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An efficient way to enhance output strain for shear mode Pb(In1/2Nb1/
2)O-3-Pb(Mg1/3Nb2/3)O-3-PbTiO3 crystals: Applying uniaxial stress
perpendicular to polar direction

Abstract
The shear piezoelectric behavior of [001] poled tetragonal and [011] poled rhombohedral Pb(In1/2Nb1/
2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) crystals, with "1T" and "2R" domain configurations,
respectively, were investigated under uniaxial stress perpendicular to polar direction. The shear piezoelectric
coefficient d15 was found to decrease with increasing compressive stress for both "1T" and "2R" crystals.
Based on thermodynamic analysis, the phase structure can be stabilized by applying compressive stress
perpendicular to polar direction, resulting in a "harder" polarization rotation process, accounts for the reduced
shear piezoelectric coefficient. Of particular importance is that the allowable drive electric field was greatly
increased and transverse dielectric loss was drastically reduced under compressive stress, leading to the
improved maximum-shear-strain.
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The shear piezoelectric behavior of [001] poled tetragonal and [011] poled rhombohedral

Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) crystals, with “1T” and “2R” domain

configurations, respectively, were investigated under uniaxial stress perpendicular to polar direction.

The shear piezoelectric coefficient d15 was found to decrease with increasing compressive stress for

both “1T” and “2R” crystals. Based on thermodynamic analysis, the phase structure can be stabilized

by applying compressive stress perpendicular to polar direction, resulting in a “harder” polarization

rotation process, accounts for the reduced shear piezoelectric coefficient. Of particular importance is

that the allowable drive electric field was greatly increased and transverse dielectric loss was

drastically reduced under compressive stress, leading to the improved maximum-shear-strain. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4712129]

Relaxor-PbTiO3 (PT) crystals were reported to possess

ultrahigh piezoelectric response (d33> 1500 pC/N and

k33> 90) for compositions around morphotropic phase boun-

daries (MPBs),1 attracted considerable attentions over the

last 20 years, with emphasis on the fundamental and applica-

tion researches.2–8 The relationship between piezoelectric

properties and phase/domain structures has been extensively

studied in relaxor-PT crystals, e.g., Pb(Mg1/3Nb2/3)O3-PbTiO3

(PMN-PT) and Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3

(PIN-PMN-PT), in order to explore the origin of the high

longitudinal piezoelectric activity,2–5 which was believed to

be intrinsic (lattice deformation) in nature. The ultrahigh sin-

gle domain shear piezoelectric activity is thought to be the

dominant factor for the intrinsic contribution in relaxor-PT

crystals.4,5

From application viewpoint, shear piezoelectric

response of relaxor-PT crystals drew attentions for trans-

ducer design, due to the high piezoelectric coefficient d15

(�2000–7000 pC/N), electromechanical coupling k15> 90%

and elastic compliance s55
E (�100–250 pm2/N), allowing for

design of ultralow frequency and broad bandwidth trans-

ducers with minimized dimension.9–15 In addition, a temper-

ature independent shear piezoelectric response, together

with ultrahigh value d24> 2000 pC/N, has been achieved

for [011] poled orthorhombic crystals in the temperature

range of �50�100 �C, due to the vertical orthorhombic-

rhombohedral phase boundary.16,17 For comparison, the vari-

ation of longitudinal piezoelectric coefficient is up to 300%

for relaxor-PT crystals in the same temperature range, due to

the curved rhombohedral-tetragonal phase boundary.

However, the main drawback of the thickness shear-

mode crystals is the low allowable ac electric field. At low

electric field, the shear piezoelectric response is related to a

polarization rotation process, which is a reversible process,

as shown in Fig. 1(a), while at high electric field, irreversible

process happens with occurrence of new domains, corre-

sponding to the domain switching process, as shown in Fig.

1(b). Due to the appearance of new domains, the shear piezo-

electric response drastically decreases and some new vibra-

tion modes (such as 31-mode) can be observed.18 From

previous investigations, the allowable ac drive electric fields

of thickness shear-mode samples for relaxor-PT crystals

were less than half of their respective coercive fields

(�2.5 kV/cm for PIN-PMN-PT crystals), limiting the output

shear strain and acoustic power.18 Thus, it is required to

enhance the allowable ac electric field for thickness shear-

mode relaxor-PT crystals. The developed internal bias field

(0.5�1.5 kV/cm) in Mn-doped relaxor-PT crystals were

reported to increase the allowable ac drive field, being on the

order of �70% of their respective coercive fields, due to the

fact that the internal bias field can stabilize the domains and

make the domain switching harder.18

Similar to the internal bias, ferroelectric domains can

also be stabilized by applying dc bias electric field along po-

lar direction or uniaxial stress perpendicular to polar

Low 
AC field 

High 
AC field 

)b()a(

FIG. 1. Schematic polarization variation of shear-mode tetragonal crystals,

where the arrows represent polar directions. (a) At low ac electric field, only

reversible polarization rotation exist; (b) At high ac electric field, both polar-

ization rotation and irreversible domain switch occur, thus new domains

form (the purple arrows represent the spontaneous polarization of new

domains).
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direction. To stabilize ferroelectric domains, the dc electric

field is required to apply along the poling direction, other

than the operational direction of the shear-mode crystals,

thus two pairs electrodes are needed, as shown in Fig. 2(a).

However, it is convenient to apply uniaxial stress perpendic-

ular to polar direction for shear-mode crystals, because the

preload stress is along the same direction of ac drive field, as

shown in Fig. 2(b). In this paper, the shear piezoelectric

properties of [001] poled tetragonal and [011] poled rhombo-

hedral PIN-PMN-PT crystals, with single domain (“1T”) and

multidomain (“2R”) configurations, respectively, were inves-

tigated under the uniaxial compressive stress.

PIN-PMN-PT single crystals were grown by the modi-

fied Bridgman technique. The crystals were oriented by

x-ray orientation system and cut to obtain shear-mode sam-

ples with dimensions of 10 mm� 10 mm� 1 mm. All the

samples were electroded by vacuum sputtered gold on the

polished side faces for poling process, where the [011] ori-

ented rhombohedral crystals were poled by applying a dc

field of 10 kV/cm at room temperature, while the [001] ori-

ented tetragonal crystals were poled through Curie tempera-

ture at small electric field to avoid cracking.10 The electrodes

were removed after poling process and re-electroded on the

large surfaces, being (100) and (0-11) for [001] poled tetrag-

onal and [011] poled rhombohedral crystals, respectively.

The uniaxial stress was applied to the shear samples by

a special home-made setup, with the details given in Ref. 19.

In this setup, the uniaxial stress is applied to the sample via a

brass holder. To minimize the friction between the sample

and brass holder surfaces, the surfaces of brass holder were

polished using 500 nm Al2O3 powder slurry to achieve mir-

ror faces (it should be noted that there is still a possibility of

some clamping associated with the fixture, even though the

brass surfaces have been highly polished). The stress de-

pendence of transverse dielectric constant e11/e0 and

polarization-electric field (P-E) behaviors were measured by

the LCR meter (HP4284A) and modified Sawyer-Tower cir-

cuit, respectively. At zero uniaxial stress, the shear piezo-

electric coefficients were measured by impedance method

following IEEE Standard, while under various uniaxial

stresses, the shear piezoelectric coefficients were evaluated

from the transverse dielectric permittivity using equation

d15¼P3Q55e11, where P3 is the spontaneous polarization and

Q55 the electrostrictive constant, e11 transverse dielectric per-

mittivity. According to thermodynamic analysis and experi-

mental results, the variation of P3 and Q55 can be neglected

when compared to the dielectric permittivity, with uniaxial

stress being in the range of 0�60 MPa.20–22 Therefore, the

variation of shear piezoelectric coefficient as a function of

compressive stress can be determined from the stress de-

pendent transverse dielectric permittivity.

The general properties of the studied PIN-PMN-PT crys-

tals were listed in Table I. The shear piezoelectric coeffi-

cients d15 are on the order of 2100 and 3000 pC/N for [001]

poled tetragonal (1T) and [011] poled rhombohedral (2R)

crystals. The high level of shear piezoelectricity of relaxor-

PT crystals can be attributed to the high level of phase

structural instability.4,10 Fig. 3 showed the piezoelectric

coefficient d15 as a functional of compressive stress perpen-

dicular to polarization direction for “1T” and “2R” crystals.

The shear piezoelectric responses were found to decrease

with increasing the compressive stress, where the coefficient

d15 decreased from 2100 pC/N to 1600 pC/N upon stress

increasing from 0 to 25 MPa for “1T” crystals, while the

coefficient d15 decreased from 3000 pC/N to 2600 pC/N

upon stress increasing from 0 to 55 MPa for “2R” crystals. It

should be noted that higher compressive stress could induce

cracks in shear-mode PIN-PMN-PT crystals (40 MPa and

70 MPa for studied “1T” and “2R” crystals, respectively).

The observed reduction of shear coefficients can be analyzed

from the respect of polarization rotation.

Taking tetragonal crystal as example, the stability of

phase under a compress stress can be analyzed using the free

energy equation,23

GðXÞ ¼ G0 � 1=2s11ðX2
1 þ X2

2 þ X2
3Þ

� s12ðX1X2 þ X2X3 þ X3X1Þ
� 1=2s44ðX2

4 þ X2
5 þ X2

6Þ
� Q11ðX1P2

1 þ X2P2
2 þ X3P2

3Þ
� Q12½X1ðP2

2 þ P2
3Þ þ X2ðP2

3 þ P2
1Þ þ X3ðP2

1 þ P2
2Þ�

� Q44ðX4P2P3 þ X5P3P1 þ X6P1P2Þ; (1)

where G0 is the Gibbs free energy under zero stress, Pi the

polarization, Xk the stress, skl the elastic constants, and Qkl

the electrostrictive constants. For [001] poled tetragonal

crystals, P1¼ P2¼ 0 and P3= 0. Under perpendicular stress

shown in Fig. 3(a) (X1< 0; Xk¼ 0, k¼ 2�6), the free energy

can be rewritten as follows:

GðX1Þ ¼ G0 �
1

2
s11X2

1 � Q12X1P2
3; (2)

where s11> 0 and Q12< 0,22,23 so G(X1)<G0, indicating

that the spontaneous polarization is more stable under

(a) (b)

FIG. 2. Stabilization of polarization by applying (a) dc electric field and (b)

compressive stress, where the red arrows represent polar directions.

TABLE I. Properties of “1T” and “2R” shear-mode PIN-PMN-PT crystals.

Material Tc (�C) TR/O-T (�C) EC (kV/cm) e11
T/e0 s55

E (pm2/N) d15 (pC/N) k15

PIN-PMN-PT (2R) 165 125 5.0 6500 160 3000 0.92

PIN-PMN-PT (1T) 205 �10 6.0 16000 52 2100 0.85

192901-2 Li et al. Appl. Phys. Lett. 100, 192901 (2012)



compressive stress when compared to zero stress condition,20

leading to a “harder” polarization rotation process, accounts

for the decrease of shear piezoelectric coefficient d15.4,10

Figs. 4 and 5 showed the P-E curves as a function of

compressive uniaxial stress for “1T” and “2R” shear-mode

crystals, respectively. At low level of electric field (1 kV/

cm), the polarization versus electric field followed a linear

behavior for both “1T” and “2R” crystals under various uni-

axial stresses, as shown in Figs. 4(a) and 5(a). This indicates

that the irreversible process (i.e., domain wall motion) is

minimal at low level of electric field for “1T” and “2R” crys-

tals. In addition, it can be observed from Figs. 4(a) and 5(a)

that the slope of P-E curves decreased with increasing com-

pressive stress, again demonstrating that the transverse

dielectric permittivity decreased with stress increasing.

The P-E curves of high electric field (>2.5 kV/cm)

became nonlinear and hysteretic under zero uniaxial stress

for both “1T” and “2R” crystals, as shown in Figs. 4(b) and

5(b), due to the occurrence of irreversible domain switching.

The crystals can be partially depolarized and new domains

form with further increasing the ac electric field, as illus-

trated in Fig. 1(b). At this condition, the nonlinear and hyste-

retic characteristics became more obvious, as shown in Figs.

4(c) and 5(c), thus the maximum allowable drive electric

field was found to be lower than 2.5 kV/cm for both “1T”

and “2R” crystals without applying the stress.

Of particular significance is that the hysteretic properties

of both “1T” and “2R” crystals were greatly reduced by

applying compressive stress to crystals, owing to the stabi-

lized domains, as shown in Figs. 4 and 5. Therefore, the

allowable electric fields can be enhanced by applying uniax-

ial compressive stress perpendicular to poling direction,

which were found to increase to 4.5 kV/cm and 4 kV/cm for

“1T” crystals at compressive stress of 25 MPa and “2R”

crystals at 55 MPa, respectively, as listed in Table II.

With applying compressive stress, though the shear pie-

zoelectric response decreased, the level of allowable drive

field increased. Therefore, the improvement in maximum-

shear-strain is expected by applying compressive stress. The

maximum-shear-strain (Smax) is estimated by the following

equation:

Smax ¼ d15ðXÞEallowðXÞ (3)

where d15(X) is the shear piezoelectric coefficient under a

stress, Eallow(X) the allowable electric field under a stress. As

listed in Table II, the Smax of “1T” crystals was increased by

38% under compressive stress of 25 MPa (from 0.5% to

0.7%), while the Smax of “2R” crystals was increased by

50% under compressive stress of 55 MPa (from 0.7% to

1.0%).

The dielectric losses were calculated from the P-E

loops,8,24 as listed in Table III. It can be seen that the dielec-

tric loss was greatly reduced by applying the compressive

stress, especially at high electric field. The dielectric loss

factors were found to be 20% and 50% for “2R” and “1T”

crystals, respectively, at electric field of 4 kV/cm, without

applying stress, being reduced to the order of 4% by apply-

ing compressive stresses of 55 MPa and 25 MPa for “2R”
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and “1T” crystals, respectively, which will benefit the gen-

eral applications, with the requirement of the loss factors

being lower than 5%. Thus, the results again indicated that

the allowable drive electric field of the shear-mode crystals

can be enhanced by applying compressive stress perpendicu-

lar to the polar direction.

In summary, the shear piezoelectric behaviors of [001]

poled tetragonal and [011] poled rhombohedral PIN-PMN-

PT crystals were investigated under compressive stress

perpendicular to polar direction. The shear piezoelectric

coefficient d15 and dielectric loss were found to decrease

with increasing the compressive stress, due to a “harder”

polarization rotation process under compressive stress. Of

particular interest is that the allowable drive electric field

and maximum-shear-strain of PIN-PMN-PT crystals can be

enhanced by applying compressive stress. These results will

benefit the design of shear-mode transducers where high

power is required.
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FIG. 5. P-E loops at various uniaxial stresses for “2R” PIN-PMN-PT crystals. (a) 1 kV/cm, (b) 3 kV/cm, (c) 4 kV/cm. Measured at 1 Hz.

TABLE II. Allowable drive electric field, shear piezoelectric coefficient,

and maximum strain of PIN-PMN-PT crystals as a function of compressive

stress. It should be noted that the shear strain cannot be estimated by Eq. (3)

when the level of loss factor (or hysteresis) is relatively high. The high level

of loss/hysteresis is induced by the nucleation of new domains or motion of

domain walls at large ac electric field.

“1T” crystal “2R” crystal

Compressive stress 0 MPa 15 MPa 25 MPa 0 MPa 30 MPa 55 MPa

Allowable electric

field (kV/cm) 2.5 3.5 4.5 2.5 3.0 4.0

d15 (pC/N) 2100 1750 1600 3000 2750 2600

Maximum strain 0.5% 0.6% 0.7% 0.7% 0.8% 1.0%

TABLE III. Transverse dielectric loss factor tandE of PIN-PMN-PT crystals

upon various uniaxial stresses and ac electric fields.

“1T” crystal “2R” crystal

0 MPa 15 MPa 25 MPa 0 MPa 30 MPa 55 MPa

1 kV/cm 1.50% 0.95% 0.86% 0.20% 0.20% 0.12%

2 kV/cm 4.10% 2.10% 1.40% 1.40% 0.80% 0.70%

3 kV/cm 10.3% 3.37% 3.20% 6.70% 2.10% 1.70%

4 kV/cm >50.0% 6.50% 4.20% 20.0% 7.00% 3.90%
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