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A Construction for {0,1,-1} Orthogonal Matrices

Visualized

N. A. Balonin ∗and Jennifer Seberry †

Dedicated to the Unforgettable Mirka Miller

Abstract

Propus is a construction for orthogonal ±1 matrices, which is based
on a variation of the Williamson array, called the propus array

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B B D
B D −A −B
B −A −D B
D −B B −A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This array showed how a picture made is easy to see the construction
method. We have explored further how a picture is worth ten thousand
words.

We give variations of the above array to allow for more general
matrices than symmetric Williamson propus matrices. One such is the
Generalized Propus Array (GP).

Keywords: Hadamard Matrices, D-optimal designs, conference matrices,
propus construction, Williamson matrices; visualization; 05B20.

1 Introduction

Hadamard matrices arise in statistics, signal processing, masking, compres-
sion, combinatorics, error correction, coil winding, weaving, spectroscopy
and other areas. They been studied extensively. Hadamard showed [14]
the order of an Hadamard matrix must be 1, 2 or a multiple of 4. Many
constructions for ±1 matrices and similar matrices such as Hadamard ma-
trices, weighing matrices, conference matrices and D-optimal designs use
skew and symmetric Hadamard matrices in their construction. For more
details see Seberry and Yamada [30]. Different constructions are most useful
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in different cases. For example the Paley I construction for spectroscopy and
the Sylvester construction for Walsh functions (discrete Fourier transforms)
for signal processing.

An Hadamard matrix of order n is an n × n matrix with elements ±1
such that HH⊺ = H⊺H = nIn, where In is the n × n identity matrix and ⊺

stands for transposition. A skew Hadamard matrix H = I + S has S⊺ = −S.
For more details see the books and surveys of Jennifer Seberry (Wallis) and
others [30, 34] cited in the bibliography.

Propus is a construction method for symmetric orthogonal ±1 matrices,
using four matrices A, B = C, and D, where

AA⊺ + 2BB⊺ +DD⊺ = constant I,

based on the array
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B B D
B D −A −B
B −A −D B
D −B B −A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It gives aesthetically pleasing visual images (pictures) when converted
using MATLAB (we show some below).

We show how finding propus-Hadamard matrices using Williamson matri-
ces and D-optimal designs can be easily seen through their pictures. These
can be generalized to allow non-circulant and/or non-symmetric matrices
with the same aim to give symmetric Hadamard matrices.

We illustrate two constructions to show the construction method (these
are proved in [2])

• q ≡ 1 (mod 4), a prime power, such matrices exist for order t = 1
2(q+1),

and thus propus-Hadamard matrices of order 2(q + 1) (this uses the
Paley II construction) ;

• t ≡ 3 (mod 4), a prime, such that D-optimal designs, constructed using
two circulant matrices, one of which must be circulant and symmetric,
exist of order 2t, then such propus-Hadamard matrices exist for order
4t.

We note that appropriate Williamson type matrices may also be used to
give propus-Hadamard matrices but do not pursue this avenue in this paper.
There is also the possibility that this propus construction may lead to some
insight into the existence or non-existence of symmetric conference matrices
for some orders. We refer the interested reader to mathscinet.ru/catalogue/
propus/.
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1.1 Definitions and Basics

Two matrices X and Y of order n are said to be amicable if XY ⊺ = Y X⊺.
A D-optimal design of order 2n is formed from two commuting or amicable

(±1) matrices, A and B, satisfying AA⊺ +BB⊺ = (2n− 2)I + 2J , J the matrix
of all ones, written in the form

DC = [
A B
B⊺ −A⊺

] and DA = [
A B
B −A

] .

respectively. In figure 1 the structure is clear to see.

(a) D6 (n = 3) (b) D14 (n = 7) (c) D38 (n = 19)

Figure 1: D-optimal designs for orders 2n

Symmetric Hadamard matrices made using propus like matrices will be
called symmetric propus-Hadamard matrices.

We define the following classes of propus like matrices. We note that
there are slight variations in the matrices which allow variant arrays and
non-circulant matrices to be used to give symmetric Hadamard matrices,
All propus like matrices A, B = C, D are ±1 matrices of order n satisfy the
additive property

AA⊺ + 2BB⊺ +DD⊺ = 4nIn. (1)

We make the definitions following [2]:

• propus matrices: four circulant symmetric ±1 matrices, A, B, B, D of
order n, satisfying the additive property (use P );

• propus-type matrices : four pairwise amicable ±1 matrices, A, B, B, D
of order n, A⊺ = A, satisfying the additive property (use P );

• generalized-propus matrices: four pairwise commutative ±1 matrices,
A, B, B, D of order n, A⊺ = A, which satisfy the additive property
(use GP ).

We use two types of arrays into which to plug the propus like matrices:
the Propus array, P , or the generalized-propus array, GP . These can also be
used with generalized matrices ([33]).
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P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B B D
B D −A −B
B −A −D B
D −B B −A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and GP =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A BR BR DR
BR D⊺R −A −B⊺R
BR −A −D⊺R B⊺R
DR −B⊺R B⊺R −A.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Symmetric Hadamard matrices made using propus like matrices will be
called symmetric propus-Hadamard matrices.

2 Symmetric Propus-Hadamard Matrices

We first give the explicit statements of two well known theorem, Paley’s
Theorem [28], for the Legendre core Q, and Turyn’s Theorem [31], in the
form in which we will use them.

Theorem 1. [Paley’s Legendre Core [28]] Let p be a prime power, either
≡ 1 (mod 4) or ≡ 3 (mod 4) then there exists a matrix, Q, of order p with
zero diagonal and other elements ±1 satisfying QQ⊺ = (q + 1)I − J , Q is or
symmetric or skew-symmetric according as p ≡ 1 (mod 4) (Paley I) or p ≡ 3
(mod 4) (Paley II).

Theorem 2. [Turyn’s Theorem [31]] Let q ≡ 1 (mod 4) be a prime power
then there are two symmetric matrices, P and S of order 1

2(q + 1), satisfying
PP ⊺ +SS⊺ = qI: P has zero diagonal and other elements ±1 and S elements
±1.

2.1 Simple Propus-Hadamard Matrices of 12 and 20

2.2 B = C =D

There are only two starting Hadamard matrices, of orders 12 and 28, based
on skew Paley core B = C =D = Q+ I (constructed using Legendre symbols).
This special set is finite because 12 = 32 + 12 + 12 + 12 and 28 = 52 + 12 + 12 + 12

and these are the only orders for which a symmetric circulant A can exist
with B = C =D. Figure 2 clearly shows the structure.

(a) P12 (n = 3) (b) P28 (n = 7)

Figure 2: Propus-Hadamard matrices using three back circulants B = C =D
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There are two simple propus-Hadamard matrices of orders 12 and 20
based on symmetric Paley cores A = J , B = C = J − 2I, D = J = 2I for n = 3,
and A = Q+I, B = C = J−2I, D = Q−I (constructed using Legendre symbols)
for n = 5. This second construction can be continued with back-circulant
matrices C = B which allows the symmetry property of A to be conserved.

(a) P12 (q = 5;n = 3) (b) P20 (q = 32;n = 5)

Figure 3: Simple Propus-Hadamard matrices for orders 12 and 20

Note how the slightly different construction of P12 in Figures 2 and 3
can be easily seen.

2.3 Order 4n from Williamson Matrices using q a Prime
Power

Lemma 1. Let q ≡ 1 (mod 4), be a prime power, then propus matrices exist
for orders n =

1
2(q + 1) which give symmetric propus-Hadamard matrices of

order 2(q + 1).

Proof. We note that for q ≡ 1 (mod 4), a prime power, Turyn (Theorem 2
[31]) gave Williamson matrices, X + I, X − I, Y , Y , which are circulant and
symmetric for orders n =

1
2(q + 1). Then choosing

A =X + I, B = C = Y, D =X − I

gives the required propus-Hadamard matrices.

This gives propus-Hadamard matrices for 45 orders 4n where n ≤ 200 [2].
Some of these cases arise when q is a prime power, however the Delsarte-
Goethals-Seidel-Turyn construction means the required circulant matrices
also exist for these prime powers (see Figures 4 and 5).
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(a) P12 (q = 5;n = 3) (b) P28 (q = 13;n = 7) (c) P60 (q = 29;n = 15)

Figure 4: Propus-Hadamard matrices for orders 4q for q prime, q ≡ 1 (mod 4)

(a) P20 (q = 32;n = 5) (b) P52 (q = 52;n = 13)

Figure 5: Propus-Hadamard matrices for orders 4q, q a prime power.

2.4 Propus-Hadamard matrices from D-optimal designs

Lemma 2. Let n ≡ 3 (mod 4), be a prime, such that D-optimal designs,
constructed using two circulant matrices, one of which is symmetric, exist
for order 2n. Then propus-Hadamard matrices exist for order 4n.

Djoković and Kotsireas in [23, 9] give 43 D-optimal designs, constructed
using two circulant matrices, for n < 200. We are interested in those cases
where the D-optimal design is constructed from two circulant matrices one
of which must be symmetric.

Suppose D-optimal designs for orders n ≡ 3 (mod 4), a prime, are con-
structed using two circulant matrices, X and Y . Suppose X is symmetric.
Let Q + I be the Paley matrix of order n. Then choosing

A =X, B = C = Q + I, D = Y,

to put in the array GP gives the required propus-Hadamard matrices.
Hence we have propus-Hadamard matrices, constructed using D-optimal

designs, for orders 4n where n is in {3, 7, 19, 31}. The results for n = 19 and
31 were given to us by Dragomir Djokovic̀.
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We see clearly, looking first at GP28 in Figure 6 where the D-optimal
design is highlighted in purple, the construction method. Now the method
will also be clear in GP12 and GP76.

(a) GP12 (n = 3) (b) GP28 (n = 7) (c) GP76 (n = 19)

Figure 6: Order 4n propus-Hadamard matrices constructed using D-optimal
Designs

2.5 The Propus Construction

We have shown [2] that if X1 = A, X2 = B, X3 = B, X4 = D are pairwise
amicable, symmetric Williamson type matrices of order 2n + 1, where X2 =

X3 = B, and satisfy the additive property, they can be used as in the
appropriate array, G or GP , to form symmetric propus Hadamard matrix of
order (4(2n + 1). For example from Paley’s theorem (Corollary 1) for p ≡ 3
(mod 4) we use the backcirculant or type 1, symmetric matrices QR and R
instead of Q and I; whereas for p ≡ 1 (mod 4) we use the symmetric Paley
core Q.

Many powerful corollaries arose and new results were obtained by making
suitable choices for X1, X2, X3, X4 in the arrays P and GP to ensure that
the propus construction can be used to form symmetric Hadamard matrices
of order 4(2n + 1).

From Turyn’s result (Corollary 2) we set, for p ≡ 1 (mod 4) X1 = P + I,
X2 =X3 = S and X4 = P − I.

Hence we have:

Corollary 1. Let q ≡ 1 (mod 4) be a prime power and 1
2(q + 1) be a prime

power or the order of the core of a symmetric conference matrix (this happens
for q = 89). Then there exist symmetric Williamson type matrices of order
2q + 1 and a symmetric propus-type Hadamard matrix of order 4(2q + 1).

This gives the previously unresolved cases for 2q + 1 = 11, and 83.
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3 Propus-Hadamard Matrices from Conference
matrices: even order matrices

A powerful method to construct propus-Hadamard matrices for n even is
using conference matrices.

Lemma 3. Suppose M is a conference matrix of order n ≡ 2 (mod 4). Then
MM⊺

=M⊺M = (n− 1)I, where I is the identity matrix and M⊺
=M . Then

using A =M +I, B = C =M −I, D =M +I gives a propus-Hadamard matrix
of order 4n.

We use the sixteen conference matrix orders of even order n ≤ 100 from
[1] to give propus-Hadamard matrices of orders 4n. The conference matrices
in Figure 7 are made two circulant matrices A and B of order n where both
A and B are symmetric.

Then using the matrices A + I, B = C and D = A − I in P gives the
required construction.

(a) CP20 (n = 3) (b) C26 (n = 13) (c) CP52 (n = 13)

Figure 7: Conference matrices for orders 2n using two circulants: propus-
Hadamard matrices for orders 4n

The conference matrices in Figure 8 are made from two circulant matrices
A and B of order n where both A and B are symmetric. However here we
use A + I, BR = CR and D = A − I in P to obtain the required construction.
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(a) C26G (n = 13) (b) CP52G (n = 13)

Figure 8: Conference matrices for orders 2n using two circulant and back-
circulants: propus-Hadamard matrices for orders 4n

There is another variant of this family which uses the symmetric Paley
cores A = Q + I, D = Q − I (constructed using Legendre symbols) and one
circulant matrix of maximal determinant B = C = Y .

3.1 Propus-Hadamard matrices for n even

Figure 9 gives visualizations (images/pictures) of propus-Hadamard matrices
orders 16, 32. These have even n.

(a) P16 (n = 4) (b) P32 (n = 8)

Figure 9: Matrices P16 and P32

4 Conclusion and Future Work

Using the results of Lemma 1 and Corollary 1 and the symmetric propus-
Hadamard matrices of Di Matteo, Djoković, and Kotsireas given in [5], we
see that the unresolved cases for symmetric propus-Hadamard matrices for
orders 4n, n < 200 odd, are where n ∈

{17,23,29,33,35,47,53,65,71,73,77,93,95,97,99,

101,103,107,109,113,125,131,133,137,143,149,151,153,

155,161,163,165,167,171,173,179,183,185,189,191,197.}
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There are many constructions and variations of the propus theme to be
explored in future research. Visualizing the propus construction gives aes-
thetically pleasing examples of propus-Hadamard matrices. The visualization
also makes the construction method clearer. There is the possibility that
these visualizations may be used for quilting.
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