. A laboratory for teaching object oriented thinking. In

Proceedings of the Conference on Object-oriented Programming Systems, Languages and Appli-

cations, OOPSLA ’89, pages 1–6, New Orleans, Louisiana, USA, 1989. ACM.

[26] Jörg Becker, Michael Rosemann, and Christoph Von Uthmann. Guidelines of business process

modeling. In Business Process Management, pages 30–49. Springer, 2000.

[27] Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Sherif Sakr, Daniela Grigori, Hamid Reza

Motahari-Nezhad, Moshe Chai Barukh, Ahmed Gater, and Seung Hwan Ryu. Model-Based

Business Process Query Techniques and Languages, pages 91–106. Springer International Pub-

lishing, 2016.

[28] Bernard Marr. How Big Data And Analytics Are Transforming The Construction Industry.

http://www.gereports.com/post/108012387578/2015-a-big-year-for-big-data/, April

2016.

http://www.gereports.com/post/108012387578/2015-a-big-year-for-big-data/

References 186

[29] Dianne C. Berry and Donald E. Broadbent. Expert systems and the man-machine interface.

Part Two: The user interface. Expert Systems, 4(1):18–27, February 1987.

[30] P. Bertrand, Robert Darimont, Emmanuelle Delor, Philippe Massonet, and Axel van Lam-

sweerde. GRAIL/KAOS: An Environment for Goal-Driven Requirements Engineering. In

Proceedings of the 20th International Conference on Software Engineering, ICSE’98, Kyoto,

Japan, April 1998. IEEE-ACM.

[31] Hugh Beyer and Karen Holtzblatt. Contextual design: defining customer-centered systems.

Elsevier, 1997.

[32] Hugh R. Beyer and Karen Holtzblatt. Apprenticing with the Customer. Communication of the

ACM, 38(5):45–52, May 1995.

[33] BiZZdesign BV. Enterprise Studio — BiZZdesign. http://www.bizzdesign.com/tools/

bizzdesign-architect/, 2016.

[34] Steven J. Bleistein, Karl Cox, and June Verner. Strategic Alignment in Requirements Analysis

for Organizational IT: An Integrated Approach. In Proceedings of the 2005 ACM Symposium

on Applied Computing, SAC ’05, pages 1300–1307, Santa Fe, New Mexico, 2005. ACM.

[35] Andreas Bögl, Michael Schrefl, Gustav Pomberger, and Norbert Weber. Automated Construc-

tion of Process Goal Trees from EPC-Models to Facilitate Extraction of Process Patterns. In

Proceedings of the 11th International Conference on Enterprise Information Systems, ICEIS

2009, pages 427–442, Milan, Italy, May 2009. Springer Berlin Heidelberg.

[36] Christian Borgelt and Rudolf Kruse. Induction of association rules: Apriori implementation. In

Proceedings of the 15th International Conference on Computational Statistics, Compstat 2002,

pages 395–400, Berlin, Germany, August 2002. Springer.

[37] Matthias Born, Florian Dörr, and Ingo Weber. User-Friendly Semantic Annotation in Business

Process Modeling. In Proceedings of the 8th International Conference on Web Information

Systems Engineering Workshops, WISE 2007, Nancy, France, December 2007.

[38] Travis D Breaux and Annie I Antón. Analyzing Regulatory Rules for Privacy and Security

Requirements. IEEE Transactions on Software Engineering, 34(1):5–20, 2008.

[39] Doug Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and Tomi Yiu. MAFIA: A

Maximal Frequent Itemset Algorithm. IEEE Transactions on Knowledge and Data Engineering,

17(11):1490–1504, November 2005.

http://www.bizzdesign.com/tools/bizzdesign-architect/
http://www.bizzdesign.com/tools/bizzdesign-architect/

References 187

[40] Markus Buschle, Hannes Holm, Teodor Sommestad, Mathias Ekstedt, and Khurram Shahzad. A

Tool for automatic Enterprise Architecture modeling. In IS Olympics: Information Systems in

a Diverse World: CAiSE Forum 2011 Selected Extended Papers, pages 1–15. Springer, London,

UK, June 2011.

[41] Business Process Management Initiative (BPMI.org). Business Process Modeling Language,

2003.

[42] Evellin C. S. Cardoso, João Paulo A. Almeida, Giancarlo Guizzardi, and Renata S. S. Guizzardi.

Eliciting goals for business process models with non-functional requirements catalogues. In

Proceedings of the 10th Workshop on Business Process Modeling, Development, and Support,

BPMDS’09, in conjunction with CAiSE’09, pages 33–45, Amsterdam, The Netherlands, June

2009. Springer Berlin Heidelberg.

[43] Aaron Ceglar and John F. Roddick. Association mining. ACM Computing Surveys, 38(2), July

2006.

[44] Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. Utilizing Supporting

Evidence to Improve Dynamic Requirements Traceability. In Proceedings of the 13th IEEE In-

ternational Requirements Engineering Conference, RE’05, pages 135–144, Paris, France, August

2005. IEEE Computer Society.

[45] Jonathan E Cook and Alexander L Wolf. Discovering models of software processes from event-

based data. ACM Transactions on Software Engineering and Methodology (TOSEM), 7(3):215–

249, 1998.

[46] Jonathan E Cook and Alexander L Wolf. Event-based detection of concurrency, volume 23.

ACM, 1998.

[47] Corso. Enterprise Architecture Software Tools — Corso. http://www.corso3.com/

enterprise-architecture, 2016.

[48] Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Communication of the ACM,

35(9):75–90, September 1992.

[49] Fabiano Dalpiaz, Evellin Cardoso, Giulia Canobbio, Paolo Giorgini, and John Mylopoulos.

Social Specifications of Business Processes with Azzurra. In 2015 IEEE 9th International

Conference on Research Challenges in Information Science (RCIS), pages 7–18, May 2015.

http://www.corso3.com/enterprise-architecture
http://www.corso3.com/enterprise-architecture

References 188

[50] Fabiano Dalpiaz, Xavier Franch, and Jennifer Horkoff. iStar 2.0 Language Guide. CoRR,

abs/1605.07767, 2016.

[51] Elio Damaggio, Richard Hull, and Roman Vacuĺın. On the equivalence of incremental and

fixpoint semantics for business artifacts with guard–stage–milestone lifecycles. Information

Systems, 38(4):561–584, 2013.

[52] Christophe Damas, Bernard Lambeau, Pierre Dupont, and Axel Van Lamsweerde. Generat-

ing Annotated Behavior Models from End-User Scenarios. IEEE Transactions on Software

Engineering, 31(12):1056–1073, December 2005.

[53] Christophe Damas, Bernard Lambeau, and Axel van Lamsweerde. Scenarios, Goals, and State

Machines: A Win-Win Partnership for Model Synthesis. In Proceedings of the 14th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, SIGSOFT 2006,

pages 197–207, Portland, Oregon, USA, 2006. ACM.

[54] Anne Dardenne, Stephen Fickas, and Axel van Lamsweerde. Goal-directed Concept Acquisition

in Requirements Elicitation. In Proceedings of the 6th International Workshop on Software

Specification and Design, IWSSD ’91, pages 14–21, Como, Italy, 1991. IEEE Computer Society

Press.

[55] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-Directed Requirements

Acquisition. Science of Computer Programming, 20(1):3–50, 1993.

[56] Robert Darimont. Process Support for Requirements Elaboration. PhD thesis, Université

catholique de Louvain, Louvain-La-Neuve, Belgium, 1995.

[57] Robert Darimont and Axel van Lamsweerde. Formal Refinement Patterns for Goal-driven Re-

quirements Elaboration. In Proceedings of the 4th ACM SIGSOFT Symposium on Foundations

of Software Engineering, SIGSOFT ’96, pages 179–190, San Francisco, California, USA, 1996.

ACM.

[58] Robert Darimont and Axel van Lamsweerde. Formal Refinement Patterns for Goal-driven

Requirements Elaboration. SIGSOFT Software Engineering Notes, 21(6):179–190, November

1996.

[59] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. Rule

Discovery from Time Series. In Proceedings of the 4th International Conference on Knowledge

Discovery and Data Mining, KDD’98, pages 16–22, New York, New York, USA, 1998.

References 189

[60] Jose Luis de la Vara, Juan Sánchez, and Oscar Pastor. On the Use of Goal Models and

Business Process Models for Elicitation of System Requirements. In Proceedings of the 14th

International Conference on BBusiness Process Modeling, Development, and Support, BPMDS

2013, in conjunction with CAiSE 2013, pages 168–183, Valencia, Spain, June 2013. Springer

Berlin Heidelberg.

[61] Jose Luis De la Vara González and Juan Sánchez Diáz. Business process-driven requirements

engineering: a goal-based approach. In Proceedings of the 8th Workshop on Business Process

Modeling, Development, and Support, BPMDS’07, in conjunction with CAiSE07, Trondheim,

Norway, June 2007.

[62] Jitender Deogun and Liying Jiang. Prediction Mining – An Approach to Mining Association

Rules for Prediction. In Proceedings of the 10th International Conference on Rough Sets, Fuzzy

Sets, Data Mining, and Granular Computing, RSFDGrC 2005, pages 98–108, Regina, Canada,

August 2005. Springer Berlin Heidelberg.

[63] Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher, Luciano Serafini, and Paolo

Tonella. Reasoning on Semantically Annotated Processes. In Proceedings of the 6th Inter-

national Conference on Service Oriented Computing, ICSOC 2008, pages 132–146, Sydney,

Australia, December 2008. Springer Berlin Heidelberg.

[64] Ivan Di Pietro, Francesco Pagliarecci, and Luca Spalazzi. Model Checking Semantically Anno-

tated Services. IEEE Transactions on software engineering, 38(3):592–608, 2012.

[65] Merriam-Webster Dictionary. Process — definition of process. http://www.merriam-webster.

com/dictionary/process.

[66] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and Mike Papazoglou. Formal-

izing and Appling Compliance Patterns for Business Process Compliance. Software & Systems

Modeling, 15(1):119–146, 2016.

[67] Neil A Ernst, John Mylopoulos, Yijun Yu, and Tien Nguyen. Supporting Requirements Model

Evolution Throughout the System Life-cycle. In Proceedings of the 16th IEEE International

Requirements Engineering Conference, RE’08, pages 321–322, Barcelona, Spain, September

2008. IEEE Computer Society.

[68] Matthias Farwick, Ruth Breu, Matheus Hauder, Sascha Roth, and Florian Matthes. Enterprise

Architecture Documentation: Empirical Analysis of Information Sources for Automation. In

http://www.merriam-webster.com/dictionary/process
http://www.merriam-webster.com/dictionary/process

References 190

Proceedings of the 46th Hawaii International Conference on System Sciences, HICSS ’13, pages

3868–3877, January 2013.

[69] Walid Fdhila, Stefanie Rinderle-Ma, and Conrad Indiono. Memetic Algorithms for Mining

Change Logs in Process Choreographies. In Proceeding of the 12th International Conference

on Service-Oriented Computing, ICSOC 2014, pages 47–62, Paris, France, November 2014.

Springer Berlin Heidelberg.

[70] Dieter Fensel, Federico Michele Facca, Elena Simperl, and Ioan Toma. Semantic Web Services.

Springer, 2011.

[71] Dieter Fensel, Holger Lausen, Axel Polleres, Jos De Bruijn, Michael Stollberg, Dumitru Ro-

man, and John Domingue. Enabling semantic web services: the web service modeling ontology.

Springer Science & Business Media, 2006.

[72] Günther Fliedl, Christian Kop, and Heinrich C Mayr. From Textual Scenarios to A Conceptual

Schema. Data & Knowledge Engineering, 55(1):20–37, 2005.

[73] Philippe Fournier-Viger, Usef Faghihi, Roger Nkambou, and Engelbert Mephu Nguifo. CM-

Rules: Mining sequential rules common to several sequences. Knowledge-Based Systems: Special

Issue on New Trends in Data Mining, 25(1):63–76, 2012.

[74] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and Rincy Thomas. Fast Vertical

Mining of Sequential Patterns Using Co-occurrence Information. In Proceedings of The 18th

Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014, pages 40–52,

Tainan, Taiwan, May 2014. Springer International Publishing.

[75] Philippe Fournier-Viger, Ted Gueniche, Souleymane Zida, and Vincent S. Tseng. ERMiner:

Sequential Rule Mining Using Equivalence Classes. In Proceedings of the 13th International

Symposium on Advances in Intelligent Data Analysis, IDA 2014, pages 108–119, Leuven, Bel-

gium, October 2014. Springer International Publishing.

[76] Philippe Fournier-Viger, Roger Nkambou, and Vincent Shin-Mu Tseng. RuleGrowth: Mining

Sequential Rules Common to Several Sequences by Pattern-growth. In Proceedings of the 2011

ACM Symposium on Applied Computing, SAC ’11, pages 956–961. ACM, 2011.

[77] Philippe Fournier-Viger, Cheng-Wei Wu, Antonio Gomariz, and Vincent S. Tseng. VMSP:

Efficient Vertical Mining of Maximal Sequential Patterns. In Proceedings of the 27th Canadian

References 191

Conference on Artificial Intelligence, Canadian AI 2014, pages 83–94, Montréal, QC, Canada,

May 2014. Springer International Publishing.

[78] Philippe Fournier-Viger, Cheng-Wei Wu, and Vincent S. Tseng. Mining Maximal Sequential

Patterns without Candidate Maintenance. In Proceedings of the 9th International Conference

on Advanced Data Mining and Applications, ADMA 2013, pages 169–180, Hangzhou, China,

December 2013. Springer Berlin Heidelberg.

[79] Xavier Franch, Lidia López, Carlos Cares, and Daniel Colomer. The i* Framework for Goal-

Oriented Modeling. In Domain-Specific Conceptual Modeling: Concepts, Methods and Tools,

pages 485–506. Springer International Publishing, 2016.

[80] Shang Gao. Relating Goal Modeling with BPCM Models in a Combined Framework. In Pro-

ceedings of the 13th International Conference on Computational Science and Its Applications,

Part III, ICCSA 2013, pages 33–42, Ho Chi Minh City, Vietnam, June 2013. Springer Berlin

Heidelberg.

[81] Shang Gao and John Krogstie. A Combined Framework for Development of Business Process

Support Systems. In Proceedings of The Practice of Enterprise Modeling: Second IFIP WG

8.1 Working Conference, PoEM 2009, pages 115–129, Stockholm, Sweden, November 2009.

Springer Berlin Heidelberg.

[82] René Arnulfo Garćıa-Hernández, José Francisco Mart́ınez-Trinidad, and Jesús Ariel Carrasco-

Ochoa. A New Algorithm for Fast Discovery of Maximal Sequential Patterns in a Document

Collection. In Proceedings of the 7th International Conference Computational Linguistics and

Intelligent Text Processing, CICLing 2006, pages 514–523, Mexico City, Mexico, February 2006.

Springer Berlin Heidelberg.

[83] GE Reports Staff. 2015 A Big Year for Big Data. http://www.gereports.com/post/

108012387578/2015-a-big-year-for-big-data/, January 2015.

[84] Sepideh Ghanavati, Daniel Amyot, and Liam Peyton. Compliance analysis based on a goal-

oriented requirement language evaluation methodology. In Proceedings of the 17th IEEE Inter-

national Requirements Engineering Conference, RE’09, pages 133–142, Atlanta, Georgia, USA,

August 2009. IEEE Computer Society.

[85] Chiara Ghidini, Marco Rospocher, and Luciano Serafini. A formalisation of BPMN in descrip-

tion logics. FBK-irst, Tech. Rep. TR, pages 06–004, 2008.

http://www.gereports.com/post/108012387578/2015-a-big-year-for-big-data/
http://www.gereports.com/post/108012387578/2015-a-big-year-for-big-data/

References 192

[86] Aditya Ghose and George Koliadis. Auditing Business Process Compliance. In Proceedings of

the Fifth International Conference on Service-Oriented Computing, ICSOC 2007, pages 169–

180, Vienna, Austria, September 2007. Springer Berlin Heidelberg.

[87] Aditya Ghose, George Koliadis, and Arthur Chueng. Process Discovery from Model and Text

Artefacts. In Proceedings of the 2007 IEEE Congress on Services, pages 167–174, Salt Lake

City, Utah, USA, July 2007. IEEE.

[88] Aditya K Ghose, Evan Morrison, and Yingzhi Gou. A Novel Use of Big Data Analytics for

Service Innovation Harvesting. In Proceedings of the 5th International Conference on Service

Science and Innovation, ICSSI 2013, pages 208–214, Kaohsiung, Taiwan, May 2013. IEEE

Computer Society.

[89] Brian K Gibb and Suresh Damodaran. ebXML: Concepts and application. John Wiley & Sons,

Inc., 2002.

[90] Matthew L. Ginsberg and David E. Smith. Reasoning about Action I: A Possible Worlds

Approach. Artificial Intelligence, 35(2):165–195, 1988.

[91] Octavio Glorio, Jesus Pardillo, Jose-Norberto Mazon, and Juan Trujillo. Dawara: An eclipse

plugin for using i* on data warehouse requirement analysis. In Proceedings of the 16th IEEE

International Requirements Engineering Conference, RE’08, pages 317–318, Barcelona, Spain,

September 2008. IEEE Computer Society.

[92] Bart Goethals. Survey on Frequent Pattern Mining. Technical report, University of Helsinki,

Helsinki, Finland, 2003.

[93] J. A. Goguen and C. Linde. Techniques for Requirements Elicitation. In Proceedings of the IEEE

International Symposium on Requirements Engineering, RE’93, pages 152–164, San Diego, CA,

USA, January 1993.

[94] Antonio Gomariz, Manuel Campos, Roque Marin, and Bart Goethals. ClaSP: An Efficient

Algorithm for Mining Frequent Closed Sequences. In Proceedings of The 17th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, PAKDD 2013, pages 50–61, Gold Coast,

Australia, April 2013. Springer Berlin Heidelberg.

[95] Raj P Gopalan and Yudho Giri Sucahyo. High performance frequent patterns extraction using

compressed FP-Tree. In Proceedings of 2004 SIAM International Workshop on High Perfor-

mance and Distributed Mining, HPDM’04, Orlando, USA, 2004.

References 193

[96] Ellen Gottesdiener. Requirements by Collaboration: Workshops for Defining Needs. Addison-

Wesley Professional, 2002.

[97] Yingzhi Gou, Aditya Ghose, Chee-Fon Chang, Hoa Khanh Dam, and Andrew Miller. Semantic

Monitoring and Compensation in Socio-technical Processes. In Proceedings of the 1st Interna-

tional Workshop on Conceptual Modeling in Requirements and Business Analysis, MReBA14,

in conjunction with ER 2014, Atlanta, GA, USA, October 2014. Springer International Pub-

lishing.

[98] Gösta Grahne and Jianfei Zhu. Efficiently Using Prefix-trees in Mining Frequent Itemsets.

In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations,

FIMI’03, Melbourne, Florida, USA, November 2003. IEEE Computer Society.

[99] Gösta Grahne and Jianfei Zhu. Fast Algorithms for Frequent Itemset Mining Using FP-Trees.

IEEE Transactions on Knowledge and Data Engineering, 17(10):1347–1362, October 2005.

[100] Gösta Grahne and Jianfei Zhu. Fast Algorithms for Frequent Itemset Mining Using FP-Trees.

IEEE Transactions on Knowledge and Data Engineering, 17(10):1347–1362, October 2005.

[101] Gemma Grau, Xavier Franch, and Neil A.M. Maiden. PRiM: An i-based process reengineering

method for information systems specification. Information and Software Technology, 50(12):76–

100, 2008.

[102] Georg Grossmann, Michael Schrefl, and Markus Stumptner. A model-driven Framework for

Runtime Adaptation of Web Service Compositions. In Proceedings of the 6th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’11,

pages 184–189. ACM, 2011.

[103] The Stanford NLP Group. StanfordNLP (Stanford Natural Language Processing) Software.

http://nlp.stanford.edu/software/tagger.shtml.

[104] Susan Gunelius. The Data Explosion in 2014 Minute by Minute Infographic. https://aci.

info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/, July

2014.

[105] Christian W Günther and Wil M.P. Van Der Aalst. Fuzzy Mining - Adaptive Process Simplifi-

cation Based on Multi-perspective Metrics. In Proceedings of the 5th International Conference

on Business Process Management, BPM 2007, pages 328–343, Brisbane, Australia, September

2007. Springer.

http://nlp.stanford.edu/software/tagger.shtml
https://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
https://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

References 194

[106] Curtis Hall and Paul Harmon. The 2005 Enterprise Architecture, Process Modeling & Simula-

tion Tools Report. Technical report, Business Process Trends, 2005.

[107] Michael Hammer and James Champy. A Reengineering the Corporation: Manifesto for Business

Revolution. Collins Business Essentials. HarperCollins, 2009.

[108] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: current status

and future directions. Data Mining and Knowledge Discovery, 15(1):55–86, July 2007.

[109] Jiawei Han and Jian Pei. Mining frequent patterns by pattern-growth: Methodology and

implications. ACM SIGKDD Explorations Newsletter - Special issue on “Scalable data mining

algorithms”, 2(2):14–20, December 2000.

[110] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal, and Mei-Chun

Hsu. FreeSpan: Frequent Pattern-projected Sequential Pattern Mining. In Proceedings of

the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’00, pages 355–359, Boston, Massachusetts, USA, 2000. ACM.

[111] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining Frequent Patterns without Candi-

date Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery,

8(1):53–87, 2004.

[112] Hans-Jörg Happel and Ljiljana Stojanovic. Ontoprocess—a Prototype for Semantic Business

Process Verification Using SWRL rules. In Proceedings of the 3rd European Semantic Web

Conference, ESWC 2006, Budva, Montenegro, June 2006.

[113] Paul Harmon and Celia Wolf. The State of Business Process Management 2016. http://www.

bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf, 2015.

[114] Sherri K. Harms, Jitender Deogun, and Tsegaye Tadesse. Discovering Sequential Association

Rules with Constraints and Time Lags in Multiple Sequences. In Proceedings of the 13th

International Symposium on Foundations of Intelligent Systems, ISMIS 2002, pages 432–441,

Lyon, France, June 2002. Springer Berlin Heidelberg.

[115] Peter Haumer, Klaus Pohl, and Klaus Weidenhaupt. Requirements elicitation and validation

with real world scenes. IEEE Transactions on Software Engineering, 24(12):1036–1054, De-

cember 1998.

[116] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, and Sarah Howard. Help-

ing Analysts Trace Requirements: An objective look. In Proceedings of 12th IEEE International

http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf

References 195

Requirements Engineering Conference, RE’04, pages 249–259, Kyoto, Japan, September 2004.

IEEE Computer Society.

[117] Martin Hepp, Frank Leymann, John Domingue, Alexander Wahler, and Dieter Fensel. Semantic

Business Process Management: A Vision Towards Using for Business Process Management. In

Proceedings of the IEEE International Conference on e-Business Engineering, ICEBE 2005,

pages 535–540, Beijing, China, October 2005. IEEE Computing Society.

[118] Nico Herzberg, Matthias Kunze, and Andreas Rogge-Solti. Towards process evaluation in non-

automated process execution environments. In ZEUS, pages 97–103. Citeseer, 2012.

[119] Nico Herzberg and Andreas Meyer. Improving process monitoring and progress prediction with

data state transition events. Data & Knowledge Engineering, 98:144–164, 2015.

[120] Nico Herzberg, Andreas Meyer, and Mathias Weske. An event processing platform for business

process management. In Proceedings of the 17th IEEE International Enterprise Distributed

Object Computing Conference (EDOC), pages 107–116. IEEE, 2013.

[121] Nico Herzberg, Andreas Meyer, and Mathias Weske. Improving business process intelligence

by observing object state transitions. Proceedings of the 32th International Conference on

Conceptual Modeling (ER 2013), pages 146–160, 2013.

[122] Nico Herzberg and Mathias Weske. Enriching raw events to enable process intelligence: research

challenges. Technical Report 73, Universitätsverlag Potsdam, 2013.

[123] Kerry Hinge, Aditya Ghose, and George Koliadis. Process SEER: A Tool for Semantic Effect

Annotation of Business Process Models. In Proceedings of the Thirteenth IEEE International

Enterprise Distributed Object Computing Conference, EDOC ’09, pages 54–63, Acukland, New

Zealand, September 2009. IEEE Computing Society.

[124] Jörg Hoffmann, Ingo Weber, and Guido Governatori. On compliance checking for clausal

constraints in annotated process models. Information Systems Frontiers, 14(2):155–177, 2012.

[125] Hannes Holm, Markus Buschle, Robert Lagerstrm, and Mathias Ekstedt. Automatic data

collection for enterprise architecture models. Software & Systems Modeling, 13(2), 2014.

[126] Karen Holtzblatt and Hugh R. Beyer. Requirements Gathering: The Human Factor. Commun.

ACM, 38(5):31–32, May 1995.

References 196

[127] Jennifer Horkoff, Alex Borgida, John Mylopoulos, Daniele Barone, Lei Jiang, Eric Yu, and

Daniel Amyot. Making Data Meaningful: The business intelligence model and its formal se-

mantics in description logics. In On the Move to Meaningful Internet Systems: OTM 2012,

volume 7566 of Lecture Notes in Computer Science, pages 700–717. Springer, 2012.

[128] Jennifer Horkoff, Tong Li, Feng-Lin Li, Mattia Salnitri, Evellin Cardoso, Paolo Giorgini, and

John Mylopoulos. Using Goal Models Downstream: A Systematic Roadmap and Literature

Review. International Journal of Information System Modeling and Design (IJISMD), 6(2):1–

42, 2015.

[129] Thomas Hornung, Agnes Koschmider, and Andreas Oberweis. A recommender system for busi-

ness process models. In Proceedings of the 17th Annual Workshop on Information Technologies

& Systems, WITS 2009, 2009.

[130] Bowen Hui and Eric Yu. Extracting conceptual relationships from specialized documents. Data

& Knowledge Engineering, 54(1):29–55, 2005.

[131] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta, Fenno Terry Heath III,

Stacy Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam, Piyawadee Sukaviriya, et al.

Introducing the guard-stage-milestone approach for specifying business entity lifecycles. In

International Workshop on Web Services and Formal Methods, pages 1–24. Springer Berlin

Heidelberg, 2010.

[132] IBM. Bringing big data to the enterprise. http://wikibon.org/blog/

big-data-statistics/.

[133] Silvia Ingolfo, Alberto Siena, and John Mylopoulos. Establishing Regulatory Compliance for

Software Requirements. In Proceedings of the 30th International Conference on Conceptual

Modeling, ER 2011, pages 47–61, Brussels, Belgium, October 2011. Springer Berlin Heidelberg.

[134] Shareeful Islam, Haralambos Mouratidis, and Stefan Wagner. Towards a Framework to Elicit

and Manage Security and Privacy Requirements from Laws and Regulations. In Proceedings

of the 16th International Working Conference on Requirements Engineering: Foundation for

Software Quality, REFSQ 2010, pages 255–261, Essen, Germany, June 2010. Springer Berlin

Heidelberg.

[135] Henk Jonkers, Iver Band, and Dick Quartel. The ArchiSurance Case Study. White paper, The

Open Group, Spring, 2012.

http://wikibon.org/blog/big-data-statistics/
http://wikibon.org/blog/big-data-statistics/

References 197

[136] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Barreto,

Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, et al. Business Process Execution

Language for Web Services(BPEL4WS) 1.0. https://docs.oasis-open.org/wsbpel/2.0/

PR02/wsbpel-specification-draft-diff.pdf, November 2006.

[137] Yuchul Jung, Yoonsung Cho, Yoo-Mi Park, and TaeDong Lee. Automatic Tagging of

Functional-Goals for Goal-Driven Semantic Service Discovery. In Proceedings of the IEEE

Seventh International Conference on Semantic Computing, ICSC 2013, pages 212–219, Irvine,

California, USA, September 2013. IEEE Computer Society.

[138] Stefan Junginger. The Workflow Management Coalition Standard WPDL: First Steps To-

wards Formalization. In Proceedings of the 7th European Concurrent Engineering Conference,

ECEC’2000, pages 163–168, Leicester, United Kingdom, April 2000.

[139] Mohammed J.Zaki and Ching-Jui Hsiao. CHARM: An Efficient Algorithm for Closed Itemset

Mining. In Proceedings of 2002 SIAM International Conference on Data Mining, SDM’02,

Arlington, VA, USA, April 2002.

[140] Stephen H. Kaisler, Frank Armour, and Michael Valivullah. Enterprise Architecting: Criti-

cal Problems. In Proceedings of the 38th Annual Hawaii International Conference on System

Sciences, HICSS ’05, pages 224b–224b. IEEE, January 2005.

[141] Lowell D Kaufman. System Modeling For Scenario-Based Requirements Engineering. University

of Florida, 1989.

[142] Evangelia Kavakli. Goal-Oriented Requirements Engineering: A Unifying Framework. Require-

ments Engineering, 6(4):237–251, 2002.

[143] Nadzeya Kiyavitskaya and Nicola Zannone. Requirements model generation to support require-

ments elicitation: the Secure Tropos experience. Automated Software Engineering, 15(2):149–

173, 2008.

[144] George Koliadis and Aditya Ghose. Correlating Business Process and Organizational Models to

Manage Change. In Proceeding of the Australasian Conference on Information Systems, ACIS

2006, Adelaide, SA, Australia, December 2006.

[145] George Koliadis, Aditya Ghose, and Srinivas Padmanabhuni. Towards an enterprise business

process architecture standard. In Proceedings of the 2008 IEEE Congress on Services - Part I,

pages 239–246. IEEE, July 2008.

https://docs.oasis-open.org/wsbpel/2.0/PR02/wsbpel-specification-draft-diff.pdf
https://docs.oasis-open.org/wsbpel/2.0/PR02/wsbpel-specification-draft-diff.pdf

References 198

[146] George Koliadis, Aleksander Vranesevic, Moshiur Bhuiyan, Aneesh Krishna, and Aditya Ghose.

A Combined Approach for Supporting the Business Process Model Lifecycle. In Proceeding of

the 10th Pacific Asia Conference on Information Systems, PACIS’06, Kuala Lumpur, Malaysia,

July 2006.

[147] George Koliadis, Aleksander Vranesevic, Moshiur Bhuiyan, Aneesh Krishna, and Aditya Ghose.

Combining i* and bpmn for business process model lifecycle management. In Proceedings of

the 2006 International Workshop on Grid and Peer-to-Peer Based Workflows, GPWW 2006, in

conjuntion with BPM 2006, pages 416–427, Vienna, Austria, September 2006. Springer Berlin

Heidelberg.

[148] Gerald Kotonya and Ian Sommerville. Requirements Engineering: Processes and Techniques.

Wiley Publishing, 1st edition, 1998.

[149] Manolis Koubarakis and Dimitris Plexousakis. A Formal Framework for Business Process

Modelling and Design. Information Systems, 27(5):299–319, 2002.

[150] John Krogstie, Guttorm Sindre, and H̊avard Jørgensen. Process models representing knowledge

for action: a revised quality framework. European Journal of Information Systems, 15(1):91–

102, 2006.

[151] Richard A Krueger and Mary Anne Casey. Focus groups: A practical guide for applied research.

Sage publications, 2014.

[152] Qihua Lan, Defu Zhang, and Bo Wu. A New Algorithm for Frequent Itemsets Mining Based on

Apriori and FP-Tree. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems,

volume 2, pages 360–364, May 2009.

[153] Marc Lankhorst, editor. Enterprise Architecture at Work: Modelling, Communication and

Analysis. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2013.

[154] Marc Lankhorst, Henderik Alex Proper, and Henk Jonkers. The Anatomy of the Archi-

Mate Language. International Journal of Information System Modeling and Design (IJISMD),

1(1):1–32, 2010.

[155] Alexei Lapouchnian. Goal-Oriented Requirements Engineering: An Overview of the Current

Research. Technical report, Department of Computer Science, University Of Toronto, Toronto,

Canada, June 2005.

References 199

[156] Chiung-Hon Leon Lee and Alan Liu. Toward Intention Aware Semantic Web Service Systems.

In Proceedings of the 2005 IEEE International Conference on Services Computing Volume 1,

volume 1 of SCC’05, pages 69–76, Orlando, Florida, USA, July 2005. IEEE Computer Society.

[157] Emmanuel Letier. Reasoning About Agents in Goal-Oriented Requirements Engineering. PhD

thesis, Université catholique de Louvain, Louvain-La-Neuve, Belgium, 2001.

[158] Guimei Liu, Hongjun Lu, Jeffrey Xu Yu, Wang Wei, and Xiangye Xiao. AFOPT: An Efficient

Implementation of Pattern Growth Approach. In Proceedings of the IEEE ICDM Workshop

on Frequent Itemset Mining Implementations, FIMI’03, Melbourne, Florida, USA, November

2003. IEEE Computer Society.

[159] David Lo, Siau-Cheng Khoo, and Limsoon Wong. Non-redundant sequential rulesTheory and

algorithm. Information Systems, 34(45):438–453, 2009.

[160] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Fast and Memory Efficient Mining of

Frequent Closed Itemsets. IEEE Transactions on Knowledge and Data Engineering, 18(1):21–

36, January 2006.

[161] Congnan Luo and Soon M. Chung. Efficient Mining of Maximal Sequential Patterns Using

Multiple Samples. In Proceedings of 2005 SIAM International Conference on Data Mining,

SDM’05, Newport Beach, CA, USA, April 2005.

[162] Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algorithms.

ACM Computing Surveys, 43(1):3:1–3:41, December 2010.

[163] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of Frequent Episodes in

Event Sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

[164] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. Effcient algorithms for discovering

association rules. In Proceedings of AAAI Workshop on Knowledge Discovery in Databases,

KDD-94, pages 181–192, Seattle, Washington, USA, July 1994.

[165] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a Large Anno-

tated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, June

1994.

[166] Sabrina Marczak and Daniela Damian. How Interaction between Roles Shapes the Commu-

nication Structure in Requirements-Driven Collaboration. In Proceedings of the 19th IEEE

International Requirements Engineering Conference, pages 47–56, Trento, Italy, August 2011.

References 200

[167] Andrea Marrella, Massimo Mecella, Alessandro Russo, Sebastian Steinau, Kevin Andrews, and

Manfred Reichert. A Survey on Handling Data in Business Process Models (Discussion Paper).

In Proceedings of the 23rd Italian Symposium on Advanced Database Systems, SEBD 2015,

Gaeta, Italy, June 2015.

[168] Andrea Marrella, Massimo Mecella, Alessandro Russo, Sebastian Steinau, Kevin Andrews,

and Manfred Reichert. Data in Business Process Models, A Preliminary Empirical Study.

In Proceedings of the IEEE 8th International Conference on Service-Oriented Computing and

Applications, SOCA 2015, pages 116–122, Rome, Italy, October 2015.

[169] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott, Debo-

rah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki, et al. Bringing

semantics to web services: The OWL-S approach. In Semantic Web Services and Web Process

Composition, pages 26–42. Springer, 2005.

[170] Florent Masseglia, F Cathala, and Pascal Poncelet. The PSP Approach for Mining Sequential

Patterns, pages 176–184. PKDD ’98. Springer Berlin Heidelberg, Nantes, France, September

1998.

[171] Aaron K. Massey, Jacob Eisenstein, Annie I. Antón, and Peter P. Swire. Automated Text

Mining for Requirements Analysis of Policy Documents. In Proceedings of the 21st IEEE

International Requirements Engineering Conference, RE’13, pages 4–13, Rio de Janeiro, RJ,

Brazil, 2013. IEEE Computer Society.

[172] Masahiro Matsubara, Masataka Nishi, and Fumio Narisawa. Modeling safety requirements

of iso26262 using goal trees and patterns. In Formal Techniques for Safety-Critical Systems:

Fourth International Workshop, FTSCS 2015, Paris, France, November 6-7, 2015. Revised

Selected Papers, volume 596, page 206. Springer, 2016.

[173] William E McCarthy. The REA accounting model: A generalized framework for accounting

systems in a shared data environment. Accounting Review, pages 554–578, 1982.

[174] John McDermid. Requirements analysis: Problems and the STARTS approach. In IEE Col-

loquium on Requirements Capture and Specification for Critical Systems, pages 4/1–4/4. IET,

November 1989.

[175] Karen L. McGraw and Karen Harbison-Briggs. Knowledge Acquisition: Principles and Guide-

lines. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

References 201

[176] Odorico Machado Mendizabal, Martin Spier, and Rodrigo Saad. Log-based Approach for Per-

formance Requirements Elicitation and Prioritization. In Proceedings of the 20th IEEE Inter-

national Requirements Engineering Conference, RE’12, pages 297–302, Chicago, Illinois, USA,

September 2012. IEEE Computer Society.

[177] Jan Mendling, Hajo A. Reijers, and Wil M.P. van der Aalst. Seven process modeling guidelines

(7PMG). Information and Software Technology, 52(2):127–136, 2010.

[178] Harald Meyer. On the Semantics of Service Compositions. In Web Reasoning and Rule Systems,

pages 31–42. Springer Berlin Heidelberg, 2007.

[179] Hafedh Mili, Guy Tremblay, Guitta Bou Jaoude, Éric Lefebvre, Lamia Elabed, and Ghizlane El

Boussaidi. Business Process Modeling Languages: Sorting Through the Alphabet Soup. ACM

Computing Surveys, 43(1):4:1–4:56, November 2010.

[180] Mehdi Mirakhorli, Ahmed Fakhry, Artem Grechko, Matteusz Wieloch, and Jane Cleland-

Huang. Archie: A Tool for Detecting, Monitoring, and Preserving Architecturally Significant

Code. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, FSE 2014, pages 739–742, Hong Kong, China, 2014.

[181] Marco Montali, Maja Pesic, Wil M.P. van der Aalst, Federico Chesani, Paola Mello, and Sergio

Storari. Declarative specification and verification of service choreographies. ACM Transactions

on the Web, 4:1–62, 2010.

[182] Daniel L Moody. Theoretical and practical issues in evaluating the quality of conceptual models:

current state and future directions. Data & Knowledge Engineering, 55(3):243–276, 2005.

[183] Carl H. Mooney and John F. Roddick. Sequential pattern mining – approaches and algorithms.

ACM Computing Surveys, 45(2):19:1–19:39, March 2013.

[184] Evan D. Morrison, Aditya Ghose, Hoa K. Dam, Kerry Hinge, and Konstantin Hoesch-Klohe.

Strategic Alignment of Business Processes. In Proceedings of the Seventh International Work-

shop on Engineering Service-Oriented Applications, WESOA 2011, in conjunction with ICSOC

2011, pages 9–21, Paphos, Cyprus, December 2012. Springer Berlin Heidelberg.

[185] John Mylopoulos, Lawrence Chung, and Eric Yu. From Object-oriented to Goal-oriented Re-

quirements Analysis. Communications of the ACM, 42(1):31–37, January 1999.

[186] Dina Neiger and Leonid Churilov. Goal-Oriented Business Process Modeling with EPCs and

Value-Focused Thinking. In Proceedings of the Second International Conference on Business

References 202

Process Management, BPM 2004, pages 98–115, Potsdam, Germany, June 2004. Springer Berlin

Heidelberg.

[187] Janni Nielsen, Torkil Clemmensen, and Carsten Yssing. Getting Access to What Goes on

in People’s Heads?: Reflections on the Think-aloud Technique. In Proceedings of the Second

Nordic Conference on Human-computer Interaction, NordiCHI ’02, pages 101–110, Aarhus,

Denmark, 2002. ACM.

[188] Nan Niu and Steve Easterbrook. So, You Think You Know Others’ Goals? A Repertory Grid

Study. IEEE Software, 24(2):53–61, March 2007.

[189] Bashar Nuseibeh and Steve Easterbrook. Requirements Engineering: A Roadmap. In Proceed-

ings of the Conference on The Future of Software Engineering, ICSE ’00, pages 35–46. ACM,

2000.

[190] Object Management Group. BPMN version 2.0. OMG Final Adopted Specification. Object

Management Group, 2011.

[191] Office of Kids and Families, NSW Department of Health, Australia. Infants and children: Acute

management of Head Injury, 2 edition, March 2011.

[192] Martyn A. Ould. Business processes: modelling and analysis for re-engineering and improve-

ment. Wiley Chichester, March 1995.

[193] Eray Ozkural and Cevdet Aykanat. A Space Optimization for FP-Growth. In Proceedings of

the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, FIMI’04, Brighton,

UK, November 2004. IEEE Computer Society.

[194] Michael C Panis. Successful deployment of requirements traceability in a commercial engineer-

ing organization... really. In Proceedings of the 18th IEEE International Requirements Engi-

neering Conference, RE’10, pages 303–307, Sydney, Australia, October 2010. IEEE Computer

Society.

[195] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An Effective Hash-based Algorithm for

Mining Association Rules. In Proceedings of the 1995 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’95, pages 175–186, San Jose, California, USA, 1995. ACM.

[196] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering Frequent Closed

Itemsets for Association Rules, pages 398–416. ICDT’99. Springer-Verlag London, UK,

Jerusalem, Israel, January 1999.

References 203

[197] Gabriele Paul. Approaches to abductive reasoning: an overview. Artificial Intelligence Review,

7(2):109–152, 1993.

[198] Lauren Gibbone Paul. RosettaNet: Teaching business to work

together. http://www.developer.com/xml/article.php/616641/

RosettaNet-Teaching-businesses-to-work-together.htm, October 2011.

[199] Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An Efficient Algorithm for Mining Frequent

Closed Itemsets. In Proceedings of the 2000 ACM-SIGMOD International Workshop on Data

Mining and Knowledge Discovery, DMKD’00, pages 21–30, Dallas, TX, USA, May 2000.

[200] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal,

and Mei-Chun Hsu. PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In

Proceedings of the 17th International Conference on Data Engineering, ICDE 2001, pages 215–

224, Heidelberg, Germany, April 2001. IEEE Computer Society.

[201] José Lúıs Pereira and Diogo Silva. Business Process Modeling Languages: A Comparative

Framework, pages 619–628. Springer International Publishing, 2016.

[202] Joao Pimentel, Jaelson Castro, Hermano Perrelli, Emanuel Santos, and Xavier Franch. Towards

Anticipating Requirements Changes through Studies of the Future. In Proceedings of the Fifth

IEEE International Conference on Research Challenges in Information Science, RCIS 2011,

pages 1–11, Gosier, Guadeloupe, French West Indies, May 2011. IEEE Computer Society.

[203] Planview, Inc. Enterprise Architecture Software — EA Tools — Planview. http://www.

planview.com, 2016.

[204] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. Springer

Publishing Company, Incorporated, 1st edition, 2010.

[205] Karthikeyan Ponnalagu, Aditya Ghose, Nanjangud C. Narendra, and Hoa Khanh Dam. Goal-

Aligned Categorization of Instance Variants in Knowledge-Intensive Processes. In Proceeding

of the 13th International Conference on Business Process Management, BPM 2015, Innsbruck,

Austria, August 2015. Springer International Publishing.

[206] Nicolas Prat. Goal formalization and classification for requirements engineering, fifteen years

later. In Proceedings of the IEEE 7th International Conference on Research Challenges in

Information Science, RCIS 2013, pages 1–12, Paris, France, May 2013. IEEE Computer Society.

http://www.developer.com/xml/article.php/616641/RosettaNet-Teaching-businesses-to-work-together.htm
http://www.developer.com/xml/article.php/616641/RosettaNet-Teaching-businesses-to-work-together.htm
http://www.planview.com
http://www.planview.com

References 204

[207] Liang-Xi Qin, Ping Luo, and Zhong-Zhi Shi. Efficiently Mining Frequent Itemsets with Compact

FP-Tree, pages 397–406. IIP2004. Springer US, Beijing, China, October 2004.

[208] Balázs Rácz. nonordfp: An FP-growth variation without rebuilding the FP-tree. In Proceedings

of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, FIMI’04, Brighton,

UK, November 2004. IEEE Computer Society.

[209] Suzanne Robertson and James Robertson. Mastering the requirements process: Getting require-

ments right. Addison-wesley, 2012.

[210] Colette Rolland. Goal Oriented Requirements Engineering, pages 35–51. Springer US, Boston,

MA, 2002.

[211] Colette Rolland, Georges Grosz, and Régis Kla. Experience with Goal-Scenario Coupling

in Requirements Engineering. In Proceedings of the 4th IEEE International Symposium on

Requirements Engineering, RE’99, pages 74–81, Limerick, Ireland, June 1999. IEEE Computer

Society.

[212] Colette Rolland, Carine Souveyet, and Camille Ben Achour. Guiding Goal Modeling Using

Scenarios. IEEE Transactions on Software Engineering, 24(12):1055–1071, December 1998.

[213] RosettaNet. RosettaNet Implementation Framework: Core Specification. http://xml.

coverpages.org/RNIF-Spec020000.pdf, July 2001.

[214] Douglas T. Ross and Kenneth E. Schoman. Structured Analysis for Requirements Definition.

IEEE Transactions on Software Engineering, 3(1):6–15, January 1977.

[215] Anne Rozinat and Wil MP van der Aalst. Conformance checking of processes based on moni-

toring real behavior. Information Systems, 33(1):64–95, 2008.

[216] Gordon Rugg and Peter McGeorge. Laddering. Expert Systems, 12(4):339–346, November 1995.

[217] Kurt Sandkuhl, Janis Stirna, Anne Persson, and Matthias Wißotzki. Enterprise Modeling:

Tackling Business Challenges with the 4EM Method. Springer-Verlag Berlin Heidelberg, 2014.

[218] Metta Santiputri, Aditya K Ghose, Hoa Khanh Dam, and Xiong Wen. Mining Process Task

Post-Conditions. In International Conference on Conceptual Modeling, pages 514–527. Springer,

2015.

http://xml.coverpages.org/RNIF-Spec020000.pdf
http://xml.coverpages.org/RNIF-Spec020000.pdf

References 205

[219] Ayu Saraswati, Chee-Fon Chang, Aditya Ghose, and Hoa Khanh Dam. Learning Relationships

Between the Business Layer and the Application Layer in ArchiMate Models. In Proceed-

ings of the 34th International Conference on Conceptual Modeling, ER 2015, pages 499–513,

Stockholm, Sweden, October 2015. Springer International Publishing.

[220] Lionel Savary and Karine Zeitouni. Indexed Bit Map (IBM) for Mining Frequent Sequences,

pages 659–666. PKDD 2005. Springer Berlin Heidelberg, Porto, Portugal, October 2005.

[221] August-Wilhelm Scheer and Markus Nüttgens. ARIS Architecture and Reference Models for

Business Process Management, pages 376–389. Springer Berlin Heidelberg, 2000.

[222] Masakazu Seno and George Karypis. SLPMiner: An Algorithm for Finding Frequent Sequen-

tial Patterns Using Length-Decreasing Support Constraint. In Proceedings of the 2002 IEEE

International Conference on Data Mining, ICDM’02, pages 418–425, Maebashi City, Japan,

December 2002. IEEE Computer Society.

[223] Pradeep Shenoy, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia, Mayank Bawa, and De-

vavrat Shah. Turbo-charging vertical mining of large databases. ACM SIGMOD Record,

29(2):22–33, May 2000.

[224] Sebastian Siegl, Kai-Steffen Hielscher, and Reinhard German. Model Based Requirements

Analysis and Testing of Automotive Systems with Timed Usage Models. In Proceedings of

the 18th IEEE International Requirements Engineering Conference, pages 345–350, Sydney,

Australia, October 2010. IEEE Computer Society.

[225] Alberto Siena, Anna Perini, Angelo Susi, and John Mylopoulos. A Meta-Model for Mod-

elling Law-Compliant Requirements. In Proceedings of the Second International Workshop on

Requirements Engineering and Law, RELAW 2009, in conjunction with RE’09, pages 45–51,

Atlanta, Georgia, USA, September 2009. IEEE Computer Society.

[226] Fabrizio Smith, Michele Missikoff, and Maurizio Proietti. Ontology-Based Querying of Com-

posite Services. In Business System Management and Engineering, pages 159–180. Springer

Berlin Heidelberg, 2012.

[227] Fabrizio Smith and Maurizio Proietti. Rule-based Behavioral Reasoning on Semantic Busi-

ness Processes. In Proceeding of the 5th International Conference on Agents and Artificial

Intelligence, ICAART 2013, Barcelona, Spain, February 2013.

References 206

[228] Software AG. ARIS Architect and Designer — Software AG. https://www.softwareag.com/

uk/products/aris_alfabet/bpa/products/architect_design/overview/default.asp,

2016.

[229] Ian Sommerville. Software Engineering. Addison Wesley, USA, 2015.

[230] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice Guide. John

Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[231] Sparx Systems Pty. Ltd. Enterprise Architect - UML Design Tools and UML CASE tools for

software development. http://www.sparxsystems.com/products/ea/, 2016.

[232] Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns: Generalizations and

Performance Improvements. In Proceedings of the 5th International Conference on Extending

Database Technology: Advances in Database Technology, EDBT’96, pages 3–17, London, UK,

UK, 1996. Springer-Verlag.

[233] Yudho Giri Sucahyo and Raj P. Gopalan. CT-ITL: Efficient Frequent Item Set Mining Using a

Compressed Prefix Tree with Pattern Growth. In Proceedings of the 14th Australasian Database

Conference - Volume 17, ADC’03, pages 95–104, Adelaide, Australia, 2003. Australian Com-

puter Society, Inc.

[234] Yudho Giri Sucahyo and Raj P. Gopalan. CT-PRO: A Bottom-Up Non Recursive Frequent

Itemset Mining Algorithm Using Compressed FP-Tree Data Structure. In Proceedings of the

IEEE ICDM Workshop on Frequent Itemset Mining Implementations, FIMI’04, Brighton, UK,

November 2004. IEEE Computer Society.

[235] Sagar Sunkle, Vinay Kulkarni, and Suman Roychoudhury. Intentional Modeling for Problem

Solving in Enterprise Architecture. In Proceedings of the 15th International Conference on

Enterprise Information Systems, Volume 3, ICEIS 2013, pages 267–274, Angers, France, July

2013.

[236] Mustapha Tawbi, Camille Ben Achour, and Fernando Velez. Guiding the process of require-

ments elicitation through scenario analysis: Results of an empirical study. In Proceedings of the

Tenth International Workshop on Database and Expert Systems Applications, pages 345–349,

Florence, Italy, September 1999.

[237] The Object Management Group (OMG). UML Profile for Enterprise Distributed Object Com-

puting (EDOC). http://www.omg.org/spec/EDOC/, February 2004.

https://www.softwareag.com/uk/products/aris_alfabet/bpa/products/architect_design/overview/default.asp
https://www.softwareag.com/uk/products/aris_alfabet/bpa/products/architect_design/overview/default.asp
http://www.sparxsystems.com/products/ea/
http://www.omg.org/spec/EDOC/

References 207

[238] The Object Management Group (OMG). Unified Modeling Language: Infrastructure ver-

sion 2.0. http://www.omg.org/spec/UML/2.0/, March 2006.

[239] The Object Management Group (OMG). Business Process Definition MetaModel

Volume I: Common Infrastructure. https://docs.oasis-open.org/wsbpel/2.0/PR02/

wsbpel-specification-draft-diff.pdf, November 2008.

[240] The Open Group. ArchiMate 3.0 Specification. http://pubs.opengroup.org/architecture/

archimate3-doc/toc.html, 2016.

[241] The Process Mining Group, Eindhoven Technical University. ProM Tools. http://www.

promtools.org/doku.php, 2010.

[242] The Workflow Management Coalition. The Workflow Management Coalition Specification-

Terminology & Glossary. Technical Report WFMC-TC-1011, The Workflow Management

Coalition, 1999.

[243] Oliver Thomas and Michael Fellmann. Semantic EPC: Enhancing Process Modeling Using

Ontology Languages. SBPM, 251, 2007.

[244] Pedro Valderas, Vicente Pelecha, Oscar Pastor, et al. Requirements Engineering for Pervasive

Systems. A Transformational Approach. In Proceedings of the 21st IEEE International Re-

quirements Engineering Conference, RE’13, pages 351–352, Rio de Janeiro, RJ, Brazil, July

2013. IEEE Computer Society.

[245] Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of business

processes. Springer Science & Business Media, 2011.

[246] Wil M. P. van der Aalst. Verification of Workflow Nets. In Proceedings of the 18th International

Conference on Application and Theory of Petri Nets, ICATPN’97, pages 407–426, Toulouse,

France, June 1997. Springer Berlin Heidelberg.

[247] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management. Journal of

Circuits, Systems and Computers, 08(01):21–66, 1998.

[248] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. Business Process

Management: A Survey. In Proceedings of the International Conference on Business Process

Management, BPM 2003, pages 1–12, Eindhoven, The Netherlands, June 2003. Springer Berlin

Heidelberg.

http://www.omg.org/spec/UML/2.0/
https://docs.oasis-open.org/wsbpel/2.0/PR02/wsbpel-specification-draft-diff.pdf
https://docs.oasis-open.org/wsbpel/2.0/PR02/wsbpel-specification-draft-diff.pdf
http://pubs.opengroup.org/architecture/archimate3-doc/toc.html
http://pubs.opengroup.org/architecture/archimate3-doc/toc.html
http://www.promtools.org/doku.php
http://www.promtools.org/doku.php

References 208

[249] Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow Mining: Discovering

Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,

16(9):1128–1142, 2004.

[250] Wil MP van der Aalst. Process Mining: Data Science in Action. Springer, 2016.

[251] Boudewijn van Dongen and Wil M. P. van der Aalst. Multi-Phase Process Mining: Building

Instance Graphs. In Proceedings of the 23rd International Conference on Conceptual Modeling,

ER 2004, pages 362–376, Shanghai, China, November 2004. Springer Berlin Heidelberg.

[252] Axel Van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective. In

Proceedings of the 2000 International Conference on Software Engineering, ICSE 2000, pages

5–19, Limerick, Ireland, June 2000. ACM.

[253] Axel Van Lamsweerde. Goal-oriented Requirements Engineering: A Guided Tour. In Pro-

ceedings of the 5th IEEE International Symposium on Requirements Engineering, RE’01, pages

249–262, Toronto, ON, Canada, August 2001. IEEE Computer Society.

[254] Axel Van Lamsweerde. Goal-Oriented Requirements Enginering: A Roundtrip from Research to

Practice. In Proceedings of the 12th IEEE International Requirements Engineering Conference,

pages 4–7, Kyoto, Japan, September 2004.

[255] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing Conflicts in Goal-

Driven Requirements Engineering. IEEE Transactions on Software Engineering, 24(11):908–

926, August 1998.

[256] Axel van Lamsweerde, Robert Darimont, and Philippe Massonet. Goal-Directed Elaboration

of Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In Proceedings of the

Second IEEE International Symposium on Requirements Engineering, RE’95, pages 194–203,

York, UK, March 1995. IEEE Computer Society Press.

[257] Axel van Lamsweerde and Emmanuel Letier. From Object Orientation to Goal Orientation: A

Paradigm Shift for Requirements Engineering. In Proceedings of the 9th International Workshop

on Radical Innovations of Software and Systems Engineering in the Future, RISSEF 2002, pages

325–340, Venice, Italy, October 2002. Springer Berlin Heidelberg.

[258] Axel Van Lamsweerde and Laurent Willemet. Inferring Declarative Requirements Specifications

from Operational Scenarios. IEEE Transactions on Software Engineering, 24(12):1089–1114,

December 1998.

References 209

[259] Philippe Fournier Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei Wu, and

Vincent S Tseng. SPMF: A Java Open-Source Pattern Mining Library. Journal of Machine

Learning Research, 15:3389–3393, 2014.

[260] Visual Paradigm International. TOGAF Architecture Development Method (ADM) Tools.

http://www.visual-paradigm.com/features/togaf-adm-tools/, 2016.

[261] W3C. Web Services Choreography Description Language Version 1.0. http://xml.

coverpages.org/RNIF-Spec020000.pdf, November 2005.

[262] Jianyong Wang and Jiawei Han. BIDE: Efficient Mining of Frequent Closed Sequences. In

Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, pages 79–

90, Boston, Massachusetts, USA, March 2004. IEEE Computer Society.

[263] Jianyong Wang, Jiawei Han, and Jian Pei. CLOSET+: Searching for the Best Strategies for

Mining Frequent Closed Itemsets. In Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 236–245, Washington,

D.C., 2003. ACM.

[264] Yiqiao Wang, Sheila A. McIlraith, Yijun Yu, and John Mylopoulos. An Automated Approach to

Monitoring and Diagnosing Requirements. In Proceedings of the 22nd IEEE/ACM International

Conference on Automated Software Engineering, ASE 2007, pages 293–302, Atlanta, Georgia,

USA, 2007. ACM.

[265] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Semantic Business Process Validation. In

Proceedings of the 3rd International Workshop on Semantic Business Process Management,

volume 472 of SBPM’08, in conjunction with ESWC 2008, Tenerife, Spain, June 2008.

[266] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: on the verification of

semantic business process models. Distributed and Parallel Databases, 27(3):271–343, 2010.

[267] AJMM Weijters, Wil M.P. van der Aalst, and AK Alves De Medeiros. Process Mining with

the HeuristicsMiner Algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, 166:1–34,

2006.

[268] Lijie Wen, Jianmin Wang, Wil M.P. van der Aalst, Biqing Huang, and Jiaguang Sun. A novel

approach for process mining based on event types. Journal of Intelligent Information Systems,

32(2):163–190, April 2009.

http://www.visual-paradigm.com/features/togaf-adm-tools/
http://xml.coverpages.org/RNIF-Spec020000.pdf
http://xml.coverpages.org/RNIF-Spec020000.pdf

References 210

[269] Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer

Publishing Company, Incorporated, 1st edition, 2010.

[270] Wikibon. A Comprehensive List of Big Data Statistics. http://wikibon.org/blog/

big-data-statistics/.

[271] Marianne Winslett. Reasoning about action using a possible models approach. Urbana,

51:61801, 1988.

[272] Dennis Wixon and Judith Ramey, editors. Field Methods Casebook for Software Design. John

Wiley & Sons, Inc., New York, NY, USA, 1996.

[273] Peter Y.H. Wong and Jeremy Gibbons. A Relative Timed Semantics for BPMN. In Proceedings

of 7th International Workshop on the Foundations of Coordination Languages and Software

Architectures, volume 229 of ENTCS, July 2008.

[274] Jane Wood and Denise Silver. Joint Application Development (2Nd Ed.). John Wiley & Sons,

Inc., New York, NY, USA, 1995.

[275] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining: Closed Sequential Patterns in

Large Datasets. In Proceedings of the 2003 SIAM International Conference on Data Mining,

SDM’03, pages 166–177, San Fransisco, California, USA, May 2003.

[276] Lili Yang, Raj Prasanna, and Malcolm King. GDIA: Eliciting information requirements in

emergency first response. Requirements Engineering, 20(4):345–362, 2015.

[277] Eric Yu and John Mylopoulos. Why Goal-Oriented Requirements Engineering. In Proceedings of

the 4th International Workshop on Requirements Engineering: Foundations of Software Quality,

REFSQ 1998, pages 15–22, Pisa, Italy, June 1998.

[278] Eric S. K. Yu and John Mylopoulos. An Actor Dependency Model of Organizational Work:

With Application to Business Process Reengineering. In Proceedings of the Conference on

Organizational Computing Systems, COCS ’93, pages 258–268, Milpitas, California, USA, 1993.

ACM.

[279] Eric S.K. Yu. Modeling Organizations for Information Systems Requirements Engineering. In

Proceedings of the IEEE International Symposium on Requirements Engineering, RE’93, pages

34–41, San Diego, CA, USA, January 1993.

http://wikibon.org/blog/big-data-statistics/
http://wikibon.org/blog/big-data-statistics/

References 211

[280] Eric S.K. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis, Uni-

versity of Toronto, Toronto, Canada, 1995.

[281] Eric S.K. Yu. Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-

neering. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineering,

RE’97, pages 226–235, Washington, DC, USA, 1997. IEEE Computer Society.

[282] Eric S.K. Yu and John Mylopoulos. Understanding “Why” in Software Process Modelling,

Analysis, and Design. In Proceedings of the 16th International Conference on Software Engi-

neering, ICSE ’94, pages 159–168, Sorrento, Italy, 1994. IEEE Computer Society Press.

[283] Eric S.K. Yu and John Mylopoulus. Using Goals, Rules and Methods to Support Reasoning in

Business Process Reengineering. Intelligent Systems in Accounting, Finance & Management,

5(1):1–13, 1996.

[284] Yijun Yu, Yiqiao Wang, John Mylopoulos, Sotirios Liaskos, Alexei Lapouchnian, and Julio Ce-

sar Sampaio do Prado Leite. Reverse Engineering Goal Models from Legacy Code. In Proceed-

ings of the 13th IEEE International Conference on Requirements Engineering, RE’05, pages

363–372, Paris, France, August 2005. IEEE Computer Society.

[285] John Yunker, David Webber, Dale Moberg, Kenji Nagahashi, Stephen Green, Sacha Schlegel,

and Monica J. Martin. ebXML Business Process Specification Schema Technical Spec-

ification v2.0.4. http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.

4-Spec-os-en-html/ebxmlbp-v2.0.4-Spec-os-en.htm, December 2006.

[286] John A Zachman. Enterprise architecture: The issue of the century. Database Programming

and Design, 10(3):44–53, 1997.

[287] Osmar R. Zäıane and Mohammed El-Hajj. COFI-tree Mining: A New Approach to Pattern

Growth with Reduced Candidacy Generation. In Proceedings of the IEEE ICDM Workshop

on Frequent Itemset Mining Implementations, FIMI’03, Melbourne, Florida, USA, November

2003. IEEE Computer Society.

[288] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowl-

edge and Data Engineering, 12(3):372–390, May 2000.

[289] Mohammed J. Zaki. Sequence mining in categorical domains: Incorporating constraints. In

Proceedings of the Ninth International Conference on Information and Knowledge Management,

CIKM ’00, pages 422–429, McLean, Virginia, USA, 2000. ACM.

http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en-html/ebxmlbp-v2.0.4-Spec-os-en.htm
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en-html/ebxmlbp-v2.0.4-Spec-os-en.htm

References 212

[290] Mohammed J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning, 42(1-2):31–60, 2001.

[291] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In Proceedings of

the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’03, pages 326–335, Washington, D.C., 2003. ACM.

[292] H. Zang, Y. Xu, and Y. Li. Non-Redundant Sequential Association Rule Mining and Appli-

cation in Recommender Systems. In Proceedings of the 2010 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 3, pages

292–295, Toronto, Canada, August 2010.

[293] Jelena Zdravkovic, Eric-Oluf Svee, and Constantinos Giannoulis. Capturing consumer pref-

erences as requirements for software product lines. Requirements Engineering, 20(1):71–90,

2015.

	Data-driven conceptual modeling: how some knowledge drivers for the enterprise might be mined from enterprise data
	Recommended Citation

