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Abstract 9 

The gasification rate in CO2 of the coke analogue containing calcium oxide was studied using 10 

analogues doped with alumina (corundum), calcium aluminates (CA6, CA, C3A) and lime minerals. 11 

The coke analogue is a laboratory material with simplified carbon structure that has a mineral 12 

component with a particle size, size distribution and mineral dispersion that can be controlled.  The 13 

main focus of this study was to quantitatively assess the effect of calcium in the mineral on the 14 

analogue’s reactivity. The analogues were reacted with CO2 isothermally in the temperature range of 15 

1173 – 1623 K. It was found that the reaction rate increased with increasing CaO activity/number of 16 

moles of Ca in the mineral. The relative reaction rates (from lowest to highest) of the analogues doped 17 

were alumina, CA6, CA, C3A and lime. The relative apparent activation energies of the gasification 18 

from lowest to highest was lime, C3A, CA, CA6 and alumina.   19 

  20 
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Nomenclature 22 

X Carbon conversion 23 

RC Initial apparent reaction rate, g g
-1

 s
-1

 24 

T Temperature, K 25 

dt Reaction time, s 26 

W0 Initial mass of the sample, g 27 

W Mass at time t, g 28 

dW Mass change during the reaction, g 29 

   30 



1. Introduction 31 

Metallurgical coke is a key reagent used in blast furnace iron production. It is the fuel for the furnace, 32 

the source of reductant for the iron ore and aids control of permeability in the furnace [1]. Coke is a 33 

complex material, composed of different forms of carbonaceous materials, minerals and has 34 

an intricate pore structure. It also is inherently heterogeneous with respect to most metrics used to 35 

characterise it.  36 

The mineral component of metallurgical coke is of the order 10 to 12 mass % and comprises of 37 

elements such as O, Si, Al, Fe, Ca, S, Mg, K, Ti and Na [2-4]. Though less common, the minerals 38 

may also contain P, Mn, C, H, N, Ba, Sr, F and Cl [5]. Minerals containing oxides of alkalis [3, 6-39 

9] and transition metals [2, 3, 7, 10, 11] can increase coke gasification/ reactivity. Calcium-40 

bearing minerals are of particular interest in coke/coal studies. It has been shown to be 41 

particularly mobile in coal and coke [12-15] and significantly affects coke reactivity. Well-known 42 

calcium-containing minerals in coke are oldhamite (CaS), fluorapatite (Ca5(PO4)3F), akermanite 43 

(Ca2Mg(Si2O7)) and diopside (MgCaSi2O6) [16].  44 

When exposed to high temperatures and reactive atmospheres, the inherent complexity and 45 

heterogeneous nature of coke make it difficult to isolate the effects of specific components on coke 46 

behavior and reaction kinetics [17-19]. To overcome the complexity and heterogeneity issues 47 

associated with studying the reactivity of metallurgical coke, a coke analogue has been developed. 48 

The mineral component in the analogue can be controlled with respect to phase, composition, particle 49 

size and dispersion throughout the analogue.  This analogue has previously been used in studies to 50 

distinguish the relative reactivities of coke analogues doped with different minerals [18, 20], the 51 

dissolution rate of coke in liquid iron [19, 21, 22], kinetic mechanistic studies of reaction in CO2, 52 

isolating specific CaO/lime [15] effects on the coke analogue reactivity and demonstrating it had 53 

similar gasification reaction behaviour  to that of  metallurgical coke  [23, 24].  54 

The focus of this investigation was to assess the effects of calcium added as a simple oxide or as a 55 

calcium aluminate on the gasification kinetics of the coke analogue in CO2.Three calcium aluminates, 56 



CaO.6Al2O3 (CA6), CaO.Al2O3 (CA) and 3CaO.Al2O3 (C3A), lime (CaO) and alumina (Al2O3) were 57 

used to represent the mineral (ash) component of the analogue.  The choice of minerals was a 58 

compromise, dealing with minerals of some relevance to metallurgical coke but less complex than 59 

those found in metallurgical coke.  This simplified mineral component of the analogue allowed the 60 

focus of the effects of Ca and Al oxides/minerals on coke reactivity in the absence of interference 61 

from other components such as Mg, F and PO4
3- 

that have been identified to also have effects on 62 

coke gasification.    63 

2. Experimental 64 

Coke analogue samples were reacted with CO2 in a thermogravimetric analysis (TGA) set-up (Fig.1) 65 

to assess the effects of selected minerals on the coke gasification kinetics.  66 

Five different coke analogue batches were prepared using either a calcium aluminate (CA6, CA or 67 

C3A), Al2O3 or CaO.  The minerals were added to give a constant concentration of 0.1 mol cations/ 68 

100 g in the analogue and were sieved prior to the addition to give a constant particle size range of 69 

38 – 53 µm. Experiments were carried out for 2 hours isothermally in the temperature range of 1173 70 

– 1623 K. 71 

The calcium aluminates were chosen based on the Al2O3-CaO binary system (Fig. 2). The choice of 72 

minerals allowed the evaluation of the specific effects of CaO as a separate phase and of CaO 73 

bonded/complexed within a mineral.  74 

2.1. Reaction rate measurements 75 

An unreacted coke analogue sample was weighed and placed in the furnace hot zone on an alumina pedestal                    76 

suspended from a balance. This was then heated at 10 K/min to the desired temperature under Ar flowing           77 

at 1 L/min. Once the reaction temperature was reached, the gas was changed from Ar to CO2 and set 78 

at a flow rate of 4.5 L/ min. The changing over of the gas was defined as the start of the experiment. 79 

The flow rate was chosen/ established to ensure the reaction kinetics were independent of gas flow 80 

(i.e. eliminate gas film diffusion control) [23]. The gases used were 99.99% pure and passed 81 



through ascarite and drierite prior to entering the TGA. When running with Ar, the gas was also 82 

passed through Cu turnings at 573 K to minimise oxygen entering the furnace. 83 

The recorded weight change during the reaction as measured by the TGA was used to calculate the 84 

carbon conversion, X (eq. 1), and initial apparent reaction rate, RC (eq.2). 85 
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 88 

2.2. Preparation of coke analogue 89 

The coke analogue was prepared using carbonaceous materials (laboratory grade graphite, phenol-90 

formaldehyde resins (Bakelite and Novolac resin in propylene glycol) and hexamethylenetetramine 91 

(HTMA)) and minerals (CA6, CA, C3A, alumina or lime). The ingredients were mixed and pressed to 92 

form a cylinders of ~30 mm height and 18 mm diameter samples. These cylindrical samples were then 93 

cured for 24 hours in an oven at 443 K and then fired in a two-stage process.  In stage 1, the analogue 94 

was fired at 1273 K for 1 hour. In stage 2, the analogue was fired at 1473 K for 1 hour. 95 

A fired coke analogue sample from each batch was cross-sectioned, mounted in epoxy resin, polished 96 

and carbon coated for SEM analysis. The CA6, CA, C3A and lime doped coke analogue samples were 97 

treated as water sensitive and prepared using, water-free alcohol based polishing lubricants. These 98 

samples were used in optical porosity and SEM/EDS characterisation.   99 

The initial porosity of all the coke analogue samples was measured using an optical porosity 100 

method (detailed elsewhere [20]). The initial porosities of the samples (10 – 500 µm pore 101 

diameter range) prior to the gasification in the TGA were in a narrow range of 30 – 33 %.  This 102 

technique had a pore diameter lower limit of ~10µm. It is desirable to maintain the initial porosities 103 

in a narrow range to minimise the effect of porosity on the measured analogue reactivity. This should 104 



aid elucidation of the specific effects of mineralogy on reactivity. 105 

2.3. Preparation of the mineral phase 106 

High purity (+ 99.9 %) laboratory grade Al2O3 and CaCO3 powders obtained from Sigma Aldrich 107 

were used in the production of the mineral phases.  108 

The calcium aluminates were prepared by mixing Al2O3 and CaCO3 powders in appropriate 109 

proportions and fired to produce pellets of calcium aluminates. CaCO3 was used instead of CaO to 110 

overcome issues associated with CaO moisture absorption, allowing accurate weighing of the 111 

carbonate. The powders were first mixed with 500 ml of deionised water to make a slurry. They were 112 

then filtered using a 75 mm Büchner funnel and a Filtech 2850 – 70 filter paper equivalent to 113 

Whatman #6 (pore size 3 µm). The resulting filter cake was then oven dried at 373 K for 24 hours. 114 

Deionised water (2 mass %) was added as a binder to the dried filter cake prior to pressing into 115 

pellets. Approximately 8 g of the mixture was pressed in a 25 mm diameter steel die under a 1.3 X 116 

10
-8 

Pa pressure. The pellets were then fired in a muffle furnace at the temperatures listed in Table 117 

1. The firing temperatures for the calcium aluminates were chosen based on the phase diagram 118 

given in Fig.2. The pellets were then crushed and sieved to get the particle size 0f 38 – 53 µm. 119 

CaO was prepared by heating CaCO3 in the air to 1273 K in a muffle furnace.  To minimize the 120 

moisture pick-up the calcined CaO was cooled and stored in a vacuum desiccator. The CaO was 121 

sieved to get particle size of 38 – 53 µm and added to the coke analogue as quickly as possible to 122 

reduce the potential moisture pick-up.  123 

Alumina particles in the size range of 38 – 53 µm were prepared by sintering the <10 µm as received 124 

alumina powders from Sigma Aldrich.  The as-received alumina powder was mixed with 2 % 125 

deionized water prior to pressing into pellets.  The pellets were made by pressing approximately 8 g 126 

of alumina powder + deionized water mixture in a 25 mm diameter steel die under 1.3 X 10
-8 

Pa 127 

pressure. These pellets were heated to 1973 K for 12 hrs. The pellets were then crushed and sieved to 128 

get the particles sizes required. 129 



Post-mineral preparation of all minerals phases was confirmed by XRD prior to the addition to, and in 130 

the fired state of, the coke analogue. No significant change in the mineral was observed, see Fig. 3 for 131 

the XRD patterns of the added minerals. 132 

3. Results and Discussion 133 

3.1. Reactivity studies using minerals doped coke analogues 134 

The initial apparent reaction rates, RC, were calculated for the analogues and plotted against 1/T and 135 

the results are given in Fig. 4.  From this figure, it can be seen that over the temperature range 136 

tested (1173 – 1623 K), RC increased with increasing temperature.  Further, similar to that 137 

previously reported for the base analogue with no mineral addition, [23, 25] lime doped coke 138 

analogue [15] and that of metallurgical coke [26, 27], two reaction zones were identified. These 139 

zones were established using the method developed by Walker et al [26]. In this method, the 140 

linearity of the curves in the plot given in Fig. 4 are used to define the reaction zones. The transition 141 

from zone I (chemical reaction control) to zone II (Chemical reaction + pore diffusion control) was 142 

in the range of 1330 – 1400 K. There was no strong correlation between the transition temperature 143 

and the calcium content in the coke analogue. 144 

Fig. 5 shows the comparison of ln RC and 1/T of the coke analogue samples studied. From this 145 

figure it can be seen that RC increases with increasing Ca content of the mineral, i.e. RC for alumina 146 

< CA6 < CA < C3A < lime.  147 

To assess the effect of Ca on the reactivity plots of the total number of moles of Ca (nCa) versus RC 148 

(Fig. 6) and the chemical activity of CaO (aCaO) versus RC (Fig. 7) were made.  MTDATA [28]  was 149 

used to evaluate aCaO. The reference state used for CaO was halite (monoxide). The nCa and the aCaO 150 

for the respective minerals at the different temperatures are given in Table 2.  Temperatures 151 

representative of zone I (1223 K) and zone II (1623K) have been considered in this comparison. 152 

The solid line in the Fig.s represent the best fit linear regression of the data.  153 

From the Figure, it can be seen that there is a stronger correlation with RC and nCa than that for aCaO as 154 



indicated by the higher R
2
. This would tend to indicate that the Ca effect is simply a mass effect rather 155 

than a chemistry effect associated with the bonding in the mineral phase.  Both approaches show that 156 

their effect is greater at higher temperatures as indicated by the increased slope of the regression lines 157 

at higher temperatures.  158 

Notwithstanding the distinction between nCa and aCaO on RC, the data shown in Fig.s 6 and 7 are in 159 

general consistent with that reported in the literature [29-32] on the effects of Ca in the ash on the rate 160 

of coke gasification. It is not clear why the RC is a linear function with the Ca content. This will be 161 

discussed in more detail in the mechanistic section 3.3. 162 

The effect of temperature was further analysed by calculation of activation energies for zones I and II 163 

(see Table 3). The activation energies for both zones decrease with the increasing Ca content of the 164 

mineral in the analogue. This is indicative of the strong catalytic effect of Ca on the gasification and is 165 

consistent with what others have reported for Ca effects on gasification for metallurgical coke [18, 29, 166 

31-34].     167 

3.2. Mineral dispersion in the coke analogues – SEM studies 168 

Fig. 8 shows SEM backscattered images and EDS maps for the coke analogues in their fired condition 169 

prior to the gasification reaction. In the micrographs in Fig.8a (alumina) and Fig. 8b – d (calcium 170 

aluminates) the shape and size of the particles in the coke analogue were of similar nature (size and 171 

morphology) to those added to the green analogue i.e. the particles have not changed significantly on 172 

firing. With the lime addition (Fig 8e), the particles were reduced in size and more dispersed 173 

throughout the analogue.  In a previous study focused on the effects of lime addition to the analogue 174 

it was found that the lime had reacted with the analogue during preparation [15]. The reaction of 175 

lime on firing was explained in terms of an acid-base reaction [15] similar to that found in low 176 

ranked lignite coals [35-37].  More specifically, the strongly basic lime is reacting with the weakly 177 

acidic phenolic (Novolac) resin. This resulted in a greater dispersion of the lime throughout the 178 

analogue compared to the other minerals added to the analogue, a significant reduction in the lime 179 

particle size and a significantly increased contact area between the lime and the carbon in the 180 



analogue. There was no apparent increase in the analogue porosity from the lime addition.    181 

Why does the lime show significantly different behaviour in the analogue to the other calcium-bearing 182 

minerals (CA6, CA, and C3A)? While the answer is not clear it is likely related to the relatively 183 

higher acidity of alumina compared to the acidic entities (phenolic groups) present in the phenolic 184 

resins.  This may result in a stronger bond with the alumina than the phenolic resin.   185 

In addition to the amount/concentration of minerals, the reactivity is also a function of particle size 186 

and the distribution of the mineral phase [2]. In this study, attempts were made to fix particle size and 187 

distribution to elucidate the effects of mineral type on the reactivity of the analogue.  The fact that the 188 

lime particle behaviour was significantly different during the preparation from the other minerals, 189 

reducing in size, makes this problematic. It is likely the lime effects on reactivity at the nanoscale are 190 

more complex than simple particle size-contact area analysis allows. In spite of this, the results 191 

excluding lime, and focusing on only the alumina and calcium aluminates, still indicate that 192 

increasing the Ca level in the analogue increases reactivity. 193 

3.3. Discussion of rate controlling mechanism 194 

Generally, the carbon – carbon dioxide gasification reaction mechanism can be expressed as Eq. 3 and 195 

4 [39-45]. 196 

�� +	���(�)	

��
→

��
←
	�(�) +	��(�)         (3) 197 

�(�)
��
→	��(�) +	��         (4) 198 

where;   ��   = active carbon site 199 

  �(�)    = surface oxygen complex 200 

  �	, ��	���	�    = rate constants 201 

In the first step (Eq.3), CO2 dissociates into CO forming a surface oxygen complex C(O). In the 202 



second step (Eq.4), the surface oxygen complex produces another CO molecule leaving a free C 203 

active site for further reaction. The second step is considered as the rate controlling step [41, 46]. 204 

There are two widely accepted mechanisms to explain the increasing reactivity of gasification 205 

reactions, an oxygen transfer mechanism and an electron transfer mechanism [8, 47, 48]. The 206 

electron transfer mechanism is suggested for the transition metals bearing systems. It is based on the 207 

ability of transition metals to accept an electron to influence the distribution of π electrons in the 208 

carbon surface [49]. The oxygen transfer mechanism is suggested for the reactions that are affected 209 

by metals and metal oxides where the catalytic surface chemisorbs an oxygen atom from CO2 to 210 

transfer to the carbon site later on [8, 50].  211 

Ca, as a non-transition metal, most probably followed an oxygen transfer mechanism. Some 212 

researchers have suggested different reactions for Ca catalysis in carbon gasification.  Those 213 

involve formation of CaCO3 (reaction 5 and 6)  or CaO.O (reaction 7-9) or CaC2 (reaction 10) [51-214 

54].  The formation of these species at the high temperatures used in this study was 215 

thermodynamically assessed by consideration of the ∆Gº of reactions 5, 7 and 10 over a range of 216 

temperatures (see Fig. 9). The ∆Gº’s were calculated using the reaction module of FactSage 7.0 217 

[55]. In the FactSage calculations, CaO.O is represented by CaO2. Reactions 5 to 9 were 218 

thermodynamically assessed in a previous publication [15].  To aid clarity and understanding this 219 

assessment has been included here for comparison with reaction 10.  220 

It was found that the reactions all had a ∆Gº > 0 for the temperature ranges evaluated in this study. It 221 

is therefore unlikely that these reactions occurred during the gasification experiments.  222 

���(!) +	���(�) 	↔ 	���� (!)                                              (5) 223 

���� (!) + �(!) 	↔ ���(!) + 2��(�)                                       (6) 224 

���(!) + ���(�) 	↔ ���. �(!) + ��(�)                                    (7) 225 

���. �(!) + �(!) 	↔ ���(!) + �(�)(!)                                      (8) 226 



�(�)(!) ↔ ��(�)                                                                      (9) 227 

���(%)	 + 3�(%) 	→	����(%) +	��(%)                                     (10) 228 

It is known that the presence of Ca in coke ash can increase the amount of active sites (C(f)) [45]. The 229 

enhanced reaction rate is attributed to the increased number of active sites (C(f)) that favour carbon 230 

dioxide dissociation. From a molecular modeling study, it was found that calcium interacts 231 

exothermically with the carbonaceous lattice [56]. These interactions are thought to cause the increase 232 

in the electron density of carbon, increasing the number of active carbon sites (Eq.3). This increase in 233 

active sites (C(f)) offers a plausible explanation of why Ca increases the reactivity of the coke 234 

analogues in this study.  235 

This catalytic mechanism may explain the increasing reactivity with increasing Ca content. It may 236 

also explain why the RC is a linear function with the Ca content (Fig. 6). The contact area between 237 

the minerals and the carbon in the analogue is, with the exception of lime, reasonably controlled 238 

due to the control of particle size addition of the minerals. Therefore, the Ca in the mineral 239 

associated with this surface is likely proportional to the mineral Ca content. This could explain the 240 

linear effect, though more work is required to confirm this possibility. 241 

The catalytic mechanism does not explain the observed decreased apparent activation energy. At 242 

this point, there is no clear understanding of the reason for the decreasing activation energy.  243 

Further studies will focus on testing the possibilities of the changing reaction mechanism from both a 244 

theoretical and experimental perspective. The effect of other minerals commonly available with Ca in 245 

metallurgical cokes, such as SiO2 and MgO, will also be considered. 246 

4. Conclusion 247 

The effect of calcium aluminates (CA6, CA and C3A) on the coke analogue gasification kinetics was 248 

studied. The results were compared with lime doped and alumina doped coke analogues gasification. 249 

Calcium aluminates were observed to increase the reaction rates with increasing CaO activity/number 250 



of moles of Ca. The relative reaction rates (from lowest to highest) of the analogues doped with 251 

minerals were alumina, CA6, CA, C3A and lime. The relative apparent activation energies of the 252 

gasification vary, from lowest to highest, lime, C3A, CA, CA6 and alumina.   253 
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Table 1: 

Calcium aluminate type Firing temperature / K 

CA6 1898 

CA 1823 

C3A 1623 

 

  



Table 2: 

Mineral Number of moles of 

Ca in 100 g of base 

coke analogue 

Activity of CaO 

at 1223 K 

Activity of CaO 

at 1623 K 

Alumina 0.000 0.0000 0.0000 

CA6 0.007 0.0015 0.0012 

CA 0.031 0.0400 0.0800 

C3A 0.055 0.6720 0.6000 

Lime 0.100 1.0000 1.0000 

 

  



Table 3 

Coke analogue Apparent activation energy / 

kJ mol
-1

 

Zone I Zone II 

Alumina doped coke analogue 231.3 ± 1.8 63.1 ± 0.3 

CA6 doped coke analogue 204.4 ± 1.5 39.5 ± 0.4 

CA doped coke analogue 159.9 ± 1.7 37.8 ± 0.3 

C3A doped coke analogue 146.3 ± 1.8 34.5 ± 0.3 

Lime doped coke analogue 119.8 ± 1.5 20.7 ± 0.3 
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