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Same titanium glycolate precursor but different
products: successful synthesis of twinned
anatase TiO2 nanocrystals with excellent solar
photocatalytic hydrogen evolution capability†

Gang Cheng, *a Yi Wei,a Jinyan Xiong,b,c,d Yixin Gan,a Jiaxin Zhua and Feifan Xua

Exploiting a synthesis protocol to tailor TiO2 with a unique morphology and crystal phase has received

considerable interest in the energy and environmental fields. We here describe the use of a titanium

glycolate precursor in a hydrothermal hydrolysis reaction to engineer TiO2 nanocrystals with different crystal

phases and structures. Anatase TiO2 nanocrystals with twinned structures were obtained by using a lower

amount of NaOH in the hydrolysis system, while brookite TiO2 nanocrystals were formed when higher

amounts of NaOH were employed. The as-synthesized different TiO2 nanocrystals have a suitable

bandgap to harvest photons and a more negative bottom level of the conduction band than the redox

potential of H+/H2 indicating their potential as hydrogen-evolution semiconductor photocatalysts.

However, the TiO2 nanotwins show promoted charge separation efficiency, and thus result in superior

photocatalytic H2 generation activity compared to the anatase and brookite TiO2 nanocrystals. Our

findings provide an effective and versatile solution for the fabrication of TiO2-based nanostructures with

different phases and morphologies through chemical conversion of powder precursor nanoparticles,

which could pave the way to the design of other functional nano-oxides with unique structures.

1. Introduction

Titanium dioxide (TiO2) is regarded as one of the most promis-
ing semiconducting materials on account of its excellent
physicochemical properties and great potential in the energy
and environmental fields. Evidence indicates that the perform-
ance of TiO2-based materials can be varied by changing not
only the crystal phase but also the structure of the TiO2.

1–3

Study of the intrinsic relationship between the phase/
morphology and properties of TiO2-based materials has engen-
dered an urgent need for adjustable synthetic strategies, where
the crystal phase and particle structure of TiO2 nanomaterials
can be precisely controlled with designed functionalities.4–9

However, synthetic techniques for preparing such nano-
structured materials, especially those achieving simultaneous

control of both the crystal phase and the morphology, still
remain a challenge because of the rapid hydrolysis of titanium
alkoxides and titanium tetrachloride, which are widely used as
titanium precursors. Therefore, on the one hand, much atten-
tion has been paid to the control of hydrolysis using alcohol or
chelating agents, such as dihydric alcohol or carboxylic acid,
or other additives.10–13 On the other hand, substantial efforts
have been made toward the development of a new suitable
titanium precursor with a proper transformation process to
selectively prepare TiO2 with tunable phases and structures, as
well as avoiding the involvement of complex experimental
processes.

One dimensional titanate nanofibers/nanorods/nanotubes
are one of the most widely used precursors to prepare TiO2

nanostructures via thermal dehydration reactions or hydro-
thermal treatments.14–19 However, the use of titanate nano-
wires derived from the alkali treatment of TiO2 nanoparticles
under highly basic conditions requires complex post-proces-
sing processes; meanwhile, TiO2 nanocrystals prepared by the
hydrothermal transformation of titanate are limited to a single
crystal phase of anatase or rutile. Wang et al.20 reported a one-
pot and template-free strategy for synthesizing hollow TiO2

nanostructures using titanocene dichloride (Cp2TiCl2) as the
titanium source, but other chemicals (acetone and ammonia)
were also involved in the reaction system. Other titanium
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precursors have also been prepared to fabricate TiO2 nano-
materials. For example, TiO2 nanoparticles were prepared with
strict control of the size, molecular mass, and mass density by
hydrolyzing a precursor, Ti-(acac)2(biphen), in the presence of
a well-defined hollow Pd12L24 spherical endotemplate.21

Unique spindle-shaped nanoporous anatase TiO2 mesocrystals
with a single-crystal-like structure and tunable sizes were also
successfully fabricated through calcination treatment of pre-
cursors prepared in a tetrabutyl titanate–acetic acid system
under solvothermal conditions.22 In addition, titanium glyco-
late precursors prepared from titanium alkoxides and ethylene
glycol are considered as a potential precursor for preparing
TiO2. Xia’s group synthesized TiO2 nanowires and nanospheres
via annealing treatment of prepared titanium glycolate precur-
sors, and demonstrated that the titanium glycolate could be
transformed into the amorphous phase of TiO2 at 350 °C, the
anatase phase at 500 °C, and the rutile phase at 850 °C.23,24

Zhong et al. synthesized highly nanoporous TiO2 (anatase)
spheres via in situ hydrolysis of titanium glycolate precursor
spheres.25 However, the disadvantage of the above mentioned
synthesis strategies is that the synthesized TiO2 shows a
similar morphology or size to the precursors, because the pre-
cursors act as a hard template in the process of annealing the
precursor powders.

In previous work, we successfully synthesized TiO2@carbon
material hybrid nanostructures via a nanoprecursor-involved
hydrothermal process,26–28 in which the spherical titanium
glycolate precursors were hydrolyzed into titanium oxide from a
nanoporous to a nanoparticulate structure. This phenomenon
inspired us to manipulate the stability and transformation of
titanium glycolate precursors by adjusting the experimental
conditions involved in the wet-chemical synthesis and to study
their effects on the formation and growth of the final TiO2

nanocrystals. Herein, the structure and crystal phase of the
TiO2 products were successfully engineered from this titanium
glycolate precursor via the use of NaOH, which was confirmed
by powder X-ray diffraction and scanning/transmission elec-
tron microscopy. To the best of our knowledge, there are few
literature reports related to the phase and structure controlled
synthesis of TiO2 through a wet-chemical approach using
powder precursors. Interestingly, twinned anatase TiO2 nano-
crystals were prepared for the first time in the presence of a
lower amount of NaOH, and also displayed promoted charge
separation efficiency for a superior photocatalytic capability
towards hydrogen generation.

2. Experimental section
2.1 Synthesis

All of the reagents were of analytical grade and were used
without further purification. De-ionized water was used in all
experiments. The titanium glycolate precursor was synthesized
according to our previously reported procedure.26,29,30 In a
typical synthesis, 2 mL of tetrabutoxytitanium was added to
50 mL of ethylene glycol and was magnetically stirred for

2 hours at 60 °C in a water bath. After cooling down to room
temperature, the mixture was poured into a mixed solution of
acetone and de-ionized water (v/v = 150 mL/30 mL). The pre-
cipitate was collected and washed with de-ionized water and
ethanol six times by centrifugation, then dried at 60 °C over-
night for further use.

Twinned TiO2 nanocrystals were prepared by a hydro-
thermal method from the as-synthesized titanium glycolate
precursor. In a typical synthesis, 0.1 g of the as-synthesized
titanium glycolate precursor was dispersed in 30 mL of de-
ionized (DI) water under vigorous sonication. Next, 0.5 mmol
NaOH was added into the above homogeneous solution and
then the mixture was transferred into a 50 mL Teflon-lined
autoclave and maintained at a temperature of 180 °C for 18 h.
After cooling down to room temperature, the products were
collected and washed with de-ionized water and ethanol
several times by centrifugation. The final product was dried
for 12 h at 60 °C. The effect of the amount of NaOH on the for-
mation and structure of the twinned TiO2 nanocrystals was
investigated under the same synthesis conditions, except for
the tuning of the NaOH concentration.

2.2 Characterization

The titanium glycolate precursor and TiO2 samples were
characterized by powder X-ray diffraction (XRD), scanning elec-
tron microscopy (SEM), transmission electron microscopy
(TEM), and selected area electron diffraction (SAED). XRD
was carried out on a multi-purpose high performance X-ray
diffractometer (CuKα radiation, λ = 1.54 Å) at a scanning rate
of 0.03° s−1 in the 2θ range from 10° to 90°. SEM images were
taken on a field-emission electron microscope (ZEISS, SUPRA
40VP) operating at an acceleration voltage of 3 kV. TEM
images, high resolution TEM images, and SAED patterns were
recorded on a JEOL 2010 electron microscope at an accelerat-
ing voltage of 200 kV. Photoluminescence spectra (PL) were
detected with a HITACHI (Japan) F4600 Fluorescence
spectrophotometer.

The photocurrent measurements were performed similar to
previous reports28 and conducted on a CHI 660E electro-
chemical system (Shanghai, China) using a standard three-
electrode cell with a working electrode, a platinum wire
counter electrode, and a saturated calomel electrode (SCE)
reference electrode. A solution containing 0.5 M Na2SO4 was
used as the electrolyte. The working electrode was prepared
according to the following process: 20 mg of as-prepared
sample was mixed with 1 mL of DMF and 0.01 mL of Nafion
solution (5%, DuPont) to form a homogeneous ink. Then
0.1 mL of the photocatalyst ink was dip-coated onto a 10 mm ×
10 mm indium–tin oxide (ITO) glass electrode. The estimated
loading amount of the sample is 2 mg cm−2. After drying at
room temperature, the as-prepared electrode was further
annealed at 150 °C for 4 h in a vacuum oven to remove the
resin. The photocurrent responses of the photocatalyst in the
presence and absence of light were measured at open-circuit
potential, with simulated light irradiation provided by a 500 W
Xe lamp. Electrochemical impedance spectroscopy (EIS) was

Research Article Inorganic Chemistry Frontiers
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carried out at open-circuit potential in 0.5 M potassium ferri-
cyanide solution. The samples were dip coated onto a glassy
carbon working electrode. A sinusoidal AC perturbation of
5 mV was applied to the electrode over the frequency range of
0.5–105 Hz.

2.3 Photocatalytic hydrogen generation test

Photocatalytic hydrogen evolution experiments were conducted
under vacuum conditions in a 500 mL quartz reactor with a
top quartz window allowing for light irradiation (CEL-SPH2N,
CEAULIGHT Beijing). Actually, the procedure is similar to our
previous method.31 Typically, 50 mg of photocatalyst was
added into methanol solution (vol 20%), which was used as a
sacrificial electron donor, and the mixture was subjected to
ultrasonic treatment for 15 min. A 300 W Xe lamp was used as
an artificial sunlight source. Before light irradiation, the
quartz reactor was sealed gas-tightly with high vacuum grease
and purged by vacuumization to remove the residual air.
During the hydrogen generation reaction, the suspension was
exposed under simulated solar light irradiation with continu-
ous stirring. The volume of generated hydrogen was analyzed
by on-line gas chromatography with a TCD detector at set
intervals. All the hydrogen evolution experiments were carried
out at room temperature.

3. Results and discussion

Fig. 1a shows the XRD pattern of the sample prepared from
the titanium glycolate nanoprecursor with the involvement of
0.5 mmol NaOH in the reaction system. All diffraction peaks
can be assigned to the anatase phase (JCPDS no. 71-1167),
which confirmed the high purity of the product. The micro-
structural characteristics of the TiO2 material were also ana-
lysed by Raman scattering. As shown in Fig. 1b, the material
displays four bands at 152, 400, 516, and 637 cm−1, corres-
ponding to the characteristic Raman modes Eg(1), B1g(1), A1g +
B1g(2), and Eg(2) of anatase TiO2, respectively. This indicates
the presence of the anatase phase in the as-prepared materials,
which is in accordance with the XRD results.

The morphology and structure of the as-synthesized TiO2

sample were further characterized using SEM, TEM, and
HRTEM images, and SAED patterns. In Fig. 2a, it was observed
from the SEM image that large amounts of nanoparticles were
obtained. The TEM image shown in Fig. 2b reveals that the
TiO2 nanoparticles have a diameter of about 50 nm.
Furthermore, it could be seen that some nanoparticles have a
shared edge like a fastigium. The HRTEM images (Fig. 2d and
e) clearly depict that the TiO2 nanoparticles have a twinned
structure and two nanocrystals share a back like a fastigium in
a Beijing traditional courtyard (Fig. 2c), which might be attrib-
uted to the growth occurring along the same zone axis. As
shown in Fig. 2d, the distance between the two consecutive
planes from the central of such twinned nanocrystals is
measured to be 0.35 nm from the lattice image, which
matches the distance between two consecutive (101) planes of

bulk TiO2, indicating that the twinned nanocrystals have the
same exposed facets.32 The SAED pattern in Fig. 2f was charac-
teristic of a polycrystalline structure of TiO2, and several diffr-
action ring patterns corresponding to the (101), (004), (200),
and (211) planes are the sum of different single-crystallized
TiO2 nanoparticles.

As a matter of fact, it was found that the amount of NaOH
has a significant impact on the structure and crystal phase of
the final titanium oxide nanocrystals. Fig. 3 shows the XRD
patterns of the as-synthesized products in the presence of
different amounts of NaOH. It was found that a low concen-
tration of NaOH could not tailor the crystal phase, and the
final products exhibit the anatase phase when less than
0.5 mmol NaOH is used. As shown in Fig. 4a and b, the as-
prepared titanium glycolate precursor exhibits an amorphous
phase and aggregated nanoparticulate morphology. When the
precursor powders were hydrothermally treated in water, the
XRD pattern in Fig. 3 and the TEM image in Fig. 4c show that
anatase TiO2 nanocrystals with cube-like morphology were fab-
ricated. Fig. 4d displays the corresponding HRTEM image of a
single cube-like TiO2 nanoparticle. It shows a d-spacing of
about 0.35 nm, which is in good agreement with the (101)
lattice plane of anatase TiO2, suggesting that the cube-like
nanocrystals were well-crystallized. When a small amount of
NaOH was added to the above reaction system, anatase TiO2

Fig. 1 (a) XRD pattern and (b) Raman spectrum of the as-synthesized
twinned TiO2 anatase nanocrystals.

Inorganic Chemistry Frontiers Research Article
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nanocrystals were still formed as shown in the TEM image in
Fig. 4e. Interestingly, the HRTEM image in Fig. 4f indicates
that the as-formed nanocrystals have a twinned structure like a
fastigium. The above results reveal that the involvement of
NaOH is the key parameter for the formation of the twinned
TiO2 nanocrystals.

However, with an increase in the amount of NaOH, the
crystal phase and structure of the fabricated TiO2 nanocrys-
tals changed greatly. As shown in Fig. 5, when the concen-
tration of NaOH increased from 0.75 to 4 mmol in the reac-
tion system, TiO2 with a brookite phase was obtained, instead
of anatase phase TiO2. As depicted in Fig. 6a–c, the SEM and
TEM images show that rice-like brookite TiO2 nanoparticles
were fabricated in the presence of 0.75 mmol NaOH.
Furthermore, in Fig. 6d–f, it was found that large amounts of
particulates and fewer rice-like nanoparticles were obtained
when 1 mmol NaOH was involved in the reaction system.
When further increasing the concentration of NaOH, the dis-
tribution of different-shaped brookite TiO2 nanoparticles

Fig. 2 (a) SEM, (b) TEM, and (d and e) HRTEM images, and (f ) SAED pattern of the as-synthesized twinned TiO2 anatase nanocrystals.
(c) Photograph of a Beijing traditional courtyard.

Fig. 3 XRD patterns of the titanium glycolate precursor and TiO2 pro-
ducts synthesized under different conditions.

Research Article Inorganic Chemistry Frontiers
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changed. As displayed in Fig. 6g–i, in the presence of 4 mmol
NaOH, the final products mainly consisted of rice-like
nanoparticles.

The above results further confirm that incorporating NaOH
into the reaction system could achieve the tailoring of the
crystal phase and morphology of the titanium oxide nanocrys-
tals from the titanium glycolate precursor. Scheme 1 illustrates
the formation of titanium oxide nanocrystals with different
crystal phases and structures through the use of different
amounts of NaOH in the reaction system. It is well-known that
TiO2 has three main phases, anatase, brookite and rutile, but
solution-phase synthesis strategies for TiO2 generally favour
the formation of anatase structures. One of the main reasons
for this is that the surface energy of anatase is lower than that
of rutile and brookite.33,34 However, the nucleation and growth
of different polymorphs of TiO2 is also determined by the
involvement of the precursor, which depends on the reagents
used in the reaction system. For example, Coronado et al. syn-
thesized anatase nanoparticles using acetic acid from amor-
phous titania, while they obtained phase-pure rutile and broo-
kite nanoparticles with hydrochloric acid at a different concen-
tration.35 Zhao et al. also found that the initially formed pre-
cursor of [Ti(OH)4(OH2)2] from the starting material TiOSO4 in
water could be easily transformed into the anatase phase, but
the production of the brookite phase rather than other crystal-
line titania phases was favoured in the presence of highly con-

Fig. 4 (a and b) SEM and TEM images of the titanium glycolate precursor; (c and d) TEM images of the TiO2 products synthesized without NaOH;
(e and f) TEM images of the TiO2 products synthesized with 0.25 mmol NaOH.

Fig. 5 XRD patterns of the TiO2 products synthesized with different
concentrations of NaOH.

Inorganic Chemistry Frontiers Research Article
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centrated OH−.36 Based on the above previous reports, we pro-
posed that the titanium glycolate precursor could initially stea-
dily convert into the building unit monomers of TiO2 in the
hydrothermal reaction system. Once the concentration of
monomers reaches super-saturation, fast nucleation would
occur, and a lot of crystal seeds would start to come out during
the reaction period. However, the involvement of OH− could
affect the kinetics and thermodynamics in the nucleation and
growth of such crystal seeds, resulting in the control of the
crystal phase and structure. As the results revealed, the tita-

nium glycolate precursor hydrothermally treated with a slightly
lower concentration of OH− species could result in the for-
mation of twinned anatase nanocrystals. Meanwhile, with the
incorporation of highly concentrated OH− into the present
system, the precursor could be transformed into the brookite
phase with a rice-like structure through a dissolution–recrystal-
lization and subsequent crystal phase transformation process.
Our understanding of the formation mechanism is limited
and further study of the influence of additives on the structure
and phase transformation of titanium oxides is still in
progress.

Diffuse reflectance spectroscopy was used to characterize
the optical absorption properties of the as-obtained TiO2

materials. To compare the optical and related photocatalytic
properties, the samples prepared in the presence of 0, 0.5 and
4 mmol NaOH, corresponding to anatase, twinned anatase,
and brookite TiO2 nanocrystals, respectively, were investigated
in the following experiments. As shown in Fig. 7a, the UV-Vis
diffuse reflectance spectra of the as-synthesized TiO2 nanocrys-
tals demonstrate that the products have different absorption
edges in the UV-visible light region. Fig. 7b shows the plot of
(αhν)1/2 versus photon energy (hν) for the as-synthesized TiO2

nanocrystals, where α, ν, and h are the absorption coefficient,
the light frequency, and a constant, respectively. The band gap
energy (Eg value) of the anatase TiO2 nanocrystals estimated
from the plot of (αhν)1/2 versus photon energy (hν) was about
3.06 eV. However, the band gap energy of both the twinned
anatase and brookite TiO2 nanocrystals is narrower than that
of the anatase TiO2 nanocrystals (shown in Table 1), which
confirms that the crystal phase and structure of TiO2 have a
significant impact on the optical properties and offer a way of
tuning the band gap. The valence band (EVB) and conduction

Fig. 6 SEM and TEM images of the TiO2 products synthesized with the use of different amounts of NaOH: (a–c) 0.75 mmol, (d–f ) 1 mmol, and (g–i)
4 mmol.

Scheme 1 Illustration of the phase and structure tailoring of titanium
oxide nanocrystals in the presence of different concentrations of NaOH.

Research Article Inorganic Chemistry Frontiers
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band (ECB) edge of the TiO2 nanocrystals at the point of zero
charge can be calculated according to the empirical equation
EVB = X − Ee + 0.5Eg, in which X is the electronegativity of TiO2

(5.81 eV), Ee is the energy of free electrons on the hydrogen
scale (about 4.5 eV), Eg is the band gap energy of the semi-
conductor, and ECB can be determined using ECB = EVB − Eg.
The EVB and ECB of the samples were calculated and are sum-
marized in Table 1. Typically, all three kinds of TiO2 nanocrys-
tals have a suitable bandgap to harvest photons and a more
negative bottom level of the conduction band than the redox
potential of H+/H2, which is a thermodynamic requirement for

hydrogen-evolution semiconductor photocatalysts.37 In other
words, when incident light possessing energy greater than the
band gap hits these TiO2 materials, the photo-generated elec-
trons could reduce the protons or water molecules on the
surface of TiO2 into molecular hydrogen.

Photocatalytic hydrogen evolution over the different TiO2

nanocrystals was evaluated using methanol solution (vol 20%)
as a sacrificial reagent under artificial sunlight irradiation. It
was found that no H2 generation was measured without any
photocatalyst or light irradiation. These results confirmed that
achieving photocatalytic H2 production requires the use of a
TiO2 photocatalyst as well as the involvement of light
irradiation. Fig. 8a and b display the capability and corres-
ponding evolution rates of photocatalytic H2 evolution using
the different TiO2 photocatalysts. It was observed that the
anatase TiO2 nanocrystals exhibited photocatalytic H2 perform-
ance with a hydrogen generation rate of 104.54 μmol g−1 h−1,
while the brookite TiO2 nanocrystal photocatalyst had a hydro-
gen generation rate of 182.76 μmol g−1 h−1. However, when the
twinned anatase TiO2 nanocrystals were used as the photo-
catalyst, they showed remarkably enhanced photocatalytic
H2 generation capability with an evolution rate of 1272.66
μmol g−1 h−1. The hydrogen evolution rate value of twinned
anatase TiO2 (1272.66 μmol g−1 h−1) was significantly larger
than that of commercial P25 (3.64 μmol g−1 h−1).31 In addition,
it exhibited higher efficiency for hydrogen generation compared
to porous TiO2 hollow spheres (21.2 μmol g−1 h−1),38 3D flower-
like TiO2 nanosheets (1000 μmol g−1 h−1),39 and TiO2 nano-
particles (13.7 μmol g−1 h−1).40 In particular, as shown in
Fig. 8c and d, the hydrogen evolution rate of the twinned TiO2

nanocrystals was still maintained at about 500.74 μmol g−1 h−1

after three cycles, which is higher than that of both the
anatase and brookite TiO2 nanocrystals, indicating that the
twinned TiO2 nanocrystals have good stability towards hydro-
gen evolution.

It has been reported that the BET surface area and charge
transfer have an influence on the photocatalytic hydrogen evol-
ution capability of semiconductors.41 Herein the impact of the
surface areas of the three kinds of different TiO2 nanocrystals
was first studied using nitrogen adsorption and desorption
measurements. As shown in Fig. 9, the nitrogen adsorption–
desorption isotherms of the three different TiO2 nanocrystals
exhibit type II adsorption–desorption isotherms in the range
of 0.5–1.0 P/P0, indicated that the samples have a porous struc-
ture, which may result from the aggregation of small nano-
particles. The Brunauer–Emmett–Teller (BET) specific surface
areas of the TiO2 nanocrystals were calculated and are listed in
Table 1. It was found that the BET surface area of the anatase
TiO2 nanocrystals was larger than that of twinned anatase
TiO2, which was slightly higher than that of the brookite nano-
particles. However, the twinned anatase TiO2 nanocrystals
exhibited the highest photocatalytic hydrogen generation capa-
bility, even though they did not have the largest surface area
among the three samples. These results indicate that the
surface area is not the main parameter influencing the H2 pro-
duction performance of the three TiO2 samples.

Fig. 7 (a) UV-vis diffuse reflectance spectra and (b) plots of (αhν)1/2

versus photon energy (hν) of the as-synthesized TiO2 samples.

Table 1 Physicochemical properties, band gap, band edges, BET surface
areas and photocatalytic H2 evolution capability of the as-synthesized
TiO2 nanocrystals

Sample
SBET
(m2 g−1)

Band
gap (eV)

ECB
(eV)

EVB
(eV)

H2 generation
(μmol g−1 h−1)

Anatase TiO2 141.19 3.06 −0.22 2.84 104.54
Twinned anatase TiO2 76.84 2.96 −0.17 2.79 1272.66
Brookite TiO2 54.98 2.87 −0.13 2.74 182.76
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The photoluminescence spectrum (PL) could give useful
information about the efficiency of electron–hole recombina-
tion and charge carrier trapping. Particularly, the recombina-
tion of photogenerated electrons and holes produced in a
semiconductor could induce PL. Accordingly, a lower PL inten-
sity of a semiconductor indicates faster separation and better
transfer efficiency of photoinduced electron–hole pairs in the
photocatalysis system, and therefore displays a higher photo-
catalytic capability.42–44 As can be seen in Fig. 10, the PL inten-
sity of twinned anatase TiO2 was much lower than that of both

anatase and brookite TiO2. This result suggested that the TiO2

nanocrystals with twinned structure could facilitate charge
transfer so as to prohibit charge recombination in the TiO2

nanocrystals and finally result in a higher photocatalytic
hydrogen evolution capability.

To better understand the behavior of photo-induced charge
carriers in the three kinds of different TiO2 photocatalysts,
additional electrochemical and photoelectrochemical experi-
ments were also carried out. Fig. 11a shows the rapid and con-
sistent photocurrent responses for each switch-on and -off

Fig. 8 (a) Photocatalytic hydrogen evolution performance and (b) evolution rate of the different TiO2 photocatalysts. (c) Recyclability of the hydro-
gen evolution behavior and (d) corresponding evolution rate over the twinned TiO2 nanocrystals.

Fig. 9 N2 adsorption–desorption isotherms of the different TiO2

photocatalysts.
Fig. 10 Photoluminescence spectra of the different TiO2

photocatalysts.
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event in multiple 30 s on–off cycles under simulated solar
light irradiation. It is worth noting that the photocurrent
density of the twinned anatase TiO2 electrode is much higher
than that of both the anatase and brookite TiO2 nanocrystals.
The promoted photocurrent response of the sample indicates
higher efficiency and lower recombination rate of photogene-
rated electron–hole pairs in the twinned anatase TiO2 nano-
crystals.45,46 Fig. 11b shows the electrochemical impedance
spectroscopy (EIS) Nyquist plots of the as-prepared three kinds
of TiO2 photocatalysts. The arc radius on the EIS Nyquist plot
of the twinned anatase TiO2 photocatalyst is smaller than that
of the anatase and brookite TiO2 nanoparticles. As a matter of
fact, in the EIS Nyquist plot, the smaller semicircle size indi-
cates fast interfacial charge transfer in the semiconductor.47,48

The above result suggests that more effective interfacial charge
transfer occurs on the twinned anatase TiO2 photocatalyst
rather than anatase and brookite TiO2 under these conditions.
Based on these results, it was concluded that the enhancement
of the photocatalytic hydrogen evolution activity of the
twinned anatase TiO2 nanocrystals was attributed to the faster
separation of photogenerated carriers and lower recombina-
tion of photoinduced electron–hole pairs.

4. Conclusions

In summary, anatase TiO2 nanocrystals with a unique twinned
nanostructure were successfully synthesized by a facile hydro-
thermal method from the hydrolysis of a titanium glycolate
powder precursor. The composition and phase purity of the
TiO2 products were characterized by XRD and Raman spec-
troscopy. The SEM, TEM, and HRTEM images showed that the
involvement of NaOH was not only a key parameter for the for-
mation of twinned anatase TiO2 nanocrystals, but could also
be used to tailor the crystal phase of the as-synthesized TiO2

by changing its concentration. The photocatalysis activities of
the as-prepared TiO2 products were evaluated by photocatalytic
hydrogen generation under solar light irradiation. The excel-
lent photocatalytic activity of twinned anatase TiO2 towards H2

production is ascribed to the efficient generation and separ-
ation of photoinduced electron–hole pairs. This novel
approach using precursor nanoparticles offers a simple way to
prepare TiO2 nanocrystals with unique twinned structures and
excellent photocatalytic hydrogen production capability, as
well as tailor the morphology and crystal phase, and is
expected to provide a reference for fabricating other functional
oxide nanocrystals with designed structures and promising
applications.
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